Code No: R18A0410

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

III B.Tech I Semester Supplementary Examinations, April 2023 Antennas & Wave Propagation

	C.	L/
ur	ι.	r, i

(ECE)								
Roll No								

Time: 3 hours Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

		<u>SECTION-I</u>	
1	\boldsymbol{A}	Explain the following terms:	[2M]
		i. Beam Area,	[2M]
		ii. Radiation resistance,	[2M]
		iii. Directivity	[2M]
		iv. Effective Area and	[2M]
		v. Resolution	
	В	Discuss about far fields and patterns of thin linear center-fed antennas of different lengths	[4M]
		OR	
2	\boldsymbol{A}	Compare the monopole and dipole antenna.	[7M]
	\boldsymbol{B}	State and prove Helmholtz's theorem.	[7M]
		SECTION-II	
3	\boldsymbol{A}	Explain the working principal of yagi-uda antenna.	[7M]
	\boldsymbol{B}	State the Fermat's Principal, and explain its applicability to Horn Antennas.	[7M]
		List out the standard antennas.	
		OR	
4	\boldsymbol{A}	Explain the Impact of Different Parameters on the characteristics of	[7M]
		Microstrip Antennas.	
	\boldsymbol{B}	Write a short note on Folded Dipoles and their Characteristics.	[7M]
		SECTION-III	
5	\boldsymbol{A}	How an unidirectional pattern is obtained in an end fire array? Explain in detail.	[7M]
	В	With the help of neat block diagram, explain how the gain of the antenna is measured.	[7M]
		OR	
6	\boldsymbol{A}	Describe in detail the set up for measurement of radiation pattern.	[7M]
	B	Explain binomial theorem and draw the radiation pattern with 4 element array with $d=\lambda/2$.	[7M]
		SECTION-IV	
7	\boldsymbol{A}	What is the mechanism of space wave propagation over ideal flat earth with	[7M]
		a neat sketch?	
	\boldsymbol{B}	Illustrate the scattering phenomena with a diagram.	[7M]
		OR	
8	\boldsymbol{A}	Explain the principle of tropospheric propagation.	[7M]

 \boldsymbol{B} Outline the expression for field strength variation with distance and height at [**7M**] the receiving antenna of space wave propagation. **SECTION-V** Explain the following terms: LUF, Virtual Height and Skip Distance, 9 [**7M**] \boldsymbol{A} Illustrate the multihop propagation with diagram. В [**7M**] Write about sky wave propagation and explain the Effects of ionosphere **10** \boldsymbol{A} [**7M**] abnormalities. Explain the effects of D and F layers of the ionosphere on propagation and \boldsymbol{B} [7M] estimate the critical frequency and MUF for a layer with 10¹¹/m³ electron density, and an incident angle of 60°. What are LUF and optimum frequencies?
