CMOS Digital IC Design(R22D6806)

QUESTION BANK

M.TECH (I YEAR – I SEM) (2023-24)

Department of Electronics and Communication Engineering

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution - UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – 'A' Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India

R22

Code No: R22D6806

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

M.Tech I Year I Semester Supplementary Examinations, August 2023 CMOS Digital IC Design

(VLSI&ES)

(VESIGES)												
Roll No												

Time: 3 hours Max. Marks: 60

Note: This question paper contains two parts A and B

Part A is compulsory which carries 10 marks and Answer all questions.

Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions,

Choosing ONE Question from each SECTION and each Question carries 10 marks.

**:

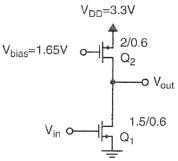
PART-A(10MARKS)

(Write all answers of this PART at one place)

- A What would be the approximate threshold voltage of a perfectly designed [1M]

 MOS Inverter if the Power supply voltage is 3.3V?

 B Draw the logic diagram of a CMOS Inverter. [1M]

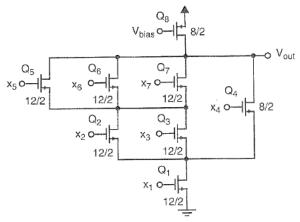

 C Draw the inverter equivalent of CMOS NOR2 gate. [1M]

 D Draw the symbol of CMOS transmission gate. [1M]
 - E Give the truth table of NAND-based SR latch circuit. [1M]
 - F What is the advantage of JK latch over SR latch? [1M]
 - G What is the advantage of dynamic logic circuit over a static logic circuit? [1M]
 - H What is 'worst-case-holding time'? [1M]
 - I What is the basic difference between SRAM and DRAM? [1M]
 - J How many memory cells will be there in 32-kbit ROM array? [1M]

PART-B(50 MARKS)

SECTION-I

2 A Estimate the rise time for the pseudo-NMOS inverter shown below. [5M] Assume $C_L=75 fF$. Given W/L values are in μm . Assume $\mu_p C_{ox}=44.5$ $\mu A/V^2$ and $V_{tp}=-0.9V$.



B Derive the equation for the threshold voltage of a pseudo NMOS inverter.

[5M]

OR

Explain the procedure to implement the logic function of a circuit. Also [10M] obtain the equivalent logic diagram for the circuit shown below:

SECTION-II

Draw the logic diagram of 2-input depletion-load NAND gate and derive [10M] the expression for I_D for the same.

OR

5 Design a complex-CMOS logic gate realizing the Boolean function [10M]

$$F = \overline{A[D+E] + BC}$$

SECTION-III

Draw the logic diagram of CMOS SR latch circuit based on NAND2 gates and explain its operation. Give the function table along with sample input and output waveforms.

OR

Draw a two-stage master-slave flip-flop using D-latch circuits and explain its operation. Also explain with waveforms that what will happen when the 'D' input switches from '0' to '1' immediately before the clock transition occurs?

SECTION-IV

What is voltage bootstrapping? Why is a dummy MOS device required to increase the bootstrap capacitance? Explain the reasons with necessary equations.

OR

9 Draw the circuit diagram of dynamic D latch and discuss its operation. [10M]

SECTION-V

10	A	Draw the logic diagram of CMOS SRAM cell and explain its various modes of operation.	[5M]
	В	Write short notes on fast Sense Amplifiers.	[5M]
		OR	
11		Draw the diagram of a Three-transistor DRAM cell and explain various operations with the typical voltage waveforms.	[10M]

Code No: **R20D6806**

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

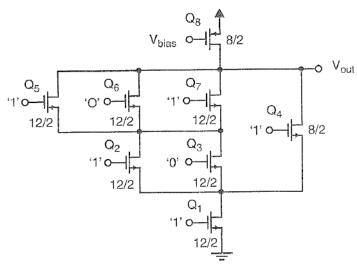
M.Tech I Year I Semester Supplementary Examinations, August 2023 CMOS Digital IC Design

