PYTHON PROGRAMMING
(R18A0513)
LECTURE NOTES

B.TECH III YEAR - I SEM
(R18) (2020-2021)

e — —
TS
B S, oy R — : 3
) i iml TR Rl — 'lml m n ml" g1,
| 9 | m e W *- . ixk I ‘

T -

——

\
A A
o |
e
vom—
. WAlR

= |

Pl Lol 'v-'. :
.-", ,‘ —— n‘t .‘ .Qlj. * . ‘.. .ﬁpi\
i it 2 |

. — —

A-'a_ s

w2
Rt

Department of Computer,Science and Engmeenng

MALLA REDDY COLLEGE OF ENGINEERING &

TECHNOLOGY

(Autonomous Institution - UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC — ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad — 500100, Telangana State, India

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

SYLLABUS

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

1l Year B. Tech CSE - | SEM L T/PID C
3 -/-1-3
(R18A0513) PYTHON PROGRAMMING
OBJECTIVES:

To read and write simple Python programs.

To develop Python programs with conditionals and loops.
To define Python functions and call them.

To use Python data structures — lists, tuples, dictionaries.
To do input/output with files in Python.

UNIT I

INTRODUCTION DATA, EXPRESSIONS, STATEMENTS

Introduction to Python and installation, variables, expressions, statements, Numeric datatypes: Int,
float, Boolean, string. Basic data types: list--- list operations, list slices, list methods, list loop,
mutability, aliasing, cloning lists, list parameters. Tuple --- tuple assignment, tuple as return value,
tuple methods. Dictionaries: operations and methods.

UNIT II

CONTROL FLOW, LOOPS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional
(if-elif-else); Iteration: statements break, continue.

Functions--- function and its use, pass keyword, flow of execution, parameters and arguments.

UNIT 111

ADVANCED FUNCTIONS, ARRAYS

Fruitful functions: return values, parameters, local and global scope, function composition,
recursion; Advanced Functions: lambda, map, filter, reduce, basic data type comprehensions.

Python arrays: create an array, Access the Elements of an Array, array methods.

UNIT IV

FILES, EXEPTIONS

File 1/O, Exception Handling, introduction to basic standard libraries, Installation of pip, Demonstrate
Modules: Turtle, pandas, numpy, pdb, Explore packages.

UNIT V

OOPS , FRAMEWORK

Oops concepts: Object, Class, Method, Inheritance, Polymorphism, Data abstraction, Encapsulation,
Python Frameworks: Explore django framework with an example

OUTCOMES: Upon completion of the course, students will be able to
e Read, write, execute by hand simple Python programs.
e Structure simple Python programs for solving problems.

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
e Decompose a Python program into functions.
¢ Represent compound data using Python lists, tuples, dictionaries.
e Read and write data from/to files in Python Programs

TEXT BOOKS
1.Allen B. Downey, "'Think Python: How to Think Like a Computer Scientist*‘, 2nd edition,
Updated for Python 3, Shroff/OReilly Publishers, 2016.
2.R. Nageswara Rao, “Core Python Programming”, dreamtech
3. Python Programming: A Modern Approach, Vamsi Kurama, Pearson

REFERENCE BOOKS:
1. Core Python Programming, W.Chun, Pearson.
2. Introduction to Python, Kenneth A. Lambert, Cengage
3. Learning Python, Mark Lutz, Orielly

PYTHON PROGRAMMING

11l YEAR/I SEM

INDEX

UNIT TOPIC PAGE NO
INTRODUCTION DATA, 1
EXPRESSIONS, STATEMENTS
Introduction to Python and installation 1-6
Variables 6-8
Expressions 8-11
Statements 11-12
Numeric data types: Int, float, Boolean, 12-24
string.

| Basic data types: 24
list--- list operations, list slices, list 24-34
methods, list loop, mutability
aliasing, cloning lists, list parameters. 34-36
Tuple --- tuple assignment, tuple as return 36-44
value, tuple methods
Dictionaries: operations and methods 44-48
CONTROL FLOW, LOOPS
Conditionals: Boolean values and 49
operators,

T conditional (if) 50-51
alternative (if-else) 51-52
chained conditional (if-elif-else) 53-54
Iteration: statements, break, continue. 55-67
Functions--- function and its use 67-68
pass keyword 68
flow of execution 69-70
parameters and arguments 70-82

ADVANCED FUNCTIONS, 83

ARRAYS

Fruitful functions: return values 83-85

Parameters 85-87

local and global scope 87-90
11 function composition 90-91

Recursion 91-92

Advanced Functions: lambda, map, filter, 92-96

reduce

basic data type comprehensions 96-99

MRCET

PYTHON PROGRAMMING

11l YEAR/I SEM

framework with an example

Python arrays: create an array 100-101
Access the Elements of an Array 102
Array methods 102-104
FILES, EXEPTIONS 105
File I/O 105-110
Exception Handling 111-120
introduction to basic standard libraries 121-133
AV Installation of pip 133-137
Demonstrate Modules: Turtle, pandas, 137-146
numpy, pdb
Explore packages. 146-149
OOPS , FRAMEWORK 150
Oops concepts: Object, Class, 150-155
\V/ Method,
Inheritance, Polymorphism 155-159
Data abstraction, Encapsulation 159-162
Python Frameworks: Explore django 162-165

MRCET

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
UNIT — |

INTRODUCTION DATA, EXPRESSIONS, STATEMENTS

Introduction to Python and installation, variables, expressions, statements, Numeric
datatypes: Int, float, Boolean, string. Basic data types: list--- list operations, list slices,
list methods, list loop, mutability, aliasing, cloning lists, list parameters. Tuple --- tuple
assignment, tuple as return value, tuple methods. Dictionaries: operations and methods.

Introduction to Python and installation:

Python is a widely used general-purpose, high level programming language. It was initially
designed by Guido van Rossum in 1991 and developed by Python Software Foundation. It
was mainly developed for emphasis on code readability, and its syntax allows programmers
to express concepts in fewer lines of code.

Python is a programming language that lets you work quickly and integrate systems more
efficiently.

There are two majo r Python versions- Python 2 and Python 3.

* On 16 October 2000, Python 2.0 was released with many new features.
* On 3rd December 2008, Python 3.0 was released with more testing and includes new
features.

Beginning with Python programming:

1) Finding an Interpreter:

Before we start Python programming, we need to have an interpreter to interpret and run our
programs. There are certain online interpreters like https://ide.geeksforgeeks.org/,
http://ideone.com/ or http://codepad.org/ that can be used to start Python without installing
an interpreter.

Windows: There are many interpreters available freely to run Python scripts like IDLE
(Integrated Development Environment) which is installed when you install the python
software from http://python.org/downloads/

2) Writing first program:

Script Begins

Statementl

https://www.geeksforgeeks.org/python-programming-language/
https://ide.geeksforgeeks.org/
http://python.org/

PYTHON PROGRAMMING Il YEAR/I SEM MRCET

Statement2
Statement3
Script Ends

Differences between scripting language and programming language:

SCRIPTING LANGUAGE PROGRAMMING LANGUAGE

A formal language, which

comprises a set of

A programming language that
supports scripts: programs
written for a special run-time
environment that automate the

instructions used to produce
various kinds of output

execution of tasks
L B B B B B E B B BB BBENBBBE B B B | " EEE e EEEEEEEEEEEEENS

Execution speed is slow Compiler-based languages
are executed much faster
while interpreter-based
languages are executed
slower

Can be divided into
client-side scripting
languages and server-
side scripting languages

Can be divided into high-
level, low-level languages
or compiler-based or
interpreter-based languages

" EEE s T T T T T T T EEEE S - EEE AT E T TS T TP EEEEEE S
Easier to learn Not as easy to learn
" EEEEEEEEEEEEEEEEEEE. - E EEEEE s s EEEE e e EEEE .

Ex: JavaScript, Perl, PHP, Ex: C, C++, and Assembly

Python and Ruby

- EEEEEEE s e s EEeEEEEEEEn o EEEEEEEEEEEEEEeEEEEEE.
Used to develop various
applications such as
desktop, web, mobile. etc.

Mostly used for web
development

Why to use Python:

The following are the primary factors to use python in day-to-day life:

1. Python is object-oriented
Structure supports such concepts as polymorphism, operation overloading and
multiple inheritance.

2. Indentation
Indentation is one of the greatest feature in python

2

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

3.

4.

It’s free (open source)
Downloading python and installing python is free and easy
It’s Powerful
e Dynamic typing
e Built-in types and tools
e Library utilities
e Third party utilities (e.g. Numeric, NumPy, sciPy)
e Automatic memory management
It’s Portable
e Python runs virtually every major platform used today
e As long as you have a compaitable python interpreter installed, python
programs will run in exactly the same manner, irrespective of platform.
It’s easy to use and learn
e No intermediate compile
e Python Programs are compiled automatically to an intermediate form called
byte code, which the interpreter then reads.
e This gives python the development speed of an interpreter without the
performance loss inherent in purely interpreted languages.
e Structure and syntax are pretty intuitive and easy to grasp.
Interpreted Language
Python is processed at runtime by python Interpreter
Interactive Programming Language
Users can interact with the python interpreter directly for writing the programs
Straight forward syntax
The formation of python syntax is simple and straight forward which also makes it
popular.

Installation:

There are many interpreters available freely to run Python scripts like IDLE (Integrated
Development Environment) which is installed when you install the python software
from http://python.org/downloads/

Steps to be followed and remembered:

Step 1: Select Version of Python to Install.

Step 2: Download Python Executable Installer.
Step 3: Run Executable Installer.

Step 4: Verify Python Was Installed On Windows.

3

http://python.org/downloads/

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
Step 5: Verify Pip Was Installed.

Step 6: Add Python Path to Environment Variables (Optional)

B3 Python 2.8.0 (B4-bit) Setup — 4

) Install Python 3.8.0 (64-bit)
Select Install Mow to install Python with default settings, or choose

Customize to enable or disable features.

® Install Now
C\Users\ ol AppDatatLocal\Programs\Python'\Python38
Includes IDLE, pip and documentaticn

Creates shortcuts and file associations

—> Customize installation
Choose location and features

python
for Install launcher for all users (recommended)

Wiﬂd()WS (] Add Python 3.8 to PATH Ganoel

Working with Python

Python Code Execution:

Python’s traditional runtime execution model: Source code you type is translated to byte
code, which is then run by the Python Virtual Machine (PVM). Your code is automatically
compiled, but then it is interpreted.

Source Byte code Runtime

> E— PVM
|:> m.py m.pyc

Source code extension is .py
Byte code extension is .pyc (Compiled python code)

There are two modes for using the Python interpreter:
* Interactive Mode
» Script Mode

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

Running Python in interactive mode:

Without passing python script file to the interpreter, directly execute code to Python prompt.
Once you’re inside the python interpreter, then you can start.

>>> print("hello world™)

hello world

Relevant output is displayed on subsequent lines without the >>> symbol
>>> x=[0,1,2]

Quantities stored in memory are not displayed by default.

>>> X

#If a quantity is stored in memory, typing its name will display it.

[0, 1, 2]

>>> 243

F® python 3.8 (32-hit)

Python 3.1 { 3.08:fa919fd, Oct 14 28: 19:21:23) [MSC v.1916 32 bit (Intel)] on win32
" ", "credits" or "license" for more information.

»»» print("hello world™)
lo world

The chevron at the beginning of the 1st line, i.e., the symbol >>> is a prompt the python
interpreter uses to indicate that it is ready. If the programmer types 2+6, the interpreter
replies 8.

Running Python in script mode:

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
Alternatively, programmers can store Python script source code in a file with

the .py extension, and use the interpreter to execute the contents of the file. To execute the
script by the interpreter, you have to tell the interpreter the name of the file. For example, if
you have a script name MyFile.py and you're working on Unix, to run the script you have to

type:
python MyFile.py

Working with the interactive mode is better when Python programmers deal with small
pieces of code as you can type and execute them immediately, but when the code is more
than 2-4 lines, using the script for coding can help to modify and use the code in future.

