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PROBABILITY THEORY AND STOCHASTIC PROCESS

OBJECTIVES:
1. To provide mathematical background and sufficient experience so that student can read,
write and understand sentences in the language of probability theory.
2. To introduce students to the basic methodology of “probabilistic thinking” and apply it to
problems.
3. To understand basic concepts of Probability theory and Random Variables, how to deal with
multiple Random Variables.
4. To understand the difference between time averages statistical averages.
5. To teach students how to apply sums and integrals to compute probabilities, and
expectations.
UNIT I:
Probability and Random Variable
Probability: Set theory, Experiments and Sample Spaces, Discrete and Continuous Sample Spaces,
Events, Probability Definitions and Axioms, Mathematical Model of Experiments, Joint
Probability, Conditional Probability, Total Probability, Bayes’ Theorem, and Independent Events,
Bernoulli’s trials.
The Random Variable: Definition of a Random Variable, Conditions for a Function to be a
Random Variable, Discrete and Continuous, Mixed Random Variable
UNIT II:
Distribution and density functions and Operations on One Random Variable
Distribution and density functions: Distribution and Density functions, Properties, Binomial,
Poisson, Uniform, Exponential Gaussian, Rayleigh and Conditional Distribution, Methods of
defining Conditioning Event, Conditional Density function and its properties, problems.
Operation on One Random Variable: Expected value of a random variable, function of a random
variable, moments about the origin, central moments, variance and skew, characteristic function,
moment generating function, transformations of a random variable, monotonic transformations for
a continuous random variable, non monotonic transformations of continuous random variable,
transformations of Discrete random variable
UNIT III:
Multiple Random Variables and Operations on Multiple Random Variables
Multiple Random Variables: Vector Random Variables, Joint Distribution Function and
Properties, Joint density Function and Properties, Marginal Distribution and density Functions,
conditional Distribution and density Functions, Statistical Independence, Distribution and density
functions of Sum of Two Random Variables and Sum of Several Random Variables, Central Limit
Theorem - Unequal Distribution, Equal Distributions
Operations on Multiple Random Variables: Expected Value of a Function of Random Variables,
Joint Moments about the Origin, Joint Central Moments, Joint Characteristic Functions, and Jointly
Gaussian Random Variables: Two Random Variables case and N Random Variable case,
Properties, Transformations of Multiple Random Variables
UNIT VI:
Stochastic Processes-Temporal Characteristics: The Stochastic process Concept, Classification
of Processes, Deterministic and Nondeterministic Processes, Distribution and Density Functions,
Statistical Independence and concept of Stationarity: First-Order Stationary Processes, Second-
Order and Wide-Sense Stationarity, Nth-Order and Strict-Sense Stationarity, Time Averages and




Ergodicity, Mean-Ergodic Processes, Correlation-Ergodic Processes Autocorrelation Function and
Its Properties, Cross-Correlation Function and Its Properties, Covariance Functions and its
properties, Gaussian Random Processes.

Linear system Response: Mean and Mean-squared value, Autocorrelation, Cross-Correlation
Functions.

UNIT V:

Stochastic Processes-Spectral Characteristics: The Power Spectrum and its Properties,
Relationship between Power Spectrum and Autocorrelation Function, the Cross-Power Density
Spectrum and Properties, Relationship between Cross-Power Spectrum and Cross-Correlation
Function.

Spectral characteristics of system response: power density spectrum of response, cross power
spectral density of input and output of a linear system

TEXT BOOKS:
1. Probability, Random Variables & Random Signal Principles -Peyton Z. Peebles, TMH, 4th
Edition, 2001.
2. Probability and Random Processes-Scott Miller, Donald Childers,2Ed,Elsevier,2012

REFERENCE BOOKS:

1. Theory of probability and Stochastic Processes-Pradip Kumar Gosh, University Press

2. Probability and Random Processes with Application to Signal Processing - Henry Stark
and John W. Woods, Pearson Education, 3rd Edition.

3. Probability Methods of Signal and System Analysis- George R. Cooper, Clave D. MC
Gillem, Oxford, 3rd Edition, 1999.

4. Statistical Theory of Communication -S.P. Eugene Xavier, New Age Publications 2003

5. Probability, Random Variables and Stochastic Processes Athanasios Papoulis and
S.Unnikrishna Pillai, PHI, 4th Edition, 2002.

OUTCOMES:

Upon completion of the subject, students will be able to compute:

Simple probabilities using an appropriate sample space.

Simple probabilities and expectations from probability density functions (pdfs)
Likelihood ratio tests from pdfs for statistical engineering problems.

Least -square & maximum likelihood estimators for engineering problems.
Mean and covariance functions for simple random processes.
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UNIT -1
PROBABILITY AND RANDOM VARIABLE

PROBABILITY

Introduction

It is remarkable that a science which began with the consideration of games of chance
should have become the most important object of human knowledge.

A brief history

Probability has an amazing history. A practical gambling problem faced by the French nobleman
Chevalier de Méré sparked the idea of probability in the mind of Blaise Pascal (1623-1662), the
famous French mathematician. Pascal's correspondence with Pierre de Fermat (1601-1665), another
French Mathematician in the form of seven letters in 1654 is regarded as the genesis of probability.
Early mathematicians like Jacob Bernoulli (1654-1705), Abraham de Moivre (1667-1754), Thomas
Bayes (1702-1761) and Pierre Simon De Laplace (1749-1827) contributed to the development of
probability. Laplace's Theory Analytique des Probabilities gave comprehensive tools to calculate
probabilities based on the principles of permutations and combinations. Laplace also said,
"Probability theory is nothing but common sense reduced to calculation.”

Later mathematicians like Chebyshev (1821-1894), Markov (1856-1922), von Mises (1883-
1953), Norbert Wiener (1894-1964) and Kolmogorov (1903-1987) contributed to new
developments. Over the last four centuries and a half, probability has grown to be one of the most
essential mathematical tools applied in diverse fields like economics, commerce, physical
sciences, biological sciences and engineering. It is particularly important for solving practical
electrical-engineering problems in communication, signal processing and computers.
Notwithstanding the above developments, a precise definition of probability eluded the
mathematicians for centuries. Kolmogorov in 1933 gave the axiomatic definition of probability
and resolved the problem.

Randomness arises because of

» random nature of the generation mechanism

» Limited understanding of the signal dynamics inherent imprecision in measurement,
observation, etc.

For example, thermal noise appearing in an electronic device is generated due to random motion of
electrons. We have deterministic model for weather prediction; it takes into account of the factors
affecting weather. We can locally predict the temperature or the rainfall of a place on the basis of
previous data. Probabilistic models are established from observation of a random phenomenon.
While probability is concerned with analysis of a random phenomenon, statistics help in building
such models from data.




Deterministic versus probabilistic models

A deterministic model can be used for a physical quantity and the process generating it provided
sufficient information is available about the initial state and the dynamics of the process generating
the physical quantity. For example,

e We can determine the position of a particle moving under a constant force if we know the
initial position of the particle and the magnitude and the direction of the force.

e We can determine the current in a circuit consisting of resistance, inductance and
capacitance for a known voltage source applying Kirchoff's laws.

Many of the physical quantities are random in the sense that these quantities cannot be predicted
with certainty and can be described in terms of probabilistic models only. For example,

e The outcome of the tossing of a coin cannot be predicted with certainty. Thus the
outcome of tossing a coin is random.

e The number of ones and zeros in a packet of binary data arriving through a
communication channel cannot be precisely predicted is random.

e The ubiquitous noise corrupting the signal during acquisition, storage and transmission
can be modelled only through statistical analysis.

How to Interpret Probability

Mathematically, the probability that an event will occur is expressed as a number between 0 and 1.
Notationally, the probability of event A is represented by P (A).

= If P (A) equals zero, event A will almost definitely not occur.

= If P (A) is close to zero, there is only a small chance that event A will occur.
= If P (A) equals 0.5, there is a 50-50 chance that event A will occur.

= If P(A) is close to one, there is a strong chance that event A will occur.

= If P(A) equals one, event A will almost definitely occur.

In a statistical experiment, the sum of probabilities for all possible outcomes is equal to one. This
means, for example, that if an experiment can have three possible outcomes (A, B, and C), then
P(A) +P(B) +P(C) = 1.




Applications

Probability theory is applied in everyday life in risk assessment and in trade on financial markets.
Governments apply probabilistic methods in environmental regulation, where it is called pathway
analysis

Another significant application of probability theory in everyday life is reliability. Many consumer
products, such as automobiles and consumer electronics, use reliability theory in product design to
reduce the probability of failure. Failure probability may influence a manufacturer's decisions on a
product's warranty.

THE BASIC CONCEPTS OF SET THEORY

Some of the basic concepts of set theory are:

Set: A set is a well defined collection of objects. These objects are called elements or members of
the set. Usually uppercase letters are used to denote sets.

The set theory was developed by George Cantor in 1845-1918. Today, it is used in almost every
branch of mathematics and serves as a fundamental part of present-day mathematics.

In everyday life, we often talk of the collection of objects such as a bunch of keys, flock of birds,
pack of cards, etc. In mathematics, we come across collections like natural numbers, whole
numbers, prime and composite numbers.

We assume that,

e the word set is synonymous with the word collection, aggregate, class and comprises of elements.
® Objects, elements and members of a set are synonymous terms.

e Sets are usually denoted by capital letters A, B, C, ....., etc.

e Elements of the set are represented by small letters a, b, c, ....., etc.

If ‘a’ is an element of set A, then we say that ‘a’ belongs to A. We denote the phrase ‘belongs to’
by the Greek symbol ‘€° (epsilon). Thus, we say that a € A.

If ‘b’ is an element which does not belong to A, we represent thisas b ¢ A.
Examples of sets:
1. Describe the set of vowels.

If A is the set of vowels, then A could be described as A ={a, e, i, 0, u}.




2.Describe the set of positive integers.

Since it would be impossible to list all of the positive integers, we need to use a rule to describe this
set. We might say A consists of all integers greater than zero.

3.SetA={1, 2,3}and Set B ={3, 2, 1}. Is Set A equal to Set B?

Yes. Two sets are equal if they have the same elements. The order in which the elements are listed
does not matter.

4. What is the set of men with four arms?

Since all men have two arms at most, the set of men with four arms contains no elements. It is the
null set (or empty set).

5. SetA={1,2,3}and SetB={1, 2, 4, 5, 6}. Is Set A a subset of Set B?

Set A would be a subset of Set B if every element from Set A were also in Set B. However, this is
not the case. The number 3 is in Set A, but not in Set B. Therefore, Set A is not a subset of Set B

Some important sets used in mathematics are
N: the set of all natural numbers = {1, 2, 3, 4, ...}
Z: the set of all integers ={....., -3,-2,-1,0,1, 2, 3, ...}
Q: the set of all rational numbers
R: the set of all real numbers
Z+: the set of all positive integers
W: the set of all whole numbers
The different types of sets are explained below with examples.
1. Empty Set or Null Set:
A set which does not contain any element is called an empty set, or the null set or the void set and it
is denoted by @ and is read as phi. In roster form, @ is denoted by {}. An empty set is a finite set,
since the number of elements in an empty set is finite, i.e., 0.
For example: (a) the set of whole numbers less than 0.

(b) Clearly there is no whole number less than 0.

Therefore, it is an empty set.




(c)N={x:x€eN,3<x<4}
e Let A={x:2<x<3, xisanatural number}

Here A is an empty set because there is no natural number between
2and 3.

e Let B ={x : x is a composite number less than 4}.
Here B is an empty set because there is no composite number less than 4.
Note:

@ # {0} . has no element.

{0} is a set which has one element 0.

The cardinal number of an empty set, i.e., n(@) =0

2. Singleton Set:
A set which contains only one element is called a singleton set.
For example:
e A = {X : x is neither prime nor composite}
It is a singleton set containing one element, i.e., 1.
e B ={x: xis awhole number, x <1}
This set contains only one element 0 and is a singleton set.
eLlet A={x:x€eNandx?=4}
Here A is a singleton set because there is only one element 2 whose square is 4.
e Let B ={x: xis aeven prime number}

Here B is a singleton set because there is only one prime number which is even, i.e., 2.




3. Finite Set:

A set which contains a definite number of elements is called a finite set. Empty set is also called a
finite set.

For example:
* The set of all colors in the rainbow.
eN={X:XeEN, x<T7}

*P={2,35,711,13,17, ...... 97}

4. Infinite Set:

The set whose elements cannot be listed, i.e., set containing never-ending elements is called an
infinite set.

For example:

« Set of all points in a plane
cA={X:X€N,x>1}

« Set of all prime numbers
B={x:xeW,x=2n}

Note:

All infinite sets cannot be expressed in roster form.
For example:

The set of real numbers since the elements of this set do not follow any particular pattern.

5. Cardinal Number of a Set:

The number of distinct elements in a given set A is called the cardinal number of A. It is denoted
by n(A). And read as ‘the number of elements of the set’.

For example:




*A{x:x€eN,x<5}
A={1,23, 4}
Therefore, n(A) =4
* B = set of letters in the word ALGEBRA
B={A, L, G,E, B,R}
Therefore, n(B) =6
6. Equivalent Sets:

Two sets A and B are said to be equivalent if their cardinal number is same, i.e., n(A) =n(B). The
symbol for denoting an equivalent set is ‘«>’.

For example:
A={1,2, 3} Heren(A) =3
B={p,q,r}Heren(B)=3

Therefore, A < B

7. Equal sets:

Two sets A and B are said to be equal if they contain the same elements. Every element of A is an
element of B and every element of B is an element of A.

For example:
A={p,q,r,s}

B={p s r a}
Therefore, A=B
8. Disjoint Sets:
Two sets A and B are said to be disjoint, if they do not have any element in common.

For example;




A ={x: x is a prime number}
B = {x : x is a composite number}.

Clearly, A and B do not have any element in common and are disjoint sets.

9. Overlapping sets:
Two sets A and B are said to be overlapping if they contain at least one element in common.
For example;
«A={ab,c, d}
B={a, e i 0, u}
e X={x:x€eN,x<4}
Y={x:x€l -1<x<4}
Here, the two sets contain three elements in common, i.e., (1, 2, 3)
10. Definition of Subset:

If A and B are two sets, and every element of set A is also an element of set B, then A is called a
subset of B and we write itasAS BorB2 A

The symbol c stands for ‘is a subset of” or ‘is contained in’

* Every set is a subset of itself, i.e., A € A, B c B.

* Empty set is a subset of every set.

* Symbol ‘€’ is used to denote ‘is a subset of” or ‘is contained in’.
* A € B means A is a subset of B or A is contained in B.

* B € A means B contains A.

Examples;

1. LetA={2,4,6}

B=1{6,4, 8,2}
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Here A is a subset of B

Since, all the elements of set A are contained in set B.
But B is not the subset of A

Since, all the elements of set B are not contained in set A.
Notes:

If ACB and BCA, then A =B, i.e., they are equal sets.
Every set is a subset of itself.

Null set or @ is a subset of every set.

2. The set N of natural numbers is a subset of the set Z of integers and we write N c Z.

3. LetA={2,4, 6}
B = {x : x is an even natural number less than 8}
Here Ac Band B c A.

Hence, we cansay A=B

4. LetA={1,2, 3,4}
B={4,5,6,7}
Here A¢ BandalsoB ¢ C

[¢ denotes ‘not a subset of”]

11. Super Set:
Whenever a set A is a subset of set B, we say the B is a superset of A and we write, B 2 A.
Symbol 2 is used to denote ‘is a super set of’

For example;

11




A={a e i 0 U}

Here AC Bi.e, Aisasubset of B but B2 Ai.e., Bisasuper set of A

12. Proper Subset:

If A and B are two sets, then A is called the proper subset of Bif A BbutB 2 Ai.e., A#B. The
symbol ‘C’ is used to denote proper subset. Symbolically, we write A c B.

For example;

1. A={1,2 3,4}

Here n(A) =4

B={1,2 3,45}

Here n(B) =5

We observe that, all the elements of A are present in B but the element ‘5’ of B is not present in A.

So, we say that A is a proper subset of B.
Symbolically, we write itas A c B

Notes:
No set is a proper subset of itself.

Null set or @ is a proper subset of every set.

2.A={p.q, 1}

B={pq,rst}

Here A is a proper subset of B as all the elements of set A are in set B and also A # B.
Notes:

No set is a proper subset of itself.

Empty set is a proper subset of every set.
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13. Power Set:

The collection of all subsets of set A is called the power set of A. It is denoted by P(A). In P(A),
every element is a set.

For example;

If A ={p, q} then all the subsets of A will be
P(A) ={9. {p}, {a}. {p. a}}

Number of elements of P(A) = n[P(A)] =4 =22

In general, n[P(A)] = 2m where m is the number of elements in set A.

14.Universal Set

A set which contains all the elements of other given sets is called a universal set. The symbol for
denoting a universal set is U or &.

For example;

1L.IFA={1,2,3} B={2,3,4 C={357}
thenU={1,2,3,4,5,7}

[Here AcU,Bc U CcUandU2A U2B,U2C]

2. If P is a set of all whole numbers and Q is a set of all negative numbers then the universal set is a
set of all integers.

3.IfA={a,b,c} B={d,e} C={fgh,i}
thenU ={a, b, c, d, e, f, g, h, i} can be taken as universal set.
Operations on sets:
1. Definition of Union of Sets:
Union of two given sets is the smallest set which contains all the elements of both the sets.

To find the union of two given sets A and B is a set which consists of all the elements of A and all
the elements of B such that no element is repeated.
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The symbol for denoting union of sets is ‘U’.

Some properties of the operation of union:

(i) AuB = BUA (Commutative law)

(i) Au(BUC) = (AuB)UC (Associative law)

(i Aud=A (Law of identity element, is the identity of U)
(iv) AUA=A (Idempotent law)

(Vy UUA=U (Law of U) U is the universal set.

Notes:

AU ® =®U A = Ai.e. union of any set with the empty set is always the set itself.
Examples:

1.IfA={1,3,7,5}and B = {3, 7, 8, 9}. Find union of two set A and B.
Solution:

AuB={135,7,8,9}
No element is repeated in the union of two sets. The common elements 3, 7 are taken only once.

2. Let X ={a, e,i,0,u}and Y = {}}. Find union of two given sets X and Y.
Solution:
XUY=A{aeliou}
Therefore, union of any set with an empty set is the set itself.
2. Definition of Intersection of Sets:

Intersection of two given sets is the largest set which contains all the elements that are common to
both the sets.

To find the intersection of two given sets A and B is a set which consists of all the elements which
are common to both A and B.

The symbol for denoting intersection of sets is ‘N°.

Some properties of the operation of intersection
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(i) ANB=BNA (Commutative law)

(i) (ANB)NC = AN (BNC) (Associative law)

(i) dNA=D (Law of @)
(iv) UNA=A (Law of V)
(V) ANA=A (Idempotent law)

(vi) AN(BUC) = (ANB) U (ANC) (Distributive law) Here N distributes over U
Also, AU(BNC) = (AUB) N (AUC) (Distributive law) Here U distributes over N
Notes:
ANd=>dN A= i.e. intersection of any set with the empty set is always the empty set.
Solved examples :
1.IfA={24,6,8,10}and B ={1, 3, 8, 4, 6}. Find intersection of two set A and B.
Solution:
ANB={4,6,8}
Therefore, 4, 6 and 8 are the common elements in both the sets.
2.1f X={a, b, c}and Y = {¢}. Find intersection of two given sets X and Y.
Solution:
XNy={}

3. Difference of two sets
If A and B are two sets, then their difference is given by A-B or B - A.
«IfA={2,3,4}and B={4,5, 6}
A - B means elements of A which are not the elements of B.
i.e., in the above example A - B = {2, 3}

Ingeneral, B-A={x:x€B,and x ¢ A}
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* If A and B are disjoint sets, then A—-B=AandB-A=B

Solved examples to find the difference of two sets:
1.A={1,2,3}and B={4,5, 6}.

Find the difference between the two sets:

()Aand B

(i) Band A

Solution:

The two sets are disjoint as they do not have any elements in common.
A-B={1,2,3}=A

(i)B-A={4,56}=B

2.LetA={a,b,c,d, e ffandB={b,d, f g}

Find the difference between the two sets:

()Aand B

(i) Band A

Solution:

M)A-B={ac,e}

Therefore, the elements a, ¢, e belong to A but not to B
(i) B-A={9)

Therefore, the element g belongs to B but not A.

4. Complement of a Set

In complement of a set if S be the universal set and A a subset of S then the complement of A is

the set of all elements of S which are not the elements of A.

Symbolically, we denote the complement of A with respect to S as A’.
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Some properties of complement sets

()AUA"=A"UA =U (Complement law)

() (ANBY=¢ (Complement law) - The set and its complement are disjoint sets.
(iii) A U B)=A'N B' (De Morgan’s law)

(iv) (AN B)'=A"'U B' (De Morgan’s law)

(v) (A)' = A (Law of complementation)

(vi) @' = U (Law of empty set - The complement of an empty set is a universal set.
(vii) U'= @ and universal set) - The complement of a universal set is an empty set.
For Example; IfS={1, 2, 3,4,5, 6, 7}

A={1,3,7}find A'.

Solution:

We observe that 2, 4, 5, 6 are the only elements of S which do not belong to A.
Therefore, A'={2, 4,5, 6}

Algebraic laws on sets:

1. Commutative Laws:

For any two finite sets A and B;

()AUB=BUA

(i)ANB=BNA

2. Associative Laws:

For any three finite sets A, B and C;

() (AUB)UC=AU(BUC)

() (ANB)YNC=ANBNC)

Thus, union and intersection are associative.
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3. Idempotent Laws:
For any finite set A;
HAUA=A
()ANA=A

4. Distributive Laws:

For any three finite sets A, B and C;
(HAUBNC)=(AUB)N(AUC)
()ANBUC)=(ANB)U(ANC)
Thus, union and intersection are distributive over intersection and union respectively.
5. De Morgan’s Laws:

For any two finite sets A and B;
)A-BUC)=(A-B)N(A-0C)
(i(i)A-BNC)=(A-B)U(A-C)
De Morgan’s Laws can also we written as:
() (AUB)Y =A'"NB'

(i) (ANB)Y=A'UB'

More laws of algebra of sets:

6. For any two finite sets A and B;
() A-B=ANB
(i'B-A=BNA'

(i A—-B=ASANB=0
(iv)(A—-B)UB=AUB

V) (A-B)NB=0

18




(vij(A-B)UB-A)=(AUB)-(ANB)

Definition of De Morgan’s law:

The complement of the union of two sets is equal to the intersection of their complements and the
complement of the intersection of two sets is equal to the union of their complements. These are
called De Morgan’s laws.

For any two finite sets A and B;

(i) (A U B)'=A' N B' (which is a De Morgan's law of union).

(if) (A N B)'= A' U B' (which is a De Morgan's law of intersection).

Venn Diagrams:

Pictorial representations of sets represented by closed figures are called set diagrams or Venn
diagrams.

Venn diagrams are used to illustrate various operations like union, intersection and difference.

We can express the relationship among sets through this in a more significant way.

In this,

*A rectangle is used to represent a universal set.

« Circles or ovals are used to represent other subsets of the universal set.

Venn diagrams in different situations

In these diagrams, the universal set is represented by a rectangular region and its subsets by circles

inside the rectangle. We represented disjoint set by disjoint circles and intersecting sets by
intersecting circles.

S.No Set &Its relation Venn Diagram

1 Intersection of A and B

AMNB
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A B ¢
Union of Aand B @
A B é
Difference : A-B @
U
Difference : B-A
A B

Difference of two sets
B-A

Complement of set A

|®

Complement of & or &'

AUBwhen AcB
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7 A U B when neither A c B
norBc A
A ;9
8 A U B when Aand B are )
disjoint sets » o
A B
9 (A U B)’ (A union B dash) @
A B
10 (A N B)’ (A intersection B
dash)
11 B’ (B dash)
12 (A - B)’ (Dash of sets A

minus B)




13 (A € B)’ (Dash of A subset
B)

Problems of set theory:
1. Let A and B be two finite sets such that n(A) = 20, n(B) = 28 and n(A U B) = 36, find n(A N B).
Solution:
Using the formula n(A U B) = n(A) + n(B) - n(A N B).
then n(A N B) =n(A) + n(B) - n(A U B)
=20+ 28-36
=48 - 36

=12

2. 1fn(A - B) =18, n(A U B) = 70 and n(A N B) = 25, then find n(B).
Solution:
Using the formula n(AUB) =n(A - B) + n(A N B) +n(B - A)
70=18+25+n(B-A)
70=43+n(B - A)
n(B-A)=70-43
n(B - A) = 27
Now n(B)=n(A N B) + n(B - A)
=25+27

=52
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3. In a group of 60 people, 27 like cold drinks and 42 like hot drinks and each person likes at least
one of the two drinks. How many like both coffee and tea?

