
MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY 
Autonomous Institution – UGC, Govt. of India 

B.TECH (R-22 Regulation)

(II YEAR – I SEM) 

2024-25

COMPUTER ORGANIZATION AND 

ARCHITECTURE

(R22A1261) 

LECTURE NOTES 

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY 
(Autonomous Institution – UGC, Govt. of India) 

Recognized under 2(f) and 12(B) of UGC ACT 1956 
(Affiliated to JNTUH, Hyderabad, Approved by AICTE-Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) 

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad–500100, Telangana State, India 

Department of COMPUTATIONAL INTELLIGENCE 

CSE (AI&ML) 



Department of COMPUTATIONAL INTELLIGENCE 

CSE (ARTIFICIAL INTELLIGENCE & 

MACHINE LEARNING) 

COMPUTER ORGANIZATION AND 

ARCHITECTURE

(R22A1261) 

LECTURE NOTES 

SK. Subhani
Assistant Professor



Department of Computational Intelligence 

CSE (Artificial Intelligence and Machine Learning), 

Artificial Intelligence and Machine Learning 
 

 

Vision 
 

To be a premier centre for academic excellence and research through innovative 
interdisciplinary collaborations and making significant contributions to the community, 
organizations, and society as a whole. 

 

 

Mission 

 
❖ To impart cutting-edge Artificial Intelligence technology in accordance with industry 

norms. 

❖ To instill in students a desire to conduct research in order to tackle challenging 

technical problems for industry. 

❖ To develop effective graduates who are responsible for their professional growth, 

leadership qualities and are committed to lifelong learning. 

 
 

QUALITY POLICY 
 

❖ To provide sophisticated technical infrastructure and to inspire students to reach their full 

potential. 

❖ To provide students with a solid academic and research environment for a comprehensive 

learning experience. 

❖ To provide research development, consulting, testing, and customized training to satisfy 

specific industrial demands, thereby encouraging self-employment and entrepreneurship 

among students. 

 
For more information: www.mrcet.ac.in 

http://www.mrcet.ac.in/


MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY 

DEPARTMENT OF COMPUTATIONAL INTELLIGENCE 

 
II Year B.Tech. CSE(AIML)- I Sem 

 
L/T/P/C 

 3/-/-/3 

 

 (R22A1261) COMPUTER ORGANIZATION AND ARCHITECTURE 

 

OBJECTIVES: 

The students will be able to: 

1. To understand the working of a Computer System and its basic principles. 

2. To learn the architecture and design of 8086 processor. 

3. To know the concepts of Memory and corresponding technologies. 

4. To understand the functional aspects of various peripheral devices. 

5. To acquire knowledge about parallel processors. 

 
UNIT - I: 

Functional blocks of a computer: CPU, memory, input-output subsystems, control unit. 

Computer Organization and Architecture - Von Neumann 

Data representation: signed number representation, fixed and floating-point Representations, 

Character representation. Computer arithmetic – integer addition and Subtraction, Ripple carry 

adder, carry look-ahead adder, etc. Multiplication – shift-and add, Booth multiplier. 

 
UNIT – II: 

Introduction to x86 architecture. 

Instruction set architecture of a CPU: Registers, instruction execution cycle, RTL 

Interpretation of instructions, addressing modes, instruction set. 

CPU Control unit design: Micro-programmed design approach. 

 

UNIT – III: 

Memory system design: Semiconductor memory technologies, memory organization. 

Memory organization: Memory interleaving, concept of hierarchical memory organization, 

Cache memory, cache size vs. block size, mapping functions, Replacement algorithms, write 

policies. 

 
UNIT – IV: 

Peripheral devices and their characteristics: Input-output subsystems, I/O device interface, 

I/O transfers – program controlled, interrupt driven and DMA, privileged and non-privileged 

instructions, software interrupts and exceptions. Programs and processes – role of interrupts in 

process state transitions. 



 

UNIT – V: 

Pipelining: Basic concepts of pipelining, throughput and speedup, pipeline hazards. 

Parallel Processors: Introduction to parallel processors, Concurrent access to 

memory and cache coherency. 

 
TEXT BOOKS: 

1.“Computer System Architecture”,  3rd Edition by M.Morris Mano, Pearson. 

2. “Computer Organization and Design: The Hardware/Software Interface”, 

5th Edition by David A. Patterson and John L. Hennessy, Elsevier. 

3.“Computer Organization and Embedded Systems”, 6th Edition by Carl 

Hamacher, McGraw Hill Higher Education. 

 
REFERENCE BOOKS: 

Course Outcomes: 

At the end of the course, Students will be able to: 

1. Illustrate the functional block diagram of a single bus architecture of a 

computer. 

2. Analyze the various instruction sets and addressing modes. 

3. Design a memory module and analyze its operation by interfacing with the 

CPU for a specific architecture. 

4. Compare and contrast the peripherals and the related I/O transfers  

5. Assess the performance, and apply design techniques to enhance 

performance using pipelining & parallelism. 
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Unit-II (Part-2) 

CPU Control unit design: Micro-programmed design approach. 

 

The major functional parts in a digital computer are Central Processing Unit (CPU), 

Memory, and Input–output. The main functional units of CPU are control unit, arithmetic and 

logic unit, and registers. The function of the control unit in a digital computer is to initiate 

sequences of microoperations. 

There are two types of control units. One is Hardwired and the other one is called 

Microprogrammed Control Unit. When the control signals are generated by hardware using 

conventional logic design techniques, the control unit is said to be hardwired Control Unit. In 

Microprogrammed Control Unit the control unit initiates a series of sequential steps of 

microoperations. Micro operation is group of control variables (signals), 

The control variables at any given time can be represented by a string of 1’s and 0’s called 

a control word (Micro instruction). As such, control words can be programmed to perform 

various operations on the components of the system. A control unit whose binary control variables 

are stored in memory is called a microprogrammed control unit. Each word in control memory 

is called as microinstruction. The microinstruction specifies one or more microoperations for 

the system. A sequence of microinstructions constitutes a microprogram. 

Since alterations of the microprogram are not needed once the control unit is in operation, 

the control memory can be a read-only memory (ROM). ROM words are made permanent during 

the hardware production of the unit. 

A memory that is part of a control unit is referred to as a control memory. The general 

configuration of a microprogrammed control unit is demonstrated in the block diagram shown 

below. The control memory is assumed to be a ROM, within which all control information is 

permanently stored. The control memory address register specifies the address of the 

microinstruction, and the control data register holds the microinstruction read from memory. 

 

The microinstruction specifies one or more microoperations for the data processor. Once these 

operations are executed, the control must determine the next address. The location of the next 

microinstruction may be the one next in sequence, or it may be located somewhere else in the 

control memory. For this reason, it is necessary to use some bits of the present microinstruction to 

control the generation of the address of the next microinstruction. The next address may also be a 

function of external input conditions. 

While the microoperations are being executed, the next address is computed in the next 

address generator circuit and then transferred into the control address register to read the next 

microinstruction. Thus, a microinstruction contains bits for initiating microoperations in the data 

processor part and bits that determine the address sequence for the control memory. 
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Address Sequencing 

The address sequencing (Next address generation) capabilities required in a control memory are:  

1. Incrementing of the control address register. 

2. Unconditional branch or conditional branch, depending on status bit conditions. 

3. A mapping process from the bits of the instruction to an address for control memory. 

4. A facility for subroutine call and return. 

Figure below shows a block diagram of a control memory and the associated hardware needed for 

selecting the next microinstruction address. 