Example:

C:\Users\MRCET\AppData\Local\Programs\Python\Python38-32\pyyy>python el.py
resource open

the no cant be divisible zero division by zero

resource close

finished

Variables:

Variables are nothing but reserved memory locations to store values. This means that when
you create a variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides what can
be stored in the reserved memory. Therefore, by assigning different data types to variables,
you can store integers, decimals or characters in these variables.

Rules for Python variables:
* A variable name must start with a letter or the underscore character
* A variable name cannot start with a number

« A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9,
and)

» Variable names are case-sensitive (age, Age and AGE are three different variables)

6

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
Assigning Values to Variables:

Python variables do not need explicit declaration to reserve memory space. The declaration
happens automatically when you assign a value to a variable. The equal sign (=) is used to
assign values to variables.

The operand to the left of the = operator is the name of the variable and the operand to the
right of the = operator is the value stored in the variable

For example —

a= 100 # An integer assignment
b =1000.0 # A floating point

¢ ="John" # A string

print (a)

print (b)

print (c)

This produces the following result —
100

1000.0

John

Multiple Assignment:

Python allows you to assign a single value to several variables simultaneously.
For example :

a=b=c=1

Here, an integer object is created with the value 1, and all three variables are assigned to the
same memory location. You can also assign multiple objects to multiple variables.

For example —

a,b,c =1,2,"mrcet“

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
Here, two integer objects with values 1 and 2 are assigned to variables a and b respectively,

and one string object with the value "john" is assigned to the variable c.
Output Variables:
The Python print statement is often used to output variables.

Variables do not need to be declared with any particular type and can even change type after
they have been set.

Xx=5 # x is of type int
X ="mrcet" #xisnow of type str
print(x)

Output: mrcet
To combine both text and a variable, Python uses the “+” character:
Example

X = "awesome"
print("Python is " + X)

Output

Python is awesome

You can also use the + character to add a variable to another variable:
Example

X ="Python is "

y = "awesome"
Z=XxX+Yy

print(z)

Output:

Python is awesome

Expressions:

An expression is a combination of values, variables, and operators. An expression is
evaluated using assignment operator.

PYTHON PROGRAMMING I YEAR/I SEM MRCET
Examples: Y=x + 17

>>> x=10

>>> 7=x+20

>>>7

30

>>> x=10

>>> y=20

>>> C=X+Yy

>>>C

30

A value all by itself is a simple expression, and so is a variable.
>>> y=20

>>>y

20

Python also defines expressions only contain identifiers, literals, and operators. So,

Identifiers: Any name that is used to define a class, function, variable module, or object is
an identifier.

Literals: These are language-independent terms in Python and should exist independently in
any programming language. In Python, there are the string literals, byte literals, integer
literals, floating point literals, and imaginary literals.

Operators: In Python you can implement the following operations using the corresponding
tokens.

PYTHON PROGRAMMING Il YEAR/I SEM
Operator Token
add +
subtract -
multiply *
Integer Division /
remainder %
Binary left shift <<
Binary right shift >>
and &
or \
Less than <
Greater than >
Less than or equal to <=
>=

Greater than or equal to

Check equality

Check not equal

10

MRCET

PYTHON PROGRAMMING I YEAR/I SEM MRCET
Some of the python expressions are:

Generator expression:

Syntax: (compute(var) for var in iterable)

>>> x = (i for i in 'abc') #tuple comprehension
>>> X
<generator object <genexpr> at 0x033EEC30>

>>> print(X)
<generator object <genexpr> at 0x033EEC30>

You might expect this to print as (‘a', 'b', 'c’) but it prints as <generator object <genexpr>
at OX02AAD710> The result of a tuple comprehension is not a tuple: it is actually a
generator. The only thing that you need to know now about a generator now is that you
can iterate over it, but ONLY ONCE.

Conditional expression:

Syntax: true_value if Condition else false_value
>>>x ="1"if True else ""2"

>>> X

L

Statements:

A statement is an instruction that the Python interpreter can execute. We have normally two
basic statements, the assignment statement and the print statement. Some other kinds of
statements that are if statements, while statements, and for statements generally called as
control flows.

Examples:
An assignment statement creates new variables and gives them values:

>>> x=10

11

http://en.wikipedia.org/wiki/Statement_%28programming%29

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
>>> college="mrcet"

An print statement is something which is an input from the user, to be printed / displayed on
to the screen (or) monitor.

>>> print("mrcet colege”)
mrcet college

Numeric Data types:

The data stored in memory can be of many types. For example, a student roll number is
stored as a numeric value and his or her address is stored as alphanumeric characters. Python
has various standard data types that are used to define the operations possible on them and
the storage method for each of them.

Int:

Int, or integer, is a whole number, positive or negative, without decimals, of unlimited
length.

>>> print(24656354687654+2)
24656354687656
>>> print(20)

20

>>> print(0b10)
2

>>> print(0B10)
2

>>> print(0X20)
32

>>> 20

20

>>>0b10

2

>>>a=10

>>> print(a)

12

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
10

To verify the type of any object in Python, use the type() function:

>>> type(10)
<class 'int'>
>>>a=11

>>> print(type(a))
<class 'int'>
Float:

Float, or "floating point number" is a number, positive or negative, containing one or more
decimals.

Float can also be scientific numbers with an "e" to indicate the power of 10.

>>>y=2.8
>>>y

2.8
>>>y=2.8
>>> print(type(y))
<class 'float™>
>>> type(.4)
<class 'float™>
>>> 2.

2.0

Example:

X = 35e3
y = 12E4
z =-87.7¢100

print(type(x))
print(type(y))
print(type(z))

Output:

13

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
<class 'float™>

<class 'float™>
<class 'float™>

Boolean:

Objects of Boolean type may have one of two values, True or False:
>>> type(True)

<class 'bool>

>>> type(False)

<class 'bool>

String:

1. Strings in Python are identified as a contiguous set of characters represented in the
quotation marks. Python allows for either pairs of single or double quotes.

* 'hello’ is the same as "hello".
« Strings can be output to screen using the print function. For example: print(**hello™).
>>> print("mrcet college™)
mrcet college
>>> type('mrcet college™)
<class 'str’>
>>> print('mrcet college’)

mrcet college

>>> mn

A string is a group/ a sequence of characters. Since Python has no provision for arrays,
we simply use strings. This is how we declare a string. We can use a pair of single or
double quotes. Every string object is of the type ‘str’.

>>> type('name™)
14

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
<class 'str’>
>>> name=str()
>>> name
>>> a=str('mrcet')
>>>Qa
'mrcet’
>>> a=str(mrcet)
>>> g[2]
'C
>>> fruit = 'banana’
>>> |etter = fruit[1]
The second statement selects character number 1 from fruit and assigns it to letter. The
expression in brackets is called an index. The index indicates which character in the
sequence we want

String slices:
A segment of a string is called a slice. Selecting a slice is similar to selecting a character:

Subsets of strings can be taken using the slice operator ([] and [:]) with indexes starting at 0
in the beginning of the string and working their way from -1 at the end.

Slice out substrings, sub lists, sub Tuples using index.

Syntax: [Start: stop: steps]

Slicing will start from index and will go up to stop in step of steps.

Default value of start is O,

Stop is last index of list

And for step default is 1

For example 1-

str = 'Hello World"

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th
15

PYTHON PROGRAMMING I YEAR/I SEM
print str[2:] # Prints string starting from 3rd character print

str * 2 # Prints string two times

print str + "TEST" # Prints concatenated string
Output:

Hello World!

H

llo

Ilo World!

Hello World!Hello World!

Hello World!TEST

Example 2:
>>> x="computer'

>>> x[1:4]

omp
>>> x[1:6:2]
opt
>>> x[3:]
‘puter’
>>> X[:5]
‘compu’

>>> x[-1]

r
>>> x[-3:]
‘ter’

>>> X[:-2]

‘comput’
16

MRCET

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
>>> X[::-2]

'rpo’
>>> x[::-1]

‘retupmoc’

Immutability:

It is tempting to use the [] operator on the left side of an assignment, with the intention of
changing a character in a string.

For example:

>>> greeting='mrcet college!'
>>> greeting[0]="n"

TypeError: 'str' object does not support item assignment

The reason for the error is that strings are immutable, which means we can’t change an
existing string. The best we can do is creating a new string that is a variation on the original:

>>> greeting = 'Hello, world!'

>>> new_greeting ='J' + greeting[1:]
>>> new_greeting

"Jello, world!'

Note: The plus (+) sign is the string concatenation operator and the asterisk (*) is the
repetition operator

String functions and methods:

There are many methods to operate on String.

S.no | Method name Description

1. | isalnum() Returns true if string has at least 1 character and all
characters are alphanumeric and false otherwise.

2. | isalpha() Returns true if string has at least 1 character and all
characters are alphabetic and false otherwise.

3. | isdigit() Returns true if string contains only digits and false
otherwise.

4. | islower() Returns true if string has at least 1 cased character and all cased
characters are in lowercase and false
otherwise.

17

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

5. | isnumeric() Returns true if a string contains only numeric
characters and false otherwise.
6. | isspace() Returns true if string contains only whitespace
characters and false otherwise.
7. | istitle() Returns true if string is properly “titlecased” and
false otherwise.
8. | isupper() Returns true if string has at least one cased character and all

cased characters are in uppercase
and false otherwise.

9. | replace(old, new | Replaces all occurrences of old in string with new

[, max]) or at most max occurrences if max given.
10. | split() Splits string according to delimiter str (space if not
provided) and returns list of substrings;
11. | count() Occurrence of a string in another string
12. | find() Finding the index of the first occurrence of a string
in another string
13. | swapcase() Converts lowercase letters in a string to uppercase
and viceversa
14.] startswith(str, Determines if string or a substring of string (if starting index
beg=0,end=le beg and ending index end are given) starts with substring str;
n(string)) returns true if so and false
otherwise.

Note:
All the string methods will be returning either true or false as the result

1. isalnum():

Isalnum() method returns true if string has at least 1 character and all characters are
alphanumeric and false otherwise.

Syntax:
String.isalnum()

Example:
>>> string="123alpha"

>>> string.isalnum() True

2. isalpha():
isalpha() method returns true if string has at least 1 character and all characters are
alphabetic and false otherwise.

18

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

Syntax:
String.isalpha()

Example:
>>> string="nikhil"

>>> string.isalpha()
True

3. isdigit():
isdigit() returns true if string contains only digits and false otherwise.

Syntax:
String.isdigit()

Example:
>>> string="123456789"

>>> string.isdigit()
True

4. islower():
Islower() returns true if string has characters that are in lowercase and false otherwise.

Syntax:
String.islower()

Example:
>>> string="nikhil"

>>> string.islower()
True

5. isnumeric():
isnumeric() method returns true if a string contains only numeric characters and false
otherwise.

Syntax:
String.isnumeric()
19

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

Example:
>>> string="123456789"

>>> string.isnumeric()
True

6. isspace():
isspace() returns true if string contains only whitespace characters and false otherwise.

Syntax:
String.isspace()

Example:
>>> string=

>>> string.isspace()
True

7. istitle()
istitle() method returns true if string is properly “titlecased”(starting letter of each word is
capital) and false otherwise

Syntax:
String.istitle()

Example:
>>> string="Nikhil Is Learning"

>>> string.istitle()
True

8. isupper()
isupper() returns true if string has characters that are in uppercase and false otherwise.

Syntax:
String.isupper()

Example:
>>> string="HELLO"
20

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
>>> string.isupper()
True

9. replace()
replace() method replaces all occurrences of old in string with new or at most max
occurrences if max given.

Syntax:
String.replace()

Example:
>>> string="Nikhil Is Learning"

>>> string.replace('Nikhil','Neha’)
‘Neha Is Learning'

10.split()
split() method splits the string according to delimiter str (space if not provided)

Syntax:
String.split()

Example:
>>> string="Nikhil Is Learning"

>>> string.split()
['Nikhil', 'Is', "Learning’]

11.count()
count() method counts the occurrence of a string in another string Syntax:
String.count()

Example:
>>> string="Nikhil Is Learning'

>>> string.count('i')
3

12.find()

21

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
Find() method is used for finding the index of the first occurrence of a string in another

string

Syntax:
String.find(,,string™)

Example:
>>> string="Nikhil Is Learning"

>>> string.find('k")
2
13.swapcase()
converts lowercase letters in a string to uppercase and viceversa

Syntax:
String.find(,,string")

Example:
>>> string="HELLQO"

>>> string.swapcase()
‘hello’

14.startswith()
Determines if string or a substring of string (if starting index beg and ending index end are
given) starts with substring str; returns true if so and false otherwise.

