MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

Autonomous Institution — UGC, Govt. of India

Department of COMPUTATIONAL INTELLIGENCE
CSE (AlI&ML)
B.TECH (R-22 Regulation)
(Il YEAR — | SEM)

2024-25

COMPUTER ORGANIZATION AND
ARCHITECTURE

(R22A1261)

LECTURE NOTES

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution — UGC, Govt. of India)

Recognized under 2(f) and 12(B) of UGC ACT 1956
(Affiliated to JNTUH, Hyderabad, Approved by AICTE-Accredited by NBA & NAAC — ‘A’ Grade - I1SO 9001:2015 Certified)
Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad-500100, Telangana State, India

Department of COMPUTATIONAL INTELLIGENCE

CSE (ARTIFICIAL INTELLIGENCE &
MACHINE LEARNING)

COMPUTER ORGANIZATION AND
ARCHITECTURE

(R22A1261)

LECTURE NOTES

SK. Subhani

Assistant Professor

Department of Computational Intelligence
CSE (Artificial Intelligence and Machine Learning),
Artificial Intelligence and Machine Learning

Vision

To be a premier centre for academic excellence and research through innovative
interdisciplinary collaborations and making significant contributions to the community,
organizations, and society as a whole.

Mission

% To impart cutting-edge Artificial Intelligence technology in accordance with industry
norms.

% To instill in students a desire to conduct research in order to tackle challenging
technical problems for industry.

% To develop effective graduates who are responsible for their professional growth,

leadership qualities and are committed to lifelong learning.

QUALITY POLICY

R/

++ To provide sophisticated technical infrastructure and to inspire students to reach their full
potential.

% To provide students with a solid academic and research environment for a comprehensive
learning experience.

« To provide research development, consulting, testing, and customized training to satisfy

specific industrial demands, thereby encouraging self-employment and entrepreneurship

among students.

For more information: www.mrcet.ac.in

http://www.mrcet.ac.in/

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
DEPARTMENT OF COMPUTATIONAL INTELLIGENCE

Il Year B.Tech. CSE(AIML)- | Sem L/T/P/C
3/-1-13

(R22A1261) COMPUTER ORGANIZATION AND ARCHITECTURE

OBJECTIVES:

The students will be able to:

To understand the working of a Computer System and its basic principles.
To learn the architecture and design of 8086 processor.

To know the concepts of Memory and corresponding technologies.

To understand the functional aspects of various peripheral devices.

To acquire knowledge about parallel processors.

A .

UNIT - I:

Functional blocks of a computer: CPU, memory, input-output subsystems, control unit.
Computer Organization and Architecture - Von Neumann

Data representation: signed number representation, fixed and floating-point Representations,
Character representation. Computer arithmetic — integer addition and Subtraction, Ripple carry
adder, carry look-ahead adder, etc. Multiplication — shift-and add, Booth multiplier.

UNIT —II:

Introduction to x86 architecture.

Instruction set architecture of a CPU: Registers, instruction execution cycle, RTL
Interpretation of instructions, addressing modes, instruction set.

CPU Control unit design: Micro-programmed design approach.

UNIT - 111:

Memory system design: Semiconductor memory technologies, memory organization.
Memory organization: Memory interleaving, concept of hierarchical memory organization,
Cache memory, cache size vs. block size, mapping functions, Replacement algorithms, write
policies.

UNIT - IV:

Peripheral devices and their characteristics: Input-output subsystems, 1/O device interface,
I/O transfers — program controlled, interrupt driven and DMA, privileged and non-privileged
instructions, software interrupts and exceptions. Programs and processes — role of interrupts in
process state transitions.

UNIT - V:

Pipelining: Basic concepts of pipelining, throughput and speedup, pipeline hazards.

Parallel Processors: Introduction to parallel processors, Concurrent access to
memory and cache coherency.

TEXT BOOKS:
1.“Computer System Architecture”, 3rd Edition by M.Morris Mano, Pearson.

2. “Computer Organization and Design: The Hardware/Software Interface”,

5th Edition by David A. Patterson and John L. Hennessy, Elsevier.
3.“Computer Organization and Embedded Systems”, 6th Edition by Carl
Hamacher, McGraw Hill Higher Education.

REFERENCE BOOKS:
Course Outcomes:
At the end of the course, Students will be able to:
1. [lustrate the functional block diagram of a single bus architecture of a
compulter.
2. Analyze the various instruction sets and addressing modes.
3. Design a memory module and analyze its operation by interfacing with the
CPU for a specific architecture.
4. Compare and contrast the peripherals and the related 1/0O transfers
5. Assess the performance, and apply design techniques to enhance
performance using pipelining & parallelism.

oty

2
<

(@S
«)
0

>3

A i

Wl PW(“@ i
Aol gt
5 e 0& v o ;a&&"%\' roals 4

ol Neon

o) N0

>/),I,’* L

J

<

) |
RUISVITE
CWERSUIE

2.0 qo0 Ao o
PR} f
‘2 L2 : {
\3 LA . \
\® Ly {
49 P :
\6 b :
B i L
13 28 (
19 a9 Py
| & LA :
| & 2R < |
lc 2L
(D 1D (,
g N Fre
\F ool S

U e

lool ooco [6vo Ol

(B<D)
dedral dgtt tar Yo e wrtlen & st bf)v\a.;,\(f

&

o,%w\/o&w} :

Conv S s

P%m“ epecfid drvinon ookl . 2ejond ol T

0:8Ux 2 2 .4

0 N\

et ALK ’4\6’?3"&"““‘3‘?{":

a. WX

1ol lio lo®

&)

o/ "j
Re

; / A o
Sre weudlalion b

Q‘ﬁ@\‘&}l(\\\u{ﬁ

v
(@

|- | e
[’:4\(/'1'/ YY)

WAYAl

LNET -1 Park -2
hogle Gelia:-
oD AND Gale TuRTakle a m
AR \V:AJ}

0 &
Del

- .t-. :
\,_ Of alt LV J.J:J’()Ltlt & 0‘93:)'644 a:‘u
. equal Lo "t the o[p().lt‘.ilfr\aﬁ~

- | g olulaes ofp v aquad Yo "0 -

>

ll

Q___?:
OR .&qﬁ"l‘mf\;qa]o\& 3_‘1"_“2?_‘
XZ 1 > \ \-{;Afﬂ.\ A ‘/:AHS
& j)**""‘
6|0 o) - e
o | | \ Def !~ 9) He gsipuld a{i?fﬂ/‘;%fkdi
{ 0 { o C(}wbtosomolpno.\’
(! \ \J ol coser O\P\}DLCH—U’J’G) '
Squloo|

A %%:;
%‘_; O’po’&— lgun] NoT %th'- S (@ CQW\'P\MLL\-—
oLl -

R{-A0P ﬂaﬁ\? Wt u\,qp\gwu} @’k i
Anp gals - he ofp ol N0 gl
v C,OM.LPLQ,\AJJ—UJ'- OGL AOD %“’*h .
ddw ttu WPA of- UKND\?}:L,C
e e,q\mi S fwoofpv 0
:\\/V\ Q/Ll L’(D. Otmw h:k O'P ?A\,’,:

MAMDL .H_MD_'_\MO_‘_

(} Scanned with OKEN Scanner

NogR Gedo -

Syuby
Teull Table - 1 ﬂ
. _) M()
\'-\~\ & \\/: NG {:»——m [z At
: ! ¢ u ™ -
° ° Dv,-%\,- iNok 6"/{‘ «o fus ’T'Jb‘ﬁtu)}
) = ° % mﬂﬂdb'&bjfﬂP%JJMﬁ
(go)) C,oul[’u'“"’“'* (’)({ O? Zr,}[)
| , ’ ‘ \9{ ol b W {m’?‘: o) cq(m) t,
\O, (LEu C)/f’ v tz “' -ll/\”)
Noe =~ 0 R-P VOOT (T d\fo;,cuj,u.”hﬁ O{pv) 14

AQ@_LLL@@‘M”Z
£

%! \% afl tw upc all EX'—Cﬁa.dj_
ate equal i OfP b 0 -
o T bpr e difbewdt Y

ofp » I
Ex-NoK
i} Tvutt, Tablot - gwu@dv
]X ? V;AeMé A~ VRO SABLAR
e | o | £ ;i : .
o 0 Defi- & ol e Tpt og-\tiv-Ne?-Stb.‘
s} _— o
{[VO i ,‘AJ are Q,qLLRQ Wew Ol() n | 0&\
‘ \
{—

au e flpt Qe dijpeect Jtan
0}(: w0

Ex-NOoR 2 Ex~0R 0T«

I /

@ Scanned with OKEN Scanner

()

Cem b(’AaUM Ceveanli-

D\\ad-cd [Oa«:c O(C»u‘l‘i a_re -balb(to.uxd
Lo Lz_’pm-

|- Ca\Mb'(’V\o«ﬂov\oj coven (S

& Seq_.,-.wi;mi Gl

s : y Ld arrang

o nadeowal e 1 a conwe
’ Wb”\ojk 3 o aund ouk ,AMan
@} L@?pc a,e,\'d w"\\t\- a Ak o} _a_u\m.&’ uﬁou Puj/}a d

S

givan HME \he b'fmwd valuo O& ltz.L‘ouP'P .
L&" 0(} b bf.’navd combinaldan 8¢ TP
=0
HﬂL}—MdM_ . H‘QL{:—OL&&UL B Qa combPuralTonal cirecd

benary onadl MM(JJd cuaaﬂxio aud

e ceoudkt o C,a.rrjmcoﬁuwt'

cala aofv }:Lcj ' isbo

W\LU_}-

add e ond produc

’Fru\"xa\—dolm% WA B oolean Expressions . q..
cC= 1Yy
S : Lyt Y
ERGE

> - N L ‘_
foll -Addu 4@ Comlstnodion L

&tgl\z I'YLOLMLQJU m\a—cuﬂ ,
aund PmoQ,LLqu Ua

ful - Adde
tohsch adds Woves Hinayy
addened aud previouh Govrd
Sk ab can and &N

(} Scanned with OKEN Scanner

Trath, T abylo & A

Boolean [y prWCAA/)”L’{’:‘_q

SRS I g: {QM ?L'\j—l & /M»j?'\ 1Y =

o o o

2l o1 olo = C @i)'*icq@@

slo 1 |0 = R(Y@D + NI

Wl o oo | et yHE= A

S|t o | | o - KA S

E\r 1t s |t o T AEA

‘-J R = x40
:@@A,D@%

Co RAEt Y+ Ay T AYE
= Gy +xg)Ee Y C?tf%-)
\
- GOyt

— s = 0 MA‘&A""
Tmglenenalin 0f £ r

(} Scanned with OKEN Scanner

©

'P:*PP\'L C‘iﬂ-[Ndder or) (Bir\ajr(Pavelled -Acocﬂi._
addo 18 &uathﬂ e b that (Procﬂuw;

num b - 3k -

A ripple o,cmr@
JIu arithymelie suM od, oo lO?r\avuj
CMC,DLCQI_& conneclion oéY “ulladd k. A 4ot
Q . — AN]
h‘PPLQ CaffT adde wc,a_&aﬁ C,OV\V\LQ,O.IMA %l A_,_FQ{‘

odde sy

dn YiPp\m ccunng: e , 1N each Gediov It

Sum ourpuk e %b/\uaﬂﬁﬁ "V"L“([oafn T previow
CM?I % Pf@cluué.cﬂ. ey, e dum op mdit
iqnifesusd bt » awatlable O\/\ld afl (G Canyg
signal hay rippled Through T addu_ %mm ot
oot Abage To (s M- Squl feaut
Am% s a‘mAu,U*/ Yo —§—€V\Qj sum. and Omra bk
L be awsilable aflB a Conkdaells delay -

helow thowos Lo At Rapple. Canry AdAt

<—(o

%' B

m lodkobeod Adden

The Camy Lookahaod Addo (CLp) Lolvs m conny deloy
prolew by caleulaling ta Cary plguals U odaue_;
bared ow M <Gspet dignals. Ok bared on H Jack ot
Caumy siqual Wil be guneralid i hwo tavy:

G Scanned with OKEN Scanner

L\

P When bol bt Avead B &,
&) ok owr of T Lo ikt & 1 and Corn-in i 1
: LUN

o -{—ugo condiWot 0L dLHﬂw&OL& b Y e by s
~The W

Hauth +elte .

.(_“

here P1 o8 Gi are Called JAo camg pmpﬂ,allcnd

| cany quissals avd carg pepeg=
camy g1t > \
Signodn are wed to calealols all AT anfes wéaivw&'
< trere & Vo reed o woll o 16 Cargy o PPl fouocdh
a,U; fon previeus /s\—a_c(\)m{m Q’QPNY\TMF'{—N ’?.’,G\(,Gicw&

Cig O @A Foliows -

pr= A1OM
G = Ac B
L9 = P(@q

¢t = oy ¥ AT

(} Scanned with OKEN Scanner

®

PuH(‘/\cj \ To0 3w @ alove eqw&‘&\ Gl wo—gd?‘ |

\(’.&—];0. C—ll@\o"’POCO
leb 1=y Cy = Gyt P
Gh’t' P, (Got poCo)
(9“—\; P Go + P Polo
teb {21 C, 2 G]L"FPLC-L y .
Gy P2 (& TP G0 Pifoce) .
Gof PGyt PaPilot P2PIPO
lé/\N "‘:’3 ‘ C‘{‘:igs{- PSC‘S

0, Got PrAR)

C
G+ P (G2 1P 2 }
) 3(3’pr\(\0'{) oX 7J’J\Poio

G Paliat P 20T

C;\ey\w:zﬂt?' Shosn. A Pau_&,L bdow

 M-bib a‘mdmmw Hhdae @

Go Po

% 1

Co C‘al .Pl G\L Pz"

G Scanned with OKEN Scanner

05 L
" b L;—‘ 53
Gy
s s ¢ .
% : =
)/ s Loolﬁaw
=} jﬁ)—/J P\ Genuels P\,_jD_ .,
- - P<\ C‘
: . '

D P

(e |

-0

Hig: 4~ Camy Look.aland pddo

; M@@L‘Cﬂﬂl‘w

il i e

Shipk and Add Mulpletn -

jc:«am below Shows .%@M} ol &mhj:jw:i .
mu.\UfL«d algontam - Gnilialty | rm multfip s
cud JIm malBplin wi 8 W wrrupm&?saaw
o b B and & vopecdiively

(} Scanned with OKEN Scanner

Hutﬁ(’LT @

Mt (;Uc.ode R
HLLQIIPL(J—J:U 8

As & @k
By <~ &®E
A<o | E&o
QC& n-)

A4

shv EAQ
LC& s »
N
- END
~ (PKOCQ-UC)‘ s in

fg . Flowdiat Lo waltply optolion
Mutti pacaund &= Lottt

E A] 5C
= : ¥ " loo® (o]
. & o | oocoo
B E'P;kafe& i 1ot tool !
Yy ont | — W‘—
Sl oo 1 1 ool 100
Qus | BACAEB (lg\ol‘,\o oo,

A sce—sc—I| s} 9
S,‘WW\GQI { Doo | o t(ode]toll
Qnz 0 | hv ow EAQ o| o tooo ‘“'F%hora."