	(VLSI&ES)									
Roll No										

Time: 3 hours Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

**


SECTION-I

- 1 A With a neat circuit diagram, explain the operation of a Pseudo NMOS [7M] inverter and derive the inverter threshold voltage
 - B Draw the Pseudo NMOS realization of exclusive OR function. Clearly indicate the sizing of NMOS transistor to obtain an equivalent delay of a Pseudo NMOS inverter

OR

2 A Replace the drive transistor network in the below figure

[7M]

B With neat circuit sketches, compare the Pseudo NMOS inverter and CMOS [7M] inverter.

SECTION-II

- 3 A Draw the circuit diagram of a 2-input NOR gate with depletion NMOS loads [7M] and derive its V_{OH} and V_{OL}
 - B Draw the circuit diagram of a complementary CMOS 2-input NAND gate [7M] and draw its mask layout. Clearly label the different parts of the mask layout OR
- A Draw the circuit diagram of the below circuit using complementary CMOS [7M] logic style and draw the mask layout

F' = A + BC

B Draw the circuit diagram of a two-input multiplexer using CMOS

[**7M**]

transmission gates and explain its operation **SECTION-III**

5	A	Draw the gate level, MOS level schematic of a SR latch using NOR gates	[7M]
	D	and explain its operation with the help of a truth table	[#N #1
	В	Describe the operation of a D-Latch and provide its CMOS implementation	[7M]
		OR	F=3.63
6	A	Draw the gate level, MOS Level AOI schematic of clocked SR latch and	[7M]
	D	explain its operation with the help of a neat timing diagram	[#N #1
	В	With a neat schematic, explain the operation of NOR based master-slave	[7M]
		edge triggered flip flop	
_		SECTION-IV	
7	A	Distinguish between static and dynamic logic circuits ?? Also describe the	[7M]
		advantages of dynamic logic circuits	
	В	Draw the schematic of the dynamic CMOS logic gate implementing	[7M]
		F' = A + BC	
		and explain its operation with the help of a neat timing diagram	
		OR	
8	A	Explain the operation of dynamic logic gates with a circuit example and	[7M]
		discuss the charge sharing & leakage issues	
	В	Draw the circuit diagram of a dynamic D-Latch and discuss its operation	[7M]
		SECTION-V	
9	A	Classify memory circuits based on data storage and the type of memory	[7M]
		access	
	В	Draw the circuit diagram of a full CMOS 6-transistor static RAM cell and	[7M]
		describe the read and write operations with a neatly labelled timing diagram	
		OR	
10	A	Describe the construction of NOR based row-decoder and NOR ROM array	[7M]
		and explain its operation	_
	В	Write short notes on sense amplifiers and row decoders in SRAM memories	[7M]

truth table?

B Differentiate flip-flop and latches?

R20

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

M.Tech I Year I Semester Supplementary Examinations, November 2022 CMOS Digital IC Design

(VLSI&ES)

l l	

Time: 3 hours Max. Marks: 70

Answer Any Five Questions

All Questions carries equal marks.

	1	A	Determine the pull-up to pull-down ratio for an NMOS inverter?	[7M]
		В	Explain and derive the necessary DC region equations of a CMOS inverter?	[7M]
	2	A	Define Threshold Voltage. Express threshold voltage and discuss the dependency of V_T on	[7M]
		В	various parameters? Write a short note on Transistor equivalency?	[7M]
3		Α	How the MOS inverters connected in cascade can drive large capacitive loads? Explain?	[7M]
		В	Discuss the transient analysis of the CMOS transmission gate by replacing it with a resistor equivalent circuit?	[7M]
4		Α	Realize NMOS complex logic gates using the Boolean function Z=A(D+C)+BE.	[7M]
		В	Write short notes on transmission gates with the relevant circuits?	[7M]
5		Α	Draw the edge triggered D flip-flop by using CMOS logic and explain its operation in	[7M]
		В	detail? Explain behavior of bistable elements.	[7M]
6		Α	Draw the logic diagram of a CMOS clocked SR flip-flop and explain with the help of a	[7M]
J		$\overline{}$	Draw the rogic diagram of a CWOS clocked SK mp-nop and explain with the help of a	[\text{\text{IAI}}

