Code No: R15A0406

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

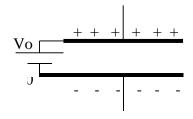
(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Supplementary Examinations, April 2023 Electromagnetic Theory and Transmission Lines

(ECE)											
Roll No											

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B


Part A is compulsory which carriers 25 marks and Answer all questions.

Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

PART-A (25 Marks)

1). a b c d	Define capacitance from the concept of electric field. Discuss the applications of Gauss Law State Biot Savart's law. Derive the integral form of the Maxwell's equation magnetic fields from point	[2M] [3M] [2M] [3M]					
	form of the Maxwell's equation.	[2] [1]					
e f	Write Poynting Theorem.	[2M]					
g	Describe about the propagation of plane waves in lossy dielectrics. What are primary and secondary constants?	[3M] [2M]					
h	Write the condition for distortion less and minimum attenuation.	[3M]					
i	What is the importance of impedance transformation in transmission lines?	[2M]					
j	Derive the relation between VSWR and Reflection Coefficient.	[3M]					
	PART-B (50 MARKS)						
SECTION-I							
2	a) Define electric potential and obtain expression for electric potential due to n-point charges.	[5M]					
	b) An infinitely long uniform line charge is located at y=3, z=5 of PL=30nc/m. Find 'E' at the origin.	[5M]					
	OR						
3	The two plates of parallel plate capacitor are separated by a distance d and maintained at potentials 0V and Vo as shown in the figure. Assuming negligible fringing effects at the edges, determine						
	i) The potential at any point between the plates	[5M]					
	ii) Surface charge density of the plates.	[5M]					

SECTION-II

4 Express Maxwell's equations in dielectric medium in integral forms along with [10M] word statements. OR 5 a) With the help of Ampere's work law find the magnetic field in a closely wound [5M]toroidal coil? b) A toroid has 1000 turns with its inner and outer radii of 10cm and 12cm [5M]respectively, if a current of 2 Ampears produces a flux density of 2 Tesla in the core, find the relative permeability of the core? **SECTION-III** Show that when a plane wave is incident on perfect conductor normally, the 6 [10M] resultant wave is standing wave. OR 7 a) Determine the intrinsic impedance in free space for a uniform plane wave. [5M] b) Determine propagation constant, phase velocity and intrinsic impedance of [5M] uniform plane wave in a good conductor and dielectric materials. **SECTION-IV** Explain the conditions which are used for minimum attenuation in transmission 8 [10M] lines. 9 a) Derive an expression for input impendence of a transmission line terminated [5M] with a load of Z_R b) Characteristic Impendence of a uniform transmission line is $2K\Omega/m$ at 800Hz[5M] and propagation constant is $0.054 \angle 87^{\circ}$ /m find the primary constants. **SECTION-V** 10 a) Describe the construction of smith chart and give its applications. [5M] [5M] b) Explain the significance of Vmax and Vmin position along the transmission line for a complex load Z_R . Calculate the impedance at this position.

OR

11 Explain the technique of the single stub matching and discuss the operation of the [10M] quarter wave transformer.