QLese— :
T ocoloo o ro\|r] | ool
Qu=0 shr M EAQ o|o© Dsh
scesce -t)
LB\.\yc oA & AtD Lo

z = L0Vl Jolol © 00

Shron EAQ | sces 0
: oo 1101 |10l
dl

G Scanned with OKEN Scanner

v

B ooth

et

Roctty

M alts \')\ILCL[EOV\ Aqﬁon tmn 1 -

c&;don"ﬂsm c&’i\/eA a Pmca_chud. r*f-w mdj_;plt!(wa l;.’moyj

-.)Cuhacu) ai Algued A C_QMAY\LW_M‘ Ropha wads o,

Ac & ACH BRtL

H &‘“Pﬁ

Huttiplic_aucﬂ u R
Meddiplios 2 QR

Ru Qut)

oy [AC B &
Sc&e se—\ -

g

) - \
BOO\“'\. aﬁ_éof\\t\rq -—5—9\/ S| TN IAAY ’a& 875\,@;0—2/5
Complament Nwmlb U

ok ' ing Rt - cdgoritter
A nemadesl C/po.w\()LLs/’O\VfA using o&cd

AN laedous:

‘_Q—"?> NC—&?&@&L X}_me,\uh&‘/\ d\rﬁ-c?) =\ loot
5\{31\-

\ (-3) = | V10|
V)

3\‘3M_d 28 Complanad mrpmmhhpm 0& () = 'O |

- o1\
y " v H2) = \O

(} Scanned with OKEN Scanner

©

Exampl o }.LM woith Boott A(aorfm

1
B Baty Re= (o AC &R Que, [IC
. Be | = D\oo]
—— [@seco0 lOolMEV ¢ (o1
pc & ackBetl ol ool
|0 A o AcR8e | =551 [oolig,
s esel ooloo|ll oo[ﬁ | | too
- gL ot tool -\ o\
[\ asy\rw\chQ o6 0 [;%3
SECT e
e e thk
o | Pﬁrw\ke&e\c 10 oljoltoo |
msa&-@a——f (V1 60 [O\\@ o ol D
V]
' - e o Ll To10@m| o |ool
6 O asww\z\c&s& yLito L
S sl :
accnctert (3120 oLl |
[O et o ACY8L(p D 1\ \ oo
gcesc—T soo \L]tolol
Discond
con _
J 1
Addiian and sl Raclion 1~ d
-) i alie tixed-
of y\ﬂ.PYCkut\ij negq -Q«x

Theve V& —ree MG?/@
Po‘w\\- : loﬁ\mrié_ namb o -

e 5|‘3r\e.d\ - w\aﬁr\imdL

A -Srgued -1 Covnplamad”

2 - sigud —rh Cownplermaad e
Lkt compaliu ude b 93@#5 W*PW Yepr
(ohen parforen o [t nefie _opualiow woith @tccap\jx- 159/
hoalh “powat optaliowt | b Cowpulivg e D siquad -
m@ﬁf\hm Aepreseukalion by i monlica
SoTudiay iR 5?3»«.‘.&—?10.:1\41[_&& Dals_

Addi\ ou__:d |
—e M o sddiclian aud subMadion

are Satved ~frem M -f—@l\ow(Salo\e .

(} Scanned with OKEN Scanner

' pddila ahd Sublrocken ¢ Sigud —tagdlods Dol
/ ub\Todt Hogwlndes

operadoan \ ﬁf%\wlm&u tohen A>8 [»om/ke, Ko hou Az
(edr(E) | TLATD) fia-8) | —(a N | £
(@A))Jr ((—&)) - (A-D) 4 (8-~ | T(~-»)
-x) t(+£
_(AtB

CO+CY (re®) +(A-B) —(2-A) | +(p-8)
| &R) -(re)

Q\"A)-C_eb) 4 (A10)

(‘A’SEC'\'@ - (AtY) - (»-9 +(&N |-+ CA—G)
=" -(-%) | r .

" suma@p'wam prad opaalan

(I 'y
Minueud TaA Q ‘ m/\)
SubFahengd wb & Ad @ R
- hsy=

s Fhs

Ws2Bs

cAL AtB 1)
AVE&D

A<pt!
A_sé";“)
j,/’d—/

END |
(renutt Ly A AondAs

—F‘ﬂ: ux;\ms\} odd aund b ukUad opaalion

(} Scanned with OKEN Scanner

ONTT =TV Paal -

—

Syltodous « -
Tnboduclesn o xg6 -Archeteelos -

CTinshadlen &ek archuile Duoe o\\ a CPU ! R_o_ﬁc‘s_[,u }
T :Lrhrpm.léﬂj'w\ QQ\

{nals wcleon /-,0/\’ .

Tinalouclion exewdion cycle,
uulstouCQ,(.M/ C@Ld-,mi(\a Hod b |

cPU coulhol Uit Desigw:! Hicﬂopkoaﬁ,ammd oot Brt-

d‘as‘qv\ app roackh -

39 Dsodudion to X8e Archateckiva -
tO‘Q,QaO(.O S\/\owg ,@,U. orC miowo
duvided it

procesoy acdaidaoe a6 ePL A

+wo M&LFQJM —g—tll-\ﬂi‘o\/\ao parta
toopis Teteclor U (BTO)
3« Execulion Unt (ev)

T % eeds
D\N‘\&Jwﬁ e ook betweonn thex oo wmls Sp up

pmce%‘mﬁ

Bus Sulerfece ow 't (e1v):)

- The BV dendy oub addyesses)—g—t efes

aitudionk fom memery reads dafa from port
osles dafa o polt and memay

and Mmemond
Aenple / Y VN ¥T1 B U handle ol Tyt foery

D fmple W)

O(}ME aud addvekes on Q,tubugu'f—wm

Ex eadctn unt -

Crecwlion Unit CEU) -

e EU o e Sogé Jelly e 810 where bo

(} Scanned with OKEN Scanner

i # s i P gt -
Anln ~Sater ML LD % SPELIT
q q > TAor g .

?&!z).« 2o tlpudions o

s~ & i, - 4 -
oumd teeate aukiudios | '
| 35 .--. S
§ e Surerieg
PrARY a1
o Yot o\ s puonder Aie i
Convrot Q"{;; LA pem tygmals ;y' PRT e T I
- 2 9oy e ik RS S g =

C r)'_), ﬂ.l)‘ C:._/./'e - o - " ~

i 5

N
\

ﬂlddnhﬁ from

v, EU oy euk | N

1. EU b & ol

(Awo) |
Sulb opualids 25 o

1ouclcass O3
424 i1
<t tu o] N

I
Exﬂ“;\xo‘,& —fT

- T Sgu\li:'.\ a7 eeftis -
codirg anm 4
‘.)\M’\C {«71 =0 » aat o
L \'-aq;drr uy J

-~— s 1
St B .

bo keloss upk—‘ Lo gl i
buwer

o IR 3232
te T clien ‘\c_L {h qluer

o G"D’r
eusd F\JJ-LU\ s ON d
n LD b ‘_(_fét £I80

tobady oo | R
o Rke wwe

Loheu
e j\-u\' %&A-‘DA T

» red
I EV v r-e\t?
—L&(\\:;ia‘?\q -:f,,:..“\
A shudiom

i Asudiar profdch quede

(3 Scanned with OKEN Scanner

Hemory
Ounlevdece
T 1
|
(BT.L) C—&og
— J; |
< Tnsfracn '

S

aystan [1y t
3
y

AT G —
gogt MIao proeessor)

Nﬂ«:&\ah oA %U\@—O-D MG&L w%,o\ghu auwd ALowme
— o50e
ore Apeecad FuJLPo)\L Raglsloru ‘_fo—ux 9
Ao Ar lon arc
popde I —

\Dﬂ’_ o SO&L . ‘Tet-uj
oL - these
oye HAwy BB, ©F and Ox Teqes

I C‘SLL\AF ov”
_ he wwed an &=k 7

(} Scanned with OKEN Scanner

. T Lenitalig
: (Al e ayntntnly A
N Coff e i v})
O T I T IO R
L} $ u"' £ h
ex|_ew | er | eouutn sl U
DX Y oL Dala. fo «,r"'.\‘w._ " ' U/

e " /
f"-\"’- s OAQ oS ps Ay

(L)u(nvo 9. ’f}

F 7 “;I.J,
('J‘j"/U\ l\A.L'J(/‘ Q’\
(t/\LL,IJ\\/‘i»‘ /*"U’M :irlflfﬂa’,lﬂ r,/',/.'

. sl 1
(0(5{5\1”,] l;.\/osd 9@,(() dan b

Sen e P Céfé sl A

Code r,cdma.u_ﬁ'“ QJ.L{'S[JI
cun zuead L
3;)5\ 5;% T AN
A oy Begmout Rageslin are j,n_é) s
addyu) od\ AQA,Pc_Q)f\/Q Aeq) ot Cum-u; ordi

o} 205k Mﬁm) ‘

~ ol \
Coinfen and Lndup p:l;ra(:_uf_
| 1p IM&'\?U.cD‘w pon\in S
ap alack Po\r\\u\ ,QJJ() '
Rare. PONIE %eq
<7 lousco Indup &aﬂ
‘ _Du\—‘tnauom Indp heq

fo Atore /,\-a/'(fj:::f

1elils

o1
T P o ac\d on oua (Dd-c— a's /\!.(aL\S\d_L‘ Wk
TP - '
o o s lewnce —f-fam e boanc
lo cs- obpak e
I
M Aegmert
X\ h ag Off Ak «h.ag\(ait
Thaoe o rt?)a\m ac
ap ik BP !~ |

-k 1o SS- - L
Q7 &DI1 yhose o /QL@L\\'QA ackse an O(H’.KLQ- & ?Q-
31 .

bo-r. k o Efﬁas%m& .

(% Scanned with OKEN Scanner

_tilc: 610_8\‘5\ CNR

LSRR LU UV T (T T S S SO - N

vjvvu|v OF\M‘J.F—‘W;(;; C AN ‘ ul»)\(}lv\; Pﬂ]u r,(J
; » K. W SR r

O = tundefind ’ i
yref d-lac
el §y (arr:.’
Ta\tb{]\l oul é}' MO,
“Tw ms
gb.pp‘m) Pan'biy £los
el jf remudt lraa
ih\\t\nq)\-@(ma ot po_n‘fq ’
Fov enalble
%\ fesor ;j ‘/—\uni\\a.vd can 'HM;Y
B { H\/ BCD |
Dinecliou }uo&Q&a — Se} i raautkzo
l_) —i—w &b?ud op ed

O\;v\.{-—low -:Ha-aa 3w -F—Lo._%,— H&\g o& reAult

i sos6 bawd Sﬁ&l&u & Q(SO_M-E-CA

The mumoy '
as /»Lﬂmuﬁu tnelasy e opu g0sC B aie
to occess | MB b Pk?((ruj wewrrg Tha memert
W duveded tute MY o M@A‘Lﬂ oo owd eadh
)\,wdmm} v \ww\v? b CLLP&U'\H 0& OLRA- S’e@w&h
ovlopped oA UPM Lu olToe4k -

o be -
l/\a.u?r\a 20 — 9

o 8086 mx‘cxupmu%w v ! |
bwy and 16 -t Teds bua. wtth 20-biF

it CpU odd vess 2‘?/0 memw-\f lcu.lrcﬁs
toe G .

b bed Locals
A~ ‘W\g .
hneank \HB U' O?g/b:%) J o

TS ronle an aa&w\o\a \Ov-ﬁméc P,lo;),o,«n)
to gose b Tele R difjfensut pegmands -
wy Codepeqmenk) Dals Seqmeuts, pgack

fegheut cusd ol equeand™

@ Scanned with OKEN Scanner

7o addrew an mMemoYe loccaleon /?mm GU‘L-J 6{; (a
nazﬂl 20 ~bit addeA . Bulb T
oppa l6-bilk

Ne PRNSTS S S
N

seg -, r‘a%l\\\\aé cou Avore

: . . T AT o-bd- Slygic o
Q\\T add-wn - %0 ;o eodeulals ﬁ)tudy

’ Wu’/\\jl_owﬁm wC‘{ﬁJ’\ﬂ_ ‘Qﬂ.L

mofi_g\& aund MFCQHV"-@S‘«F@J'(‘
el addoun colalolion «

addvyun a/lg an
halp od. Seoy menk” ‘
«&L_g’is\'fx ’ e 'y ud

elsr
alewve hd P‘\f‘\ o addw FN

- r 2
€ sappre——— |
e g q - H
8R =000
\ga'ék(—,'&:‘]oooon %
SA o ssqeeern [T
qs .
S a0 SszFoocolt SsR~F000
CLe\oreb— |
ca gD s +
= 3
sh ol Dg25HO3OH | PSR IS5 MHON
end add>wn el CS . L W
AAATF ce
Stea C\A&m&if%sﬂﬁ e 34qAH
ocoooh L B - .

