Code No: R20A0405

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Regular/Supplementary Examinations, July 2023 Analog Circuits

(ECE)											
Roll No											

Time: 3 hours Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

		ጥጥጥ	
		SECTION-I	Marks
1	\boldsymbol{A}	Draw BJT CE amplifier and derive the expression for the hybrid π -parameters.	[7M]
	\boldsymbol{B}	Briefly explain BJT CE amplifier and derive the expressions low frequency	[7M]
		voltage gain A _{vl} , and high frequency voltage gain _{Avh}	
		OR	
2	\boldsymbol{A}	Derive the expression for the CE current gain with resistive load at high	[7M]
		frequencies	
	\boldsymbol{B}	Derive the expressions for higher and lower cut-off frequency of a multistage	[7M]
		amplifier	
		SECTION-II	
3	\boldsymbol{A}	Draw the circuit diagram and explain the operation of two stage RC coupled	[7M]
		amplifier.	
	\boldsymbol{B}	Derive the expression for current gain in Darlington pair circuit with neat sketch?	[7M]
		OR	
4	\boldsymbol{A}	How are multi-stage amplifiers classified depending upon the type of coupling	[7M]
	\boldsymbol{B}	Write a note on distortions in amplifiers with neat diagram?	[7M]
		SECTION-III	
5	\boldsymbol{A}	Draw the circuit diagram of Direct coupled class-A power amplifier and explains	[7M]
		its operation. Show that the maximum conversion efficiency is 25%.	
	\boldsymbol{B}	What is a Power Amplifier? What are the classifications of power amplifier?	[7M]
		OR	
6		Draw the circuit diagram of Direct coupled class-B push pull power amplifier and	[14M]
		explains its operation. Show that the maximum conversion efficiency is 78.5%.	
		SECTION-IV	
7	\boldsymbol{A}	With the help of a neat diagram and waveforms, explain the principle of operation	[7M]
		of astable multivibrator.	
	\boldsymbol{B}	Explain the transistor switching times with the help of a neat circuit diagram	[7M]
		OR	
8	\boldsymbol{A}	Explain the working of Schmitt trigger with the help of a neat circuit diagram.	[7M]
	В	Draw and explain the circuit of monostable Multivibrator with necessary waveforms	[7M]
		SECTION-V	
9	\boldsymbol{A}	With neat sketches and necessary expressions, explain the transistor Miller time-	[7M]
	7.	base generator.	[/1/1]
	В	Briefly describe various methods to achieve sweep linearity in time-base circuit.	[7M]
	· ·	OR	[,1,4]
10		With neat sketches and necessary expressions, explain the transistor Bootstrap	[14M]
-		time-base generator and derive sweep error.	r