MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

IV B.Tech I Semester Supplementary Examinations, April 2023 Microwave Engineering

(ECE)								
Roll No								

Time: 3 hours

Code No: R15A0421

75

Note: This question paper contains two parts A and B

Part A is compulsory which carriers 25 marks and Answer all questions.

Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

PART-A (25 Marks)

1). a	What are the Applications of Microwaves?	[2M]			
b	Write the equation of Phase and Group velocities	[3 M]			
с	Write the Properties of Scattering Matrix	[2M]			
d	Draw and write S matrix of isolator.	[3 M]			
e	What are the losses of conventional tubes at microwave frequencies?	[2M]			
f	Write the Gain considerations in TWT.	[3 M]			
g	Define Cross field effects	[2M]			
h	Classification of Microwave semiconductor devices and is applications	[3 M]			
i	Write the applications of Spectrum Analyzer	[2M]			
j	Define VSWR and its equations	[3 M]			
PART-B (50 MARKS)					
	<u>SECTION-I</u>				
2	Briefly explain and Derive the TE mode analysis in Rectangular Waveguide.	[10M]			

OR

3 A wave of frequency 6GHz is propagated in a parallel plane waveguide separated **[10M]** by 3cm. Calculate i) the cut-off wavelength for the dominant mode. ii) Wavelength in the waveguide. iii) the group and phase velocities. iv) Characteristic wave impedance

SECTION-II

4 Draw the neat block diagrams and explain the Ferrite components, Gyrator and **[10M]** Circulator.

OR

5 Explain the working of a two-hole directional coupler with a neat diagram and **[10M]** derive the expression for the coupling factor and directivity.

SECTION-III

6 Explain in detail about bunching process and obtain expression for bunching **[10M]** parameter in a two-cavity klystron.

Max. Marks:

7 Explain how velocity modulation is converted into current modulation with [10M] Applegate diagram and also derive the equation for output power efficiency.

SECTION-IV

- 8 Derive the Hartree anode Voltage equation for linear magnetron. [10M] OR
- 9 Briefly explain the different avalanche transit time devices using diagrams. [10M] **SECTION-V**

Find S matrix for a matched isolator having an insertion loss of 0.5dB and [10M] 10 isolation of 25dB and explain the S-matrix representation of a multiport microwave network and its significance.

OR

11 Draw the neat block diagram and explain the Waveguide Phase Shifters [10M] ***