 

Mapping Process: Mapping process that converts the 4-bit operation code to a 7-bit address for 

control memory is shown in Fig below. This mapping consists of placing a 0 in the most significant 

bit of the address, transferring the four operation code bits, and clearing the two least significant 

bits of the control address register. This provides for each computer instruction a microprogram 

routine with a capacity of four microinstructions.  
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Computer Instruction Format 
 

The computer instruction format is depicted in Fig. below. These instructions are used to explain the Micro 

programmed Control Unit. It consists of three fields: a 1-bit field for indirect addressing symbolized by I, a 4-bit 

operation code (opcode), and an 11-bit address field. Figure below also shows lists four of the 16 possible memory-

reference instructions. The instructions are ADD, BRANCH, STORE and EXCHANGE. 

 
 

 

Microinstruction Format 

 
The microinstruction format for the control memory is shown in Fig. below. The 20 bits of the microinstruction 

are divided into four functional parts. The three fields Fl, F2, and F3 specify microoperations for the computer. 

The CD field selects status bit conditions. The BR field specifies the type or branch to be used. The AD field 

contains a branch address. The address field is seven bits wide, since the control memory has 128 = 27 words. 
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The CD, BR fields are shown below. 

 

 
 

 

The microoperation fields F1, F2, F3 are shown in figure below. 

 

 

The microprogram sequencer for a control memory is as shown in figure below. The 

control memory is included in the diagram to show the interaction between the sequencer and the 

memory attached to it. There are two multiplexers in the circuit. The first multiplexer selects an 

address from one of four sources and routes it into a control address register CAR. 
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  The second multiplexer tests the value of a selected status bit and the result of the test is 

applied to an input logic circuit. The output from CAR provides the address for the control 

memory. The content of CAR is incremented and applied to one of the multiplexer inputs and to 

the subroutine register SBR. The other three inputs to multiplexer number 1 come from the address 

field of the present microinstruction, from the output of SBR, and from an external source that 

maps the instruction.  

The CD (condition) field of the microinstruction selects one of the status bits in the second 

multiplexer. If the bit selected is equal to 1, the T (test) variable is equal to 1; otherwise, it is equal 

to 0. The T value together with the two bits from the BR (branch) field go to an input logic circuit. 

The input logic in a particular sequencer will determine the type of operations that are available 

in the unit.  

Typical sequencer operations are: increment, branch or jump, call and return from 

subroutine, load an external address and other address sequencing operations. With three inputs, 

the sequencer can provide up to eight address sequencing operation.  

The input logic circuit has three inputs, I0, I1, and T, and three outputs, S0, S1, and L. 

Variables S0 and S1 select one of the source addresses for CAR. Variable L enables the load 

input in SBR. The binary values of the two selection variables determine the path in the 

multiplexer.  
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UNIT – III 

 

Semiconductor Memory Technologies: 

Semiconductor random-access memories (RAMs) are available in a wide range of speeds. 

Their cycle times range from 100 ns to less than 10 ns. Semiconductor memory is used in any electronics 

assembly that uses computer processing technology. The use of semiconductor memory has  grown, and 

the size of these memory cards has increased as the need for larger and larger amounts of storage is 

needed. 

There are two main types or categories that can be used for semiconductor technology. 

RAM - Random Access Memory: As the names suggest, the RAM or random access memory is a 

form of semiconductor memory technology that is used for reading and writing data in any order - in 

other words as it is required by the processor. It is used for such applications as the computer or 

processor memory where variables and other stored and are required on a random basis. Data is stored 

and read many times to and from this type of memory. 
 
 

 

 

    

 

The RAM IC is in operation only when CS1 = 1 and  = 0. The bar on top of the second select 

variable indicates that this input is enabled when it is equal to 0. CS1 = 1 and  = 0, the 

memory can be placed in a write or read mode. When the WR input is enabled, the memory 

stores a byte from the data bus into a location specified by the address input lines. When the RD 

input is enabled, the content of the selected byte is placed into the data bus. The RD and WR 

signals control the memory operation as well as the bus buffers associated with the bidirectional 

data bus. When chip select signal lines are not enabled and either RD or WR are not enabled then 

the chip will be in High-impedance state. 

 

Memory system design: Semiconductor memory technologies, memory organization. 

Memory organization: Memory interleaving, concept of hierarchical memory organization, Cache 

memory, cache size vs. block size, mapping functions, Replacement algorithms, write policies. 
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ROM - Read Only Memory: A ROM is a form of semiconductor memory technology used where the 

data is written once and then not changed. In view of this it is used where data needs to be stored 

permanently, even when the power is removed - many memory technologies lose the data once the power 

is removed. As a result, this type of semiconductor memory technology is widely used for storing 

programs and data that must survive when a computer or processor is powered down. For example, the 

BIOS of a computer will be stored in ROM. As the name implies, data cannot be easily written to ROM. 

Depending on the technology used in the ROM, writing the data into the ROM initially may require 

special hardware. Although it is often possible to change the data, this gain requires special hardware to 

erase the data ready for new data to be written in. 

 

 

 

 

 

 

 
 

 
 

 

 

The nine address lines in the ROM chip specify any one of the 512 bytes stored in it. The two chip select inputs 

must be CS1= 1 and = 0 for the IC to operate. Otherwise, the data bus is in a high-impedance state. There 

is no need for a read or write control because the unit can only read. Thus, when the chip is enabled by the two 

select inputs, the byte selected by the address lines appears on the data bus. 

 

The different memory types or memory technologies are detailed below: 

 

DRAM: Dynamic RAM is a form of random access memory. DRAM uses a capacitor to store each bit  of 

data, and the level of charge on each capacitor determines whether that bit is a logical 1 or 0. 

However, these capacitors do not hold their charge indefinitely, and therefore the data needs to be 

refreshed periodically. As a result of this dynamic refreshing, it gains its name of being a dynamic RAM. 

DRAM is the form of semiconductor memory that is often used in equipment including personal 

computers and workstations where it forms the main RAM for the computer. 

 

SRAM: Static Random Access Memory. This form of semiconductor memory gains its name from the 

fact that, unlike DRAM, the data does not need to be refreshed dynamically. It is able to support faster 

read and write times than DRAM (typically 10 ns against 60 ns for DRAM), and in addition its cycle 

time is much shorter because it does not need to pause between accesses. However, it consumes more 

power, is less dense and more expensive than DRAM. As a result of this it is normally used for caches, 

while DRAM is used as the main semiconductor memory technology. 

 

 PROM: This stands for Programmable Read Only Memory. It is a semiconductor memory which can 

only have data written to it once - the data written to it is permanent. These memories are bought in a 

blank format and they are programmed using a special PROM programmer. Typically, a PROM will 

consist of an array of fusible links some of which are "blown" during the programming process to 

provide the required data pattern. 

 

EPROM:   This is an Erasable Programmable Read Only Memory. This form of semiconductor memory 

can be programmed and then erased at a later time. This is normally achieved by exposing the silicon to 

 
Block diagram of 512X8 ROM IC 
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ultraviolet light.  

 

EEPROM: This is an Electrically Erasable Programmable Read Only Memory. Data can be written to it 

and it can be erased using an electrical voltage. This is typically applied to an erase pin on the chip. Like 

other types of PROM, EEPROM retains the contents of the memory even when the power is  

turned off. 

