Code No: **R18A0403** MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Supplementary Examinations, April 2023

Probability Theory and stochastic Process

(ECE)

Roll No

Time: 3 hours

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

- 1 A State and prove Bayes Theorem
 - Define the terms outcome, event, sample space, mutually exclusive events. B [7M] Consider the experiment of rolling of two fair dice simultaneously and represent its sample space. Also give examples of terms mentioned above related to this experiment.

OR

- 2 Two dice are thrown. The square of the sum of the points appearing on the two [7M] A dice is a random variable X. Determine the values taken by X, and the corresponding probabilities.
 - Distinguish between discrete, continuous and mixed random variables with B [7M] suitable examples.

SECTION-II

3	\boldsymbol{A}	Define conditional probability distribution function and write the properties.	[7M]
	B	State and prove the properties of probability density function	[7M]
4	A	Explain Gaussian random variable with neat sketches?	[7M]
	B	State and prove the properties of cumulative distribution function (CDF) of SECTION-III	[7M]
5	\boldsymbol{A}	Write all the properties of joint density function.	[7 M]
	B	A joint probability density function is	[7M]
		$f_{x,y}(x,y) = \frac{1}{24}$ $0 < x < 6, 0 < y < 4$	
		0 else where	
		Find the expected value of the function $g(X,Y)=(XY) 2$	
		OR	
6	\boldsymbol{A}	For two random variables X and Y	[10M]
		$f_{x,y}(x,y) = 0.15\delta(x+1)\delta(y) + 0.1\delta(x)\delta(y) + 0.1\delta(x)$	
		$\delta(y-2)+0.4\delta(x-1)\delta(y+2)+$	
		$0.2 \delta(x-1)\delta(y-1) + 0.5 \delta(x-1)\delta(y-3)$	

Find the correlation coefficients of X and Y

B Joint Sample Space has three elements (1, 1), (2, 2), and (3, 3) with [4M]

[7M]

Max. Marks: 70

probabilities 0.4, 0.3, 0.3 respectively then draw the Joint Distribution Function diagram.

SECTION-IV

- 7 Classify random processes and explain [**4M**] A A random process is defined as $X(t) = ACos(\omega_0 t + \Theta)$, where Θ is a uniformly [10M] B distributed random variable in the interval (0, π /2). Check for its wide sense stationarity? A and ω_0 are constants. OR A random process $Y(t) = X(t) - X(t + \tau)$ is defined in terms of a process X(t). 8 A [5M] That is at least wide sense stationary. a) Show that mean value of Y(t) is 0 even if X(t) has a non Zero mean value. B [9M] b) If $Y(t) = X(t) + X(t + \tau)$ find E[Y(t)] and σ_Y^2 . **SECTION-V** 9 The auto correlation function of a random process X(t) is [14M] X(t) is $R_{XX}(\tau) = 3+2 \exp(-4\tau^2)$. a) Evaluate the power spectrum and average power of X(t). b) Calculate the power in the frequency band $-1/\sqrt{2} < \omega < 1/\sqrt{2}$ OR 10 Obtain the average power in the random process $X(t) = A\cos(\omega_0 t + \theta)$ where A, [7M] A
 - range (0, 2π).B Define cross power density spectrum and write its properties [7M]

 ω_0 are real constants and θ is a random variable uniformly distributed in the

Page 2 of 2