

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE-Accredited by NBA & NACC-'A' Grade – ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad -500100, Telangana State, India

NETWORKS AND SIMULATION

LABORATORY MANUAL

Student Name:.....

Roll No:.....

Branch:.....Section.....

Year Semester.....

FACULTY INCHARGE

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
3. **Design / development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi disciplinary environments.
12. **Life- long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

NETWORKS AND SIMULATION LABORATORY

COURSE OBJECTIVES:

1. This course introduces the basic concepts of simple DC & AC Circuits.
2. The basic Two Port Network Parameters.
3. Will able to articulate in working of various components of a circuit.
4. To design electrical systems.
5. To analyze a given network by applying various network theorems.
6. To understand the locus diagram.
7. The Emphasis of this course is laid on the PSPICE Simulation of DC & AC Circuits.
8. Ability to measure three phase voltages, current, active and reactive powers.

COURSE OUTCOMES:

1. The student will analyze the characteristics of Electrical circuits & PSpice Simulation.
2. To Perform Laboratory Experiments practically.
3. To carry out laboratory experiments on simulation & Networks.
4. To understand the fundamentals of electrical circuits & PSpice simulation.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

II Year B.Tech - EEE-II SEM

L	T	P	C
3	0	0	2

(R18A0283) NETWORKS AND SIMULATION LABORATORY

OBJECTIVES:

1. To design electrical systems.
2. To analyze a given network by applying various Network Theorems.
3. To measure three phase Active and Reactive power.
4. To understand the locus diagrams

CYCLE-1: ELECTRICAL CIRCUITS

1. Thevenin's, Norton's and Maximum Power Transfer Theorems
2. Superposition Theorem and RMS value of complex wave
3. Reciprocity and Millmann's Theorems
4. Locus Diagrams of RL and RC Series Circuits
5. Series and Parallel Resonance
6. Z and Y Parameters
7. Transmission and hybrid parameters
8. Measurement of Active Power for Star and Delta connected balanced loads
9. Measurement of Reactive Power for Star and Delta connected balanced loads

CYCLE-2: PSPICE SIMULATION

1. Simulation of DC Circuits
2. Mesh Analysis
3. Nodal Analysis
4. DC Transient response

Note: Any 6 Experiments from PART-A and PART-B Is Mandatory

COURSE OUTCOMES

1. The student will analyze the characteristics of Electrical circuits & P Spice Simulation.
2. To Perform Laboratory Experiments practically.
3. To carry out laboratory experiments on simulation & Networks.
4. To understand the fundamentals of electrical circuits & P Spice simulation

INSTRUCTIONS TO STUDENTS

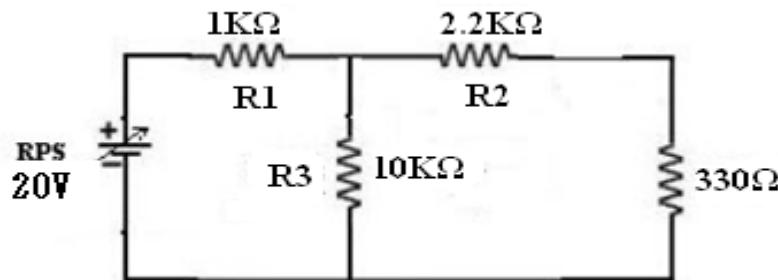
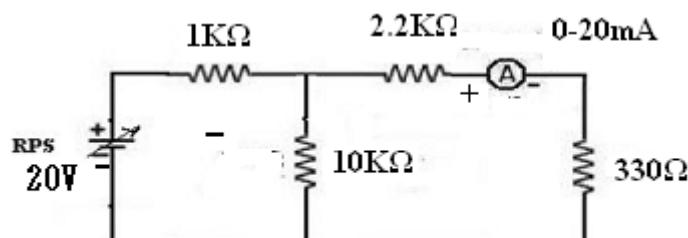
- Before entering the lab the student should carry the following things.
 - Identity card issued by the college.
 - Class notes
 - Lab observation book
 - Lab Manual
 - Lab Record
- Student must sign in and sign out in the register provided when attending the lab session without fail.
- Come to the laboratory in time. Students, who are late more than 15 min., will not be allowed to attend the lab.
- Students need to maintain 100% attendance in lab if not a strict action will be taken.
- All students must follow a Dress Code while in the laboratory
- Foods, drinks are NOT allowed.
- All bags must be left at the indicated place.
- The objective of the laboratory is learning. The experiments are designed to illustrate phenomena in different areas of Physics and to expose you to measuring instruments, conduct the experiments with interest and an attitude of learning
- You need to come well prepared for the experiment.
- Work quietly and carefully
- Be honest in recording and representing your data.
- If a particular reading appears wrong repeat the measurement carefully, to get a better fit for a graph
- All presentations of data, tables and graphs calculations should be neatly and carefully done
- Graphs should be neatly drawn with pencil. Always label graphs and the axes and display units.
- If you finish early, spend the remaining time to complete the calculations and drawing graphs. Come equipped with calculator, scales, pencils etc.
- Do not fiddle with apparatus. Handle instruments with care. Report any breakage to the Instructor. Return all the equipment you have signed out for the purpose of your experiment.

SPECIFIC SAFETY RULES FOR NETWORKS AND SIMULATION LABORATORY

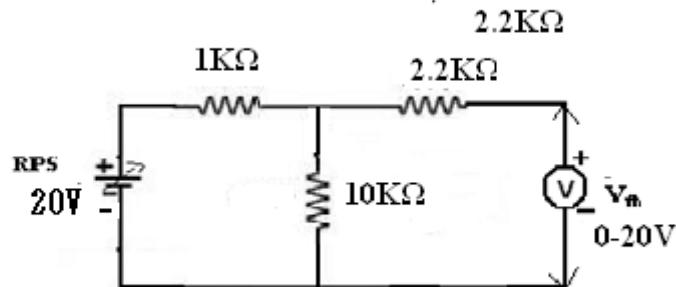
- You must not damage or tamper with the equipment or leads.
- You should inspect laboratory equipment for visible damage before using it. If there is a problem with a piece of equipment, report it to the technician or lecturer. DONOT return equipment to a storage area
- You should not work on circuits where the supply voltage exceeds 40 volts without very specific approval from your lab supervisor. If you need to work on such circuits, you should contact your supervisor for approval and instruction on how to do this safely before commencing the work.
- Always use an appropriate stand for holding your soldering iron.
- Turn off your soldering iron if it is unlikely to be used for more than 10 minutes.
- Never leave a hot soldering iron unattended.
- Never touch a soldering iron element or bit unless the iron has been disconnected from the mains and has had adequate time to cool down.
- Never strip insulation from a wire with your teeth or a knife, always use an appropriate wire stripping tool.
- Shield wire with your hands when cutting it with a pliers to prevent bits of wire flying about the bench.

CONTENTS

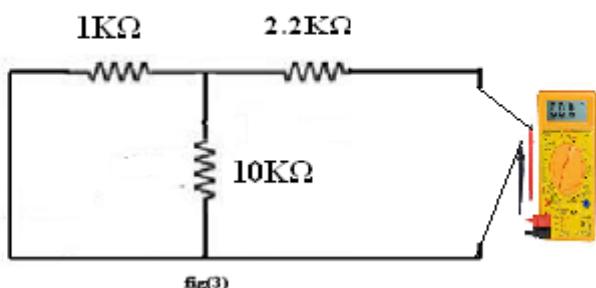
S.No	Name of the experiment	Page Number
1	Thevenin's, Norton's and Maximum Power Transfer Theorems	2-11
2	Superposition Theorem and RMS value of complex wave	12-17
3	Reciprocity and Millmann's Theorems	18-24
4	Locus Diagrams of RL and RC Series Circuits	25-27
5	Series and Parallel Resonance	28-32
6	Z and Y Parameters	33-36
7	Transmission and hybrid parameters	37-40
8	Measurement of Active Power for Star and Delta connected balanced loads	41-43
9	Measurement of Reactive Power for Star and Delta connected balanced loads	44-46
10	Simulation of DC Circuits	48-49
11	Mesh Analysis	50-51
12	Nodal Analysis	52-53
13	DC Transient response	54-59



CYCLE – 1

1. (A) VERIFICATION OF THEVENIN'S THEOREM


AIM: To verify Theremin's theorem for the given circuit.

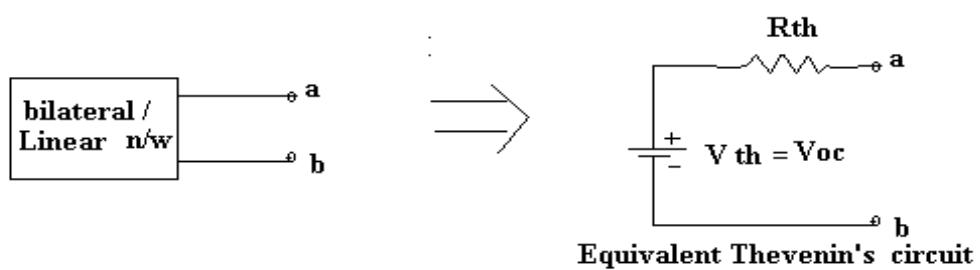
APPARATUS REQUIRED:


S.No	Name Of The Equipment	Range	Type	Quantity
1	Voltmeter	(0-20)V	Digital	1 NO
2	Ammeter	(0-20)mA	Digital	1 NO
3	RPS	0-30V	Digital	1 NO
4	Resistors	10K Ω , 1K Ω		1 NO
		2.2 Ω		1 NO
		330 Ω		1 NO
5	Breadboard	-	-	1 NO
6	DMM	-	Digital	1 NO
7	Connecting wires			Required number

CIRCUIT DIAGRAM:**GIVEN CIRCUIT:****PRACTICAL CIRCUIT DIAGRAMS:****TO FIND I_L :**

FIG(1)

TO FIND V_{TH} :


FIG(2)

TO FIND R_{th} :

fig(3)

THEORY:**THEVENIN'S THEOREM:**

“Thevenin’s theorem states that any two terminal linear network having a number of voltage sources and resistances can be replaced by a simple equivalent circuit consisting of a single voltage source in series with a resistance, where the value of the voltage source is equal to the open circuit voltage across the two terminals of network, and resistance is equal to the equivalent resistance measured between the terminals with all the energy sources are replaced by their internal resistance”.

 V_{th} = Open-circuit voltage R_{th} = Equivalent Thevenin's Resistance seen from the output terminals

Thevenin's theorem:

The values of V_{Th} and R_{Th} are determined as mentioned in thevenin's theorem. Once the thevenin equivalent circuit is obtained, then current through any load resistance R_L connected across AB is given by, $I = \frac{V_{Th}}{R_{Th} + R_L}$

Thevenin's theorem is applied to d.c. circuits as stated below.

Any network having terminals A and B can be replaced by a single source of e.m.f. V_{Th} in series with a source resistance R_{Th}

- (i) The e.m.f the voltage obtained across the terminals A and B with load, if any removed i.e., it is open circuited voltage between terminals A and B.
- (ii) The resistance R_{Th} is the resistance of the network measured between the terminals A and B with load removed and sources of e.m.f replaced by their internal resistances. Ideal voltage sources are replaced with short circuits and ideal current sources are replaced with open circuits.

To find V_{Th} , the load resistor 'RL' is disconnected, then $V_{Th} = \frac{V}{R_1 + R_2} \times R_3$

To find R_{Th} ,

$$R_{Th} = R_2 + \frac{R_1 R_3}{R_1 + R_3}$$

Thevenin's theorem is also called as "Helmoltz theorem"

PROCEDURE:

1. Connect the circuit as per fig (1)
2. Adjust the output voltage of the regulated power supply to an appropriate value (Say 20V).
3. Note down the response (current, I_L) through the branch of interest i.e. AB (ammeter reading).
4. Reduce the output voltage of the regulated power supply to 0V and switch-off the supply.
5. Disconnect the circuit and connect as per the fig (2).
6. Adjust the output voltage of the regulated power supply to 20V.
7. Note down the voltage across the load terminals AB (Voltmeter reading) that gives V_{th} .
8. Reduce the output voltage of the regulated power supply to 0V and switch-off the supply.
9. Disconnect the circuit and connect as per the fig (3).
10. Connect the digital multimeter(DMM) across AB terminals and it should be kept in resistance mode to measure Thevenin's resistance(R_{Th}).

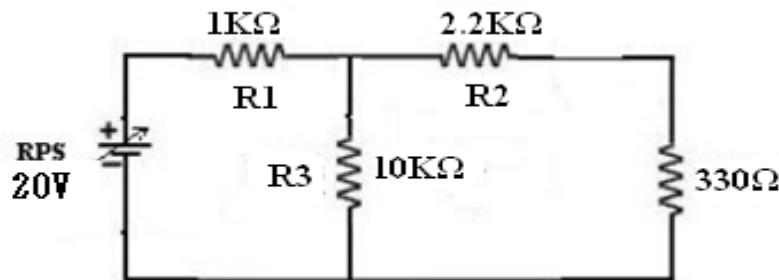
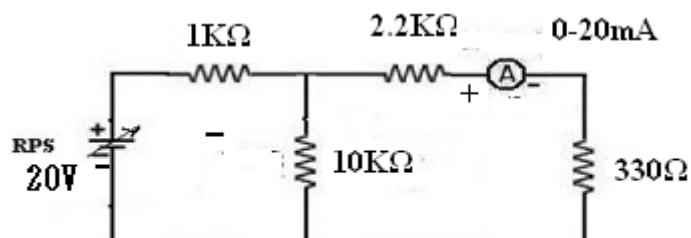
THEORITICAL VALUES:**Tabulation for Thevenin's Theorem:**

THEORITICAL VALUES	PRACTICAL VALUES
$V_{th}=$ $R_{th}=$ $I_L=$	$V_{th}=$ $R_{th}=$ $I_L=$

PRECAUTIONS:

1. Initially keep the RPS output voltage knob in zero volt position.
2. Avoid loose connections.
3. Avoid short circuit of RPS output terminals.

RESULT:**VIVA QUESTIONS:**



- 1) State Thevenin's theorem?
- 2) Explain how Thevenin's voltage can be determined?
- 3) Explain how Thevenin's resistance can be determined?
- 4) Draw the Thevenin's equivalent circuit?