Solution:
Let A = Set of people who like cold drinks.
B = Set of people who like hot drinks.
Given
(AuB)=60 n(A) =27 n(B) = 42 then;
n(A N B)=n(A) +n(B) - n(A U B)
=27+42-60
=69-60=9
=9
Therefore, 9 people like both tea and coffee.
4. There are 35 students in art class and 57 students in dance class. Find the number of students
who are either in art class or in dance class.
» When two classes meet at different hours and 12 students are enrolled in both activities.
» When two classes meet at the same hour.
Solution:
n(A)=35 nB)=57, n(ANB)=12

(Let A be the set of students in art class.
B be the set of students in dance class.)

(i) When 2 classes meet at different hours n(A U B) = n(A) + n(B) - n(A N B)
=35+57-12
=92-12

=80
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(i) When two classes meet at the same hour, ANB =@ n (A U B) =n(A) + n(B) - n(A N B)
=n(A) +n(B)
=35+57

=92

5. In a group of 100 persons, 72 people can speak English and 43 can speak French. How many can
speak English only? How many can speak French only and how many can speak both English and
French?
Solution:
Let A be the set of people who speak English.
B be the set of people who speak French.
A - B be the set of people who speak English and not French.
B - A be the set of people who speak French and not English.
A N B be the set of people who speak both French and English.
Given,
n(A)=72 n(B)=43 n(AuB)=100
Now, n(A N B) =n(A) + n(B) - n(A U B)
=72+43-100
=115-100
=15
Therefore, Number of persons who speak both French and English = 15
n(A) =n(A - B) + n(A N B)
= n(A-B)=n(A)-n(A NB)

=72-15
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=57
and n(B - A) =n(B) - n(A N B)
=43-15
=28
Therefore, Number of people speaking English only = 57

Number of people speaking French only = 28

Probability Concepts
Before we give a definition of probability, let us examine the following concepts:
1. Experiment:

In probability theory, an experiment or trial (see below) is any procedure that can be
infinitely repeated and has a well-defined set of possible outcomes, known as the sample
space. An experiment is said to be random if it has more than one possible outcome,
and deterministic if it has only one. A random experiment that has exactly two (mutually
exclusive) possible outcomes is known as a Bernoulli trial.

Random Experiment:

An experiment is a random experiment if its outcome cannot be predicted precisely. One
out of a number of outcomes is possible in a random experiment. A single performance of
the random experiment is called a trial.

Random experiments are often conducted repeatedly, so that the collective results may be
subjected to statistical analysis. A fixed number of repetitions of the same experiment can
be thought of as a composed experiment, in which case the individual repetitions are
called trials. For example, if one were to toss the same coin one hundred times and record
each result, each toss would be considered a trial within the experiment composed of all
hundred tosses.

Mathematical description of an experiment:

A random experiment is described or modeled by a mathematical construct known as a probability
space. A probability space is constructed and defined with a specific kind of experiment or trial in
mind.

A mathematical description of an experiment consists of three parts:
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1. Asample space, Q (or S), which is the set of all possible outcomes.

2. A set of events , where each event is a set containing zero or more outcomes.

3. The assignment of probabilities to the events—that is, a function P mapping from events to
probabilities.

An outcome is the result of a single execution of the model. Since individual outcomes might be of
little practical use, more complicated events are used to characterize groups of outcomes. The
collection of all such events is a sigma-algebra . Finally, there is a need to specify each event's
likelihood of happening; this is done using the probability measure function,P.

2. Sample Space: The sample space S'is the collection of all possible outcomes of a
random experiment. The elements of < are called sample points.

¢ A sample space may be finite, countably infinite or uncountable.
¢ A finite or countably infinite sample space is called a discrete sample space.
¢ Anuncountable sample space is called a continuous sample space

Ex:1. For the coin-toss experiment would be the results “Head”and “Tail”, which we may
represent by S={H T}.

Ex. 2. If we toss a die, one sample space or the set of all possible outcomes is
S={1,23,4,5,6}

The other sample space can be

S ={odd, even}

Types of Sample Space:

1. Finite/Discrete Sample Space:

Consider the experiment of tossing a coin twice.

The sample space can be

S={HH, HT, T H, TT} the above sample space has a finite number of sample points. It is
called a finite sample space.

2. Countably Infinite Sample Space:
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Consider that a light bulb is manufactured. It is then tested for its life length by inserting it
into a socket and the time elapsed (in hours) until it burns out is recorded. Let the measuring
instrument is capable of recording time to two decimal places, for example 8.32 hours.
Now, the sample space becomes count ably infinite i.e.

s={0.0,0.01, 0.02}
The above sample space is called a countable infinite sample space.
3. Un Countable/ Infinite Sample Space:
If the sample space consists of unaccountably infinite number of elements then it is called
Un Countable/ Infinite Sample Space.

Event: An event is simply a set of possible outcomes. To be more specific, an event is a
subset A of the sample space S.

e ACS

e For adiscrete sample space, all subsets are events.

Ex: For instance, in the coin-toss experiment the events A={Heads} and B={Tails} would be
mutually exclusive.

An event consisting of a single point of the sample space 'S' is called a simple event or elementary

event.

Some examples of event sets:

Example 1: tossing a fair coin

The possible outcomes are H (head) and T (tail). The associated sample space is S={H. T

a finite sample space. The events associated with the sample space * are: SAH}(Thgng 2.

Example 2: Throwing a fair die:
The possible 6 outcomes are:

= ® ° *:9

° B 5 o o ‘ g
° ° o o ® o

’1' M 131 I4I 151 I./)I

The associated finite sample space is §={T, 2,3, 49.5.6% 5ome events are
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A =The event of getting an odd face={'1", '3, '5".
B =The event of getting a six={"6"}
And so on.

Example 3: Tossing a fair coin until a head is obtained

We may have to toss the coin any number of times before a head is obtained. Thus the possible
outcomes are:

H, TH, TTH, TTTH,
How many outcomes are there? The outcomes are countable but infinite in number. The
countably infinite sample space is& ={#, TH,77TH,....} ,

Example 4 : Picking a real number at random between -1 and +1
The associated Sample space is

S={s|seR,-1£s<T} =[-1, 1]
Clearly <is a continuous sample space.

Example 5: Drawing cards

Drawing 4 cards from a deck: Events include all spades, sum of the 4 cards is (assuming face cards
have a value of zero), a sequence of integers, a hand with a 2, 3, 4 and 5. There are many more
events.

Types of Events:

1. Exhaustive Events:

A set of events is said to be exhaustive, if it includes all the possible events.

Ex. In tossing a coin, the outcome can be either Head or Tail and there is no other possible
outcome. So, the set of events { H, T } is exhaustive.

2. Mutually Exclusive Events:
Two events, A and B are said to be mutually exclusive if they cannot occur together.

i.e. if the occurrence of one of the events precludes the occurrence of all others, then such a set of
events is said to be mutually exclusive.

If two events are mutually exclusive then the probability of either occurring is
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P(Aor B)=P(AUB) = P(A) + P(B).
Ex. In tossing a die, both head and tail cannot happen at the same time.

3.Equally Likely Events:
If one of the events cannot be expected to happen in preference to another, then such events

are said to be Equally Likely Events.( Or) Each outcome of the random experiment has an
equal chance of occuring.

Ex. In tossing a coin, the coming of the head or the tail is equally likely.

4. Independent Events:

Two events are said to be independent, if happening or failure of one does not affect the happening
or failure of the other. Otherwise, the events are said to be dependent.

If two events, A and B are independent then the joint probability is
P(A and B) = P(AN B) = P(A)P(B),

5.Non-. Mutually Exclusive Events:

If the events are not mutually exclusive then

P(Aor B)=P(A)+ P(B)— P(Aand B).

Probability Definitions and Axioms:

1. Relative frequency Definition:

Consider that an experiment E is repeated n times, and let A and B be two events associated
w ithE. Let na and ng be the number of times that the event A and the event B occurred
among the n repetitions respectively.

The relative frequency of the event A in the 'n’ repetitions of E is defined as

f(A)=naln f(A)=na/n

The Relative frequency has the following properties:
1.0<f(A) <1

2. f(A) =1 if and only if A occurs every time among the n repetitions.
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If an experiment is repeated » times under similar conditions and the event 4 occurs in
"4 times, then the probability of the event A is defined as

P(A) = Lim ™4

X0 @
Limitation:
Since we can never repeat an experiment or process indefinitely, we can never know the probability
of any event from the relative frequency definition. In many cases we can't even obtain a long
series of repetitions due to time, cost, or other limitations. For example, the probability of rain
today can't really be obtained by the relative frequency definition since today can’t be repeated
again.

2. .The classical definition:

Let the sample space (denoted by S ) be the set of all possible distinct outcomes to an
experiment. The probability of some event is

mumnber of ways the event can occur

mmber of outcomes in =
provided all points in S are equally likely. For example, when a die is rolled the probability of
1
gettinga 2 is & because one of the six faces is a 2.
Limitation:

What does "equally likely" mean? This appears to use the concept of probability while trying to
define it! We could remove the phrase "provided all outcomes are equally likely", but then the

definition would clearly be unusable in many settings where the outcomes in S did not tend to
occur equally often.

Examplel:A fair die is rolled once. What is the probability of getting a ‘6’ ?

Here S e {I'll’ |2|, |3|, |4|, |5|, |6|} and A ={ l61}

SN=6 and N, =1
. 1
P& =%

Example2:A fair coin is tossed twice. What is the probability of getting two ‘heads'?

Here & ={(HH, TH, HT, TT} ;g A={HH}
Total number of outcomes is 4 and all four outcomes are equally likely.

Only outcome favourable to 4 is {HH}
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Probability axioms:

Given an event £ in a sample space § which is either finite with & elements or countably infinite
with N = eaglements, then we can write

and a quantity P (Ei), called the probability of event Ei, is defined such that

Axiom1: The probability of any event Ais positive or zero. Namely P(A)>0. The probability
measures, in a certain way, the difficulty of event A happening: the smaller the probability, the
more difficult it is to happen. i.e

O=PE)=1

Axiom2: The probability of the sure event is 1. Namely P(Q)=1. And so, the probability is always
greater than 0 and smaller than 1: probability zero means that there is no possibility for it to happen
(it is an impossible event), and probability 1 means that it will always happen (it is a sure event).i.e

P(S)=1,

Axiom3: The probability of the union of any set of two by two incompatible events is the sum of
the probabilities of the events. That is, if we have, for example, events A,B,C, and these are two by
two incompatible, then P(AUBUC)=P(A)+P(B)+P(C). i.e Additivity:

P(E, UE)=F(E)+F(E) where Ei and Ez are mutually exclusive.

PULE)=ZL P(E)forn=12, . NwhereE E .. are mutually exclusive
(e B NE=0)

Main properties of probability: If A is any event of sample space S then

P(A)+P(4)=1. Or P(4)=1-P(A)

Since AUA=S,P(AuU 4)=1

The probability of the impossible event is 0, i.e P(&)=0

If AcB, then P(A)<P(B).

If A and B are two incompatible events, and therefore, P(A—B)=P(A)—P(ANB).and
P(B—A)=P(B)—P(ANB).

Addition Law of probability:

RN S

»
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P(AUB)=P(A)+P(B)-P(ANB)

Rules of Probability:

Rule of Subtraction:

Rule of Multiplication:

Rule of addition:
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PERMUTATIONS and COMBINATIONS:

S.No. | PERMUTATIONS COMBINATIONS:

1 Arrangement of things in a specified In permutations, the order of arrangement of
order is called permutation. Here all objects is important. But, in combinations,
things are taken at a time order is not important, but only selection of

objects.

2 Arrangement of ‘r’ things taken at a

time from ‘n’ things ,wherer <nina
specified order in called r-permutation.

3 Consider the letters a,b and c .
Considering all the three letters at a
time, the possible permutations are
ABC,acb,bca,bac,cbaandcab

4 The number of permutations taking r The number of combinations taking r things at

things at a time from ‘n’ available a time from ‘n’ available things is denoted as
things is denotedasp (n,r)ornp, C(n,r)orncC;
5 nP.=r!/nC,=n!/(n-r)! nCr=P(n,r)/rt=nl/rl(n-r)!

Example 1: An urn contains 6 red balls, 5 green balls and 4 blue balls. 9 balls were picked at
random from the urn without replacement. What is the probability that out of the balls 4 are red, 3
are green and 2 are blue?

Sol:

5, - 151
8 balls can be picked from a population of 13 balls i, ’ el

e o e
2 2
Therefore the required probability is C
Example2: What is the probability that in a throw of 12 dice each face occurs twice.

Solution: The total number of elements in the sample space of the outcomes of a single
throw of 12 dice is = 62

The number of favourable outcomes is the number of ways in which 12 dice can be
arranged in six groups of size 2 each — group 1 consisting of two dice each showing 1, group 2
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consisting of two dice each showing 2 and so on.
Therefore, the total number distinct groups

_ 12
212121212121

121

Hence the required probability is (26"

Conditional probability

The answer is the conditional probability of B given A denoted by P81 A). We shall
develop the concept of the conditional probability and explain under what condition this

conditional probability is same as (8),

Notation
P (B/4) = Conditional probability of B

given A

Vs sample points be

Let us consider the case of equiprobable events discussed earlier. Let
favourable for the joint event ANB

ANB

Figure 1

Number of outcomes favourable to & and B
Number of outcomes in A
»n(AB)
_n(AB) _ g _P(ANnB)
nd) 24 P
b

P(BIA) =
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This concept suggests us to define conditional probability. The probability of an event B under the
condition that another event A has occurred is called the conditional probability of B given A and
defined by

P(ANB)

P(BiA)= , P(d) =0

We can similarly define the conditional probability of A given B, denoted by P(AIB),

From the definition of conditional probability, we have the joint probability PANB) of

two events A and B as follows

P(ANB) = P(A)P(B I A) = P(B)P(AI B)

Problems:
Example 1 Consider the example tossing the fair die. Suppose

A=event of getting an even number ={2, 4,6}
B =event of getting a number less than 4 ={1,2, 3}
SLANB ={2}
PAnEB) 116 1
P(A)  3i6 3

S P(BIA) =

Example 2 A family has two children. It is known that at least one of the children is a girl. What is
the

probability that both the children are girls?
A = event of at least one girl

B = event of two girls

S = {gg, gb. bg, bb}, A={gg, gb, bg} and B ={gg}
AnB={gg}
P(AnB) _1/4 _1

B = T34 3
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Properties of Conditional probability:

L 1f BCA then P(BIA)=1and F(A!B)> F(4)

We have, AmB =5

P(AnB) _ P& _,

S P(BIA) = T 03

and
P(ANB)
P(B)
_P(A)P(BIA)
T PB)
_P(A)
P(B)
> P(A)
2.Since P(AnB)20,P(4) >0
PANB) |

S P(BIA) = T 0

PSnA _PA) _,
P4  P(A)

P(Ai B) =

3. We have, L P(STA) =

4. Chain Rule of Probability/Multiplication theorem:

P(A M Ay A) = PAYP(4, 1 4 )P4 1A N4 P(ATANA. . N4

We have,

(ANBNCY=(AnB)nC
PANBNC)=PANBPCIANE)
=PAP(BIAPCIANBE)

S P(ANBAC) = PA)P(BI A)P(CIANE)

We can generalize the above to get the chain rule of probability for n events as

P& M4y A) = PUA)P(A ] 4 )P4 1 A NA). P41 4K (A
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Joint probability

Joint probability is defined as the probability of both A and B taking place, and is
denoted by P (AB) or P(ANB)

Joint probability is not the same as conditional probability, though the two concepts are
often confused. Conditional probability assumes that one event has taken place or will take place,
and then asks for the probability of the other (A, given B). Joint probability does not have such
conditions; it simply asks for the chances of both happening (A and B). In a problem, to help
distinguish between the two, look for qualifiers that one event is conditional on the other
(conditional) or whether they will happen concurrently (joint).

Probability definitions can find their way into CFA exam questions. Naturally, there may
also be questions that test the ability to calculate joint probabilities. Such computations require
use of the multiplication rule, which states that the joint probability of A and B is the product of
the conditional probability of A given B, times the probability of B. In probability notation:

P(AB) =P(A|B) * P(B)

Given a conditional probability P(A | B) = 40%, and a probability of B = 60%, the joint
probability P(AB) = 0.6*0.4 or 24%, found by applying the multiplication rule.

P(AUB)=P(A)+P(B)-P(AnB)
For independent events: P(AB) = P(A) * P(B)

Moreover, the rule generalizes for more than two events provided they are all independent of one

another, so the joint probability of three events P(ABC) = P(A) * (P(B) *P(C), again assuming
independence.

Summary of probabilities
Event Probability

A P(A) € [0,1]
nota P(A°)=1- P(A)
P(AuU B) = P(A) + P(B) - P(An B)

B
Ao P(Au B) = P(A) + P(B) if A and B are mutually exclusive
©wqs  P(ANB)=P(A|B)P(B) = P(B|A)P(4)
P(An B) = P(A)P(B) if A and B are independent

agvens| P(A | B) = Pfﬁ(;}ﬁi _ P(BJ}.?LI;{A}
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Total Probability theorem:

Let A4 .. "A"be n events such that
S=4u 4. L4 and A!.m,qj=¢ fori =

7 Then for any event B,

P(B)=> P(A)P(BIA)
iml

Proof: We have

PR = P(I:IE NA)
i=1
=D P(BENA)
ful

- > P(4)P(B! 4)

Figure 3

Remark

(1) A decomposition of a set S into 2 or more disjoint nonempty subsets is called a partition of

S.The subsets 44, . . .. A form a partition of S if
S=40 4 YA mdAmAJ.=¢ fori=j.

(2) The theorem of total probability can be used to determine the probability of a complex event
in terms of related simpler events. This result will be used in Bays' theorem to be discussed to
the end of the lecture.
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Bayes' Theorem:

SUPPOSE 4. A . .. Ay are partitions on S such that S = A A, D4 and 4 gP:" =¢ fori# ]
Suppose the event B occurs if one of the events A Ay ... A occurs. Thus we have the information of the
probabilities P(4) and P(B/ 4),i =1,2..,n. We ask the following question:

Civen that B has occured what is the probability that a particular event A has occured? In other words

what is P(A1B)?

We have P(B) = Z‘D[/As) P(B |A>) { Using the theorem of total probability)

ia]

F(4) P(B/4,)
P(B)

_ P(4)P(BIA)
> P4 )P(BI4)

im]

" P(4,]8)-

This result is known as the Baye's theorem. The probability F4) is called the a priori probability and
PATE) is called the a posteriori probability. Thus the Bays' theorem enables us

to determine the a posteriori probability P41 B)from the observation that B has occurred. This
result is of practical importance and is the heart of Baysean classification, Baysean estimation etc.

Examplel:

In a binary communication system a zero and a one is transmitted with probability 0.6 and 0.4
respectively. Due to error in the communication system a zero becomes a one with a probability
0.1 and a one becomes a zero with a probability 0.08. Determine the probability (i) of receiving a
one and (ii) that a one was transmitted when the received message is one

Solution:

Let S is the sample space corresponding to binary communication. Suppose L be event of
Transmitting 0 and 7" be the event of transmitting 1 and & and & be corresponding events of
receiving 0 and 1 respectively.
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P(T) =06 P(T)=04, P(RIT)=0.1_ , P(R,IT)=0.08.

Given and

(1) P(R)) = Probabilty of receiving 'one'
- P() PR I T) + PG)PR I Ty)
=04x092+06x0.1
=448
(11) Using the Baye's rule
PR PRIT)
P(R)
_ PPR T
PIPR T+ P(THP(RIT)
0.4x0.92

T 04%092+06%0.1
-0.8214

PLIR) =

Example 7: In an electronics laboratory, there are identically looking capacitors of three makes

0
4.4 andABin the ratio 2:3:4. It is known that 1% of Al, 1.5% of +5 and: 2ok are defective.
What percentages of capacitors in the laboratory are defective? If a capacitor picked at defective

is found to be defective, what is the probability it is of make 4 ?

Let D be the event that the item is defective. Here we have to find P(D) and P(4 1 D) )

2 1 4
P(A) =3 P(4) "3 and P(4) "5
POTA)=0.01, PO A)=0.015and P(D/4)=0.02

" P(D) = P(AYP(DI 4)+ P(4)P(DI &)+ P(4) P(DI 4)

= 250,01+ 1x0.015+ 2 x0.02
9 3 g

=0.0167

and

P4 1Dy = PP 4)

2(D)

EKD.DE
9

0.01867
=0.533
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Independent events

Two events are called independent if the probability of occurrence of one event does not
affect the probability of occurrence of the other. Thus the events A and B are independent if

P(BIA)=P(B) ;g P(AIB) = P(4)

where £(4) and £(5) are assumed to be non-zero.

Equivalently if A and B are independent, we have

P(ANBE) - P(B)
P(A)
P(A ("‘lB) = P(AP(B) Joint probability is the

or o BSURREh WOARINIINEEE mmmmemem e me e product of individual

probabilities.

Two events A and B are called statistically dependent if they are not independent. Similarly, we

can define the independence of n events. The events Aethi it

only if

are called independent if and

P4 1\ A4;) = P(4) P(4)
P4 M4y (A = PLAYP(A)PA)
P(4 MA, NA N A) = P(A4)P(A)P(A)..P(4)

Example: Consider the example of tossing a fair coin twice. The resulting sample space is
given by & ={HH, HT,TH,TT} and all the outcomes are equiprobable.

Let 4= 7277} e the event of getting ‘tail' in the first toss and 8 ={TH, HH} pg the
event of getting ‘head' in the second toss. Then

_ ] 1
P(.ﬁl)—5 - P(B) 5
Again, (4n3) =(TH) so that
P(ANB)- % - P(AP(B)

Hence the events A and B are independent.
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Problems:

Examplel.A dice of six faces is tailored so that the probability of getting every face is
proportional to the number depicted on it.

a) What is the probability of extracting a 6?

In this case, we say that the probability of each face turning up is not the same, therefore we cannot
simply apply the rule of Laplace. If we follow the statement, it says that the probability of each face
turning up is proportional to the number of the face itself, and this means that, if we say that the
probability of face 1 being turned up is k which we do not know, then:

P({1})=k, P({2})=2k, P({3})=3k, P({4})=4k,

P({5})=5k,P({6})=6k.

Now, since {1},{2},{3}.{4},{5}.{6} form an events complete system , necessarily
PHIN+P{2H+P({3}1)+P({4})+P({5})+P({6})=1

Therefore
k+2k+3k+4k+5k+6k=1

which is an equation that we can already solve:
21k=1

thus
k=1/21

And so, the probability of extracting 6 is P({6})=6k=6-(1/21)=6/21.
b) What is the probability of extracting an odd number?

The cases favourable to event A= "to extract an odd number" are: {1},{3},{5}. Therefore, since
they are incompatible events,
P(A)=P{1}H)+P({3})+P({5})=k+3k+5k=9k=9-(1/21)=9/21
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Example2: Roll a red die and a green die. Find the probability the total is 5.

Solution: Let (X-¥) represent getting * on the red die and ¥ on the green die.

S={ (D L2 (1.3 - (1,6)
(2.1) (2,2) (2,3) - (2,6
(3.1) (3,2) (3,3) - (3.6

_ _ _ (6,1) (6,2) (6,3) - (6,6)}
Then, with these as simple events, the sample space is

The sample points giving a total of 5 are (1,4) (2,3) (3,2), and (4,1).

4
Therefore P (total is 5) = 36

Example3: Suppose the 2 dice were now identical red dice. Find the probability the total is 5.

Solution : Since we can no longer distinguish between (%.5) and ':Wf:', the only distinguishable
points in S are

S={ (L1 L2y (L3 - (1,6
(2,2) (2,3)  (2,6)
(3,3) -~ (3,6)

(6,6)}

Using this sample space, we get a total of 3 from points (1,4) and (2. 3) only. If we assign equal
1 2
probability 21 to each point (simple event) then we get P(total is5) = 21,

Example4: Draw 1 card from a standard well-shuffled deck (13 cards of each of 4 suits -
spades, hearts, diamonds, and clubs). Find the probability the card is a club.
Solution 1: Let © = { spade, heart, diamond, club}. (The points of S are generally listed between

L
brackets {}.) Then S has 4 points, with 1 of them being "club”, so P(club) =4,
Solution 2: Let © = {each of the 52 cards}. Then 13 of the 52 cards are clubs, so

P(club) = L2 =

i g
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Example 5: Suppose we draw a card from a deck of playing cards. What is the probability
that we draw a spade?

Solution: The sample space of this experiment consists of 52 cards, and the probability of each
sample point is 1/52. Since there are 13 spades in the deck, the probability of drawing a spade is

P(Spade) = (13)(1/52) = 1/4

Example 6: Suppose a coin is flipped 3 times. What is the probability of getting two tails and
one head?

Solution: For this experiment, the sample space consists of 8 sample points.
S={TTT, TTH, THT, THH, HTT, HTH, HHT, HHH}

Each sample point is equally likely to occur, so the probability of getting any particular sample
point is 1/8. The event "getting two tails and one head" consists of the following subset of the
sample space.

A={TTH, THT, HTT}
The probability of Event A is the sum of the probabilities of the sample points in A. Therefore,
P(A)=1/8 +1/8 +1/8 = 3/8

Example7: An urn contains 6 red marbles and 4 black marbles. Two marbles are
drawn without replacement from the urn. What is the probability that both of the marbles are
black?

