R20

Max. Marks: 70

Code No: **R20A0262** MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) **II B.Tech I Semester Supplementary Examinations, July/August 2023 Network Analysis & Transmission Lines**

Poll No

ime: 3 hours

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks. ***

SECTION-I

1

Find i2(t) by Laplace transform method.

2 Explain the source free series RL circuit and derive the expression for i(t) A [7M] by direct method. State and prove the initial value theorem. B [7M] SECTION-II Find the condition for reciprocity of a two-port network in terms of ABCD 3 A [7M] parameters. Obtain the relation between Y and Z parameters. B [7M] OR 4 A The Z parameters of a 2 port network are Z11=20, Z22=30, Z12=Z21=10[7M] find the 'y' parameters of the network. Derive the relationship between Z parameters and h parameters. B [7M] **SECTION-III** 5 A series RLC resonant circuit includes 1μ Fcapacitor, a resistance of 16Ω . If A [7M] the bandwidth is 500 rad/sec. Determine: i) Wr ii) O iii) L Explain the procedure to draw the root locus diagram of RL series circuit [7M] B when R is varying? OR A series RLC circuit with R=100 Ω , L = 0.5H, C=40 μ F has an applied 6 [14M] voltage of $100 \angle 0^0$ with variable frequency. Calculate the resonance frequency, current at resonance and voltage across R, L, and C. Also calculate the Q-factor, upper and lower cutoff frequencies. **SECTION-IV** 7 Classify and explain the different types of loading of lines. A [7M] B Define Propagation coefficient, phase distortion, reflection factor. [7M] Page 1 of 2

[14M]

8	\boldsymbol{A}	Derive the Campbell's formula for propagation constant of a loaded line?	[7M]
	B	Calculate the load reflection coefficient of open and short circuited lines?	[7M]
		SECTION-V	
9	\boldsymbol{A}	Explain about $\lambda/8$ wave transformer?	[7M]
	B	Explain about $\lambda/4$ wave transformer?	[7M]
		OR	
10		A 30 m long lossless transmission line with characteristic impedance (zo)	[14M]
		of 50 ohm is terminated by a load impedance $(ZL) = 60 + j40$ ohm. The	
		operating wavelength is 90m. find the input impedance and SWR using	
		smith chart?	