1.(B) VERIFICATION OF NORTON'S THEOREM

AIM: To verify Norton's theorem for the given circuit.

APPARATUS REQUIRED:

S.No	Name Of The Equipment	Range	Type	Quantity
1	Voltmeter	(0-20)V	Digital	1 NO
2	Ammeter	(0-20)mA	Digital	1 NO
3	RPS	0-30V	Digital	1 NO
4	Resistors	10K Ω , 1K Ω		1 NO
		2.2 Ω		1 NO
		330 Ω		1 NO
5	Breadboard	-	-	1 NO
6	DMM	-	Digital	1 NO
7	Connecting wires			Required number

CIRCUIT DIAGRAM:**GIVEN CIRCUIT:****PRACTICAL CIRCUIT DIAGRAMS:****TO FIND I_L :**

FIG(1)

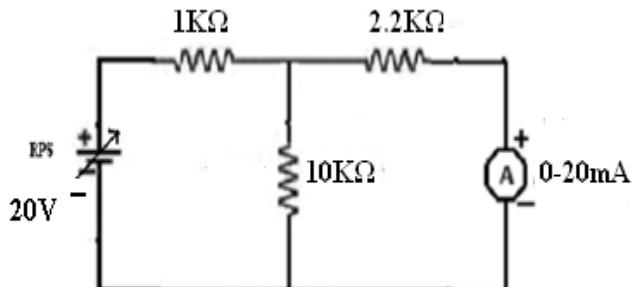
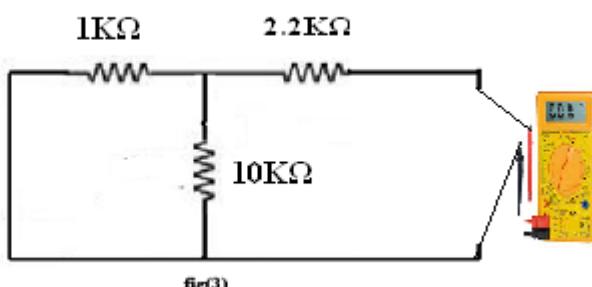


TO FIND I_N :

fig (2)

TO FIND R_N :

fig(3)

THEORY:

NORTON'S THEOREM:

Norton's theorem states that in a lumped, linear network the equivalent circuit across any branch is replaced with a current source in parallel a resistance. Where the current is the Norton's current which is the short circuit current though that branch and the resistance is the Norton's resistance which is the equivalent resistance across that branch by replacing all the sources sources with their internal resistances

for source current,

$$I_s = \frac{V}{R_s} = \frac{V(R_2 + R_3)}{R_1 R_2 + R_1 R_3 + R_2 R_3}$$

FOR NORTON's CURRENT

$$I_N = I_s \times \frac{R_3}{R_3 + R_2} = \frac{V R_3}{R_1 R_2 + R_1 R_3 + R_2 R_3}$$

Load Current through Load Resistor

$$I_L = I_N \times [R_N / (R_N + R_L)]$$

PROCEDURE:

1. Connect the circuit as per fig (1)
2. Adjust the output voltage of the regulated power supply to an appropriate value (Say 20V).
3. Note down the response (current, I_L) through the branch of interest i.e. AB (ammeter reading).
4. Reduce the output voltage of the regulated power supply to 0V and switch-off the supply.
5. Disconnect the circuit and connect as per the fig (2).
6. Adjust the output voltage of the regulated power supply to 20V.
7. Note down the response (current, I_N) through the branch AB (ammeter reading).
8. Reduce the output voltage of the regulated power supply to 0V and switch-off the supply.
9. Disconnect the circuit and connect as per the fig (3).
10. Connect the digital multimeter(DMM) across AB terminals and it should be kept in resistance mode to measure Norton's resistance(R_N).

TABULATION FOR NORTON'S THEOREM:

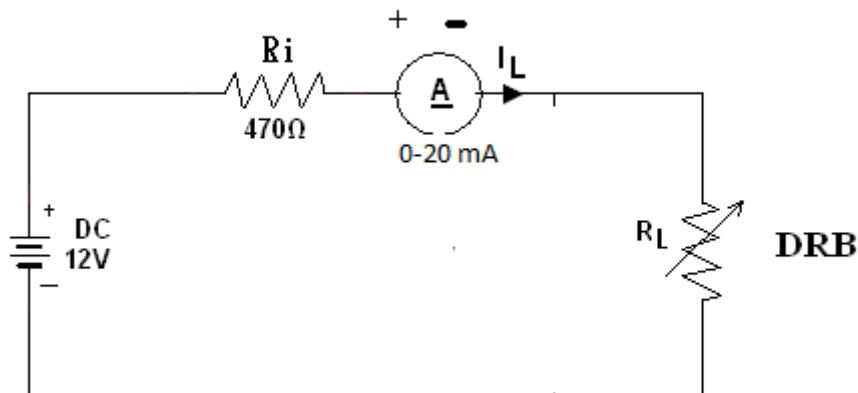
THEORITICAL VALUES	PRACTICAL VALUES
$I_N =$ $R_N =$ $I_L =$	$I_N =$ $R_N =$ $I_L =$

PRECAUTIONS:

1. Initially keep the RPS output voltage knob in zero volt position.
2. Avoid loose connections.
3. Avoid short circuit of RPS output terminals.

RESULT:**VIVA QUESTIONS:**

- 1) State Norton's theorem?
- 2) Explain how Norton's current can be determined?
- 3) Explain how Norton's resistance can be determined?
- 4) Draw the Norton's equivalent circuit?


1. (C) MAXIMUM POWER TRANSFER THEOREM

AIM: To Verify The Maximum Power Transfer Theorem For The Given Circuit.

APPARTUS REQUIRED:

SI. No	Equipment	Range	Qty
1	Bread board	-	1 NO
2	DC Voltage source.	0-30V	1 NO
3	Resistors	$470\ \Omega$	1 NO
4	Decade resistance box	$0-10k\ \Omega$	1 NO
5	Ammeter	0-20mA	1 NO
6	Connecting wires	1.0.Sq.mm	As required

CIRCUIT DIAGRAM:

THEORY:

STATEMENT:

It states that the maximum power is transferred from the source to load when the load resistance is equal to the internal resistance of the source.

(or)

The maximum transformer states that “ A load will receive maximum power from a linear bilateral network when its load resistance is exactly equal to the Thevenin’s resistance of network, measured looking back into the terminals of network.

Consider a voltage source of V of internal resistance R_i delivering power to a load **Resistance R_L**

$$\text{Circuit current} = \frac{V}{R_L + R_i}$$

$$\text{Power delivered } P = I^2 R_L$$

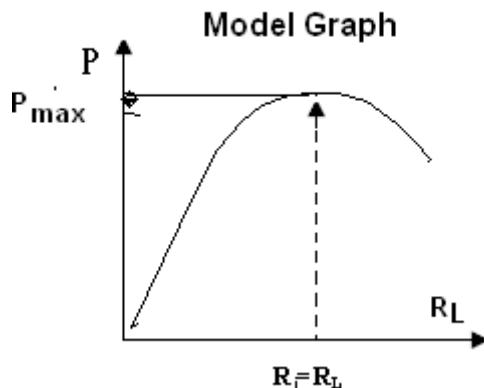
$$= \left| \frac{V}{R_L + R_i} \right|^2 R_L$$

$$\text{for maximum power } \frac{d(P)}{dt} = 0$$

$R_L + R_i$ cannot be zero,

$$R_i - R_L = 0$$

$R_L = R_i$


$$P_{\max} = \frac{V^2}{4R_L} \text{ watts}$$

PROCEDURE:

1. Connect the circuit as shown in the above figure.
2. Apply the voltage 12V from RPS.
3. Now vary the load resistance (R_L) in steps and note down the corresponding Ammeter Reading (I_L) in milli amps and Load Voltage (V_L) volts
6. Tabulate the readings and find the power for different load resistance values.
7. Draw the graph between Power and Load Resistance.
8. After plotting the graph, the Power will be Maximum, when the Load Resistance will be equal to source Resistance

TABULAR COLUMN:

S.No	R_L	I_L (mA)	Power(P_{\max}) = $I_L^2 * R_L$ (mW)
1			
2			
3			
4			
5			
6			
7			
8			

Theoretical Calculations:-

$$R = (R_i + R_L) = \dots \Omega$$

$$I_L = V / R = \dots \text{mA}$$

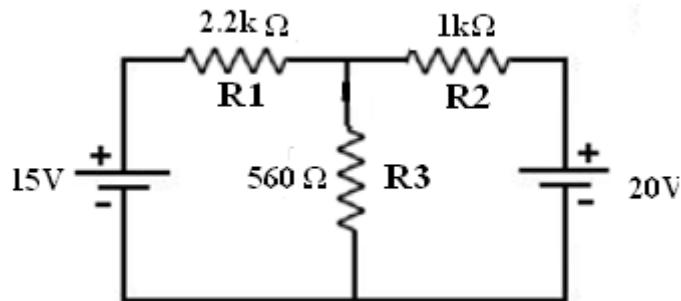
$$\text{Power} = (I_L^2) R_L = \dots \text{mW}$$

PRECAUTIONS:

1. Initially keep the RPS output voltage knob in zero volt position.
2. Avoid loose connections.
3. Avoid short circuit of RPS output terminals.

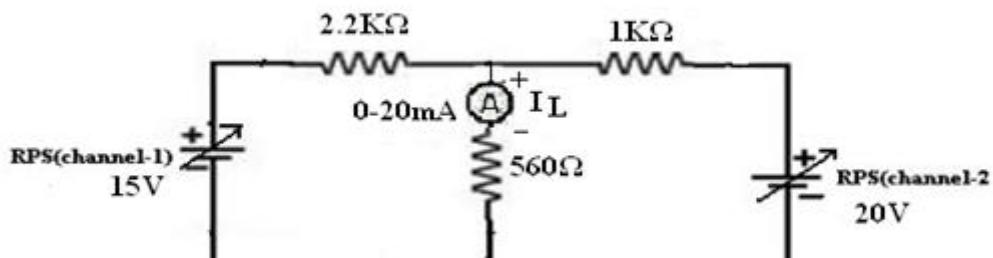
RESULT:**VIVA QUESTIONS:**

- 1) What is maximum power transfer theorem?
- 2) What is the condition for maximum power transfer?
- 3) What is the application of this theorem?
- 4) What is the limitation of maximum power transfer theorem?

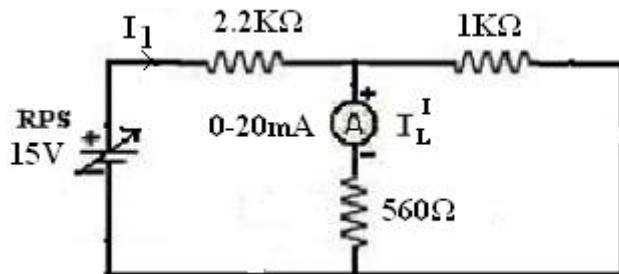
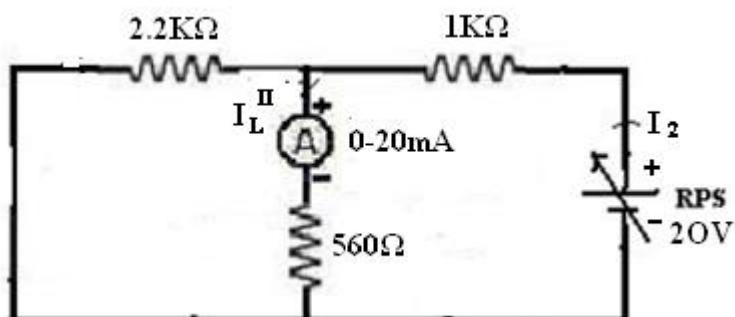

2. (A) VERIFICATION OF SUPERPOSITION THEOREM

AIM: To verify the superposition theorem for the given circuit.

APPARATUS REQUIRED:


S.No	Name Of The Equipment	Range	Type	Quantity
1	Bread board	-	-	1 NO
2	Ammeter	(0-20)mA	Digital	1 NO
3	RPS	0-30V	Digital	1 NO
4	Resistors	2.2k Ω 1k Ω 560 Ω		1 NO 1 NO 1 NO
5	Connecting Wires	-	-	As required

CIRCUIT DIAGRAM:

PRACTICAL CIRCUITS:

When V_1 & V_2 source acting (To find I_L):-

Fig(1)

When V_1 Source Acting (To Find I_L^I)**Fig (2)****When V_2 source acting (To find I_L^{II}):****Fig (3)****THEORY:****SUPERPOSITION THEOREM:**

Superposition theorem states that in a lumped, linear, bilateral network consisting more number of sources each branch current(voltage) is the algebraic sum all currents (branch voltages), each of which is determined by considering one source at a time and removing all other sources. In removing the sources, voltage and current sources are replaced by internal resistances.

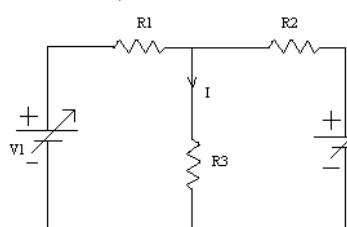

Case 1) V_1 & V_2 both active

Fig.1

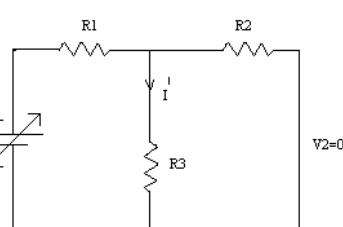

Case 2) V_1 is active & $V_2=0$

Fig 2

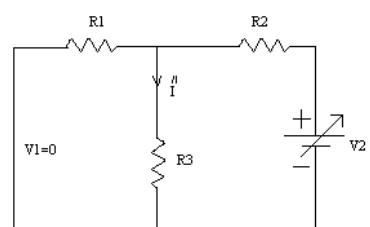

Case 3) $V_1=0$ & V_2 is active

Fig 3

PROCEDURE:

1. Connect the circuit as per the fig (1).
2. Adjust the output voltage of sources X and Y to appropriate values (Say 15V and 20V respectively).
3. Note down the current (I_L) through the 560 Ohm resistor by using the ammeter.
4. Connect the circuit as per fig (2) and set the source Y (20V) to 0V.

