II B.Tech I Semester Supplementary Examinations, April 2023 Switching Theory \& Logic Design
(ECE)

Roll No										

Time: 3 hours
Max. Marks: 70
Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

$1 \boldsymbol{A}$ Perform the following addition using 2's complement of 386+756
[4M]
B Given the 8 bit data word 01010011 , generate the 12 bit composite word for [10M] the hamming code that corrects and detects single errors

OR
$2 \boldsymbol{A}$ Convert the given expression in standard SOP form $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{AC}+\mathrm{BA}+\mathrm{BC}$
\boldsymbol{B} What is the difference between canonical form and standard form? Explain

SECTION-II

$3 \boldsymbol{A}$ Simplify the following Boolean expressions using K-map and implement it by using NAND gates.
$F(A, B, C, D)=A B C^{\prime}+A C+A^{\prime} C^{\prime}$
\boldsymbol{B} Simplify the following Boolean expressions using K-map and implement it by using NAND gates.

$$
F(W, X, Y, Z)=w^{\prime} x^{\prime} y^{\prime} z^{\prime}+w x y^{\prime} z^{\prime}+w^{\prime} x^{\prime} y z+w x y z
$$

OR
$4 \quad \boldsymbol{A} \quad$ Design BCD to gray code converter and realize using logic gates.
$\boldsymbol{B} \quad$ Design and implement a two bit comparator using logic gates.

SECTION-III

$\begin{array}{llll}5 & \boldsymbol{A} & \begin{array}{l}\text { Draw the logic diagram of a JK flip- flop and using excitation table explain } \\ \text { its operation }\end{array} & {[7 M]}\end{array}$
B Convert D flip-flop into JK flip-flops.
OR
$\begin{array}{llll}6 & \boldsymbol{A} & \begin{array}{l}\text { Draw the logic diagram of a SR latch using NOR gates. Explain its Operation } \\ \text { using excitation table. }\end{array} & {[7 \mathbf{M}]}\end{array}$

SECTION-IV

$7 \quad \boldsymbol{A} \quad$ What is a Universal shift register and explain the operation with neat sketch.
\boldsymbol{B} Explain how a shift register is used as a converter from i) serial to parallel data and ii) parallel to serial data

OR
$8 \quad \boldsymbol{A} \quad$ How does ripple counter differ from synchronous counter?
B Design Mod-10 Asynchronous counter.

SECTION-V

9 A Convert the following Mealy machine into equivalent Moore machine. Draw the state transition diagrams for both.

P.S	N.S			
	A		B	
	state	o/p	state	o/p
Q1	Q1	1	Q2	0
Q2	Q4	1	Q4	1
Q3	Q2	1	Q3	1
Q4	Q3	0	Q1	1

B Compare Mealy and Moore Machines
OR
$10 \quad \boldsymbol{A} \quad$ Explain about state diagrams \& state tables
B With the help of State table and State diagram explain the operation of Sequence generator.

