Code No: R15A0405 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Supplementary Examinations, April 2023

Electronic Circuit Analysis

(ECE)											
Roll No											

Time: 3 hours

Note: This question paper contains two parts A and B Part A is compulsory which carriers 25 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions,

Choosing ONE Question from each SECTION and each Question carries 10 marks.

PART-A (25 Marks)

1). a	Explain the importance of direct coupling scheme. Give any two examples.	[2M]
b	Define cascode amplifiers and its applications	[3 M]
с	Explain Millers theorem.	[2M]
d	Discuss gain-bandwidth product of amplifier.	[3 M]
e	Explain the effect of negative feed back on the bandwidth of an amplifier.	[2M]
f	Derive gain of positive feedback amplifier	[3 M]
g	Explain briefly about heat sink	[2M]
h	Discuss the applications of Class C power amplifiers.	[3 M]
i	Mention the type's small signal tuned amplifiers.	[2M]
j	Define Q factor.	[3 M]
	PART-B (50 MARKS)	
	<u>SECTION-I</u>	
2	Discuss briefly about distortions in the Amplifier Explain and analyse Darling ton	[10]/[]

2 Discuss briefly about distortions in the Amplifier. Explain and analyse Darling ton **[10M]** pair.

OR

3 Design single stage RC coupled Amplifier of BJT. [10M]

SECTION-II

4 Sketch Hybrid -Pi model of transistor and Derive the relations of hybrid pi **[10M]** conductance in terms of hybrid parameters for the following terms. i) transconductance ii) output conductance.

OR

5 At I_C=1mA and V_{CE}=10V, a certain transistor data shows Cc=Cb'c=3pF, $h_{fe}=200$ [10M] and ω T=500M rad/sec. Calculate gm, rb'e, Ce=Cb'e and f_{β} .

SECTION-III

6 With necessary diagram, explain different feedback configurations. [10M] An amplifier has gain A=1000 and bandwidth of 200kHz. Calculate the gain and bandwidth with feedback if feedback factor β=20%.

Max. Marks: 75

R15

7 Derive the expression for frequency of oscillations of RC phase shift oscillator **[10M]** using BJT and also get the magnitude condition.

SECTION-IV

8 Discuss the classification of power amplifiers. Explain Push pull class B power [10M] amplifier.

OR

9 With neat sketches, explain transformer coupled Class A power amplifier. [10M]

SECTION-V

10 Explain the working of single tuned amplifier with a neat diagram. Draw the **[10M]** frequency response of single tuned amplifier.

OR

11 With a neat diagram, explain working of stagger tuned amplifier with its **[10M]** frequency response.