5. Note down the current (I_L^I) through 560ohm resistor by using ammeter.
6. Connect the circuit as per fig(3) and set the source X (15V) to 0V and source Y to 20V.
7. Note down the current (I_L^{II}) through the 560 ohm resistor branch by using ammeter.
8. Reduce the output voltage of the sources X and Y to 0V and switch off the supply.
9. Disconnect the circuit.

THEORITICAL CALCULATIONS

From Fig(2)

$$I_1 = V_1 / (R_1 + (R_2 // R_3))$$

$$I_L^I = I_1 * R_2 / (R_2 + R_3)$$

From Fig(3)

$$I_2 = V_2 / (R_2 + (R_1 // R_3))$$

$$I_L^{II} = I_2 * R_1 / (R_1 + R_3)$$

$$I_L = I_L^I + I_L^{II}$$

TABULAR COLUMNS:

From Fig(1)

S. No	Applied voltage (V_1) Volt	Applied voltage (V_2) Volt	Current I_L (mA)

From Fig(2)

S. No	Applied voltage (V_1) Volt	Current I_L^I (mA)

From Fig(3)

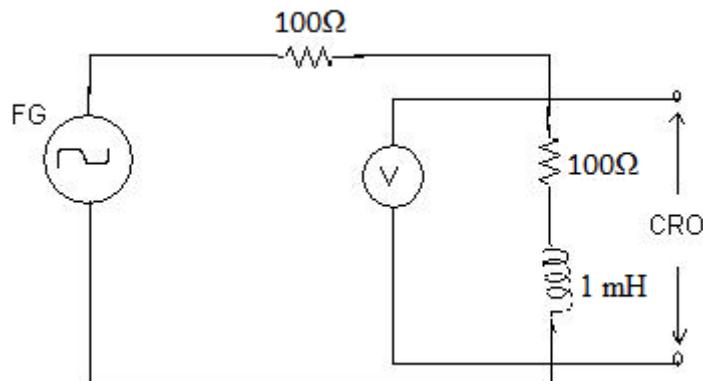
S. No	Applied voltage (V_2) Volt	Current I_L^{II} (mA)

S.No	Load current	Theoretical Values	Practical Values
1	When Both sources are acting, I_L		
2	When only source X is acting, I_L^1		
3	When only source Y is acting, I_L^{II}		

PRECAUTIONS:

1. Initially keep the RPS output voltage knob in zero volt position.
2. Avoid loose connections.
3. Avoid short circuit of RPS output terminals.

RESULT:**VIVA QUESTIONS:**


- 1) State Superposition theorem?
- 2) Explain about homogeneity principle?
- 3) Explain about superposition principle?
- 4) What are the limitations of superposition theorem?

2. (B) DETERMINATION OF RMS VALUE OF COMPLEX WAVE

AIM: To determine the RMS value of complex wave.

APPARATUS REQUIRED:

S.No	Name Of The Equipment	Range	Type	Quantity
1	Bread board	-	-	1 NO
2	Ammeter	(0-20)mA	Digital	1 NO
3	RPS	0-30V	Digital	1 NO
4	Resistors	100Ω	-	2 NO
5	Inductors	1 mH	-	1 NO
6	Function generator	100-10MHz		1 NO
7	Multimeter	-	-	1 NO
8	CRO	(0-20)MHz	Dual CH	1 NO
9	Connecting Wires	-	-	As required

CIRCUIT DIAGRAM:**THEORY:**

RMS (Root Mean Square) value of an ac wave is the mean of the root of the square of the voltages at different instants. For an ac wave it will be $1/\sqrt{2}$ times the peak value.

PROCEDURE:

1. Connect the circuit as per the circuit diagram.
2. Apply the sinusoidal wave as input from the Function Generator.
3. Observe the output waveform in the CRO. Note down the peak value of the output wave, from the CRO.
4. Calculate the RMS value and compare with the measured value.
5. Switch OFF the supply.

TABULAR COLUMN:

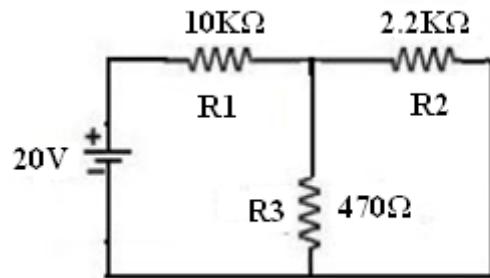
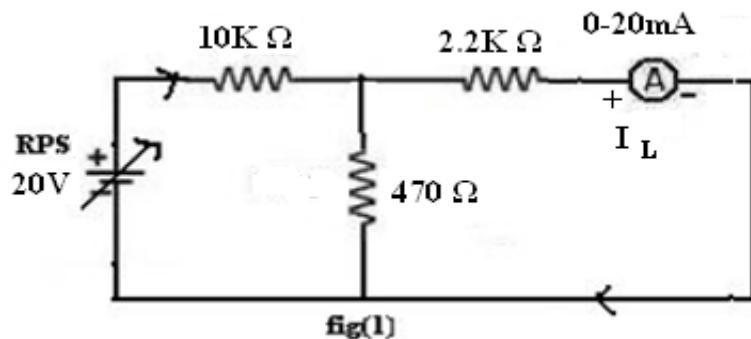
Peak value (V)	Calculated RMS value (V)	Measured value (V)

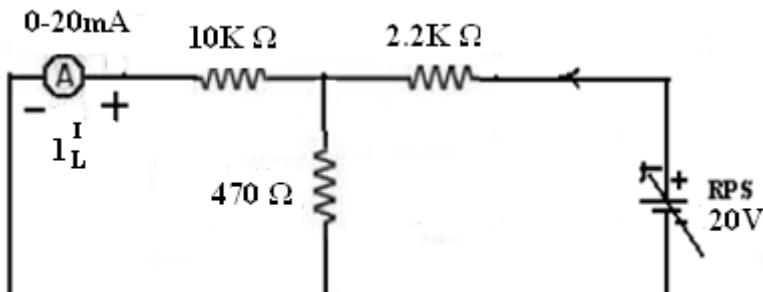
PRECAUTIONS:

1. Initially keep the RPS output voltage knob in zero volt position.
2. Avoid loose connections.
3. Avoid short circuit of RPS output terminals.

RESULT:

VIVA QUESTIONS:

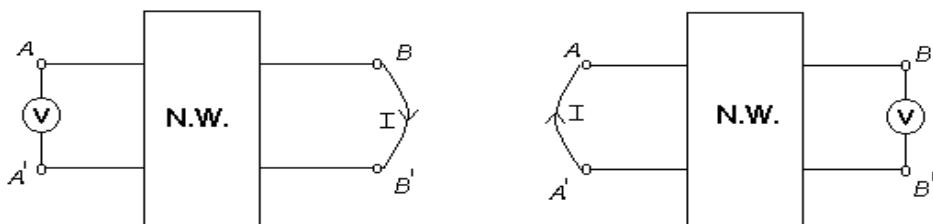


- 1) State RMS value of ac wave?
- 2) State peak value of ac wave??
- 3) What is significance of RMS value?
- 4) What is the other name for RMS value?


3. (A) VERIFICATION OF RECIPROCITY THEOREM

AIM: To verify reciprocity theorem for the given circuit.

APPARATUS REQUIRED:

S.No	Name Of The Equipment	Range	Type	Quantity
1	Bread board	-	-	1 NO
2	Ammeter	(0-20)mA	Digital	1 NO
3	RPS	0-30V	Digital	1 NO
4	Connecting Wires	-	-	As required
5	Resistors	2.2k Ω		1 NO
		10k Ω		1 NO
		470 Ω		1 NO


CIRCUIT DIAGRAM:**PRACTICAL CIRCUITS:****CIRCUIT-1**

CIRCUIT-2:

fig(2)

THEORY:**STATEMENT:**

In any linear, bilateral, single source network, the ratio of response to the excitation is same even though the positions of excitation and response are interchanged. This theorem permits to transfer source from one position in the circuit to another and may be stated as under

Consider the network shown in Fig. AA' denotes input terminals and BB' denotes output terminals. The application of voltage V across AA' produces current I at BB' . Now if the positions of the source and responses are interchanged, by connecting the voltage source across BB' , the resultant current I will be at terminals AA' . According to the reciprocity theorem, the ratio of response to excitation is the same in both cases.

PROCEDURE:

1. Connect the circuit as per the fig (1).
2. Adjust the output voltage of the regulated power supply to an appropriate value (Say 20V).
3. Note down the current through $2.2K \Omega$ by using ammeter.
4. Reduce the output voltage of the RPS to 0V and switch-off the supply.
5. Disconnect the circuit and connect the circuit as per the fig (2).
6. Adjust the output voltage of the regulated power supply to an appropriate value (Say 20V).
7. Note down the current through $10K \Omega$ resistor from ammeter.
8. Reduce the output voltage of the RPS to 0V and switch-off the supply.
9. Disconnect the circuit.

THEORITICAL CALCULATIONS :

From Fig(1)

$$I_1 = V / (R_1 + (R_2 // R_3))$$

$$I_L = I_1 * R_3 / (R_2 + R_3)$$

From Fig(2)

$$I_2 = V / (R_2 + (R_1 // R_3))$$

$$I_L^I = I_2 * R_3 / (R_1 + R_3)$$

TABULAR COLUMNS:

From fig 1

S. No	Applied voltage (V1) Volt	Current I_L (mA)

From fig 2

S. No	Applied voltage (V2) Volt	Current I_L^I (mA)

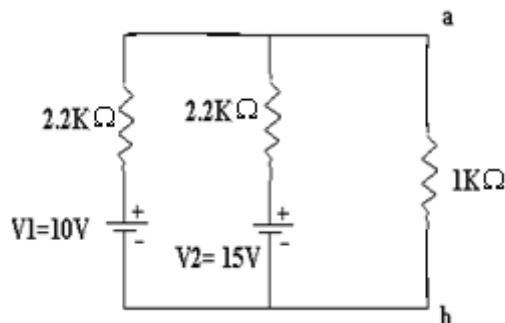
OBSERVATION TABLE:

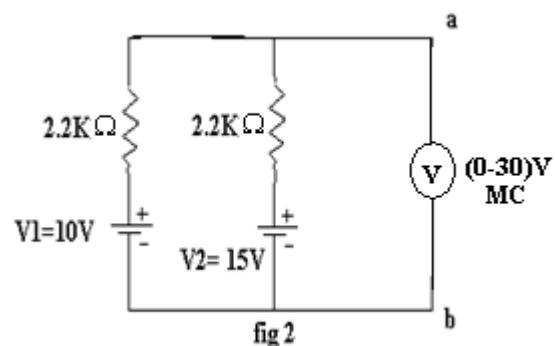
S.No	Parameter	Theoretical Value	Practical Value
1	$I_L/\sqrt{1}$		
2	$I_L/\sqrt{2}$		

PRECAUTIONS:

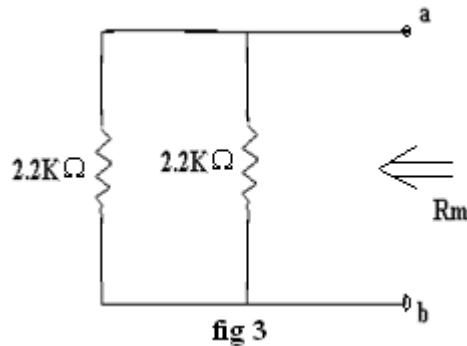
1. Initially keep the RPS output voltage knob in zero volt position.
2. Avoid loose connections.
3. Avoid short circuit of RPS output terminals.

RESULT:**VIVA QUESTIONS:**

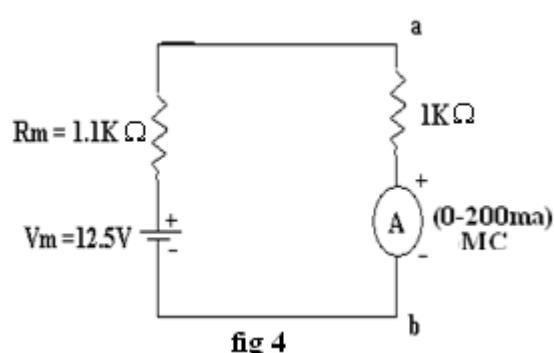



- 1) What is reciprocity theorem?
- 2) Why it is not applicable for unilateral circuit?
- 3) What is passive network?
- 4) What is the limitation of Reciprocity theorem?

3. (B) VERIFICATION OF MILLMAN'S THEOREM

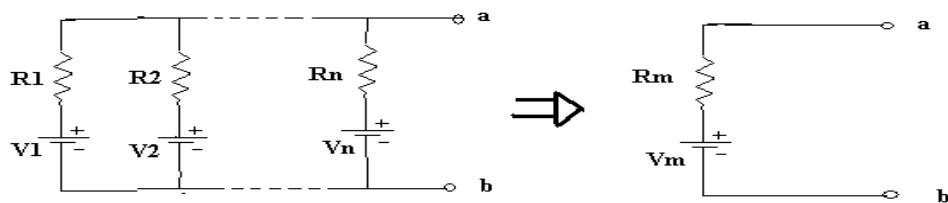

AIM: To verify Millman's theorem for the given circuit.

APPARATUS REQUIRED:


S.NO	NAME	RANGE	QUANTITY
1	Ammeter	(0-200)mA	2
2	Voltmeter	(0-30)V	1
3	Resistors	2.2K Ω	1
		1.1K Ω	1
		100 Ω	2
		220 Ω	1
		1000 Ω	1
4	Bread board	-----	1
5	RPS	(0-30)V	1
6	Connecting wires	-----	Required

CIRCUIT DIAGRAM:**PRACTICAL CIRCUITS:****CIRCUIT-1****CIRCUIT-2:**

CIRCUIT-3:



CIRCUIT-4:

THEORY:

STATEMENT: "Millman's theorem states that in any network, if the voltage sources V_1, V_2, \dots, V_n in series with internal resistances R_1, R_2, \dots, R_n , respectively are in parallel then these sources may be replaced by a single voltage source ' V_m ' in series with ' R_m ' as shown".

