Code No: **R17A0401**

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Supplementary Examinations, April 2023

Electronic Devices and Circuits

(EEE, ECE, CSE & IT)

Time: 3 hours

2

Max. Marks: 70

R17

Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

- 1 A The reverse saturation current of a germanium diode is 100μ A at room [7M] temperature of 27^{0} C. Calculate the current in forward biased condition, if forward bias voltage is 0.2V at room temperature. If temperature is increased by 20^{0} C, calculate the reverse saturation current and the forward current for same forward voltage at new temperature
 - **B** Explain the operation of Zener diode and explain how it act as voltage [7M] regulator in detail.

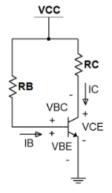
OR

- A(i) Compare Zener and Avalanche break downs[7M]
 - (ii) Determine the value of forward current in the case of p-n junction silicon diode with $I_0 = 10 \ \mu A$, $V_f = 0.8V$, T= 300 K.
- *B* Explain in detail about the forward and reverse biased conditions of p-n [7M] junction diode and also explain about the estimation of static and dynamic resistances.

SECTION-II

- 3 A Derive the expression for the following parameters [7M] (i)I_{DC} (ii) E_{DC} (iii) I_{rms} (iv) efficiency (v) ripple factor of a Full-wave-rectifier.
 - **B** A 230 V, 50Hz voltage is applied to the primary of a 3:1 step down [7M] transformer used in a Half wave rectifier having a load of 10K Ω . If the diode resistance and the secondary coil resistance are 75 Ω and 10 Ω , determine maximum, average and RMS values of current, DC voltage across the load, efficiency, ripple factor.

OR


- 4 A Derive the expression for the following parameters [6M]
 (i)I_{DC} (ii) E_{DC} (iii) I_{rms} (iv) efficiency (v) ripple factor of a Half Wave rectifier.
 B A centre tapped full wave rectifier circuit the RMS half secondary voltage is
 - **3** A centre tapped full wave rectifier circuit the RMS half secondary voltage is 9V assuming ideal diodes and load resistance $R_L = 1K\Omega$. Calculate

y assuming root and roug resistance R _L - Tree. Calculate				
i)	Peak Curent	[2M]		
ii)	DC load Voltage	[2M]		
iii)	I _{rms}	[2M]		
iv)	ripple factor	[2M]		

SECTION-III

5	A	For a certain transistor I_C = 5.255mA, I_B =100 μA and I_{CBO} = 5 μA	[7M]
		(i) calculate α , β and I _E .	
		(ii) Detrmine the new level of I_B required to make $I_C = 15 \text{ mA}$	
	B	Explain in detail about the operation of Transistor in CB configuration with	[7M]
		suitable diagrams.	
		OR	
6	A	For a single-stage Transistor Amplifier, $R_S = 2 \text{ k}\Omega$ and $R_L = 5 \text{ k}\Omega$. The <i>h</i> -	[7M]
		parameter values are $h_{\rm fb} = 0.98$, $h_{\rm ib} = 21\Omega$, $h_{\rm rb} = 2.9 \times 10^{-4}$ and $h_{\rm ob} = 0.49$	
		μ A/V. Find A _I , A _V , R _i and R _o for CB transistor configuration	
	B	Differentiate CB, CE, CC configurations on indicating all parameters	[7 M]
		necessary and with suitable basic diagrams of configurations.	
		SECTION-IV	
7	\boldsymbol{A}	Define biasing? Draw the Self bias circuit and obtain the expression for the	[7M]

- 7 A Define biasing? Draw the Self bias circuit and obtain the expression for the [7M] stability factor?
 - B

For circuit shown is subjected to temperature change ; and the value of $\beta = 100$ at 25^{0} C and $\beta = 125$ at 75^{0} C determine the percentage change in the Q-point values over the temperature range .

OR

8	\boldsymbol{A}	What is the need for biasing and explain the DC and AC load line analysis	[7 M]
		for Q- point identification	
	B	Design a collector to base bias circuit using silicon transistor to achieve a	[7M]
		stability factor of 20, with the following specifications:	
		$V_{CC} = 16V, V_{BE} = 0.7V, V_{CEQ} = 8V, Icq=4ma \& \beta=50$	
		SECTION-V	
9	\boldsymbol{A}	Explain the construction and operation of JFET with its characteristics and	[7 M]
		explain the different regions in VI characteristics?	
	B	Analyze the operation of FET with fixed bias and derive the values of Input	[7 M]
		impedance, output impedance, voltage gain.	
		OR	
10	\boldsymbol{A}	Explain the construction & operation of a n-channel MOSFET in	[7 M]
		enhancement and depletion modes with the help of static drain characteristics	
		and transfer characteristics?	
	B	Compare BJT and FET and list our their advantages and disadvantages.	[7M]

[7M]