Roll No										

Time: 3 hours

Max. Marks: 70
Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I
1 a) Find the divergence of A where $A=\rho z \operatorname{Sin} \phi a_{\rho}+3 \rho z^{2} \operatorname{Cos} \phi a_{\phi}$.
b) Why Coulomb's law is valid to be considered only for static charges? Why not for moving charges?

OR
2 a) Derive the Relationship between electric field and electric potential.
b) A Charge of $-0.3 \mu \mathrm{C}$ is located at $\mathrm{A}(25,-30,15)$ (in cm) and a second charge of $0.5 \mu \mathrm{C}$ is at $\mathrm{B}(-10,8,12) \mathrm{cm}$. Find E at (i) the origin (ii) $\mathrm{P}(15,20,50) \mathrm{cm}$.

SECTION-II

3 a) State Gauss's law. Using Gauss's law, derive an expression for electric field intensity due to an infinite line charge.
b) Derive expression for Poisson's and Laplace's Equations.

4 a) State and derive the Maxwell's Equations for electrostatic fields, in both differential and integral forms.
b) Find the Potential and Electric Field due to a small electric dipole located on Zaxis.

SECTION-III

5 a) What is inconsistency in ampere's law, how it can be avoided.
b) State and explain Maxwell's Equations for Magnetostatic Fields.

OR
6 a) A thin ring of radius 5 cm is placed on plane $\mathrm{z}=1 \mathrm{~cm}$ so that its center is at $(0,0,1 \mathrm{~cm})$. If the ring carries 50 mA along $\boldsymbol{a}_{\emptyset}$, find \boldsymbol{H} at $(0,0,10 \mathrm{~cm})$?
b) State and explain Faraday's laws of electromagnetic induction with its integral and point forms.

SECTION-IV

7 a) Explain the wave propagation in perfect conductors with suitable equations.
b) Explain the wave propagation in free space and determine the intrinsic
[7M] impedance for free space.

OR
8 a) A uniform plane wave propagating in a medium has $\mathrm{E}=0.8 \mathrm{e}^{-\alpha z} \operatorname{Sin}\left(2^{*} 10^{8} \mathrm{t}-\beta \mathrm{z}\right)$
$a_{y} \mathrm{~V} / \mathrm{m}$, If the medium is characterized by $\mu_{\mathrm{r}}=2 ; \varepsilon_{\mathrm{r}}=10 ; \sigma=3 \mathrm{~s} / \mathrm{m}$. Find α, β and H .
b) A plane sinusoidal wave travelling in a space has $\mathrm{E}_{\max }=150 \mu \mathrm{~V} / \mathrm{m}$
i) Find the accompanying $\mathrm{H}_{\text {max }}$ ii) Propagation is in X direction and H is Y direction, What is the direction of E. iii) Compute the average power transmitted. SECTION-V
9 a) State and explain Poynting theorem and Poynting vector. Also derive an expression for average power density.
b) Define Brewster angle and derive equation for it.

OR
10 a) Derive the expression for reflection coefficient.
b) Derive equation for a wave incident normally on a perfect dielectric material.
[7M] ***