Solution: Let A = the event that the first marble is black; and let B = the event that the second
marble is black. We know the following:

= In the beginning, there are 10 marbles in the urn, 4 of which are black. Therefore, P(A) =
4/10.

= After the first selection, there are 9 marbles in the urn, 3 of which are black. Therefore,
P(BJA) = 3/9.

Therefore, based on the rule of multiplication:

P(A N B) = P(A) P(BJA)
P(A N B) = (4/10) * (3/9) = 12/90 = 2/15
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RANDOM VARIABLE

INTRODUCTION

In many situations, we are interested in numbers associated with the outcomes of a random
experiment. In application of probabilities, we are often concerned with numerical values which are
random in nature. For example, we may consider the number of customers arriving at a service
station at a particular interval of time or the transmission time of a message in a communication
system. These random quantities may be considered as real-valued function on the sample space.
Such a real-valued function is called real random variable and plays an important role in describing
random data. We shall introduce the concept of random variables in the following sections.

Random Variable Definition

A random variable is a function that maps outcomes of a random experiment to real
numbers. (or)
A random variable associates the points in the sample space with real numbers

A (real-valued) random variable, often denoted by X(or some other capital letter), is a function
mapping a probability space (S; P) into the real line R. This is shown in Figure 1.Associated with
each point s in the domain S the function X assigns one and only one value X(s) in the range R.
(The set of possible values of X(s) is usually a proper subset of the real line; i.e., not all real
numbers need occur. If S is a finite set with m elements, then X(s) can assume at most an m
different value as s varies in S.)

A random variable: a function

X

Domain: probability space Range: real line
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Examplel

A fair coin is tossed 6 times. The number of heads that come up is an example of a random
variable.

HHTTHT — 3, THHTTT -- 2.

These random variables can only take values between 0 and 6. The

Set of possible values of random variables is known as its Range.

Example2

A box of 6 eggs is rejected once it contains one or more broken eggs. If we examine 10 boxes of
eggs and define the randomvariablesX1, X2 as

1 X1- the number of broken eggs in the 10 boxes

2 X2- the number of boxes rejected

Then the range of X1 is {0, 1,2,3,4-------------- 60} and X2 is {0,1,2 -- --- 10}

Figure 2: A (real-valued) function of a random variable is itself a random variable, i.e., a
function mapping a probability space into the real line.

Example 3 Consider the example of tossing a fair coin twice. The sample space is S={
HH,HT,TH, TT} and all four outcomes are equally likely. Then we can define a random variable
X as follows

Sample Point | Value of the
random
Variable
HH 0
HT 1
TH 2
T 3

Here £x =(0.1.2.3

Example 4 Consider the sample space associated with the single toss of a fair die. The
sample space is given by 5 ={1,2,3,4,5,6}

If we define the random variable £ that associates a real number equal to the number on
the face of the die, then < = {:2.3:4.5,6}

Types of random variables:
There are two types of random variables, discrete and continuous.

1. Discrete random variable:
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A discrete random variable is one which may take on only a countable number of distinct

values such as 0, 1,2,3,4,........ Discrete random variables are usually (but not necessarily) counts. If
a random variable can take only a finite number of distinct values, then it must be discrete
(On)

A random variable < is called a discrete random variable if fx(x) IS piece-wise constant.

Thus g (x) is flat except at the points of jump discontinuity. If the sample space #'is discrete the
random variable < defined on it is always discrete.

)

#y(x)

1 T+

»
L

e x

Plot of Distribution function of discrete random variable

*A discrete random variable has a finite number of possible values or an infinite sequence of
countable real numbers.

—X: number of hits when trying 20 free throws.

—X: number of customers who arrive at the bank from 8:30 — 9:30AM Mon--Fri.

—E.g. Binomial, Poisson...

2. Continuous random variable:

A continuous random variable is one which takes an infinite number of possible values. Continuous r
variables are usually measurements. E
A continuous random variable takes all values in an interval of real numbers.

(or)
. . . . Y. . i
X'is ~2!"~4 3 continuous random variable if fylz . _1absolutely continuous function

of x . Thus “%“*/js continuous everywhere on [ and “* “*/ exists everywhere except at finite or
countably infinite points

3. Mixed random variable:

X s called a mixed random variable if i (x? has jump discontinuity at countable number of
points and increases continuously at least in one interval of X. For a such type RV X.

andor
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Plot of Distribution function of continuous and mixed random variables
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UNIT-II
DISTRIBUTION AND DENSITY FUNCTIONS AND OPERATIONS ON ONE RANDOM
VARIABLE

Probability Distribution

The probability distribution of a discrete random variable is a list of probabilities associated with
each of its possible values. It is also sometimes called the probability function or the probability
mass function.

More formally, the probability distribution of a discrete random variable X is a function which
gives the probability p(xi) that the random variable equals xi, for each value xi:
p(xi) = P(X=xi)

It satisfies the following conditions:

Cumulative Distribution Function

All random variables (discrete and continuous) have a cumulative distribution function. It is a
function giving the probability that the random variable X is less than or equal to x, for every value
X.

Formally, the cumulative distribution function F(x) is defined to be:
Fix) = PX £ x)

for
—m L x{ m

For a discrete random variable, the cumulative distribution function is found by summing up the
probabilities as in the example below.

For a continuous random variable, the cumulative distribution function is the integral of its
probability density function.

Example
Discrete case : Suppose a random variable X has the following probability distribution p(xi):

xi 0 1 2 3 4 5

p(xi) 1/32 5/32 10/32 10/32 5/32 1/32
This is actually a binomial distribution: Bi(5, 0.5) or B(5, 0.5). The cumulative distribution function
F(x) is then:

Xi o 1 2 3 4 5
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F(xi) 1/32 6/32 16/32 26/32 31/32 32/32

F(x) does not change at intermediate values. For example:
F(1.3) =F(1) =6/32 and F(2.86) = F(2) = 16/32
Probability Distribution Function

The probability £ (4 £ x}) = P({s| X(s) < x, s€5}H) 5 called the probability distribution
function (also called the cumulative distribution function , abbreviated as CDF ) of < and

denoted by “x®) Thys
Fe(x) = P({X < x})

Value of the random D

F{(*’f)

N

Properties of the Distribution Function

Random variable

L 0<Fy(x) <1

2. #x(%) i5 a non-decreasing function of X . Thus, if ™ < %» then Fx(x) < (%)
x4

= (X () Lx} o {X(s) < x)

= P(X(s) < m) < PLE(s) < )

S B (m) < Fyp(x)

7 Fz(®) 15 vight continuous.

F(x"y=limF (x+k)=F_(x)
0
Becausze, kir% Fo(xth)= kin% PlEsYSx+ k)
£ 0 k0
=F{X{= £ x}
=Fy (x)
Fy(-e) =0
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Because, Fy(—w) = Pls| X(s) L~} = P(g) = 0_

Fy(w) =1
PR < X< =F(x)-F, () Lo} = P =1

We have,

Fy(x7) = lim Fy(x=h)
L41]
= lim P(X(s) < x -}
6. P{X>x))=P{x <X <oo})=1-Fy ()
= P{X(s) < x} - P(X(s) = %)
=F,(x) - P(X = x)

Example: Consider the random variable < in the above example. We have
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Value of the
random P{IX=x}
Variable X =x

0 1/4

1 1/4

2 1/4

3 1/4

Forx <0,
Fo(x)=P({X <xp)=0

Forll &z < 1,
Fe(z) = PU{X <)) = P((X = 0)) i

Forlix<2,
Fo(x) = P{{X <x1)
=P X =0 X = 1)
=PHA =0+ P =1}
1.1 1

==

4 4 2

For2 L% 3
Foix) = P{{X <x)
=P{A=pu{X =TTu{X =2}
=PUX=0N+P{X =1)+P{X =21
1 . 1 N 1 3

"4 4 3 3
Forx 23,
Fo(x) = PU{X < x))

= P(S)

=1
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For2 {x<{3
Fy(x)=P({X <x})
=P{X =00 {X=1u{X =2})
=P{X=0N+PX =1 +P({X =2})
1 3

= + A
4

i +
4

| o=
o=

Thus we have seen that given Fx (%), - <X <@ e can determine the probability of any event
involving values of the random variable £ Thus #x (%) Y% €X js 3 complete description of the
random variable & .

Example 5 Consider the random variable < defined by

Fy(x) =0, x <=2
st fidlndy
8" 4
) =1 x20
Find a) £ =00,
py PLE <0)
o PE>Y
g PH1<E <D
Solutio 2) P(X = 0) = Fy (0Y) - £, (07)
=l—l=§
4 4

b) P{X <0} = F, (0)
=1

) P{X > 2} =1-Fy(2)
=1-1=0
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Probability Density Function

The probability density function of a continuous random variable is a function which can be
integrated to obtain the probability that the random variable takes a value in a given interval.

More formally, the probability density function, f(x), of a continuous random variable X is the
derivative of the cumulative distribution function F(x):

f®=%F®
Flx) = P S 7] G follows that:
JAx)dx = Fib) - Fla) = Pla < X < &)

Since

If f(x) is a probability density function then it must obey two conditions:
a. that the total probability for all possible values of the continuous random variable X is 1:
[Ax) dx = 1

b. that the probability density function can never be negative: f(x) > 0 for all x.

X (s1)
X (8,)

X (s3)

X (sy)
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Example 1

Consider the random variable < with the distribution function

4

0 x40

L 0w
F(x=44

1, eges

2

T m

The plot of the Fx(x) is shown in Figure 7 on next page.

Fy(x)

'1 = — — — —

el e

da | =

L. T x
The probability mass function of the random variable is given by

Value of the random

variable X =x Px(x)
0 _
1
4
1 1
4
2 _
1
P
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Properties of the Probability Density Function
------- This follows from the fact that Fx(x) is a non-decreasing function

Fy(n) = [ fy)du

[ Sz =1

5]

4. P(n<X<ix)= Ifx(x)dx

-X

Other Distribution and density functions of Random variable:

1. Bernoulli random variable:

Suppose X is a random variable that takes two values 0 and 1, with probability mass
functions

px()=P{X=1=p

2 (0 =1-p, 0<p<l

And

Such a random variable X is called a Bernoulli random variable, because it describes the
outcomes of a Bernoulli trial.

The typical CDF of the Bernoulli RV < is as shown in Figure 2

By (x)
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Mean and variance of the Bernoulli random:

py =EX =) lpy(k)=1xp+0x(1-p)=p
k=)
1
EX?=Dk'pyk)=1xp+0x(1-p) = p
]

Coog = EX' - yy = p(1- p)

Remark

e The Bernoulli RV is the simplest discrete RV. It can be used as the building block for
many discrete RVs.

o For the Bernoulli RV,
EX™=p m=1273..

Thus all the moments of the Bernoulli RV have the same value of #-

2. Binomial random variable

Suppose X is a discrete random variable taking values from the set (0.1} . 4 iscalled a
binomial random variable with parameters n and 0Lp <1

pX(k)=xckpk(l_p)x-k k=0,1,...,?3
where

o S |
C“_k!(n—k)!

The trials must meet the following requirements:

the total number of trials is fixed in advance;

there are just two outcomes of each trial; success and failure;
the outcomes of all the trials are statistically independent;

all the trials have the same probability of success.

oo o

As we have seen, the probability of k successes in n independent repetitions of the Bernoulli
trial is given by the binomial law. If X is a discrete random variable representing the number of

successes in this case, then X is a binomial random variable. For example, the number of heads in ‘n
" independent tossing of a fair coin is a binomial random variable.

e The notation A ~B(n,p) is used to represent a binomial RV with the parameters **and
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P
D=0 - = [p - =1,
° L] L]

e The sum of n independent identically distributed Bernoulli random variables is a

binomial random variable.
e The binomial distribution is useful when there are two types of objects - good, bad,;

correct, erroneous; healthy, diseased etc

Examplel:In a binary communication system, the probability of bit error is 0.01. If a block of 8 bits
are transmitted, find the probability that

(@) Exactly 2 bit errors will occur
(b) At least 2 bit errors will occur
(c) More than 2 bit errors will occur
(d) All the bits will be erroneous

Suppose < is the random variable representing the number of bit errors in a block of 8 bits.
Then < ~ 8(8.0.01).

Therefore,

{a) Probability that exactly 2 bit errors will occur
=px(2)
=0, % 0,01 x0.99°
=0.0026
(b} Probability that at least 2 bit errors will occur
=px(0)+ px (D) + px(2)
=0.99" +°C; x0.01' x0.997 + *C, x 0.01 x0.99°
=115

() Probahility that more than 2 kit errors will occur
2
=1- 2 px (k)
k=0

=1-0.929%
=0.0001

(&) Probakality that all 8 bits will be erronecus
=px(8)
=0.01* =107"
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- Bionomial Distribuion withp =08 . n=8

035

63

0%
pdk) .,

01s

-

05 e

The probability mass function for a binomial random variable with n =6 and p =0.8
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Mean and Variance of the Binomial Random Variable

We have

EX = iﬁpx(ﬁ:)
k=0
= > k"Cp - py
k=0

b
=0%g"+ > K 'Cp (- py™
k=1

=x;: nl k1= pytk
; k!(n—k}lp( 2

5 nl Beq _ one—k
R e i
5 n-1l k-1 *
— ————————————————————————— 1_
Pl Di-nL o P

-1

1k

» n-—1l
Sk n—1-k)!
=np(p+1-py"
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pM-p)*™N (Substituting &y =k - 1)




cumtlard v
EX* =S ¥y (®)
Jal]
fia‘?" ot (1-py
=il

=U] xq:l +2klc-kpt(]_p]l—k

= : HI -

—E‘Eklﬂn k)l.l? “a-pr*

— - ik

gl k- m: @ oGm? 07

_ -1 Eleq _ o sa-l-{k-1)

P'?Pz'ik 1+ HW}? (1-p)

-npz(k-]) n =1l —__pMi(- gy +sz n-1l p*(1- p)r—ll-u-n

=1 (k-l)ll:n-1-k+’l)|
=npX(n-N)p+np
=n(n=-1)p* +ap

S E-D-1-k+D)1

Where

S (m=T1)! Eleg _ o al-{k-1)

;{k L 7 ey AU
1s the mean of B(n-1,p)

;. O = variance of X

=n(n-Np* +up-n'p’
=xp(l-p)
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3. Poisson Random Variable
A discrete random variable X is called a Poisson random variable with the parameter 4 if 4 > 0

and
Py (K)= (e™\)/k!

The plot of the pmf of the Poisson RV is shown
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Mean and Variance of the Poisson RV

The mean of the Poisson RV Xis given byv

te =S hor®
k=l

w0 -1 a4k
=U+Zké‘ .1
] il

i Ak
= e iik—u
]

&0
=[:I+ m'i:j —AA.‘;
=) &l
e kAt
k-1
R i Ly
o k-1
w ﬂ.k w Ak
=g |0+ +g™!
[ ;ﬁ:—El gl“k—ll
w k-2 o k-l
=§""fzﬂ +.aa"",?1.z:j1
t_zk—E! ;.1.":‘1!

=™ 1P +o7 26
= +A
O3 =EX? -l =2

Example:The number of calls received in a telephone exchange follows a Poisson distribution
with an average of 10 calls per minute. What is the probability that in one-minute duration?

i. no call is received
ii. exactly 5 calls are received
iii. More than 3 calls are received.
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Solution: Let X be the random variable representing the number of calls received. Given
Where 4 =10. Therefore,

_ _ 10 _
i, probability that no call is received ~ £ =¢7" =0 000095
e x10° _

ii.  probability that exactly 5 calls are received 3! 0.0378
iii.  probability that more the 3 calls are received
5 2 3
=1-D pylk) = 1—9-10(1+E+£+E) =
e 1o2b 317 o997

Poisson Approximation of the Binomial Random Variable

The Poisson distribution is also used to approximate the binomial distribution B(2.2) when n is
very large and p is small.

Consider binomial RV with < ~ FU% P) i
n—>o p—0 sothat BY =xp =4 remains constant.

Then

p ) ="C.pt(1-py**

_ sl
T kln-k)|

pria-pyrt

_n@ -U(n-i}:- (m—k+1) 2*(1- p)**

| ara-Ya-3a-57
= 7 2

p R pi(-l_p:l.?-l

d-Ly-2. g-51

— LF. u=k
B 2— ()" (1- 2)
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k-1

71— l)(l - 3).“(1 - )
2 2 ”

= - ?-p)

x=k

k-1
2 (p)(1-p)*

Ly
- ” ”
Xl

9 -
a-ba-3. a-Ehara-2
- 2 2 n n

(1 -i)"
n

Note that lim(1- é)" =%,
X0 n

(1—1)(1—2). a-Ehara- 2y

-4 7k
»n s n=e)l

S Pyl =lim
n—w kl(l—i)l kl
7

Thus the Poisson approximation can be used to compute binomial probabilities for large n. It also
makes the analysis of such probabilities easier. Typical examples are:

e number of bit errors in a received binary data file
o Number of typographical errors in a printed page

Example 4 Suppose there is an error probability of 0.01 per word in typing. What is the probability
that there will be more than 1 error in a page of 120 words?

Solution: Suppose X is the RV representing the number of errors per page of 120 words.

X ~B(120,p) Where # = 0~01~Theref0re,

S A=120x0.01=0.12

P(more than one errors)
=1-px0) - px (D
=l=g™ = 2™
=0.0066

In the following we shall discuss some important continuous random variables.
4. Uniform Random Variable

A continuous random variable X is called uniformly distributed over the interval [a, b],
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- < a < b <o, if its probability density function is given by

1

el =b—a "
@ 5

asx=h

otherwise

(%)

Figure 1

We use the notation < ~ (@ #)tg denote a random variable X uniformly distributed over the
interval [a,b]

Distribution function £ (%)

Forx<a
F(x)=0
Foraixih

[ A

Forx > b,
Fy(x)=1

Figure 2 illustrates the CDF of a uniform random variable.
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a b X

Figure 2: CDF of a uniform random variable

Mean and Variance of a Uniform Random Variable:

»

“ x
Hy=EX = j‘zjx':ﬂ‘fx= Eﬂ‘?‘

=a+5

2

2

o ]
Ef=lfﬁ&ﬁw4§%ﬁx

_E}:+cxﬁz +a*

3
bi+ﬂb+ 2 +f}j
Lod =EX? -3 - AL
3 4
_(-a
12
X ~Ula,b),

The characteristic function of the random variable is given bv

. LR
By (w) = Be™ = [~—dx
ab_ﬂ
EM_E.?'W
U.fw[b—a:l
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5. Normal or Gaussian Random Variable

The normal distribution is the most important distribution used to model natural and man made
phenomena. Particularly, when the random variable is the result of the addition of large number of
independent random variables, it can be modeled as a normal random variable.

continuous random variable X is called a normal or a Gaussian random variable with
parameters #xand o if its probability density function is given by,

_lfx= '
fx{x:l=w'%a a 2[ JI;X]

X - X e

]

>0

Where #xand “x are real numbers.

. CN(u,. o) . .
We write that X is ('L{X X )dlstrlbuted.
_ -
If #x = Oand x 1, and the random variable X is called the standard normal variable.

1 e

2
NS

Jx(x) =

Figure 3 illustrates two normal variables with the same mean but different variances.

=
L)
)

Figure 3

68




o 72 |5 2 bell-shaped function, symmetrical about * = #x
2 2
« “x Determines the spread of the random variable X . If “x js small X is more

concentrated around the mean #.

o Distribution function of a Gaussian variable is

Fy(x)=P(X < 7)

Ty

Substituting , We get

Ny
®
¥ 1 ot

% J‘ 2% du
ﬁ-‘ﬂ

Fy(x) =

-
Ty

where P(x) is the distribution function of the standard normal variable.

Thus fx(x) can be computed from tabulated values of P The table P was very useful in the
pre-computer days.

In communication engineering, it is customary to work with the Q function defined by,

0(x) =1-D(x)
= l I —ﬁ
ﬁ‘!e 2 du
00) =2, O(-x)=0@)
Note that 2 and
0(x) =1- ¢(-2)

These results follow from the symmetry of the Gaussian pdf. The function Q(x) is tabulated and the
tabulated results are used to compute probability involving the Gaussian random variable.
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Using the Error Function to compute Probabilities for Gaussian Random Variables

The function £ js closely related to the error function erf (%) and the complementary error

function £(%) |

2% kv
erf (x)=—=[ ™ du
Note that, ﬁ ‘I;

And the complementary error function (%) is given

erfel(x) = %]‘Eﬂﬁdﬂ
=1-erf(x)

1 }e%du

-'-Q(I)Eﬂ

Mean and Variance of a Gaussian Random Variable

2
V(s 0y )distributed, then

If X'is
BX = iy
var(X) = oy’
Proof:
© 1 = _l[*-_wr
BX = [ fy(x)dx = oo [ % R o ol
-0 A —w
o _l 2
=—,,J,JX I(“Jx *tHy)e ™ oy
2 3
1 w IL.{X w _lf
= wdi + g 4 du
JX\."EFT_‘!; EJ'T_-!;
= U+,HXV% ‘[e_?du
- E?—m Substituting XHx
Ty = Tx
Hx so that x = uay, + Uy

_ My =
-t o
vyl
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Var(X) = (X - )’

Tyd  (substituting u = = 'Hx}

X = Tx

2 = 1l s
T i ==

£_ (e ¥ du
~ 2T

- 2%

e 2 w 1 u?
- D% —EK—JE_J:.?Q_’Q’: {subshtuting § = ?}
W2

a3
= 0w X =
N [2]
. ,
- 2x lr[l]
w2 2
2
_JX x&‘E

= 2
= JX

6. Exponential Random Variable

A continuous random variable < is called exponentially distributed with the parameter

Ag= =0
Fx(®) ={ : 5

0, otherwise

A > U if the probability density function is of the
PDF of Exponential Random Variable is

004,

00855
om\
0025 \

T
= ocet
—

0.016¢

0.01 N
0.005 \

0 2 El & 8 10 12 14 16 12 20




Example 1

Suppose the waiting time of packets in < in a computer network is an exponential RV with

Fy(x) =057 x20
Then,

035
P{0.1< X £0.5}) = 10.59"05%
0l

:6-0 S5x0.5 _ 6_0 5x0.1

=0.0241
Rayleigh Random Variable

A Rayleigh random variable X is characterized by the PDF

- i2e?

ie x=0
X =50 T
0 x <0

where @is the parameter of the random variable.

probability density functions for the Rayleigh RVs are illustrated in Figure

07

C.5¢
0.5}
?.Oll-’ |

‘-'bs -

10 12 14 16 18 20

X —

Figure 6
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Mean and Variance of the Rayleigh Distribution

EX = | xf5(x)dx

Bt

o 1
2 22 dx

O\LS
M
9| =

1

Lo

L= 1]
S
w]
|
2
¥
&

el sl
|9,

similarly
EX?= T 2 f(X)dx

2

e-x“ m&dx

© N, §

CIm| -

=For

uedu (Substituting = ;5)
o

[ e—

=2a° { Noting that Iue"'a&; isthe mean of the exponential RV with .i=1)
0

73




Relation between the Rayleigh Distribution and the Gaussian distribution

X, ~ N0, c*)

A Rayleigh RV is related to Gaussian RVs as follow: If and

i ’f 2 2
X~ N, are independent, then the envelope R g has the Rayleigh
distribution with the parameter &

We shall prove this result in a later lecture. This important result also suggests the
cases where the Rayleigh RV can be used.

Application of the Rayleigh RV

v
Modeling the root mean square error-

Modelinﬂ the envelope of a signal with two orthogonal components as in the case of a signal
of the following form:

Conditional Distribution and Density functions

We discussed conditional probability in an earlier lecture. For two events A and B
with £&)7 0 the conditional probability £ {4/ B) was defined as
P{ANBE)
P(B)
Clearly, the conditional probability can be defined on events involving a Random Variable X

P(A1B)=

Conditional distribution function:

. < . . .
Consider the event {4 <x and any event B involving the random variable X . The
conditional distribution function of X given B is defined as

Fy(x1B)= P[{x <}/B]
P[{X < x} nB]

= P(B)=0
7(3) (8)
. Fy(xiB) . o : o :
We can verify that satisfies all the properties of the distribution function.
Particularly.

Fy(~={B) =0And Fy(=iB) =1_

0< Fy(xfB)<1

Fy(xi B)

Is a non-decreasing function of %,
* P({x < X <x}/B)= PUX < x}1 B) - P({X < x}/ B)
= Fy(x,/ B) - Fy(x i B)
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Conditional Probability Density Function

In a similar manner, we can define the conditional density function (= B)of the
random variable X given the event B as

£ (xfB)=%Fx(xfB)

All the properties of the pdf applies to the conditional pdf and we can easily show that

Fe(x1B)20

w

[ Sx(xt Bydx = Fy (= B)=1

. Fy(xiB)= J‘fx(ufB)du

-

P((x < X <x,)1B)=Fy(x,/ B)- Fy(x1B)

-]:fx (x/ B)dx

Example 1 Suppose X is a random variable with the distribution function 2 (x) . Define
B={X<b}

_P{X<xpnB)
By (xtB)= oo
_P({x<x) (X <8))
i P{X <B}
CP{{xex) X b))
T RO
Case 1: X <&
Then
Fy(x/B)= ({XS;}]{E;{)X <8))
_P{x<x) _F(x)
Py (B) Fy(®)
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And

Case 2: x2&

= (x’f B) and Ix (Xf B) are plotted in the following figures.