{1‘518086 wa\@Mj ﬂﬂmudnhm

Phoyfial - copmaut pageodat %108 O seb Pag. Comliud
Eelﬂrmvsga %

@ Scanned with OKEN Scanner

UNLT -0 (PART- D
Nl UL

A EnsBudiom MM%\MDE a CPU*

m‘ie An a bakic Compadin T —follow"wa
Jush Dj" %,e,?/fs\f)vs e oawadlaldly . ¢

(& Sy mbol & |
mfmbu m’% R&ﬁu\ia; Condemn
bilx Noame -
// 1 0 LlﬂuC!
DR (16) Dalg Lagesle Holds Memony P o
d
AR (2 Addren Zn_?(‘s\n'l Holda —Ad ¥ ’fw '

N T T

2R (D) | G fugiler | Holds Failuch eclo
pc (12 pmaa.am Coculn | FoOWs audldmodmﬂnm_ﬁm
TR dé) MPny ﬂfﬁd\m Ho\da —}tufwrmj Lqu,Q;
TorR () Jnpul @mﬁmm Holds Lipuat chosael™
ourR (€ Oubput &%«:hl ﬁHo\gu oubpak- ehatotloo

Moo
L9t wovda
(b Lk pe- Werd

o AC i
ouT :H\!P&i ,

'(:"6’ Rosic Compulin &ZA\)U)—\J oud Huﬂw‘-{,

Il’t\\gurif o Cd’.\?’dt‘ -

A P\'Ofarmm ,{(Q\‘CU‘AC(] i e Memovy wnil E)l a
Couuh's\'i Od Beqeentd LH.
tlv\-c_d Ll [t CqutJL\, ‘37 {’G,,a

ch w whadidon - Each TAshaction

C_CM.\PLLLC\ LLUA!'JU L[t-' ouN

e Pmamm th Qpet

\'\\\v\.nﬁﬂ) 3 ujcle_ Jor €0
c"cfdc' - Lifd;u.m (v Qub dveded ~wlo a Acquands
e&. ,&xb(_ﬂ’clm‘ or P\AM@ .

Tn Cu besic bakic C,O\MP(,J,E_L each inshudiou
C.tjda cons AR or{; (o7 {-dlocoha (PLLM'

[Feltl, aun 20 shueliov —f-—r‘om mc.WLch

8- Decodt Atu J.Llas’\'wnﬁou.

n Poad (T epfedive addyd from memeny
“l[s (T uuls'[oudﬁmn hai @&n cndi fet oddwess -

- crecul® Ve Lashucon -

Lpent LTS UWPUL‘PW 0& '&EP A‘/
fo lelth , deeode cund

o Coulpol Cd“)@
bac.K bo A‘:P\l ‘ Wiwﬁz

el Lo Afpucion -

pbﬁjﬂ aud becode -

TN 4 AR «PC

fo
- T s e 4 M{ARD pe &~ Pkl
T, Doy ,py & Deeede R (1=
AR e1elo-1D) Ilr;;iﬂﬂr)

The olove hree Ly Bhoo [l RTL (Qua(‘;\{_‘\

Trowns fea Lavuauﬂg-:) A
Dn Rmeetied Tp Tt add>ox af pc & Looded
wubo AR C:Lw,H,\L[Ld pe coukun rarbng v %Pmﬁwﬂ

feleh and Deeodo cydles,

V-

- ‘,.’. LU.')L
- \ o - / 4

{ U N AL CnLaM\u ("»,l) oJ/,U J
‘J-V\‘h ol ld e qw_ .

¢ ond he TLaf
dpe . 8C K wicxomented b4
Coth ok P .

O [attI LN L

\-U\-'- 'h m\‘V\a A\lr)vu;ﬂ/) (ﬂc; Fll/\’rvu%

dund Juo oA
TO ’]| ;TJ.

| S D T e 'Pwod M A]
Ly AR (Dwibudion @m%is\a)
bo_‘!’. Tin To amd T
eycle will b wwp\ni'l&-

. e wotll be
‘ 'od Decods ¢y
A T, teme peried
Loi=d -
o Telo-0)
P i Dt—bemdL:La(_lz—uQ’Pr& < Te(3
Ty_'. DD)--“) F %- 16_1-52(_(5)

| o Motan
. Tl —f—e,b_j,\ ‘P\A.W @,
TS &Lwa»wm "&W A ,
bdmo- :
A ’ . ’
@&/ 'mwnov‘d i oa neo_e,v\m-qL 4o ‘?CU‘U{.{,L
. s .
MP;;&M J{“’"’i pefo AR dun~g G Clock
jov _ U
awoucled wllh ‘Hm‘\“a Siqwal o
= o indvucon road —Pva\ mn.mw\J vwo laa
P\au_ch uU.; [\ M/{rm('/h"d/\ /\.ﬂ-g&kkq ae lt)?]lv\
o, ek Wanislen avowaldd Wi, ‘Hm\\f_j
/b\\ﬁ wa) (rl At W Aawae Hme PC o i“tﬂwulzﬂ

Bxk,\\, to prepare = ‘ﬁ‘ﬂ\/ Ity Q&&Mo'f_ o

i’"n% Crannad with NKEN Cranna

WOBSL ONT ATIOILIT WATEE R 0 am i w e e e

Hf‘,wkowd ot iy
d-

—5

Clock

|

|
'R\ﬁ . Q_a@(;bu —h*am-}w& ﬂ(fw Im{cl'd« p\uaM_

! Du.v“\'(t_d \’]‘(; , To @tﬁp&-’pc
| @ PLOLLZ bl Coubent o_[_ pe oy o buw) \D\j mc\\fu‘».a

low bW Aehellon Lipud S, 4, % eq.u.aJ b o0o.

: Q
rannad with AKEN Cra
ne

e ——————————
e ————————

&

Q- Trag b M conlent @d T bw Yo AR b‘f
UMLQAG e Wb wihu- o} AR .

T, 0 seemlael, poepor

b Bnabl Jo Read papub o} memory

B Plawe tHa Comlau qf Memony on fo ttw bua
by malu\«a S 8 S =1

2 - TRansfer B conloul ¢ Tmbcm-tc:w_&bd
Conabling T LD tpub g 1R

A . Dneremat PO b“(f e.U\gMucd ME”LO"’\P“}‘G&]PC'

Tnsbudion eogele
The diq below showms in Fidhuelbn carle
2- ,

> Tn o wiliudion egde fa pak oo APme
pawodls ‘o wnd T er for fetey opele.

5 T T, Hme peusd W "Ewdim’ﬂ Decoding
eant The compud® undusdreundn tou Mearivg o
e 2osbudiam - @ TF doccdon Wohetties fgo
wishutd e iy muno*‘d“ﬁl)o*&umﬂ T bt
regeld -~ Refpena bulion &olr /o Frdicloa, -
T T, 7 el addwn pek gL 20 hdfend
Yo AR omd IR(IS) & Bankfermd to 7

%{n &Qmo‘h‘«a LR N IS

Puy- he edlien sWr-reference o 8 foiathads

Sheod

SC& O
|
v \1:‘ \l/ TD
AR EPC

V) Ty
FP\Q— M), Peepes &

T2

J
Detods qj:u.nlrol code ei £R(2-W
'\ AR e TR (o ~) ,14\—'1&(\9
! :

oo OY“I_[t;) I;K -0 CHEmw‘d«—'rerg—&w\ce) ’
i

2 . X a
T=0 \"— o Conkvd e A
ond W el
o naludion C‘—\Mi)nls ey eedlden
v Connduaad &N

- \% D_—;,: 1
.—Y‘ebwﬂ

‘r(,cﬁ(Aot

N \9(\ s cwx.& o=\
- D:‘,- \ o

Wd i T § (3] cléon /\L«.\Ltl‘ ‘
(4%} \

ﬁffo WG A2

- % J_)%:-o o

o Canclond an
g Fuclion +w Caad e

e shouclean -

(g 3 Crannad with AKFEN Crant

&)
g
\—_)Ilﬁ ‘D:] to aund .o i} o conzidvod al
DireY “‘Qdﬁ"’—"\'lf\.a meco 10e mese g hofrroce in":}’:‘ﬁxén.
Thowm Ll Tg) .-i-fnf\v '1,o,q,-m(| 'nrnl'mu(,f uyTll l/mepUA‘
- T,% D:l -0 awnd 1) Wov rmndoed an
rf-h&:‘km& a.&drj&f-ﬁ/\a modo Inem ovnd 1o | erom e @
wasphudion. Thaw wi Ty -ltme PQALOCQ A

m [ﬂ- R v W‘ram{ux,d o AR .
To! A& H{ #r)

bee oy — sy BN Lo

— In Ty +eme Feuicﬂ
s ek on epewlion Gyde At

— In Ty e ﬁéﬁa\fcd the —?‘61‘-&0?/@ OP"\‘:J;C'-&,
O Pa{ymm_c\

T Threa T'r\ﬂw&fm tijU.\ Ay QUMJ\.‘?JCJ_
it fowr se?u,oll palfe - o opoaleaiu Pu.\;orm:t
i Aow polhs ar dhowon leloed -

Dy TTy i AR mlpe]
pylziTy 1 Nl
: o f\ek&eu\c,&
Tle ' ereente a ro_al(.
D4 3 EIR

. " 9‘ h}S 1:[\:0\?\'\
‘T‘i') Ex Euﬂe L ..uul:u} OLLQPLL l
rD'}_ R ‘ .

Come Preequind

e

'\0 glhclgt{{ E_.'m'&-\vutt‘m‘ cgcQQ -

e - Lln‘(rﬁ/\\ -
d (Rogtam (’j@lmmu \
@ Store m Oy
T L Von- ndetmann
Lane ‘D Lol
P‘mﬁw wo ogans palfor 4 wed tohere ot bou o

asetulclive Aoved

L ‘\' Cranmmrmoad ittt AIEN CramnDd

ar Stoved i one Stché&ca me.mg\@. and Jdz
. ovol\Rer Gecleon 08 Ma,muy\:f.

Hem
B Qﬁﬂa 4
1\ PIRY o)
[OQLQ&Q,\ Adidylo J sk s
j,mvrmﬁ o Fvmal C mdum
(< o R |
Opoauds
I R
(/.”L_—_/

fg. ehored phogiem) erganialion

@ Demonsiraltan of D heed 3@ Qe ool a&m
Hodua (-

o etinn Mweddren
o Hodo - T toey o ST
0& OPM v \auo :

¥ - n=u
Topese | wiame |

e+ Drflealion P

Mamory e
220 Aan\z@—s’aj WMD\ 00 \
— r]
300 | 35D
ASH Opuawnd

TP
AC

¥ Crannod with AKEN €rann

: ®

e S

@ Conpatin Tnalpecktons,

ts “"L .y O
2] ored | oy | Contods =00 tarogh
llo)

@) HUMWU- rojereee Ous Fuckitim

¥ 1y 1\
O] 1L) Rv_?fls\u. cqxn_nihj CoPcan = L= =0)
NS R"'ﬁ‘b\”" Y‘erj‘—*&w\u, OuaBudFeu
g o 0
T .
(¢y dwmpoak m&"@:u:’r Qahuclean
[Frenadac mal code l Descnplion
<4mbo| f-0 | I=I
“RAwS | OFF [SR [ARD mawery ©erd i'o =
ADD Lxxx | Grxe | ADD e ’o
L DA QRRX AXRK | LOAD
STA . 3 xxx AR | STORE CDV_u,\\' %
Bunl” Y XXX CRRX | Banda tuncondiiion
&< A sexx | Dxxe |Bromh and sawe fdlsuncdd o
sy Erex | EX®|Tnerement avd SKip \; Yerp
el | dzo0 Cleas AL
CLe 2400 clew &
CMA 4200 Comuplem et AC
cMme 100 cowptmuw\'
coe | Foso Chrnlo righr AC and €
crL | Foun Coroulols (St AC amd B
SPA Fo|0 _gk,@ Aot LisH w&ow lk AC PC&\\\M
SNA 1008 Sb‘\P nepd— 7] 9 Ac_\neaaﬁ'&_
Sig ‘q’e% ’ " Iy 3] » ﬁc m
‘; J-002. T " v w €40
LT
,1 %9_‘_,,___,__ H’d-“_ C_D'\m\")c_&ﬁ;
TP | £800 | Tnpur chatacdll fo Ac
pov oo M pui} choL ool rgﬂw\ Ac.
¢kl Froo |sicop an Lieput frog
2T0) Floo | gkip on exd-put flasy
Lon £ogo Tnfermapt 80
Tof %40 TnlEraph-
aph ot

fegc Base meu Tnstrdond

RTL Pakerpr otalton fd-_ lv\&\'vu:_[_z ot i—
oot _'[.?:;k eeout e Ty rudkeo

-5 Regedw ~ o
’ —%LT — (common fo all N@slu Aeterunes -.MJL;WULEM)
. D e TRl o~ tha Qpecr ‘A (G, opoalion
TR - e (o ze{ Spect Ophalio)
Symhol CRTC Des r pUidn
—~—— / me————
E y'! sc&o Clecurse
CLA | YB), ' Aeo Clecr Ac
CLE ‘YB\DL E£O ct&ar c
CMA Y ey ! AC & AC Couplameut AC
CME TRg ! C&E Cwup\.!-"”'“l' E

cl & Y‘&q. v ACEShrAC j ACCIS) &€ cdreeloy n‘a "\.0‘

E& AC(D)
ecrL B 6. AceshlAc p
pc) &€, gehc(ts) | cvalan L4t

INC | WBe ! ACEACH], L [Trwremand Ae
spA | yey o oh(AC(929) k@ [skip i PoshvT

e Pk
SN ey TE (Al W | gkip Tk neqelid
PC L) ‘
| YRy S ace0) akip it Ac 2O
s2h . (A P}:C_Pm &
= e, ! —Ily (€ 20) |uw PCePet) 3KIF 4 € 2en.
HOT | YRy Beseo (s ha ol Conncprdir -

- Stactclep T ~fHop 'u

———

Tl alove +able RLPTQM.D/? RTL plh\'lr?ﬁlaﬂlfm
1_ mﬂg\a ’Q/bli e admucliow -

waﬂ' “Aokteuce SwAbdetm -~
erL wuterpre fodron Qfall Hatovy -
K,L%U-L\(L d&l/\Wu«Gw n Ahown badpus
AND Yo AC~ DpTy! DR E&M[AR]
DoTs 1 ACEACNDR , & <0

J#An

App to AC '—

D\T, ! PRem(Ar]

DT = ACEACHDR £ elow , 3640

OA - Lood to Acl—

pre m{Al]
LC&E0

DTy *

DL "‘S—n_ /’\'CE_ D&/

T4 Store BCi-

DuTg: m{ar) EXS e

pUN | Branth Oneoudiloonallly’~
&0

DJN"PC&M |
2op 1 Branch ond Sape Rebutun AddA -
'Qe:—Aﬁ'(‘l

bery: HIART € P A

sC& 0
%‘TY w- “JC&—AQ) !