[7M]

7	Α	Explain voltage boots trapping with an example?	[7M]
	В	Write a short note on High performance Dynamic CMOS circuits?	[7M]
8	Α	Explain the principle of NAND gate flash memory with a neat diagram?	[7M]
	В	Compare the SRAM and DRAM?	[7M]

R20

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

M.Tech I Year I Semester Regular/Supplementary Examinations, June CMOS Digital IC Design

(VLSI&ES)

		Roll No											
Time	: 3 hour	rs .							M	ax. N	/larks	s: 70	
			Ans	wer A	Any F	ive O	uesti	ons					
		All	Que	stion	s car	ries e	equal	marl	κs.				
					**	**							
1	A	What are the crite level in NMOS inve			_				high	level	and	low	[7M]
	В	Explain the DC nois	e ma	argin	of CN	/IOS I	ogic?	1					[7M]
2	A	Explain the voltage a neat diagram?	tran	sfer o	chara	cteris	stics (of a C	CMOS	S inve	erter	with	[7M]
	В	Define Threshold \ the dependency of		_	-				oltag	e and	d dis	cuss	[7M]
3	Α	Design and implem	ent A	AOI a	nd O	IA ga	tes u	sing (CMO	S?			[7M]
	В	With the aid of no NAND2 gate.	ecess	sary e	expre	ssion	ıs ex	olain	the	desig	gn Cl	MOS	[7M]
4	Α	Explain the propage CMOS gate?	gatio	n del	ay ar	nd po	ower	cons	ump	tion	issue	s of	[7M]

	В	Design and implement CMOS full adder circuit?	[7M]
5	Α	Draw the logic diagram of a CMOS clocked SR flip-flop and explain with the help of a truth table?	[7M]
	В	Differentiate static and dynamic latches?	[7M]
6	Α	Draw the D latch by using CMOS logic and explain its operation in detail?	[7M]
	В	Write a short note on Clocked latch?	[7M]
7	Α	Explain voltage bootstrapping with an example?	[7M]
	В	Write a short note on High performance Dynamic CMOS circuits?	[7M]
8	Α	Describe the leakage currents in SRAM cell?	[7M]
	В	Draw and explain the operation of a single bit dynamic RAM cell?	[7M]

R20

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

M.Tech I Year I Semester Regular Examinations, July 2021 CMOS Digital IC Design

(VLSI&ES)

	Roll No						
Time: 3 hours					May	Mai	rks: 70

Answer Any Five Questions

All Questions carries equal marks.

- *** 1 Develop 2 Input NOR gate by Pseudo NMOS Logic and perform its [14M] functional verification by using functional verification table. 2 Perform the Rise time and Fall time analysis of Pseudo NMOS logic [14M] with one example. 3 Sketch the circuit schematic of OAI operation using NMOS logic and [14M] Explain its working. Realize one bit full adder using CMOS logic and explain its working. 4 [14M]
- 5 Explain Clocked SR Flip Flop operation using appropriate circuit diagram. [14M]

6	Compare Latches and Flip- Flops and list the drawbacks of SR Latch,	[14M]
	how those can be overcome by D Latch	
7	Realize Edge triggered D-Flip-Flop using Transmission gates and	[14M]
	explain its operation.	
8	Draw the DRAM cell and explain its Read and Write operation and	[14M]
	compare DRAM cell with SRAM cell	

Code No: R20D6806

R20

MALLA REDDY COLLEGE OF ENGINEERING & **TECHNOLOGY**

(Autonomous Institution – UGC, Govt. of India)

M.Tech I Year I Semester Supplementary Examinations, December 2021

CMOS Digital IC Design

(VLSI&ES)

Roll No					

Time: 3 hours

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

Compare CMOS logic Inverter and Pseudo NMOS 1 Logic inverter; list the drawbacks of Pseudo NMOS Logic over CMOS logic.

