Code No: R20A0407

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Regular/Supplementary Examinations, July 2023

Electromagnetic Fields & Waves

(ECE)										
Roll No										

Time: 3 hours

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

		SECTION-I	Marks
1	A	Express the vector A in the three coordinate systems. Write the transformation	[8M]
		equation from any one coordinate system to any other coordinate system.	
	B	Two uniform vector fields are given by $E = -5a_{\rho} + 10a_{\emptyset} + 3a_{z}$ and $F = a_{\rho} + 10a_{\emptyset} - 10a_{\varphi} + 3a_{z}$	
		$6a_z$. Calculate	[2] []
		(a) magnitude of E X F (b) The wester component of E at $P(5 - \pi/2, 2)$ normalicities the line $x - 2, \pi - 2$	[3M]
		(b) The vector component of E at P(5, $\pi/2$, 3) parallel to the line x =2, z = 3 OR	[3][1]
2	A	Define the Electric Flux Density. Determine the Electric flux density at a point P	[7M]
		due to infinite line of uniform Charge density $\rho_L C/m$.	
	B	A Point Charge of 20nc is Located at the Origin. Determine the Magnitude and	[7M]
		direction of the electric field intensity at the Point $(1,3,-4)$.	
2	4	<u>SECTION-II</u> Classify Manyvell equations for electrostatic fields in both differential and	[7]]
3	A	integral form	
	R	Determine the Relationship between F and V	[7 M]
	D	OR	
4	A	Discuss the boundary conditions for dielectric to dielectric conditions.	[7 M]
	В	Discuss the importance of Poissons and Laplace equations.	[7M]
	_	SECTION-III	[]
5	\boldsymbol{A}	Consider a differential current element, and calculate the differential magnetic	[7M]
		field intensity.	
	B	Draw the various current distributions available in magnetostatics. Write the	[7M]
		magnetic vector potential equations for the above current distributions. OR	
6	A	State Amperes circuital law. Calculate the magnetic field intensity for an infinite current carrying conductor?	[7M]
	B	Discuss the concept of Faradays law with equations.	[7M]
		<u>SECTION-IV</u>	
7	A	Explain and derive the characteristics of wave propagation in free space.	[8M]

	В	The electric field in the free space is given by, $E = 50\cos(10^8 t+\beta x)a_y V/m$. i. Find the direction of propagation ii. Calculate β	[3M] [3M]
		OR	
8	A	Determine the expression for intrinsic impendence and propagation constant in a good conductor.	[7M]
	В	In a lossless medium for which $\eta = 60\pi$, $\mu_r = 1$, and $H = -0.1 \cos (\omega t - z) a_x + 0.5 \sin (\omega t - z) a_y A/m$, calculate ε_r , ω ?	[7M]
0		<u>State and Dress Departing the energy</u>	[//]]
9	A D	State and Prove Poynting theorem? In free space $(7 \neq 0)$, a plane wave with $H = 10 \cos(10^8 t - \beta_7)$ a mA/m is	[/NI] [7N/]
	D	incident normally on a lossless medium ($\varepsilon = 2\varepsilon_0$, $\mu = 8\mu_0$) in region $z \ge 0$. Determine the reflected wave Hr, Er	[/1 v1]
		OR	
10	A	Evaluate the expressions for reflection coefficient and transmission coefficient by a normal incident wave for a dielectric medium.	[7M]
	В	Explain the importance of Critical Angle and Total Internal Reflection and their applications.	[7M]
