Code No: R17A0261

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

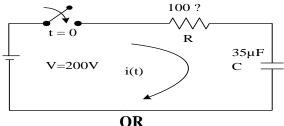
(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Supplementary Examinations, April 2023 Electrical Technology

(ECE)												
Roll No												

Time: 3 hours Max. Marks: 70

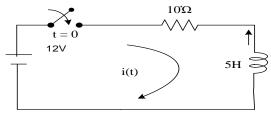
Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.



SECTION-I

1 A Define the time constant of a series RC, RL and RLC circuit?

[7M]


B A series RC circuit with $R=100\Omega$ and $C=35\mu f$ is supplied by a DC voltage V=200V find the current assuming that there is no initial charge on the capacitor?

2 A Explain the transient response of series RL circuit for DC excitation?

[**7M**]

B In the circuit shown in fig .switch is closed at t=0 obtain the expression for the current in the current in the circuit and find at t=0.25sec [7M]

SECTION-II

- **3** A Explain Hybrid parameters? Explain the condition for Reciprocity and [10M] symmetry?
 - **B** Express H parameters in terms of Transmission parameters?

[4M]

OR

- 4 A Show that, when two 2-port networks N1 and N2 are connected in cascade [10M] the equivalent ABCD parameters of the combined network is the product of ABCD Parameters of each, individual 2 port Network
 - **B** What are the applications of two port Networks?

[4M]

SECTION-III

- 5 A Define Attenuator? What is the difference between Attenuator and filter? [4M] What are the applications of Attenuator?
 - **B** Define High pass filter? Explain High pass filter and derived T-section and [10M]

 π -section filter?

		n-section inter:											
		OR											
6	\boldsymbol{A}	Define Filter? Explain classification of Filters. Mention its advantages and	[7M]										
		disadvantages?											
	\boldsymbol{B}	Define Pass Band and Stop Band filters and Explain Characteristic	[7M]										
		Impedance in the Pass and Stop band filters?											
		SECTION-IV											
7	\boldsymbol{A}	A Define Resonance? Explain parallel resonance of the circuits?											
	\boldsymbol{B}												
		is equal to the potential difference across the capacitor .Find the resistance											
		and inductance of the coil											
		OR											
8	\boldsymbol{A}	Define Locus diagrams? Explain Locus diagram of a series RLC Circuits?	[7M]										
	\boldsymbol{B}	A series RLC circuit which resonates at 500kHz has R=25 Ω , L=100 μ H and C=1000pF.Determine the quality factor ,new value of C required											
		To resonate at 500kHz when the value of L is doubled, and the new quality											
		factor											
		SECTION-V											
9	\boldsymbol{A}	Explain principle of operation of DC Machine with a neat sketch?	[7M]										
	\boldsymbol{B}	Derive EMF equation for DC generator?	[7M]										
OR													
10	\boldsymbol{A}	Explain speed control methods for dc shunt motor?	[7M]										
	\boldsymbol{B}	A 6 pole lap wound shunt motor has 500 conductors'. The armature and	[7M]										
		shunt field resistances are 0.05Ω and 25Ω respectively .Find the speed of the											
		motor if it takes 120A from a d.c supply of 100V.Flux per pole is 20mwb.											