According to Millman's theorem,

$$V_m = \frac{V_1 G_1 + V_2 G_2 + \dots + V_n G_n}{G_1 + G_2 + \dots + G_n}$$

$$R_m = \frac{1}{G_1 + G_2 + \dots + G_n}$$

PROCEDURE:

1. Make the connections as per the circuit diagram shown in fig 1.
2. Switch on the supply, apply the source voltages $V_1=10V$ & $V_2=15V$.
3. Note down the readings of ammeter and tabulate in table1.
4. Make the connections as per the circuit diagram shown in fig 2.
5. Switch on the supply, apply the source voltages $V_1=10V$ & $V_2=15V$.
6. Note down the readings of ammeter and tabulate in table2
7. Make the connections as per the circuit diagram shown in fig 3 and determine R_m using Multimeter
8. Make the connections of equivalent Millman's circuit as shown in fig 4.
9. Switch on the supply; apply the millman voltage V_m (calculated) and note down the readings of ammeter and tabulate in table2.
10. Repeat the experiment at different source voltages and compare the readings.

TABULAR COLUMNS:

S.No	V ₁ (volts)	V ₂ (volts)	I _L (mA)
1			
2			
3			

Table 1

S.No	V ₁ (volts)	V ₂ (volts)	V _m (volts)	I _L (mA)
1				
2				
3				

Table 2

PRECAUTIONS:

1. Initially keep the RPS output voltage knob in zero volt position.
2. Avoid loose connections.
3. Avoid short circuit of RPS output terminals.

RESULT:**VIVA QUESTIONS:**

1. State Millman's theorem?
2. Write the advantage of Millman's theorem?
3. Draw the equivalent circuit of Millmann's theorem?
4. What are the limitations of Millmann's theorem?

4. LOCUS DIAGRAMS OF RL AND RC SERIES CIRCUITS

AIM: To Plot the current locus diagrams for RL and RC circuits.

APPARATUS REQUIRED:

S.No	Name Of The Equipment	Range	Type	Quantity
1	Ammeter	(0-1A)	MI	1 NO
2	Voltmeter	(0-75V) MI	MI	1 NO
3	1-ph Wattmeter	5A/150V/	LPF	1 NO
4	Capacitor	$33 \mu\text{F}$	-	1 NO
5	Rheostat	250 Ohms / 2.5A	MI	1 NO
6	1-ph variac	240V / (0-270V)	MI	1 NO
7	Connecting wires	-----	-	As Required

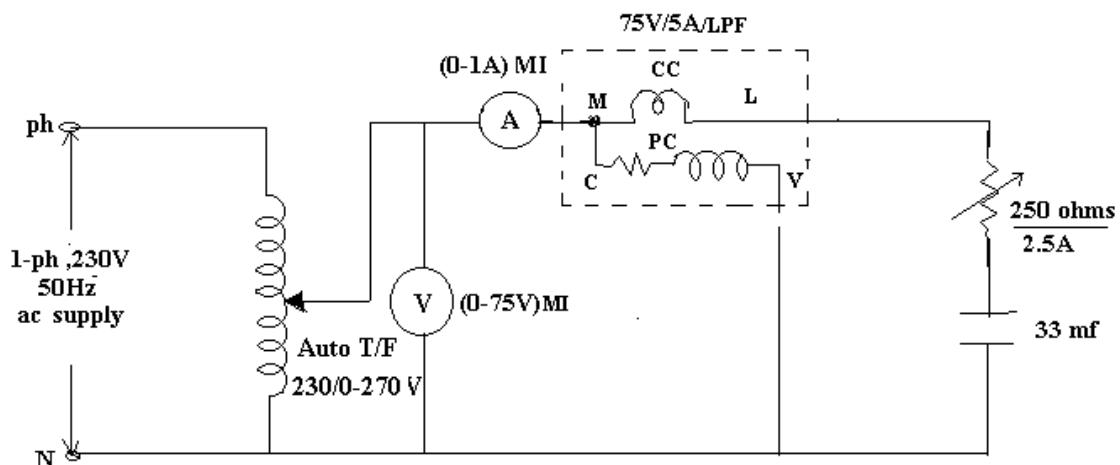
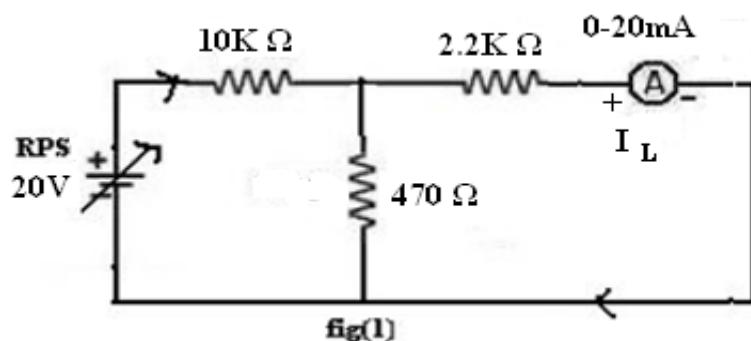
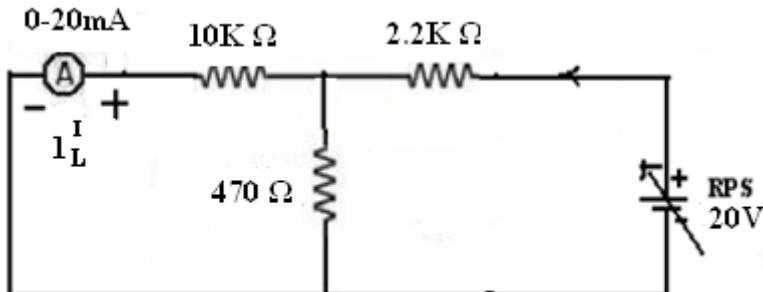



CIRCUIT DIAGRAM:

Fig 1

PRACTICAL CIRCUITS:**CIRCUIT-1**

CIRCUIT-2:

fig(2)

THEORY:

The performance of ac circuits, when some of the parameters continuously vary over a wide range of values, with the aid of current locus diagrams. These diagrams not only provide a proper inside into the circuit behaviour, but it is also possible to predetermine the characteristics of certain circuits and ac machines (e.g. Transmission lines , Induction motors ..) , from such circle diagrams. Thus for a series circuit with R and L , if either of them is varied over a certain range, the current and the power input vary, and it is possible to ascertain the maximum values of current and power ,or evaluate the power factor from the locus diagram.

In this experiment the locus of series RC circuit , C is fixed and R is variable as shown in fig 2.

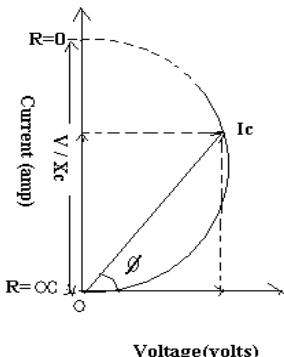
In this semi circles, Diameter of semicircle : V / Xc
 Center : $(0, V / 2Xc)$
 Power factor : $\cos 45^\circ : 0.707$

PROCEDURE:

1. Make the connections as per the circuit diagram shown in fig1.
2. Keep the rheostat at maximum resistance position and switch on the supply.
3. Apply the source voltage $V_s = 60V$ at constant value by using variac.
4. Vary the resistance in steps, note down the readings of ammeter, and wattmeter and tabulate the readings.
5. Calculate power factor and phase angle.

Calculations:

$$\text{Power} \quad W = V I \cos \Phi$$


$$\text{Power factor} \quad \cos \Phi = \frac{W}{V I}$$

TABULAR COLUMNS:

S.No	V _s (Volts)	Current (Amps)	W (watts)	P.F = CosΦ = W/VI	Φ = Cos ⁻¹ (W/VI)
1					
2					
3					
4					
5					
6					
7					
8					

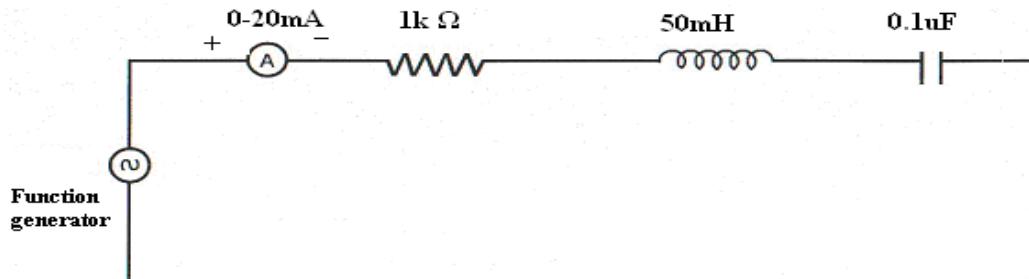
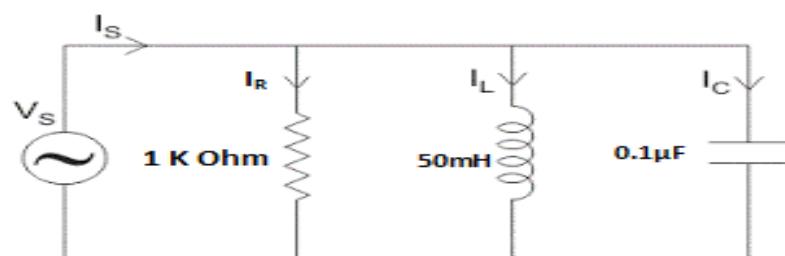
Model Graph:

Plot the graph between Voltage vector (on X-axis) and current vector (on y-axis) as shown below.

PRECAUTIONS:

1. Initially keep the RPS output voltage knob in zero volt position.
2. Avoid loose connections.
3. Avoid short circuit of RPS output terminals.

RESULT:**VIVA QUESTIONS:**



1. The shape of the current locus in a circuit is generally
 - Circle
 - semi-circle
 - ellipse
 - parabola
2. What is the centroid of series RC circuit current locus?
3. What is the diameter of series RC circuit current locus?
4. Draw the current locus in series RL circuit when R is variable?
5. Draw the current locus in series RC circuit when C is variable?

5. SERIES AND PARALLEL RESONANCE

AIM: To find the resonant frequency, quality factor and band width of a given series and parallel resonant circuits.

APPARATUS REQUIRED:

S.No	Name Of The Equipment	Range	Type	Quantity
1	Bread board	-	-	1 NO
2	Resistor	$1k \Omega$	-	1 NO
3	Inductor	50 mH	-	1 NO
4	Capacitors	$0.1 \mu\text{F}$	-	1 NO
5	CRO	20MHz.Dual CH	-	1 NO
6	Function generator	100-10MHz	-	1 NO
7	Ammeter	0-20mA	Digital	1 NO
8	Connecting wires			Required number

CIRCUIT DIAGRAM:**SERIES RESONANCE:****Fig.1****PARALLEL RESONANACE:****Fig.2**

THEORY:

Resonance is a particular type of phenomenon inherently found normally in every kind of system, electrical, mechanical, optical, Acoustical and even atomic. There are several definitions of resonance. But, the most frequently used definition of resonance in electrical system is studied state operation of a circuit or system at that frequency for which the resultant response is in time phase with the forcing function.

SERIES RESONANCE:

A circuit is said to be under resonance, when the applied voltage 'V' and current are in phase. Thus a series RLC circuit, under resonance behaves like a pure resistance network and the reactance of the circuit should be zero. Since V & I are in phase, the power factor is unity at resonance.

The frequency at which the resonance will occur is known as resonant frequency. Resonant frequency,

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

Thus at resonance the impedance Z is minimum. Since $I = V/Z$. The current is maximum So that current amplification takes place. Quality factor is the ratio of reactance power inductor (or) capacitor to its resistance.

PARALLEL RESONANCE:

In the circuit (parallel RLC circuit) shown in figure.2, the condition for resonance occurs when the susceptance part is zero. The frequency at which the resonance will occur is known as resonant frequency. Resonant frequency,

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

Thus at resonance the admittance(Y) is Minimum and voltage is Maximum. However the performance of such a circuit is of interest in the general subject of resonance. Lower cut-off

frequency is above the resonant frequency at which the current is reduced to $\frac{1}{\sqrt{2}}$ times of its minimum value. Upper cut-off frequency is above. Quality factor is the ratio of resistance to reactance of inductor (or) capacitor. Selectivity is the reciprocal of the quality factors.

THEORITICAL CALCULATIONS:**For Series Resonance circuit:**

1. Resonant frequency $f_r = \frac{1}{2\pi\sqrt{LC}}$
2. Lower Cut off Frequency $f_1 = f_r - (R/4\pi L)$
3. Upper Cut off Frequency $f_2 = f_r + (R/4\pi L)$
4. Band width = $f_2 - f_1$:
5. Quality factor $Q = \frac{w_0 L}{R} = \frac{2\pi f_r L}{R}$

6. Current at Resonance $I_o = V_{Ro}/R$

For Parallel Resonance circuit:

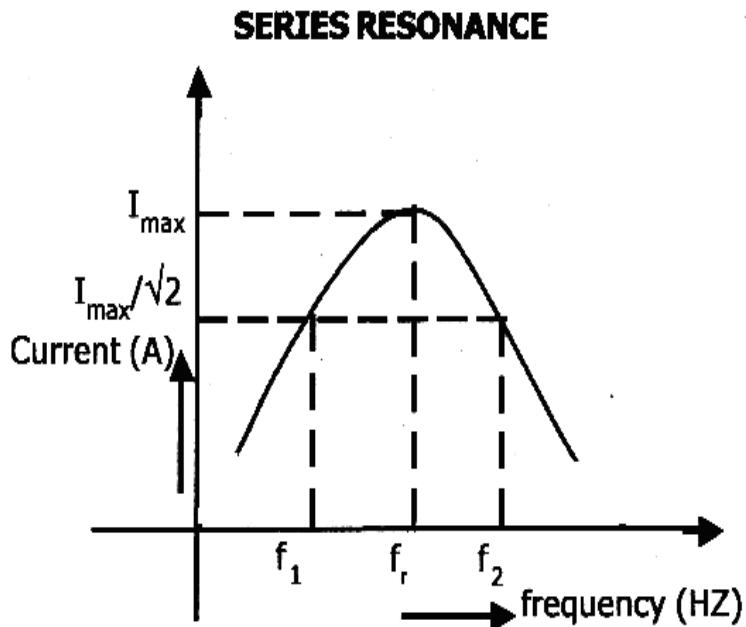
1. Resonant frequency $f_r = \frac{1}{2\pi\sqrt{LC}}$
2. Lower Cut off Frequency $f_1 = \{1/2\pi\} \{(-1/2RC) + ((1/2RC)^2 + (1/LC))^{0.5}\}$
3. Upper Cut off Frequency $f_2 = \{1/2\pi\} \{(1/2RC) + ((1/2RC)^2 + (1/LC))^{0.5}\}$
4. Band width = $f_2 - f_1$:
5. Quality factor $Q = \frac{R}{W_0 L}$
6. Current at resonance $I_o = V_{Ro}/R$

