

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS INSTITUTION - UGC, GOVT. OF INDIA)

Department of AERONAUTICAL ENGINEERING

AIRCRAFT PERFORMANCE

QUESTION BANK

Prepared by:

Dr. M. Mohammed Mohaideen Professor Department of ANE mohammedmohaideen@mrcet.ac.in

Code No: R20A2109 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Supplementary Examinations, January 2024

Aircraft Performance

		(A	E)					_	
Roll No									
						N	lax.	Mark	s: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

Calculate the dynamic viscosity, pressure, and altitude at a height of 23

km with reference to the ISA. OR 2 What is meant by an operational safety? How can one improve A [7M] operational safety of aircrafts. Explain the variation of thrust, propulsive power and specific fuel B [7M] consumption with flight speed. **SECTION-II** 3 Derive the endurance formula for Jet-propelled Airplanes, make [14M] suitable assumptions and list them. OR 4 Explain the effect of altitude and temperature on cruise performance. [14M] **SECTION-III** Given an airplane mass of 60000 kg, Lift/Drag ratio 12, thrust per 5 [14M] engine 60,000N, assume $g=10 \text{ m/s}^2$. For a straight, steady, wings level climb of a twin-engine airplane. Calculate the rate of climb. OR Explain in detail, with relevant formulae Climb rate, climb gradient, 6 [14M] Thrust producing engines and Minimum fuel climbs. **SECTION-IV** 7 An airplane weighing 1,00,000 N is powered by an engine producing [14M] 20,000 N of thrust under sea-level standard conditions. If the wing area be 25 m^2 , calculate

- i. Stalling speeds at sea level and at 10 km altitude(ρ at 10 km = 0.413 kg/m³)
- ii. $(C_D/C_L)_{min}, (C_D/C_L^{3/2})_{min}, T_{rmin}, P_{rmin}, V_{md}, V_{mp}$ under sea-level

conditions.

Assume $C_D = 0.016 + 0.064 C_L^2$, $C_{Lmax} = 1.5$ OR

8 Define Maneuver and Turning performance. And compare the [14M] Maneuver performance of military aircraft and transport aircraft.

Time: 3 hours

A

B

1

R20

Based on the mission profile performance of an aircraft varies. Justify.

Marks [7M] [7M]

SECTION-V

- 9 A Define Take off distance and derive a suitable formula for estimating [7M] the same.
 - **B** A passenger plane landed at Delhi's IGI Airport with a tail strike. [7M] Explain this case's complexities.

OR

- **10** *A* Describe about conventional take-off and landing. Write all approaches **[7M]** while doing landing and take-off.
 - **B** Discuss about the abandon landing. What are the circumstances when [7M] abandon landing is performed?

Code No: R20A2109 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Supplementary Examinations, January 2024

Aircraft Performance

		(A	E)					_	
Roll No									
						N	lax.	Mark	s: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

Calculate the dynamic viscosity, pressure, and altitude at a height of 23

km with reference to the ISA. OR 2 What is meant by an operational safety? How can one improve A [7M] operational safety of aircrafts. Explain the variation of thrust, propulsive power and specific fuel B [7M] consumption with flight speed. **SECTION-II** 3 Derive the endurance formula for Jet-propelled Airplanes, make [14M] suitable assumptions and list them. OR 4 Explain the effect of altitude and temperature on cruise performance. [14M] **SECTION-III** Given an airplane mass of 60000 kg, Lift/Drag ratio 12, thrust per 5 [14M] engine 60,000N, assume $g=10 \text{ m/s}^2$. For a straight, steady, wings level climb of a twin-engine airplane. Calculate the rate of climb. OR Explain in detail, with relevant formulae Climb rate, climb gradient, 6 [14M] Thrust producing engines and Minimum fuel climbs. **SECTION-IV** 7 An airplane weighing 1,00,000 N is powered by an engine producing [14M] 20,000 N of thrust under sea-level standard conditions. If the wing area be 25 m^2 , calculate

- i. Stalling speeds at sea level and at 10 km altitude(ρ at 10 km = 0.413 kg/m³)
- ii. $(C_D/C_L)_{min}, (C_D/C_L^{3/2})_{min}, T_{rmin}, P_{rmin}, V_{md}, V_{mp}$ under sea-level

conditions.

Assume $C_D = 0.016 + 0.064 C_L^2$, $C_{Lmax} = 1.5$ OR

8 Define Maneuver and Turning performance. And compare the [14M] Maneuver performance of military aircraft and transport aircraft.

Time: 3 hours

A

B

1

R20

Based on the mission profile performance of an aircraft varies. Justify.

Marks [7M] [7M]

SECTION-V

- 9 A Define Take off distance and derive a suitable formula for estimating [7M] the same.
 - **B** A passenger plane landed at Delhi's IGI Airport with a tail strike. [7M] Explain this case's complexities.

OR

- **10** *A* Describe about conventional take-off and landing. Write all approaches **[7M]** while doing landing and take-off.
 - **B** Discuss about the abandon landing. What are the circumstances when [7M] abandon landing is performed?
