

Code No: R17A0426 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

IV B.Tech I Semester Supplementary Examinations, April 2023

Digital	Image Processing	,
	(\mathbf{ECE})	

(ECE)									
Roll No									

Time: 3 hours

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

1	A	With a neat block diagram, explain the fundamental steps in digital image	[8M]
		processing.	
	B	Explain the following two properties of 2D-DFT:	[2M]
		i) Convolution	[2M]
		ii) Correlation	[2M]
		iii) Periodicity	
		OR	
2	A	Discuss the role of sampling and quantization with an example	[6M]
	B	Explain Discrete Cosine Transform and specify its properties.	[8M]
		SECTION-II	
3	\boldsymbol{A}	What is point processing? Explain how it improves image enhancement	[7M]
	B	With an example explain histogram equalization.	[7M]
		OR	
4	A	What is spatial filtering? How it is useful for image enhancement, also	[9M]
		discuss different types of spatial filters used in image enhancement?	L']
	B	Discuss any one frequency domain technique of Image smoothing.	[5M]
	2	SECTION-III	[01,1]
5	A	Explain about image restoration using inverse filtering. Write the draw backs	[7 M]
C		of this method.	[,=]
	B	What are the different ways to estimate the degradation function? Explain	[7M]
	D	OR	
6	A	With relevant mathematical expressions, explain how a Wiener filter	[9M]
U	11	achieves restoration of a given degraded image.	
	B	Explain in detail Constrained Least Squares Restoration.	[5M]
	D	SECTION-IV	
7	A	Write about Region based segmentation.	[6M]
'	А В	Explain the following	[4M]
	D	i) Edge Linking	[4M]
		ii) Boundary Extraction	
0	4	OR	
8	A	Explain the concept of opening and closing operations in morphology &	[8M]
	ъ	mention the properties of opening And closing.	
	B	Explain about morphological hit-or-miss transform.	[6M]

SECTION-V

9	A	Draw the block diagram of lossy and lossless predictive coding model and explain it.	[7M]
	B	Explain briefly the Transform based compression	[7M]
		OR	
10	\boldsymbol{A}	Explain image compression using Huffman coding. And construct a Huffman	[10M]
		code for the Word "COMMITTEE".	
	B	Write a short note on JPEG 2000 Standards.	[4M]