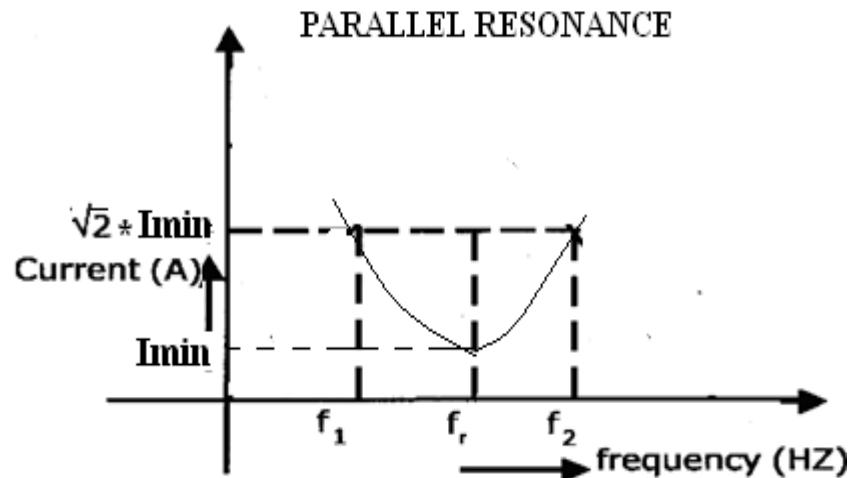
PROCEDURE:

1. Connect the circuit as shown in fig.1 for series resonant circuit & fig.2 for parallel resonant circuit.
2. Set the voltage of the signal from function generator to 5V.
3. Vary the frequency of the signal over a wide range in steps and note down the corresponding ammeter readings.
4. Observe that the current first increases & then decreases in case of series resonant circuit & the value of frequency corresponding to maximum current is equal to resonant frequency.
5. Observe that the current first decreases & then increases in case of parallel resonant circuit & the value of frequency corresponding to minimum current is equal to resonant frequency.
6. Draw a graph between frequency and current & calculate the values of bandwidth & quality factor.

OBSERVATION TABLE:

Series Resonance:


S. No.	Frequency (Hz)	Current (mA)


**OBSERVATION TABLE:
Parallel Resonance:**

S. No.	Frequency (Hz)	Current (mA)

TABULAR COLUMN:

S.NO	PARAMETER	Series resonant circuit		Parallel resonant circuit	
		Theoretical	Practical	Theoretical	Practical
1	Resonant Frequency(f_r)				
2	Band width				
3	Quality factor				

MODEL GRAPHS:

f_1 = lower cutoff frequency

f_2 = upper cutoff frequency

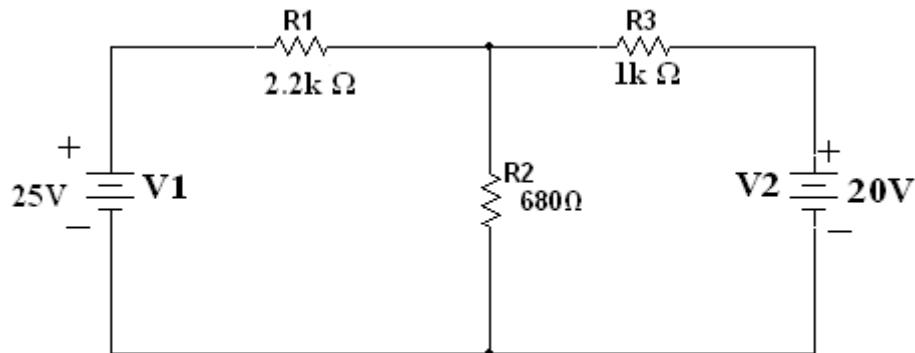
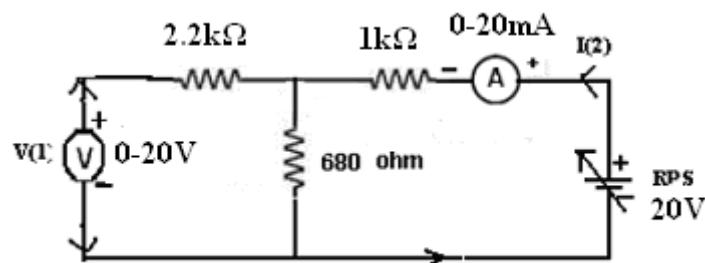
f_r = Resonant Frequency

PRECAUTIONS:

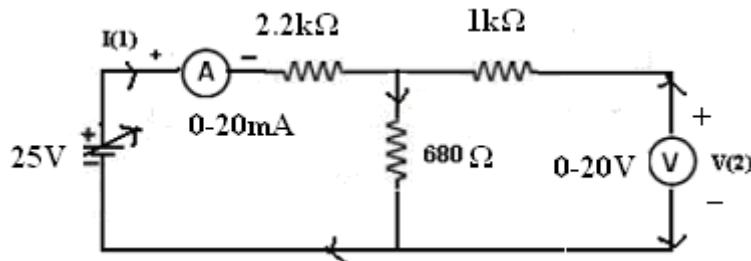
1. Initially keep the RPS output voltage knob in zero volt position.
2. Avoid loose connections.
3. Avoid short circuit of RPS output terminals.

RESULT:

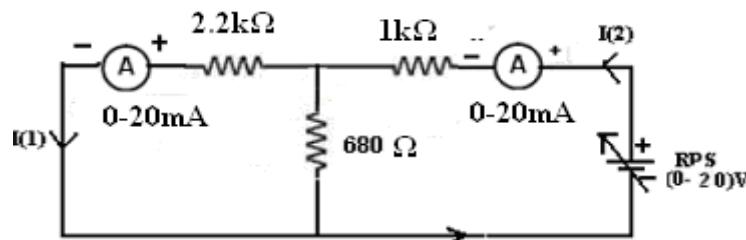
VIVA QUESTIONS:



- 1) What is resonance of circuit?
- 2) What is series and parallel resonance?
- 3) What is cut-off frequency?
- 4) Define bandwidth and Quality factor?

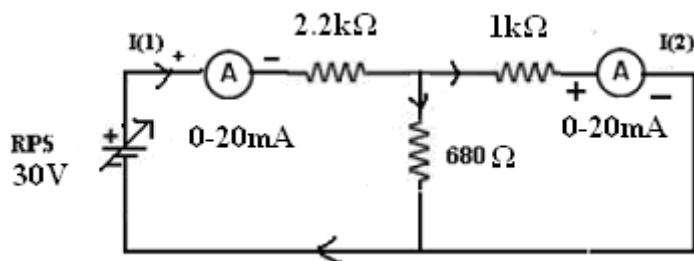
6. DETERMINATION OF Z AND Y PARAMETERS OF A TWO- PORT NETWORK


AIM: To determine the Impedance (Z) and admittance (Y) parameters of a two port network.

APPARATUS REQUIRED:


S.No	Name Of The Equipment	Range	Type	Quantity
1	Voltmeter	(0-20)V	Digital	1 NO
2	Ammeter	(0-20)mA	Digital	1 NO
3	RPS	0-30V	Digital	1 NO
4	Resistors	2.2k Ω	-	1 NO
		1k Ω	-	1 NO
		680 Ω	-	1 NO

CIRCUIT DIAGRAMS:**1. GIVEN CIRCUIT:****PRACTICAL CIRCUITS:****2. When $I_1 = 0$:**


3. When $I_2 = 0$:

4. When $V_1 = 0$:

5. When $V_2 = 0$:

THEORY:

A pair of terminals between which a signal may enter or leave the network is known as port. If a network has one such type pair of terminals it is known as One-Port Network and that have two such type of ports is known as Two-Port Network.

If we relate the voltage of one port to the current of the same port, we get driving point admittance. On the other hand, if we relate the voltage of one port to the current at another port, we get transfer admittance. Admittance is a general term used to represent either the impedance or the admittance of a network. We will consider a general two-port network composed of linear, bilateral elements and no independent sources. The voltage and current at port -1 are V_1 and I_1 and at port -2 are V_2 and I_2 . The position of V_1 and V_2 and the directions of I_1 and I_2 are customarily selected. Out of four variables only two are independent. The other two are expressed in terms of the independent variable of network parameters. The relation between the voltages and currents in terms of Z and Y parameters are as follows.

$$V_1 = Z_{11} (I_1) + Z_{12} (I_2)$$

$$V_2 = Z_{21} (I_1) + Z_{22} (I_2)$$

$$I_1 = Y_{11} (V_1) + Y_{12} (V_2)$$

$$I_2 = Y_{21} (V_1) + Y_{22} (V_2)$$

Z-PARAMETERS:

$$Z_{11} = \frac{V_1}{I_1} / I_2 = 0$$

$$Z_{12} = \frac{V_1}{I_2} / I_1 = 0$$

$$Z_{21} = \frac{V_2}{I_1} / I_2 = 0$$

$$Z_{22} = \frac{V_2}{I_2} / I_1 = 0$$

Y-PARAMETERS:

$$Y_{11} = \frac{I_1}{V_1} / V_2 = 0$$

$$Y_{12} = \frac{I_2}{V_1} / V_1 = 0$$

$$Y_{21} = \frac{I_2}{V_1} / V_2 = 0$$

$$Y_{22} = \frac{I_2}{V_2} / V_1 = 0$$

PROCEDURE:

1. Connections are made as per the circuit diagram.
2. Open circuit the port – 1 i.e., $I_1=0$, find the values of V_1 , I_2 and V_2 .
3. Short circuit the port-1 i.e. $V_1=0$, find the values of V_2 , I_1 and I_2 .
4. Open circuit the port – 2 i.e., $I_2=0$, find the values of V_1 , I_1 and V_2 .
5. Short circuit the port-2 i.e. $V_2=0$, find the values of V_1 , I_1 and I_2 .
5. Find the Z and Y parameters of the given two port network.

THEORITICAL VALUES:

$V_1 = 0$	$V_{2=}$	$I_{1=}$	$I_{2=}$
$V_2 = 0$	$V_{1=}$	$I_{1=}$	$I_{2=}$
$I_1 = 0$	$V_{1=}$	$V_{2=}$	$I_{2=}$
$I_2 = 0$	$V_{1=}$	$V_{2=}$	$I_{1=}$

PRACTICAL VALUES:

$V_1 = 0$	$V_{2=}$	$I_{1=}$	$I_{2=}$
$V_2 = 0$	$V_{1=}$	$I_{1=}$	$I_{2=}$
$I_1 = 0$	$V_{1=}$	$V_{2=}$	$I_{2=}$
$I_2 = 0$	$V_{1=}$	$V_{2=}$	$I_{1=}$

Z-PARAMETERS:

Z-parameters	Theoretical	Practical
$Z_{11} = \frac{V_1}{I_1} / I_2 = 0$		
$Z_{12} = \frac{V_1}{I_2} / I_1 = 0$		
$Z_{21} = \frac{V_2}{I_1} / I_2 = 0$		
$Z_{22} = \frac{V_2}{I_2} / I_1 = 0$		

Y-PARAMETERS:

Y-Parameters	Theoretical	Practical
$Y_{11} = \frac{I_1}{V_1} / V_2 = 0$		
$Y_{12} = \frac{I_2}{V_1} / V_1 = 0$		
$Y_{21} = \frac{I_2}{V_1} / V_2 = 0$		
$Y_{22} = \frac{I_2}{V_2} / V_1 = 0$		

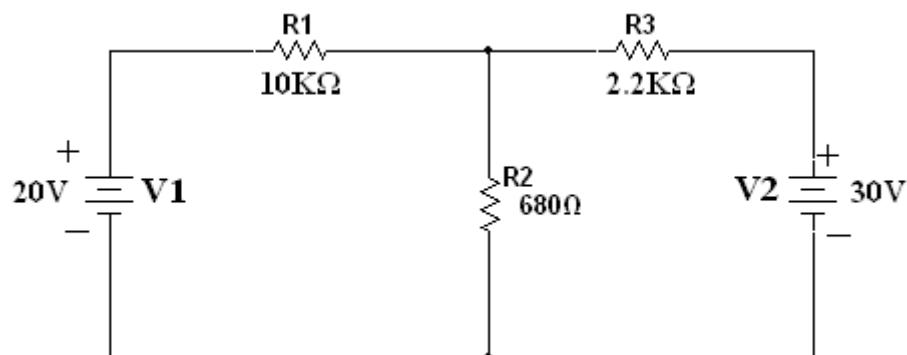
PRECAUTIONS:

1. Initially keep the RPS output voltage knob in zero volt position.
2. Avoid loose connections.
3. Avoid short circuit of RPS output terminals.

RESULT:**VIVA QUESTIONS:**

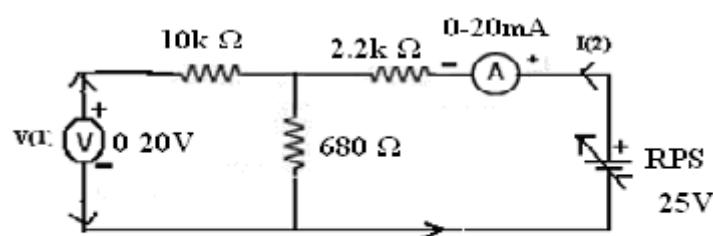
1. Define Port?
2. Define Z & Y parameters?
3. What is the condition for symmetry in case Z & Y parameters?
4. Define characteristic impedance?
5. What is the condition for reciprocity in case Z & Y parameters?

