MALLA REDDY COLLEGE OF ENGINEERING \& TECHNOLOGY (Autonomous Institution - UGC, Govt. of India)
 II B.Tech II Semester Regular/Supplementary Examinations, July 2023 Probability \& Random Processes
 (ECE)
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">Roll No</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Roll No | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |</table-markdown></div>

Time: 3 hours
Max. Marks: 70
Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

\boldsymbol{A} Describe with necessary expression about the properties of probability density function.
$\boldsymbol{B} \quad$ Find the probability that if tossing a fair coin 5 times then there will be appear
a) 3 heads b) 3 tails and 2 heads c) at least 1 head d) not more than one tail

SECTION-III

$\boldsymbol{A} \quad$ Define and state the properties of joint density function and joint
B Explain statistical independence of the random variables.
$\boldsymbol{A} \quad$ The joint density function of random variables X and Y is
$\mathrm{F}_{\mathrm{x}, \mathrm{y}(\mathrm{x}, \mathrm{y})}=4 x y e^{-\left(x^{2}+y^{2}\right)} u(x) u(y) \mathrm{f}(\mathrm{y} / \mathrm{x})$ and $\left.\mathrm{f}(\mathrm{x} / \mathrm{y})\right)$
$\boldsymbol{B} \quad$ The joint probability density function is

$$
\mathrm{f}_{\mathrm{x}, \mathrm{y}}(\mathrm{x}, \mathrm{y})=1 / 24 \quad 0<\mathrm{x}<6,0<\mathrm{y}<4
$$

$=0$ elsewhere
Find the expected value of the function $g(X, Y)=(X Y)^{2}$

SECTION-IV

$\boldsymbol{A} \quad$ Differentiate random variable and random process.

B A random process $\mathrm{Y}(\mathrm{t})$ is given as $\mathrm{Y}(\mathrm{t})=\mathrm{X}(\mathrm{t}) \cos (\omega \mathrm{t}+\Theta)$, where $\mathrm{X}(\mathrm{t})$ is a wide sense stationary random process, ω is constant and Θ is random variable independent on $\mathrm{X}(\mathrm{t})$, uniformly distributed on $(-\pi, \pi)$. Find a) $\mathrm{E}[\mathrm{Y}(\mathrm{t})] \mathrm{b}) \operatorname{Ryy}(\tau)$.

OR
$8 \quad \boldsymbol{A} \quad$ Define LTI system and derive the expression for following for the response of LTI system.
a) Mean b b) Auto correlation function c) Cross correlation

B State and prove the properties of auto correlation function.

SECTION-V

$9 \quad \boldsymbol{A} \quad$ Define power spectral density and state and prove its properties.
B A random process $\mathrm{Y}(\mathrm{t})$ has the power spectral density $\operatorname{SYY}(\omega)=9 / \omega^{2}+64$
Find the Auto correlation function of $\mathrm{Y}(\mathrm{t})$.
OR
$10 \quad \boldsymbol{A} \quad$ Derive the cross PSD between input and output of an LTI system
$\boldsymbol{B} \quad$ Find the PSD of WSS random process $\mathrm{X}(\mathrm{t})$ whose auto correlation function is $R_{X X}(r)=a e^{-b|c|}$