Syntax:
String.startswith(,,string")

Example:
>>> string="Nikhil Is Learning"

>>> string.startswith('N’)
True

15.endswith()
Determines if string or a substring of string (if starting index beg and ending index end are
given) ends with substring str; returns true if so and false otherwise.

22

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

Syntax:
String.endswith(,,string™)

Example:
>>> string="Nikhil Is Learning"

>>> string.startswith('g")
True

If you want to include either type of quote character within the string, the simplest way is to
delimit the string with the other type. If a string is to contain a single quote, delimit it with
double quotes and vice versa:

>>> print("mrcet is an autonomous () college™)
mrcet is an autonomous (') college

>>> print(‘'mrcet is an autonomous (") college")
mrcet is an autonomous (") college
Suppressing Special Character:

Specifying a backslash (\) in front of the quote character in a string “escapes” it and causes
Python to suppress its usual special meaning. It is then interpreted simply as a literal single
quote character:

>>> print("mrcet is an autonomous (\') college™)
mrcet is an autonomous (') college
>>> print(‘'mrcet is an autonomous (\") college’)
mrcet is an autonomous (") college

The following is a table of escape sequences which cause Python to suppress the usual
special interpretation of a character in a string:

>>> print(‘'a\

...0")

a....b

>>> print(‘a\

23

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
b\

c)
abc
>>> print(‘a\n b')
a
b
>>> print("mrcet \n college")
mrcet
college
Escape Usual Interpretation of

Sequence Character(s) After Backslash “Escaped” Interpretation
\' Terminates string with single quote opening delimiter |Literal single quote (") character
\" Terminates string with double quote opening delimiter |Literal double quote (") character
\newline [Terminates input line Newline is ignored
\\ Introduces escape sequence Literal backslash (\) character

In Python (and almost all other common computer languages), a tab character can be
specified by the escape sequence \t:

>>> print("a\tb")

a b
Basic Data types:
List:

e |tis a general purpose most widely used in data structures

e Listis a collection which is ordered and changeable and allows duplicate members.
(Grow and shrink as needed, sequence type, sortable).

e To use a list, you must declare it first. Do this using square brackets and separate
values with commas.

e \We can construct / create list in many ways.

Ex:
>>> [ist1=[1,2,3,'A",'B",7,8,[10,11]]

24

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
>>> print(listl)

[1,2,3,'A,'B', 7,8, [10, 11]]
>>> x=list()

>>> X

[l

>>> tuplel=(1,2,3,4)
>>> x=list(tuplel)
>>> X

[1, 2, 3, 4]

List operations:

These operations include indexing, slicing, adding, multiplying, and checking for
membership

Basic List Operations:

Lists respond to the + and * operators much like strings; they mean concatenation and
repetition here too, except that the result is a new list, not a string.

Python Expression Results Description
len([1, 2, 3]) 3 Length
[1,2,3] +[4,5, 6] [1,2,3,4,5, 6] Concatenation
[Hil']* 4 ['Hil', "Hil', "Hil", 'Hil"] Repetition
3in[1,2,3] True Membership

25

PYTHON PROGRAMMING

Il YEAR/I SEM MRCET

for xin [1, 2, 3]: print X,

123 Iteration

Indexing, Slicing, and Matrixes

Because lists are sequences, indexing and slicing work the same way for lists as they do for

strings.
Assuming following input —

L = ['mrcet’, ‘college’, ' MRCET!"]

Python Expression Results Description
L[2] MRCET Offsets start at zero
L[-2] college Negative: count from the right
L[1:] ['college’, 'MRCET!"] Slicing fetches sections

List slices:

>>> list1=range(1,6)
>>> [istl

range(1, 6)

>>> print(listl)
range(1, 6)

>>> |ist1=[1,2,3,4,5,6,7,8,9,10]
>>> list1[1:]
[2,3,4,5,6,7,8,9,10]
>>> |ist1[:1]

[1]

26

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
>>> [ist1[2:5]

[3, 4, 5]

>>> [ist1[:6]
[1,2,3,4,5, 6]
>>> |ist1[1:2:4]
[2]

>>> [ist1[1:8:2]
[2, 4,6, 8]

List methods:

The list data type has some more methods. Here are all of the methods of list objects:

Del()
Append()
Extend()
Insert()
Pop()
Remove()
Reverse()
Sort()

Delete: Delete a list or an item from a list

>>> x=[5,3,8,6]

>>> del(x[1]) #deletes the index position 1 in a list
>>> X

[5, 8, 6]

>>> del(x)

>>> X # complete list gets deleted

Append: Append an item to a list
>>> x=[1,5,8,4]

>>> x.append(10)
27

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
>>> X

[1,5, 8, 4, 10]

Extend: Append a sequence to a list.
>>>x=[1,2,3,4]

>>>y=[3,6,9,1]

>>> x.extend(y)

>>> X

[1,2,3,4,3,6,9, 1]

Insert: To add an item at the specified index, use the insert () method:
>>>x=[1,2,4,6,7]

>>> x.insert(2,10) #insert(index no, item to be inserted)

>>> X

[1, 2,10, 4,6, 7]

>>> x.insert(4,['a",11])

>>> X

[1,2, 10, 4, [a, 11], 6, 7]

Pop: The pop() method removes the specified index, (or the last item if index is not
specified) or simply pops the last item of list and returns the item.

>>>x=[1, 2, 10, 4, 6, 7]
>>> x.pop()

7

>>> X

[1,2, 10, 4, 6]

28

PYTHON PROGRAMMING Il YEAR/I SEM
>>> x=[1, 2, 10, 4, 6]

>>> X.pop(2)

10

>>> X

[1, 2, 4, 6]

Remove: The remove() method removes the specified item from a given list.
>>> x=[1,33,2,10,4,6]

>>> x.remove(33)

>>> X

[1, 2, 10, 4, 6]

>>> x.remove(4)

>>> X

[1,2, 10, 6]

Reverse: Reverse the order of a given list.
>>>x=[1,2,3,4,5,6,7]

>>> x.reverse()

>>> X

[7,6,5,4,3,2,1]

Sort: Sorts the elements in ascending order
>>>x=[7,6,5,4,3,2,1]

>>> x.s0rt()

>>> X

[1,2,3,4,5,6,7]

29

MRCET

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
>>> x=[10,1,5,3,8,7]

>>> x.sort()

>>> X
[1,3,5,7,8,10]
List loop:

Loops are control structures used to repeat a given section of code a certain number of times
or until a particular condition is met.

Method #1: For loop
#list of items
list=['M"/R",'C",'E','T']
i=1

#lterating over the list

for item in list:

print (‘'college ',i," is ',item)
=i+l

Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/lis.py
college 1 is M

college 2 is R

college 3 is C

college 4 is E

college 5is T

Method #2: For loop and range()

In case we want to use the traditional for loop which iterates from number x to number y.
Python3 code to iterate over a list

list=11, 3,5, 7, 9]

getting length of list
length = len(list)

Iterating the index
30

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
same as 'for i in range(len(list))’
for i in range(length):
print(list[i])

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/listlooop.py
1

3

5

7

9

Method #3: using while loop

Python3 code to iterate over a list
list=11, 3,5, 7, 9]

Getting length of list
length = len(list)
i=0

Iterating using while loop
while i < length:

print(list[i])
i+=1
Mutability:
A mutable object can be changed after it is created, and an immutable object can't.
Append: Append an item to a list
>>> x=[1,5,8,4]
>>> x.append(10)
>>> X
[1,5, 8,4, 10]
Extend: Append a sequence to a list.
>>> x=[1,2,3,4]
>>>y=[3,6,9,1]

31

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
>>> x.extend(y)

>>> X

Delete: Delete a list or an item from a list

>>> x=[5,3,8,6]

>>> del(x[1]) #deletes the index position 1 in a list

>>> X

[5, 8, 6]

Insert: To add an item at the specified index, use the insert () method:
>>> x=[1,2,4,6,7]

>>> x.insert(2,10) #insert(index no, item to be inserted)

>>> X

[1,2,10, 4,6, 7]

>>> x.insert(4,['a",11])

>>> X

[1, 2,10, 4, [a', 11], 6, 7]

Pop: The pop() method removes the specified index, (or the last item if index is not
specified) or simply pops the last item of list and returns the item.

>>> x=[1, 2, 10, 4, 6, 7]
>>> x.pop()

7

>>> X

[1, 2, 10, 4, 6]

>>> x=[1, 2, 10, 4, 6]

32

PYTHON PROGRAMMING Il YEAR/I SEM
>>> X.pop(2)

10

>>> X

[1, 2, 4, 6]

Remove: The remove() method removes the specified item from a given list.
>>> x=[1,33,2,10,4,6]

>>> x.remove(33)

>>> X

[1,2, 10, 4, 6]

>>> x.remove(4)

>>> X

[1, 2, 10, 6]

Reverse: Reverse the order of a given list.
>>>x=[1,2,3,4,5,6,7]

>>> x.reverse()

>>> X

[7,6,5,4,3,2,1]

Sort: Sorts the elements in ascending order
>>>x=[7, 6,5, 4, 3, 2,1]

>>> x.s0rt()

>>> X

[1,2,3,4,5,6,7]

>>> x=[10,1,5,3,8,7]

33

MRCET

PYTHON PROGRAMMING I YEAR/I SEM MRCET
>>> x.sort()

>>> X

[1,3,5,7,8,10]

Aliasing:

1. An alias is a second name for a piece of data, often easier (and more useful) than
making a copy.

2. If the data is immutable, aliases don’t matter because the data can’t change.

3. But if data can change, aliases can result in lot of hard — to — find bugs.

4. Aliasing happens whenever one variable’s value is assigned to another variable.

For ex:
a=[81, 82, 83]
b =[81, 82, 83]
print(a == b)
print(a is b)
b=a

print(a == b)
print(a is b)
b[0] =5
print(a)
Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/alia.py
True

False

True

True

[5, 82, 83]

Because the same list has two different names, a and b, we say that it is aliased. Changes
made with one alias affect the other. In the example above, you can see that a and b refer to
the same list after executing the assignment statement b = a.

Cloning Lists:

If we want to modify a list and also keep a copy of the original, we need to be able to make a
copy of the list itself, not just the reference. This process is sometimes called cloning, to
avoid the ambiguity of the word copy.

34

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
The easiest way to clone a list is to use the slice operator. Taking any slice of a creates a new

list. In this case the slice happens to consist of the whole list.
Example:

a=[81, 82, 83]

b=a[:;] # make aclone using slice

print(a == b)

print(a is b)

b[0] =5

print(a)

print(b)

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/clo.py

True

False

[81, 82, 83]

[5, 82, 83]

Now we are free to make changes to b without worrying about a

List parameters:

Passing a list as an argument actually passes a reference to the list, not a copy of the list.
Since lists are mutable, changes made to the elements referenced by the parameter change
the same list that the argument is referencing.

for example, the function below takes a list as an argument and multiplies each element in
the list by 2:
def doubleStuff(List):

""" Overwrite each element in aList with double its value.

for position in range(len(List)):

35

PYTHON PROGRAMMING I YEAR/I SEM MRCET
List[position] = 2 * List[position]

things =[2, 5, 9]

print(things)

doubleStuff(things)

print(things)

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/lipar.py ==
[2, 5, 9]

[4, 10, 18]

Tuple:

A tuple is a collection which is ordered and unchangeable. In Python tuples are written
with round brackets.
e Supports all operations for sequences.
e Immutable, but member objects may be mutable.
e If the contents of a list shouldn’t change, use a tuple to prevent items from
accidently being added, changed, or deleted.
e Tuples are more efficient than list due to python’s implementation.