2 Realize 3 Input NAND gate by Pseudo NMOS Logic [14M] and perform its functional verification by using functional verification table.

SECTION-II

3 Develop a 2 X 1 Multiplexer using Transmission gates and interpret its operation using different input combinations.

[14M]

[14M]

OR

Sketch the circuit schematic of AOI using NMOS logic 4 and explain its operation.

[14M]

SECTION-III

5 What are the characteristics of SR Latch? Realize [14M] basic SR latch using CMOS logic. 6 Develop Clocked latch and explain its functionality. [14M] **SECTION-IV** 7 Realize CMOS Dynamic Latch using transmission [14M] gate and explain the Set and Reset conditions of the Latch. OR 8 Explain about Synchronous dynamic pass transistor [14M] circuit with an example. **SECTION-V** 9 Draw the SRAM cell and explain its Read and Write [14M] operation. OR 10 Explain about Leakage currents in DRAM cell and [14M] explain why refreshment is needed periodically. ******

Code No: R18D6810 R18

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

M.Tech I Year - I Semester Regular/Supplementary Examinations, January-2020

CMOS Digital Integrated Circuit Design

(VLSI&ES)

Time: 3 hours Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

1 Define Threshold Voltage (V_{TH}) . Discuss the [14M] dependency of V_{TH}

on various parameters. Explain the DC noise margin of CMOS

logic.

OR

- a) Explain in detail about voltage transfer [7M] characteristics of CMOS Inverter.
 - b) Illustrate about pseudo NMOS logic gate.

[7M]

SECTION-II

- a) Design and explain the operation of 2 input NMOS [7M] NAND. [7M]
 - b) Explain the procedure to design an adder circuit using CMOS logic.

OR

4 Design and implement AOI and OAI using CMOS. [14M]

SECTION-III

5 a) Draw the logic diagram of a CMOS clocked SR flip-[10M] flop and explain with the help of a truth table. b) Differentiate static and dynamic latches. [4M] OR 6 [8M] a) Draw the D latch by using CMOS logic and explain its operation in detail. b) Write short notes SR latch in sequential MOS logic. [6M] **SECTION-IV** 7 [8M] a) Discuss the transient analysis of **CMOS** Transmission gate by replacing it with resistor equivalent circuit. [6M] b) Design an EX-OR gate using Transmission gate Logic. OR 8 [7M] a) Explain the concept of charge storage and charge leakage associated with pass transistor logic. b) Explain the speed and power dissipation in dynamic CMOS logic. [7M] **SECTION-V** 9 Mention different types of RAM cells. Draw and [14M] explain the operation of a single bit dynamic RAM cell. OR 10 [7M] a) Write about the leakage currents in SRAM. b) Explain the principle of NAND flash memory with a neat diagram. [7M]

Code No: R17D6807

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

M.Tech I Year I Semester Supplementary Examinations, October/November 2020

CMOS Digital Integrated Circuit Design

(VLSI&ES)

Roll No					

Time: 2 hours

Max. Marks: 70

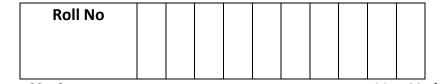
Answer Any **Four** Questions

All Questions carries equal marks.

- a) Derive expression for V_{OL} , V_{OH} , V_{IL} & V_{IH} of CMOS inverter.
 - b) Explain and derive the necessary DC region equations of a CMOS inverter.
- 2 Describe about (i) Pseudo NMOS logic gate and (ii) Dynamic pass transistor
- 3 Design and implement CMOS full adder circuit.
- 4 Realize NMOS complex logic gates using the Boolean function Z=A(D+C)+BE.
- a) Draw the D latch by using CMOS logic and explain its operation in detail.

