Code No: R18A0023

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Supplementary Examinations, April 2023

Mathematics-III

Roll No										

Time: 3 hours

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION – I

1 A) Obtain the Fourier series for the function $f(x) = x^2 in (-\pi, \pi)$ [7M]

1 B) Express f(x) = 1 as Half range Fourier cosine series in $(0, \pi)$ [7M]

(OR)

2) Find the half - range sine series for $f(x) = \begin{cases} 2x & ; 0 < x < 1 \\ 4 - 2x & ; 1 < x < 2 \end{cases}$ [14M]

SECTION – II

3 A) Using Fourier Cosine integral, show that $\int_0^\infty \frac{\cos\lambda}{a^2+\lambda^2} d\lambda = \frac{\pi}{2a} e^{-ax}$ [7M] 3 B) Find the finite Fourier Sine transform of f(x) = 2x; 0 < x < 4 [7M]

(OR)

4) Find Fourier Sine transform of e^{-ax} , a > 0 Hence deduce inverse transform formula [14M]

SECTION – III

5 A)Find k such that $f(z) = e^{x}(\cosh y + i\sinh y)$ is an analytic function [7M] 5 B) Using Integral formula, evaluate $\int \frac{e^{2z}}{(z-1)(z-2)} dz$ over the circle |z| = 3[7M] (OR)

6 A) Find f(z) in terms of z whose real part is $e^x (x \cos y - y \sin y)$ [7M]

6 B) Evaluate $\int [(y^2 + 2xy)dx + (x^2 - 2xy)dy]$ along the boundary of the region Bounded by $y = x^2$ and $x = y^2$ [7M]

SECTION – IV

7 A) Expand $f(z) = \frac{5z+7}{(z+3)(z+2)}$ in the region |z| < 2 [7M] 7 B)Using Residue theorem, evaluate $\int \frac{4-3z}{z(z-1)(z-2)} dz$ over the circle |z| = 1.5 [7M]

Max. Marks: 70

(**OR**)

8) Using residue theorem, evaluate $\int_0^{2\pi} \frac{\cos 2\theta}{5+4\cos \theta} d\theta$ using residue theorem.[14M]

$\boldsymbol{SECTION-V}$

9 A) Find the image of the circle |z| = 2 under the transformation w = 2z [7M] 9 B) Find the bilinear transformation which maps the points 1, i, -1 into the [7M] points i, 0, -i

(**OR**)

10 A) Find the image of infinite strip $0 < y < \frac{1}{2}$ under the transformation $w = \frac{1}{z} [7M]$ 10 B) Under the transformation |w| = 1 find the image of the circle |z| = 1 [7M]

