II B.Tech I Semester Supplementary Examinations, July/August 2023 Signals and Systems
(ECE)

Roll No										

Time: 3 hours
Max. Marks: 70
Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

Define unit step, unit impulse, ramp and exponential signals. Write the relationship between the unit step and unit ramp functions.
B Sketch the following signals
(i) $5 x(-2 t+5)$
(ii) $\quad x(2 t+1)$

Where $x(t)$ is given in Fig.1.

Fig.1.
OR
2 A train of rectangular pulses, making excursions from zero to one volt has duration of $2 \mu \mathrm{~s}$ and are separated by interval $10 \mu \mathrm{~s}$. Assuming that the center of one pulse is located at $t=0$, obtain the trigonometric Fourier series of pulse train.

SECTION-II

3 A State and prove the following properties of Fourier Transform:
(i) Linearity
(ii) Time Shift
(iii) Frequency Shift

\boldsymbol{B} Find the Fourier transform of the signal shown in Fig. 2.
Fig. 2.
OR
$4 \boldsymbol{A}$ Write the comparative analysis between Fourier Transforms and Fourier Series. Mention their applications in real life.

State and prove sampling theorem and Nyquist criterion for the
B Reconstruction of original signal from its samples.

SECTION-III

$5 \quad \boldsymbol{A} \quad$ Write the Classification of systems based on certain properties.
\boldsymbol{B} Investigate the causality, memory less and stability of system

$$
h(t)=e^{-3|t|}
$$

OR
$6 \quad \boldsymbol{A} \quad$ Explain the filter characteristics of LTI system.
\boldsymbol{B} The input and output of a causal LTI system are related by the differential equation:

$$
\frac{d^{2} y(t)}{d t^{2}}+\frac{6 d y(t)}{d t}+8 y(t)=2 x(t)
$$

Find the impulse response of the system.

SECTION-IV

$7 \quad \boldsymbol{A}$ Explain the significance of convolution and correlation in real world applications. Also develop the relation between them.
$\boldsymbol{B} \quad$ Perform the Convolution: $y(n)=x(n) * h(n)$ where $x(n)=\beta^{n} u(n)$, and $h(n)=\alpha^{n} u(n)$.

OR

$8 \quad \boldsymbol{A}$ Derive the following properties of convolution integral:
(i) Commutative
(ii) Associative
(iii) Distributive
\boldsymbol{B} Derive the power density spectrum of periodic signal.

SECTION-V

$9 \quad \boldsymbol{A}$ Find the Inverse Laplace Transform of

$$
X(S)=\frac{2 S+1}{S+2}
$$

(i) For $\mathrm{ROCRe}(\mathrm{s})>-2$
(ii) For $\operatorname{ROC} \operatorname{Re}(\mathrm{s})<-2$
$\boldsymbol{B} \quad$ State and prove initial and final value theorem in Laplace transform.
OR
10 A Find the Inverse Z Transform of $\mathrm{x}(\mathrm{z})$ where $x(z)=\frac{z}{z^{2}-5 z+6}$
(i) For $|z|>3$
(ii) For $|z|<2$

B State and prove time reversal and frequency differentiation properties of Z-transform.