- b) Write short notes on SR latch in sequential MOS logic.
- a) Discuss about the behaviour of bistable elements.
 - b) Elaborate on edge triggered flipflop.
- 7 Explain voltage boots trapping with an example.
- 8 c) Explain the principle of NOR gate flash memory with a neat diagram.
 - d) Compare the SRAM and DRAM.

Code No: **R18D6810**


MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

M.Tech I Year I Semester Supplementary Examinations, February/March 20

CMOS Digital Integrated Circuit Design

(VLSI&ES)

Time: 2 hours 30 min Max. Marks: 70

Answer Any Five Questions

All Questions carries equal marks.

1 a	What is threshold voltage? Discuss about Inverter threshold voltage.	[7M]
1 b	Realize the XOR gate by using the Pseudo NMOS logic.	[7M]
2 a	What is CMOS? Explain the CMOS Inverter logic.	[7M]
2 b	Derive the expression for Gain at gate threshold voltage.	[7M]
3 a	Summarize the CMOS NAND gate.	[7M]
3 b	Realize the following Boolean expression $Y = AB + BC + CA$ by using	[7M]
4 a	CMOS gates.	
	Realize the 2 to 1 multiplexer by using Transmission gates.	[7M]
4 b	Realize the following Boolean expression $Y = (A+B) (B+C) (C+A)$ by using AOI gates.	[7M]
5 a	What do you mean by bistable element? Describe the behavior of bistable elements	[7M]
5 b	Discuss the NAND2 based CMOS SR latch with suitable diagram	[7M]
6 a		[7M]

	Draw the clocked NOR based SR latch and explain.	
6 b	Explain the CMOS implementation of D latch.	R15
7 a	Draw the dynamic bootstrapping arrangement and explain.	[7M]
8 b	Describe the Cascaded domino CMOS logic gates.	[7M]
8 a	Explain the leakage currents in SRAM cell.	[7M]
8b	Sketch the DRAM cell and explain.	[7M]

Code No: R15D6807

Time: 3 hours

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

M.Tech I-Year - I Semester Supplementary Examinations, Dec-18/Jan-19

CMOS Digital Integrated Circuit Design (VLSI&ES)

Roll No						
				 /lax	Mark	ks: 75

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 15 marks.

			Marks	СО	Blooms Level
		SECTION-I			
Q.1.	a)	Determine Pull up to Pull down ratio for an NMOS Inverter?	[8M]	CO1	2
	b)	How MOS inverters connected in cascade can drive large capacitive loads?	[7M]	CO1	2
		OR			
Q.2.	a)	What are the criteria for voltage threshold for high level and low level in NMOS inverter characteristics?	[8M]	CO2	2

	b)	Write a short notes on Pseudo NMOS logic gate?	[7M]		
		SECTION-II			
Q.3.	a)	Explain and derive necessary DC region equations of CMOS inverter?	[10M]	CO3	2
	b)	Consider a CMOS inverter circuit with following parameters: $V_{DD}{=}3.3V, V_{TO.N}{=}0.6V, V_{TO.P}{=}-0.7V, K_{N}{=}200uA/V^{2}, K_{P}{=}80uA/V^{2}. Calculate noise margins of circuit$	[5M]		
		OR			
Q.4.	a)	Draw and Explain Voltage transfer characteristics of CMOS inverter with relevant expressions?		CO2	4
	b)	Explain 2 Input NOR gate with depletion NMOS loads. Calculate output high	[10M]		
		voltage and output low voltage?	[5M]		
	1	SECTION-III		, , , , , , , , , , , , , , , , , , , 	
Q.5.	a)	Explain Pseudo NMOS implementation of OAI gate	[10]	CO3	2
	b)	Explain the behaviour of the two inverter basic bistable element	[10M]	CO3	2
	6)	Explain the behaviour of the two inverter basic bistable element	[5M]	COS	2
		OR			
Q.6.	a)	Design a CMOS Full adder and Explain its operation using input and output waveforms	for 41	CO3	2
			[8M]	•	
	b)	Explain how the implementations of AOI and OAI Complex CMOS gate topologies are different	[7M]	CO3	3
	1	SECTION-IV		1 1	
Q.7.	a)	Explain dynamic CMOS transmission gate logic?	[8M]	CO4	4
	b)	Explain the benefit of Domino CMOS?	[7M]	CO4	4
		OR			
Q.8.		Explain dynamic circuit technique for overcoming threshold voltage drops in digital circuits	[15M]	CO4	3
L	1	SECTION-V	1	<u>. </u>	
Q.9.	a)	Draw the circuit diagram of Dual Port Static RAM and explain its operation.	[10M]	CO5	4