We can construct tuple in many ways:
X=() #no item tuple

X=(1,2,3)

X=tuple(listl)

X=1,2,3,4

Example:
>>> x=(1,2,3)
>>> print(x)
(1,2,3)

36

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
>>> X

(1,2,3)

>>> x=[4,5,66,9]
>>> y=tuple(x)
>>>y

(4,5, 66, 9)

>>>x=1,2,3,4
>>> X
(1,2,3,4)

Some of the operations of tuple are:
e Access tuple items
e Change tuple items
e Loop through a tuple
e Count()
e Index()
e Length()

Access tuple items: Access tuple items by referring to the index number, inside square
brackets

>>>x=("a','b','c','y")

>>> print(x[2])

C

Change tuple items: Once a tuple is created, you cannot change its values. Tuples
are unchangeable.

>>> x=(2,5,7,'4',8)
>>> x[1]=10
Traceback (most recent call last):
File "<pyshell#41>", line 1, in <module>
X[1]=10
37

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
TypeError: 'tuple’ object does not support item assignment
>>> X

(2,5,7,'4',8) #the value is still the same

Loop through a tuple: We can loop the values of tuple using for loop
>>> x=4,5,6,7,2,'aa’
>>> foriin x:

print(i)

NN O

ad

Count (): Returns the number of times a specified value occurs in a tuple
>>>x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> x.count(2)

4

Index (): Searches the tuple for a specified value and returns the position of where it
was found

>>>x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> x.index(2)

1

(On)

>>>x=(1,2,3,4,5,6,2,10,2,11,12,2)
>>> y=x.index(2)

>>> print(y)

1

Length (): To know the number of items or values present in a tuple, we use len().
>>>x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> y=len(x)

>>> print(y)

38

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
12

Tuple Assignment

Python has tuple assignment feature which enables you to assign more than one variable at a
time. In here, we have assigned tuple 1 with the college information like college name, year,
etc. and another tuple 2 with the values in it like number (1, 2, 3... 7).

For Example,
Here is the code,
« >>>tupl = ('mrcet’, 'eng college’,'2004','cse’, "it','csit’);
« >>>tup2=(1,2,3,4,5,6,7);
« >>> print(tup1[0])
o mMmrcet
« >>>print(tup2[1:4])
.« (2,3,4)
Tuple 1 includes list of information of mrcet
Tuple 2 includes list of numbers in it
We call the value for [0] in tuple and for tuple 2 we call the value between 1 and 4

Run the above code- It gives name mrcet for first tuple while for second tuple it gives
number (2, 3, 4)

Tuple as return values:

A Tuple is a comma separated sequence of items. It is created with or without (). Tuples are
immutable.

A Python program to return multiple values from a method using tuple

This function returns a tuple
def fun():

str = "mrcet college"

x =20

39

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
return str, X; # Return tuple, we could also
write (str, X)
Driver code to test above method
str, x = fun() # Assign returned tuple
print(str)
print(x)

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/tupretval.py
mrcet college

20

e Functions can return tuples as return values.

def circleInfo(r):
""" Return (circumference, area) of a circle of radius r """
c=2*3.14159 *r
a=3.14159 *r*r
return (c, a)
print(circleInfo(10))
Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/functupretval.py
(62.8318, 314.159)
def f(x):
yo=x+1
yl=x*3
y2 =y0 **y3
return (y0, y1, y2)

Tuple methods:

Count (): Returns the number of times a specified value occurs in a tuple
>>>x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> x.count(2)

4

40

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

Index (): Searches the tuple for a specified value and returns the position of where it
was found

>>>x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> x.index(2)

1

(On)

>>>x=(1,2,3,4,5,6,2,10,2,11,12,2)
>>> y=x.index(2)

>>> print(y)

1

Set:
A set is a collection which is unordered and unindexed with no duplicate elements. In
Python sets are written with curly brackets.

e To create an empty set we use set()
e Curly braces {}’ or the set() function can be used to create sets

We can construct tuple in many ways:
X=set()

X={3,5,6,8}

X=set(listl)

Example:

>>> x={1,3,5,6}
>>> X

{1,3,5, 6}

>>> x=set()

>>> X

set()

>>> list1=[4,6,"dd",7]
>>> x=set(listl)

>>> X

{4,'dd’, 6, 7}

41

https://docs.python.org/3/library/stdtypes.html#set

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
e We cannot access items in a set by referring to an index, since sets are unordered
the items has no index.
e But you can loop through the set items using a for loop, or ask if a specified value
IS present in a set, by using the in keyword.

Some of the basic set operations are:
Add()

Remove()

Len()

Item in X

Pop

Clear

Add (): To add one item to a set use the add () method. To add more than one item to a
set use the update () method.

>>> x={"mrcet","college","cse","dept"}

>>> x.add("autonomous")

>>> X

{'mrcet’, 'dept’, 'autonomous', ‘cse’, ‘college'}

>>> x={1,2,3}

>>> x.update("a","b")
>>> X
{1,2,3,'a,'b'}

>>> x={1,2,3}

>>> x.update([4,5],[6,7,8])

>>> X

{1,2,3,4,5,6,7,8}

Remove (): To remove an item from the set we use remove or discard methods.
>>>x={1, 2, 3, 'a', 'b'}

>>> x.remove(3)

>>> X

{1,2,'a",'b'}

Len (): To know the number of items present in a set, we use len().
>>> z={"mrcet’, 'dept’, 'autonomous', ‘cse’, ‘college’}

>>> len(z)

42

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
3)

Item in X: you can loop through the set items using a for loop.
>>> X:{'al’lb"'c|’ldl}
>>> for item in X:

print(item)

O Y2 O O

pop ():This method is used to remove an item, but this method will remove the last item.
Remember that sets are unordered, so you will not know what item that gets removed.

>>>x={1,2,3,4,5,6,7, 8}
>>> X.pop()

1

>>> X

{2,3,4,5,6,7,8}
Clear (): This method will the set as empty.

>>>x={2, 3, 4,5, 6,7, 8}
>>> x.clear()

>>> X

set()

The set also consist of some mathematical operations like:

Intersection AND &

Union OR |
Symmetric Diff XOR A

Diff In setl but not in set2 setl-set2
Subset set2 contains setl setl<=set2
Superset setl contains set2 setl>=set?

Some examples:

>>> x={1,2,3,4}
>>>y={45,6,7}
>>> print(x|y)
{1,2,3,4,5,6, 7}

43

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
>>> x={1,2,3,4}
>>>y={4,5,6,7}
>>> print(X&y)

{4}

>>> A ={1, 2, 3, 4,5}
>>>B={4,5,6,7, 8}
>>> print(A-B)

{1, 2,3}
>>>B={4,5,6,7,8}
>>>A={1,2,3,4,5}

>>> print(BMA)
{1,2,3,6,7,8}

Dictionaries:
A dictionary is a collection which is unordered, changeable and indexed. In Python

dictionaries are written with curly brackets, and they have keys and values.
e Key-value pairs
e Unordered

We can construct or create dictionary like:

X={1A’,2:’B’,3:°¢c’}

X=dict([(‘a’,3) (‘b’,4)]

X=dict(‘A’=1,"B’ =2)

Examples:

>>> dictl = {"brand":"mrcet","model":"college”,"year":2004}
>>> dictl

{'brand": 'mrcet’, ‘'model": 'college’, 'year': 2004}

To access specific value of a dictionary, we must pass its key,
>>> dictl = {"brand":"mrcet","model":"college”,"year":2004 }

>>> x=dict1["brand"]
>>> X

'mrcet’

To access keys and values and items of dictionary:
>>> dictl = {"brand":"mrcet","model":"college","year":2004}

44

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
>>> dictl.keys()
dict_keys(['brand’, ‘model’, 'year'])
>>> dictl.values()
dict_values(['mrcet’, ‘college’, 2004])
>>> dictl.items()
dict_items([('brand’, 'mrcet’), (‘'model’, 'college’), (‘year', 2004)])
>>> for items in dictl.values():
print(items)

mrcet
college
2004

>>> for items in dictl.keys():
print(items)

brand
model
year

>>> for i in dictl.items():
print(i)

(‘brand’, ‘'mrcet’)
(‘'model’, ‘college’)
(‘year', 2004)

Some of the operations are:
e Add/change
e Remove
e Length
o Delete

Add/change values: You can change the value of a specific item by referring to its key
name

>>> dictl = {"brand™:"mrcet","model":"college","year":2004}

45

PYTHON PROGRAMMING Il YEAR/I SEM
>>> dictl["year"]=2005
>>> dictl
{'brand": 'mrcet’, 'model’: ‘college’, 'year': 2005}

Remove(): It removes or pop the specific item of dictionary.

>>> dictl = {"brand":"mrcet","model™:"college”,"year":2004}
>>> print(dictl.pop('model"))

college

>>> dictl

{'brand": 'mrcet’, 'year': 2005}

Delete: Deletes a particular item.

>>>x = {1:1, 2:4, 3:9, 4:16, 5:25}
>>> del x[5]
>>> X

Length: we use len() method to get the length of dictionary.

>>>{1.1,2:4,3:9, 4. 16}
{1:1,2:4,3:9,4: 16}
>>> y=len(x)
>>>y
4
Iterating over (key, value) pairs:
>>> x ={1:1, 2:4, 3.9, 4:16, 5:25}
>>> for key in x:

print(key, x[key])

11

24

39

416

525

>>> for k,v in x.items():
print(k,v)

11
24

46

MRCET

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
39
416
525

List of Dictionaries:

>>> customers = [{"uid":1,"name":"John"},
{"uid":2,"name":"Smith"},
{""uid":3,"name":"Andersson"},
]
>>> >>> print(customers)
[{'uid": 1, 'name": "John'}, {'uid": 2, 'name"; 'Smith'}, {'uid’: 3, 'name’: 'Andersson'}]

Print the uid and name of each customer
>>> for x in customers:
print(x["uid"], x["'name"])

1 John
2 Smith
3 Andersson

Modify an entry, This will change the name of customer 2 from Smith to Charlie
>>> customers[2]["'name"]="charlie"

>>> print(customers)

[{'uid": 1, 'name": "John'}, {'uid": 2, 'name": 'Smith'}, {'uid": 3, 'name"; ‘charlie'}]

Add a new field to each entry

>>> for X in customers:
X["password"]="123456" # any initial value

>>> print(customers)
[{'uid: 1, 'name’: 'John', 'password": '123456'}, {'uid: 2, 'name'. 'Smith’', 'password"
'123456'}, {'uid'": 3, 'name": ‘charlie’, '‘password': '123456'}]

Delete a field

>>> del customers[1]

>>> print(customers)

[{'uid: 1, 'name": 'John', 'password": '123456'}, {'uid: 3, 'name". 'charlie', 'password".
'123456'}]

47

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
>>> del customers[1]
>>> print(customers)
[{'uid": 1, 'name’; "John’, ‘password': '123456'}]
Delete all fields
>>> for X in customers:

del x["uid"]

>>> X
{'name"; 'John’, 'password"; '123456'}

48

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
UNIT — 11

CONTROL FLOW, LOOPS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else),
chained conditional (if-elif-else); Iteration: statements break, continue.

Functions--- function and its use, pass keyword, flow of execution, parameters and
arguments.

Boolean Values and Operators:

A boolean expression is an expression that is either true or false. The following examples
use the operator ==, which compares two operands and produces True if they are equal and
False otherwise:

>>> 5 ==

True

>>> 5 ==

False

True and False are special values that belong to the type bool; they are not strings:
>>> type(True)

<class 'bool>

>>> type(False)

<class 'bool'>

The == operator is one of the relational operators; the others are: x '=y # x is not equal to y
X >y #xisgreaterthany x <y # x is less than y

X >=y # X is greater than or equal to y x <=y # x is less than or equal to y

Note:

All expressions involving relational and logical operators will evaluate to either true or false

49

PYTHON PROGRAMMING I YEAR/I SEM MRCET
Conditional (if):

The if statement contains a logical expression using which data is compared and a decision
Is made based on the result of the comparison.