Gramp of B4
Memon]

e o Bir 5]
oy Nept Luthudidn

pca| Nepd Toalyudin)
 Nept Tvshuc

?nsTelTou €r cetlion
-~

—_—] | 3% &)

AMcl— st Subodhi
13l Gulonoubiw

ﬂ\ -

__.—————I—'—-’ —
| BUN |3
| [pos 1o0 |

179 e A TY ‘Upt’_(‘.u,lA‘M)

ﬁ Crannad with NKEN Cr2

@) Hommy ij—auvwl Ak \b) MLuAm-J_w.& Pe “‘BL’I

|

:[sl iv\m meud: MJ S\U‘ 0 f\ SEr

DQTL{ L DR~ H[A‘ﬂ]

D Ts ¢ DRE DREY _
DT » ARl E se , b (PR=2D
(pc e), g€
Tnpuk _oubpuk Tndpodions
-_— —_—e———
*nlZr preloliu

Tl J}c\\owwa dable Sperfd b RTL TP
o& ‘:_[o wdsutfoum T~

D4TTyzp (common
(O = Al Y/bi\-

Sy vu\.bo\

TP
OLT

qkt

SKO

To¢

wud LR [6-1
RE L
PI‘. L0
Pgu'- A’C(O—})&lNPRI
LGT €0
PPip: HUTR & AC(o-D),
Fao &0
e ce(FaT =) b
PLepek)
’P&& l‘k(pao:-: 1)]“_3;
pe& pet)
PR, " TEN & |
PQ)(S T CENeO0

|

|

|

o

1o old Mpu}~ou}pd m'.-._\r__rt) J
i

{

|

l

I

] ek spedhor G
P ruclion

Dol p\x;,\

clear 3L

Enpuk chatodit
Output- choyalt -
aap th Pt ileg

Qlutp v O.w\P‘H*mj

Tonte rap eualle o

Inte pupt erabls off -

€. Qrannad with AKEN Qrann

A Ad reger Lwc\u ~

“+Hu [,omI @& sped (\-"1“8 (e oddxy

O&‘m“ Oprand ¥ kuown o ﬂfgd“/“ff‘f‘J mods .
‘QMP\LL& Modle ' - O Houa mod_?_. (. OpLou
are Apefred Lunpliety i 10 dafpd i W of
T Mslauulfw

d nmode

ds

VY 2aslvudion - For (’—«OchlpLD-) !

UCP\.AAPKLVWM ACC-LADY)L.LL&Q};{ 7R an UJJPL

i tlvudion hecawe & oP{mmU i (G
ﬂ@ﬂ(‘sbf, Va MPMJ o e Jofycailda Of te

at Cumddy

i studicou

Q. Immedrals toda|_ T tods od oPuﬁu_d]
B Apeufed b (G 26 Alaraeli o bself - Tl
meons o amedscli mede i lrudion haa an
opetaud feedd, thoun au oddwn 4ld .

I odl tU.tOPULamd/)
Hy el (e CPO-

5~Rﬂ§\a Hoda '~

. 3
ase Lo Aoy IR Qagdu Lot

H'%\? &uﬂimﬂ'w[- Tty mode AGx
0y ¢Tudion Aperig & Aegis\ & NI
wohde comndn gt e addon of T opuond
s ey

b Ao adaewank oY Aty dolye meud l\&l&i‘_-

Rdced
Hua A Loy la o M fur_‘at‘x\h

L dle ked buo&q

Crcaph 1ot e Mq\‘\\& W waaenen(ed o
Jcwromeudsd B (o begore) ls Vb

= TP rpe—— e s e =
N T T T T ~
7 o
—r—

m: Crannod with AKEN Sranna

e e e e e

DA

ased o accen Mol

6. Ditect Addyan Hods = Tu tus mads It

TR . oneal b @ addeen part
ﬁ%&eds\;ﬂ ﬂ-dd;ﬂh'w UX"
o& fu MSFYU(_Q)EO\A'
o . Jndosett Addous Mode!- dn Youn VoS
o odd

8. Rolalfae oddadn tods '~ Tw @i MocQDLOlLu
— —_— _ .] m
Colmt of O progeet! toanlan v added o
od 24 1o ohtain

I \—'YLLLBOM NUT

')(*5:'" ™M d—ﬂ’ m
a&d 0

hastsUx ~
§ pishudior Fo dotein @ efbadae
ol I
oO b

A Mumenia) epamplt & shown
\oelous

"€ Crannod with AKEN Qranno

- (v)

f\g.lo‘.o’V’ [¢ W"f .
P———— st - - . 1
(o) el i b [
[Reaoe [
o] R bk
XR - (00O

Woo

Gbo F00

6 o0

To L

- —
koo 300

A&o\vm'?»«?m&u .

iy Naweuica) ecawple T

T kel o) Addam| ol
rva‘daounw—é. Hoda _ < - o fC
T
Praack PRI 660 %Koo
TymeduicdT OGW“'& ad 500
r‘”..cﬂfuofq‘ oot €oo 39v
Ry loJiive A4 ke =5
ilfxduawq 2. 00o9? o0 L
Q_Q%r\‘&\l:\ ‘ —_— L(@O
Qn%{s\.ﬁ i da 1 ok Lp 00 Fowo
Ae® u‘lufwﬂ" | tLoo 50
Pt Decranamit 399 . 450

19" InIte wb‘s}‘q Neamui Eha;pg.

Indmucdion _S‘Pi‘.—
Mt Cow&[:'ttl‘l T Ludionr cauw b dﬂ%‘&fr'ﬂd

Jubo theee Calltafo'f\“ 2
| Dala [ransfor oo diond
Q. Datr Hancpulaleon fntlru clow
3 Plogrom mm eusfruckions

{ Mmoo &

Gut fruedions

MPMEH ah m-pd‘d;
|crea ‘bj/Pg,g 0&- D | ow

A 955 Aand PuriHE
There @t
| gl tions /
[Artmdie Snibuelod .
wd G mavipaleban jrirco

o deped
2. Shefk frilckians
Aritamalic Guabrudiow c
Nawme bvapewe || Mo
i giNa Hulﬁﬂ*j
e DEC DWI
fecr A withCory
pckd Abp (bliad g;:u
[gujglfur Sva Negals
=Y —i- (——'—'"'—‘—‘-’___

& Qrannad with NKEN Qeanne

&m ‘\(L\| L\U(J ”l\ ’ ‘tlp“,"li‘fﬁll(«\n IOUPI}All'J 44 v

T:_lnn\n flpne ttipned
lear cen
(.'{T\llplo:w,_.,l Con)
AND AR
0. - ON
eedunvi-0R Xo.
Ciﬂ.m C.Ctl“l‘t_d CLr L
Sek C_amj SETe
C‘?WPLW\'\:;J{MU Com
Emadale im\%mp\ Bl
Diable Inliuel DT
]
Shigt Opdrrudiow '~
Namae Hguows ¢
. SHEL
hogical dedt Rigpd e
teak Sl H- pr— SHRA
At (Rmeli 9&»‘4—? P e
Aol Shift & .
otk Qtabd; i—'; §
Rotak et
Qolat right T g Lo ROR.C
Rotals WTW% w} ROLC
/-—-—-——-——' et et
B Nowst Hwweew | |
MBTAV\(J.’\ o AL
Jumf Jene
Sk P el
(25 RET
compant (b f;ug cmp
| o ()] T L

{E Qrannad with NKEN Sranna

=, S

- G
‘7—‘._—KA_7 — S

Condi Hiopal R’m___% M_~M5\N

MHnemons'c Braunch Coud Loﬁ*"w
e A% - Branh if T ij
BN foranda 1 10F B0
RC granch (ke | &7
EINTS b i o .
i Brvanch ity plst -
YN Beuah T MinG °
Bv et i oveflo |7
BNV Brandh if noowxflos | V0

e Srannad with OKEN Cranna

Unit-1I (Part-2)

CPU Control unit design: Micro-programmed design approach.

The major functional parts in a digital computer are Central Processing Unit (CPU),
Memory, and Input—output. The main functional units of CPU are control unit, arithmetic and
logic unit, and registers. The function of the control unit in a digital computer is to initiate
sequences of microoperations.

There are two types of control units. One is Hardwired and the other one is called
Microprogrammed Control Unit. When the control signals are generated by hardware using
conventional logic design techniques, the control unit is said to be hardwired Control Unit. In
Microprogrammed Control Unit the control unit initiates a series of sequential steps of
microoperations. Micro operation is group of control variables (signals),

The control variables at any given time can be represented by a string of 1’s and 0’s called
a control word (Micro instruction). As such, control words can be programmed to perform
various operations on the components of the system. A control unit whose binary control variables
are stored in memory is called a microprogrammed control unit. Each word in control memory
is called as microinstruction. The microinstruction specifies one or more microoperations for
the system. A sequence of microinstructions constitutes a microprogram.

Since alterations of the microprogram are not needed once the control unit is in operation,
the control memory can be a read-only memory (ROM). ROM words are made permanent during
the hardware production of the unit.

A memory that is part of a control unit is referred to as a control memory. The general
configuration of a microprogrammed control unit is demonstrated in the block diagram shown
below. The control memory is assumed to be a ROM, within which all control information is
permanently stored. The control memory address register specifies the address of the
microinstruction, and the control data register holds the microinstruction read from memory.

External Next- . . . Control
. ¢ ddress Control Control Control word
npu :gn 1:‘::’31“ address > memory data

fs%,]L:_ 1‘1‘:‘91"' register (ROM) register
(sequencer) = -

Next-address information

Figure Microprogrammed control organization.

The microinstruction specifies one or more microoperations for the data processor. Once these
operations are executed, the control must determine the next address. The location of the next
microinstruction may be the one next in sequence, or it may be located somewhere else in the
control memory. For this reason, it is necessary to use some bits of the present microinstruction to
control the generation of the address of the next microinstruction. The next address may also be a
function of external input conditions.

While the microoperations are being executed, the next address is computed in the next
address generator circuit and then transferred into the control address register to read the next
microinstruction. Thus, a microinstruction contains bits for initiating microoperations in the data
processor part and bits that determine the address sequence for the control memory.

Address Sequencing

The address sequencing (Next address generation) capabilities required in a control memory are:
1. Incrementing of the control address register.

2. Unconditional branch or conditional branch, depending on status bit conditions.
3. A mapping process from the bits of the instruction to an address for control memory.
4. A facility for subroutine call and return.

Figure below shows a block diagram of a control memory and the associated hardware needed for
selecting the next microinstruction address.

[nstruction code

|

Mapping
logic

Status
hits

Branch
logic

l I

MUX
select

Multiplexes

Subroutine
register
[SBR)

Clock

- Control address register

Incrementer

Control memory

Select a status

bit

Branch address

Microoperations

Figure

Select

ion of address for control memory.

Mapping Process: Mapping process that converts the 4-bit operation code to a 7-bit address for
control memory is shown in Fig below. This mapping consists of placing a 0 in the most significant
bit of the address, transferring the four operation code bits, and clearing the two least significant
bits of the control address register. This provides for each computer instruction a microprogram
routine with a capacity of four microinstructions.

Figure Mapping from instruction code to microinstruction address.
Opcode
Computer instruction: 0111 address

Mapping bits: 0| X X X x |00

Microinstruction address: |{] 101100 |

Computer Instruction Format

The computer instruction format is depicted in Fig. below. These instructions are used to explain the Micro
programmed Control Unit. It consists of three fields: a 1-bit field for indirect addressing symbolized by 1, a 4-bit
operation code (opcode), and an 11-bit address field. Figure below also shows lists four of the 16 possible memory-
reference instructions. The instructions are ADD, BRANCH, STORE and EXCHANGE.

Figure Computer instructions.
15 14 11 10 0

| Opcode Address

(a) Instruction format

Symbol Opcode Description
ADD 0000 AC— AC+ M[EA]
BERANCH 0001 If (AC< 0) then (PC— EA)
STORE 0010 M|[EA] — AC

EXCHANGE 0011 AC+— M[EA], M[EA] +— AC
EA is the effective address

(b} Four computer instructions

Microinstruction Format

The microinstruction format for the control memory is shown in Fig. below. The 20 bits of the microinstruction
are divided nto four functional parts. The three fields Fl, F2, and F3 specify microoperations for the computer.
The CD field selects status bit conditions. The BR field specifies the type or branch to be used. The AD field
contains a branch address. The address field is seven bits wide, since the control memory has 128 = 2"words.

3 3 3 2 2 7
‘FI|P‘2‘F3|CD|BR| AD

F1, F2, F3: Microoperation fields
CD: Condition for branching
BR: Branch field

AD: Address field

Figure Microinstruction code format (20 bits).

The CD, BR fields are shown below.

CD Condition Symbaol Comments
00 Always = 1 U Unconditional branch
0 DR(15) I Indirect address bit
10 AC(15) 5 Sign bit of AC
11 AC=10 Z Zero value in AC
BR Symbaol Function
00 JMP CAR « AD if condition = 1
CAR « CAR + 1 if condition = ()
01 CALL CAR « AD, SBR «— CAR + 1if condition = 1
CAR « CAR + 1 if condition = ()
10 RET CAR « SBR (Return from subroutine)
11 MAP CAR(2—5) «— DR(11—14), CAR(0,1,6) <0

The microoperation fields F1, 2, F3 are shown in figure below.

TABLE

Symbols and Binary Code

for Microinstruction Fields

F1 Microoperation Symbol
000 None NOP
001 AC— AC+ DR ADD
010 AC=10 CLRAC
011 AC— AC+ 1 INCAC
100 AC— DR DRTAC
101 AR « DR{0-10) DRTAR
110 AR — PC PCTAR
111 M[AR] — DR WRITE
F2 Microoperation Symbol
000 None NOP
001 AC— AC — DR SUB
010 AC— ACy DR OR

011 AC— AC/N DR AND
100 DR« M[AR] READ
101 DR« AC ACTDR
110 DR—DR+1 INCDE
111 DR(0—10) — PC PCTDR
F3 Microoperation Symbol
000 None NOP
001 AC— ACTH DR XOR
010 AC— AC COM
011 AC «— shl AC SHL
100 AC &« shr AC SHR
101 PO—PC+1 INCPC
110 PC— AR ARTPC
111 Reserved

The microprogram sequencer for a control memory is as shown in figure below. The
control memory is included in the diagram to show the interaction between the sequencer and the
memory attached to it. There are two multiplexers in the circuit. The first multiplexer selects an
address from one of four sources and routes it into a control address register CAR.