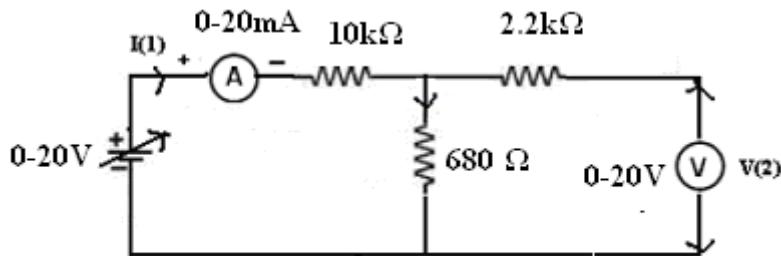
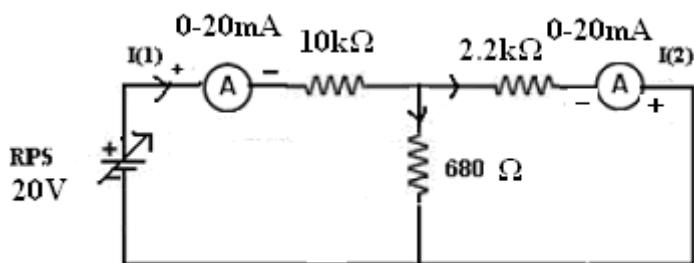
7. DETERMINATION OF TRANSMISSION AND HYBRID PARAMETERS OF A TWO-PORT NETWORK


AIM: To determine the Transmission and Hybrid parameters of a two port network.

APPARATUS REQUIRED:

S.No	Name Of The Equipment	Range	Type	Quantity
1	Voltmeter	(0-20)V	Digital	1 NO
2	Ammeter	(0-20)mA	Digital	1 NO
3	RPS	0-30V	Digital	1 NO
4	Resistors	10K Ω		1 NO
		2.2 Ω		1 NO
		680 Ω		1 NO
5	Breadboard	-	-	1 NO
6	Connecting wires			Required number


CIRCUIT DIAGRAMS:



GIVEN CIRCUIT:

PRACTICAL CIRCUITS:

1. When $I_1 = 0$:

2. When $I_2 = 0$:3. When $V_2 = 0$:**THEORY:**

The relation between the voltages and currents of a two port network in terms of ABCD and h-parameters is given as follows.

ABCD PARAMETERS:

$$V_1 = AV_2 - BI_2$$

$$I_1 = CV_2 - DI_2$$

H-PARAMETERS

$$V_1 = h_{11}I_1 + h_{12}V_2$$

$$I_2 = h_{11}I_1 + h_{22}V_2$$

ABCD PARAMETERS:

$$A = \frac{V_1}{V_2} / I_2 = 0$$

$$B = \frac{-V_1}{I_2} / V_2 = 0$$

$$C = \frac{I_1}{V_2} / I_2 = 0$$

$$D = \frac{-I_1}{I_2} / V_2 = 0$$

H-PARAMETERS:

$$h_{11} = \frac{V_1}{I_1} / V_2 = 0$$

$$h_{12} = \frac{V_1}{V_2} / I_1 = 0$$

$$h_{21} = \frac{I_2}{V_1} / V_2 = 0$$

$$h_{22} = \frac{I_2}{V_2} / I_1 = 0$$

PROCEDURE:

1. Connections are made as per the circuit diagram.
2. Open circuit the port – 1 i.e., $I_1=0$ find the values of V_1 , I_2 and V_2 .
3. Short circuit the port-1 $V_1=0$ find the values of V_2 , I_1 and I_2 .
4. Open circuit the port – 2 i.e., $I_2=0$ find the values of V_1 , I_1 and V_2 .
5. Short circuit the port-2 i.e. $V_2=0$ find the values of V_1 , I_1 and I_2
5. Find the ABCD and h-parameters of the given two port network from the above data.

THEORITICAL VALUES:

$V_2 = 0$	$V_{1=}$	$I_{1=}$	$I_{2=}$
$I_1 = 0$	$V_{1=}$	$V_{2=}$	$I_{2=}$
$I_2 = 0$	$V_{1=}$	$V_{2=}$	$I_{1=}$

PRACTICAL VALUES:

$V_2 = 0$	$V_{1=}$	$I_{1=}$	$I_{2=}$
$I_1 = 0$	$V_{1=}$	$V_{2=}$	$I_{2=}$
$I_2 = 0$	$V_{1=}$	$V_{2=}$	$I_{1=}$

ABCD-PARAMETERS:

T-parameters	Theoretical	Practical
$A = \frac{V_1}{V_2} / I_2 = 0$		
$B = \frac{-V_1}{I_2} / V_2 = 0$		
$C = \frac{I_1}{V_2} / I_2 = 0$		
$D = \frac{-I_1}{I_2} / V_2 = 0$		

H- PARAMETERS:

h-Parameters	Theoretical	Practical
$h_{11} = \frac{V_1}{I_1} / V_2 = 0$		
$h_{12} = \frac{V_1}{V_2} / I_1 = 0$		
$h_{21} = \frac{I_2}{V_1} / V_2 = 0$		
$h_{22} = \frac{I_2}{V_2} / I_1 = 0$		

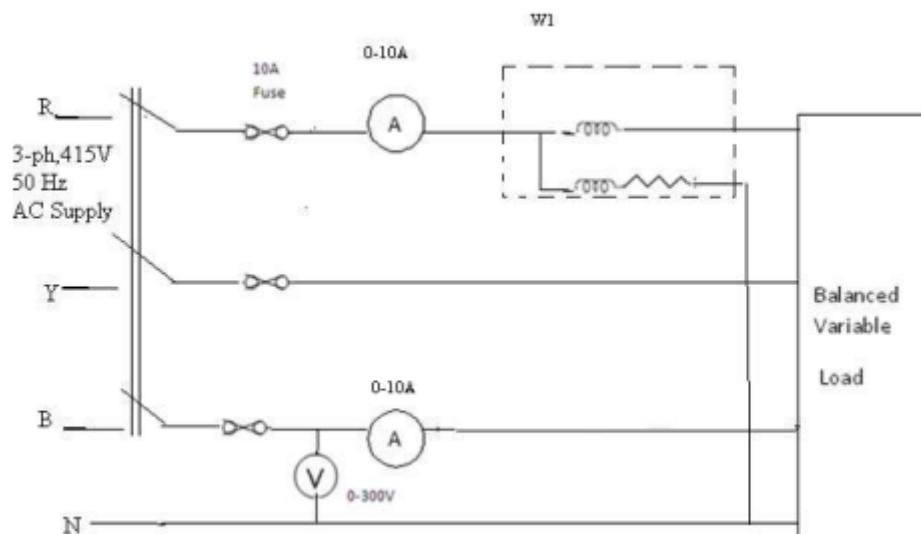
PRECAUTIONS:

1. Initially keep the RPS output voltage knob in zero volt position.
2. Avoid loose connections.
3. Avoid short circuit of RPS output terminals.

RESULT:

VIVA QUESTIONS

1. Define Port?
2. What is the condition for symmetry in case h-parameters & ABCD (T) parameters?
3. Define characteristic impedance?
4. What is the condition for reciprocity in case Hybrid (h) & ABCD (T) parameters?


7. MEASUREMENT OF ACTIVE POWER FOR STAR AND DELTA CONNECTED BALANCED LOAD

AIM: To measure the active power for the given star and delta networks.

APPARATUS REQUIRED:

Sl. No.	Name of the Equipment	Range	Type	Quantity
01	Auto Transformer	415V/(0-440), (0-20)A	3-Φ	1 NO
02	U.P.F. Wattmeter	(150/300/600) (0-5/10)A	Dynamometer Type	1 NO
03	L.P.F. Wattmeter	(150/300/600)V(0-5/10)A	Dynamometer Type	1 NO
04	Ammeter	(0-10)A	MI	1 NO
05	Voltmeter	(0-600)V	MI	1 NO
06	Connecting Wires	-----	-----	As required

CIRCUIT DIAGRAMS:

THEORY:

A three phase balanced voltage is applied on a balanced three phase load when the current in each of the phase lags by an angle Φ behind corresponding phase voltages. Current through current coil of $w_1=I_r$, current through current coil of $w_2=I_B$, while potential difference across voltage coil of $W_1=V_{RN}-V_{YN}=V_{RY}$ (line voltage), and the potential difference across voltage coil of $W_2=V_{RN}-V_{YN}=V_{BY}$. Also, phase difference between I_r and V_{RY} is $(300+\Phi)$. While that between I_B and V_{BY} is $(300-\Phi)$. Thus reading on wattmeter W_1 is given by $W_1=V_{RY} I_r \cos(300+\Phi)$. While reading on wattmeter W_2 is given by $W_2=V_{BY} I_B \cos(300-\Phi)$.

Φ) Since the load is balanced, $|I_R|=|I_Y|=|I_B|=I$ and $|V_{RY}|=|V_{BY}|=V_L$ $W_1=V_L I \cos(300+\Phi)$
 $W_2=V_L I \cos(300-\Phi)$.

Thus total power P is given by

$$\begin{aligned} W &= W_1 + W_2 = V_L I \cos(300+\Phi) + V_L I \cos(300-\Phi) \\ &= V_L I [\cos(300+\Phi) + \cos(300-\Phi)] \\ &= [\sqrt{3}/2 * 2 \cos \Phi] V_L I = \sqrt{3} V_L I \cos \Phi \end{aligned}$$

PROCEDURE:

(Star connection):

- 1) Connect the circuit as shown in the figure.
- 2) Ammeter is connected in series with wattmeter whose other end is connected to one of the loads of the balanced loads.
- 3) The Y-phase is directly connected to one of the nodes of the 3-ph supply.
- 4) A wattmeter is connected across R-phase & Y-phase as shown in fig. The extreme of Bphase is connected to the third terminal of the balanced 3-ph load.
- 5) Another wattmeter is connected across Y & B phase, the extreme of B-phase is connected to the third terminal of the balanced three phases load.
- 6) Verify the connections before switching on the 3-ph power supply.

(Delta connection):

- 1) Connect the circuit as shown in the figure.
- 2) Ammeter is connected in series with wattmeter whose other end is connected to one of the loads of the balanced loads.
- 3) The Y-phase is directly connected to one of the nodes of the 3-ph supply.
- 4) A wattmeter is connected across Y & B phase, the extreme of B-phase is connected to the third terminal of the balanced 3-ph load.
- 5) Another wattmeter is connected across R & Yphase, the extreme of R-phase is connected to the third terminal of the balanced three phases load.
- 6) Verify the connections before switching on the 3-ph power supply.

TABULAR COLUMN:

S.No	Voltage V (Volts)	Line Current I_L (Amps) I	W_1 (Watts)	W_2 (Watts)	$W= W_1 + W_2$

THEORITICAL CALCULATIONS :

For a star connected load

$$\text{Line voltage}(V_L) = V_L/3^{1/2}$$

Line current(I_L) = I_L

$$\emptyset = \tan^{-1} 3^{1/2} (W_1 - W_2) / (W_1 + W_2)$$

$$P = 3^{1/2} V_L I_L \cos \emptyset$$

$$P = W_1 + W_2$$

For a delta connected load

Line voltage(V_L) = V_L

Line current(I_L) = $I_L / 3^{1/2}$

$$\emptyset = \tan^{-1} 3^{1/2} (W_1 - W_2) / (W_1 + W_2)$$

$$P = 3^{1/2} V_L I_L \cos \emptyset$$

$$P = W_1 + W_2$$

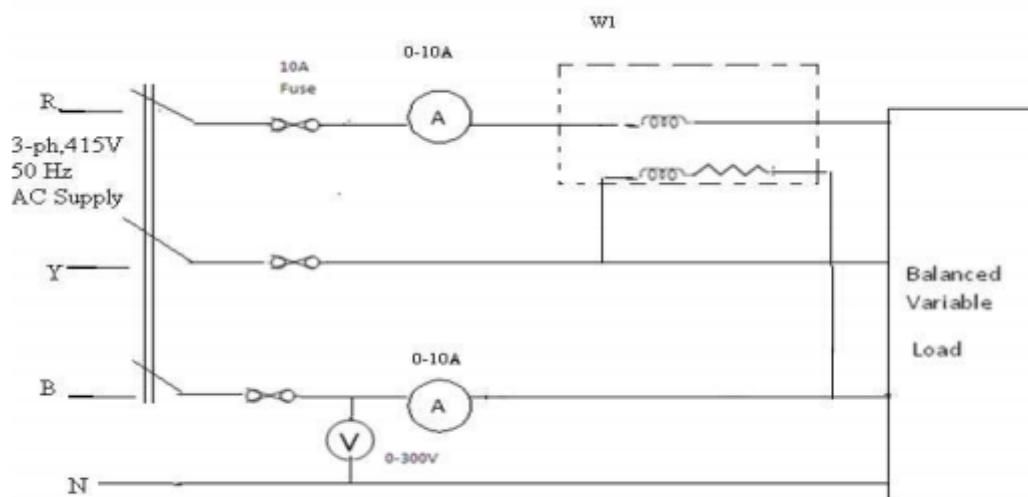
PRECAUTIONS:

1. Avoid making loose connections.
2. Readings should be taken carefully without parallax error.

RESULT:

VIVA QUESTIONS

1. Define active power, reactive power & apparent power.
2. Define power factor?
3. What are the different types of loads?
4. Write the equations of active power, reactive power & apparent power?


9. MEASUREMENT OF REACTIVE POWER FOR STAR AND DELTA CONNECTED BALANCED LOAD

AIM: To measure the reactive power for the given star and delta network.

APPARATUS REQUIRED:

Sl. No.	Name of the Equipment	Range	Type	Quantity
01	Capacitive Load	440V, 1.5KVA	3-Φ	1 NO
02	Auto Transformer	415V/(0-440), (0-20)A	3-Φ	1 NO
03	U.P.F. Wattmeter	(150/300/600) (0-5/10)A	Dynamometer Type	1 NO
04	L.P.F. Wattmeter	(150/300/600)V(0-5/10)A	Dynamometer Type	1 NO
05	Ammeter	(0-10)A	MI	1 NO
06	Voltmeter	(0-600)V	MI	1 NO
07	Connecting Wires	-----	-----	As required

CIRCUIT DIAGRAMS:

THEORY:

A three phase balanced voltage is applied on a balanced three phase load when the current in each of the phase lags by an angle Φ behind corresponding phase voltages. Current through current coil of $W_1=I_R$, current through current coil of $W_2=I_B$, while potential difference across voltage coil of $W_1=V_{RN}-V_{YN}=V_{RY}$ (line voltage), and the potential difference across voltage coil of $W_2=V_{RN}-V_{YN}=V_{BY}$. Also, phase difference between I_R and V_{RY} is $(300+\Phi)$. While that between I_B and V_{BY} is $(300-\Phi)$. Thus reading on wattmeter W_1 is given by $W_1=V_{RY} I_Y \cos(300+\Phi)$. While reading on wattmeter W_2 is given by $W_2=V_{BY} I_B \cos(300-\Phi)$.

