Code No: R17A0407 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Supplementary Examinations, April 2023 Switching Theory and Logic Design

(ECE)											
Roll No											

Time: 3 hours

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

*** SECTION-I

	DECTION	
1	Generate Hamming code for the given 11 bit message 10001110101 and rewrite	[14M]
	the entire message with hamming code.	
	OR	
2	Write the decimal numbers 9,6 and 3 in terms of the following weighted binary	
	codes:	
	a) 4,2,2,1	[7M]
	b) 8,4,2,1	[7M]
	<u>SECTION-II</u>	
3	a) Prove that AB'C+B+BD'+ABD'+A'C=B+C.	[7M]
	b) Expand minterms and maxterm AB'+ABD'+A+ABC'D	[7M]
	OR	
4	a) Simplify the following Boolean expression using K- map and implement them	[7 M]
	with NOR logic gates $F(A,B,C,D) = \Sigma m (1,3,7,11,15) + d(0,2,5)$.	
	b). Explain the Boolean algebra theorems and properties.	[7M]
	<u>SECTION-III</u>	
5	What is a full adder? Implement a full adder with multiplexers.	[14M]
	OR	
6	a) Realize the expression $F=\Sigma m(0,1,3,5,8,11,12,14,15)$ using 8×1 MUX.	[7 M]
	b) What is decoder? Implement 3:8 line decoder	[7M]
	<u>SECTION-IV</u>	
7	Explain master slave JK flipflop with neat timing diagram.	[14M]
	OR	
8	a) What are the fundamentals of Sequential machine operation?	[7M]
	b) Discuss about binary cell in detail.	[7M]
	<u>SECTION-V</u>	
9	Design a synchronous counter to count the sequence 0-1-3-5-6-7 using JK Flip-	[14M]
	Flop.	
	OR	
10	a) With a neat block diagram, explain the moore model of a clocked synchronous	[7 M]
	sequential circuit.	
	b) Illustrate partition techniques in sequential circuits.	[7 M]

Max. Marks: 70