

Time: 3 hours
Max. Marks: 75
Note: This question paper contains two parts A and B
Part A is compulsory which carriers 25 marks and Answer all questions.
Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks. ***

PART-A (25 Marks)

1). a Subtract 111001 from 101011 using 2's complement. [2M]
b Convert the following numbers
i) $(41.6875)_{10}$ to binary ii) $(1001001.011)_{2}$ to decimal
iii) Find the 9 's Complement of number (25.639) ${ }_{10}$
c Draw the logic diagram of 4-bit adder subtractor.
d What is the importance of prime implicants? \quad [3M]
e Discuss the disadvantages of level triggering
f Define excitation table. Explain D-flip flop [3M]
g Define State diagram and State assignment.
[2M]
h Draw the logic diagram of a 4 - bit binary ripple counter using positive edge [3M] triggering.
i Draw the block diagrams of Mealy and Moore state machines.
j Discuss limitations of Finite State Machines.

PART-B (50 MARKS)

SECTION-I
2 Simplify the following Boolean expressions using Boolean algebra:
i) $\mathrm{AB}+\mathrm{AB}^{\prime} \mathrm{C}\left(\mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{C}\right)+(\mathrm{AC})^{\prime}$
ii) $\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{ABC}$
iii) $A B C^{\prime} D^{\prime}+A B C^{\prime} D+A B C D^{\prime}+A B C D$
iv) $A B+A B C^{\prime}+A^{\prime} B C+A B C$
v) $\mathrm{ABCD}+\mathrm{ABCD}+\mathrm{A}^{\prime} \mathrm{BCD}+\mathrm{A}^{\prime} \mathrm{BCD}^{\prime}$

OR
3 Implement the following logical expression using AND-OR-INVERTER gates
[10M]
and also using only NOR gates. $\mathrm{A}+\mathrm{BC}^{\prime}\left(\mathrm{D}^{\prime}+\mathrm{BE}^{\prime}\right)$

SECTION-II

4 Simplify the Boolean function using K-map

$$
\mathrm{F}(\mathrm{~A} . \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{B}^{\prime} \mathrm{CD}^{\prime}+\mathrm{A}^{\prime} \mathrm{BCD}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}
$$

OR
5 Given $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{BC}+\mathrm{ABD}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}$. Implement using 8 x 1 multiplexer.

SECTION-III

6 Convert SR Flip-Flop to JK Flip-Flop.
OR
7 Define race-around problem and discuss how it is eliminated in JK Master-Slave flip-flop.

SECTION-IV

8 Design a MOD-8 synchronous counter using T Flip-Flops.
OR
9 Explain the operation of a 4 bit shift register and Johnson counter.

SECTION-V

10 With an example explain the simplification of incompletely specified machines. [10M]
OR
11 Explain the procedure of state minimization using merger graph and merger table. [10M]