Φ) Since the load is balanced, $|I_R|=|I_Y|=|I_B|=I$ and $|V_{RY}|=|V_{BY}|=V_L$ $W_1=V_L I \cos(300+\Phi)$
 $W_2=V_L I \cos(300-\Phi)$.

Thus total power P is given by

$$\begin{aligned} W &= W_1 + W_2 = V_L I \cos(300+\Phi) + V_L I \cos(300-\Phi) \\ &= V_L I [\cos(300+\Phi) + \cos(300-\Phi)] \\ &= [\sqrt{3}/2 * 2 \cos \Phi] V_L I = \sqrt{3} V_L I \cos \Phi \end{aligned}$$

PROCEDURE:

1. Make the Connections as per circuit diagram.
2. Keep the 3-Phase Autotransformer is in minimum output position.
3. Switch on the supply and by slowly varying the autotransformer, rated value is applied to motor.
4. Note down the readings of Ammeter, Voltmeter, Wattmeter's readings (Wr & Wa)
5. After noting the values slowly decrease the Auto Transformer till Volt meter comes to zero voltage position, and switch off the supply.

TABULAR COLUMN:

S.No	Voltage V (Volts)	Line Current I_L (Amps) I	W_1 (Watts)	W_2 (Watts)	$W = W_1 + W_2$

THEORITICAL CALCULATIONS :

Ammeter reading = $I_{ph} =$

Voltmeter reading = $V_{ph} =$

Wattmeter reading (W_a) = Active power / Phase

Wattmeter reading (W_a) =

i.e. total active power = $3 \times W_a$ Total active power = $3 V I \cos \phi = 3 W_a$

$\cos \phi = W_a / VI$

$\sin^2 \phi = 1 - \cos^2 \phi$

Total calculated reactive power = $W_{RC} = 3 V I \sin \phi$

Total measured reactive power = $3 W_r$

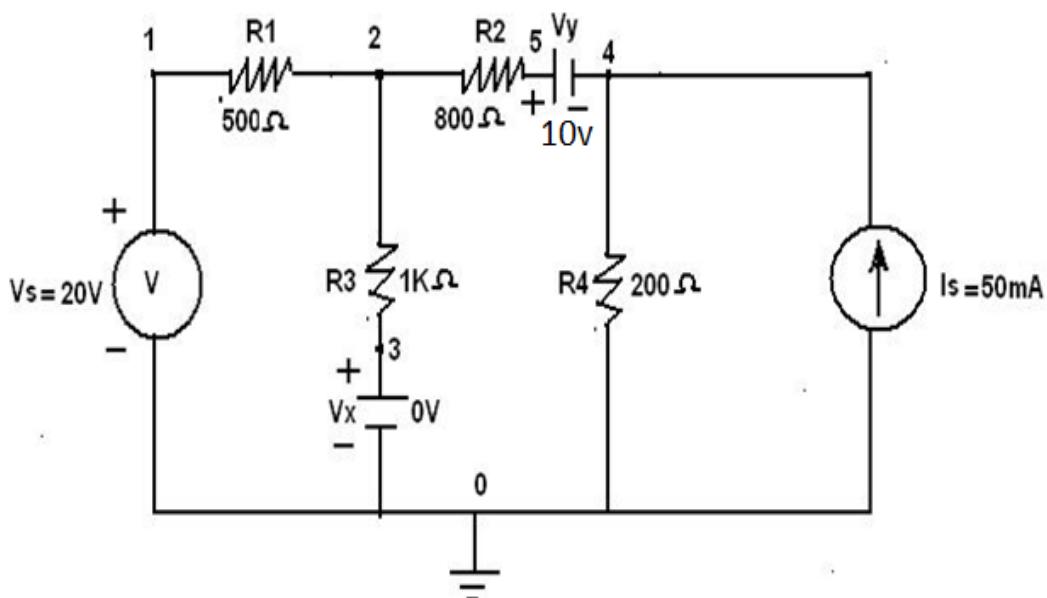
PRECAUTIONS:

1. There should not be any loose connections.
2. Meter readings should not be exceeded beyond their ratings
3. Readings of the meters must be taken without parallax error.
4. Ensure that setting of the Auto Transformer at zero output voltage during starting.

RESULT:

VIVA QUESTIONS

1. Define active power, reactive power & apparent power.
2. Define power factor?
3. What are the different types of loads?
4. Write the equations of active power, reactive power & apparent power.


CYCLE – 2

1. SIMULATION OF DC CIRCUIT

AIM: To obtain the node voltages, branch currents, power of all voltage sources of a given dc circuit by using PSPICE programming.

APPARATUS REQUIRED:

S.No	Name Of The Equipment	Quantity
1	PC	1 NO
2	PSPICE software	1 NO

CIRCUIT DIAGRAM:**THEORY:**

PSPICE is a general-purpose circuit program that simulates electronic circuits. PSPICE can perform various types of analysis of electronic circuits, the operating points of transistors, time domain response, small signal frequency response, etc...

PSPICE contains models for common circuit elements, active as well as passive, and it is capable of simulating most electronic circuits. It is a versatile program and is widely used in industries and universities.

The acronym PSPICE stands for **Personal Simulation Program with Integrated Circuit Emphasis**.

Until recently, PSPICE was available only on mainframe computers. In addition to the initial cost of the computer system, such a machine can be unwieldy and inconvenient for class room use. In 1984, MICROSIM introduced the PSPICE simulator, which is similar to Berkeley PSPICE and runs on an IBM-PC or compatible. It was available at no cost to students for classroom use. PSPICE, therefore widened the scope of the integrated computer aided circuit analysis into electronic circuit courses at the under graduate level. Other versions of PSPICE that will run on computers such as the Macintosh-II, VAX, SUN, and NEC are also available.

PSPICE allows the various types of analysis as follows:

1. DC Analysis:- Calculation of node voltages and branch currents and their quiescent values are the outputs.

Eg:- DC sweep voltage (.DC),

Small-Signal transfer function (Thevenin's equivalent) (.TF)

DC Small-Signal sensitivities (.SENS)

2. Transient Analysis:- Responses of time-invariant systems, DC transient analysis and Fourier analysis

Eg:- Transient responses ____ (.TRAN)

Fourier Analysis ____ (.FOUR)

3. AC Analysis:- (.AC) & (.NOISE) etc.

PSPICE PROGRAM :-

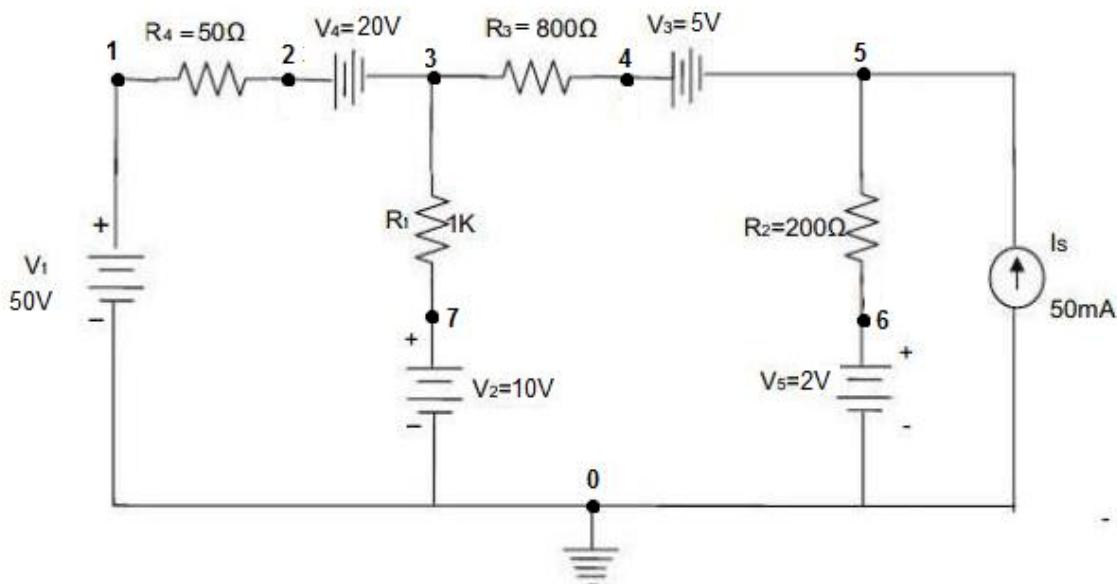
V_S 1 0 DC 20V	: DC Voltage source of 20V between 1& 0 nodes
I_S 0 4 DC 50mA	: DC Current source of 50mA between 4 & 0 nodes
R_1 1 2 500	: Resistance of 500ohms between 1 & 2 nodes
R_2 2 5 800	: Resistance of 800ohms between 5 & 2 nodes
R_3 2 3 1000	: Resistance of 1000ohms between 2 & 3 nodes
R_4 4 0 200	: Resistance of 200ohms between 4 & 0 nodes
V_X 3 0 DC 0V	: DC Voltage source of 0V between 3& 0 nodes
V_Y 5 4 DC 10V	: DC Voltage source of 10V between 5& 4 nodes
.OP	: Directs the bias point to the output file.
.END	: End of the program.

PROCEDURE:

1. Open PSPICE A/D windows
2. Create a new circuit file
3. Enter the program representing the nodal interconnections of various components
4. Run the program
5. Observe the response through all the elements in the output file
6. Observe the required outputs(Graphs) in output window.

RESULT:

VIVA QUESTIONS:


1. How simulation can be used for network analysis?
2. Define network and circuit?
3. What is the difference between unilateral and bilateral network?
4. What is the difference between active elements and passive elements?

2. SIMULATION OF MESH ANALYSIS

AIM: To find the voltage across each resistor, branch currents of a given circuit using mesh analysis by PSPICE Software..

APPARATUS REQUIRED:

S.No	Name Of The Equipment	Quantity
1	PC	1 NO
2	PSPICE software	1 NO

CIRCUIT DIAGRAM:**THEORY:**

PSPICE is a general-purpose circuit program that simulates electronic circuits. PSPICE can perform various types of analysis of electronic circuits, the operating points of transistors, time domain response, small signal frequency response, etc...

PSPICE contains models for common circuit elements, active as well as passive, and it is capable of simulating most electronic circuits. It is a versatile program and is widely used in industries and universities.

The acronym PSPICE stands for **Personal Simulation Program with Integrated Circuit Emphasis**.

Until recently, PSPICE was available only on mainframe computers. In addition to the initial cost of the computer system, such a machine can be unwieldy and inconvenient for class room use. In 1984, MICROSIM introduced the PSPICE simulator, which is similar to Berkeley PSPICE and runs on an IBM-PC or compatible. It was available at no cost to students for classroom use. PSPICE, therefore widened the scope of the integrated computer aided circuit analysis into electronic circuit courses at the under graduate level. Other versions of PSPICE that will run on computers such as the Macintosh-II, VAX, SUN, and NEC are also available.

PSPICE allows the various types of analysis as follows:

1. DC Analysis:- Calculation of node voltages and branch currents and their quiescent values are the outputs.

Eg:- DC sweep voltage (.DC),

Small-Signal transfer function (Thevenin's equivalent) (.TF)

DC Small-Signal sensitivities (.SENS)

2. Transient Analysis:- Responses of time-invariant systems, DC transient analysis and Fourier analysis

Eg:- Transient responses ____ (.TRAN)

Fourier Analysis ____ (.FOUR)

3. AC Analysis:- (.AC) & (.NOISE) etc.

PSPICE PROGRAM :-

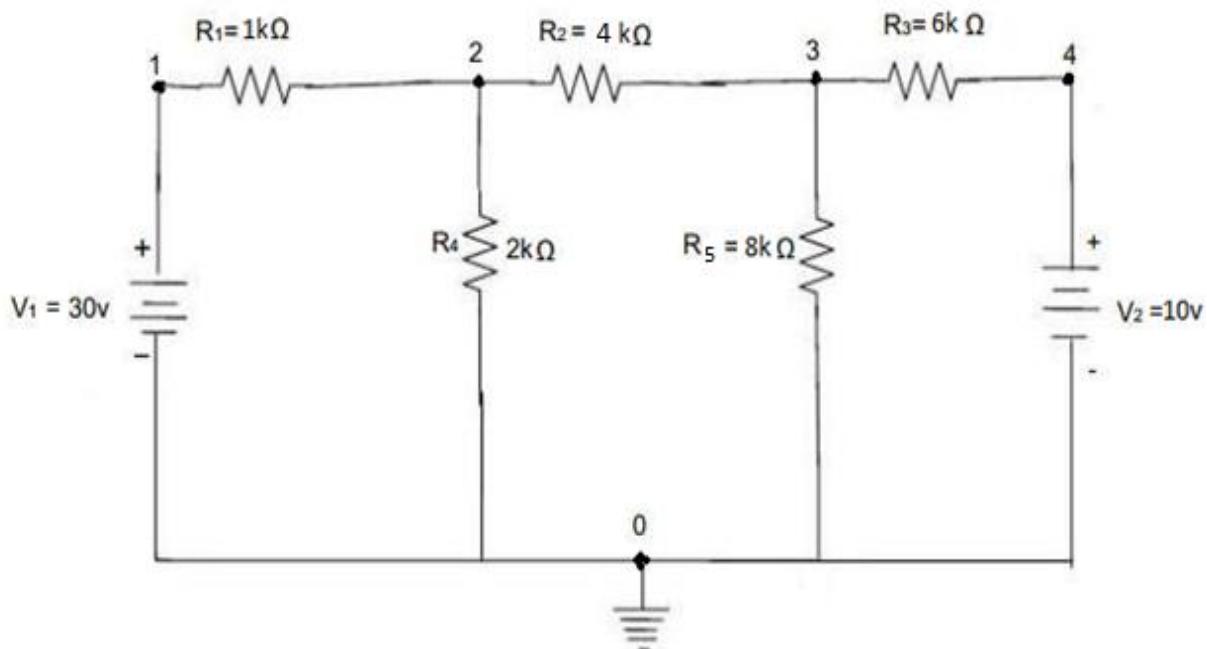
V ₁ 1 0 DC 50V	: DC Voltage source of 50V between 1& 0 nodes
V ₂ 7 0 DC 10V	: DC Voltage source of 10V between 7& 0 nodes
V ₃ 4 5 DC 5V	: DC Voltage source of 5V between 4& 5 nodes
V ₄ 2 3 DC 20V	: DC Voltage source of 20V between 2& 3 nodes
V ₅ 6 0 DC 2V	: DC Voltage source of 2V between 6& 0 nodes
I _s 5 0 50mA	: DC Current source of 50mA between 5& 0 nodes
R ₁ 3 7 1k	: Resistance of 1000ohms between 3 & 7 nodes
R ₂ 5 6 200	: Resistance of 200ohms between 5 & 6 nodes
R ₃ 3 4 800	: Resistance of 800ohms between 3 & 4 nodes
R ₄ 1 2 50	: Resistance of 50ohms between 1 & 2 nodes
.OP	: Directs the bias point to the output file.
.END	: End of the program.