Syntax:
If expression:
statement(s)
If the boolean expression evaluates to TRUE, then the block of statement(s) inside the if

statement is executed. If boolean expression evaluates to FALSE, then the first set of
code after the end of the if statement(s) is executed.

if Statement Flowchart:

False

Test Expression

47 True

Body of if

s
=
~

Fig: Operation of if statement
Example: Python if Statement

a=3
ifa>2;

print(a, "is greater")
print("done")

a=-1
ifa<O:

print(a, "a is smaller")
print("Finish")

Output:
50

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ifl.py
3 is greater
done
-1 ais smaller
Finish
a=10
if a>0:
print("A is Greater than 9")
Output:
C:/UserssyMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/if2.py
A is Greater than 9
Alternative if (If-Else):

An else statement can be combined with an if statement. An else statement contains the
block of code (false block) that executes if the conditional expression in the if statement
resolves to O or a FALSE value.

The else statement is an optional statement and there could be at most only one else
Statement following if.

Syntax of if - else :

if test expression:
Body of if stmts
else:
Body of else stmts
If - else Flowchart :

51

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

False

Test Expression

True
! ¥

Body of else

|

Body of if

A
|
[/

?

Fig: Operation of if — else statement
Example of if - else:

a=int(input(‘enter the number’))
if a>5:
print(*“a is greater")
else:
print(a is smaller than the input given")

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyyl/ifelse.py
enter the number 2

a is smaller than the input given

a=10
b=20
if a>b:
print("A is Greater than B")
else:
print("B is Greater than A")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy!/if2.py
B is Greater than A

52

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

Chained Conditional: (If-elif-else):

The elif statement allows us to check multiple expressions for TRUE and execute a
block of code as soon as one of the conditions evaluates to TRUE. Similar to the else,
the elif statement is optional. However, unlike else, for which there can be at most one
statement, there can be an arbitrary number of elif statements following an if.

Syntax of if —elif - else :

If test expression:

Body of if stmts
elif test expression:

Body of elif stmts
else:

Body of else stmts

Flowchart of if — elif - else:

v

Test False
Expression
of if
L4
True
Test False
¥ Expression
Body of if of elif
True
L
Body of elif Body of else

!]

-
'

Fig: Operation of if — elif - else statement
Example of if - elif — else:

a=int(input('enter the number"))
b=int(input(‘enter the number"))
c=int(input(‘enter the number"))
if a>Db:

53

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
print(“a is greater")
elif b>c:
print("b is greater™)
else:
print("c is greater")

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyyl/ifelse.py
enter the number5

enter the number?2

enter the number9

a is greater

>>>
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ifelse.py
enter the number?2

enter the number5

enter the number9

C is greater

var =100

if var == 200:
print("1 - Got a true expression value™)
print(var)

elif var == 150:
print(*2 - Got a true expression value™)
print(var)

elif var == 100:
print("3 - Got a true expression value™)
print(var)

else:
print("4 - Got a false expression value")
print(var)

print("Good bye!")

Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyyl/ifelif.py

3 - Got a true expression value
100

Good bye!
54

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
Iteration:

A loop statement allows us to execute a statement or group of statements multiple times as
long as the condition is true. Repeated execution of a set of statements with the help of loops
Is called iteration.

Loops statements are used when we need to run same code again and again, each time with a
different value.

Statements:

In Python Iteration (Loops) statements are of three types:
1. While Loop

2. For Loop

3. Nested For Loops

While loop:

e Loops are either infinite or conditional. Python while loop keeps reiterating a block of
code defined inside it until the desired condition is met.

e The while loop contains a boolean expression and the code inside the loop is
repeatedly executed as long as the boolean expression is true.

e The statements that are executed inside while can be a single line of code or a block of
multiple statements.

Syntax:
while(expression):
Statement(s)
Flowchart:
l while loop

o false
Is condition

true?

true

Body of while loop
Execute statements

l exit while loop

55

http://www.lastnightstudy.com/Show?id=84/Python-3-Iteration-Statements#While%20Loop%20In%20Python
http://www.lastnightstudy.com/Show?id=84/Python-3-Iteration-Statements#For%20Loop%20In%20Python
http://www.lastnightstudy.com/Show?id=84/Python-3-Iteration-Statements#Nested%20For%20Loops%20In%20Python

PYTHON PROGRAMMING I YEAR/I SEM MRCET
Example Programs:

1. e
i=1
while i<=6:
print(*Mrcet college™)
=i+l
output:

C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/wh1.py
Mrcet college
Mrcet college
Mrcet college
Mrcet college
Mrcet college
Mrcet college

while i<=3:

print("MRCET",end=" ")

=1

while j<=1:
print("CSE DEPT",end=""")
j=1+1

i=i+l

print()

Output:

C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/wh2.py
MRCET CSE DEPT
MRCET CSE DEPT
MRCET CSE DEPT

56

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
=1
while i<=3:
print("MRCET",end=" ")

while j<=1:
print("CSE DEPT",end=""")
=)+l
i=i+l
print()
Output:

C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/wh3.py

MRCET CSE DEPT
MRCET
MRCET

i=1
while (i < 10):
print (i)
=i+l
Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/wh4.py

O©CoOoONO OIS, WN B

while (a<10):
print ('lteration’,a)
a=a+1l
b=b+1

57

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
if (b ==4):
break
print ('While loop terminated’)

Output:

C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/wh5.py
Iteration 1
Iteration 2
Iteration 3
While loop terminated
count=0
while (count < 9):
print(*"The count is:", count)
count = count + 1
print("Good bye!")

Output:

C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/wh.py =
The count is:
The count is:
The count is:
The count is:
The count is:
The count is:
The count is:
The count is:
The count is:
Good bye!

co~NoooThwWNEO

For loop:

Python for loop is used for repeated execution of a group of statements for the desired
number of times. It iterates over the items of lists, tuples, strings, the dictionaries and other
iterable objects

Syntax: for var in sequence:

Statement(s) A sequence of values assigned to var in each iteration

Holds the value of item
in sequence in each iteration

58

PYTHON PROGRAMMING Il YEAR/I SEM
Sample Program:
numbers =[1, 2, 4, 6, 11, 20]
seq=0
for val in numbers:
seg=val*val
print(seq)

Output:

C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/fr.py
1

4

16

36

121

400

Flowchart:

for loop
l Iterating in sequence

Condition true
——————* Last item in
sequence?

falsel

Body of for
Execute statements

l exit for loop

-—>

59

MRCET

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
Iterating over a list:

#list of items
list=[M'"/R',/C"/'E','T"]
i=1

#lterating over the list

for item in list:
print (‘'college ',i," is ',item)
=i+l

Output:

C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy!/lis.py
college 1 is M
college 2 is R
college 3 is C
college 4 is E
college 5is T

Iterating over a Tuple:

tuple = (2,3,5,7)
print (‘These are the first four prime numbers)
#lterating over the tuple
for a in tuple:
print (a)

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fr3.py
These are the first four prime numbers

2

3

S
7

Iterating over a dictionary:

#creating a dictionary
college = {"ces":"block1","it":"block2","ece":"block3"}

#lterating over the dictionary to print keys
print ('"Keys are:")

60

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
for keys in college:
print (keys)

#lterating over the dictionary to print values
print ("Values are:")
for blocks in college.values():

print(blocks)

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/dic.py
Keys are:

ces

it

ece

Values are:

blockl

block?2

block3

Iterating over a String:

#declare a string to iterate over
college ='MRCET'

#lterating over the string
for name in college:
print (name)

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/strr.py

MmO X

Nested For loop:

When one Loop defined within another Loop is called Nested Loops.
Syntax:

for val in sequence:

for val in sequence:
61

PYTHON PROGRAMMING 11l YEAR/I SEM
statements

statements

Example 1 of Nested For Loops (Pattern Programs)
for i in range(1,6):
for j in range(0,i):
print(i, end=""")

print(")
Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/nesforr.py

Example 2 of Nested For Loops (Pattern Programs)
for i in range(1,6):
for j in range(5,i-1,-1):
print(i, end="")
print(")
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/nesforr.py

Output:
11111

2222
333
44

62

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
Break and continue:

In Python, break and continue statements can alter the flow of a normal loop. Sometimes
we wish to terminate the current iteration or even the whole loop without checking test
expression. The break and continue statements are used in these cases.

Break:
The break statement terminates the loop containing it and control of the program flows to
the statement immediately after the body of the loop. If break statement is inside a nested

loop (loop inside another loop), break will terminate the innermost loop.

Flowchart:

Enter loop

S test expression
of loop

Exit Loop

Y

Remaining body
of loop

The following shows the working of break statement in for and while loop:

for var in sequence:
code inside for loop
If condition:
break (if break condition satisfies it jumps to outside loop)
code inside for loop
code outside for loop

63

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
while test expression

code inside while loop
If condition:
break (if break condition satisfies it jumps to outside loop)
code inside while loop
code outside while loop

Example:

for val in "MRCET COLLEGE":
ifval ==""
break
print(val)

print(""The end")

Program to display all the elements before number 88

for numin [11, 9, 88, 10, 90, 3, 19]:
print(num)
if(num==88):
print("The number 88 is found")
print("Terminating the loop™)
break

Output:

11

9

88

The number 88 is found

64

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
Terminating the loop

for letter in "Python": # First Example
if letter =="h""
break
print("Current Letter :", letter)

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/br.py =

Current Letter : P
Current Letter : y
Current Letter : t
Continue:

The continue statement is used to skip the rest of the code inside a loop for the current
iteration only. Loop does not terminate but continues on with the next iteration.

Flowchart:

Enter loop

test expression
of loop

continue?

Exit Loop

4

Remaining body
of loop

The following shows the working of break statement in for and while loop:

65

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
for var in sequence:

code inside for loop
If condition:
continue (if break condition satisfies it jumps to outside loop)
code inside for loop
code outside for loop

while test expression

code inside while loop
If condition:
continue(if break condition satisfies it jumps to outside loop)
code inside while loop
code outside while loop

Example:

Program to show the use of continue statement inside loops
for val in "string™:
if val =="i"
continue
print(val)
print("The end")
Output:

C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/cont.py
S

t
;
n
g
The end

program to display only odd numbers

for num in [20, 11, 9, 66, 4, 89, 44]:

66

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
Skipping the iteration when number is even
iIf num%2 == 0:
continue
This statement will be skipped for all even numbers
print(num)

Output:

C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/cont2.py
11

9
89
G
for letter in "Python": # First Example
if letter =="h":
continue
print("Current Letter ", letter)
Output:

C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/conl.py
Current Letter : P

Current Letter :
Current Letter :
Current Letter :
Current Letter :

S5 0 <<

Functions:

Functions and its use: Function is a group of related statements that perform a specific task.
Functions help break our program into smaller and modular chunks. As our program grows
larger and larger, functions make it more organized and manageable. It avoids repetition and
makes code reusable.

Basically, we can divide functions into the following two types:

1. Built-in functions - Functions that are built into Python.

Ex: abs(),all().ascii(),bool()......... SO on....

integer = -20

67

https://www.programiz.com/python-programming/built-in-function

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
print('Absolute value of -20 is:', abs(integer))

Output:
Absolute value of -20 is: 20

2. User-defined functions - Functions defined by the users themselves.

def add_numbers(x,y):
sum=x+y
return sum

print(*"The sum is", add_numbers(5, 20))
Output:
The sum is 25

Pass:

In Python programming, passis a null statement. The difference between
a comment and pass statement in Python is that, while the interpreter ignores a comment
entirely, pass is not ignored.
pass is just a placeholder for functionality to be added later.
Example:
sequence = {'p', 'a', 's', 's'}
for val in sequence:
pass
Output:

C:/UserssyMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fl.y.py
>>>

Similarily we can also write,
def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

68

https://www.programiz.com/python-programming/user-defined-function
https://www.programiz.com/python-programming/statement-indentation-comments

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
Flow of Execution:

1. The order in which statements are executed is called the flow of execution

2. Execution always begins at the first statement of the program.

3. Statements are executed one at a time, in order, from top to bottom.

4. Function definitions do not alter the flow of execution of the program, but remember
that statements inside the function are not executed until the function is called.

5. Function calls are like a bypass in the flow of execution. Instead of going to the next
statement, the flow jumps to the first line of the called function, executes all the
statements there, and then comes back to pick up where it left off.