 

 MEMORY ORGANIZATION 

 

Memory Interleaving: 

Pipeline and vector processors often require simultaneous access to memory from two or more 

sources. An instruction pipeline may require the fetching of an instruction and an operand at the same time 

from two different segments. 

Similarly, an arithmetic pipeline usually requires two or more operands to enter the pipeline at 

the same time. Instead of using two memory buses for simultaneous access, the memory can be partitioned 

into a number of modules connected to a common memory address and data buses. A memory module is 

a memory array together with its own address and data registers. Figure below shows a memory unit with 

four modules. Each memory array has its own address register AR and data register DR. 

  

 

 

 

 
 

 The address registers receive information from a common address bus and the data registers 

communicate with a bidirectional data bus. The two least significant bits of the address can be used to 

distinguish between the four modules. The modular system permits one module to initiate a memory 

access while other modules are in the process of reading or writing a word and each module can honor a 

memory request independent of the state of the other modules. 

The advantage of a modular memory is that it allows the use of a technique called interleaving. 

In an interleaved memory, different sets of addresses are assigned to different memory modules. For 

example, in a two-module memory system, the even addresses may be in one module and the odd 

addresses in the other. 

 

Concept of Hierarchical Memory Organization 

This Memory Hierarchy Design is divided into 2 main types: 
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External Memory or Secondary Memory 

Comprising of Magnetic Disk, Optical Disk, Magnetic Tape i.e. peripheral storage devices which 

are accessible by the processor via I/O Module. 

 

Internal Memory or Primary Memory 

Comprising of Main Memory, Cache Memory & CPU registers. This is directly accessible by the 

processor. 
 

 

   

 

 

 Characteristics of Memory Hierarchy 

 

Capacity: 

It is the global volume of information the memory can store. As we move from top to bottom in 

the Hierarchy, the capacity increases. 

 

Access Time: 

It is the time interval between the read/write request and the availability of the data. As we move 

from top to bottom in the Hierarchy, the access time increases. 

 

Performance: 

Earlier when the computer system was designed without Memory Hierarchy design, the speed gap 

increases between the CPU registers and Main Memory due to large difference in access time. This results 

in lower performance of the system and thus, enhancement was required. This enhancement was made in 

the form of Memory Hierarchy Design because of which the performance of the system increases.  

 

Cost per bit: 

As we move from bottom to top in the Hierarchy, the cost per bit increases i.e. Internal Memory 

is costlier than External Memory. 
 

 Cache Memories: 

The cache is a small and very fast memory, interposed between the processor and the main 

memory. Its purpose is to make the main memory appear to the processor to be much faster than it 

actually is. The effectiveness of this approach is based on a property of computer programs called 

locality of reference. 

Analysis of programs shows that most of their execution time is spent in routines in which many 

instructions are executed repeatedly. These instructions may constitute a simple loop, nested loops, or a 
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few procedures that repeatedly call each other. 

The cache memory can store a reasonable number of blocks at any given time, but this number is 

small compared to the total number of blocks in the main memory. The correspondence between the main 

memory blocks and those in the cache is specified by a mapping function. 

When the cache is full and a memory word (instruction or data) that is not in the cache is 

referenced, the cache control hardware must decide which block should be removed to create space for 

the new block that contains the referenced word. The collection of rules for making this decision 

constitutes the cache‟s replacement algorithm. 

 

Cache Hits 

The processor does not need to know explicitly about the existence of the cache. It simply issues 

Read andWrite requests using addresses that refer to locations in the memory. The cache control circuitry 

determines whether the requested word currently exists in the cache. 

If it does, the Read orWrite operation is performed on the appropriate cache location. In this case, a read 

or write hit is said to have occurred. 

 
Cache Misses 

A Read operation for a word that is not in the cache constitutes a Read miss. It causes the block 

of words containing the requested word to be copied from the main memory into the cache. 

 
Cache Mapping: 

There are three different types of mapping used for the purpose of cache memory which are as 

follows: Direct mapping, Associative mapping, and Set-Associative mapping. These are explained as 

following below. 

 

Direct mapping 

The simplest way to determine cache locations in which to store memory blocks is the direct- 

mapping technique. In this technique, block j of the main memory maps onto block j modulo 128 of the 

cache, as depicted in Figure 8.16. Thus, whenever one of the main memory blocks 0, 128, 256, . . . is 

loaded into the cache, it is stored in cache block 0. Blocks 1, 129, 257, . . . are stored in cache block 1, 

and so on. Since more than one memory block is mapped onto a given cache block position, contention 

may arise for that position even when the cache is not full. 

For example, instructions of a program may start in block 1 and continue in block 129, possibly 

after a branch. As this program is executed, both of these blocks must be transferred to the block-1 

position in the cache. Contention is resolved by allowing the new block to overwrite the currently 

resident block. 

With direct mapping, the replacement algorithm is trivial. Placement of a block in the cache is 

determined by its memory address. The memory address can be divided into three fields, as shown in 

Figure 8.16. The low-order 4 bits select one of 16 words in a block. 

When a new block enters the cache, the 7-bit cache block field determines the cache position in 

which this block must be stored. If they match, then the desired word is in that block of the cache. If there 

is no match, then the block containing the required word must first be read from the main memory and 

loaded into the cache. 

The direct-mapping technique is easy to implement, but it is not very flexible. 
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Associative Mapping 

In Associative mapping method, in which a main memory block can be placed into any cache 

block position. In this case, 12 tag bits are required to identify a memory block when it is resident in the 

cache. The tag bits of an address received from the processor are compared to the tag bits of each block 

of the cache to see if the desired block is present. This is called the associative-mapping technique. 
 

It gives complete freedom in choosing the cache location in which to place the memory block, 
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resulting in a more efficient use of the space in the cache. When a new block is brought into the cache, it 

replaces (ejects) an existing block only if the cache is full. In this case, we need an algorithm to select 

the block to be replaced. 
 

To avoid a long delay, the tags must be searched in parallel. A search of this kind is called an 

associative search. 

 
Set-Associative Mapping 

Another approach is to use a combination of the direct- and associative-mapping techniques. 

The blocks of the cache are grouped into sets, and the mapping allows a block of the main memory to 

reside in any block of a specific set. Hence, the contention problem of the direct method is eased by 

having a few choices for block placement. 
 

 

 

At the same time, the hardware cost is reduced by decreasing the size of the associative search. 

An example of this set-associative-mapping technique is shown in Figure 8.18 for a cache with two 

blocks per set. In this case, memory blocks 0, 64, 128,  . . , 4032 map into cache set 0, and they can 

occupy either of the two block positions within this set. 

Having 64 sets means that the 6-bit set field of the address determines which set of the cache 

might contain the desired block. The tag field of the address must then be associatively compared to the 

tags of the two blocks of the set to check if the desired block is present. This two-way associative 

search is simple to implement. 

The number of blocks per set is a parameter that can be selected to suit the requirements 

of a particular computer. For the main memory and cache sizes in Figure 8.18, four blocks per set can be 
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accommodated by a 5-bit set field, eight blocks per set by a 4-bit set field, and so on. The extreme 

condition of 128 blocks per set requires no set bits and corresponds to the fully-associative technique, 

with 12 tag bits. The other extreme of one block per set is the direct-mapping. 

Replacement Algorithms 

In a direct-mapped cache, the position of each block is predetermined by its address; hence, the 

replacement strategy is trivial. In associative and set-associative caches there exists some flexibility. 

When a new block is to be brought into the cache and all the positions that it may occupy are full, the 

cache controller must decide which of the old blocks to overwrite. 