F.(x{B)

- N Ll

%/ h Fr (0

Figure 1
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Example2: Suppose 4 is a random variable with the distribution function Py () and

B={x>8}
P({X <z} nB)
P(B)

P{X <x)n{X >3))
P{X > b
P{X <x)pn{X >8))
1-F (b)

Fy(x/B)=

Then

For ¥ =b ,{X SR (I 2B =@ Therefore

Fy(xIB)=0 x<h

ok > b (XLRNEOB =X <R qoec

P({p< X <x})
1-Fy(2)

Fy (%)= Py (®)
1"Fx(b)

Fy(xiB)=

Thus,

0,
Fy(xiB)=S Fy(x) - Fy (4)
Semim

~ (b)
the corresponding pdf is given by
(U
Sx(xiB)=¢ fx(x)
1- 7y (b)

x<bh

otherwise

x<h

otherwise
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OPERATION ON RANDOM VARIABLE-EXPECTATIONS

Expected Value of a Random Variable

« The expectation operation extracts a few parameters of a random variable and provides
a summary description of the random variable in terms of these parameters.

e Itis far easier to estimate these parameters from data than to estimate the distribution or
density function of the random variable.

« Moments are some important parameters obtained through the expectation operation.

Expected value or mean of a random variable

The expected value of a random variable X is defined by

EX = | xfy(x)dx

Provided — exists.
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EX 15 also called the mean or statistical average of the random variable < and is denoted by
Hy

N,

Note that, for a discrete RV X with the probability mass function (pmf) k=12, ’ the

ndf /% js given by

N
(2 =D py(%)8(x~x;)

i=l

iy = BLX]= T 52 py (8)6(x- x)dn

— 1w

=2 px(x)] x6(x- x)dx

w

=apx(x) v ] w0 m)dx

-

Thus for a discrete random variable X with Zx )i =12, W,

V
My = Z %Py (%)
inl

Jx(x)

Figurel Mean of a random variable
Example 1

Suppose < is a random variable defined by the pdf
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: astxih

=Jp- . .
Jx (%) 0 “ otherwise
Then
Hy = Ixfx(x)dx
s 1 5
B ‘J;xb— @
_a+ b
2
Example 2

Consider the random variable & with the pmf as tabulated below

Value of the random
variable x

px(X)

o
[EEN
(S ]
w

0| =
ol o—
Ju | =
(o]

Then

N
Hy =§1 %2y (%)

=le+lxl+ 2)<l+3><l
8 8 4 2

k7
8

Example 3 Let X be a continuous random variable with

&
x)= —o{ x{wa>0
fX( ) ?’I’(X2+C}.’2)
Then

BEX = J'xfx (x)dx
o', 2x
22 dx

S
_Extm
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w

& 2
=;ln(1+x :] .3

Hence EX does not exist. This density function is known as the Cauchy density function.

Expected value of a function of a random variable

suppose ¥ = &(4Jjs a real-valued function of a random variable X as discussed in the last

class.
Then,

EY = Bg(X) = [ g(x) fy(x)dx

We shall illustrate the above result in the special case ) when ¥ = €(*) is one-to-one and
monotonically increasing function of x In this case,

A
o)

NV

Figure 2
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Jx(x)

g7 fogiin

Syl =

B = _[yfy(y)cfy

f Fxlg ‘lr;:v-:l:l
g'lg 'lr;,v::

where 4 = g{—e=) and )y = g(=)
Substituting x = g7 () so that ¥ = g(x) and dy = g'{ x)dx, we get

EY= [ g(x) fy(x)dx

The following important properties of the expectation operation can be immediately
derived:

(a) If € is a constant, #c=¢

Bo= [ ofy(Ddx=c [ fy(Ddx=c
Clearly - —o

(b) If g1(&) and 25(X) 6 two functions of the random variable X and & @42 e

constants,
Ele g (X) + 08, (X )]= 6 Eg (X)) + 0 Bg (A

oy g (X)) + oy, (X)) = T ol (x) +oyg; (2] fy (x)dn

=Teg (D) fy(2dx+ | gy (2 fy(Rdx

-

= o [ & (D F (Xdx+ e, | gy(x) fy (M)
=82 (X )+ e, Bg, (X))

The above property means that £ is a linear operator.
MOMENTS ABOUT THE ORIGIN:

Mean-square value X TR 7 (0
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MOMENTS ABOUT THE MEAN
Variance

Second central moment is called as variance

For a random variable % with the pdf /x(*)and mean #zx-the variance of ¥ is denoted by oy
and

_ 0% = B(X - py )l = | (- py ) Fr (R)cdx
defined as -

Thus for a discrete random variable X with Zx )i =12, N,

N
O'x?t :!El (% - pX)ng (%)

i _ 2
The standard deviation of X is defined as o VE(X Hy)

Example 4

Find the variance of the random variable in the above example

ok = B(X - )’
2
a [l "_‘2“’3’)2 B

i ey a+b? a+bY?
—E[ix& 2XT£MX+[ 2 ]{d}f

_(p-a)
a7

Example 5
Find the variance of the random variable discussed in above example. As already computed

17
£y =E

84




o3 = B(X - pt)

17, 1 17, 1 17, 1 17, 1
=P+ (- —V ¥+ (2 V" _+ (3 — 1"
R Ui Bl R Clat-p Bl Bl Sty Bk

!
)
For example, consider two random variables AN with pmf as shown below. Note that
2 _ 1 g 2
each of Ay and 2 has zero mean.The variances are given by L 2 and L 3 implying that

%2has more spread about the mean.

Properties of variance
(1) O'% =EX2 —,UJ%,:

o = B(X - py)’*
= B(X? - 2u X + u%)
= BX* - 2u, BX + Bud
= EX* - 2u3 + 4}
= EX* -4

Oy = B -

@) If Y =cX +b, wherec and b are constants, yhan crf, =r:2c7§

oF = B(cX +b-cpy - b)Y

= Ec*(X - By )z
=ctoy
(3) If ©is a constant,
var(c) = 0.

nth moment of a random variable

We can define the nth moment and the nth central- moment of a random variable X by the
following relations
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nth-order moment EX™ = T X (Xdx »n=12,.

nth-order central moment B(X - g, )% = j‘ (x—px ) fx(X)dxn=12,..
Note that B

e The mean ~x= EX

second moment

is the first moment and the mean-square value  £X*is the

2 _ _ 2.
o The first central moment is 0 and the variance “x = EX - py) is the second
central moment

SKEWNESS
e The third central moment measures lack of symmetry of the pdf of a random variable
E(X - ,Ux)3
o%

is called the coefficient of skewness and if the pdf is symmetric
this coefficient will be zero.

o The fourth central moment measures flatness or peakedness of the pdf of a random
E(X - ,Ux)"'
variable. oy Is called kurtosis. If the peak of the pdf is sharper, then the
random variable has a higher kurtosis.

Characteristic function

Consider a random variable < with probability density function Sx(%) The characteristic
function of 4 denoted by ¥ (@), is defined as

@y (@) = Be'™*
= T Frhdd Sy (x)dx
where j = HET

Note the following:

. %@ is a complex quantity, representing the Fourier transform of Sx(x) and

traditionally using e instead of €% This implies that the properties of the Fourier
transform applies to the characteristic function.

We can get

Sx(x) from (@), by the inverse transform
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1 't = Jeax
fz[?"}=£_{¢z(m}€'? da
Example 1

Consider the random variable X with pdf Sx(x) given by

Fx(x)= l alxld
b-a = 0 otherwise. The characteristics function is given by
1 ; .

a = éjab _egaa
0r(@) =l )
Solution:

? 1 ;
& Ja
R g i
1 27" ’
Cb-g Jjo |,
1 Jwd _jaa
= a2 -2
Jjar(k —a)( )
Example 2

The characteristic function of the random variable % with
(D=2 A>0,x>0is
B (@) = [ 267
0

= A[e Mgy
0

A-jo
Characteristic function of a discrete random variable

Suppose X is a random variable taking values from the discrete set Ry ={%. 7,0

corresponding probability mass function Px (X")for the value ™

Then,
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Pulm= Ealh®
= Z pz':x;':'g'}mi

X'ERI

¢y (@)= Ee™*
Z Px {x:']ejﬂ'

If Ry is the set of integers, we can write A8y

In this case # (@), can be interpreted as the discrete-time Fourier transform with g%
substituting 2% in the original discrete-time Fourier transform. The inverse relation is

By %_[Q-M@(@m

py()=p(-p)% k=01, isgiven by
gy (@) = 2 p(1-p)*
Kl
=p 3 e (1- p)t
LA
1=(1=p)&®

Moments and the characteristic function

Given the characteristics function ¥ (@), the nth moment is given by

_1a

— ¢ (@)

EX*=—
jtda

o wl)

To prove this consider the power series expansion of ¥
N2 12 PSR TR
e’o¥ = 1+ij+%+...._+M+..
. !

Taking expectation of both sides and assuming =<* > =<* == to exist, we get

A 2 Y »
¢X(m)=1+ijX+M+ ______ LUV EX
2l 7l
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Taking the first derivative of (@), \ith respect to Pat @ =0 e get

dasx(m)L o i
da 0

Similarly, taking the %% derivative of ¥ (@), with respect to Pat @ = 0 we get

dk@x(m)

= MEX™
dﬂ}k 'w-ﬂ

Thus ,

BY = ld@l’x(&?)
j daeo
and generally

prn - L 44 @
j da

w=0

w=0

TRANSFORMATION OF A RANDOM VARIABLE

Description:

Suppose we are given a random variable X with density fX(x). We apply a function g
to produce a random variable Y = g(X). We can think of X as the input to a black
box,and Y the output.
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UNIT-3
MULTIPLE RANDOM VARIABLES

Multiple Random Variables

In many applications we have to deal with more than two random variables. For example,
in the navigation problem, the position of a space craft is represented by three random variables
denoting the x, y and z coordinates. The noise affecting the R, G, B channels of colour video
may be represented by three random variables. In such situations, it is convenient to define the
vector-valued random variables where each component of the vector is a random variable.

In this lecture, we extend the concepts of joint random variables to the case of multiple
random variables. A generalized analysis will be presented for 7 random variables defined on the
same sample space.

Jointly Distributed Random Variables

We may define two or more random variables on the same sample space. Let < and ¥ be

two real random variables defined on the same probability space (5. ). The mapping © —> R

se s, (X&), V(s eR?

such that for is called a joint random variable.

A
Y(s) X(s).Y(s)

\4

S X(s)

Figure 1

Joint Probability Distribution Function

Recall the definition of the distribution of a single random variable. The event &£ x} \yas

used to define the probability distribution function “*) Given =) \ve can find
the
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probability of any event involving the random variable. Similarly, for two random variables £
and ¥, the event £ £ %7 £} ={4 £x3n{T < ¥} s considered as the representative event.

2
The probability £ $ %7 $y}) ¥(x.7)€ Bjs called the joint distribution function or the
joint cumulative distribution function (CDF) of the random variables £ and ¥ and denoted by
FX.Y (x. ) .

(x.y)

Y

Figure 2

Properties of JPDF

Fry(x.7) satisfies the following properties:

1) By y(x ) S Fyy(zy, )it = xy andy, =,

IFx <xand y, <y,

(X Lx, 7 imc{d<x.T Ln)
DX S oy SR X Sy Fo K yg)
S Py (mn) £ Fyy(%.0,)

3) Fyy(-,5) = Fyy(x,-=)=0

2)

Note that (X <=7 £} £ (X < ~=)

4) FX‘Y(OO,OO) = 1
Fyyx,) . . . . .
5) "% is right continuous in both the variables.

6) If < x, and ¥, <),

P{n<X <z, W<¥ ipmh)= Fx,y(xg:}’g) = Fx,y(xp)’z) = Fz,y(xg:%) + Fx,y(xp)’l)
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Given Pyl mpp s e x Segraycin ,we have a complete description

of the random variables < and ¥ .

7) Fy(x) = Fyy (x,400)

To prove this
(X {xy={X {xpn{¥ £ +w}

LB (R) = PUX S 1)) = P{X < x,Y $a}) = By y (x,+)
Similarly fr0) = Fr @57

Given xx (%Y, -~ (x e, - Cy Ko oo of Fx(®) and B )5 called a marginal

Distribution function or marginal cumulative distribution function (CDF).

Jointly Distributed Discrete Random Variables

If £ and ¥ are two discrete random variables defined on the same probability space

(5, 7.F) such that < takes values from the countable subset Ry and ¥ takes values from the

countable subset Ry .Then the joint random variable (£.7) can take values from the countable

subset in gy . The joint random variable (L. 1) s completely specified by their joint

probability mass function
Pxy(xy) = Ps| X(s) = x,7(s) =)}, V(x)ERyX R,

Given Pxy (%) , we can determine other probabilities involving the random variables % and

Y
Remark

Pxy(x.y)=0for (x,y)& Ry X R,

> 2 px.y(x»)’)=1

o (XY Ry Ry
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2 2 pxyxyy=FC U {xyh)
[0 )E Ry %R, (%) 1=Bym B

=P(R, % R,)

=P{a| (X (), V(s e (Ry ¥R
This is because =F(5 =1

- Marginal Probability Mass Functions: The probability mass functions 7 (% ang #r(?
are obtained from the joint probability mass function as follows
px(x) = P{X =x}URy)
=2 px.y(x’}’)
yelke
and similarly

py(y) = 2 Px.y(x,)’)

Xe Ry

These probability mass functions #* (% and #*O gbtained from the joint probability mass
functions are called marginal probability mass functions .

Example 4 Consider the random variables < and ¥ with the joint probability mass function as

tabulated in Table 1. The marginal probabilities Px(x) and Py ) are as shown in the last column
and the last row respectively.

\Y\ o 1 2| 2y
Y

o [025 01 [ 015 [ 05
t |o14 035 | oot | 05
py(x) | 033 045 | 016

Table 1
Joint Probability Density Function

If £ and ¥ are two continuous random variables and their joint distribution function is

continuous in both * and ¥, then we can define joint probability density function Tx2(x.5) by
82
fx.r(X,}”) = %Fx,y(& V)

provided it exists.
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L
FX,}’(xF.J"?:I = _r _r fo(H,V)EfVCfH
Clearly o e

Properties of Joint Probability Density Function

. Sxa(xy) is always a non-negative quantity. That is,

Fry(x )20 V(xy)eR?

T T Fxy (%, Y)dxdy =1

o —w-w

* The probability of any Borel set can be obtained by

PBy= || Fxy(x y)dxdy
(xy)eB

Marginal density functions

The marginal density functions Sx(%) and 5H0) of two joint RVs <« and ¥ are given
by the derivatives of the corresponding marginal distribution functions. Thus

fx(x)= %FX (%)
= ﬁ-FX(x,oo)

£
- % § (1 fr s )y
=  Ferxy)dy
K@= ] fex ()
Thus fe@= ] frx(n 9)dy

and similarly 4 (7) = | fp(xy)dx

fx,y(xs)’)

Example 5 The joint density function of the random variables in Example 3 is
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]

fx.y':x,}’:' = B—F_x,}f (%,

dxdy
82
= axay[cl—e'”j(l—e"’)] x20,20
= DY X203 20

Example 6 The joint pdf of two random variables < and ¥ are given by

Fep(myy=cay 04xL2, 0£{yL2
=0 otherwise
« Find ¢.
+Fing Prar(®:9)
- Find /2 gng H O
« What is the probability POKX£L0KY SN,

[ [ e Groysdvan =c [ [ v

2 2
=cj‘u xdx Lydy
=de

Sode =1
1
===
4

1 o x
Hyp(x,y) = Z‘[ﬂ IU tvednicty

2,2
i

16

2
fz(x}:[%dy 0<y <2

Dixsd DLyl

_x
2
x
fx(xj'=§ 0Ly
similarly
-2 0<y<s
Sy > iyd
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FO<X2L,0<F <D
= Fx,:r L1+ ry 0.0 - Fx,rﬁﬂsl:' _Fr,rﬂsuj
=1_+I:| -0-0
la

1

16

Conditional Distributions

We discussed the conditional CDF and conditional PDF of a random variable conditioned on
some events defined in terms of the same random variable. We observed that

P({X <x)nB)
P(B)

Ay (xi B)= P(B)=0

and

Fo(x1 8= L7 (21 8)

ax

We can define these quantities for two random variables. We start with the conditional
probability mass functions for two random variables.

Conditional Probability Density Functions

Suppose < and { are two discrete jointly random variable with the joint PMF Pxy (%7 e
conditional PMF of ¥ given X = X s denoted by 2“2/ %) and defined as

Pyrxix)= PY =14 = 2))
_ A =2 =)

P{X =z}
= —pi}r(x,y] provided p,(x) =0
Px':x)
Thus,
Pyyivix)= M provided po(x) =0
F’x':x)

Similarly we can define the conditional probability mass function

Py (x,y]l

provided pypiy) =0
pyly)

Pyylxfy) =
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Conditional Probability Distribution Function

Consider two continuous jointly random variables < and ¥ with the joint probability

distribution function Fry(%) We are interested to find the conditional distribution function of
one of the random variables on the condition of a particular value of the other random variable.

We cannot define the conditional distribution function of the random variable ¥ on the

condition of the event X = %} py the relation
F (yx=PY=ylX=x
Yix

_P¥=yX=x)
PX=x

as P =%=0 i1 the above expression. The conditional distribution function is defined in the
limiting sense as follows:

Foo(wWa=lim, FY2ylxcd 2x+hx)
Vi

PYey x <X =x+hx)
Plxe X =x+ A%

=lim x—30

T For (5 ke
=lim g ——————
Fo bz
Jj ki ¥ (x, 14)ck

T AD

. J.lj'fx,y (X 1)l
L

Conditional Probability Density Function

Ferx 1 E=5)=Frx 7 X)is called the conditional probability density function of ¥
given &£

Let us define the conditional distribution function .

The conditional density is defined in the limiting sense as follows
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Frx Ol X = x) =limy, o (B (04 Myl X = )~ By (0 X = 1) By
S =R =m0 (B (A Sx A -y 0 x CE S x v A f Ay

Because, (X =x) =limy, ,(x <X < x+4x)

The right hand side of the highlighted equation is

By g g0 g P+ 202 S X < x4+ AX) = Py (3 x < X < x4 Ax)) dyy
=l g o (Ply <V 2 y+ Ayl x <X 2 x4+ Ax)) Ay
=lmy, (P <P Eyrhy x <X Sx+ Ax))IP(x < X 2 x+ An)dy

=m0 a0 Fxp (X VIAXAYE Fy (X)ARDY
= Fxy(ny) faiz)

Ll E) = Frp () Faiz)
Similarly we have

L rnxIY) = Fer(x B0

2
Two random variables are statistically independent if for all (ry)eR’,

Trxyixi= )

or equivalently

Fry(x = Fe(x e ()

Example 2 X and Y are two jointly random variables with the joint pdf given by

f:r:,}r{-’f,y:' =k for0ixil

= [) otherwise

find,

() *
(b) Jx(x) and £y (¥)

(C)fxx}'(x;)’)

Solution:
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[ [ G )n =1
Since "=

We get

kxlxlxl=l
2
=k=2

S fxy(xy)=2 forO0Lxllasy<x

= () otherwise

Jx(x)= Ifx,y(X,y)dy = 210"}’ =2x

© 1
A0V = [ fyx)dx = 2[dx = 21-)
- »

Independent Random Variables (or) Statistical Independence

Let £ and £ be two random variables characterized by the joint distribution function
Fyy(x,y)=PX<xT <y}

- &
xy)= B (X
and the corresponding joint density function Sxa (%) = g Fra (5.7)

2
Then £ and ¥ are independent if ¥ (%) € R, (X £x3 504 (T S5 are independent events.
Thus,
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Fop(xy)=FX 2z Ly}
=P{X Lx)P(Y <)
= F (x) ()

FR,,(x,
ey - R
’ dxdy

_ &R, (x) dF, ()
ax oy

= fx () fr )
fx_}r (x.y)= f_x':x:'fy ()

and equivalently 7¥x) =J/r()

Sum of Two Random Variables

We are often interested in finding out the probability density function of a function of two or
more RVs. Following are a few examples.

* The received signal by a communication receiver is given by

Z=4A+7

where Z is received signal which is the superposition of the message signal < and the noise ¥ .

X /+"\i z

T

* The frequently applied operations on communication signals like modulation,
demodulation, correlation etc. involve multiplication of two signals in the form Z = XY.

We have to know about the probability distribution of Z in any analysis of Z . More formally,

f:::,y(xd’)

given two random variables X and Y with joint probability density function and a

function Z= g(X’Y) *we have to find fZ(z) )

In this lecture, we shall address this problem.

Probability Density of the Function of Two Random Variables
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: 2
We consider the transformation & - E—-R

. < . : .
Consider the event \Z <7} corresponding to each z. We can find a variable subset
Dy c® o nor Do ={(x5)| g(xy) <2}

A\ J

Figure 1

LB (2)=P(Z <2
= P{(xy)|(x>)e D,
- ﬂ i (%.7) dvdx

(=

and 7 (z) = A (Z)

Probability density functionof Z=X+Y .

Consider Figure 2
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Figure 2

We have

DAL S

=>X+¥Y <z

Therefore, Dzis the colored region in the Figure 2.

S Py (z)= J;[D Sxy (%) dxdy

(=

I
éh;bq é"—)B é"—;ﬂ

-x:ffx.P [?f: y}z’y] dx

k4 -
If*"-l’ (xu - x)du |dx  substituting y =z -x

J.fX.Y (x,u = x) dx|du interchanging the order of integration

WAL % } jfx_}r [t = x)a’x] du

= }fx.}f (xu-x)dx

& rela )= fo}. {x,u—x)dx
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If Xand Y are independent

Frplrz—x)=fy(x) fr(z-x)

S fz(z) = Ifr(xjfr (z-x)dx

= fx(2)*fy (2)
Where * is the convolution operation.

Example 1

Suppose X and Y are independent random variables and each uniformly distributed over (a, b).
% (x) And J¥ () are as shown in the figure below.

fx(x)
1/b-g | oo
a b X

fuly)

1/b-a
a b y

fz(z)

2/b-a
a b 2b-a z

The PDF of £ =4 *+¥ s a triangular probability density function as shown in the figure.

Central Limit Theorem
Consider *# independent random variables X, 4302 Xy The mean and variance of
each of the random variables are assumed to be known. Suppose E(X,) = piy, and

X) =% -
7 () = %% Form a random variable

Y, =X+ X+ 4 X,

The mean and variance of 7 are given by
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EXy = Hy, = Hy Y Hy Tt Hy,

var ()= oy =E{D (X ) ¥

= DEK ) v DY B i) (K )

i=l jm] Jal,

and X and Xi.aremdependent fori= j

Thus we can determine the mean and the variance of er.

Can we guess about the probability distribution of 7 ?
The central limit theorem (CLT) provides an answer to this question.

The CLT states that under very general conditions convertjés in'distribution to
Y ~N( 4y, 0y ) as # = The conditions are:

X0 X300 X are independent and identically distributed.

o S

1. The random variables

2. The random variables
but not identically distributed.

3. The random variables Xy Lazeey X,

same variance and not identically distributed.

4. The random variables 142 ngre independent with different means and

each variance being neither too small nor too large.

nare independent with same mean and variance,

nare independent with different means and

We shall consider the first condition only. In this case, the central-limit theorem can be stated as

follows:

Proof of the Central Limit Theorem:

We give a less rigorous proof of the theorem with the help of the characteristic function.

Further we consider each of
IL-{l:r! = [:I:

4 -

I o 3
Clearly, =& E(X*)ifn and 5o on,

The characteristic function of L is given by
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dy (@) = E(ef"y”) - & é.[j-m%g&]

dy,

We will show that as # — © the characteristic function is of the form of the characteristic

function of a Gaussian random variable.

. Jol¥y . .
Expanding € “ ™ in power series

(ijg vioy (JWJE};: v

@h = 1+ ja¥, +
¢ il ST 30

Assume all the moments of % to be finite. Then
— Jwly _ . (Jm)z ]
I (@) = B[] = 1 jouy « =22 BED ¢

=0 and E(¥*)=os =gs, weget

EYN +

(e
3l

Substituting Hr,
dp (@) =1-(@"12))ay+ R(w,x)
i . , 3 i
where F(@:%) js the average of terms involving @ and higher powers of @ .
Note also that each term in R{@.n)

therefore,
lim Blan) =10

e o

involves a ratio of a higher moment and a power of # and

o _ oo}
S lim @(m}:l—;aﬂ:e 1

M

which is the characteristic function of a Gaussian random variable with 0 mean and variance

o

L, — N(0, ay)

OPERATIONS ON MULTIPLE RANDOM VARIABLES

Expected Values of Functions of Random Variables

X,

if ¥ = &(&) s a function of a continuous random variable - then
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X EY = Bg(X) = 2 g(npy(n)

1f ¥ = &5 a function of a discrete random variable % then re Ry

SupposeZ =2(4.Y) is a function of continuous random variables 4 @19 ¥ then the
expected value of £ is given by

EZ = Eg(X.y) = | 25 (2)dz

-

= [ | 8@ fxx(x.y)dndy

Thus £Z can be computed without explicitly determiningfz ) .