Note: When you read a program, don’t read from top to bottom. Instead, follow the flow of
execution. This means that you will read the def statements as you are scanning from top to
bottom, but you should skip the statements of the function definition until you reach a point
where that function is called.

Example:
#example for flow of execution
print("welcome")
for x in range(3):
print(x)
print("Good morning college")
Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/flowof.py
welcome
0
1
2
Good morning college
The flow/order of execution is: 2,3,4,3,4,3,4,5

lj'.'; flowof.py - C/Users/MRCET/AppData/Local/Programs/Python/Python38-32/ pyyyflowoef.py (3.
File Edit Format FRun Options Window Help

1| fexample for flow of execution with functions

2| print {("welcome")
X range (3) :
4 print (x)
5 Ip:"_:'_t(":—:::‘. morning college™)

69

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
Li:; flowef.py - C/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/flowef.py (3.
File Edit Format Run Options Window Help

1| fexample for flow of execution with functions

2 hello{):

E print ("Good morning™)
b:i:t("m::e:")

5| print ("hi™)

& print ("hello™)

7| hellaf()

8| print ("done!™)

Output:

C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/flowof.py
hi

hello

Good morning

mrcet

done!

The flow/order of execution is: 2,5,6,7,2,3,4,7,8

Parameters and arguments:

Parameters are passed during the definition of function while Arguments are passed during
the function call.

Example:
#here a and b are parameters

def add(a,b): #//function definition
return a+b

#12 and 13 are arguments
#function call
result=add(12,13)
print(result)

Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/paraarg.py

25

70

A

o koW

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

There are three types of Python function arguments using which we can call a function.

1. Default Arguments
2. Keyword Arguments
3. Variable-length Arguments

Syntax:
def functionname():
statements

functionname()
Function definition consists of following components:

Keyword def indicates the start of function header.

A function name to uniquely identify it. Function naming follows the same rules of writing
identifiers in Python.

Parameters (arguments) through which we pass values to a function. They are optional.

A colon (:) to mark the end of function header.

Optional documentation string (docstring) to describe what the function does.

One or more valid python statements that make up the function body. Statements must have
same indentation level (usually 4 spaces).

An optional return statement to return a value from the function.

Example:

def hf():
hello world
hf()

In the above example we are just trying to execute the program by calling the function. So it
will not display any error and no output on to the screen but gets executed.

To get the statements of function need to be use print().
#calling function in python:

def hf():
71

https://www.programiz.com/python-programming/keywords-identifier#rules
https://www.programiz.com/python-programming/keywords-identifier#rules

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
print("hello world")

hf()
Output:
hello world
def hf():
print("hw")
print("gh kfjg 66666")
hf()
hf()
ht()
Output:

hw
gh kfjg 66666
hw
gh kfjg 66666
hw
gh kfjg 66666

def add(x,y):
C=X+Y
print(c)

add(5,4)

Output:

9

def add(x,y):

C=X+Y
72

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
return c

print(add(5,4))

Output:

def add_sub(x,y):
c=x+y
d=x-y
return c,d
print(add_sub(10,5))
Output:
(15, 5)

The return statement is used to exit a function and go back to the place from where it was
called. This statement can contain expression which gets evaluated and the value is returned.
If there is no expression in the statement or the return statement itself is not present inside a
function, then the function will return the None object.

def hf():
return "hw"

print(hf())

Output:

hw

def hf():

73

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
return "hw"

hf()
Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu.py

>>>

def hello_f():

return "hellocollege”
print(hello_f().upper())
Output:
HELLOCOLLEGE
Passing Arguments
def hello(wish):

return '{}'.format(wish)
print(hello("mrcet™))
Output:
mrcet

Here, the function wish() has two parameters. Since, we have called this function with two
arguments, it runs smoothly and we do not get any error. If we call it with different number
of arguments, the interpreter will give errors.

def wish(name,msg):

""" This function greets to

the person with the provided message

print("Hello",name + + msQ)

74

PYTHON PROGRAMMING I YEAR/I SEM MRCET
wish("MRCET","Good morning!")

Output:
Hello MRCET Good morning!

Below is a call to this function with one and no arguments along with their respective error
messages.

>>> wish("MRCET") # only one argument

TypeError: wish() missing 1 required positional argument: 'msg'

>>>wish() # no arguments

TypeError: wish() missing 2 required positional arguments: ‘name' and 'msg’

def hello(wish,hello):
return “hi” '{}{}'.format(wish,hello)
print(hello("mrcet","college™))
Output:
himrcet,college
#Keyword Arguments

When we call a function with some values, these values get assigned to the arguments
according to their position.

Python allows functions to be called using keyword arguments. When we call functions in
this way, the order (position) of the arguments can be changed.

(Or)
If you have some functions with many parameters and you want to specify only some
of them, then you can give values for such parameters by naming them - this is

called keyword arguments - we use the name (keyword) instead of the position
(which we have been using all along) to specify the arguments to the function.

75

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
There are two advantages - one, using the function is easier since we do not need to
worry about the order of the arguments. Two, we can give values to only those
parameters which we want, provided that the other parameters have default argument
values.

def func(a, b=5, c=10):
print‘ais’, a, ‘and b is', b, 'and cis’, ¢

func(3, 7)
func(25, c=24)
func(c=50, a=100)

Output:

ais3andbis7andcis 10
ais25andbis5andcis 24
aisl1l00andbis5andcis 50

Note:

The function named func has one parameter without default argument values,
followed by two parameters with default argument values.

In the first usage, func(3, 7), the parameter a gets the value 3, the parameter b gets the
value 5 and c gets the default value of 10.

In the second usage func(25, c=24), the variable a gets the value of 25 due to the
position of the argument. Then, the parameter c gets the value of 24 due to naming i.e.
keyword arguments. The variable b gets the default value of 5.

In the third usage func(c=50, a=100), we use keyword arguments completely to
specify the values. Notice, that we are specifying value for parameter c before that
for a even though a is defined before c in the function definition.

For example: if you define the function like below
def func(b=5, c=10,a): # shows error : non-default argument follows default argument

def print_name(namel, name2):
76

PYTHON PROGRAMMING I YEAR/I SEM MRCET
""" This function prints the name """

print (namel + " and " + name2 + " are friends")
#calling the function
print_name(name2 ='A’',namel = 'B’)
Output:
B and A are friends
#Default Arguments
Function arguments can have default values in Python.
We can provide a default value to an argument by using the assignment operator (=)
def hello(wish,name="you’):
return '{},{}'.format(wish,name)
print(hello("good morning™))
Output:
good morning,you
def hello(wish,name="you'):
return '{}{}'.format(wish,name) //print(wish + ° ‘+ name)
print(hello("good morning™,"nirosha™)) //hello(*good morning","nirosha™)

Output:

good morning,nirosha // good morning nirosha

Note: Any number of arguments in a function can have a default value. But once we have a
default argument, all the arguments to its right must also have default values.

This means to say, non-default arguments cannot follow default arguments. For example, if
we had defined the function header above as:

77

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
def hello(name="you', wish):

Syntax Error: non-default argument follows default argument

def sum(a=4, b=2): #2 is supplied as default argument
""" This function will print sum of two numbers
if the arguments are not supplied
it will add the default value """
print (a+b)
sum(1,2) #calling with arguments
sum() #calling without arguments

Output:

3

Variable-length arguments

Sometimes you may need more arguments to process function then you mentioned in the
definition. If we don’t know in advance about the arguments needed in function, we can use
variable-length arguments also called arbitrary arguments.

For this an asterisk (*) is placed before a parameter in function definition which can hold
non-keyworded variable-length arguments and a double asterisk (**) is placed before a
parameter in function which can hold keyworded variable-length arguments.

If we use one asterisk (*) like *var, then all the positional arguments from that point till the
end are collected as a tuple called ‘var’ and if we use two asterisks (**) before a variable like
**var, then all the positional arguments from that point till the end are collected as
a dictionary called ‘var’.

def wish(*names):
"""This function greets all

78

http://www.trytoprogram.com/python-programming/python-tuples/
http://www.trytoprogram.com/python-programming/python-dictionary/

PYTHON PROGRAMMING Il YEAR/I SEM VIRCET
the person in the names tuple."""

names is a tuple with arguments
for name in names:
print("Hello",name)

wish("MRCET","CSE","SIR","MADAM")

Output:

Hello MRCET
Hello CSE
Hello SIR
Hello MADAM

#Program to find area of a circle using function use single return value function with
argument.

pi=3.14
def areaOfCircle(r):

return pi*r*r
r=int(input("Enter radius of circle"))

print(areaOfCircle(r))

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ful.py
Enter radius of circle 3

28.259999999999998

#Program to write sum different product and using arguments with return value
function.

def calculete(a,b):
total=a+b

diff=a-b

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
prod=a*b

div=a/b

mod=a%b

return total,diff,prod,div,mod
a=int(input("Enter a value™))
b=int(input("Enter b value™))
#function call
s,d,p,q,m = calculete(a,b)
print("Sum=",s,"diff=",d,"mul=",p,"div=",q,"mod=",m)
#print("diff=",d)
#print("mul=",p)
#print("div=",q)
#print("mod=",m)

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ful.py
Enter a value 5

Enter b value 6

Sum= 11 diff= -1 mul= 30 div= 0.8333333333333334 mod= 5

#program to find biggest of two numbers using functions.

def biggest(a,b):
if a>b :
return a
else :
return b

a=int(input("Enter a value"))
b=int(input("Enter b value™))

80

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
#function call
big= biggest(a,b)
print(“big number=",big)

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ful.py
Enter a value 5

Enter b value-2

big number= 5

#program to find biggest of two numbers using functions. (nested if)

def biggest(a,b,c):
ifa>b:
if a>c:
return a
else :
return ¢
else :
if b>c:
return b
else :
return ¢

a=int(input("Enter a value™))
b=int(input("Enter b value™))
c=int(input("Enter ¢ value™))
#function call

big= biggest(a,b,c)
print(“big number=",big)

Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ful.py
Enter a value 5

Enter b value -6

Enter c value 7

big number= 7

81

p
#Writer a program to read one subject mark and print pass or fail use single return
values function with argument.

def result(a):
if a>40:
return "pass"”
else:
return "fail"
a=int(input("Enter one subject marks™))

print(result(a))

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ful.py
Enter one subject marks 35

fail

#Write a program to display mrecet cse dept 10 times on the screen. (while loop)

def usingFunctions():
count =0
while count<10:
print("mrcet cse dept",count)
count=count+1

usingFunctions()

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ful.py
mrcet cse dept 0
mrcet cse dept 1
mrcet cse dept 2
mrcet cse dept 3
mrcet cse dept 4
mrcet cse dept 5
mrcet cse dept 6
mrcet cse dept 7
mrcet cse dept 8
mrcet cse dept 9

82

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
UNIT - 111

FUNCTIONS, ARRAYS

Fruitful functions: return values, parameters, local and global scope, function composition,
recursion; Advanced Functions: lambda, map, filter, reduce, basic data type comprehensions.

Python arrays: Create an array, Access the Elements of an Array, array methods.

Functions, Arrays:

Fruitful functions:

We write functions that return values, which we will call fruitful functions. We have seen
the return statement before, but in a fruitful function the return statement includes a return
value. This statement means: "Return immediately from this function and use the following
expression as a return value."

(or)

Any function that returns a value is called Fruitful function. A Function that does not return
a value is called a void function

Return values:

The Keyword return is used to return back the value to the called function.

returns the area of a circle with the given radius:

def area(radius):
temp = 3.14 * radius**2
return temp
print(area(4))

(or)

def area(radius):
return 3.14 * radius**2
print(area(2))

Sometimes it is useful to have multiple return statements, one in each branch of a
conditional:

def absolute_value(x):

83

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
if x<O0:
return -x
else:
return x

Since these return statements are in an alternative conditional, only one will be executed.

As soon as a return statement executes, the function terminates without executing any
subsequent statements. Code that appears after a return statement, or any other place the
flow of execution can never reach, is called dead code.

