Time: 3 hours
Max. Marks: 70
Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

Marks
A Define Amplitude Modulation. Explain the generation of AM using Switching modulator.
$\boldsymbol{B} \quad$ Derive the Power relations in AM. When the modulation percentage is 75
AM transmitter produces 10 KW . How much of this is carrier power?[7M]OR
\boldsymbol{A} Explain the generation of DSBSC using balanced modulator.[7M]
$\boldsymbol{B} \quad$ Describe the Phase discrimination method for generating SSB Modulated[7M]waves.
SECTION-II
$\boldsymbol{A} \quad$ Compare PM and FM.\boldsymbol{B} Explain the concept of Pre-emphasis and de-emphasis.[7M][7M]
OR
$\boldsymbol{A} \quad$ Derive Single tone FM Equation and draw the relevant waveforms.
What is the value of carrier frequency in the following equation for the FM signal $\mathrm{v}(\mathrm{t})=5 \cos (6600 \pi \mathrm{t}+12 \sin 2500 \pi \mathrm{t})$.
B Describe the generation of FM waves using Armstrong Method.[7M][7M]
SECTION-III
A Illustrate the working of FM transmitter.[7M]
$\boldsymbol{B} \quad$ What are the various types of receiver? What are the characteristics of RF [7M]section?
OR
A Explain the working of a Super heterodyne receiver with a neat block[10M]diagram.
B Describe the function of TRF receiver with the help of block diagram.[4M]
SECTION-IV
\boldsymbol{B} Describe the method of generation and detection of PAM signals with neat schematics?[7M]
OR
A Illustrate the generation and detection of PCM.[8M]
B Explain about Non uniform Quantization and Companding. [6M]
SECTION-V\boldsymbol{A} Explain about generation and coherent reception of BPSK Signal.[8M]
\boldsymbol{B} Define BPSK. What are the principles of BPSK? Draw the constellation [6M] diagram of BPSK.
OR
\boldsymbol{A} Explain the working of ASK modulator and demodulator. [7M]
B Illustrate about Eye pattern and its significance.[7M]

Page $\mathbf{2}$ of $\mathbf{1}$