This is an important issue, because the decision can be a strong determining factor in system 

performance. In general, the objective is to keep blocks in the cache that are likely to be referenced in 

the near future. But, it is not easy to determine which blocks are about to be referenced. 

The property of locality of reference in programs gives a clue to a reasonable strategy. Because 

program execution usually stays in localized areas for reasonable periods of time, there is a high 

probability that the blocks that have been referenced recently will be referenced again soon. Therefore, 

when a block is to be overwritten, it is sensible to overwrite the one that has gone the longest time 

without being referenced. This block is called the least recently used (LRU) block, and the technique is 

called the LRU replacement algorithm. 

The LRU algorithm has been used extensively. Although it performs well for many access 

patterns, it can lead to poor performance in some cases. 

 

Write Policies 

The write operation is proceeding in 2 ways. 

• Write-through protocol 

• Write-back protocol 

 
Write-through protocol: 

Here the cache location and the main memory locations are updated simultaneously. 
 

Write-back protocol: 

• This technique is to update only the cache location and to mark it as with 
associated flag bit called dirty/modified bit. 

• The word in the main memory will be updated later, when the block containing this 
marked word is to be removed from the cache to make room for a new block. 

• To overcome the read miss Load –through / Early restart protocol is used. 

 
 

 

 

 
 



Unit-III (Part-2) 

 

Memory Connections to CPU: 

The interconnection between memory and processor is established from knowledge of the size 

of memory needed and the type of RAM and ROM chips available. The addressing of memory 

can be established by means of a table that specifies the memory address assigned to each chip. 

The table, called a memory address map, is a pictorial representation of assigned address space 

for each chip in the system. To demonstrate with a particular example, assume that a computer 

system needs 512 bytes of RAM and 512 bytes of ROM.  

 

The memory address map for this configuration is shown in Table below. The component 

column specifies whether a RAM or a ROM chip is used. The hexadecimal address column 

assigns a range of hexadecimal equivalent addresses for each chip. The address bus lines are 

listed in the third column. Although there are 16 lines in the address bus, the table shows only 

10 lines because the other 6 are not used in this example and are assumed to be zero. The small 

x’s under the address bus lines designate those lines that must be connected to the address 

inputs in each chip. The RAM chips have 128 bytes and need seven address lines.  

 

The ROM chip has 512 bytes and needs 9 address lines. The x’s are always assigned to the 

low-order bus lines: lines 1 through 7 for the RAM and lines 1 through 9 for the ROM. It is 

now necessary to distinguish between four RAM chips by assigning to each a different address. 

For this particular example we choose bus lines 8 and 9 to represent four distinct binary 

combinations. Note that any other pair of unused bus lines can be chosen for this purpose.  

 

The table clearly shows that the nine low-order bus lines constitute a memory space for RAM 

equal to 29 = 512 bytes. The distinction between a RAM and ROM address is done with another 

bus line. Here we choose line 10 for this purpose. When line 10 is 0, the CPU selects a RAM, 

and when this line is equal to 1, it selects the ROM. 
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UNIT – IV  
 

 

Input-output subsystems 

The Input/output organization of computer depends upon the size of computer and the 

peripherals connected to it. The I/O Subsystem of the computer provides an efficient mode of 

communication between the central system and the outside environment. 

The most common input output devices are: Monitor, Keyboard, Mouse, Printer, Magnetic 

tapes Input Output Interface provides a method for transferring information between internal storage 

and external I/O devices. Peripherals connected to a computer need special communication links for 

interfacing them with the central processing unit. The purpose of communication link is to resolve the 

differences that exist between the central computer and each peripheral. 
 

 - 

 

The Major Differences are: - 

• Peripherals are electromechanical and electromagnetic devices and CPU and memory are 

electronic devices. Therefore, a conversion of signal values may be needed. 

• The data transfer rate of peripherals is usually slower than the transfer rate of CPU and 
consequently, a synchronization mechanism may be needed. 

• Data codes and formats in the peripherals differ from the word format in the CPU and memory. 

• The operating modes of peripherals are different from each other and must be controlled so as 
not to disturb the operation of other peripherals connected to the CPU. 

 

To resolve these differences, computer systems include special hardware components between the CPU 

and Peripherals to supervises and synchronizes all input and output transfers. These components are 

called Interface Units because they interface between the processor bus and the peripheral devices. 

I/O device interface 

The I/O Bus consists of data lines, address lines and control lines. The I/O bus from the processor is 

attached to all peripherals interface. To communicate with a particular device, the processor places a 

device address on address lines. Each Interface decodes the address and control received from the I/O 

bus, interprets them for peripherals and provides signals for the peripheral controller. It also synchronizes 

the data flow and supervises the transfer between peripheral and processor. Each peripheral has its own 

Peripheral devices and their characteristics: Input-output subsystems, I/O device interface, 

I/O transfers – program controlled, interrupt driven and DMA, privileged and non-privileged 

instructions, software interrupts and exceptions. Programs and processes – role of interrupts in 

process state transitions 
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controller. For example, the printer controller controls the paper motion, the print timing.  

 

There are four types of commands that an interface may receive. They are classified as control, status, 

data output, and data input. 

 

A control command is issued to activate the peripheral and to inform it what to do. For example, a 

magnetic tape unit may be instructed to backspace the tape by one record, to rewind the tape, or to start 

the tape moving in the forward direction. The particular control command issued depends on the 

peripheral, and each peripheral receives its own distinguished sequence of control commands, depending 

on its mode of operation. 

 

A status command is used to test various status conditions in the interface and the peripheral. For 

example, the computer may wish to check the status of the peripheral before a transfer is initiated. During 

the transfer, one or more errors may occur which are detected by the interface. These errors are designated 

by setting bits in a status register that the processor can read at certain intervals. 

 

A data output command causes the interface to respond by transferring data from the bus into one of its 

registers.  

 

The data input command is the opposite of the data output. In this case the interface receives an item of  

data from the peripheral and places it in its buffer register.  

 

I/O Versus Memory Bus 

To communicate with I/O, the processor must communicate with the memory unit. Like the I/O 

bus, the memory bus contains data, address and read/write control lines. There are 3 ways that computer 

buses can be used to communicate with memory and I/O: 

1. Use two Separate buses, one for memory and other for I/O. 

2. Use one common bus for both memory and I/O but separate control lines for each. 

3. Use one common bus for memory and I/O with common control lines. 
 

Example I/O Interface: 

      

                                                                     Fig: An Example I/O Interface 
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An example of an I/O interface unit is shown in the above block diagram. It consists of two data registers 

called ports, a control register, a status register, bus buffers, and timing and control circuits. The interface 

communicates with the CPU through the data bus. The chip select and register select inputs determine 

the address assigned to the interface. The I/O read and write are two control lines that specify an input or 

output, respectively. The four registers communicate directly with the I/O device attached to the interface. 

 

The I/O data to and from the device can be transferred into either port A or port B. The interface may 

operate with an output device or with an input device, or with a device that requires both input and output. 

If the interface is connected to a printer, it will only output data, and if it services a character reader, it 

will only input data. A magnetic disk unit transfers data in both directions but not at the same time, so 

the interface can use bidirectional lines.  

 

This circuit enables the chip select (CS ) input when the interface is selected by the address bus. The two 

register select inputs RS1 and RS0 are usually connected to the two least significant lines of the address 

bus. These two inputs select one of the four registers in the interface as specified in the table shown 

above. The content of the selected register is transferred into the CPU via the data bus when the I/O read 

signal is enabled. The CPU transfers binary information into the selected register via the data bus when 

the I/O write input is enabled. 

