Code No: R15A0421

\section*{MALLA REDDY COLLEGE OF ENGINEERING \& TECHNOLOGY (Autonomous Institution - UGC, Govt. of India)
 IV B.Tech I Semester Supplementary Examinations, April 2023 Microwave Engineering
 (ECE)
 | Roll No | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Time: 3 hours

Max. Marks:

75

Note: This question paper contains two parts A and B
Part A is compulsory which carriers 25 marks and Answer all questions.
Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

PART-A (25 Marks)

$$
\text { 1). What are the Applications of Microwaves? } \quad \text { [2M] }
$$

b Write the equation of Phase and Group velocities
c Write the Properties of Scattering Matrix
d Draw and write S matrix of isolator.
e What are the losses of conventional tubes at microwave frequencies?
f Write the Gain considerations in TWT.
g Define Cross field effects
h Classification of Microwave semiconductor devices and is applications
i Write the applications of Spectrum Analyzer
j Define VSWR and its equations

PART-B (50 MARKS)

SECTION-I

2 Briefly explain and Derive the TE mode analysis in Rectangular Waveguide. OR
3 A wave of frequency 6 GHz is propagated in a parallel plane waveguide separated Wavelength in the waveguide. iii) the group and phase velocities. iv) Characteristic wave impedance

SECTION-II

4 Draw the neat block diagrams and explain the Ferrite components, Gyrator and [10M] Circulator.

> OR

5 Explain the working of a two-hole directional coupler with a neat diagram and [10M] derive the expression for the coupling factor and directivity.

SECTION-III

6 Explain in detail about bunching process and obtain expression for bunching [10M] parameter in a two-cavity klystron.

OR

7 Explain how velocity modulation is converted into current modulation with [10M] Applegate diagram and also derive the equation for output power efficiency.

SECTION-IV

8 Derive the Hartree anode Voltage equation for linear magnetron.
OR
9 Briefly explain the different avalanche transit time devices using diagrams.

SECTION-V

10 Find S matrix for a matched isolator having an insertion loss of 0.5 dB and isolation of 25 dB and explain the S-matrix representation of a multiport microwave network and its significance.

OR
11 Draw the neat block diagram and explain the Waveguide Phase Shifters

