MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Supplementary Examinations, April 2023 Electromagnetic Theory and Transmission Lines

(ECE)											
Roll No											

Time: 3 hours

Code No: **R17A0406**

Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

*** SECTION-I

	SECTION-1	
1	a) State and prove coulomb's law.	[7M]
	b) Distinguish between conduction and convection currents.	[7M]
	OR	
2	a) An infinitely long uniform line charge is located at y =3, z = 5. If ρ_1 =30 nc/m,	[7M]
	find field E intensity at (i) origin, (ii) P(5,6,1).	
	b) Develop an expression for potential due to dipoles	[7M]
	<u>SECTION-II</u>	
3	a) Starting with Ampere's law, derive Maxwell's equation in integral form based	[7M]
	on this law and obtain the corresponding differential equation by applying Stroke's	
	theorem.	
	b) State and prove the boundary conditions for E and H fields for dielectric-	[7M]
	conductor interface.	
	OR	
4	a) Explain the utility and significance of Ampere's Force Law, and obtain an	[7M]
	expression for the force between two current loops.	
	b) Establish the expressions for the Maxwell's curl equations in differential and	[7M]
	integral forms, for time-varying fields	
	SECTION-III	
5	a) Derive the relationship between E and H field and show that E/H=120 π .	[7M]
	b) What is Brewster angle? What is its significant?	[7M]
	OR	
6	a) A UPW is normally incident from free space onto a perfect conductor medium. Find the resultant reflection coefficients for electric and magnetic fields.	[7M]
	b) Define and distinguish between 'perpendicular' and 'parallel' polarizations,	[7 M]
	when a UPW travelling in air, is obliquely incident on a perfect dielectric, with	
	neat sketches. Also write the related boundary conditions for tangential	
	components of electric fields in both cases	
	SECTION-IV	
7	a) Derive an expression for input impedance at any point in a transmission line.	[7M]
	b) Derive the secondary constants for a loss less transmission line.	[7M]

OR

Using the lossy line equivalent circuit model, derive the transmission line 8 [14M] equations in terms of load parameters.

Page 1 of 2

R17

Max. Marks: 70

SECTION-V

- 9 a) Design a quarter wave transformer section to match a 750hm cable to a load of 150 ohms at 300 MHz, and illustrate the connectivity with a neat sketch. What are its limitations?
 b) Determine the input impedance of the transmission lines of length λ/4, λ/2 and λ/8. Assume if any data is needed.
- a) A telephone line has R=30Ω/Km, L=100mH/Km, G=0 and C=20µF/Km. At f=1 [7M] KHz, determine i) Characteristic Impedance of line ii) Propagation Constant iii) Phase Velocity.
 b) Explain in detail about Smith Chart, its configuration. [7M]