 

I/O Transfer (or) Modes of Transfer 

 

Data transfer to and from peripherals may be handled in one of three possible modes: 

 

1. Programmed I/O 

2. Interrupt-initiated I/O 

3. Direct memory access (DMA) 

 

Programmed I/O Mode: 

In this mode of data transfer the operations are the results in I/O instructions which is a part of computer 

program. Each data transfer is initiated by an instruction in the program. Normally the transfer is from a 

CPU register to peripheral device or vice- versa. Once the data is initiated the CPU starts monitoring the 

interface to see when next transfer can made. The instructions of the program keep close tabs on 

everything that takes place in the interface unit and the I/O devices. 

The transfer of data requires three instructions: 

• Read the status register. 

• Check the status of the flag bit and branch to step 1 if not set or to step 3 if set. 

• Read the data register. 
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     Figure: Flowchart for CPU program to input data 

 

In this technique CPU is responsible for transferring data from the memory to output and 

storing data in memory for executing of Programmed I/O as shown in Fig. 

Drawback of the Programmed I/O: 

The main drawback of the Programmed I/O was that the CPU has to monitor the units all 

the times when the program is executing. Thus, the CPU stays in a program loop until the 

I/O unit indicates that it is ready for data transfer. This is a time-consuming process.  
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Interrupt-Initiated I/O: 

In this method an interrupt facility an interrupt command is used to inform the device 

about the start and end of transfer. In the meantime, the CPU executes another program. When 

the interface determines that the device is ready for data transfer it generates an Interrupt 

Request and sends it to the computer. 

When the CPU receives such a signal, it temporarily stops the execution of the program 

and branches to a service program to process the I/O transfer and after completing it returns 

back to task, what it was originally performing. 

In this type of IO, computer does not check the flag. It continues to perform its task. 

Whenever any device wants the attention, it sends the interrupt signal to the CPU. CPU then 

deviates from what it was doing, stores the return address of main program and branches to 

the address of the subroutine. 

 

There are two ways of choosing the branch address: 

Vectored Interrupt: In vectored interrupt the source that interrupts the CPU provides the 

branch information. This information is called interrupt vectored.  

Non-vectored Interrupt: In non-vectored interrupt, the branch address is assigned to the fixed 

address in the memory. 

 

In Interrupt initiated I/O there are two techniques called  

1. Daisy Chaining Priority 

2. Parallel Priority Interrupt Controller. 

 

Diasy Chaining Priority: 

The daisy-chaining method of establishing priority consists of a serial connection of all devices 

that request an interrupt. The device with the highest priority is placed in the first position, 

followed by lower-priority devices up to the device with the lowest priority, which is placed last 

in the chain. This method of connection between three devices and the CPU is shown in Figure 

below. The interrupt request line is common to all devices and forms a wired logic connection.  

 

If any device has its interrupt signal in the low-level state, the interrupt line goes to the low-level 

state and enables the interrupt input in the CPU. When no interrupts arc pending, the interrupt line 

stays in the high-level state and no interrupts are recognized by the CPU. This is equivalent to a 

negative logic OR operation. The CPU responds to an interrupt request by enabling the interrupt 

acknowledge line. This signal is received by device 1 at its PI (priority in) input.  

 

The acknowledge signal passes on to the next device through the PO (priority out) output only if 

device 1 is not requesting an interrupt. If device 1 has a pending interrupt, it blocks the 

acknowledge signal from the next device by placing a 0 in the PO output. It then proceeds to insert 

its own interrupt vector address (VAD) into the data bus for the CPU to use during the interrupt 

cycle. 
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      Parallel Priority Interrupt 

The parallel priority interrupt method uses a register whose bits are set separately by the interrupt 

signal from each device. Priority is established according to the position of the bits in the register. 

In addition to the interrupt register, the circuit may include a mask register whose purpose is to 

control the status of each interrupt request. The mask register can be programmed to disable lower-

priority interrupts while a higher-priority device is being serviced. It can also provide a facility that 

allows a high-priority device to interrupt the CPU while a lower-priority device is being serviced. 

 

The priority logic for a system of four interrupt sources is shown in Figure below. It consists of an 

interrupt register whose individual bits are set by external conditions and cleared by program 

instructions. The magnetic disk, being a high-speed device, is given the highest priority. The 

printer has the next priority, followed by a character reader and a keyboard. The mask register has 

the same number of bits as the interrupt register. By means of program instructions, it is possible 

to set or reset any bit in the mask register. Each interrupt bit and its corresponding mask bit are 

applied to an AND gate to produce the four inputs to a priority encoder. In this way an interrupt is 

recognized only if its corresponding mask bit is set to 1 by the program. The priority encoder 

generates two bits of the vector address, which is transferred to the CPU. 

 

Another output from the encoder sets an interrupt status flip-flop IST when an interrupt that is not 

masked occurs. The interrupt enable flip-flop IEN can be set or cleared by the program to provide 

an overall control over the interrupt system. The outputs of IST ANDed with IEN provide a 

common interrupt signal for the CPU. The interrupt acknowledge INTACK signal from the CPU 

enables the bus buffers in the output register and a vector address VAD is placed into the data bus.  
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Direct Memory Access (DMA): 

In the Direct Memory Access (DMA) the interface transfers the data into and out of the memory unit 

through the memory bus. The transfer of data between a fast storage device such as magnetic disk and 

memory is often limited by the speed of the CPU. Removing the CPU from the path and letting the 

peripheral device manage the memory buses directly would improve the speed of transfer. This transfer 

technique is called Direct Memory Access (DMA). During the DMA transfer, the CPU is idle and has 

no control of the memory buses. A DMA Controller takes over the buses to manage the transfer directly 

between the I/O device and memory. 

 

The Bus Request (BR) input is used by the DMA controller to request the CPU. When this input is 

active, the CPU terminates the execution of the current instruction and places the address bus, data bus 

and read write lines into a high Impedance state. High Impedance state means that the output is 

disconnected. The CPU activates the Bus Grant (BG) output to inform the external DMA that the Bus 

Request (BR) can now take control of the buses to conduct memory transfer without processor. When 

the DMA terminates the transfer, it disables the Bus Request (BR) line. The CPU disables the Bus 

Grant (BG), takes control of the buses and return to its normal operation. 

 

The transfer can be made in several ways that are:  

DMA Burst 

Cycle Stealing 
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DMA Burst: In DMA Burst transfer, a block sequence consisting of a number of memory words is 

transferred in continuous burst while the DMA controller is master of the memory buses. 

Cycle Stealing: Cycle stealing allows the DMA controller to transfer one data word at a time, after 

which it must returns control of the buses to the CPU. 

 

 
 

 

  
 

DMA Controller: 

The DMA controller needs the usual circuits of an interface to communicate with the CPU and I/O 

device. The DMA controller has three registers: 

Address Register: Address Register contains an address to specify the desired location in memory.  

Word Count Register: WC holds the number of words to be transferred. The register is decremented  
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by one after each word transfer and internally tested for zero. 

Control Register: Control Register specifies the mode of transfer 

     

  

  
 

The unit communicates with the CPU via the data bus and control lines. The registers in the DMA are 

selected by the CPU through the address bus by enabling the DS (DMA select) and RS (Register select) 

inputs. The RD (read) and WR (write) inputs are bidirectional. When the BG (Bus Grant) input is 0, 

the CPU can communicate with the DMA registers through the data bus to read from or write to the 

DMA registers. When BG =1, the DMA can communicate directly with the memory by specifying an 

address in the address bus and activating the RD or WR control. 

