MALLA REDDY COLLEGE OF ENGINEERING \& TECHNOLOGY (Autonomous Institution - UGC, Govt. of India)
II B.Tech II Semester Supplementary Examinations, April 2023 Electromagnetic Theory and Transmission Lines

Time: 3 hours
Max. Marks: 70
Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I
1 a) State and prove coulomb's law.
b) Distinguish between conduction and convection currents.

OR
2 a) An infinitely long uniform line charge is located at $y=3, z=5$. If $\rho_{\mathrm{l}}=30 \mathrm{nc} / \mathrm{m}$, find field E intensity at (i) origin, (ii) $\mathrm{P}(5,6,1)$.
b) Develop an expression for potential due to dipoles

SECTION-II

3 a) Starting with Ampere's law, derive Maxwell's equation in integral form based on this law and obtain the corresponding differential equation by applying Stroke's theorem.
b) State and prove the boundary conditions for E and H fields for dielectricconductor interface.

OR
4 a) Explain the utility and significance of Ampere's Force Law, and obtain an expression for the force between two current loops.
b) Establish the expressions for the Maxwell's curl equations in differential and integral forms, for time-varying fields

SECTION-III

5 a) Derive the relationship between E and H field and show that $\mathrm{E} / \mathrm{H}=120 \pi$.
b) What is Brewster angle? What is its significant?

OR

6 a) A UPW is normally incident from free space onto a perfect conductor medium.
Find the resultant reflection coefficients for electric and magnetic fields.
b) Define and distinguish between 'perpendicular' and 'parallel' polarizations, when a UPW travelling in air, is obliquely incident on a perfect dielectric, with neat sketches. Also write the related boundary conditions for tangential components of electric fields in both cases

SECTION-IV
7 a) Derive an expression for input impedance at any point in a transmission line.
b) Derive the secondary constants for a loss less transmission line.

OR
8 Using the lossy line equivalent circuit model, derive the transmission line equations in terms of load parameters.

SECTION-V

9 a) Design a quarter wave transformer section to match a 75 ohm cable to a load of 150 ohms at 300 MHz , and illustrate the connectivity with a neat sketch. What are its limitations?
b) Determine the input impedance of the transmission lines of length $\lambda / 4, \lambda / 2$ and $\lambda / 8$. Assume if any data is needed.

OR
10 a) A telephone line has $\mathrm{R}=30 \Omega / \mathrm{Km}, \mathrm{L}=100 \mathrm{mH} / \mathrm{Km}, \mathrm{G}=0$ and $\mathrm{C}=20 \mu \mathrm{~F} / \mathrm{Km}$. At $\mathrm{f}=1$ KHz , determine i) Characteristic Impedance of line ii) Propagation Constant iii) Phase Velocity.
b) Explain in detail about Smith Chart, its configuration.

