Code No: R18A0406 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) II B.Tech II Semester Supplementary Examinations, April 2023

Electromagnetic Fields & Waves

(ECE)										
Roll No										

Time: 3 hours

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

*** SECTION-I

1	a) Find the divergence of A where $\overline{A} = \rho z \sin \phi a_{\rho} + 3\rho z^2 \cos \phi a_{\phi}$. b) Why Coulomb's law is valid to be considered only for static charges? Why not				
	for moving charges?				

OR

2	a) Derive the Relationship between electric field and electric potential.	[7M]
	b) A Charge of -0.3 μ C is located at A (25, -30, 15) (in cm) and a second charge of	
	0.5 µC is at B(-10, 8, 12) cm. Find E at (i) the origin (ii) P(15, 20, 50) cm.	[7M]

SECTION-II

a) State Gauss's law. Using Gauss's law, derive an expression for electric field [7M] intensity due to an infinite line charge.
b) Derive expression for Poisson's and Laplace's Equations. [7M]

OR

a) State and derive the Maxwell's Equations for electrostatic fields, in both [7M] differential and integral forms.
b) Find the Potential and Electric Field due to a small electric dipole located on Z- [7M] axis.

SECTION-III

5 a) What is inconsistency in ampere's law, how it can be avoided.[7M]b) State and explain Maxwell's Equations for Magnetostatic Fields.[7M]

OR

a) A thin ring of radius 5 cm is placed on plane z = 1 cm so that its center is at [7M] (0,0,1cm). If the ring carries 50 mA along a₀, find H at (0,0,10cm)?
b) State and explain Faraday's laws of electromagnetic induction with its integral and point forms.

SECTION-IV

7 a) Explain the wave propagation in perfect conductors with suitable equations. [7M]
b) Explain the wave propagation in free space and determine the intrinsic [7M] impedance for free space.

OR

8 a) A uniform plane wave propagating in a medium has $E=0.8 e^{-\alpha z} Sin (2*10^8 t-\beta z)$ [7M]

Max. Marks: 70

 a_y V/m, If the medium is characterized by $\mu_r=2$; $\epsilon_r=10$; $\sigma=3$ s/m. Find α , β and H. [7M] b) A plane sinusoidal wave travelling in a space has $E_{max} = 150 \mu V/m$ i) Find the accompanying H_{max} ii) Propagation is in X direction and H is Y direction, What is the direction of E. iii) Compute the average power transmitted. **SECTION-V** 9 a) State and explain Poynting theorem and Poynting vector. Also derive an [7M] expression for average power density. b) Define Brewster angle and derive equation for it. [7M] OR 10 a) Derive the expression for reflection coefficient. [7M] b) Derive equation for a wave incident normally on a perfect dielectric material. [7M]