 

The CPU initializes the DMA by sending the following information through the data bus: 

1. The starting address of the memory block where data are available (for read) or where data are to be 

stored (for write). 

2. The word count, which is the number of words in the memory block. 

3. Control to specify the mode of transfer such as read or write. 

4. A control to start the DMA transfer. 

 

Once the DMA is initialized, the CPU stops communicating with the DMA unless it receives an interrupt 

signal or if it wants to check how many words have been transferred. 

Privileged and Non-Privileged Instructions  

 

In any Operating System, it is necessary to have a Dual Mode Operation to ensure the protection and security of 

the System from unauthorized users. This Dual Mode separates the User Mode from the System Mode or Kernel 

Mode.  

In an operating system, instructions are divided into two categories: privileged and non-privileged instructions. 

Privileged instructions are those that can only be executed by the operating system kernel or a privileged process, 

such as a device driver. These instructions typically perform operations that require direct access to hardware or 

https://www.geeksforgeeks.org/dual-mode-operations-os/
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other privileged resources, such as setting up memory mappings or accessing I/O devices. Privileged instructions 

are executed in kernel mode, which provides unrestricted access to the system resources.  

Non-privileged instructions are those that can be executed by any process, including user-level processes. These 

instructions are typically used for performing computations, accessing user-level resources such as files and 

memory, and managing process control. Non-privileged instructions are executed in user mode, which provides 

limited access to system resources and ensures that processes cannot interfere with one another.  

Some key differences between privileged and non-privileged instructions: 

1. Access to resources: Privileged instructions have direct access to system resources, while non-privileged 

instructions have limited access. 

2. Execution mode: Privileged instructions are executed in kernel mode, while non-privileged instructions 

are executed in user mode. 

3. Execution permissions: Privileged instructions require special permissions to execute, while non-

privileged instructions do not. 

4. Purpose: Privileged instructions are typically used for performing low-level system operations, while 

non-privileged instructions are used for general-purpose computing. 

5. Risks: Because privileged instructions have access to system resources, they pose a higher risk of 

causing system crashes or security vulnerabilities if not used carefully. Non-privileged instructions are 

less risky in this regard. 

 

In summary, privileged instructions are used by the operating system kernel and privileged processes to perform 

low-level system operations, while non-privileged instructions are used by user-level processes for general-purpose 

computing. The distinction between privileged and non-privileged instructions is an important mechanism for 

ensuring the security and stability of an operating system. 

 

Software Interrupts and Exceptions 

Interrupt 

Interrupt is the method of creating a temporary halt during program execution and allows peripheral devices to access 

the microprocessor. The microprocessor responds to that interrupt with an ISR (Interrupt Service Routine), which is 

a short program to instruct the microprocessor on how to handle the interrupt. The following image shows the types 

of interrupts. 
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Fig: Types of Interrupts 

Hardware Interrupts: Hardware interrupt is caused by any peripheral device by sending a signal through a 

specified pin to the microprocessor. (i.e., INTR) 

Software Interrupts:  Some instructions are inserted at the desired position into the program to create interrupts. 

These interrupt instructions can be used to test the working of various interrupt handlers. It includes INT Interrupt 

instruction with type number It is 2-byte instruction. First byte provides the op-code and the second byte provides the 

interrupt type number. There are 256 interrupt types under this group. 

 

• TYPE 0 interrupt represents division by zero situation. (INT 0) 

• TYPE 1 interrupt represents single-step execution during the debugging of a program. (INT 1) 

• TYPE 2 interrupt represents non-maskable NMI interrupt. (INT 2) 

• TYPE 3 interrupt represents break-point interrupt. (INT 3) 

• TYPE 4 interrupt represents overflow interrupt. (INT 4) 

Exception: 

Exceptions occur during program execution and are so extraordinary that they cannot be handled by the program 

itself. If you give the processor the command to divide a number by zero, for instance, it will give a divide-by-zero 

exception, which will cause the computer to either stop the operation or display an error notice. 

 

 

 

Programs and Processes 

The difference between Program and Process: 

Program Process 

Program contains a set of instructions designed to 

complete a specific task. 
Process is an instance of an executing program. 

Program is a passive entity as it resides in the 

secondary memory. 

Process is a active entity as it is created during 

execution and loaded into the main memory. 
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Program Process 

Program exists at a single place and continues to 

exist until it is deleted. 

Process exists for a limited span of time as it gets 

terminated after the completion of task. 

Program is a static entity. Process is a dynamic entity. 

Program does not have any resource requirement; it 

only requires memory space for storing the 

instructions. 

Process has a high resource requirement, it needs 

resources like CPU, memory address, I/O during its 

lifetime. 

Program does not have any control block. 
Process has its own control block called Process 

Control Block. 

Program has two logical components: code and 

data. 

In addition to program data, a process also requires 

additional information required for the management 

and execution. 
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UNIT-V 

Pipelining & Parallel Processors 

 

Basic Concepts of Pipelining: Pipelining is a technique of decomposing a sequential process into 

suboperations, with each subprocess being executed in a special dedicated segment that operates 

concurrently with all other segments. A pipeline can be visualized as a collection of processing 

segments through which binary information flows. Each segment performs partial processing 

dictated by the way the task is partitioned. The result obtained from the computation in each segment 

is transferred to the next segment in the pipeline. The final result is obtained after the data have 

passed through all segments. It is characteristic of pipelines that several computations can be in 

progress in distinct segments at the same time.  

 

The simplest way of viewing the pipeline structure is to imagine that each segment consists of an 

input register followed by a combinational circuit. The register holds the data and the combinational 

circuit performs the suboperation in the particular segment. The output of the combinational circuit 

in a given segment is applied to the input register of the next segment. The pipeline organization 

will be demonstrated by means of a simple example. Suppose that we want to perform the combined 

multiply and add operations with a stream of numbers. 

 
Each suboperation is to be implemented in a segment within a pipeline. Each segment has one or 

two registers and a combinational circuit as shown in Figure below. R1 through R5 are registers that 

receive new data with every clock pulse. The multiplier and adder are combinational circuits. The 

suboperations performed in each segment of the pipeline are as follows: 

 

 

The five registers are loaded with new data every clock pulse. The effect of each clock is shown in 

Table below. The first clock pulse transfers A1 and B1 into R1 and R2. 
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The second clock pulse transfers the product of R1 and R2 into R3 and C1 into R4. The same clock 

pulse transfers A2 and B2 into R1 and R2. The third clock pulse operates on all three segments 

simultaneously. It places A3 and B3 into R1 and R2, transfers the product of R1 and R2 into R3, 

transfers C2 into R4, and places the sum of R3 and R4 into R5. It takes three clock pulses to fill up 

the pipe and retrieve the first output from R5. From there on, each clock produces a new output and 

moves the data one step down the pipeline.  

 

The general structure of a four-segment pipeline is illustrated in Figure below. The operands pass 

through all four segments in a fixed sequence. Each segment consists of a combinational circuit Si 

that performs a suboperation over the data stream flowing through the pipe. The segments are 

separated by registers Ri that hold the intermediate results between the stages.  