We can establish the above result as follows.

suppose & = 8. has Mrgots (B 121202 5 Z =2 Then

b4

(2<Z Sz+ 22} =| J{(x. 7)€ AD}
il
Where

e Is the differential region containing (Xi’yf)'The mapping is illustrated in Figure 1

for =13,

{z<Z=z+Az)

Figure 1

106




Note that

Pz<Zz+ b)) = fr( Dbz = D fry(xn)indy,
(%D

Lozf(2)le = Z 2y y (%, )3 ) A% A,

(%) )es

= Z g(x%, Vi) Suy (%, yi) A Ay,

(X )ead)

As Z is varied over the entire Z axis, the corresponding (non-overlapping) differential regions
in £ — ¥ plane cover the entire plane.

w

" 2@z = | | () fu(x.2)drdy

-0

Thus,

Bg(X,3) = [ | 2(x,y) fuy (xy)dxdy

- —0

if £ =glL.l) is a function of discrete random variables % and ¥ , we can similarly show that

EZ=Eg(X. )= 2 2gx))pxy(xy)

X yeR xR

Example 1 The joint pdf of two random variables A and Vg given by

fz,}'(x:y)=:11-xy 08x£2,0L{y<2

=0 otherwise
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- 2
Find the joint expectation of gX, 1) =&Y

Eg(X.¥Y)=EX*Y

= T T 2(x2) fyp (x,)dxdy

22 1
= [[ 2y — xydxdy
00 4

12 2
= —fx3dxjy2dy
4q ]

Example 2 If Z=aX +bY, whereq and & are constants, then

EZ =aFX + BEY

Proof:
EZ = [ [ (ax+by) fyy(x.y)dudy

= T T anfyy(xo0dndy+ | T bufyy (x,y)dady

= Jax | fxy(xy)dydx+ [ by | fyy(x y)dxdy

-

=a [ xfy(x)dx+b [ yfy )y
= qFX +bEY
Thus, expectation is a linear operator.

Example 3

Consider the discrete random variables % and ¥ discussed in Example 4 in lecture 18.The
joint probability mass function of the random variables are tabulated in Table . Find the joint

expectation of & (X, 7)= XY
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\3’\ o I 2 | )
¥

o [oz2s o1 [ ois | 03
1 014 035 | 001 | 0
pyix) [039 045 | 016

Clearly, XY = ¥ Tz Y)prs(x,))

AdERy YR
=1lx1=0354+1=x2=0.01
=037

Remark
(1) We have earlier shown that expectation is a linear operator. We can generally write

Hlayg (X.7) +ayg,(X. 1)) = a Bg) (X, 1)+ a g, (X, )

Thus E(XY +5log, X¥) = EXY +5Elog, XY

(2) If X and ¥ are independent random variables and £¢%- ¥ = & (D180 e

Eg(X,¥) = Bg (X)g,(¥)

- T T a0 ® fry(x y)dx

-3 -3

= T Tgl (X)g, V) Fy (x) fy (y)drdy

-3 -3

= [ &) fx(@dx [ £, )y
- Bg(X)Eg,(¥)

Joint Moments of Random Variables

Just like the moments of a random variable provide a summary description of the random
variable, so also the joint moments provide summary description of two random variables. For

two continuous random variables ¥ and ¥ the joint moment of order # * % is defined as
EXY )= [ [ 2V fyy(x y)drdy

And the joint central moment of order #* % is defined as
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B(X— g -y = | T (xm gy (v 1y fo p (x y)dy

where #x = EX gpq sy = EY

Remark

(1) If 4 and ¥ are discrete random variables, the joint expectation of order # and 2 is
defined as

EX™")= % ZxXV'pyy(xy)
(x kR r
EX-puy"V-py)'= T Z(x—pug) (- sy pry(xy)

xJpleRy r

(2) If » =land #=1 we have the second-order moment of the random variables
X and ¥ given by

T ? 0y v (%, y)dady if X and ¥ are continuous

E(AT) = {

T Expxyxy) if X and ¥ are discrete
(*.)¥ Ry r :

(3) If X and ¥ are independent, &)= ZXEY

Covariance of two random variables

The covariance of two random variables £ and ¥ js defined as

Cov(, V)= B(X - sy XY - pty)

Cov(X, Y) is also denoted as Ty
Expanding the right-hand side, we get

Cov(X,Y) = B(X - py)(¥ - piy)
= BAY - py X - pyl + piyity)
= EXY - jy BX - piy BY + piypiy
= BXY - py iy

_ Cor(X,T)
Ox Ty

P, T)

The ratio is called the correlation coefficient.
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if Pxr 7 O then ¥ and ¥ are called positively correlated.
if Pxr < Othen X and ¥ are called negatively correlated
if P = Othen X and ¥ are uncorrelated.

We will also show that o, 1) <1. To establish the relation, we prove the following result:

2 2 2
For two random variables X and ¥ & (X¥) = BX"EY

Proof:

Consider the random variable £ =a& +Y

ElaX +¥) 20
= a*EX* + EY* +2aEXY 20

Non-negativity of the left-hand side implies that its minimum also must be nonnegative.

For the minimum value,

dEZ? EXY
=0=ya ==
da 4

so the corresponding minimum is

B Xy B xy
—+ By -2
EX EX
B B Xy
Ex?

Since the minimum is nonnegative,

B'XY
— 20

BV -

= B'XV < BT RY"
= |exr|<NEX* VEY

Now
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_ Cor(X.F)

AT, T)
OxOy

R G ) D)

WJECE - ) B - gy’

B i LS 2] el 0]

JECE - pe ) BCY - jay)?
BT - ) |JBCY - )’

BT - ) B - )
=1

s DS

Uncorrelated random variables
Two random variables % and ¥ are called uncorrelated if

Cow(X ) =0

which al so means

E(XY ) =lpity

Jxx & ¥)= fx(x) fr ).

Recall that if 4 and ¥ gre independent random variables, then
EXY = T ? By v (% Yidxdy assurmng X and ¥ oare continuous

= T T 2@ f (Yeddy
= [ wxax Ty )y

then = EXEY

Thus two independent random variables are always uncorrelated.

Note that independence implies uncorrelated. But uncorrelated generally does not imply

independence (except for jointly Gaussian random variables).
Joint Characteristic Functions of Two Random Variables

The joint characteristic function of two random variables X and Y is defined by
';E}X‘}f{alls CBE:I = EEJE’L:H'JE’EJJ |

If £and ¥ are jointly continuous random variables, then
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¢X,}":&:‘1’wg) = j‘J‘fX‘}r(x’y)gJ-u|x+J-ﬂthydx

Note that Oy (@, @) is same as the two-dimensional Fourier transform with the basis function

a Jegk+ Joa, ¥
instead of
E.—Li"c-'l?fhi"fﬂq}'l

Txx(x.5) is related to the joint characteristic function by the Fourier inversion formula

Jrrlxy) = # I I@x,yﬂﬁﬁs %)E_qux_jwdmld%

If £ and { are discrete random variables, we can define the joint characteristic function in terms
of the joint probability mass function as follows:

Qf'x,}r (e, an) = Z sz,y (x,ngjmm_;ﬁy

(%)= Rrn By

Properties of the Joint Characteristic Function

The joint characteristic function has properties similar to the properties of the chacteristic
function of a single random variable. We can easily establish the following properties:

L 95(@) = f(,0)
2 $(@) =84, 0,0)

3. If £and { are independent random variables, then

Jon X+ el

by ylay, @) = He
= E(é..i'}-‘lxeil‘-"ey)
- EEJ'QXE‘?}'@;Y

= @y (@) (@)

4. We have,
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@',r(@, @) = Foled it

P! ol
=E(1+3@X+3%F+M+ .............. )
YR 2 A3 2
SR %251"’

=1+ j@EX + ja BY +
Hence,
Py (0,00 =1

1 4
BX =——— gy ylay, o)
J @

3y =l

1 4
BY =—_—;ﬁ11},({311,a12}
J oy

xy =0

1 &g, (@, @)
BEV =_2L

g daday

@ 'D-""'z =

(2 + n)th

In general, the order joint moment is given by

1 8%y (o, @)

2 ]

XM = Sae!
J Ay ar,

3wl cagml]

Example 2 The joint characteristic function of the jointly Gaussian random variables < and
¥ with the joint pdf

1
2': 1‘Px'.r:|

SRR E )

zm}:g}r\{l _JG?::.}'

f;r.}":x:y) =2

Let us recall the characteristic function of a Gaussian random variable

X Ny, 05)
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fr (@)= BT
)
B ‘\’%‘TX —'-[o&?

= .
S-Sl 'y
e 12320 py —obge) xH iy —0 Yo 3 — (0 ) P 1

_ ; _[E P oy i
q'iﬂ'o:r S
1(—ataf v gt jo) [ e l[x—m—ﬂr;ﬁﬂ]?
2 2 - =
—e 7% =" 7 ax
~2may, 4
ﬁnama:’erwuﬂwxsim

_ ep.}_-j‘.-—a}mﬁ.fz %1

_g My jea—er 2 12

If £and { is jointly Gaussian,

fr.?(x,}’:' =

we can similarly show that

By p (@, @) = BeltXa+teny

‘ o
P S PO e 3 4T AT )

We can use the joint characteristic functions to simplify the probabilistic analysis as illustrated
on next page:

Jointly Gaussian Random Variables

Many practically occurring random variables are modeled as jointly Gaussian random variables.
For example, noise samples at different instants in the communication system are modeled as
jointly Gaussian random variables.

Two random variables & and ¥ are called jointly Gaussian if their joint probability density

(R-pigy P (Tt Pty | B
| ) v i LA |
7 TR

= L0 <X <00, D02y <00
f:c.y(?ﬂ?) m ’ X <0, i

115




The joint pdf is determined by 5 parameters

e variances

« correlation coefficient %Y

We denote the jointly Gaussian random variables < and ¥ with these parameters as
(X.7)~ N(ity. 4y, O3, Oy, Ogy)

The joint pdf has a bell shape centered at (bx. Hy) as shown in the Figure 1 below. The

2 2
variances ¥ % °¥ determine the spread of the pdf surface and ¥ determines the orientation
of the surface in the <~ plane.

f ey
iy

Figure 1 Jointly Gaussian PDF surface

Properties of jointly Gaussian random variables

(1) If € and ¥ are jointly Gaussian, then < and ¥ are both Gaussian.
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We have

1) = | Sy 53y

{x=pay P (3= pay XK 3=pr ) (3 e P
Oo ca§ ' S ANl
] I e ,}.;]
_°°2W_Xa}r = %Y
1 ¥-Myx PV | Pgr.r""*‘xp_z (%—payr Ky —par ) +(.v-,u},)2
_7[or 0 2{1- g4, o} =% 2y X%y =%
—e X .[ 1 zY X ¥ dy
-\ﬁa}[ _oomcry‘ﬂ—p%y
_;[”‘#XT . & (y_“y_f’x.r“g"““xlr
AL T A D Ty
Gaoy %, JTaoy J-
1"'1“,2]2
-_1 ‘x
\QTTO'X
Similarly
2
_l[y'#y]
Oy

5,00 = gmme

(2) The converse of the above result is not true. If each of & and ¥ is Gaussian, < and ¥ are
not necessarily jointly Gaussian. Suppose

_% r»\-%:)"‘ l‘v—#]2
fx_y(x:y) = 2mlx¢,e [ s x ](1 +sin xsiny)

fx,y(‘x’}’)

in this example is non-Gaussian and qualifies to be a joint pdf. Because,

fx,}'(x:}’) 2 OAnd
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| "=t =L

N [ra—u,‘rf_‘_r:‘-—&f‘}
" I+ sin xsin Widvdx

e

1
‘r I dary ey e
=0 =0

- : [ra—;lxllz+lu—;l;.]'2:| o o I[n—u:(f‘ n-—u,ﬁ]
N -
- 1 s Fr + 1 T i ; ;
I J‘me dvdx I ‘rme sin xsin vavadx
© _% i, o ro=a i
=1+ gmlwr J‘e " osin xdx Ie T osny dv
—o —
e gration o an odd imction
=1+0
=1
The marginal density Sz(%) is given by
- i [ra—ny]?+ly—u_.-]’]
Fyl(x= J'ﬁe " 0+ sin xsin ydy
[T ST ra=u 3 reng )t
o et . _Jeoee vy
= Lz T gy (L TPl % iy xsin
I 2aryrcy “}? J‘ dmc oy N ) y
= - intezration of Ancdd fnetion
el
. 1 il =,
e +0
Ircy
2
7]
1 & e
‘F}f
2
ZL[F Ty
Oy

5 eail_gn
similarly, " T T

Thus <« and ¥ are both Gaussian, but not jointly Gaussian.

(3) If X and ¥ are jointly Gaussian, then for any constants € and  the random variable
Z given by Z = aX +&Y js Gaussian with mean %z ~ ¢Hx * 24y and variance
o} =alay’ +82a” + 2abayay oy y
(4) Two jointly Gaussian RVs <% and fare independent if and only if % and Yare

uncorrelated (Bgr=0) .Observe that if % and Yare uncorrelated, then
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_1
2z

(¥ :'2+[J"J+}r:'2
1 X =¥
fz,y(x,}*) = gme

{rmpy P (P 12
1 1 i
= & x & ¥

.fz_ﬂ'g'},
= Jr ()

Example 1 Suppose X and Y are two jointly-Gaussian 0-mean random variables with variances
of 1 and 4 respectively and a covariance of 1. Find the joint PDF Jx.x (%)

Hy= sy =0,0% =1, 0y = 4and cov(X,¥) =1.
Cov(X,1) 1 _1
aygy  1x2 2

B &

and

fx.}'(xs ») = W};\Fr?
T

| o]
We have R

e 2 9l 2
2,‘%w[T 29

Example 2 Linear transformation of two random variables
Suppose £ =aX + &Y. then

$,(@) = B’ = BH XN = g, (a0 b@)

If £and ¥ are jointly Gaussian, then

#7(@) = fy y (@, b@)

. 1
- eJU“X"’N:""‘iiafazx*zﬂx.rd’“'x"'r +'ct jwt
Which is the characteristic function of a Gaussian random variable
. . 2 2 2
with mean #z - #x +x and variance Oz = Oy +2ay yo yoy +0y

thus the linear transformation of two Gaussian random variables is a Gaussian random
variable.
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Example 31f Z=X+Y and X and Y are independent, then
Pp (@) = Py y (@, @)

= (@@ (@)

Using the property of the Fourier transform, we get

J2(2) = Fx(2)* 1y (2)

Hence proved.

Univariate transformations

When working on the probability density function (pdf) of a random variable X, one is
often led to create a new variable Y defined as a function f(X) of the original variable X. For
example, if X~N(y, a?), then the new variable:

Y =f(X) =(X-Wwlo
IsN (0, 1).
It is also often the case that the quantity of interest is a function of another (random)

quantity whose distribution is known. Here are a few examples:
*Scaling: from degrees to radians, miles to kilometers, light-years to parsecs, degrees

Celsius to degrees Fahrenheit, linear to logarithmic scale, X to the distribution of the variance
* Laws of physics: what is the distribution of the kinetic energy of the molecules of a gas if
the distribution of the speed of the molecules is known ?

So the general question is:
*If Y = h(X),
* And if f(x) is the pdf of X,

Then what is the pdf g(y) of Y?
TRANSFORMATION OF A MULTIPLE RANDOM VARIABLES

Multivariate transformations

The problem extends naturally to the case when several variables Yj are defined from

several variables X;j through a transformation y = h(x).
Here are some examples:
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Rotation of the reference frame

Let f(x, y) be the probability density function of the pair of r.v. {X, Y}. Let's rotate
the reference frame {x, y} by an angle6. The new axes {x', y'} define two new r. v. {X',
Y'}. What is the joint probability density function of {X', Y'}?

Polar coordinates

Let f(x, y) be the joint probability density function of the pair of r. v. {X, Y},
expressed in the Cartesian reference frame {x, y}. Any point (X, y) in the plane can also be
identified by its polar coordinates (r,8). So any realization of the pair {X, Y} produces a
pair of values of r andf), therefore defining two new r. v. R andf.

What is the joint probability density function of R and? What are the (marginal)
distributions of R and oft?

Sampling distributions

Let f(x) is the pdf of the r. v. X. Let also Z1 = z1(X1, X2... Xp) be a statistic, e.g. the
sample mean. What is the pdf of Z;?

Z1 is a function of the n r. v. Xj (with n the sample size), that are lid with pdf f(x). If it is
possible to identify n - 1 other independent statistics Zi, i = 2... n, then a transformation Z =

h(X) is defined, and g(z), the joint distribution of Z = {Z1, Z, ..., Z,} can be calculated.
The pdf of Z1 is then calculated as one of the marginal distributions of Z by integrating g(z)
overzj,i=2,.,n.

Integration limits

Calculations on joint distributions often involve multiple integrals whose
integration limits are themselves variables. An appropriate change of variables sometimes
allows changing all these variables but one into fixed integration limits, thus making the
calculation of the integrals much simpler.

Linear Transformations of Random Variables

A linear transformation is a change to a variable characterized by one or more of the
following operations: adding a constant to the variable, subtracting a constant from the variable,
multiplying the variable by a constant, and/or dividing the variable by a constant.

When a linear transformation is applied to a random variable, a new random variable is
created. To illustrate, let X be a random variable, and let m and b be constants. Each of the
following examples show how a linear transformation of X defines a new random variable Y.

Adding a constant: Y = X + b
Subtracting a constant: Y = X - b
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Multiplying by a constant: Y = mX
Dividing by a constant: Y = X/m
Multiplying by a constant and adding a constant: Y = mX + b

Dividing by a constant and subtracting a constant: Y = X/m - b

- T -
Suppose the vector of random variables X = (X1.----&XN) " has the joint
distribution®) = fx1.---.xw) get ¥ = AX+ Bior some square matrix 4and vector® . If

S 0 o e
det4 # Oy Thas the joint distribution 2/ A0 B))-

Indeed, suppose T2(y) (this is the notation for "the g¥)is the distribution density of Y") and
X-Ax) For any domain Dot the T space we can

IDg(}')@=Pmb(YED)=Pmb(dX+BED)=

write

=Prob(X € A7Y(D-B) ) = Sfo)dx =
'Ilm B} We make the change of variables

v =Ax+Bj, the last integral.

[ marew—m 20 | = [ Aatew—Byy-L Linear transformation of
- -Ilnf@ Ly BD‘W‘@_ ‘I‘Df@ 1y EDH@_ (Linear transformation o

random variables)

2
The linear transformation @ * #is distributed asNO"o ) The & was defined in the section (
Definition of normal variable).

For two independent standard normal variables (s.n.v.) €1and €2 the combination @151 + 0282

N(o, JoZ+ol )

is distributed as )

A product of normal variables is not a normal variable. See the section on the chi -
squared distribution.
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UNIT 4
STOCHASTIC PROCESSES-TEMPORAL CHARACTERISTICS

Random Processes

In practical problems, we deal with time varying waveforms whose value at a time is
random in nature. For example, the speech waveform recorded by a microphone, the signal
received by communication receiver or the daily record of stock-market data represents random
variables that change with time. How do we characterize such data? Such data are characterized
as random or stochastic processes. This lecture covers the fundamentals of random processes.

Recall that a random variable maps each sample point in the sample space to a point in the
real line. A random process maps each sample point to a waveform.

{(S.F,F}

Consider a probability space SEF} A random process can be defined on as an

indexed family of random variables ¥(5:£} $€3.¢€T%yhere Tis an index set, which may be
discrete or continuous, usually denoting time. Thus a random process is a function of the sample

point § and index variable ¥ and may be written as X(t.s),

X(ts

“0 i X X £ 94 o« N0 o N 1

R

Figure : Random Process

| X(t)=Acos at

Example 1 Consider a sinusoidal signa where Ais a binary random

variable with probability mass functions Z4(0 =2 gng Zal-1 =1~ 2.
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Clearly, (X, t<T}s 4 random process with two possible realizations

A =cosat 4 X () = —cosar. fo %(%) js 4 random variable
with two values

Cos QX and ~co¢ @ty

At a particular time

Classification of a Random Process

a) Continuous-time vs. Discrete-time process

If the index set I'is continuous, (X, €T} js called a continuous-time process.

(£@©, teT} is called a discrete-time process. Such a

X[#), PRGZ}

If the index set 'is a countable set,

random process can be represented as {
X, nz0}

and called a random sequence. Sometimes

the notation \
positive integers.

is used to describe a random sequence indexed by the set of

We can define a discrete-time random process on discrete points of time. Particularly,
we can get a discrete-time random process { XTxl, # < Z} by sampling a continuous-time process
\(E@. €T3 4t 3 uniform interval T such that X1 = X@T).

The discrete-time random process is more important in practical implementations.
Advanced statistical signal processing techniques have been developed to process this type
of signals.

b) Continuous-state vs. Discrete-state process

The value of a random process X js at any time £ can be described from its probabilistic
model.

The state is the value taken by (@) atatime t, and the set of all such states is called the
state space. A random process is discrete-state if the state-space is finite or countable. It also

means that the corresponding sample space is also finite or countable. Otherwise , the random
process is called continuous state.

Firtst order and nth order Probability density function and Distribution functions

As we have observed above that < &) at a specific time fis a random variable and can be

: . e : = < o
described by its probability distribution function Frny(®) = PIXE) < x)‘Thls distribution
function is called the first-order probability distribution function.

dF
fz(:)(x) e ﬂ

We can similarly define the first-order probability density function dx
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To describe (X ). £€T} , We have to use joint distribution function of the random variables at

L) represents 2 jointly

distributed random variables. Thus a random process (L. 2T can thus be described by
11— th order

all possible values of t. For any positive integer #2, L) X&).....

specifying the joint distribution function .

FX(&).X(&)....X(!.)(XI’xz""’xx) =PX(t)Ex. X)) 25, XE)=x), Ve2land Ve, €T

or th the %~ 227421 j5int probability density function

a?!
o (. s x)=——F Cx X X
P (o W 4o A5 By L td axl 83‘2 3 .axk KX L. X5 ) 42 .

If (X 2E€ T} s o discrete-state random process, then it can be also specified by the collection

of T~ th Orderjoint probability mass function

Moments of a random process

We defined the moments of a random variable and joint moments of random variables. We can

define all the possible moments and joint moments of a random process {(£@).tel}
Particularly, following moments are important.

. Ax) = Mean of the random process at t=EX©)

Ry(t),t,) = autocorrelation function of the processat timest,t, = E(X(¢)X ()

Note that

Rylt,t) = Ry(y,t) and

Ry(t,t) = EX*(t) = second moment or mean square value attime ¢

b

* The autocovariance function Cxll.5) of the random process at time gty is defined by

Cx(f.ty) = E(X () — sy (GN(X @) ~ 1 X(G)
= Ry(t,83) — Hx (&) 1y (&)
Cleatly

Cylt.t) = BE(X({) — iy () =variance of the processat time ¢

These moments give partial information about the process.

125




Ol
Oy (8.85) = 7 xk z;;) .
The ratio “j x (6, 0)CX (6 5) is called the correlation coefficient.

The autocorrelation function and the autocovariance functions are widely used to characterize a
class of random process called the wide-sense stationary process.

We can also define higher-order moments like

Ryt 8.8) = B(X (), X (¢,), X)) = Triple correlation function at £,,£,,£; etc.

[#],n€ Z}

The above definitions are easily extended to a random sequence (£

Cross — covariance funcfion of the processses at times £,,£,
Cor(h.8y) = E(X() — 1y T (8) — 1 (5))
= RX'( (31:32) _ﬂx(gl).ﬂy (32)

Cross-cotrelation codhaent
O (&.5,)

PN .. L
) S ) oG )

On the basis of the above definitions, we can study the degree of dependence between two
random processes

This also implies that for such two processes
Ry (01.5) = Hx Q) 1y (&)

Orthogonal processes: Two random processes (< (). £€ '} and
{T€).£€ T} are called orthogonal if

Ral.g)=0¥4,45el
Stationary Random Process

The concept of stationarity plays an important role in solving practical problems involving
random processes. Just like time-invariance is an important characteristic of many deterministic
systems, stationarity describes certain time-invariant property of a class of random processes.
Stationarity also leads to frequency-domain description of a random process.

Strict-sense Stationary Process
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>4}

A random process { is called strict-sense stationary (SSS) if its probability structure is

invariant with time. In terms of the joint distribution function,{X(z)} is called SSS if
Frnxintxtn) (B Koo %) = Fan ozt an b Xit 400 (1o K200 %)

Wne N, Vi el andfor all choices of sample points £,

Thus, the joint distribution functions of any set of random variables X(t). X (). o X ) does not
depend on the placement of the origin of the time axis. This requirement is a very strict. Less
strict form of stationarity may be defined.