The second multiplexer tests the value of a selected status bit and the result of the test is
applied to an input logic circuit. The output from CAR provides the address for the control
memory. The content of CAR is incremented and applied to one of the multiplexer inputs and to
the subroutine register SBR. The other three inputs to multiplexer number 1 come from the address
field of the present microinstruction, from the output of SBR, and from an external source that
maps the instruction.

The CD (condition) field of the microinstruction selects one of the status bits in the second
multiplexer. If the bit selected is equal to 1, the 7 (test) variable is equal to 1; otherwise, it is equal
to 0. The T value together with the two bits from the BR (branch) field go to an input logic circuit.
The input logic in a particular sequencer will determine the type of operations that are available
in the unit.

Typical sequencer operations are: increment, branch or jump, call and return from
subroutine, load an external address and other address sequencing operations. With three inputs,
the sequencer can provide up to eight address sequencing operation.

The input logic circuit has three inputs, /0, /1, and 7, and three outputs, S0, S1, and L.
Variables SO and S1 select one of the source addresses for CAR. Variable L enables the load
input in SBR. The binary values of the two selection variables determine the path in the
multiplexer.

External
(MAP)

|

I L3 2 1 0
Inout Load
| 11 Jogic S MUxa [SBR]
T - & f
}_" MUX9 Tost Incrementer
Select

S—
f—
‘ C]::u:k—E CAR

Control memory

Microops CD BR AD

—_— -, " A . "

]]

Figure Microprogram sequencer for a control memory.

UNIT — 111

Memory system design: Semiconductor memory technologies, memory organization.
Memory organization: Memory interleaving, concept of hierarchical memory organization, Cache
memory, cache size vs. block size, mapping functions, Replacement algorithms, write policies.

Semiconductor Memory Technologies:

Semiconductor random-access memories (RAMS) are available in a wide range of speeds.
Their cycle times range from 100 ns to less than 10 ns. Semiconductor memory is used in any electronics
assembly that uses computer processing technology. The use of semiconductor memory has grown, and
the size of these memory cards has increased as the need for larger and larger amounts of storage is
needed.

There are two main types or categories that can be used for semiconductor technology.
RAM - Random Access Memory: As the names suggest, the RAM or random access memory is a
form of semiconductor memory technology that is used for reading and writing data in any order - in
other words as it is required by the processor. It is used for such applications as the computer or
processor memory where variables and other stored and are required on a random basis. Data is stored
and read many times to and from this type of memory.

Cs1
C:; ' . 8-bit
data bus
WR
AD7
Block Diagram Representing 128 x 8 RAM
(Random Access Memory)
CS1CS52 RDWR Memory function State of data bus
0 0 x x| Inhibit High-impedance
0 1 x x| Inhibit High-impedance
1 0 0 0 | Inhibit High-impedance
1 0 0 1 | Write Input data to RAM
1 0 1 = | Read Output data from RAM
1 1 = = | Inhibit High-impedance

Function table

The RAM IC is in operation only when CS1 = 1 and CS2 =0. The bar on top of the second select

variable indicates that this input is enabled when it is equal to 0. CS1 = 1 and €52 = Q, the
memory can be placed in a write or read mode. When the WR input is enabled, the memory
stores a byte from the data bus into a location specified by the address input lines. When the RD
input is enabled, the content of the selected byte is placed into the data bus. The RD and WR
signals control the memory operation as well as the bus buffers associated with the bidirectional
data bus. When chip select signal lines are not enabled and either RD or WR are not enabled then
the chip will be in High-impedance state.

Page 1

ROM - Read Only Memory: A ROM is a form of semiconductor memory technology used where the
data is written once and then not changed. In view of this it is used where data needs to be stored
permanently, even when the power is removed - many memory technologies lose the data once the power
is removed. As a result, this type of semiconductor memory technology is widely used for storing
programs and data that must survive when a computer or processor is powered down. For example, the
BIOS of a computer will be stored in ROM. As the name implies, data cannot be easily written to ROM.
Depending on the technology used in the ROM, writing the data into the ROM initially may require
special hardware. Although it is often possible to change the data, this gain requires special hardware to
erase the data ready for new data to be written in.

ChipSelect1 CS4
Chip Select 2 CS, 512x8 8-Bit Unidirectional
o
ROM Data Bus
9-Bit Address AD;-ADg

Block diagram of 512X8 ROM IC

The nine address lines in the ROM chip specify any one of the 512 bytes stored in it. The two chip select inputs

must be CS1= 1 and CS2 = 0 for the IC to operate. Otherwise, the data bus is in a high-impedance state. There
is no need for a read or write control because the unit can only read. Thus, when the chip is enabled by the two
select inputs, the byte selected by the address lines appears on the data bus.

The different memory types or memory technologies are detailed below:

DRAM: Dynamic RAM is a form of random access memory. DRAM uses a capacitor to store each bit of
data, and the level of charge on each capacitor determines whether that bit is a logical 1 or 0.

However, these capacitors do not hold their charge indefinitely, and therefore the data needs to be
refreshed periodically. As a result of this dynamic refreshing, it gains its name of being a dynamic RAM.
DRAM is the form of semiconductor memory that is often used in equipment including personal
computers and workstations where it forms the main RAM for the computer.

SRAM: Static Random Access Memory. This form of semiconductor memory gains its name from the
fact that, unlike DRAM, the data does not need to be refreshed dynamically. It is able to support faster
read and write times than DRAM (typically 10 ns against 60 ns for DRAM), and in addition its cycle
time is much shorter because it does not need to pause between accesses. However, it consumes more
power, is less dense and more expensive than DRAM. As a result of this it is normally used for caches,
while DRAM is used as the main semiconductor memory technology.

PROM: This stands for Programmable Read Only Memory. It is a semiconductor memory which can
only have data written to it once - the data written to it is permanent. These memories are bought in a
blank format and they are programmed using a special PROM programmer. Typically, a PROM will
consist of an array of fusible links some of which are "blown" during the programming process to
provide the required data pattern.

EPROM: This is an Erasable Programmable Read Only Memory. This form of semiconductor memory
can be programmed and then erased at a later time. This is normally achieved by exposing the silicon to

Page 2

ultraviolet light.

EEPROM: This is an Electrically Erasable Programmable Read Only Memory. Data can be written to it
and it can be erased using an electrical voltage. This is typically applied to an erase pin on the chip. Like
other types of PROM, EEPROM retains the contents of the memory even when the power is

turned off.

MEMORY ORGANIZATION

Memory Interleaving:

Pipeline and vector processors often require simultaneous access to memory from two or more
sources. An instruction pipeline may require the fetching of an instruction and an operand at the same time
from two different segments.

Similarly, an arithmetic pipeline usually requires two or more operands to enter the pipeline at
the same time. Instead of using two memory buses for simultaneous access, the memory can be partitioned
into a number of modules connected to a common memory address and data buses. A memory module is
a memory array together with its own address and data registers. Figure below shows a mergy unit with
four modules. Each memory array has its own address register AR and data register DR.

Figure 9-13 Mulriple module memory organization.

Address bus
Y Y
Lo | [| [& | [
| ! !
Memory Memory Memory Memory
array array array armay
X A A 3
i Y J
DR I L DR J I DR ‘ | DR
4 ! A 3
\ \ /
Data bus

The address registers receive information from a common address bus and the data registers
communicate with a bidirectional data bus. The two least significant bits of the address can be used to
distinguish between the four modules. The modular system permits one module to initiate a memory
access while other modules are in the process of reading or writing a word and each module can honor a
memory request independent of the state of the other modules.

The advantage of a modular memory is that it allows the use of a technique called interleaving.
In an interleaved memory, different sets of addresses are assigned to different memory modules. For
example, in a two-module memory system, the even addresses may be in one module and the odd
addresses in the other.

Concept of Hierarchical Memory Organization
This Memory Hierarchy Design is divided into 2 main types:

Page 3

External Memory or Secondary Memory
Comprising of Magnetic Disk, Optical Disk, Magnetic Tape i.e. peripheral storage devices which
are accessible by the processor via I/0 Module.

Internal Memory or Primary Memory

Comprising of Main Memory, Cache Memory & CPU registers. This is directly accessible by the
processor.

Memory Hierarchy in a Computer System:

&
Register ——
M f
el Magnetic |,
Increasing order of Cache Tapes
access time ratio Memory Auxiliary Memory /O Processor
Main Memory Primary Memory ‘
Magnetic |
. disks
Magnetic Disks Auilary
Memory
Magnetic Tapes

Characteristics of Memory Hierarchy

Capacity:
It is the global volume of information the memory can store. As we move from top to bottom in
the Hierarchy, the capacity increases.

Access Time:
It is the time interval between the read/write request and the availability of the data. As we move
from top to bottom in the Hierarchy, the access time increases.

Performance:

Earlier when the computer system was designed without Memory Hierarchy design, the speed gap
increases between the CPU registers and Main Memory due to large difference in access time. This results
in lower performance of the system and thus, enhancement was required. This enhancement was made in
the form of Memory Hierarchy Design because of which the performance of the system increases.

Cost per bit:
As we move from bottom to top in the Hierarchy, the cost per bit increases i.e. Internal Memory
is costlier than External Memory.

Cache Memories:

The cache is a small and very fast memory, interposed between the processor and the main
memory. Its purpose is to make the main memory appear to the processor to be much faster than it
actually is. The effectiveness of this approach is based on a property of computer programs called
locality of reference.

Analysis of programs shows that most of their execution time is spent in routines in which many

instructions are executed repeatedly. These instructions may constitute a simple loop, nested loops, or a
Page 4

few procedures that repeatedly call each other.

The cache memory can store a reasonable number of blocks at any given time, but this number is
small compared to the total number of blocks in the main memory. The correspondence between the main
memory blocks and those in the cache is specified by a mapping function.

When the cache is full and a memory word (instruction or data) that is not in the cache is
referenced, the cache control hardware must decide which block should be removed to create space for
the new block that contains the referenced word. The collection of rules for making this decision
constitutes the cache™s replacement algorithm.

Cache Hits

The processor does not need to know explicitly about the existence of the cache. It simply issues
Read andWrite requests using addresses that refer to locations in the memory. The cache control circuitry
determines whether the requested word currently exists in the cache.
If it does, the Read orWrite operation is performed on the appropriate cache location. In this case, a read
or write hit is said to have occurred.

Cache Misses
A Read operation for a word that is not in the cache constitutes a Read miss. It causes the block
of words containing the requested word to be copied from the main memory into the cache.

Cache Mapping:

There are three different types of mapping used for the purpose of cache memory which are as
follows: Direct mapping, Associative mapping, and Set-Associative mapping. These are explained as
following below.

Direct mapping

The simplest way to determine cache locations in which to store memory blocks is the direct-
mapping technique. In this technique, block j of the main memory maps onto block j modulo 128 of the
cache, as depicted in Figure 8.16. Thus, whenever one of the main memory blocks 0, 128, 256, . . . is
loaded into the cache, it is stored in cache block 0. Blocks 1, 129, 257, . . . are stored in cache block 1,
and so on. Since more than one memory block is mapped onto a given cache block position, contention
may arise for that position even when the cache is not full.

For example, instructions of a program may start in block 1 and continue in block 129, possibly
after a branch. As this program is executed, both of these blocks must be transferred to the block-1
position in the cache. Contention is resolved by allowing the new block to overwrite the currently
resident block.

With direct mapping, the replacement algorithm is trivial. Placement of a block in the cache is
determined by its memory address. The memory address can be divided into three fields, as shown in
Figure 8.16. The low-order 4 bits select one of 16 words in a block.

When a new block enters the cache, the 7-bit cache block field determines the cache position in
which this block must be stored. If they match, then the desired word is in that block of the cache. If there
is no match, then the block containing the required word must first be read from the main memoryand
loaded into the cache.

The direct-mapping technique is easy to implement, but it is not very flexible.

Page 5

Main
MME MY

Cache Block 127
Block O Block 128

Block 1 Block 17%

Block 127

Block 254

Block 257

Block 4095

Tag Block Word
I 5 I 7 I 4 I!\-‘[ainrmmnry.ad;h‘css

Figure 8.16 Diirect-mapped cache.

Associative Mapping

In Associative mapping method, in which a main memory block can be placed into any cache
block position. In this case, 12 tag bits are required to identify a memory block when it is resident in the
cache. The tag bits of an address received from the processor are compared to the tag bits of each block
of the cache to see if the desired block is present. This is called the associative-mapping technique.

Miain
memary

Cache

Block O
Block 1

3%
]
vy

:

Block 127

3%
¥

%
L]

Block 4005
Tag Word

I 12 I 4 I Main memory address

Figure 8.17 Assodofive-mopped coche.
It gives complete freedom in choosing the cache location in which to place the memory block,

Page 6

resulting in a more efficient use of the space in the cache. When a new block is brought into the cache, it
replaces (ejects) an existing block only if the cache is full. In this case, we need an algorithm to select
the block to be replaced.

To avoid a long delay, the tags must be searched in parallel. A search of this kind is called an
associative search.

Set-Associative Mapping

Another approach is to use a combination of the direct- and associative-mapping techniques.
The blocks of the cache are grouped into sets, and the mapping allows a block of the main memory to
reside in any block of a specific set. Hence, the contention problem of the direct method is eased by
having a few choices for block placement.

Belain
ATHE T
Block O
Block |
Cache e
Block O
Block 63
— Block 1
T Block 64
= Block 2
=
set = Block 65
— Block 3 :
r | T Block 127
. = Block 126
Set 63 < .
set = Block 128
— Block 127
Block 129
Block 4005
Tag Set Wioard

I & I [I 4 I Blain memory address

Figure &.18 Set-associative-mapped coche with two blodks per set.

At the same time, the hardware cost is reduced by decreasing the size of the associative search.
An example of this set-associative-mapping technique is shown in Figure 8.18 for a cache with two
blocks per set. In this case, memory blocks 0, 64, 128, .., 4032 map into cache set 0, and they can
occupy either of the two block positions within this set.

