Code No: **R20A0409**

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

III B.Tech I Semester Supplementary Examinations, May/June 2023 **Digital Signal Processing**

(ECE)										
Roll No										

Time: 3 hours Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

1 Define and Check the stability of the given LTI system $h(n)=a^n$ for 0 < n < 11. \boldsymbol{A} [6M]

Determine whether the following systems are linear, causal or not

(a) $y(n) = log_{10}(|x(n)|)$ [4M]

(b) y(n) = x(n) + x(n+1)

[4M]

OR

- 2 Determine the impulse response of the system described by the difference [7M] equation, y(n)-3y(n-1)-4y(n-2)=x(n)+2x(n-1) using z-transform
 - Direct realization B Obtain the form-II of the system [7M] y(n) = -0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2)

SECTION-II

3 Compute the DFT of the 3-point sequence $x[n] = \{2,1,2\}$. \boldsymbol{A}

[6M]

A sequence y(n) is constructed from a finite duration sequence x(n) of length \boldsymbol{B} [8M] 8 samples in the following manner

Y(n)=x(n/2); n is even

=0; n is odd

Determine Y(k) in terms of X (k) where Y(k) and X(k) are the DFTs of y(n) and x(n) respectively.

OR

- 4 Explain how DFT can be obtained by sampling DFS for a given sequence. \boldsymbol{A}
 - B Develop a Radix-2, DIF/FFT algorithm for an 8-point sequence.

[7M] [7M]

SECTION-III

A digital filter low pass filter is required to meet the following specifications. 5 [14M]

Passband attenuation ≤ 1 db Passband edge 4 Khz

Stopband attenuation ≥ 40 db Stopband edge 8 Khz

Smpling rate 24 Khz

The filter is to be designed by performing a bilinear transformation on an anlaog function. Design a butterworth filter and realize it.

OR

6 Design a Butterworth digital IIR low pass filter using bilinear transformation [14M] by taking T=0.3 sec, to satisfy the following specifications:

 $0.45 \le |H(e^{jw})| \le 1.0$; for $0 \le w \le 0.675 \pi$

 $|H(e^{jw})| \le 0.15$; for $0.8 \pi \le w \le \pi$.

SECTION-IV

Design a low pass filter for a seven stage with cutoff frequency at 300 Hz if [14M] Ts=1 msec. Use hanning window.

OR

- 8 *A* Design a linear phase FIR high pass filter using rectangular window, with a [10M] cut off frequency, Wc=0.48 π rad/sec and N=5.
 - **B** Compare window functions.

[4M]

SECTION-V

Discuss the process of Interpolation by a factor I with a neat block diagram, [14M] example and also give few applications of Multirate signal processing.

OR

Discuss the process of Decimation by a factor L with a neat block diagram, [14M] example and also give few applications of Multirate signal processing