Particularly,

If FX(:. ).X:x,).....xu,,)(xl:xz ----- XN FX(:.+§, WX (4, ).....X(;,+§)(x1’x2 ----- xy) forn= 1’2""k’then {X(f)} is

called &% order stationary.

£ ®) Is called &% order stationary does not depend on the placement of the origin of the time
axis. This requirement is a very strict. Less strict form of stationary may be defined.

If £ ®) is stationary up to order 1

Friny(3) = Frpp (1), ¥H T

Let us assume @ = ~4 Then

Fyiny(%) = Fyipy(x) which is independent of time.
As a consequence

EX(¢t) = EX(0) = p,(0) = constant

i (20)

IS stationary up to order 2
put o =~ 2

Frn i) (%1 %2) = Frpge g 00y (0. %)
This implies that the second-order distribution depends only on the time-lag £ —¢,.
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As a consequence, for such a process

Ry(t).8) = B(X({#) X (@)

w W

= I I xlngxm,xc:, -423(7‘1’7‘2 Jdxdx,
= ;X-?ﬁ ~4)
Similarly,
Cxlt.t)=Cxlt —£,)
Therefore, the autocorrelation function of a SSS process depends only on the time lag
A 2

We can also define the joint stationary of two random processes. Two processes

£ ®) And £40) are called jointly strict-sense stationary if their joint probability distributions
of any order is invariant under the translation of time. A complex random process

(Z@O=XO+jr )} is called SSS if (x@) and £40) are jointly SSS.
Example 1 A random process is SSS.

This is because "%

= By )Fy (X)) Fy(x,)
= FX(:lﬂu)(xl)FX(:Z ﬁu)(%)--FX[z“ ﬂo)(xn)

B E&’(slﬂc,),,\:(z2 ﬂo),..,X(zmo)(%xzam 1 %)

Wide-sense stationary process

It is very difficult to test whether a process is SSS or not. A subclass of the SSS process called
the wide sense stationary process is extremely important from practical point of view.

A random process 840 is called wide sense stationary process (WSS) if
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EX(t) =y, = constant
and
EX ()X ()= Ry(t,—t,) 1z a function oftime lag &) — ¢,

Remark

(1) For a WSS process (£®)

EX3(#) = Ry (0)= constant
varl ¥ (1 =EX (1) - (EX (1)) = constant
Cy (h.82) = EX(3) X )— EX(3)EX (i)
= Rylty—h)- 1
o Cy(h, 4015 a function of the lag i@, -4

(2) An SSS process is always WSS, but the converse is not always true.

Example 3 Sinusoid with random phase

840}

Consider the random process given by

X(e) = Acos(ayt + &) \yhere A a4 Wy qre constants and @ are unifirmly distributed

between 0 and 2.

This is the model of the carrier wave (sinusoid of fixed frequency) used to analyse the
noise performance of many receivers.

Note that

1 oocpion

ol ={2r

0 otherwn ze

By applying the rule for the transformation of a random variable, we get

1

Tan(x) = g A - A2

0 otherwise

AixiA
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X}

Which is independent of ¢-Hence { is first-order stationary.

Note that

EX(¢) = Ecos(@yt + 0)
2x

1
=4 ¢+ @) —d
J cos{@yt + &) 7 &
= 0 which 15 a constant
and

Rylt),8y) = BX(4)X(4)
= Edcos(@yt, + $) Acos(ayt, + &)
2
= %E[cos(mozl t@tat, t@) toos(aph té- @, — 9]
2
- %E[c os(@y (4 +4,) +26) + cos(@y (4 ~4)]

= —cos(@ (4 —&) which 1s afunction of the lag £ —¢,.

X))

Hence { is wide-sense stationary

Properties of Autocorrelation Function of a Real WSS Random Process

Autocorrelation of a deterministic signal

Consider a deterministic signal x(&) such that

08 [ e o
Te 2T

Such signals are called power signals. For a power signal %(£) the autocorrelation function is
defined as

L
R.(r)= llri_r)ri 21—? .L x(¢ + 1) x(2)dt
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R,(@) Measures the similarity between a signal and its time-shifted version.
.1,

R.(0) =lim — [ x°(¢)dt

(O =fim — T @)

Particularly, is the mean-square value. If * ®is a voltage waveform
across a 1 ohm resistance, then ) is the average power delivered to the resistance. In this
sense, &0 represents the average power of the signal.

Example 1 Suppose *© = Ac0s 2% e autacorrelation function of & at lag  is given by

T
R, (r) =;i_r)r°1D %-j;ﬁcos (¢ + 1) A cos widt

2r
= Jl,j_r;riﬁ_{‘[cos@mz + 1)+ cos ar]di
" A cosar
2
We see that R, (@) of the above periodic signal is also periodic and its maximum occurs when
2
T=O,i2—ﬁ,t4—ﬁ, etc. Rx(0)=—{1—.
@ @ The power of the signal is 2

The autocorrelation of the deterministic signal gives us insight into the properties of
the autocorrelation function of a WSS process. We shall discuss these properties next.

Properties of the autocorrelation function of a real WSS process

840}

" Since the autocorrelation function Rytnt) of such a
L~ i,

Consider a real WSS process

process is a function of the lag * ~
R (r) = EX (¢ +7) X (2)

we can redefine a one-parameter autocorrelation

function as

i (X0)

is a complex WSS process, then

R, (5) = EX(t+T) X *(0)

X*(@): : X(@). : :
Where is the complex conjugate of For a discrete random sequence, we can define
the autocorrelation sequence similarly.

The autocorrelation function is an important function charactering a WSS random process. It
possesses some general properties. We briefly describe them below.
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et 2
1. Re®=EX®) s the mean-square value of the process? Thus,

Ry(0y= EX*(t)=0.
Remark If €@ isa voltage signal applied across a 1 ohm resistance, and then Rz(0) is the

ensemble average power delivered to the resistance.

A(E), Ry

2. For areal WSS process (7Jis an even function of the time ©- Thus,

Ry(=v)= Ry(7).
Because,

Ry(-t)=EX(t-1)X()
=EX()X(E-1)
=EX (¢ +1)X(¢) (Substituting £, =£-1)
= Ry (@)

Remark For a complex process “x(%)= (%)

3. [Rx (2)] S Ry ) This follows from the Schwartz inequality
|< 2@y, X+ > < |x@f |xe + o
We have

Ry (D ={BX (Xt + )Y
SEX(EX (t+ 1)
= Ry ()R (0)

Ry (8] <Ry (0)

4. Fx(Digq positive semi-definite function in the sense that for any positive integer # and

®on
@ Ry (4 —2;)20
rea| aj,aj’iglj;l iy X(z _})._

Proof

Define the random variable
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b
¥=7aX )
J=1
Then we have

0<EVE = _';jl _%laiaJ.EX(ri W)
Teml fom

L
= E E ﬂjﬂjﬁx(:j _Ij)
] el

It can be shown that the sufficient condition for a function #x{*) to be the autocorrelation
function of a real WSS process A O} is that B=x(7) pe real, even and positive semidefinite.

If <@ is Ms periodic, then Rx() s also periodic with the same period.

Proof: Note that a real WSS random process L ®} s called mean-square periodic ( MS

periodic ) with a period -7 if for every €T

EX(E+T,)-X @) =0
= BX 1+ T )+ BX (1) -2BX (¢ + T) X (g) = 0
= Ry (O + R (O - 2R, (T, ) =0
= Ry (T,) = R, (0)

Again

(E(XE+T+ T - X+ )X E & BXE+T+T,) - X+ D) X ()
(Byw applying Cauchy Schwartz inequality)
= (Ry (74T~ Ry (2))* L2(Ry(0) = Ry (T, 1R, (0
= (R (T+7T,) = Ry()* <0 v Ry (0) = Ry(T)
S Ry(THT,) = Ry (D)

Cross correlation function of jointly WSS processes

If G40) and 40} are two real jointly WSS random processes, their cross-correlation functions are

independent of £and depends on the time-lag. We can write the cross-correlation function

Ry () = BEX (£ +0)F(2)

The cross correlation function satisfies the following properties:
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B (T = BX 2+ 007 ()
=RY(OXE+)
= Ry (-T)

(i1) |R_Fﬂ' ':T:" S Ry (R (0)
We Have

1R D[ = |EX ¢ + DY )
SEX*(¢+DEY*() using Cauchy-Schwartz Inequality
= Ry () Ry (0)

SR (D)) £ JRX(O)RY(O)

Further,

Rz ()R, (0) £ %(RX(O) +Ry(0)) -+ Geometric mean < Arithmatic mean

ji. If “@andy (t) are uncorrelated, Ry (o) = EXCHT)ERE) = iy
iv. IfX(t)andY (t) are orthogonal processes, Ry (r) = EX(t+7)Y (1) =0

Example 2

Consider a random process Z(® which is sum of two real jointly WSS random processes.
A9 and ) \yg have

208 = X+ Y (@)
R,() = BZG+T)Z()
=BXQ+r)+Y(¢+7)][X () +Y(2)]
= Ry(7) + Ry () + Ry (T) + Ry (7)
1f €@ and ¥© are orthogonal processes,then £ @) = £z (7) =0

SRy (T) = Ry () + Ry (7)

Example 3
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Suppose

Z,(t) = X(¢t)cos(ayt + P) and
Z,() =X (¢)sin(@yt + D)

Where X (t) is a WSS process and ¥~ U1027]

Ry (1) = B - )] = 5 [ w(Ole - )dg

[X(£)X(t -7} E[cos{ayt + P)sin({ayt - @yt + )]

I

Rx(r)[g[sm(z%z - @y + 20]- E[sin(mwr)]]

1 .
§Rx('r)sm(wor)

Time averages and Ergodicity

Often we are interested in finding the various ensemble averages of a random process{X@} by

means of the corresponding time averages determined from single realization of the random

process. For example we can compute the time-mean of a single realization of the random
process by the formula

1
(;Jx)r = }lﬁﬁﬁr;{(zjdt
which is constant for the selected realization. Note that (& }1“ represents the dc value of * @

Another important average used in electrical engineering is the rms value given

. 1 7
s N P_rg 1}2—?; I—T x*(0)dt

Time averages of a random process

by

The time-average of a function & (£()) of a continuous random process{X(z)} is defined by

1
(X O, = o [ er@a:

where the integral is defined in the mean-square sense.

135




Similarly, the time-average of a function gl of a continuous random process () is
defined by

1
(e =27 z g(x)

The above definitions are in contrast to the corresponding ensemble average defined by

Eg(X() = I: g(x) Fypy(x)dx for continuous case

= Z E(x) Py (%) for discrete case
ieR

Xre)

The following time averages are of particular interest

(a) Time-averaged mean

1 .
{,MX >r = ﬁfi‘ A {continuous case)
: 5 X, dizcret
e =7, 2 (discrete case)

(b) Time-averaged autocorrelation function

(RX(T) I K(EVAE+ Tl (continuous case)
(Re[m]) = T igﬂiﬂiﬂm (discrete case)

Note that, e Uf@}}f and HEO) are functions of random variables and are governed by
respective probability distributions. However, determination of these distribution functions is
difficult and we shall discuss the behaviour of these averages in terms of their mean and

variances. We shall further assume that the random processes {(X©®) and (%) are WSS.
Mean and Variance of the Time Averages

Let us consider the simplest case of the time averaged mean of a discrete-time WSS random

process{ <« given by

1w
(x >N TN +li-¥NXi

The mean of (’“ X }N
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iy by = &

X,
20+ 1 z.%ur

1 o X
B 2N+1:‘§N f

and the variance

2 1 i p
E({ﬁx>ﬁ_ﬂx) = E[2N+]i_§:¢}fi _ﬁfx]

=g 1 - _ i
= [2N+1:-§ (X i*'x)]

ﬁ\ BUG - 42 5 5B~ 4 )

TV i AV

If the samples Ko H s £y A Ky are uncorrelated,

2
2 1 N
E((»%:)N _fv*':::) = E[ 2N+li-z-:NXi _#X]

- (2N1+ 1) [,_ENE(X ﬂx)z]
0.2

= X

2N +1

lim E({ty )~ #) =0
We also observe that #e % X

From the above result, we conclude that <'uX >N e

Let us consider the time-averaged mean for the continuous case. We have
X(t)dt
{#X 2TI &)

Bluy), = ﬁfrEX(z)dz

) .
= ﬁ,[—r Hydt = py
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and the variance

B((te)y -tz = 8| = fr X0 —,ax]

2

2
1
- E[gfy (X —f-«‘x)dz]
1
= LR B @) - 1) (X () - )ity
1
= ﬁfr [ Cx (e~ &;)dndt,
The above double integral is evaluated on the square area bounded by 8= and 2 = we
divide this square region into sum of trapezoidal strips parallel to 1 ™%~ 0 (See Figure 1)Putting
74 = T and noting that the differential area between 4 "% = Fand & 7% = T+ 4T

(25~ |T1)df, the above double integral is converted to a single integral as follows:

. By
4T

1
= Ffi’r@?’ - |[ehCy (DT

E({ptr Yy —#x) = — Lo [ Cty ~ )0t

[

1
= ?fnﬂ“[l_ﬁ Cy(TMT

At: [\£I—£2=T+d‘r

31_32=2T // 77

7 T Voo 4
7/ //// L=t =T
A 7 P V3
.
< T = b
S W M.
4
=T //
/
Y
Figure 1

Ergodicity Principle
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If the time averages converge to the corresponding ensemble averages in the probabilistic sense,
then a time-average computed from a large realization can be used as the value for the

corresponding ensemble average. Such a principle is the ergodicity principle to be discussed
below:

Mean ergodic process

A WSS process{X@} is said to be ergodic in mean, if <’“X>r Sty as 7 — Thus fora
mean ergodic process{X ®} :

lim E{tty ), =ty

and

lim war (,L{X} =0

Tow

We have earlier shown that
E(pty )y = Hy

and

var<;1X>r ‘LC ' (T) l—l |

2T

therefore, the condition for ergodicity in mean is

Further,

= ch(r)ll— i dT <-— J'C (DT

Therefore, a sufficient condition for mean ergodicity is
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L|CX(T)|¢;;T< m

Example 1 Consider the random binary waveform 40} discussed in Example 5 of
lecture 32.The process has the auto-covariance function given by

- e,

Cy(D) = 7

?
0 otherwise

Here

ar ar
L|C_,,_. (TfT = ZJ“CX(TWT

T -
=2! 1-—\dt
%
X 2
s BE

2
3T,

=g
3

L|r:;,f (T < =

hence (£®) is mean ergodic.
Autocorrelation ergodicity
{Ry(D))y = — l:X(:)X(z + ) de

We consider 28 = X@OXE+T) g tnat Hz = Rz (D
Then (£ ®) will be autocorrelation ergodic if zen is mean ergodic.

Thus 40} will be autocorrelation ergodic if

[ J [1— il (T)dT =0
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where
Co(q) = BZWZ(-1) - BZOBZ(-T)
=REXOX@¢-DX@Et-DX¢t-1-1) —Ri.(‘l')

Cz (T| )involves fourth order moment.

Simpler condition for autocorrelation ergodicity of a jointly Gaussian process can be found.
Example 2

Consider the random—phased sinusoid given by

X(e) = Acos(at + @) \ynere A @ e constants and ¢~ P10 27 js a random variable. We
.142
0 R, (T) =—2—coswuf

have earlier proved that this process is WSS with Hx =Vand

For any particular realization *(& = Acos(t + &),

1
() =57 [ Acostmt + )ds
- %%Asin(wo?’)
and
17
RN = o Lﬂcos(wuz + ) A cos(wy (2 +T) + i) de
2 1
= a7 [cosw, T+ Acos(w, (2 +T) + 2¢)]dé
_ AcoswyT . A sin{w, (2T + 1))

2 4w, T

A coswT

(1)} —
We see that as? — @ ('u"»—%oand R a

For each realization, both the time-averaged mean and the time-averaged autocorrelation
function converge to the corresponding ensemble averages. Thus the random-phased sinusoid is
ergodic in both mean and autocorrelation.
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UNIT 5
STOCHASTIC PROCESSES—SPECTRAL CHARACTERISTICS

Definition of Power Spectral Density of a WSS Process

Let us define the truncated random process £y (@) as follows

Xp(t)= X9 -T<e<T

=0 otherwise

et (;_T)

recz(—)
where 2T" s the unity-amplitude rectangular pulse of width 27" centering the origin. As

fvem; (& (0) will represent the random process O define the mean-square integral

r
FTX (@)= LXr(z)e‘f"’dz

Applying the Pareseval's theorem we find the energy of the signal

r w©
ingz)dz = IlFTXr(w)fdw
Therefore, the power associated with Ly} IS

x5 G !
— [%r@idt = — [|FTX (@) do
22"4: 2T i And

The average power is given by

FTX,
—EJ;XQ()dz = —EJ‘|FTX (ca)| dao= EIM
E|FTx (@)
Where ar the contribution to the average is power at frequency w and represents the

power spectral

density of £y (9} .As T =@ the left-hand side in the above expression represents the
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average power of 040}

Therefore, the PSD Sz(®) of the process {(X®} s defined in the limiting sense by
_ E|FTX (@)
Sylw)= 11'1-?;2—?

Relation between the autocorrelation function and PSD: Wiener-Khinchin-Einstein
theorem

We have
El FTX (@) |2 _E FTX (@) FTX, ()
27 2T

() X (2, )e et gy dr

ﬂ\” -a|“‘

x (4~ 4 )e ™ MM

Tl
N

t, =27 7 F
4 T P
,/ (///\ /31_52 =T
[gfﬂy -
< 1
I T 7"
" § <t =BT
Tl
w,/
Y
Figure 1

Note that the above integral is to be performed on a square region bounded by h and

=+ — = o=
& ‘Tas illustrated in Figure 1.Substitute W78 T that 172 Tjs 4 family of straight

lines parallel to The differential area in terms of ©is given by the shaded area and

equal to (@T=|z]dT. The double integral is now replaced by a single integral in ©
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Therefore,

¢ r i
pf@X (@ _ 1Y p (e 0r-|1)de
2F 2T ar
=T Ry@e 1 -Ehay
ar % 2T
% T Ry(D)e79% a1
if Bx(®) g integral then the right hand integral converges to —= as I —o
i BT [ Ry(nev®%ac
Iam r —
B|Frx, (@)
) ) Sx(a)) = ]1m.|__ﬂ )

As we have noted earlier, the power spectral density Tom ar is the

contribution to the average
power at frequency @ and is called the power spectral density of O} Thus :

S, (@) = TRX (r)e‘f“"df‘

and using the inverse Fourier transform
1 w .r-‘!

Ry(D)=— J‘ Sy(@e’ da
2 d

Example 1 The autocorrelation function of a WSS process X®} s given by
Ry(m=afl 550

Find the power spectral density of the process.

S, (@) - T R (e PP ar

-0

The autocorrelation function and the PSD are shown in Figure 2
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Figure 2

Example 3 Find the PSD of the amplitude-modulated random-phase sinusoid

X(6) = M) cos(at+d), @ ~U[0, 27]

Where M(t) is a WSS process independent of -

Ry(D)=E M(E+1) cos(@(t+17) +D) M) cos(@t+P)
=E M@E+T) M(£) Ecos(@.(t+1T) + D) cos(@r+ D)

{ Using the independence of M {¢) and the sinusoid)
2
=Ry (7) B cos @1

. A
! SX(@) = T(SM(CB-*.@c) g SM(Q}_@;))
where S, (a:t) 15 the PSD of M%)

Figure 4 illustrates the above result.

Sy (@)
@
Sy (@)
/l\ /1\
—mC—E -& —mﬁﬁ mc—ﬁ @, & +E 2
2 2 € 8
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Figure 4

Properties of the PSD

Sx(@) being the Fourier transform of Rz () it shares the properties of the Fourier transform.
Here we discuss

important properties of Sx(@)
X
1) the average power of a random process is

EX* (1) = Ry (0)

1 w
=— |5 Jo
Zﬁ-{o x(@)dw

2) If R4 real, B8 is a real and even function of © .Therefore,

S, (@) = }RX(T)e'jmde

w

= IRX(T)(COS @T+ jsin @0)dT
= IRX(T) cos @dT

= 2JRX(T) cos @TdT

Thus for a real WSS process, the PSD is always real.

3) Thus Sy (@) is a real and even function of @ .

. E|xr (@)
Sy(w=lmy, ———
4) From the definition " 2T is always non-negative. Thus Sx(@)2 0.

5) If £ hasa periodic component, Rx(®is periodic and so S (@ iy have impulses.

Cross Power Spectral Density

Consider a random process (Z)} which is sum of two real jointly WSS random processes
()} and (X9} Aq we have seen earlier,

Rz (T) = Ry (1) + Ry (T) + R (T) + R (T)
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If we take the Fourier transform of both sides,

Sz(@) =Sy (@) +Sy(@) + FT( Ry (D) + FT(R (1)
Where FT() stands for the Fourier transform.

Thus we see that Sz(@) includes contribution from the Fourier transform of the cross-

correlation functions

Bgpla)and Ry (T)'These Fourier transforms represent cross power spectral densities.

Definition of Cross Power Spectral Density

Given two real jointly WSS random processes ()} and (Y} e cross power spectral
density (CPSD) “2(@) s defined as

PTX @) FTY (@)
2T

S (@)= lim E

Where Flirle) end FI(@) are the Fourier transform of the truncated processes

X () = Xrect(—=) and Yo (t) = Y)rect(—) .
2T respectively and ~denotes the complex
conjugate operation.

We can similarly define Sz(®)py

PTY (@) FTX (@)
2T

Sp(@)=lim 2

Proceeding in the same way as the derivation of the Wiener-Khinchin-Einstein theorem for the
WSS process, it
can be shown that

Sp(@)= | Ry (D) @ ds

and
Sy ()= | Ry (2)e7¥%de
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The cross-correlation function and the cross-power spectral density form a Fourier transform
pair and we can

write

Ry (D)= [ S (@) du
and

Ry (D)= | Sy (@) da

Properties of the CPSD

The CPSD is a complex function of the frequency "w’. Some properties of the CPSD of
two jointly WSS processes

(&1} and (X0} are listed below:
(1) Sy (@) = Sy (@)

Note that Zxr(®) = (-1

L Sy (@)= [ Ry (e dt

Ry (—0)e ™7 dt

[— é\_‘s

Ry (D)2 dt

I
5% 8
®

2) €2 (@) s an even function of @ and ™ 5x(@) s an odd function of @ .

We have

Syylw) = j’ Ry (D)(cosw o+ janwo)de

= ? Ry (ticoswtdr+ jTRﬂ(t)sinm 0dt

= Re(Sy (@) + Flm(Syy (@)
where

Re(Syy (@) = ? Ry (t)coswtdt 15 an even function of @ and

In(Syy(a)) = ? Ry (D) sin @ zdt 15 an odd function of @ and
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3) If {(£®)} and (T2} are uncorrelated and have constant means, then

Say(@) = Sy (@) = ptypty S @)

Where d(@) is the Dirac delta function?

Observe that

Rp(D=EX(+0)Y ()
= EX(t+ T)EY(H)
= HxHy
= HrHx
= Ry (2)
Sy (@) = Sy (@) = piy iy S(w)

@) 1f &} and (B} ar orthogonal, then

Sxy(@)= Sy (@)=0

if (£} and (Y&} are orthogonal, we have

R (D)= BEX(t+ DY ()
=0
= Rz}'(f)
LS l(w)=Sy(w)=0

(5) the cross power S between A%} and (Y} s gefined by

i G
Py =lim — B] X(OY ()d

Applying Parseval's theorem, we get
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1
Be =l ] XY @t
1 e
=l — B [ O (s

1 1 = .
=lm—~H— [ AN (@) FiT.(and @
lim — 8 — [ FTH; (@) FTY (@)

Lty BTG @FTE (D),
DI o T 2T
- L5 (ode
29T 2o
Py =— | Spl@de
Similarly,
B, =L3s (ede
P g
- L ¥ (ode
2
= P};'

Example 1 Consider the random process given by 2O =X+ discussed in the beginning of

the lecture. Here zes is the sum of two jointly WSS orthogonal random processes

{£(8)} and {¥(2)}
We have,

Ry (T) = Ry (D) + Ry (T) + Rypy (T) + R (T)

Taking the Fourier transform of both sides,
Sz(@) = Sy (@) + 5y (@) + Sy (@) + Sy (@)
1= l = 1 = l = l =
S— [ S (@de=— [S(@dae+— [S,(@da+— [S,,(@de+— [ S, (@)da
g e L lelier 2 Thitaldor o T a2 Sl
Therefore,

[2(@) = P (@) + By (@) + By (@) + By (@)]
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Wiener-Khinchin-Einstein theorem

The Wiener-Khinchin-Einstein theorem is also valid for discrete-time random processes. The

power spectral density Sx(@) of the WSS process (£T21} is the discrete-time Fourier transform
of autocorrelation sequence.