Having 64 sets means that the 6-bit set field of the address determines which set of the cache
might contain the desired block. The tag field of the address must then be associatively compared to the
tags of the two blocks of the set to check if the desired block is present. This two-way associative
search is simple to implement.

The number of blocks per set is a parameter that can be selected to suit the requirements
of a particular computer. For the main memory and cache sizes in Figure 8.18, four blocks per set can be

Page 7

accommodated by a 5-bit set field, eight blocks per set by a 4-bit set field, and so on. The extreme
condition of 128 blocks per set requires no set bits and corresponds to the fully-associative technique,
with 12 tag bits. The other extreme of one block per set is the direct-mapping.

Replacement Algorithms

In a direct-mapped cache, the position of each block is predetermined by its address; hence, the
replacement strategy is trivial. In associative and set-associative caches there exists some flexibility.
When a new block is to be brought into the cache and all the positions that it may occupy are full, the
cache controller must decide which of the old blocks to overwrite.

This is an important issue, because the decision can be a strong determining factor in system
performance. In general, the objective is to keep blocks in the cache that are likely to be referenced in
the near future. But, it is not easy to determine which blocks are about to be referenced.

The property of locality of reference in programs gives a clue to a reasonable strategy. Because
program execution usually stays in localized areas for reasonable periods of time, there is a high
probability that the blocks that have been referenced recently will be referenced again soon. Therefore,
when a block is to be overwritten, it is sensible to overwrite the one that has gone the longest time
without being referenced. This block is called the least recently used (LRU) block, and the technique is
called the LRU replacement algorithm.

The LRU algorithm has been used extensively. Although it performs well for many access
patterns, it can lead to poor performance in some cases.

Write Policies
The write operation is proceeding in 2 ways.

e Write-through protocol
e Write-back protocol

Write-through protocol:
Here the cache location and the main memory locations are updated simultaneously.

Write-back protocol:
e This technique is to update only the cache location and to mark it as with
associated flag bit called dirty/modified bit.

e The word in the main memory will be updated later, when the block containing this
marked word is to be removed from the cache to make room for a new block.

e To overcome the read miss Load —through / Early restart protocol is used.

Page 8

Unit-11I (Part-2)

Memory Connections to CPU:

The interconnection between memory and processor is established from knowledge of the size
of memory needed and the type of RAM and ROM chips available. The addressing of memory
can be established by means of a table that specifies the memory address assigned to each chip.
The table, called a memory address map, is a pictorial representation of assigned address space
for each chip in the system. To demonstrate with a particular example, assume that a computer
system needs 512 bytes of RAM and 512 bytes of ROM.

The memory address map for this configuration is shown in Table below. The component
column specifies whether a RAM or a ROM chip is used. The hexadecimal address column
assigns a range of hexadecimal equivalent addresses for each chip. The address bus lines are
listed in the third column. Although there are 16 lines in the address bus, the table shows only
10 lines because the other 6 are not used in this example and are assumed to be zero. The small
x’s under the address bus lines designate those lines that must be connected to the address
inputs in each chip. The RAM chips have 128 bytes and need seven address lines.

The ROM chip has 512 bytes and needs 9 address lines. The x’s are always assigned to the
low-order bus lines: lines 1 through 7 for the RAM and lines 1 through 9 for the ROM. It is
now necessary to distinguish between four RAM chips by assigning to each a different address.
For this particular example we choose bus lines 8 and 9 to represent four distinct binary
combinations. Note that any other pair of unused bus lines can be chosen for this purpose.

The table clearly shows that the nine low-order bus lines constitute a memory space for RAM
equal to 2°= 512 bytes. The distinction between a RAM and ROM address is done with another
bus line. Here we choose line 10 for this purpose. When line 10 is 0, the CPU selects a RAM,
and when this line is equal to 1, it selects the ROM.

TABLE Memory Address Map for Microprocomputer
Address bus
Hexadecimal
Component address 00 9 8 7 6 5 4 3 2 1
BAM 1 D000—-007F 0 0 0 x x x X X X X
RAM 2 0080—-00FF 0 0 1 x x x X X X X
BRAM 3 0100-017F 0 1 0 x x x X X X X
BAM 4 0180-01FF 0 1 1 x x x X X X X
ROM 0200—03FF Il x x x x x X X X X

CPU

Address bus
I6-11 i 4 a -1 RDDWR Data bus
Decoder
321
5l
o2
JRD Y Dal-
= WH
A7
51
G52 LEE = H
= R} RAM % Diata f«
WR
A7
5l
G52 128 % 8
|RD - papngy Daaf
WH
A7
« 51
Gz
Ii8 % &
R} Data
WE RAM 4
A7
Sl
=7 . S s
Datap—-
"],mg ROM
b
Figure Memory connection to the CPUL

UNIT - IV

Peripheral devices and their characteristics: Input-output subsystems, 1/O device interface,
I/0 transfers — program controlled, interrupt driven and DMA, privileged and non-privileged
instructions, software interrupts and exceptions. Programs and processes — role of interrupts in
process state transitions

Input-output subsystems

The Input/output organization of computer depends upon the size of computer and the
peripherals connected to it. The I/O Subsystem of the computer provides an efficient mode of
communication between the central system and the outside environment.

The most common input output devices are: Monitor, Keyboard, Mouse, Printer, Magnetic
tapes Input Output Interface provides a method for transferring information between internal storage
and external 1/0 devices. Peripherals connected to a computer need special communication links for
interfacing them with the central processing unit. The purpose of communication link is to resolve the
differences that exist between the central computer and each peripheral.

Figure Connection of [/O bus to input—output devices.
/C
/O bus Data
Processor Address
Control
Interface Interface Interface Interface
Keyboard
and : Magnetic Magnetic
display Printer disk tape
terminal

The Major Differences are: -

e Peripherals are electromechanical and electromagnetic devices and CPU and memory are
electronic devices. Therefore, a conversion of signal values may be needed.

e The data transfer rate of peripherals is usually slower than the transfer rate of CPU and
consequently, a synchronization mechanism may be needed.

e Data codes and formats in the peripherals differ from the word format in the CPU and memory.

e The operating modes of peripherals are different from each other and must be controlled so as
not to disturb the operation of other peripherals connected to the CPU.

To resolve these differences, computer systems include special hardware components between the CPU
and Peripherals to supervises and synchronizes all input and output transfers. These components are
called Interface Units because they interface between the processor bus and the peripheral devices.

1/O device interface

The 1/0 Bus consists of data lines, address lines and control lines. The 1/O bus from the processor is
attached to all peripherals interface. To communicate with a particular device, the processor places a
device address on address lines. Each Interface decodes the address and control received from the 1/0
bus, interprets them for peripherals and provides signals for the peripheral controller. It also synchronizes
the data flow and supervises the transfer between peripheral and processor. Each peripheral has its own

controller. For example, the printer controller controls the paper motion, the print timing.

There are four types of commands that an interface may receive. They are classified as control, status,
data output, and data input.

A control command is issued to activate the peripheral and to inform it what to do. For example, a
magnetic tape unit may be instructed to backspace the tape by one record, to rewind the tape, or to start
the tape moving in the forward direction. The particular control command issued depends on the
peripheral, and each peripheral receives its own distinguished sequence of control commands, depending
on its mode of operation.

A status command is used to test various status conditions in the interface and the peripheral. For
example, the computer may wish to check the status of the peripheral before a transfer is initiated. During
the transfer, one or more errors may occur which are detected by the interface. These errors are designated
by setting bits in a status register that the processor can read at certain intervals.

A data output command causes the interface to respond by transferring data from the bus into one of its
registers.

The data input command is the opposite of the data output. In this case the interface receives an item of
data from the peripheral and places it in its buffer register.

1/0 Versus Memory Bus

To communicate with 1/0, the processor must communicate with the memory unit. Like the I/O
bus, the memory bus contains data, address and read/write control lines. There are 3 ways that computer
buses can be used to communicate with memory and 1/O:
1. Use two Separate buses, one for memory and other for I/O.
2. Use one common bus for both memory and 1/O but separate control lines for each.
3. Use one common bus for memory and 1/0 with common control lines.

Example 1/O Interface:

Bidirectional Bus Port A I/0 data
— st I EEE—
data bus buffers e
Port B I/0 data
Chip select cs register
— | RS1
Register select]
RSO Timicll'lg Control Control
an = - rist —
VOread RD control }- register
/O wri E
I/O write WR g
— Status Status
register
To CPU To I/0 device ———

Fig: An Example I/O Interface

C5 R51 R50 | Register selected

0 x x None: data bus in high-impedance
1 0 0 Port A register
1 0 1 Port Bregister

1 1] Control register

1 1 1 Status register

An example of an I/O interface unit is shown in the above block diagram. It consists of two data registers
called ports, a control register, a status register, bus buffers, and timing and control circuits. The interface
communicates with the CPU through the data bus. The chip select and register select inputs determine
the address assigned to the interface. The I/O read and write are two control lines that specify an input or
output, respectively. The four registers communicate directly with the 1/0 device attached to the interface.

The 1/O data to and from the device can be transferred into either port A or port B. The interface may
operate with an output device or with an input device, or with a device that requires both input and output.
If the interface is connected to a printer, it will only output data, and if it services a character reader, it
will only input data. A magnetic disk unit transfers data in both directions but not at the same time, so
the interface can use bidirectional lines.

This circuit enables the chip select (CS) input when the interface is selected by the address bus. The two
register select inputs RS1 and RSO are usually connected to the two least significant lines of the address
bus. These two inputs select one of the four registers in the interface as specified in the table shown
above. The content of the selected register is transferred into the CPU via the data bus when the 1/0 read
signal is enabled. The CPU transfers binary information into the selected register via the data bus when
the 1/0O write input is enabled.

I/0 Transfer (or) Modes of Transfer
Data transfer to and from peripherals may be handled in one of three possible modes:

1. Programmed 1/0
2. Interrupt-initiated 1/0
3. Direct memory access (DMA)

Programmed 1/O Mode:

In this mode of data transfer the operations are the results in I/O instructions which is a part of computer
program. Each data transfer is initiated by an instruction in the program. Normally the transfer is from a
CPU register to peripheral device or vice- versa. Once the data is initiated the CPU starts monitoring the
interface to see when next transfer can made. The instructions of the program keep close tabs on
everything that takes place in the interface unit and the 1/O devices.

The transfer of data requires three instructions:
¢ Read the status register.
e Check the status of the flag bit and branch to step 1 if not set or to step 3 if set.
¢ Read the data register.

CPU

Data transfer from I/O device to CPU.

1/0 bus

Data wvalid

Data accepted

Figure
Interface
Data bus
Address bus Data register
1/0 read
[/O write Status F
register
F= Flag bit

v v

|Read Status Register|

| Che:.",l:%agbit |

Flag

=1

Read Data Reqister

v
Transfer Data to Memaory

Cperation
Complete 7

Continue with Program

Figure: Flowchart for CPU program to input data

/O

device

In this technique CPU is responsible for transferring data from the memory to output and
storing data in memory for executing of Programmed 1/O as shown in Fig.

Drawback of the Programmed 1/O:

The main drawback of the Programmed 1/0O was that the CPU has to monitor the units all
the times when the program is executing. Thus, the CPU stays in a program loop until the

I/0 unit indicates that it is ready for data transfer. This is a time-consuming process.

Interrupt-Initiated 1/O:

In this method an interrupt facility an interrupt command is used to inform the device
about the start and end of transfer. In the meantime, the CPU executes another program. When
the interface determines that the device is ready for data transfer it generates an Interrupt
Request and sends it to the computer.

When the CPU receives such a signal, it temporarily stops the execution of the program
and branches to a service program to process the 1/O transfer and after completing it returns
back to task, what it was originally performing.

In this type of 10, computer does not check the flag. It continues to perform its task.
Whenever any device wants the attention, it sends the interrupt signal to the CPU. CPU then
deviates from what it was doing, stores the return address of main program and branches to
the address of the subroutine.

There are two ways of choosing the branch address:
Vectored Interrupt: In vectored interrupt the source that interrupts the CPU provides the
branch information. This information is called interrupt vectored.

Non-vectored Interrupt: In non-vectored interrupt, the branch address is assigned to the fixed
address in the memory.

In Interrupt initiated 1/O there are two techniques called
1. Daisy Chaining Priority
2. Parallel Priority Interrupt Controller.

Diasy Chaining Priority:

The daisy-chaining method of establishing priority consists of a serial connection of all devices
that request an interrupt. The device with the highest priority is placed in the first position,
followed by lower-priority devices up to the device with the lowest priority, which is placed last
in the chain. This method of connection between three devices and the CPU is shown in Figure
below. The interrupt request line is common to all devices and forms a wired logic connection.

If any device has its interrupt signal in the low-level state, the interrupt line goes to the low-level
state and enables the interrupt input in the CPU. When no interrupts arc pending, the interrupt line
stays in the high-level state and no interrupts are recognized by the CPU. This is equivalent to a
negative logic OR operation. The CPU responds to an interrupt request by enabling the interrupt
acknowledge line. This signal is received by device 1 at its PI (priority in) input.

The acknowledge signal passes on to the next device through the PO (priority out) output only if
device 1 is not requesting an interrupt. If device 1 has a pending interrupt, it blocks the
acknowledge signal from the next device by placing a 0 in the PO output. It then proceeds to insert
its own interrupt vector address (VAD) into the data bus for the CPU to use during the interrupt
cycle.

Processor data bus

VAD 1 VAD 9 VAD 3
Device 1 Device 2 Device 3
PI PO PI PO PI PO —— Tonext

device

Interrupt request

INT
CPU

Interrupt acknowledge

INTACK

Figure Daisy-chain priority interrupt.

Parallel Priority Interrupt

The parallel priority interrupt method uses a register whose bits are set separately by the interrupt
signal from each device. Priority is established according to the position of the bits in the register.
In addition to the interrupt register, the circuit may include a mask register whose purpose is to
control the status of each interrupt request. The mask register can be programmed to disable lower-
priority interrupts while a higher-priority device is being serviced. It can also provide a facility that
allows a high-priority device to interrupt the CPU while a lower-priority device is being serviced.