	b)	Classify different types of memories in market.	[5M]		
		OR			
Q.10.	a)	Draw the functional diagram of 256-Mb Synchronous DRAM and explain all the signals.	[10M]	CO5	5
	b)	What are the advantages and disadvantages of DRAM over SRAM	[5M]		

Code No : R17D6807

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

M.Tech I-Year - I Semester Supplementary Examinations, Dec-18/Jan-19

CMOS Digital Integrated Design (VLSI&ES)

Roll No					

Time: 3 hours Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

			Marks	СО	Blooms Level
		<u>SECTION-I</u>			
Q.1.	a)	Draw the circuit diagram of a Pseudo NMOS inverter and CMOS inverter and compare them	[7M]	CO1	2
	b)	Realize the logic circuit of an ex-or gate using Pseudo NMOS logic	[7M]	CO1	2
		OR			
Q.2.	a)	Derive the inverter switching threshold voltage, output high voltage and output low voltage of a pseudo NMOS inverter	[7M]	CO2	2
	b)	Replace the pull down network (in the circuit shown) by a single	[7M]		
		equivalent transistor			
		V_{bias} O_{bias} O_{vout} O_{out}			

SECTION-II

Q.3.	a)	Draw the circuit diagram of a 2-input NAND gate with NMOS load and	[7M]	CO3	2
		derive its output low voltage.			
	b)	Sketch the CMOS circuit (with both pullup and pull down network) for realizing the Boolean expression			
		Z' = A(D+E) + BC	[7M]		
		OR			
Q.4.	a)	Draw the circuit diagram of a 2-input CMOS NOR gate and its sample layout (indicating all the layers and their annotation clearly)	[7M]	CO2	4
	b)	Sketch the complementary pass transistor logic implementation of a NAND2 and NOR2 gate	[7M]		
	1	SECTION-III		<u> </u>	
Q.5.	a)	Describe the electrical behavior of bistable element and its potential applications	[7M]	CO3	2
	b)	Sketch the block diagram, gate level schematic and CMOS implementation of a D-Latch. Also explain its operation	[7M]	CO3	2
		OR			
Q.6.	a)	Draw the block diagram, gate level schematic, CMOS schematic and truth table of SR Latch using NOR2 gates	[7M]	CO3	2
	b)	Draw the block diagram, gate level schematic, AOI NAND-based implementation of clocked SR latch and explain its operation	[7M]	CO3	3
		SECTION-IV			
Q.7.	a)	Distinguish between static logic gates and dynamic logic gates with an example	[14M]	CO4	4
	b)	Describe the cascading problem in dynamic logic gates (with neat circuit diagrams and suggest a solution			
		OR			
Q.8.	a)	With a neat sketch explain the operation of a voltage bootstrapping circuit	[7M]	CO4	3
	b)	Explain in detail about dynamic CMOS circuit techniques.	[7M]		
		SECTION-V			
Q.9.	a)	Classify semiconductor memories and distinguish between SRAM and DRAM memories	[7M]	CO5	4
	b)	Draw the circuit diagram and explain the operation of a 1-bit SRAM cell in both read and write modes	[7M]		
		OR			
Q.10.	a)	Draw the circuit diagram of a4-bit X 4-bit NOR based RAM array and explain the operation with its truth table	[7M]	CO5	5
	b)	With a neat sketch explain the operation of a three transistor 1-bit DRAM cell	[7M]		