Sy(@)= 5 RX[m]e'*{“’“ —TEWE R

Mem—0

Re ] s related to Sx(@) by the inverse discrete-time Fourier transform and given by

1

Ry[m]) =§T

I Sy(@e’™d @

Thus & 7] and ghe) forms a discrete-time Fourier transform pair. A generalized PSD can
be defined in terms of Z — transform as follows

Sy(z) = i R, [m]z‘“

MWom—0

clearly,

Sx(@) =552,

Linear time-invariant systems

In many applications, physical systems are modeled as linear time-invariant (LTI) systems.
The dynamic behavior of an LTI system to deterministic inputs is described by linear differential
equations. We are familiar with time and transform domain (such as Laplace transform and
Fourier transform) techniques to solve these differential equations. In this lecture, we develop
the technique to analyze the response of an LTI system to WSS random process.

The purpose of this study is two-folds:

e Analysis of the response of a system

o Finding an LTI system that can optimally estimate an unobserved random process from
an observed process. The observed random process is statistically related to the
unobserved random process. For example, we may have to find LTI system (also called a
filter) to estimate the signal from the noisy observations.

Basics of Linear Time Invariant Systems
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A system is modeled by a transformation T that maps an input signal * ® 0 an output
signal y(t) as shown in Figure 1. We can thus write,

y(&) =T[x(t)]

x(%) ¥y

Figure 1

Linear system

The system is called linear if the principle of superposition applies: the weighted sum of
inputs results in the weighted sum of the corresponding outputs. Thus for a linear system

T [alxl (£) e (¢ )] - alT[xl (’f)] +a, T [xz (3)]

Example 1 Consider the output of a differentiator, given by

_ax@)
Y=
d
Then E( @ x (&) + ayx, (2) )

d d
= “1;"1(3) * azzxz )

Hence the linear differentiator is a linear system.
Linear time-invariant system

Consider a linear system withy (t) =T x (t). The system is called time-invariant if
Tx(t-t) =y(t=6) V 4

It is easy to check that that the differentiator in the above example is a linear time -
invariant system.
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Response of a linear time-invariant system to deterministic input

As shown in Figure 2, a linear system can be characterised by its impulse response
kit) = To(£) where 8(2) is the Dirac delta function.

5 [t nce)
= system +—m ———

Figure 2

Recall that any function x(t) can be represented in terms of the Dirac delta function as follows

w

x(t) = Ix(s) J(t-s) ds

—o

If X(t) is input to the linear systemy (t) =T x (t), then

»(t) T }x(s) 5(3 » s) ds

Ix(s) Tﬁ(z = s) ds [ Using the linearity property ]

-

w

Ix(s) h(¢s) ds

-

Where #(£:8) = T8(t=8)q e response at time t due to the shifted impulse? 8(t-s)

If the system is time invariant,
k(t,s) = k(ﬁ —s)

Therefore for a linear-time invariant system,
w

y@© = [x(s) h{e-s5) ds = @) * k()

-

where * denotes the convolution operation.

We also note that x() xh(t) = h(£) % x().
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Thus for a LTI System,
y(¢) = x(£) * h(t) = h(f) *x(2)

Taking the Fourier transform, we get
I(e)=H{e)Z(@)

where H(m) =FTh (t) = Ik(ﬁ) e® dt is the frequency response of the system

Figure 3 shows the input-output relationship of an LTI system in terms of the impulse response
and the frequency response.

Xt LTI System yit)
™ ki) I
X LTI System Ve
il (an)
Figure 3

Response of an LTI System to WSS input

Consider an LTI system with impulse response h (t). Suppose LN isawss process
input to the system. The output T of the system is given by

w

P()= [h(s) X(e-e)de = [hle-e) X(s) de

-

Where we have assumed that the integrals exist in the mean square sense.
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Mean and autocorrelation of the output process 40

Where #(0) is the frequency response at 0 frequency (¢ =0 ) and given by

H)| = }h(:)g"f‘”d{ = }h(ﬁ)dﬁ

T The Cross correlation of the input {X(t)} and the out put {Y (t)} is given by

E(X(r+0)P ()= £ X(t4c) [ A(s) X(t-5) ds

—nin

|

}3[3) £ X[.Hr) X(:—s) s

]
= ik(s) Rx[r+s)cz’s
- Th[—uj Ry (r—u)ahe [ Put s = —u]
- h(-0) * Re(2)

Ry(r) = h{-z) * Rylr)
also Ry (r) = Rygl-t)= h(r) * Ry(-1)
= h(z) * Ry (7)
Therefore, the mean of the output process @)} s a constant

The Cross correlation of the input {X (t)} and the out put {Y (t )} is given by
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R wlr) = hi-t) * R4 r)
also Ry (v) = Rygl-v)= hiz) * Ry(-7)
= hir) * Ry(r)

Thus we see that Ry (7) is a function of lag ¥ only. Therefore, (L) gng TN are jointly
wide-sense stationary.

The autocorrelation function of the output process {Y (t)} is given by,

E(Y(e+0)¥ () = E [h(s) X{t+c-s)ds¥(e)

b ¢

<«

= Ik(s) EX(t+r-5) Y()ds

-0

[() Raplr-s) o

R(T) * R 4(t) = h(r) *h(-7) *R 4{7)

Thus the autocorrelation of the output process ey depends on the time-lag ¥ | i.e.,
EY ()Y (¢+7)=Ry(7)

Thus

Ry(r) =Ry (z)*h(z)*h(-7)

The above analysis indicates that for an LTI system with WSS input
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« the output is WSS and
e The input and output are jointly WSS.

The average power of the output process el s given by

B =Ry (0)

= R, (0)*(0)*4(0)
Power spectrum of the output process

Using the property of Fourier transform, we get the power spectral density of the output
process given by

Sy (@) = Sx (@) H(2) ' (@)
Sz (@)| (a)f

Also note that

Rulr) = h(-7) * Rxlr)
and Ry (t) = h(r) * Ry(7)

Taking the Fourier transform of Re (T)We get the cross power spectral density
Sa (m)given by

Sy (@) = H' (@) Sy (@)
and
Sy (@) = H (@) Sy (@)
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Rop(T fy (T)

) Wy o -

St gy (@) 5y ()
—I—(—)—' H‘(El]:l i H(ED) E—

Figure 4

Example 3

A random voltage modeled by a white noise process (& (‘f' )} with power spectral density
My
2 is input to an RC network shown in the Figure 7.
Find (a) output PSD *¥ (@)
(b) output auto correlation function Ry ()

2
(c) average output power EY*(s)

R

— Ay

Xto) ¢ Y

Figure 7

The frequency response of the system is given by
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Therefore,

w1 )

1M

(a) RCPwt+1 2

(b) Taking the inverse Fourier transform

A -H

R (r)=—Lp¢ &€

¢ (7] 4R
(c) Average output power

M,

Ve =Ry (0) =1
(0) =R (0)= =

Rice's representation or quadrature representation of a WSS process

An arbitrary zero-mean WSS process (@) can be represented in terms of the slowly

A () gng 4@

varying components and as follows:

AlE) =X (Blcosapt = X (¢)sin ayt )

{(ay -

B
where s a center frequency arbitrary chosen in the band 2

B
< < i
Slel< o+ =2 PACE

L) are respectively called the in-phase and the quadrature-phase components of ).

Let us choose a dual process T such that
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X+ Y = (X,(0+ X, 0)™

= (X, () cosapt - X, (sinayt) + (X, () sin eyt + X (Flcosayt)

Xt 3
then ,
X ()= X(t)cosapt + ¥ (£)sin ayt ?)
and
X, (8) = X(t)cosant — Y (&) sin apé @3)

For such a representation, we require the processes S0} and @) to be WSS.

Note that

EX () = cosantBX, (¢) —sin eyt BEX (¢)

As EO}is zero mean, we require that
EX (&)=0

And
EX (£)=0

Again

EX (t)=cosapt BEX(t)+sinapt EY ()
EX () =cosaptBX (1) —sin aptBY(2)

As each of BX, (1), X, (t) and EX(¢) 1s zero-mean, we require that
EY(#)=10.
Also

+ Ry (T) sin @y, (2 + 7) cos @yt
and

Ry @ +7,8) = Ry(r)cos aqf +T)cosapt + Ry (r)sin g (ﬁ + r)sin ayt
~ Ry (r)cosay (¢ +7)sinay — Ry () sinay (¢ +7) cos ays
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Ry (t+71,8)= E[X(t+r) oS @), (£+ r)+ }’(t+ f)sin mo(£+r)][X(.t) cos eyt + ¥(2) sin et
= Ry(t)cosay(t+ 1) cosayt + Ry(r)sinwo(t +f) sin eyt + Ry (T) cos @y (2 + T) 510 @t




and
Ry x (E+ T8 =Ry(T)cosay(f+ T)oosand — Ry (Thsin af (£ +T) sin @iyt
- R (Clcosay (£ +T)sin @f + R (T)ein @£+ T)cos ayt

Thus, Ry (£ +7T,8), By (£ +T,0) and Ry 5 (¢ +7,0) wnll be independent of t of and only 1

and

Ry.x, () = Ry(r)cosay (¢ +7)cos apf — Ry(r)sin ay (¢ +7) sin ayd
= Ryy(r)cosay (i + 1) sin ayé + Ry, (7)) sin ay (£ + 1) cos agé
= Ry(r)[cosay(f +1)cosanpt —sin ay (£ + 1) sin apé]

= Rypy(r)cosay(f +r)sinayt —sinay(f +7)cosay]
= Ry(r)cosayT — Ry (r)sin(-ayr)
=Ry(r)cosayt — Ry, (r)sin eyt

How to find ')} satisfying the above two conditions?

For this, consider 440 to be the Hilbert transform of {X@}, i.e.

HQ=}X®M@—®¢

1
hit)=—
Where 7t and the integral is defined in the mean-square sense. See the illustration
in Figure 2.
X Yit
{ ney= L Yl
wt
Figure 2

The frequency response H (o) of the Hilbert transform is given by
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—if @=0
Hia)=¢ j, if @=0
0, if @=0

S H (@) = - jsgn(@)
and |H(an[* =1
" Sy (@) =|H () S(@) = 5 (@)
and

2 _| Sg(@), fora@>0
Syl@)=H (CD) Sy (@) {—jSXX @, Torwo

s ) - Sy (@), for @>0
Sy (@) = H (@) Sy (@) {jgx(@), for @<0

The Hilbert transform of Y(t) satisfies the following spectral relations
Sy(@)= 5y (@)

and
Sy (@) =Sy (@)

From the above two relations, we get

Ry (1) = Ry (T)

and

Ry (1) = =Ry (T)

The Hilbert transform of < @ i generally denoted as X@'Therefore, from (2) and (3) we
establish

Xu() = X(8)cos @yt + X(£)sin ayt,
X () = X(t)cos @yt ~ X(£)sin qyt

and
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Ay = A (floosant — K (E)sn ayf

The realization for the in phase and the quadrature phase components is shown in Figure
3 below.

0 Akl

Xte)
Xori)

Hifbert
fransfarm
1 sinent

Figure 3

From the above analysis, we can summarize the following expressions for the autocorrelation
functions

Ry (T) = Ry (T)
=Ry (Ticos @T+ By (Thsin & T
=Ry (Tcos @ THhE(O*E, (T anayT VR (T = AT *E (T
=R, (Ticos ayT+ ﬁ:,_. (Thsin @ T

Where
£, (7) = Hilbert transform of R, (T)

=I iRXl:T—S:IdS
A s

See the illustration in Figure 4

Ryl h(t) = 1 :‘?i (x)
T
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The variances aff‘ and a§5 are given by

o3 = oﬁ,’ = R, (0).

Ry (r) and Ry (7),

Taking the Fourier transform of we get

Sy(@-ay) +Sy(@+ @) || < B
& =S =
(@) = 8z,(@) {0 otherwise

Similarly,

RX:X; (z) =R, (r)sinmyr - Ry, (r)cosayr
=R, (r)sinayr - ‘Qx (ricosayr

and

Sy x (@) =
e 0 otherwise

{j[SX(M”’“)‘Sx(w-%)] ] < 2

(@)

Notice that the cross power spectral density Skexe is purely imaginary. Particularly, if

S2(@) s 10cally symmetric about 2b
Sy, (@) =0
Implying that

Ry%(r)=0

Consequently, the zero-mean processes S0} and X, @) are also uncorrelated
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PROBABILITY THEORY AND STOCHASTIC PROCESSES
Important Questions

UNIT-I
Two marks Questions:
1. Define Demorgans’ law.
2. Give the classical definition of Probability.
3. Define probability using the axiomatic approach.
4. Write the statement of multiplication theorem.
5. What are the conditions for a function to be a random variable?
Three Marks Questions:
1. Define sample space and classify the types of sample space.
2. Define Joint and Conditional Probability.
3. Define Equally likely events, Exhaustive events and Mutually exclusive events.
4. Show that P(AUB)=P(A)+P(B)-P(ANB).
5. Define Random variable and Write the classifications of Random variable.

6. In the experiment of tossing a dice, what is the probability of face having 3 dots or 6 dots to
appear?

Ten Marks Questions:
1.a) State and Prove Bayes’ theorem.
b) Write the Mathematical model of experiment.

2. In a box there are 100 resistors having resistance and tolerance values given in table. Let a
resistor be selected from the box and assume that each resistor has the same likelihood of being
chosen. Event A: Draw a 47Q resistor, Event B: Draw a resistor with 5% tolerance, Event C:
Draw a 100 resistor. Find the individual, joint and conditional probabilities.

Resistance Tolerance Total
(Q) 5% 10%

22 10 14 24
47 28 16 44
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100 24 8 32
Total 62 38 100
3. a) Two boxes are selected randomly. The first box contains 2 white balls and 3 black balls.

The second box contains 3 white and 4 black balls. What is the probability of drawing a white
ball.

b) An aircraft is used to fire at a target. It will be successful if 2 or more bombs hit the target. If
the aircraft fires 3 bombs and the probability of the bomb hitting the target is 0.4, then what is
the probability that the target is hit?

4. a) An experiment consists of observing the sum of the outcomes when two fair dice are
thrown. Find the probability that the sum is 7 and find the probability that the sum is greater than
10.

b) In a factory there are 4 machines produce 10%,20%,30%,40% of an items respectively. The
defective items produced by each machine are 5%,4%,3% and 2% respectively. Now an item is
selected which is to be defective, what is the probability it being from the 2™ machine. And also
write the statement of total probability theorem?

5. Determine probabilities of system error and correct system transmission of symbols for an
elementary binary communication system shown in below figure consisting of a transmitter that
sends one of two possible symbols (a 1 or a 0) over a channel to a receiver. The channel
occasionally causes errors to occur so that a 1’ show up at the receiver as a ’0? and vice versa.
Assume the symbols ‘1’ and ‘0’ are selected for a transmission as 0.6 and 0.4 respectively.

P(B1)=0.6 PlAL/ By ) A,

[ Pia |

P(B2)=0.4 [ P(ay/By) | Az

6. In a binary communication system, the errors occur with a probability of “p”, In a block of
“n” bits transmitted, what is the probability of receiving

i) at the most 1 bit in error
ii at least 4 bits in error
7. Let A and B are events in a sample space S. Show that if A and B are independent, then so are

a)Aand B b)A andBc)A and B
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9.a) An experiment consist of rolling a single die. Two events are defined as A = { a 6 shows
up}: and B={a 2 or a 5 shows up}

i) Find P(A) and P(B)

ii) Define a third event C so that P(C) = 1-P(A)-P(B)

b) The six sides of a fair die are numbered from t to 6. The die is rolled 4 times. How many
sequences of the four resulting numbers are possible?

10.a) State and prove the total probability theorem?
b) Explain about conditional probability.

11.In the experiment of tossing a die, all the even numbers are equally likely to appear and
similarly the odd numbers. An odd number occurs thrice more frequently than an even number.
Find the probability that

a) an even number appears

b) a prime number appears

c) an odd numbers appears

d) an odd prime number appears.
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UNIT-HI
Two marks Questions:
1. Define Probability density and distribution function.
2. Define the expected value of Discrete Random variable and Continuous Random Variable.
3. Define Moment generating function and Characteristic Function of a Random variable.
4. Define moments about origin and central moments.
5. Show that Var(kX)=k? var(X), here k is a constant.
6. Define skew and coefficient of skewness.
7. Find the Moment generating function of two independent Random variables X; & X.
8. Write the statement of Chebychev’s inequality.
Three marks Questions:
1. Derive the expression for the density function of Discrete Random variable.
2. Find the variance of X for uniform density function.
3. Define various types of transformation of Random variables.
4. Write the properties of Gaussian density curve.
5. Find the maximum value of Gaussian density function.

6. In an experiment when two dice are thrown simultaneously, find expected value of the sum of
number of points on them.
7. Derive the expression for distribution function of uniform Random variable.

Ten Marks Questions:
1.a) The exponential density function given by
fx(x) = (L/b)e P X>a
=0 X<a
Find the mean and variance.

b) Define Moment Generating Function and write any two properties.

2. Derive the Binomial density function and find mean & variance.
3. Derive the Poisson density function and find mean & variance.
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4. If Xis a discrete random variable with a Moment generating function of M(v), find the
Moment generating function of
X+a

i) Y=aX+b  ii)Y=KX iii) Y= 3
5. A random variable X has the distribution function
12
Fx(X)= Znﬂau(x —n)
Find the probability of a) P{-c0 <X <6.5} b)p{X>4} c)p{6<X <9}

6. Let X be a Continuous random variable with density function
f)= | S+K  0<x<6
0 otherwise

Find the value of K and also find P{2 <X <5}

7. a) Verify the Characteristic function of a random variable is having its maximum magnitude at
®=0 and find its maximum value.

b) Find the Moment generating function of exponential distribution?

8. The probability density function of a random variable X is given by f(x) =g for -3<x<6 and

equal to zero otherwise. Find the density function of Y:%(lz-x)

9. a)Write short notes on Gaussian distribution and also find its mean?
b) Consider that a fair coin is tossed 3 times, Let X be a random variable, defined as
X= number of tails appeared, find the expected value of X.
10.a) State and prove the chebychev’s inequality theorem?
b) b) Find the probability of getting a total of 5, at-least once in 4 tosses of a pair of fair
dice.
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UNIT-11
Two marks Questions:
1. Define the statistical Independence of the Random variables.
2. Define point conditioning & interval conditioning distribution function.
3. Give the statement of central limit theorem.
4. Define correlation and covariance of two random variables X& Y.
5. Define the joint Gaussian density function of two random variables.
Three Marks Questions:

1. If E[X]=2, E[Y]=3, E[XY]=10, E[X?]=9, and E[Y?]=16 then find variance & covariance of
X&Y.

2. The joint probability density function of X&Y is
fx v(X,y)= c(2x+y); 0<x<2,0<y<3
{ 0; else
Then find the value of constant c.
3. Define correlation coefficient with two properties.
4. Show that var(X+Y) = var(x)+var(Y), if X&Y are statistical independent random variables.
5. Define Marginal distribution & Density functions.
Ten Marks Questions:
1. a) State and prove the density function of sum of two random variables.

b) The joint density function of two random variables X and Y is

(x + y)?

fry(x,y) = 20 i—l1<x<land—-3<y<3

0; otherwise
Find the variances of X and Y.

2.a) Let Z=X+Y-C, where X and Y are independent random variables with variance sz, (52Y
and C is constant. Find the variance of Z in terms of czx, 02y and C.

170




b) State and prove any three properties of joint characteristic function.

3.a) State and explain the properties of joint density function
b) The joint density function of random variables X and Y is

_(8xy; 0<x<10<y<1
fry (x,y) = { 0, otherwise
Find f(y/x) and f(x/y)

4. The input to a binary communication system is a random variable X, takes on one of two
values 0 and 1, with probabilities % and ¥4 respectively. Due to the errors caused by the channel
noise, the output random variable Y, differs from the Input X occasionally. The behavior of the

communication system is modeled by the conditional probabilities P(E) = % and P (g) = %
Find

a) The probability for a transmitted message to be received as 0
b) Probability that the transmitted message is al. If the received is a 1.

5. Let X and Y be the random variables defined as X=Cos0 and Y=Sin6 where 0 is a uniform
random variable over (0, 2m)

a) Are X and Y Uncorrelated?

b) Are X and Y Independent?

6. a) Define and State the properties of joint cumulative distribution function of two random
variables X and Y.

b) A joint probability density functionis  fyy(X,y) = i 0<x<60<y<4

0 else where

Find the expected value of the function g(X,Y)= (XY)?
7. State and prove the central limit theorem.
8. Two random variables X and Y have zero mean and variance o = 16 and o7 = 36
correlation coefficient is 0.5 determine the following
i) The variance of the sum of X and Y
ii) The variance of the difference of X and Y
9. A certain binary system transmits two binary states X = +1 and X = -1 with equal probability.
There are three possible states with the receiver, such as Y = +1, 0 and -1. The performance of
the communication system is given as
P(y =+1/X = +1) =0.2;
P(Y=+1/X=-1)=0.1; P(Y =0/X = +1) = P(Y = 0/X = -1) = 0.05. Find
a) P(Y =0)
b) P(X = +1/Y = +1)
c)P(X=-1/Y =0).
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10. Two random variables X and Y have the joint pdf is

fry(X,y)= {\e‘(zx*y’ X,y=>0
0 elsewhere

i. Evaluate A

i1. Find the marginal pdf’s

iii. Find the marginal pdf’s

iv. Find the joint cdf

v. Find the distribution functions and conditional cdf’s.
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UNIT-1V
Two marks Questions:
1. Define wide sense stationary random processes.
2. Give the statement of ergodic theorem.
3. Define the auto covariance & cross covariance functions of Random processes X(t).
4. When two random processes X(t)& Y (t) are said to be independent.
5. Define the cross correlation function between two random processes X(t) & Y (t).
Three Marks Questions:
1. Differentiate between Random Processes and Random variables with example

2. Prove that the Auto correlation function has maximum value at the origin i.e | Rxx(1) | =
Rxx(0)

3. A stationary ergodic random processes has the Auto correlation function with the periodic

components as R =25
P xx(1) + 1+672

4. Define mean ergodic random processes and correlation ergodic Random processes.
5. Find the mean value of Response of a linear system.

Ten Marks Questions:

1. a) Define Wide Sense Stationary Process and write it’s conditions.

b) A random process is given as X(t) = At, where A is a uniformly distributed random variable
on (0,2). Find whether X(t) is wide sense stationary or not.

2. X(t) is a stationary random process with a mean of 3 and an auto correlation function of 6+5
exp (-0.2 | T | ). Find the second central Moment of the random variable Y=Z-W, where ‘Z’ and
‘W’ are the samples of the random process at t=4 sec and t=8 sec respectively.

3. Explain the following

i) Stationarity

ii) Ergodicity

iii) Statistical independence with respect to random processes
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4. a) Given the RP X(t) = A cos(wot) + B sin (wet) where wg is a constant, and A and B are
uncorrelated Zero mean random variables having different density functions but the same
variance o% Show that X(t) is wide sense stationary.

b) Define Covariance of the Random processes with any two properties.

6 sin (nt)

5. a) A Gaussian RP has an auto correlation function Rxx(t)= . Determine a covariance

matrix for the Random variable X(t)

b) Derive the expression for cross correlation function between the input and output of a LTI
system.

6. Explain about Poisson Random process and also find its mean and variance.

7. The function of time Z(t) = Xjcoswot- Xpzsinwet is a random process. If X; and Xsare
independent Gaussian random variables, each with zero mean and variance o, find E[Z]. E[Z’]
and var(z).

8. Briefly explain the distribution and density functions in the context of stationary and
independent random processes.

9. Explain about the following random process
(i) Mean ergodic process
(ii) Correlation ergodic process

(iii) Gaussian random process

10. State and prove the auto correlation and cross correlation function properties.
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UNIT-V
Two marks Questions:
1. Define Power Spectrum Density.
2. Give the statement of Wiener-Khinchin relation.
3. Define spectrum Band width and RMS bandwidth.
4. Write any two properties of Power Spectrum Density.
5. Define linear system.
Three Marks Questions:

1. Show that Sxx(-®) = Sxx(®). i.e., Power spectrum density is even function of ®.

2. If the Power spectrum density of X(t) is Sxx(®), find the PSD of ;—tx(t).

3. If the Auto correlation function of wide sense stationary X(t) is Rxx(t)=4+2e-27l. Find the area
enclosed by the power spectrum density curve of X(t).

4. Define linear system and derive the expression for output response.

5. If X(t) & Y(t)are uncorrelated and have constant mean values X&Y then show that Syx(m)=
XY (w)

Ten Marks Questions:

1. a)Check the following power spectral density functions are valid or not

cos8(w)
2 + w?

i) ii) e~ (-1
b) Derive the relation between input PSD and output PSD of an LTI system
2. Derive the relationship between cross-power spectral density and cross correlation function.