The priority logic for a system of four interrupt sources is shown in Figure below. It consists of an
interrupt register whose individual bits are set by external conditions and cleared by program
instructions. The magnetic disk, being a high-speed device, is given the highest priority. The
printer has the next priority, followed by a character reader and a keyboard. The mask register has
the same number of bits as the interrupt register. By means of program instructions, it is possible
to set or reset any bit in the mask register. Each interrupt bit and its corresponding mask bit are
applied to an AND gate to produce the four inputs to a priority encoder. In this way an interrupt is
recognized only if its corresponding mask bit is set to 1 by the program. The priority encoder
generates two bits of the vector address, which is transferred to the CPU.

Another output from the encoder sets an interrupt status flip-flop IST when an interrupt that is not
masked occurs. The interrupt enable flip-flop IEN can be set or cleared by the program to provide
an overall control over the interrupt system. The outputs of IST ANDed with IEN provide a
common interrupt signal for the CPU. The interrupt acknowledge INTACK signal from the CPU
enables the bus buffers in the output register and a vector address VAD is placed into the data bus.

Interrupt

regisber
sk o ‘i FAD
Yk to CPUI
¥
Printer 1 Y
" -
Priority 0
Reader 9 —“_ . encoder 0
VN o —
Keyvboard 3 " I 0
| J 1 0
|} ——
Enahle
TEN| — 5T
I} — .
i \
" Imterrupt
to CPU
2
INTACK
3 from CPU
Mask
register
Figure Priority interrupt hardware.

Direct Memory Access (DMA):

In the Direct Memory Access (DMA) the interface transfers the data into and out of the memory unit
through the memory bus. The transfer of data between a fast storage device such as magnetic disk and
memory is often limited by the speed of the CPU. Removing the CPU from the path and letting the
peripheral device manage the memory buses directly would improve the speed of transfer. This transfer
technique is called Direct Memory Access (DMA). During the DMA transfer, the CPU is idle and has
no control of the memory buses. A DMA Controller takes over the buses to manage the transfer directly
between the 1/0 device and memory.

The Bus Request (BR) input is used by the DMA controller to request the CPU. When this input is
active, the CPU terminates the execution of the current instruction and places the address bus, data bus
and read write lines into a high Impedance state. High Impedance state means that the output is
disconnected. The CPU activates the Bus Grant (BG) output to inform the external DMA that the Bus
Request (BR) can now take control of the buses to conduct memory transfer without processor. When
the DMA terminates the transfer, it disables the Bus Request (BR) line. The CPU disables the Bus
Grant (BG), takes control of the buses and return to its normal operation.

The transfer can be made in several ways that are:
DMA Burst
Cycle Stealing

DMA Burst: In DMA Burst transfer, a block sequence consisting of a number of memory words is
transferred in continuous burst while the DMA controller is master of the memory buses.

Cycle Stealing: Cycle stealing allows the DMA controller to transfer one data word at a time, after
which it must returns control of the buses to the CPU.

Figure CPU bus signals for DMA transfer.

DBUS |[=—— Address bus
Bus request BR . High-impedance
ABUS —— Data bus (disable)

CPU RD Read when BG is
Bus grant — BG . enabled
WR——— Write
Interrupt
random-access
BG CPU memory (RAM)
=~ BR
BDD WER Address Data RD WER Address Data

A

Bead control

! Write control

. Data bus !
Address bus]
Address
select
RD WR AddressData
DMA acknowledge
DS =
= RS Direct memory /O
access (DMA) Peripheral
BE .
controller device
- BG 4; DMA request
Interrupt
Figure DMA transfer in a computer system.

DMA Controller:

The DMA controller needs the usual circuits of an interface to communicate with the CPU and 1/0
device. The DMA controller has three registers:

Address Register: Address Register contains an address to specify the desired location in memory.
Word Count Register: WC holds the number of words to be transferred. The register is decremented

by one after each word transfer and internally tested for zero.
Control Register: Control Register specifies the mode of transfer

Figure Block diagram of DMA controller.
Address bus
Data bus =— Data bus = - Address bus
buffers
buffers
DMA select — DS E Address register
Register select —={ RS E
Read =— RD '_% S Word count register
Write -~ WR Contral
logic
Bus request = BR = Control register

Bus grant BG DMA request

DMA Acknowledge to 1/O device

Interrupt «—p Interrupt

The unit communicates with the CPU via the data bus and control lines. The registers in the DMA are
selected by the CPU through the address bus by enabling the DS (DMA select) and RS (Register select)
inputs. The RD (read) and WR (write) inputs are bidirectional. When the BG (Bus Grant) input is 0,
the CPU can communicate with the DMA registers through the data bus to read from or write to the
DMA registers. When BG =1, the DMA can communicate directly with the memory by specifying an
address in the address bus and activating the RD or WR control.

The CPU initializes the DMA by sending the following information through the data bus:

1. The starting address of the memory block where data are available (for read) or where data are to be
stored (for write).

2. The word count, which is the number of words in the memory block.

3. Control to specify the mode of transfer such as read or write.

4. A control to start the DMA transfer.

Once the DMA is initialized, the CPU stops communicating with the DMA unless it receives an interrupt
signal or if it wants to check how many words have been transferred.
Privileged and Non-Privileged Instructions

In any Operating System, it is necessary to have a Dual Mode Operation to ensure the protection and security of
the System from unauthorized users. This Dual Mode separates the User Mode from the System Mode or Kernel
Mode.

In an operating system, instructions are divided into two categories: privileged and non-privileged instructions.

Privileged instructions are those that can only be executed by the operating system kernel or a privileged process,
such as a device driver. These instructions typically perform operations that require direct access to hardware or

https://www.geeksforgeeks.org/dual-mode-operations-os/

10

other privileged resources, such as setting up memory mappings or accessing 1/0O devices. Privileged instructions
are executed in kernel mode, which provides unrestricted access to the system resources.

Non-privileged instructions are those that can be executed by any process, including user-level processes. These
instructions are typically used for performing computations, accessing user-level resources such as files and
memory, and managing process control. Non-privileged instructions are executed in user mode, which provides
limited access to system resources and ensures that processes cannot interfere with one another.

Some key differences between privileged and non-privileged instructions:

1. Access to resources: Privileged instructions have direct access to system resources, while non-privileged
instructions have limited access.

2. Execution mode: Privileged instructions are executed in kernel mode, while non-privileged instructions
are executed in user mode.

3. Execution permissions: Privileged instructions require special permissions to execute, while non-
privileged instructions do not.

4. Purpose: Privileged instructions are typically used for performing low-level system operations, while
non-privileged instructions are used for general-purpose computing.

5. Risks: Because privileged instructions have access to system resources, they pose a higher risk of
causing system crashes or security vulnerabilities if not used carefully. Non-privileged instructions are
less risky in this regard.

In summary, privileged instructions are used by the operating system kernel and privileged processes to perform
low-level system operations, while non-privileged instructions are used by user-level processes for general-purpose
computing. The distinction between privileged and non-privileged instructions is an important mechanism for
ensuring the security and stability of an operating system.

Software Interrupts and Exceptions
Interrupt

Interrupt is the method of creating a temporary halt during program execution and allows peripheral devices to access
the microprocessor. The microprocessor responds to that interrupt with an ISR (Interrupt Service Routine), which is
a short program to instruct the microprocessor on how to handle the interrupt. The following image shows the types
of interrupts.

11

Interrupts

Hardware Software
Interrupt Interrupt

Non-Maskable

Maskable Interrupt
Interrupt

Fig: Types of Interrupts
Hardware Interrupts: Hardware interrupt is caused by any peripheral device by sending a signal through a
specified pin to the microprocessor. (i.e., INTR)
Software Interrupts: Some instructions are inserted at the desired position into the program to create interrupts.
These interrupt instructions can be used to test the working of various interrupt handlers. It includes INT Interrupt
instruction with type number It is 2-byte instruction. First byte provides the op-code and the second byte provides the
interrupt type number. There are 256 interrupt types under this group.

e TYPE 0 interrupt represents division by zero situation. (INT 0)

e TYPE 1 interrupt represents single-step execution during the debugging of a program. (INT 1)
e TYPE 2 interrupt represents non-maskable NMI interrupt. (INT 2)

e TYPE 3 interrupt represents break-point interrupt. (INT 3)

e TYPE 4 interrupt represents overflow interrupt. (INT 4)

Exception:

Exceptions occur during program execution and are so extraordinary that they cannot be handled by the program
itself. If you give the processor the command to divide a number by zero, for instance, it will give a divide-by-zero
exception, which will cause the computer to either stop the operation or display an error notice.

Programs and Processes
The difference between Program and Process:

Program Process

Program contains a set of instructions designed to

e Process is an instance of an executing program.
complete a specific task.

Program is a passive entity as it resides in the Process is a active entity as it is created during
secondary memory. execution and loaded into the main memory.

Program

Program exists at a single place and continues to
exist until it is deleted.

Program is a static entity.

Program does not have any resource requirement; it
only requires memory space for storing the
instructions.

Program does not have any control block.

Program has two logical components: code and
data.

12

Process

Process exists for a limited span of time as it gets
terminated after the completion of task.

Process is a dynamic entity.

Process has a high resource requirement, it needs
resources like CPU, memory address, 1/O during its
lifetime.

Process has its own control block called Process
Control Block.

In addition to program data, a process also requires
additional information required for the management
and execution.

UNIT-V
Pipelining & Parallel Processors

Basic Concepts of Pipelining: Pipelining is a technique of decomposing a sequential process into
suboperations, with each subprocess being executed in a special dedicated segment that operates
concurrently with all other segments. A pipeline can be visualized as a collection of processing
segments through which binary information flows. Each segment performs partial processing
dictated by the way the task is partitioned. The result obtained from the computation in each segment
is transferred to the next segment in the pipeline. The final result is obtained after the data have
passed through all segments. It is characteristic of pipelines that several computations can be in
progress in distinct segments at the same time.

The simplest way of viewing the pipeline structure is to imagine that each segment consists of an
input register followed by a combinational circuit. The register holds the data and the combinational
circuit performs the suboperation in the particular segment. The output of the combinational circuit
in a given segment is applied to the input register of the next segment. The pipeline organization
will be demonstrated by means of a simple example. Suppose that we want to perform the combined
multiply and add operations with a stream of numbers.

A*=B+ C, fori=123,...,7

Each suboperation is to be implemented in a segment within a pipeline. Each segment has one or
two registers and a combinational circuit as shown in Figure below. R1 through RS are registers that
receive new data with every clock pulse. The multiplier and adder are combinational circuits. The
suboperations performed in each segment of the pipeline are as follows:

Rl «— A, R« B, Input 4,and B,
RS «— Rl = B2, R4+« C; Multiply and input C;
R5 « R3 + R4 Add C; to product

The five registers are loaded with new data every clock pulse. The effect of each clock is shown in
Table below. The first clock pulse transfers 41 and B1 into R1 and R2.

Figure Example or pipeline processing.

A; B, c;

| |

| R1 | | R2 |

Multiplier

Adder

TABLE Content of Registers in Pipeline Example

Clock Segment 1 Segment 2 Segment 3
Pulse
Number Rl R2 R3 R4 R5
1 A B - - -
2 A, B, A+ B G -
3 A, B, A,+ B, G A+ B+ G
4 4, B, A= B, G A, B+ C,
J _"i; B—'. _"i-_ * B-_ C1 A; * B_j_ C;
(i A B, A= B, G A= B+C,
7 A yi A+ B, [A+ B+ G
8 - - 4+ B, G A+ B+ G
o - - - - A+ B+C

The second clock pulse transfers the product of R1 and R2 into R3 and C1 into R4. The same clock
pulse transfers A2 and B2 into R1 and R2. The third clock pulse operates on all three segments
simultaneously. It places 43 and B3 into R1 and R2, transfers the product of R1 and R2 into R3,
transfers C2 into R4, and places the sum of R3 and R4 into RS. It takes three clock pulses to fill up
the pipe and retrieve the first output from RS. From there on, each clock produces a new output and
moves the data one step down the pipeline.

The general structure of a four-segment pipeline is illustrated in Figure below. The operands pass
through all four segments in a fixed sequence. Each segment consists of a combinational circuit Si
that performs a suboperation over the data stream flowing through the pipe. The segments are
separated by registers Ri that hold the intermediate results between the stages.

Clock . . 'I
v 7 V V
Input
Eﬂ- S] —1 RI —1 S: —{ R: —] S«.!- — R.I — Sl. —1 R1 —
Figure Four-segment pipeline.

The behaviour of a pipeline can be illustrated with a space-time diagram. This is a diagram that
shows the segment utilization as a function of time. The space-time diagram of a four-segment
pipeline is demonstrated in Figure below. The horizontal axis displays the time in clock cycles and
the vertical axis gives the segment number. The diagram shows six tasks 7'1 through 76 executed in
four segments. Initially, task 7'1 is handled by segment 1. After the first clock, segment 2 is busy
with 71, while segment 1 is busy with task 72. Continuing in this manner, the first task 71 is
completed after the fourth clock cycle. From then on, the pipe completes a task every clock cycle.
No matter how many segments there are in the system, once the pipeline is full, it takes only one
clock period to obtain an output.

Now consider the case where a k-segment pipeline with a clock cycle time #p is used to execute n
tasks. The first task 7'1 requires a time equal to kfp to complete its operation since there are k
segments in the pipe. The remaining # - 1 tasks emerge from the pipe at the rate of one task per
clock cycle and they will be completed after a time equal to (7 - 1)#p. Therefore, to complete n tasks

using a k-segment pipeline requires & +(n - 1) clock cycles. For example, the diagram below shows
four segments and six tasks. The time required to complete all the operations is 4+ (6 - 1) =9 clock
cycles, as indicated in the diagram. Next consider a non pipeline unit that performs the same
operation and takes a time equal to tn to complete each task. The total time required for » tasks is
ntn. The speedup of a pipeline processing over an equivalent nonpipelined processing is defined by
the ratio

§= ni,
(k+n— 1)t
Figure Space-time diagram for pipeline.

1 2 3 1 5] 7 8 9

= Clock cycles

Segment: 1| T T, T3 T, T; T

2 T | T, | Ty | I, | T; | T;
3 n|n || 5nL| G| L
4 n|n || nL | L)L

As the number of tasks increases, n becomes much larger than k£ - 1, and k£ + n - 1 approaches the
value of n. Under this condition, the speedup becomes

If we assume that the time it takes to process a task is the same in the pipeline and non-pipeline
circuits, we will have tn= ktp. Including this assumption, the speedup reduces to

K
§— b _ g

by

This shows that the theoretical maximum speedup that a pipeline can provide is k, where Kk is the
number of segments in the pipeline.