In a fruitful function, it is a good idea to ensure that every possible path through the program
hits a return statement. For example:

def absolute_value(x):
if x<O0:
return -x
if x> 0:
return x

This function is incorrect because if x happens to be 0, both conditions is true, and the
function ends without hitting a return statement. If the flow of execution gets to the end of a
function, the return value is None, which is not the absolute value of 0.

>>> print absolute_value(0)
None

By the way, Python provides a built-in function called abs that computes absolute values.

Write a Python function that takes two lists and returns True if they have at least one
common member.

def common_data(list1, list2):
for x in listl:
fory in list2:
ifx==y:

result = True

return result
print(common_data([1,2,3,4,5], [1,2,3,4,5]))
print(common_data([1,2,3,4,5], [1,7,8,9,510]))
print(common_data([1,2,3,4,5], [6,7,8,9,10]))

Output:

84

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
C:\Users\MRCET\AppData\Local\Programs\Python\Python38-32\pyyy\ful.py
True
True
None

def area(radius):
b =3.14159 * radius**2
return b

Parameters:

Parameters are passed during the definition of function while Arguments are passed during
the function call.

Example:
#here a and b are parameters

def add(a,b): #//function definition
return a+b

#12 and 13 are arguments
#function call
result=add(12,13)
print(result)

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/paraarg.py
25

Some examples on functions:
To display vandemataram by using function use no args no return type

#function defination
def display():
print("vandemataram")

85

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
print(i am in main")
#function call
display()
print("i am in main")

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ful.py
I am in main

vandemataram

I am in main

#Typel : No parameters and no return type

def Funl() :
print(“function 1")
Funl()

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ful.py
function 1

#Type 2: with param with out return type

def fun2(a) :

print(a)
fun2("*hello™)

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ful.py

Hello

#Type 3: without param with return type

def fun3():
return "welcome to python”
print(fun3())

86

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ful.py

welcome to python

#Type 4: with param with return type

def fun4(a):
return a
print(fun4(*"python is better then c"))

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ful.py

python is better then ¢

Local and Global scope:
Local Scope:

A variable which is defined inside a function is local to that function. It is accessible from
the point at which it is defined until the end of the function, and exists for as long as the
function is executing

Global Scope:

A variable which is defined in the main body of a file is called a global variable. It will be
visible throughout the file, and also inside any file which imports that file.

« The variable defined inside a function can also be made global by using the global
statement.

def function_name(args):

global x #declaring global variable inside a function

create a global variable
87

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
x ="global"

def f():
print("x inside :", X)

f()

print("x outside:", x)

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ful.py
x inside : global

X outside: global

create a local variable
def f1():
y = "local"

print(y)
f1()

Output:
local

e If we try to access the local variable outside the scope for example,

def f2():
y = "local"

f2()
print(y)

Then when we try to run it shows an error,

Traceback (most recent call last):
File "C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ful.py”, line
6, in <module>

88

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

print(y)
NameError: name'y" is not defined

The output shows an error, because we are trying to access a local variable y in a global
scope whereas the local variable only works inside f2() or local scope.

use local and global variables in same code

x ="global"

def £3():
global x
y = "local"
X=X*2
print(x)
print(y)

f3()

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ful.py
globalglobal

local

e In the above code, we declare x as a global and y as a local variable in the f3(). Then,
we use multiplication operator * to modify the global variable x and we print
both x and y.

e After calling the f3(), the value of x becomes global global because we used the x *
2 to print two times global. After that, we print the value of local variable y i.e local.

use Global variable and Local variable with same name
Xx=5
def f4():

x =10
print("local x:", x)

f4()
print("global x:", x)

89

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ful.py
local x: 10

global x: 5

Function Composition:

Having two (or more) functions where the output of one function is the input for another. So
for example if you have two functions FunctionA and FunctionB you compose them by
doing the following.

FunctionB(FunctionA(x))

Here X is the input for FunctionA and the result of that is the input for FunctionB.
Example 1:
#create a function compose2

>>> def compose2(f, g):
return lambda x:f(g(x))

>>> def d(X):
return x*2

>>> def e(x):
return x+1

>>> g=compose2(d,e) # FunctionC = compose(FunctionB,FunctionA)
>>> a(5) # FunctionC(x)
12

In the above program we tried to compose n functions with the main function created.
Example 2:

>>> colors=("red','green’,'blue’)

>>> fruits=['orange’,'banana’,'cherry’]

>>> zip(colors,fruits)
90

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
<zip object at 0X03DAC6CS>

>>> list(zip(colors,fruits))

[(‘'red’, 'orange’), (‘'green’, 'banana’), (‘blue’, ‘cherry")]

Recursion:

Recursion is the process of defining something in terms of itself.
Python Recursive Function

We know that in Python, a function can call other functions. It is even possible for the
function to call itself. These type of construct are termed as recursive functions.

Factorial of a number is the product of all the integers from 1 to that number. For example,
the factorial of 6 (denoted as 6!) is 1*2*3*4*5*6 = 720.

Following is an example of recursive function to find the factorial of an integer.

Write a program to factorial using recursion
def fact(x):
If x==0:
result =1
else :
result = x * fact(x-1)
return result
print(*'zero factorial”,fact(0))
print(*five factorial”,fact(5))

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/rec.py
zero factorial 1

five factorial 120

def calc_factorial(x):
""" This is a recursive function
to find the factorial of an integer™"
if x == 1:
return 1
else:
return (x * calc_factorial(x-1))

91

https://www.programiz.com/python-programming/function

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

num =4
print(*The factorial of", num, "is", calc_factorial(num))

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/rec.py
The factorial of 4 is 24

Advanced Functions:

Anonymous function is a function i.e. defined without name.

While normal functions are defined using the def keyword.
Anonymous functions are defined using lambda keyword hence anonymous functions are
also called lambda functions.

Syntax: lambda arguments: expression
e Lambda function can have any no. of arguments for any one expression.
e The expression is evaluated and returns.

Use of Lambda functions:
e Lambda functions are used as nameless functions for a short period of time.
¢ In python lambda functions are an argument to higher order functions.
e Lambda functions are used along with built-in functions like filter(),map() and
reduce() etc....

Write a program to double a given number
double = lambda x:2*x

print(double(5))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ful.py
10

#Write a program to sum of two numbers
add = lambda x,y:x+y

92

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
print(add(5,4))

Output:

C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ful.py
9

#Write a program to find biggest of two numbers
biggest = lambda x,y: aif x>y else y
print(biggest(20,30))

Output:

C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ful.py
30

Powerful Lamda function in python:

Lambda functions are used along with built-in functions like filter(), map() and
reduce()etc....

Filter():

e The filter functions takes list as argument.

e The filter() is called when new list is returned which contains items for which the
function evaluates to true.

o Filter:The filter() function returns an iterator were the items are filtered through a
function to test if the item is accepted or not.

Syntax: filter(function, iterable)
#Write a program to filter() function to filter out only even numbers from the given list
myList =[1,2,3,4,5,6]

newL.ist = list(filter(lambda x: x%2 ==0,myL.ist))
print(newL.ist)

Output:

93

p
C:\Users\MRCET\AppData\Local\Programs\Python\Python38-32\pyyy\ful.py

[2, 4, 6]

#Write a program for filter() function to print the items greater than 4

list1 = [10,2,8,7,5,4,3,11,0, 1]

result = filter (lambda x: x > 4, list1)

print(list(result))

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/m1.py =
[10, 8, 7, 5, 11]

Map() :

e Map() function in python takes a function & list.

e The function is called with all items in the list and a new list is returned which
contains items returned by that function for each item.

e Map applies a function to all the items in an list.

e The advantage of the lambda operator can be seen when it is used in combination with
the map() function.

e map() is a function with two arguments:

Syntax: r = map(func, seq)

#Write a program for map() function to double all the items in the list

myList =[1,2,3,4,5,6,7,8,9,10]

newList = list(map(lambda x: x*2,myL.st))
print(newList)

Output:

C:\Users\MRCET\AppData\Local\Programs\Python\Python38-32\pyyy\ful.py

94

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
[2,4,6,8, 10,12, 14, 16, 18, 20]

Write a program to seperate the letters of the word "hello” and add the letters as
items of the list.

letters =[]

letters = list(map(lambda x:x,"hello™))

print(letters)

Output:
C:\Users\MRCET\AppData\Local\Programs\Python\Python38-32\pyyy\ful.py

[h, e, T, T, o]

#Write a program for map() function to double all the items in the list?
def addition(n):
returnn+n
numbers = (1, 2, 3, 4)
result = map(addition, numbers)
print(list(result))
Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/m1.py =
[2, 4, 6, 8]
Reduce():

Applies the same operation to items of sequence.

Use the result of the first operation for the next operation

Returns an item, not a list.

Reduce: The reduce(fun, seq)function is used to apply a particular

function passed in its argument to all of the list elementsmentioned in the sequence
passed along. This function is defined in “functools” module.

95

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
#Write a program to find some of the numbers for the elements of the list by using
reduce()

import functools
myList =[1,2,3,4,5,6,7,8,9,10]
print(functools.reduce(lambda x,y: x+y,myL.ist))

Output:
C:\Users\MRCET\AppData\Local\Programs\Python\Python38-32\pyyy\ful.py

55

#Write a program for reduce() function to print the product of items in a list
from functools import reduce

listl = [1,2,3,4,5]

product = reduce (lambda x, y: x*y, listl)

print(product)

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/m1.py =

120

Basic data type comprehensions:

List comprehension:

List comprehensions provide a concise way to create lists. Common applications are to make
new lists where each element is the result of some operations applied to each member of
another sequence or iterable, or to create a subsequence of those elements that satisfy a
certain condition.

For example, assume we want to create a list of squares, like:

>>> |ist1=[]

Jb

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
>>> for x in range(10):

listl.append(x**2)
>>> |istl
[0, 1, 4,9, 16, 25, 36, 49, 64, 81]
(or)
This is also equivalent to
>>> |ist1=list(map(lambda x:x**2, range(10)))
>>> |istl
[0, 1, 4,9, 16, 25, 36, 49, 64, 81]
(or)
Which is more concise and redable.
>>> |ist1=[x**2 for x in range(10)]
>>> |istl
[0, 1, 4,9, 16, 25, 36, 49, 64, 81]

Similarily some examples:

>>> x=[m for m in range(8)]
>>> print(x)
[0,1,2,3,4,5,6,7]

>>> x=[z**2 for z in range(10) if z>4]
>>> print(x)
[25, 36, 49, 64, 81]

>>> x=[x ** 2 forxinrange (1, 11) if x% 2 ==1]
>>> print(x)

97

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
[1,9, 25, 49, 81]

>>> g=h
>>> table = [[a, b, a * b] for b in range(1, 11)]
>>> for i in table:

print(i)

5, 1, 5]

[5, 2, 10]
[5, 3, 15]
[5, 4, 20]
[5, 5, 25]
[5, 6, 30]
[5, 7, 35]
[5, 8, 40]
[5, 9, 45]
[5, 10, 50]

Tuple comprehension:

Tuple Comprehensions are special: The result of a tuple comprehension is special. You
might expect it to produce a tuple, but what it does is produce a special "generator"
object that we can iterate over.

For example:
>>> x = (i for i in 'abc') #tuple comprehension
>>> X

<generator object <genexpr> at 0x033EEC30>

>>> print(x)
<generator object <genexpr> at 0X033EEC30>

You might expect this to print as (‘a', 'b’, 'c’) but it prints as <generator object <genexpr>
at 0x02AAD710> The result of a tuple comprehension is not a tuple: it is actually a
generator. The only thing that you need to know now about a generator now is that you
can iterate over it, but ONLY ONCE.

