

Code No: R20A0410 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

III B.Tech I Semester Supplementary Examinations, May/June 2023

Ι]	D	I	(2
	_	_	_		-

(ECE)										
Roll No										

Time: 3 hours

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

1	A B	Describe the ideal Op-Amp characteristics. Discuss the measurement of CMRR and output offset voltage in op-amp OR	[7M] [7M]
2	A B	Draw the active integrator circuit and discuss about its frequency response Explain the working of Non-Inverting amplifier and derive the equation of its Gain.	[7M] [7M]
		<u>SECTION-II</u>	
3	Α	Derive the expression for the duty cycle of Astable multivibrator using IC 555	[7M]
		with a neat circuit and waveforms	
	В	Design a square wave generator of frequency 100 Hz and duty cycle of 75% OR	[7M]
4	Α	Design a first order wide band reject filter with a higher cut-off frequency of 100 Hz and a lower cut-off frequency of 1 KHz. Calculate the Q-factor of the filter	[7M]
	В	Design and explain the operation of All Pass Filter with its characteristics?	[7M]
	D	SECTION-III	[,]
5	A	Design a 4-bit weighted resistor DAC whose full scale output voltage is 10 volts. Assume $R_f = 10K\Omega$, logic '1' level as +5 volts and logic '0' level as 0	[7M]
		volts. What is the output voltage when the input is 1011.	
	B	Draw the block diagram and illustrate the conversion process of the	[7M]
		successive approximation A/D Converter	
		OR	
6	A	Calculate the conversion time for a full scale input in case of a 12-bit counter type ADC driven by 4 MHz clock	[6M]
	B	What are the important observations can be made for dual slope integrating type ADC and draw backs of it.	[8M]
		SECTION-IV	
7	\boldsymbol{A}	Design a Priority encoder circuit and which 74XX series IC is used for it.	[7M]
	B	Compare TTL and CMOS logic families.	[7M]
		OR	
8	\boldsymbol{A}	Design a 2-bit magnitude comparator using ICs.	[7M]
	B	Design a 4-bit parallel adder/ subtractor circuit.	[7M]
		SECTION-V	
9	A	Design a modulo 12 ripple counter using 74×74 IC.	[7M]

	B	Design a Serial input and Serial Output shift register with suitable ICs.	[7M]
		OR	
10	\boldsymbol{A}	How many address and data lines are required to access all the locations of	[8M]
		dynamic RAM cell arrays specified below?	
		a) 4M X 4 b) 1M X 1 c) 1M X 4 d) 4M X 1	
	B	Draw the ROM architecture and explain its operation in detail	[6M]