 
The behaviour of a pipeline can be illustrated with a space-time diagram. This is a diagram that 

shows the segment utilization as a function of time. The space-time diagram of a four-segment 

pipeline is demonstrated in Figure below. The horizontal axis displays the time in clock cycles and 

the vertical axis gives the segment number. The diagram shows six tasks T1 through T6 executed in 

four segments. Initially, task T1 is handled by segment 1. After the first clock, segment 2 is busy 

with T1, while segment 1 is busy with task T2. Continuing in this manner, the first task T1 is 

completed after the fourth clock cycle. From then on, the pipe completes a task every clock cycle. 

No matter how many segments there are in the system, once the pipeline is full, it takes only one 

clock period to obtain an output.  

 

Now consider the case where a k-segment pipeline with a clock cycle time tp is used to execute n 

tasks. The first task T1 requires a time equal to ktp to complete its operation since there are k 

segments in the pipe. The remaining n - 1 tasks emerge from the pipe at the rate of one task per 

clock cycle and they will be completed after a time equal to (n - 1)tp. Therefore, to complete n tasks 
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using a k-segment pipeline requires k +(n - 1) clock cycles. For example, the diagram below shows 

four segments and six tasks. The time required to complete all the operations is 4+ (6 - 1) = 9 clock 

cycles, as indicated in the diagram. Next consider a non pipeline unit that performs the same 

operation and takes a time equal to tn to complete each task. The total time required for n tasks is 

ntn. The speedup of a pipeline processing over an equivalent nonpipelined processing is defined by 

the ratio 

 

 
 

As the number of tasks increases, n becomes much larger than k - 1, and k + n - 1 approaches the 

value of n. Under this condition, the speedup becomes 

 

If we assume that the time it takes to process a task is the same in the pipeline and non-pipeline 

circuits, we will have tn= ktp. Including this assumption, the speedup reduces to 

 

This shows that the theoretical maximum speedup that a pipeline can provide is k, where k is the 

number of segments in the pipeline. 

 

Arithmetic Pipeline 

Pipeline arithmetic units are usually found in very high-speed computers. They are used to 

implement floating-point operations, multiplication of fixed-point numbers, and similar 

computations encountered in scientific problems. Consider the following two normalized floating 

point numbers 

 

A and B are two fractions that represent the mantissas and a and b are the exponents. The floating-

point addition and subtraction can be performed in four segments, as shown in Figure below. The 

registers labelled R are placed between the segments to store intermediate results. The suboperations 

that are performed in the four segments are: 
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1. Compare the exponents. 

2. Align the mantissas. 

3. Add or subtract the mantissas. 

4. Normalize the result. 

 

The following numerical example may clarify the suboperations performed in each segment. 

Consider two the normalized floating-point numbers: 

 

The two exponents are subtracted in the first segment to obtain 3-2=1. The larger exponent 3 is 

chosen as the exponent of the result. The next segment shifts the mantissa of Y to the right to obtain 

 
This aligns the two mantissas under the same exponent. The addition of the two mantissas in 

segment 3 produces the sum 

 
The sum is adjusted by normalizing the result so that it has a fraction with a nonzero first digit. 

This is done by shifting the mantissa once to the right and incrementing the exponent by one to 

obtain the normalized sum. 

 
The comparator, shifter, adder-subtractor, incrementer, and decrementer in the floating-point 

pipeline are implemented with combinational circuits.  
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Instruction Pipeline 

Pipeline processing can occur not only in the data stream but in the instruction stream as well. An 

instruction pipeline reads consecutive instructions from memory while previous instructions are 

being executed in other segments. This causes the instruction fetch and execute phases to overlap 

and perform simultaneous operations. One possible problem associated with such a scheme is that 

an instruction may cause a branch out of sequence. In that case the pipeline must be emptied and all 

the instructions that have been read from memory after the branch instruction must be discarded.  

 

In the most general case, the computer needs to process each instruction with the following sequence 

of steps. 

1. Fetch the instruction from memory. 

2. Decode the instruction. 

3. Calculate the effective address. 

4. Fetch the operands from memory. 

5. Execute the instruction. 

6. Store the result in the proper place. 
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Example: Four-Segment Instruction Pipeline 

Figure below shows how the instruction cycle in the CPU can be processed with a four-segment 

pipeline. While an instruction is being executed in segment 4, the next instruction in sequence is 

busy fetching an operand from memory in segment 3. The effective address may be calculated in a 

separate arithmetic circuit for the third instruction, and whenever the memory is available, the fourth 

and all subsequent instructions can be fetched and placed in an instruction FIFO. Thus, up to four 

suboperations in the instruction cycle can overlap and up to four different instructions can be in 

progress of being processed at the same time. Once in a while, an instruction in the sequence may 

be a program control type that causes a branch out of normal sequence. In that case the pending 

operations in the last two segments are completed and all information stored in the instruction buffer 

is deleted. The pipeline then restarts from the new address stored in the program counter. Similarly, 

an interrupt request, when acknowledged, will cause the pipeline to empty and start again from a 

new address value. 
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Figure below shows the operation of the instruction pipeline. The time in the horizontal axis is 

divided into steps of equal duration. The four segments are represented in the diagram with an 

abbreviated symbol. 

 

1. Fl is the segment that fetches an instruction. 

2. DA is the segment that decodes the instruction and calculates the effective address. 

3. FO is the segment that fetches the operand. 

4. EX is the segment that executes the instruction. 

 

It is assumed that the processor has separate instruction and data memories so that the operation in 

Fl and FO can proceed at the same time. In the absence of a branch instruction, each segment 

operates on different instructions. Thus, in step 4, instruction 1 is being executed in segment EX; 

the operand for instruction 2 is being fetched in segment FO; instruction 3 is being decoded in 

segment DA; and instruction 4 is being fetched from memory in segment FI. Assume now that 

instruction 3 is a branch instruction. As soon as this instruction is decoded in segment DA in step 

4, the transfer from FI to DA of the other instructions is halted until the branch instruction is 

executed in step 6. If the branch is taken, a new instruction is fetched in step 7. If the branch is not 

taken, the instruction fetched previously in step 4 can be used. The pipeline then continues until a 

new branch instruction is encountered. Another delay may occur in the pipeline if the EX segment 

needs to store the result of the operation in the data memory while the FO segment needs to fetch 

an operand. In that case, segment FO must wait until segment EX has finished its operation. 

 
 

Throughput: The amount of processing that can be accomplished during a given interval of time 

is called throughput. 

 

[The purpose of parallel processing is to speed up the computer processing capability and increase 

its throughput, that is, the amount of processing that can be accomplished during a given interval of 

time.] 
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Pipelining hazards  

• Pipeline hazards prevent next instruction from executing during designated clock cycle  

• There are 3 classes of hazards: 

1. Structural Hazards:  

• Arise from resource conflicts  

• HW cannot support all possible combinations of instructions  

Avoid structural hazards by duplicating resources – e.g. an ALU to perform an arithmetic 

operation and an adder to increment PC 

2. Data Hazards:  

• Occur when given instruction depends on data from an instruction ahead of it in pipeline  

ADD R1, R2, R3 

SUB R4, R1, R5 

AND R6, R1, R7 

OR R8, R1, R9 

XOR R10, R1, R11 

In the above code, after ADD instruction result will be stored in R1 register after the execution    

of  the instruction. But the second instruction SUB is dependent on R1 register because it is one   of 

the source operand for it. But in the pipeline structure, by the time SUB instruction starts fetching 

operand the result of ADD will not be available in R1. So Data Hazard occurs. 

