Code No: R17A0410 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India)

III B.Tech I Semester Supplementary Examinations, April 2023

Digital System Design Through Verilog

(ECE)									
Roll No									

Time: 3 hours

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

1	\boldsymbol{A}	Write short notes on	
		(a) Concurrency	[2M]
		(b) Simulation	[2M]
		(c) Synthesis	[2M]
		(-) 292	[]
	B	Differentiate the scalars and vectors in verilog modules with examples.	[8M]
		OR	
2	\boldsymbol{A}	Explain the following operators supported by Verilog HDL with examples.	
		i) Bitwise Operators	[3 M]
		ii) Equality Operators	[3 M]
	B	Describe the following levels of design description: Circuit level, Gate level,	[8M]
		Data flow, Behavioral level.	
		<u>SECTION-II</u>	
3	A	Discuss about the array of instances and develop the verilog code for a byte	[8M]
		comparator with relevant diagram	
	B	Explain about the concurrent statements in data flow level. Give one example	[6M]
		to each one.	
		OR	
4	A	Write Verilog HDL source code for a data level description of 4 to 1	[7M]
		multiplexer circuit. Draw the relevant logic diagram.	
	B	Design a 4 bit parallel adder in Gate level modeling.	[7M]
		SECTION-III	
5	A	Develop a verilog module of the D_FF module with asynchronous active	[7M]
	_	high preset and clear through if- else construct.	
	B	Explain disable construct with an example.	[7M]
		OR	
6	A	Design a 8:1 Mux using case statement.	[7M]
	B	Explain the blocking and non-blocking statements in Verilog with suitable	[7M]
		example.	
-		SECTION-IV	
7	A	Develop a verilog module for a 2-to-1 multiplexer using tri-state switches.	[7 M]
	B	Describe the CMOS switches operation in detail.	[7 M]
0		OR .	
8	\boldsymbol{A}	Prepare a verilog module for a CMOS NOR Gate	[7 M]

	В	Discuss the regular and resistive switches in detail with primitive keywords and explain how the resistive switches differ from regular switches. SECTION-V	[7M]
9	A	Differentiate between combinational and sequential UDPs with suitable example	[7M]
	B	Illustrate the path delays with relevant example OR	[7M]
10	A	Illustrate the Parameter Declarations and Assignments, design an ALU module with its size declared as a parameter.	[8M]
	B	Explain the system tasks with suitable examples	[6M]
