Code No: R15A0407

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Supplementary Examinations, April 2023 Switching Theory and Logic Design

(ECE)										
Roll No										

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B

Part A is compulsory which carriers 25 marks and Answer all questions.

Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

PART-A (25 Marks)

1). a	Subtract 111001 from 101011 using 2's complement.	[2M]
b	Convert the following numbers	[3M]
	i) $(41.6875)_{10}$ to binary ii) $(1001001.011)_2$ to decimal	
	iii) Find the 9's Complement of number $(25.639)_{10}$	
c	Draw the logic diagram of 4-bit adder subtractor.	[2M]
d	What is the importance of prime implicants?	[3M]
e	Discuss the disadvantages of level triggering	[2M]
f	Define excitation table. Explain D-flip flop	[3M]
g	Define State diagram and State assignment.	[2M]
h	Draw the logic diagram of a 4 - bit binary ripple counter using positive edge	[3M]
	triggering.	[]
i	Draw the block diagrams of Mealy and Moore state machines.	[2M]
j	Discuss limitations of Finite State Machines.	[3M]
3	PART-B (50 MARKS)	
	SECTION-I	
2	Simplify the following Boolean expressions using Boolean algebra:	[10M]
	i) $AB + AB'C(B'C' + C) + (AC)'$	
	ii) $A'BC' + A'BC + AB'C' + ABC$	
	iii) ABC'D' +ABC'D + ABCD' +ABCD	
	iv) $AB + ABC' + A'BC + ABC$	
	v) ABCD + ABCD' +A'BCD +A'BCD'	
	OR	
3	Implement the following logical expression using AND-OR-INVERTER gates	[10M]
	and also using only NOR gates. A + BC'(D' + BE')	
	SECTION-II	
4	Simplify the Boolean function using K-map	[10M]
	F(A.B, C, D) = A'B'C' + B'CD' + A'BCD' + AB'C'	
	OR	
5	Given F(A,B,C,D)=BC+ABD'+A'C'D. Implement using 8x1 multiplexer.	[10M]

SECTION-III

6	Convert SR Flip-Flop to JK Flip-Flop.	[10M]
	OR	
7	Define race-around problem and discuss how it is eliminated in JK Master-Slave flip-flop.	[10M]
	SECTION-IV	
8	Design a MOD-8 synchronous counter using T Flip-Flops.	[10M]
	OR	
9	Explain the operation of a 4 bit shift register and Johnson counter.	[10M]
	SECTION-V	
10	With an example explain the simplification of incompletely specified machines.	[10M]
	OR	
11	Explain the procedure of state minimization using merger graph and merger table. ***	[10M]