Arithmetic Pipeline

Pipeline arithmetic units are usually found in very high-speed computers. They are used to
implement floating-point operations, multiplication of fixed-point numbers, and similar
computations encountered in scientific problems. Consider the following two normalized floating
point numbers

X=Ax2°

Y=Bx 2"
A and B are two fractions that represent the mantissas and a and b are the exponents. The floating-
point addition and subtraction can be performed in four segments, as shown in Figure below. The

registers labelled R are placed between the segments to store intermediate results. The suboperations
that are performed in the four segments are:

1. Compare the exponents.

2. Align the mantissas.

3. Add or subtract the mantissas.
4. Normalize the result.

The following numerical example may clarify the suboperations performed in each segment.
Consider two the normalized floating-point numbers:

X=09504 % 10°
¥ = 0.8200 % 10°

The two exponents are subtracted in the first segment to obtain 3-2=1. The larger exponent 3 is
chosen as the exponent of the result. The next segment shifts the mantissa of Y to the right to obtain

X=109504 % 10
Y= 0.0820 x 10°
This aligns the two mantissas under the same exponent. The addition of the two mantissas in
segment 3 produces the sum
Z = 10324 x 10°
The sum is adjusted by normalizing the result so that it has a fraction with a nonzero first digit.

This is done by shifting the mantissa once to the right and incrementing the exponent by one to
obtain the normalized sum.

Z=10.10324 x 10°

The comparator, shifter, adder-subtractor, incrementer, and decrementer in the floating-point
pipeline are implemented with combinational circuits.

Exponents NManussas

a b A B
I R | I - |
Compa.rc Difference
Segment 1: exponents
by subtraction
I R |
Segment 2: l Choose exponent I —"I Align mantissas |
| R |
Add or subtract
Segment 3: mantissas
R R
. Adjust Normalize
Segment 4: exponent result
R R
Ficure Pircline for floatine-raoint addition and subtracrion

Instruction Pipeline

Pipeline processing can occur not only in the data stream but in the instruction stream as well. An
instruction pipeline reads consecutive instructions from memory while previous instructions are
being executed in other segments. This causes the instruction fetch and execute phases to overlap
and perform simultaneous operations. One possible problem associated with such a scheme is that
an instruction may cause a branch out of sequence. In that case the pipeline must be emptied and all
the instructions that have been read from memory after the branch instruction must be discarded.

In the most general case, the computer needs to process each instruction with the following sequence
of steps.

1. Fetch the instruction from memory.

2. Decode the instruction.

3. Calculate the effective address.

4. Fetch the operands from memory.

5. Execute the instruction.

6. Store the result in the proper place.

Example: Four-Segment Instruction Pipeline

Figure below shows how the instruction cycle in the CPU can be processed with a four-segment
pipeline. While an instruction is being executed in segment 4, the next instruction in sequence is
busy fetching an operand from memory in segment 3. The effective address may be calculated in a
separate arithmetic circuit for the third instruction, and whenever the memory is available, the fourth
and all subsequent instructions can be fetched and placed in an instruction FIFO. Thus, up to four
suboperations in the instruction cycle can overlap and up to four different instructions can be in
progress of being processed at the same time. Once in a while, an instruction in the sequence may
be a program control type that causes a branch out of normal sequence. In that case the pending
operations in the last two segments are completed and all information stored in the instruction buffer
is deleted. The pipeline then restarts from the new address stored in the program counter. Similarly,
an interrupt request, when acknowledged, will cause the pipeline to empty and start again from a
new address value.

Figure Four-segment CPU pipeline.

Figure below shows the operation of the instruction pipeline. The time in the horizontal axis is
divided into steps of equal duration. The four segments are represented in the diagram with an
abbreviated symbol.

1. Fl is the segment that fetches an instruction.

2. DA is the segment that decodes the instruction and calculates the effective address.
3. FO is the segment that fetches the operand.

4. EX is the segment that executes the instruction.

It is assumed that the processor has separate instruction and data memories so that the operation in
Fl and FO can proceed at the same time. In the absence of a branch instruction, each segment
operates on different instructions. Thus, in step 4, instruction 1 is being executed in segment EX;
the operand for instruction 2 is being fetched in segment FO; instruction 3 is being decoded in
segment DA; and instruction 4 is being fetched from memory in segment FI. Assume now that
instruction 3 is a branch instruction. As soon as this instruction is decoded in segment DA in step
4, the transfer from FI to DA of the other instructions is halted until the branch instruction is
executed in step 6. If the branch is taken, a new instruction is fetched in step 7. If the branch is not
taken, the instruction fetched previously in step 4 can be used. The pipeline then continues until a
new branch instruction is encountered. Another delay may occur in the pipeline if the EX segment
needs to store the result of the operation in the data memory while the FO segment needs to fetch
an operand. In that case, segment FO must wait until segment EX has finished its operation.

Step: 1 2 3 4 5 6 7 8 9 10 | 11 12 1 13
Instruction: 1| F1 |DA]| FO | EX
2 Fl |DA| FO | EX
(Branch) 3 F1 | DA | FO | EX
4 Fl| - | - |F |DA|FO|EX
5 = - - A | DA | FO | EX
6 F1 |DA | FO | EX
7 F1 | DA| FO | EX
Figure Timing of instruction pipeline

Throughput: The amount of processing that can be accomplished during a given interval of time
is called throughput.

[The purpose of parallel processing is to speed up the computer processing capability and increase
its throughput, that is, the amount of processing that can be accomplished during a given interval of
time.]

Pipelining hazards
* Pipeline hazards prevent next instruction from executing during designated clock cycle
* There are 3 classes of hazards:
1. Structural Hazards:
* Arise from resource conflicts
* HW cannot support all possible combinations of instructions

Avoid structural hazards by duplicating resources — e.g. an ALU to perform an arithmetic
operation and an adder to increment PC

2. Data Hazards:
* Occur when given instruction depends on data from an instruction ahead of it in pipeline
ADD R1, R2, R3
SUB R4, R1, R5
AND R6, R1, R7
OR RS8, R1, R9
XOR R10, R1, R11

In the above code, after ADD instruction result will be stored in R1 register after the execution
of the instruction. But the second instruction SUB is dependent on R1 register because it is one of
the source operand for it. But in the pipeline structure, by the time SUB instruction starts fetching
operand the result of ADD will not be available in R1. So Data Hazard occurs.

3. Control Hazards:

* Result from branch, other instructions that change flow of program (i.e. change PC)

Parallel Processors
Introduction to parallel processors:

Parallel processing is a term used to denote a large class of technigques that are used to
provide simultaneous data-processing tasks for the purpose of easing the computational
speed of a computer system. Instead of processing each instruction sequentially as in a
conventional computer, a parallel processing system is able to perform concurrent data
processing to achieve faster execution time.

The purpose of parallel processing is to speed up the computer processing capability and
increase its throughput, that is, the amount of processing that can be accomplished during a
given interval of time. The amount of hardware increases with parallel processing and with
it, the cost of the system increases. However, technological developments have reduced
hardware costs to the point where parallel processing techniques are economically feasible.

Parallel processing at a higher level of complexity can be achieved by having a multiplicity
of functional units that perform identical or different operations simultaneously. Parallel
processing is established by distributing the data among the multiple functional units. For

example, the arithmetic, logic, and shift operations can be separated into three units and the
operands diverted to each unit under the supervision of a control unit.

Figure below shows one possible way of separating the execution unit into eight functional
units operating in parallel. The operands in the registers are applied to one of the units
depending on the operation specified by the instruction associated with the operands. The
operation performed in each functional unit is indicated in each block of the diagram. The
adder and integer multiplier perform the arithmetic operations with integer numbers.

Figure Processor with multiple funcrional units.

—o—I Adder—subiractor |—v

—o—l Integer multiply |—~
—-l Logic unit |—-
—-I Shift unit |—-—
To memory <—-e —-I Incrementer |—'
Processor
registers
= Floating—point
add-subtract
Floating—point
multiply
Floating—point
divide

Parallel Processing can be classified in a variety of way. M. J. Flynn considers the organization
of a computer system by the number of instructions and data items that are manipulated
simultaneously. The normal operation of a computer is to fetch instructions from memory and
execute them in the processor. The sequence of instructions read from memory constitutes an
instruction stream . The operations performed on the data in the processor constitutes a data
stream. Parallel processing may occur in the instruction stream, in the data stream, or in both.

Flynn's classification divides computers into four major groups as follows:
e Single instruction stream, single data stream (SISD)
¢ Single instruction stream, multiple data stream (SIMD)
e Multiple instruction stream, single data stream (MISD)
e Multiple instruction stream, multiple data stream (MIMD)

SISD represents the organization of a single computer containing a control unit, a processor
unit, and a memory unit. Instructions are executed sequentially and the system may or may not
have internal parallel processing capabilities. Parallel processing in this case may be achieved
by means of multiple functional units or by pipeline processing.

SIMD represents an organization that includes many processing units under the supervision of
a common control unit. All processors receive the same instruction from the control unit but
operate on different items of data. The shared memory unit must contain multiple modules so
that it can communicate with all the processors simultaneously.

MISD structure is only of theoretical interest since no practical system has been constructed

using this organization.

MIMD organization refers to a computer system capable of processing several programs at the
same time. Most multiprocessor and multicomputer systems can be classified in this category.

Concurrent access to memory and cache coherence:

The primary advantage of cache is its ability to reduce the average access time in uniprocessors.
When the processor finds a word in cache during a read operation, the main memory is not
involved in the transfer. If the operation is to write, there are two commonly used procedures
to update memory.

Write-through policy: In the write-through policy, both cache and main memory are updated

with every write operation.

Write-back policy: In the write-back policy, only the cache is updated and the location is

marked so that it can be copied later into main memory.

In a shared memory multiprocessor system, all the processors share a common memory. In
addition, each processor may have a local memory, part or all of which may be a cache. The
compelling reason for having separate caches for each processor is to reduce the average access
time in each processor. The same information may reside in a number of copies in some caches
and main memory.

To ensure the ability of the system to execute memory operations correctly, the multiple copies
must be kept identical.

This requirement imposes a cache coherence problem. A memory scheme is coherent if the
value returned on a load instruction is always the value given by the latest store instruction
with the same address. Without a proper solution to the cache coherence problem, caching
cannot be used in bus- oriented multiprocessors with two or more processors.

Conditions for Incoherence

Cache coherence problems exist in multiprocessors with private caches because of the need to

share writable data. Read-only data can safely be replicated without cache coherence

enforcement mechanisms.

To illustrate the problem, consider the three-processor configuration with private caches shown
in Fig. below. Sometime during the operation an element X from main memory is loaded into
the three processors, P1, P2, and P3. As a consequence, it is also copied into the private caches
of the three processors. For simplicity, we assume that X contains the value of 52. The load on
X to the three processors results in consistent copies in the caches and main memory. If one of
the processors performs a store to X, the copies of X in the caches become inconsistent. A load
by the other processors will not return the latest value. Depending on the memory update policy
used in the cache, the main memory may also be inconsistent with respect to the cache.

10

11

X=52 Main memaory

I Py Processors

Figure Cache configuration afeer a load on X

A store to X (of the value of 120) into the cache of processor P1 updates memory to the new
value in a write-through policy. A write-through policy maintains consistency between
memory and the originating cache, but the other two caches are inconsistent since they still
hold the old value which is shown in figure below.

Cache configuration after a store o X by processor P,

X=120 Manmemory
Bus
|]
X=120 X=52 X=52 Caches
Py Py Py Processors

{a) With write-through cache policy

In a write-back policy, main memory is not updated at the time of the store. The copies in the
other two caches and main memory are inconsistent. Memory is updated eventually when the
modified data in the cache are copied back into memory.

X =52 Main memory
Bus
l |
X=120 X =52 X = 52 Caches
£y Py Py Proeson

() With write-back cache policy

12

Another configuration that may cause consistency problems is a direct memory access (DMA)
activity in conjunction with an IOP connected to the system bus. In the case of input, the DMA may
modify locations in main memory that also reside in cache without updating the cache. During a
DMA output, memory locations may be read before they are updated from the cache when using a
write-back policy.

The important terms related to the data or information stored in the cache as well as in the main
memory are as follows:

o Modified - The modified term signifies that the data stored in the cache and main memory
are different. This means the data in the cache has been modified, and the changes need to
be reflected in the main memory.

o Exclusive - The exclusive term signifies that the data is clean, i.e., the cache and the main
memory hold identical data.

o Shared - Shared refers to the fact that the cache value contains the most current data copy,
which is then shared across the whole cache as well as main memory.

o Owned - The owned term indicates that the block is currently held by the cache and that it
has acquired ownership of it, i.e., complete privileges to that specific block.

o Invalid - When a cache block is marked as invalid, it means that it needs to be fetched from
another cache or main memory.

Below is a list of the different Cache Coherence Protocols used in multiprocessor systems:

o MSI protocol (Modified, Shared, Invalid)

o MOSI protocol (Modified, Owned, Shared, Invalid)

o MESI protocol (Modified, Exclusive, Shared, Invalid)

o MOESI protocol (Modified, Owned, Exclusive, Shared, Invalid)

There exist three varieties of coherency mechanisms, which are listed below:

1. Directory Based - A directory-based system keeps the coherence amongst caches by storing
shared data in a single directory. In order to load an entry from primary memory into its
cache, the processor must request permission through the directory, which serves as a filter.
The directory either upgrades or devalues the other caches that contain that record when a
record is modified.

2. Snooping - Individual caches watch address lines during the snooping process to look for
accesses to memory locations that they have cached. A write invalidate protocol is what it
is known as. When a write activity is seen to a memory address for which a cache maintains
a copy, the cache controller invalidates its own copy of the snooped memory location.

3. Snarfing - A cache controller uses this approach to try and update its own copy of a memory
location when a second master alters a place in the main memory by keeping an eye on both

13

the address and the contents. The cache controller updates its own copy of the underlying
memory location with the new data when a write action is detected to a place of which a
cache holds a copy.