3. A stationery random process X(t) has spectral density Sxx(w)=25/ (w?+25) and an
independent stationary process Y(t) has the spectral density Syy(w)= w?/ (w?+25). If X(t) and
Y (t) are of zero mean, find the:

a) PSD of Z(t)=X(t) + Y(t)
b) Cross spectral density of X(t) and Z(t)

4. ) The input to an LTI system with impulse response h(t)= §(t) + t2e~%. U(t) isa WSS
process with mean of 3. Find the mean of the output of the system.
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b) Define Power Spectral density with three properties.

5. a) A random process Y (t) has the power spectral density Syy(w)=

Find i) The average power of the process
ii) The Auto correlation function
b) State the properties of power spectral density

9
w?+64

2

6. a) A random process has the power density spectrum Syy(o)= Find the average power

6w
1+w? '
in the process.

b) Find the auto correlation function of the random process whose psd is —a

7. a) Find the cross correlation function corresponding to the cross power spectrum

6
SO oG w2
b) Write short notes on cross power density spectrum.

8. a) Consider a random process X(t)=cos(wt + 8)where w is a real constant and 0is a
uniform random variable in (0, ©/2). Find the average power in the process.

b) Define and derive the expression for average power of Random process.
9. a) The power spectrum density function of a stationary random process is given by
Sxx(w)= A, -K<w<K
J[/:other wise
Find the auto correlation function.

b) Derive the expression for power spectrum density.

10. a) Define and derive the expression for average cross power between two random
process X(t) and Y(t).

b) Find the cross power spectral density for Rxx(T):AZ—Z siniifw, 1)
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MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
B.Tech Il year — | Semester Examinations, Model Paper-1
PROBABILITY THEORY AND STOCHASTIC PROCESSES

Time: 3 hours Max. Marks: 75
PART- A (25 Marks)
1. a) Define probability using the axiomatic approach. (2 marks)
b) Show that P(AUB)=P(A)+P(B)-P(ANB). (3 marks)
c) Define Probability density and distribution function. (2 marks)
d) Define various types of transformation of Random variables. (3 marks)
e) Define point conditioning & interval conditioning distribution function. (2 marks)

f) Show that var(X+Y) = var(x)+var(Y), if X&Y are independent random variables. (3 marks)

g) Define wide sense stationary random processes. (2 marks)
h) Prove that the ACF has maximum value at the origin i.e | Rxx(1) | = Rxx(0) (3 marks)
i) Define spectrum Band width and RMS bandwidth. (2 marks)

j) If the Auto correlation function of wide sense stationary X(t) is Rxx(t)=4+2e2I7!,

Find the area enclosed by the power spectrum density curve of X(t). (3 marks)

Part-B (5*10=50 Marks)

2. a) State and Prove Bayes’ theorem.
b) Explain the the Mathematical model of experiment.
OR

3. a) An experiment consists of observing the sum of the outcomes when two fair dice are thrown.
Find the probability that the sum is 7 and find the probability that the sum is greater than 10.
b) In a factory there are 4 machines produce 10%,20%,30%,40% of an items respectively. The
defective items produced by each machine are 5%,4%,3% and 2% respectively. Now an item is
selected which is to be defective, what is the probability it being from the 2" machine. And
also write the statement of total probability theorem?

4. a) The exponential density function given by

fx(x) = (1/b)e V" X>a
=0 Xx<a Find the mean and variance.
b) Define Moment Generating Function and write any two properties.

OR

5. Derive the Binomial density function and find mean & variance.
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a) State and prove the density function of sum of two random variables.

b) The joint density function of two random variables X and Y is
(x +y)?
foGoy) ={"20 ° -1<x<land—-3<y<3
0; otherwise
Find the variances of X and Y.

OR

7. a) Let Z=X+Y-C, where X and Y are independent random variables with variance 6%x, 6%y
and C is constant. Find the variance of Z in terms of czx, 02y and C.
b) State and prove any three properties of joint characteristic function.

8. a) Define Wide Sense Stationary Process and write it’s conditions.
b) A random process is given as X(t) = At, where A is a uniformly distributed random
variable on (0,2). Find whether X(t) is wide sense stationary or not.
OR

9. X(t) is a stationary random process with a mean of 3 and an auto correlation function of 6+5
exp (-0.2 | T | ). Find the second central Moment of the random variable Y=2-W, where ‘Z’
and ‘W’ are the samples of the random process at t=4 sec and t=8 sec respectively.

10. a) Check the following power spectral density functions are valid or not
N C0SB(W) Ly —(w—1)2
) Srar e
b) Derive the relation between input PSD and output PSD of an LTI system
OR

11. Derive the relationship between cross-power spectral density and cross correlation function.

*k*k
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MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

B.Tech Il year — | Semester Examinations, Model Paper-2
PROBABILITY THEORY AND STOCHASTIC PROCESSES
Max. Marks: 75

Time: 3 hours

PART- A (25 Marks)

1. a. Define Demorgans’ law.

b. Define sample space and classify the types of sample space.

c. Define the expected value of Discrete and Continuous Random Variables.

d. Derive the expression for the density function of Discrete Random variable.
e. Define the statistical Independence of the Random variables.

f. If E[X]=2, E[Y]=3, E[XY]=10, E[X?]=9, and E[Y?]=16 then find variance &

covariance of X&Y.

g. Give the statement of ergodic theorem.

h. Differentiate between Random Processes and Random variables with example

i. Define Power Spectrum Density.

j. Show that Sxx(-®) = Sxx(®). i.e., Power spectrum density is even function of ®.

Part-B (5*10=50 Marks)

(2 marks)
(3 marks)
(2 marks)
(3 marks)
(2 marks)

(3 marks)
(2 marks)
(3 marks)
(2 marks)
(3 marks)

2. In a box there are 100 resistors having resistance and tolerance values given in table. Let a resistor
be selected from the box and assume that each resistor has the same likelihood of being chosen.
Event A: Draw a 47Q resistor, Event B: Draw a resistor with 5% tolerance, Event C: Draw a 100Q2
resistor. Find the individual, joint and conditional probabilities.

Resistance Tolerance Total
(Q) 5% 10%
22 10 14 24
47 28 16 44
100 24 8 32
Total 62 38 100
OR

3. a)Two boxes are selected randomly. The first box contains 2 white balls and 3 black balls. The
second box contains 3 white and 4 black balls. What is the probability of drawing a white ball?
b) An aircraft is used to fire at a target. It will be successful if 2 or more bombs hit the target. If the
aircraft fires 3 bombs and the probability of the bomb hitting the target is 0.4, then what is the

probability that the target is hit?
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10.

11.

Derive the Poisson density function and find its mean & variance.

OR
If X is a discrete random variable with a Moment generating function of My(v), find the Moment
generating function of
i) Y=aX+bii)Y=KX iii) Y= XZ“

a) State and explain the properties of joint density function
b) The joint density function of random variables X and Y is
_(Bxy; 0<x<1,0<y<1
far Goy) = { 0, otherwise
Find f(y/x) and f(x/y)

OR

The input to a binary communication system is a RV X, takes on one of two values 0 and 1, with
probabilities % and Y4 respectively. Due to the errors caused by the channel noise, the output
random variable Y, differs from the Input X occasionally. The behavior of them communication

system is modeled by the conditional probabilities P(%) = % and P (g) = g Find

a) The probability for a transmitted message to be received as 0
b) Probability that the transmitted message is al. If the received is a 1.

Explain the following
i) Stationary
ii) Ergodicity
iii) Statistical independence with respect to random processes
OR

a) Given the RP X(t) = A cos(wpt) + B sin (wot) where wq is a constant, and A and B are
uncorrelated Zero mean random variables having different density functions but the same

variance o°. Show that X(t) is wide sense stationary.
b) Define Covariance of the Random processes with any two properties.

A stationery random process X(t) has spectral density Sxx(m)=25/ (w?+25) and an independent
stationary process Y (t) has the spectral density Syv(w)= w?/ (w?+25). If X(t) and Y(t) are of zero
mean, find the:
a) PSD of Z(t)=X(t) + Y(t)
b) Cross spectral density of X(t) and Z(t)

OR
a) The input to an LTI system with impulse response h(t)= §(t) + t2e~%. U(t) is a WSS process
with mean of 3. Find the mean of the output of the system.

b) Define Power Spectral density with three properties.

*k*k
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MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
B.Tech Il year — | Semester Examinations, Model Paper-3
PROBABILITY THEORY AND STOCHASTIC PROCESSES
Time: 3 hours Max. Marks: 75

PART- A (25 Marks)

1. a. Give the classical definition of Probability. (2 marks)
b. Define Joint and Conditional Probability (3 marks)
c. Define Moment generating function and Characteristic Function of a RV’s (2 marks)
d. Find the variance of X for uniform density function. (3 marks)
e. Give the statement of central limit theorem. (2 marks)
f. The joint probability density function of X&Y is
fxv(Xy) = c(2x+y); 0<x<2,0<y<3
0; else
Then find the value of constant c. (3 marks)

g. Define the auto covariance & cross covariance functions of Random processes X(t).(2 marks)
h. A stationary ergodic random processes has the Auto correlation function with the periodic

components as Rxx(t) =25 + a2 (3 marks)
i. Give the statement of Wiener-Khinchin relation. (2 marks)
j. If the Power spectrum density of X(t) is Sxx(w), find the PSD of ;—tx(t). (3 marks)

PART-B (5*10=50 Marks)

2. Determine probabilities of system error and correct system transmission of symbols for an
elementary binary communication system shown in below figure consisting of a transmitter that
sends one of two possible symbols (a 1 or a 0) over a channel to a receiver. The channel
occasionally causes errors to occur so that a *1” show up at the receiver as a ’0? And vice versa.
Assume the symbols ‘1’ and ‘0’ are selected for a transmission as 0.6 and 0.4 respectively.

OR
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10. a) A random process Y (t) has the power spectral density Syy(w)=

11.

In a binary communication system, the errors occur with a probability of “p”, In a block of “n”
bits transmitted, what is the probability of receiving

i) at the most 1 bit in error

ii at least 4 bits in error

A random variable X has the distribution function

Fx(x)= Z _1au(x -n)
Find the probability of a) P{-0 <X < 6.5} b)p{X>4} c) p{6< X <9}

OR
Let X be a Continuous random variable with density function
f(x)= g +K  0<x<6
0 otherwise

Find the value of K and also find P{2 <X <5}

Let X and Y be the random variables defined as X=Cos6 and Y=Sin6 where 0 is a uniform
random variable over (0, 2m)
a) Are X and Y Uncorrelated?
b) Are X and Y Independent?

OR
a) Define and State the properties of joint cumulative distribution function of two random
variables X and Y.

b) A joint probability density functionis  fyy(X,y) :i 0<x<60<y<4

0 else where
Find the expected value of the function g(X,Y)= (XY)?

6 sin (7t)

a) A Gaussian RP has an auto correlation function Rxx(t)= . Determine a covariance

matrix for the Random variable X(t)
b) Derive the expression for cross correlation function between the input and output of a LTI
system.
OR
Explain about Poisson Random process and also find its mean and variance.

w2+64
Find i) The average power of the process
ii) The Auto correlation function
b) State the properties of power spectral density
OR
a) A random process has the power density spectrum Syy(co)=1iww24 . Find the average power in

the process.
b) Find the auto correlation function of the random process whose psd is

*k*k
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MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
B.Tech Il year — | Semester Examinations, Model Paper-4
PROBABILITY THEORY AND STOCHASTIC PROCESSES
Time: 3 hours Max. Marks: 75

PART- A (25 Marks)

1. a. Write the statement of multiplication theorem. (2 marks)

b. Define Equally likely events, Exhaustive events and Mutually exclusive events. (3 marks)

c. Define moments about origin and central moments. (2 marks)
d. Write the properties of Gaussian density curve. (3 marks)
e. Define correlation and covariance of two random variables X& Y. (2 marks)
f. Define correlation coefficient with two properties. (3 marks)
g. When two random processes X(t)& Y (t) are said to be independent. (2 marks)
h. Define mean ergodic random processes & correlation ergodic Random processes. (3 marks)
i. Write any two properties of Power Spectrum Density (2 marks)
j. Define linear system and derive the expression for output response. (3 marks)

PART-B (5*10=50 Marks)

2. Let A and B are events in a sample space S. Show that if A and B are independent, then so are

a)Aand B b)A andBc)A4 and B
OR

3. In the experiment of tossing a die, all the even numbers are equally likely to appear and
similarly the odd numbers. An odd number occurs thrice more frequently than an even number.
Find the probability that
a) An even number appears
b) A prime number appears
c¢) An odd numbers appears

4. a) Verify the Characteristic function of a random variable is having its maximum magnitude at
®=0 and find its maximum value.
b) Find the Moment generating function of exponential distribution?
OR

5. The probability density function of a random variable X is given by f(x) =§ for -3<x<6 and e

qual to zero otherwise. Find the density function of Y=1§(12-x)
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10.

11.

State and prove the central limit theorem
OR
Two random variables X and Y have zero mean and variance o = 16 and of = 36
correlation coefficient is 0.5 determine the following
i) The variance of the sum of X and Y
ii) The variance of the difference of X and Y

The function of time Z(t) = Xjicoswot- Xpsinmet is a random process. If X; and Xare
independent Gaussian random variables, each with zero mean and variance o2, find E[Z]. E[Z°]
and var(z).

OR
Briefly explain the distribution and density functions in the context of stationary and
independent random processes.

a)Find the cross correlation function corresponding to the cross power spectrum

_ 6
SOV G G wy

b) Write short notes on cross power density spectrum.

OR
a) Consider a random process X(t)=cos(wt + 8)where w is a real constant and 8is a uniform

random variable in (0, ©/2). Find the average power in the process.
b) Define and derive the expression for average power of Random process.

*k*k
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MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
B.Tech Il year — | Semester Examinations, Model Paper-5
PROBABILITY THEORY AND STOCHASTIC PROCESSES

Time: 3 hours Max. Marks: 75
PART- A (25 Marks)

1. a. What are the conditions for a function to be a random variable? (2 marks)
b. Define Random variable and Write the classifications of Random variable (3 marks)
c. Show that Var(kX)=k? var(X), here k is a constant. (2 marks)
d. In an experiment when two dice are thrown simultaneously, find expected value of
the sum of number of points on them. (3 marks)
e. Define the joint Gaussian density function of two random variables. (2 marks)
f. Define Marginal distribution & Density functions. (3 marks)
g. Define the cross correlation function between two random processes X(t) & Y(t). (2 marks)
h. Find the mean value of Response of a linear system. (3 marks)
i. Define linear system. (2 marks)
j. If X(t) & Y (t)are uncorrelated and have constant mean values X&Y then show that
Sxx(w)= 2H)?175(a)) (3 marks)

PART-B (5*10=50 Marks)

2. a) An experiment consist of rolling a single die. Two events are defined as A = { 6 shows up}: and
B={2 or 5 shows up}
i) Find P(A) and P(B)
ii) Define a third event C so that P(C) = 1-P(A)-P(B)
b) The six sides of a fair die are numbered from t to 6. The die is rolled 4 times. How many
sequences of the four resulting numbers are possible?
OR
3. a) State and prove the total probability theorem?
b) Explain about conditional probability

4. a) Write short notes on Gaussian distribution and also find its mean?
b) Consider that a fair coin is tossed 3 times, Let X be a random variable, defined as
X= number of tails appeared, find the expected value of X.
OR
5. a) State and prove the chebychev’s inequality theorem?
b) Find the probability of getting a total of 5, at-least once in 4 tosses of a pair of fair dice.

6. A certain binary system transmits two binary states X = +1 and X = -1 with equal probability.
There are three possible states with the receiver, such as Y = +1, 0 and -1. The performance of
the communication system is given as
P(y =+1/X = +1) =0.2;

P(Y=+1/X=-1) = 0.1; P(Y = 0/X = +1) = P(Y = 0/X = -1) = 0.05. Find
a) P(Y =0) b) P(X = +1/Y = +1)
c) P(X=-1/Y =0).
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OR
7. Two random variables X and Y have the joint pdf is

fry(X,y)= {ﬁ\e'(z“” X,y>0
0 elsewhere

i. Evaluate A

ii. Find the marginal pdf’s

iii. Find the marginal pdf’s

iv. Find the joint cdf

v. Find the distribution functions and conditional cdf’s.

8. Explain about the following random process
(i) Mean ergodic process
(ii) Correlation ergodic process
(iii) Gaussian random process

OR
9. State and prove the auto correlation and cross correlation function properties.

10. a) The power spectrum density function of a stationary random process is given by
Sxx(a)): A, -K<w< K
0, other wise
Find the auto correlation function.
b) Derive the expression for power spectrum density.

OR
11. a) Define and derive the expression for average cross power between two random process X(t) and

Y(1).

2
b) Find the cross power spectral density for Rxx(r)=A7 sinitiw, 7).

*k*k
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Code No: 113BT g R13
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, November - 2015
PROBABILITY THEORY AND STOCHASTIC PROCESSES
.(Common to ECE, ETM)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

2.a)

3.a)

Part A is compulsory which carries 25 marks. Answer all questions in Part A,
Part B consists of 5 Units. Answer any one full question from each unit.
Each question carries 10 marks and may have a, b, ¢ as sub questions.

PART- A
[25 Marks]

What is Total probability and Baye’s Theorem? [2M]

" Define Random Variable. [3M]
Explain probability density function with example. - [2M]
Define expected value of a raridomvariable. [3M]
Define joint distribution fgﬁctjon,,with example. [2M]
Define joint central moment. | 1 .- [3M]
Write about the following ‘with examples. [2M]
i) Discrete time stqcliafstic process * ii) Continuous time stochastic process.
Discuss Gaussian réqdom\process and state its properties. [3M]
Define power spectrum. LT ) [2M]
Discuss cross-power density spectrum.. [3M]

PART-B
N [50 Marks]

Define and explain‘the féuowing with an example:

. i) Equally likely events
ii) Exhaustive events
iii) Mutually exclusive events.
A class contains 9 boys and 3 girls.
1) In how many ways can the teacher choose a committee of 42
ii) How many of them will contain at least one girl?
iii) How many of them will contain exactly one girl? . [5+5]

OR
State the conditions for a function to be random variable
In experiment where the pointer on a wheel of chance is spun. The
possible outcomes are the numbers from 0 to 12 marked on the wheel. The sample
space consists of the numbers in the set {0 < S < 12} and if the random variable X
is defined as X =X(S) = §2, map the elements of random variable on the real line
and explain. . [5+5]
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4.a)

b)

5.a)
b)

6.a)

7.a)

b)

8.a)
b)

Write short notes on the following
i) Binomial  ii) Poisson distribution.

The random variable X has the discrete variable in the set {-1,-0.5, 0.7, 1.5, 3}:
the corresponding probabilities are assumed to be {0.1, 0.2, 0.1, 0.4, 0.2}. Plot its
distribution function and state is it a discrete or continuous distribution function.

[5+5]
OR
Discuss Moment generating function and its properties.

. Calculate E[X] when X is binomially distributed with parameters n and p. [5+5]

Discuss the properties of joint density function for two random variables X and Y.
A joint probability density function is f(x, y) = 1/ab for 0 < x < a,0<y<band
f{x, y) = 0 elsewhere. Find the joint probability distribution function. [5+5]

: OR i :
Prove that the mean value of a weighted sum of random variables equals the
weighted sum of mean values. ' ,
Prove that if ‘X’ and ‘Y’ are random: variables taking real values then 4
[EXY)* ] EX]BY )7 ™ [5+3]

Discuss in detail about F i{st éider}taéen«arz random process
The  auto correlation’, function of, a random process X(t) is

Rxx (t)=3+2 exP\(;iZ‘:c;{). Find the'power spectrum of X(t). [5+5]
OR /
Prove that autocorrelation function 6f a random process is even function of t .
. Prove that I%XXW(; ) = RX}Q(())_’»\ T [5:45]
¢ MM”‘““”**“»}}‘\@ S,
Discuss the\propergies\igtj cross power density spectrum?
State and prove. Wiener — Khintchine relationship. [5+5]
_ S OR

Find the power dén§iw\spectmm of a random process whose autocorrelation

function is Rxx(t) = Acos(tot). .

A random process is defined as ¥ () = X (t)-X (t-a), where X (t) is a WSS procéss
and a > 0 is a constant. Find the PSD of ¥ (t) in terms of the corresponding -
quantities of X (t). [5+5]

--00000--
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PROBABILITY THEORY AND STOCHASTIC PROCESSES %ﬂ

(Electronics and Communication Engineering)

Time: 3 Hours : Max. Marks: 75

g

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.

L Part B consists of 5 Units. Answer any one full question from each unit.
@@w Each question carries 10 marks and may have a, b, ¢ as sub questions.
Part- A (25 Marks)
l.a)  What are the axioms of probability? [2M]
b)  Explain the types of Random variables. [3M]
¢)  Write the properties of probability distribution function? - [2M]
d) A Continuous random variable X has a probability density function given
by f(x) =3x*  0<x<l. Find a such that P (X<a) = P(X>a). [3M]
¢)  Define Marginal distribution & Marginal density Functions. [2M]
f)  Statistically independent Rand® m‘Vanables X and Y have moments m;o=2,
mao=14, moz=12, my=-6,Find-uz. | [3M]
~g) State any 2 properties of Cros§ Correlataen Function. [2M]
h) For the given auto correlatton fung‘non for a stationary process is
Rxx (1) = 25+ —%— L’y F’md the mean and variance [3M]
1+ 61'%\ -
i)  State any 2 properties o{the *power dens1ty,spectrum‘7 [2M]
i) Write Wlener~Kl:ugclnne relatlems‘7 - - [3M]
£ Y \
N * Part-B (50 Marks)

X, . i, P
AN o #
~ﬁ 8 S

2.a) A binary comrﬁﬂnicéiﬁon channel carries data as one of the two types of
signals denoted by 9 am;l 1. Owing to noise a transmitted 0 is sometimes
received as 1 and a “transmitted 1 is sometimes received as a 0. For a given
channel, assume a probablhty of 0.94 that a transmitted 0 is correctly received as
a 0 and a probability of 0.91 that a transmitted 1 is received as a 1. Further assume
a probability of 0.45 of transmitting a 0. If a signal is sent, Determine

(i) Probability that.a 1 is received.

(ii) Probability that a 0 was received

(iii) Probability that a 1 was transmitted, given that a 1 was received

(iv) Probability that a 0 was transmitted, given that a 0 was received
b) State Random Variable with suitable example.

OR
3.a)  State and Prove the Bayes theorem of probability.
b) Let Aj, Ay, A3 are 3 mutually exclusive and exhaustive events associated with
experiment E|.B;, B,, B3 are 3 mutually exclusive and exhaustive events
associated with experiment E,.
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B1 B2
A 3/36 *
A, 5/36 4/36
A; * 6/36
L P@Bj) 12/36 14/36

6.a)

b)

7.a)

b)

i.  Find missing Probabilities
1. P(B3/A1) and P(A]/Bg)
iii. A,B;are independent or not

Explain any 4 Properties of Probability Distribution F unction.
A Continuous random variable X defined by a probability density function given
by f(x) =5(1-x*/4 0<x<l. Find E[X], E[X?*] and Variance,

OR
Find mean and variance of Uniform Random Variable.
Find the characteristic function and first moment for
fx(x) =( 1/b)exp(-(x-a)/b) xX>a
= A ..else

Y

Following table represent ﬁ)e_ joint pr;}bability density function

\x

(®. Evaluate thg m.\éirginalf distribution of X and Y.

(if). Conditional distribution of X given Y=2,

(1ii). Conditional distribution of Y given X=3.

(iv). P(X=<2, Y=3), PY <), P(X+Y<4)

Two random variables X and Y have Joint characteristic function

D y(01,02) = exp(—20; %8, %)

Show that X and Y are Z€ro mean random variables and uncorrelated

OR

Two random variables Y and Y; related to arbitrary random variables X and Y
by co-ordinate rotation Y 1=Xcos6+ Ysing s Yo= - Xsin6+ Yecos0.

1) Find the covariance function of Y; and Y.

ii) For what value of 0, the random variables Y; and Y, are uncorrelated
The joint probability density function of f(x,y) is given by

flxy)=Ae ™ o<x<y, 0<y<co

(). Find the value of A
(ii). Find the marginal density of X and Y.
(1ii). Verify that whether X and Y are independent.
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8.a)

9.2)
b)

10.a)
b)

11.a)

Statistically independent zero mean Random process X(t) and Y(t) having auto

correlation function Rxx(t)=exp(-| T|) and Ryy(t)= Cos(2xr) respectively. Find

Cross correlation function(CCF) of Wi(t) and Wo(t) if '
Wi(t) =X() + Y(® and Wa(t) = X(t) -Y(t)

Stateany 4 Properties of Atito Correlation Funétion

OR
Prove that random process X(t)=A Cos(act+ o) is a wide sense stationary process
if it is assumed that A, @, are constants and e is uniformly distributed over
interval 0<e<2x
Derive the Mean & Mean —Squared value of output response of a linear system.

Explain any 4 Properties of Power Density Spectrum.
Derive the power density spectrum of output of a system, in terms of its input
PSD.

OR
Derive the relationship between Cross PSD & Cross Correlation Function.
The PSD of random process is given

Sxx(w) = {

Find its Autocorrelation
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