Code No: R20A0405 ## MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) ## II B.Tech II Semester Regular/Supplementary Examinations, July 2023 Analog Circuits | (ECE) | | | | | | | | | | | | |---------|--|--|--|--|--|--|--|--|--|--|--| | Roll No | | | | | | | | | | | | Time: 3 hours Max. Marks: 70 **Note:** This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks. *** | | | ጥጥጥ | | |----|------------------|---|---------------| | | | SECTION-I | Marks | | 1 | \boldsymbol{A} | Draw BJT CE amplifier and derive the expression for the hybrid π -parameters. | [7M] | | | \boldsymbol{B} | Briefly explain BJT CE amplifier and derive the expressions low frequency | [7M] | | | | voltage gain A _{vl} , and high frequency voltage gain _{Avh} | | | | | OR | | | 2 | \boldsymbol{A} | Derive the expression for the CE current gain with resistive load at high | [7M] | | | | frequencies | | | | \boldsymbol{B} | Derive the expressions for higher and lower cut-off frequency of a multistage | [7M] | | | | amplifier | | | | | SECTION-II | | | 3 | \boldsymbol{A} | Draw the circuit diagram and explain the operation of two stage RC coupled | [7M] | | | | amplifier. | | | | \boldsymbol{B} | Derive the expression for current gain in Darlington pair circuit with neat sketch? | [7M] | | | | OR | | | 4 | \boldsymbol{A} | How are multi-stage amplifiers classified depending upon the type of coupling | [7M] | | | \boldsymbol{B} | Write a note on distortions in amplifiers with neat diagram? | [7M] | | | | SECTION-III | | | 5 | \boldsymbol{A} | Draw the circuit diagram of Direct coupled class-A power amplifier and explains | [7M] | | | | its operation. Show that the maximum conversion efficiency is 25%. | | | | \boldsymbol{B} | What is a Power Amplifier? What are the classifications of power amplifier? | [7M] | | | | OR | | | 6 | | Draw the circuit diagram of Direct coupled class-B push pull power amplifier and | [14M] | | | | explains its operation. Show that the maximum conversion efficiency is 78.5%. | | | | | SECTION-IV | | | 7 | \boldsymbol{A} | With the help of a neat diagram and waveforms, explain the principle of operation | [7M] | | | | of astable multivibrator. | | | | \boldsymbol{B} | Explain the transistor switching times with the help of a neat circuit diagram | [7M] | | | | OR | | | 8 | \boldsymbol{A} | Explain the working of Schmitt trigger with the help of a neat circuit diagram. | [7M] | | | В | Draw and explain the circuit of monostable Multivibrator with necessary waveforms | [7M] | | | | SECTION-V | | | 9 | \boldsymbol{A} | With neat sketches and necessary expressions, explain the transistor Miller time- | [7M] | | | 7. | base generator. | [/1/1] | | | В | Briefly describe various methods to achieve sweep linearity in time-base circuit. | [7M] | | | · · | OR | [,1,4] | | 10 | | With neat sketches and necessary expressions, explain the transistor Bootstrap | [14M] | | - | | time-base generator and derive sweep error. | r | | | | | |