PROCEDURE:

1. Open PSPICE A/D windows
2. Create a new circuit file
3. Enter the program representing the nodal interconnections of various components
4. Run the program
5. Observe the response through all the elements in the output file
6. Observe the required outputs(Graphs) in output window.

RESULT:

VIVA QUESTIONS:


1. Define Kirchhoff's Voltage law?
2. For which type of circuits Mesh Analysis can be used ?
3. What is the difference between planar and non-planar?
4. When there is a current source between two loops which method is preferred?
5. Kirchhoff's laws can not applied at_____?

3. SIMULATION OF NODAL ANALYSIS

AIM: To find the node voltages, branch currents of a given circuit using nodal analysis by PSPICE Software.

APPARATUS REQUIRED:

S.No	Name Of The Equipment	Quantity
1	PC	1 NO
2	PSPICE software	1 NO

CIRCUIT DIAGRAM:**THEORY:**

PSPICE is a general-purpose circuit program that simulates electronic circuits. PSPICE can perform various types of analysis of electronic circuits, the operating points of transistors, time domain response, small signal frequency response, etc...

PSPICE contains models for common circuit elements, active as well as passive, and it is capable of simulating most electronic circuits. It is a versatile program and is widely used in industries and universities.

The acronym PSPICE stands for **Personal Simulation Program with Integrated Circuit Emphasis**.

Until recently, PSPICE was available only on mainframe computers. In addition to the initial cost of the computer system, such a machine can be unwieldy and inconvenient for class room use. In 1984, MICROSIM introduced the PSPICE simulator, which is similar to Berkeley PSPICE and runs on an IBM-PC or compatible. It was available at no cost to students for classroom use. PSPICE, therefore widened the scope of the integrated computer aided circuit analysis into electronic circuit courses at the under graduate level. Other versions of PSPICE that will run on computers such as the Macintosh-II, VAX, SUN, and NEC are also available.

PSPICE allows the various types of analysis as follows:

1. DC Analysis:- Calculation of node voltages and branch currents and their quiescent values are the outputs.

Eg:- DC sweep voltage (.DC),

Small-Signal transfer function (Thevenin's equivalent) (.TF)

DC Small-Signal sensitivities (.SENS)

2. Transient Analysis:- Responses of time-invariant systems, DC transient analysis and Fourier analysis

Eg:- Transient responses ____ (.TRAN)

Fourier Analysis ____ (.FOUR)

3. AC Analysis:- (.AC) & (.NOISE) etc.

PSpice Program :-

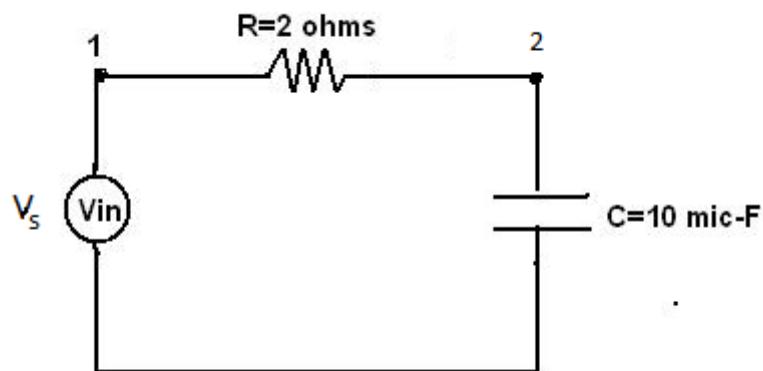
V ₁ 1 0 DC 30V	: DC Voltage source of 30V between 1 & 0 nodes
V ₂ 4 0 DC 10V	: DC Voltage source of 10V between 4 & 0 nodes
R ₁ 1 2 1000	: Resistance of 1000ohms between 1 & 2 nodes
R ₂ 2 3 4000	: Resistance of 800ohms between 5 & 2 nodes
R ₃ 3 4 6000	: Resistance of 6000ohms between 2 & 3 nodes
R ₄ 2 0 2000	: Resistance of 200ohms between 4 & 0 nodes
R ₅ 3 0 8000	: Resistance of 200ohms between 3 & 0 nodes
.OP	: Directs the bias point to the output file.
.END	: End of the program.

PROCEDURE:

1. Open PSPICE A/D windows
2. Create a new circuit file
3. Enter the program representing the nodal interconnections of various components
4. Run the program
5. Observe the response through all the elements in the output file
6. Observe the required outputs(Graphs) in output window.

RESULT:

VIVA QUESTIONS:


1. Define Kirchhoff's Current law?
2. For which type of circuits Nodal Analysis can be used?
3. How many nodes are taken as reference nodes in a nodal analysis?
4. When there is only voltage source between two nodes which method is preferred?

4. SIMULATION OF DC TRANSIENT RESPONSE**I. SERIES RC CIRCUIT**

AIM: To obtain the simulation result of a given series RC circuit with different inputs using PSPICE programming.

APPARATUS REQUIRED:

S.No	Name Of The Equipment	Quantity
1	PC	1 NO
2	PSPICE software	1 NO

CIRCUIT DIAGRAM:**THEORY:**

PSPICE is a general-purpose circuit program that simulates electronic circuits. PSPICE can perform various types of analysis of electronic circuits, the operating points of transistors, time domain response, small signal frequency response, etc...

PSPICE contains models for common circuit elements, active as well as passive, and it is capable of simulating most electronic circuits. It is a versatile program and is widely used in industries and universities.

The acronym PSPICE stands for **Personal Simulation Program with Integrated Circuit Emphasis**.

Until recently, PSPICE was available only on mainframe computers. In addition to the initial cost of the computer system, such a machine can be unwieldy and inconvenient for class room use. In 1984, MICROSIM introduced the PSPICE simulator, which is similar to Berkeley PSPICE and runs on an IBM-PC or compatible. It was available at no cost to students for classroom use. PSPICE, therefore widened the scope of the integrated computer aided circuit analysis into electronic circuit courses at the under graduate level. Other versions of PSPICE that will run on computers such as the Macintosh-II, VAX, SUN, and NEC are also available.

PSPICE allows the various types of analysis as follows:

1. DC Analysis:- Calculation of node voltages and branch currents and their quiescent values are the outputs.

Eg:- DC sweep voltage (.DC),

Small-Signal transfer function (Thevenin's equivalent) (.TF)

DC Small-Signal sensitivities (.SENS)

2. Transient Analysis:- Responses of time-invariant systems, DC transient analysis and Fourier analysis

Eg:- Transient responses ____ (.TRAN)

Fourier Analysis ____ (.FOUR)

3. AC Analysis:- (.AC) & (.NOISE) etc.

PSPICE PROGRAM:

a) Pulse Input:-

V _S 1 0 pulse (-5 5 IN IN 1M 2M)	: Pulse input with specifications
R 1 2 2	: Resistance of 2ohms between 1 & 2 points
C 2 0 10U	: Capacitance of 10 micro-F between 2 & 0 points
.TRAN IN 4M	: Transient response of RC circuit
.PROBE	: Representation in graphs
.END	: End of the program

b) Step Input:-

V _S 1 0 PWL(0 0 100N 1)	: Step input with specifications
R 1 2 2	: Resistance of 2ohms between 1 & 2 points
C 2 0 10U	: Capacitance of 10micro-F between 2 & 0 points
.TRAN IN 4M	: Transient response of RC circuit
.PROBE	: Representation in graphs
.End	: End of the program

c) Sinusoidal Input:-

V _S 1 0 SIN(0 10 1K)	: Sinusoidal input with specifications
R 1 2 2	: Resistance of 2 ohms between 1 & 2 points
C 2 0 10U	: Capacitance of 10 micro-F between 2 & 0 points
.TRAN IN 4M	: Transient response of RC circuit
.END	: End of the program

d) Exponential Input:-

V _S 1 0 EXP(0.5 1 0.1N 1 1.5N)	: Exponential input with specifications
R 1 2 2	: Resistance of 2ohms between 1 & 2 points
C 3 0 50U	: Capacitance of 10 micro-F between 2 & 0 points

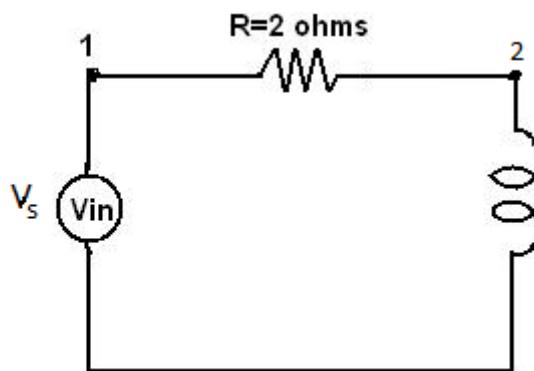
.TRAN IN 4M : Transient response of RC circuit
.PROBE : Representation in graphs
.END : End of the program

PROCEDURE:

1. Open PSPICE A/D windows
2. Create a new circuit file
3. Enter the program representing the nodal interconnections of various components
4. Run the program
5. Observe the response through all the elements in the output file
6. Observe the required outputs(Graphs) in output window.

RESULT:

VIVA QUESTIONS:


1. Define transient state response?
2. What are the methods of analysis in DC transients?
3. A square wave is fed to an RC circuit then output voltage across resistance is?
4. A square wave is fed to an RC circuit then output voltage across capacitance is?
5. In a series RC circuit at steady state capacitor C acts as?

4. SIMULATION OF DC TRANSIENT RESPONSE**II. SERIES RL CIRCUIT**

AIM: To obtain the simulation result of a given series RL circuit with different inputs using PSPICE programming.

APPARATUS REQUIRED:

S.No	Name Of The Equipment	Quantity
1	PC	1 NO
2	PSPICE software	1 NO

CIRCUIT DIAGRAM:**THEORY:**

PSPICE is a general-purpose circuit program that simulates electronic circuits. PSPICE can perform various types of analysis of electronic circuits, the operating points of transistors, time domain response, small signal frequency response, etc...

PSPICE contains models for common circuit elements, active as well as passive, and it is capable of simulating most electronic circuits. It is a versatile program and is widely used in industries and universities.

The acronym PSPICE stands for **Personal Simulation Program with Integrated Circuit Emphasis**.

Until recently, PSPICE was available only on mainframe computers. In addition to the initial cost of the computer system, such a machine can be unwieldy and inconvenient for class room use. In 1984, MICROSIM introduced the PSPICE simulator, which is similar to Berkeley PSPICE and runs on an IBM-PC or compatible. It was available at no cost to students for classroom use. PSPICE, therefore widened the scope of the integrated computer aided circuit analysis into electronic circuit courses at the under graduate level. Other versions of PSPICE that will run on computers such as the Macintosh-II, VAX, SUN, and NEC are also available.

PSPICE allows the various types of analysis as follows:

1. **DC Analysis**:- Calculation of node voltages and branch currents and their quiescent values are the outputs.

Eg:- DC sweep voltage (.DC),
 Small-Signal transfer function (Thevenin's equivalent) (.TF)
 DC Small-Signal sensitivities (.SENS)

2. Transient Analysis:- Responses of time-invariant systems, DC transient analysis and Fourier analysis

Eg:- Transient responses ____ (.TRAN)
 Fourier Analysis ____ (.FOUR)

3. AC Analysis:- (.AC) & (.NOISE) etc.

PSpice Program:

a) Pulse Input:-

<code>V_S 1 0 pulse (-5 5 IN IN 1M 2M)</code>	: Pulse input with specifications
<code>R 1 2 2</code>	: Resistance of 2ohms between 1 & 2 points
<code>L 2 0 50U</code>	: Inductance of 50 micro-F between 2 & 0 points
<code>.TRAN IN 4M</code>	: Transient response of RL circuit
<code>.PROBE</code>	: Representation in graphs
<code>.END</code>	: End of the program

b) Step Input:-

<code>V_S 1 0 PWL(0 0 100N 1)</code>	: Step input with specifications
<code>R 1 2 2</code>	: Resistance of 2ohms between 1 & 2 points
<code>L 2 0 50U</code>	: Inductance of 50 micro-F between 2 & 0 points
<code>.TRAN IN 4M</code>	: Transient response of RL circuit
<code>.PROBE</code>	: Representation in graphs
<code>.End</code>	: End of the program

c) Sinusoidal Input:-

<code>V_S 1 0 SIN(0 10 1K)</code>	: Sinusoidal input with specifications
<code>R 1 2 2</code>	: Resistance of 2 ohms between 1 & 2 points
<code>L 2 0 50U</code>	: Inductance of 50 micro-F between 2 & 0 points
<code>.TRAN IN 4M</code>	: Transient response of RL circuit
<code>.END</code>	: End of the program

d) Exponential Input:-

<code>V_S 1 0 EXP(0.5 1 0.1N 1 1.5N)</code>	: Exponential input with specifications
<code>R 1 2 2</code>	: Resistance of 2ohms between 1 & 2 points

L 2 0 50U	: Inductance of 50 micro-F between 2 & 0 points
.TRAN IN 4M	: Transient response of RL circuit
.PROBE	: Representation in graphs
.END	: End of the program

PROCEDURE:

1. Open PSPICE A/D windows
2. Create a new circuit file
3. Enter the program representing the nodal interconnections of various components
4. Run the program
5. Observe the response through all the elements in the output file
6. Observe the required outputs (Graphs) in output window.

RESULT:

VIVA QUESTIONS:

1. Define steady state response?
2. In a series RL circuit at steady state inductor L acts as?
3. In a series RL circuit at $t=0^+$ inductor L acts as?
4. A square wave is fed to an RL circuit then output voltage across inductance is?