3. Control Hazards:  

• Result from branch, other instructions that change flow of program (i.e. change PC) 

 

Parallel Processors 

Introduction to parallel processors: 

Parallel processing is a term used to denote a large class of techniques that are used to 

provide simultaneous data-processing tasks for the purpose of easing the computational 

speed of a computer system. Instead of processing each instruction sequentially as in a 

conventional computer, a parallel processing system is able to perform concurrent data 

processing to achieve faster execution time. 

The purpose of parallel processing is to speed up the computer processing capability and 

increase its throughput, that is, the amount of processing that can be accomplished during a 

given interval of time. The amount of hardware increases with parallel processing and with 

it, the cost of the system increases. However, technological developments have reduced 

hardware costs to the point where parallel processing techniques are economically feasible. 

 

Parallel processing at a higher level of complexity can be achieved by having a multiplicity 

of functional units that perform identical or different operations simultaneously. Parallel 

processing is established by distributing the data among the multiple functional units. For 



9 
 

example, the arithmetic, logic, and shift operations can be separated into three units and the 

operands diverted to each unit under the supervision of a control unit. 

 

Figure below shows one possible way of separating the execution unit into eight functional 

units operating in parallel. The operands in the registers are applied to one of the units 

depending on the operation specified by the instruction associated with the operands. The 

operation performed in each functional unit is indicated in each block of the diagram. The 

adder and integer multiplier perform the arithmetic operations with integer numbers. 

 

  

 

Parallel Processing can be classified in a variety of way. M. J. Flynn considers the organization 

of a computer system by the number of instructions and data items that are manipulated 

simultaneously. The normal operation of a computer is to fetch instructions from memory and 

execute them in the processor. The sequence of instructions read from memory constitutes an 

instruction stream . The operations performed on the data in the processor constitutes a data 

stream. Parallel processing may occur in the instruction stream, in the data stream, or in both. 

 

Flynn's classification divides computers into four major groups as follows:  

• Single instruction stream, single data stream (SISD) 

• Single instruction stream, multiple data stream (SIMD)  

• Multiple instruction stream, single data stream (MISD)  

• Multiple instruction stream, multiple data stream (MIMD) 
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SISD represents the organization of a single computer containing a control unit, a processor 

unit, and a memory unit. Instructions are executed sequentially and the system may or may not 

have internal parallel processing capabilities. Parallel processing in this case may be achieved 

by means of multiple functional units or by pipeline processing. 

SIMD represents an organization that includes many processing units under the supervision of 

a common control unit. All processors receive the same instruction from the control unit but 

operate on different items of data. The shared memory unit must contain multiple modules so 

that it can communicate with all the processors simultaneously. 

MISD structure is only of theoretical interest since no practical system has been constructed 

using this organization. 

MIMD organization refers to a computer system capable of processing several programs at the 

same time. Most multiprocessor and multicomputer systems can be classified in this category. 

 

Concurrent access to memory and cache coherence: 

The primary advantage of cache is its ability to reduce the average access time in uniprocessors. 

When the processor finds a word in cache during a read operation, the main memory is not 

involved in the transfer. If the operation is to write, there are two commonly used procedures 

to update memory. 

Write-through policy: In the write-through policy, both cache and main memory are updated 

with every write operation. 

Write-back policy: In the write-back policy, only the cache is updated and the location is 

marked so that it can be copied later into main memory. 

In a shared memory multiprocessor system, all the processors share a common memory. In 

addition, each processor may have a local memory, part or all of which may be a cache. The 

compelling reason for having separate caches for each processor is to reduce the average access 

time in each processor. The same information may reside in a number of copies in some caches 

and main memory. 

To ensure the ability of the system to execute memory operations correctly, the multiple copies 

must be kept identical. 

This requirement imposes a cache coherence problem. A memory scheme is coherent if the 

value returned on a load instruction is always the value given by the latest store instruction 

with the same address. Without a proper solution to the cache coherence problem, caching 

cannot be used in bus- oriented multiprocessors with two or more processors. 

Conditions for Incoherence 

Cache coherence problems exist in multiprocessors with private caches because of the need to 

share writable data. Read-only data can safely be replicated without cache coherence 

enforcement mechanisms. 

To illustrate the problem, consider the three-processor configuration with private caches shown 

in Fig. below. Sometime during the operation an element X from main memory is loaded into 

the three processors, P1, P2, and P3. As a consequence, it is also copied into the private caches 

of the three processors. For simplicity, we assume that X contains the value of 52. The load on 

X to the three processors results in consistent copies in the caches and main memory. If one of 

the processors performs a store to X, the copies of X in the caches become inconsistent. A load 

by the other processors will not return the latest value. Depending on the memory update policy 

used in the cache, the main memory may also be inconsistent with respect to the cache. 
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A store to X (of the value of 120) into the cache of processor P1 updates memory to the new 

value in a write-through policy. A write-through policy maintains consistency between 

memory and the originating cache, but the other two caches are inconsistent since they still 

hold the old value which is shown in figure below.  

 
In a write-back policy, main memory is not updated at the time of the store. The copies in the 

other two caches and main memory are inconsistent. Memory is updated eventually when the 

modified data in the cache are copied back into memory. 
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Another configuration that may cause consistency problems is a direct memory access (DMA) 

activity in conjunction with an IOP connected to the system bus. In the case of input, the DMA may 

modify locations in main memory that also reside in cache without updating the cache. During a 

DMA output, memory locations may be read before they are updated from the cache when using a 

write-back policy. 

The important terms related to the data or information stored in the cache as well as in the main 

memory are as follows: 

o Modified - The modified term signifies that the data stored in the cache and main memory 

are different. This means the data in the cache has been modified, and the changes need to 

be reflected in the main memory. 

o Exclusive - The exclusive term signifies that the data is clean, i.e., the cache and the main 

memory hold identical data. 

o Shared - Shared refers to the fact that the cache value contains the most current data copy, 

which is then shared across the whole cache as well as main memory. 

o Owned - The owned term indicates that the block is currently held by the cache and that it 

has acquired ownership of it, i.e., complete privileges to that specific block. 

o Invalid - When a cache block is marked as invalid, it means that it needs to be fetched from 

another cache or main memory. 

Below is a list of the different Cache Coherence Protocols used in multiprocessor systems: 

o MSI protocol (Modified, Shared, Invalid) 

o MOSI protocol (Modified, Owned, Shared, Invalid) 

o MESI protocol (Modified, Exclusive, Shared, Invalid) 

o MOESI protocol (Modified, Owned, Exclusive, Shared, Invalid) 

There exist three varieties of coherency mechanisms, which are listed below: 

1. Directory Based - A directory-based system keeps the coherence amongst caches by storing 

shared data in a single directory. In order to load an entry from primary memory into its 

cache, the processor must request permission through the directory, which serves as a filter. 

The directory either upgrades or devalues the other caches that contain that record when a 

record is modified. 

2. Snooping - Individual caches watch address lines during the snooping process to look for 

accesses to memory locations that they have cached. A write invalidate protocol is what it 

is known as. When a write activity is seen to a memory address for which a cache maintains 

a copy, the cache controller invalidates its own copy of the snooped memory location. 

3. Snarfing - A cache controller uses this approach to try and update its own copy of a memory 

location when a second master alters a place in the main memory by keeping an eye on both 
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the address and the contents. The cache controller updates its own copy of the underlying 

memory location with the new data when a write action is detected to a place of which a 

cache holds a copy. 

 