So, given the code

>>>x = (i for i in 'abc’)
98

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
>>> foriin x;

print(i)

a
b
C

Create a list of 2-tuples like (number, square):
>>> 7=[(x, x**2) for x in range(6)]

>>>7

[(0,0), (1, 1), (2,4), (3,9), (4 16), (5, 25)]

Set comprehension:
Similarly to list comprehensions, set comprehensions are also supported:

>>> g = {x for x in 'abracadabra’ if x not in ‘abc'}
>>> g

{r, d}

>>> x={3*x for x in range(10) if x>5}
>>> X
{24, 18, 27, 21}

Dictionary comprehension :

Dictionary comprehensions can be used to create dictionaries from arbitrary key and
value expressions:

>>> z={x: x**2 for x in (2,4,6)}
>>> 7
{2: 4, 4: 16, 6: 36}

>>> dictll = {x: x*x for x in range(6)}
>>> dictll
{0:0,1:1,2:4,3:9,4: 16, 5: 25}

99

https://docs.python.org/3/tutorial/datastructures.html#tut-listcomps

PYTHON PROGRAMMING 11l YEAR/I SEM

MRCET
Python arrays:

Array is a container which can hold a fix number of items and these items should be of the
same type. Most of the data structures make use of arrays to implement their algorithms.
Following are the important terms to understand the concept of Array.

« Element— Each item stored in an array is called an element.

Index — Each location of an element in an array has a numerical index, which is used
to identify the element.

Array Representation

Arrays can be declared in various ways in different languages. Below is an illustration.

Elements

Int array [10] = {10, 20, 30, 40, 50, 60, 70, 80, 85, 90}

L

Type Name Size Index 0

As per the above illustration, following are the important points to be considered.
« Index starts with 0.

« Array length is 10 which means it can store 10 elements.

. Each element can be accessed via its index. For example, we can fetch an element at
index 6 as 70

Basic Operations

Following are the basic operations supported by an array.
« Traverse — print all the array elements one by one.
« Insertion — Adds an element at the given index.
« Deletion — Deletes an element at the given index.
« Search — Searches an element using the given index or by the value.
« Update — Updates an element at the given index.

Array is created in Python by importing array module to the python program. Then the
array is declared as shown below.

from array import *

100

PYTHON PROGRAMMING

11l YEAR/I SEM MRCET

arrayName=array(typecode, [initializers])

Typecode are the codes that are used to define the type of value the array will hold. Some

common typecodes used are:

Typecode Value

b Represents signed integer of size 1 byte/td>
B Represents unsigned integer of size 1 byte
C Represents character of size 1 byte

i Represents signed integer of size 2 bytes

I Represents unsigned integer of size 2 bytes
f Represents floating point of size 4 bytes

d Represents floating point of size 8 bytes

Creating an array:

from array import *

arrayl = array('i', [10,20,30,40,50])
for x in arrayl:

print(x)

Qutput:

>>>

RESTART: C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/arr.py

10
20
30
40
50

101

PYTHON PROGRAMMING I YEAR/I SEM MRCET
Access the elements of an Array:

Accessing Array Element
We can access each element of an array using the index of the element.

from array import *

arrayl = array('i', [10,20,30,40,50])
print (array1[0])

print (array1[2])

Output:

RESTART: C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/arr2.py
10
30

Array methods:

Python has a set of built-in methods that you can use on lists/arrays.

Method Description

append() | Adds an element at the end of the list

clear Removes all the elements from the list

copy() | Returns a copy of the list

count() | Returns the number of elements with the specified value

extend() | Add the elements of a list (or any iterable), to the end of the current list

index() | Returns the index of the first element with the specified value

insert() | Adds an element at the specified position

102

https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_list_clear.asp
https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp
https://www.w3schools.com/python/ref_list_insert.asp

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

pop() | Removes the element at the specified position

remove() | Removes the first item with the specified value

reverse() | Reverses the order of the list

sort() Sorts the list

Note: Python does not have built-in support for Arrays, but Python Lists can be used instead.
Example:

>>> college=["mrcet","it","cse"]

>>> college.append("autonomous")

>>> college

['mrcet’, 'it', ‘cse’, ‘autonomous']

>>> college.append(“eee")

>>> college.append(“ece™)

>>> college

['mrcet’, 'it', ‘cse’, 'autonomous', 'eee’, ‘ece’]
>>> college.pop()

ece
>>> college

['mrcet’, "it', 'cse’, 'autonomous', 'eee’]
>>> college.pop(4)

eee
>>> college

103

https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_list_sort.asp

PYTHON PROGRAMMING
['mrcet’, 'it', 'cse’, ‘autonomous']

>>> college.remove("it")
>>> college

['mrcet’, ‘cse’, ‘autonomous']

Il YEAR/I SEM

104

MRCET

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
UNIT - IV

FILES, EXEPTIONS
File 1/0, Exception Handling, introduction to basic standard libraries, Installation of
pip, Demonstrate Modules: Turtle, pandas, numpy, pdb, Explore packages.

File 1/0O :

A file is some information or data which stays in the computer storage devices. Python gives
you easy ways to manipulate these files. Generally files divide in two categories,
text file and binary file. Text files are simple text where as the binary files contain binary
data which is only readable by computer.

« Text files: In this type of file, Each line of text is terminated with a special character
called EOL (End of Line), which is the new line character (‘\n’) in python by default.

« Binary files: In this type of file, there is no terminator for a line and the data is stored
after converting it into machine understandable binary language.

Text files:

We can create the text files by using the syntax:
Variable name=open (“file.txt”, file mode)
For ex: f=open ("hello.txt","w+")

« We declared the variable f to open a file named hello.txt. Open takes 2 arguments, the
file that we want to open and a string that represents the kinds of permission or
operation we want to do on the file

« Here we used "w" letter in our argument, which indicates write and the plus sign that
means it will create a file if it does not exist in library

« The available option beside "w" are "r" for read and "a" for append and plus sign
means if it is not there then create it

File Modes in Python:

Mode | Description

105

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

T This is the default mode. It Opens file for reading.

‘W' This Mode Opens file for writing.
If file does not exist, it creates a new file.
If file exists it truncates the file.

X' Creates a new file. If file already exists, the operation fails.

a' Open file in append mode.
If file does not exist, it creates a new file.

1 This is the default mode. It opens in text mode.
'b’ This opens in binary mode.
'+ This will open a file for reading and writing (updating)

Reading and Writing files:

The following image shows how to create and open a text file in notepad from command
prompt

106

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
Microsoft Windows [Version 16.8.143
(c) 2816 Microsoft Corporation. All r

\AppData‘Local\Programs®

\AppData‘\Local\Programs®h

ello mr ._.

good morning

:I oW ru
C:\Users\MRCET\AppData\Llocal\Programs®

=

(or)

C:\UsersWMRCETY,

File Edit Format View Help

Motepad X

Cannot find the 111t file.

Do you want to create a new file?

Yes Mo Cancel

Click on “yes” to open else “no” to cancel

Write a python program to open and read a file

a=open(‘“‘one.txt”,”’r”)

print(a.read())

107

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
a.close()

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/filess/f1.py
welcome to python programming

(or)

C:AZWUsers\MRCET\AppData‘Local\Programs\Python\Python38-32\filess»python f1.py

ielcome to python programming

Note: All the program files and text files need to saved together in a particular file then
only the program performs the operations in the given file mode

| [+ 5 | filess — | *
“ Hame Share View ﬁ
= v A « Python » Python38-32 » filess v O Search filess 2

" Mame Date modified Type
Quick access
B Deskt @ f1 11/29/201910:47 ... Python File
eskto
g =| hello 11/29/2019 10040 ... Text Document
¥ Downloads =| one 11/29/2019 10:47 ... Text Docurnent

%=| Documents

f.close() ---- This will close the instance of the file somefile.txt stored

Write a python program to open and write “hello world” into a file?

f=open("1.txt","a")
f.write("hello world")
f.close()

Output:

108

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

File Edit Format Wiew Help
hello world

Note: In the above program the 1.txt file is created automatically and adds hello world
into txt file

If we keep on executing the same program for more than one time then it append the data
that many times

hello worldhello world

Write a python program to write the content “hi python programming” for the
existing file.

f=open("1.txt",'w")

f.write("hi python programming")

f.close()

Output:

File Edit Format View Help

hi python programming

In the above program the hello txt file consist of data like

iless>type hello.txt

109

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
But when we try to write some data on to the same file it overwrites and saves with the

current data (check output)

hi python programming

Write a python program to open and write the content to file and read it.

fo=open("abc.txt","w+")
fo.write("Python Programming")
print(fo.read())

fo.close()

Output:

File Edit Feormat View Help

Fythnn Programming introduced for III years

amming

=

Note: It creates the abc.txt file automatically and writes the data into it

| | = | filess
Home Share Wiew

= S « Python » Python3g8-32 » filess w | Search filess
- Mame Date medified
7 Quick access
1 11/29/2019 11:01 ...
B Deskto =
P =| abc 11/29/2019 11:13
¥ Downloads F fl1 11/29/2019 10647
= Documents @ 2 11/29/2019 10:52 ...
| Pictures [# f3 11/29/2019 11:01 ...
AME4 [f4 11/29/20719 11:11
rmlr17 =| hello 11/29/2019 11:01 ...
mirla = one 11/259/2019 10:4

110

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

Exception Handling:
Errors and Exceptions:

An exception is an event, which occurs during the execution of a program that disrupts the
normal flow of the program's instructions. In general, when a Python script encounters a
situation that it cannot cope with, it raises an exception. An exception is a Python object
that represents an error.

Python Errors and Built-in Exceptions: Python (interpreter) raises exceptions when it
encounters errors. When writing a program, we, more often than not, will
encounter errors. Error caused by not following the proper structure (syntax) of the language
is called syntax error or parsing error

ZeroDivisionError:

ZeroDivisionError in Python indicates that the second argument used in a division (or
modulo) operation was zero.

OverflowError:

OverflowError in Python indicates that an arithmetic operation has exceeded the limits of
the current Python runtime. This is typically due to excessively large float values, as integer
values that are too big will opt to raise memory errors instead.

ImportError:

It is raised when you try to import a module which does not exist. This may happen if you
made a typing mistake in the module name or the module doesn't exist in its standard path.
In the example below, a module named "non_existing_module” is being imported but it
doesn't exist, hence an import error exception is raised.

IndexError:

An IndexError exception is raised when you refer a sequence which is out of range. In the
example below, the list abc contains only 3 entries, but the 4th index is being accessed,
which will result an IndexError exception.

TypeError:

111

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
When two unrelated type of objects are combined, TypeErrorexception is raised.In example

below, an int and a string is added, which will result in TypeError exception.
IndentationError:

Unexpected indent. As mentioned in the "expected an indentedblock™ section, Python not
only insists on indentation, it insists on consistentindentation. You are free to choose the
number of spaces of indentation to use, but you then need to stick with it.

Syntax errors:

These are the most basic type of error. They arise when the Python parser is unable to
understand a line of code. Syntax errors are almost always fatal, i.e. there is almost never a
way to successfully execute a piece of code containing syntax errors.

Run-time error:

A run-time error happens when Python understands what you are saying, but runs into
trouble when following your instructions.

Key Error :

Python raises a KeyError whenever a dict() object is requested (using the
format a = adict[key]) and the key is not in the dictionary.

Value Error:

In Python, a value is the information that is stored within a certain object. To encounter a
ValueError in Python means that is a problem with the content of the object you tried to
assign the value to.

Python has many built-in exceptions which forces your program to output an error when
something in it goes wrong. In Python, users can define such exceptions by creating a new
class. Thisexceptionclass has to be derived, either directly or indirectly,
from Exception class.

Different types of exceptions:

ArrayIndexOutOfBoundException.
ClassNotFoundException.
FileNotFoundException.
IOEXxception.
InterruptedException.

112

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
e NoSuchFieldException.
e NoSuchMethodException

Handling Exceptions:

The cause of an exception is often external to the program itself. For example, an incorrect
input, a malfunctioning 10 device etc. Because the program abruptly terminates on
encountering an exception, it may cause damage to system resources, such as files. Hence,
the exceptions should be properly handled so that an abrupt termination of the program is
prevented.

Python uses try and except keywords to handle exceptions. Both keywords are followed by
indented blocks.

Syntax:
try :
#statements in try block
except :
#executed when error in try block
Typically we see, most of the times
e Syntactical errors (wrong spelling, colon (:) missing),

At developer level and compile level it gives errors.

e Logical errors (2+2=4, instead if we get output as 3 i.e., wrong output,),
As a developer we test the application, during that time logical error may obtained.

e Run time error (In this case, if the user doesn’t know to give input, 5/6 is ok but if
the user say 6 and 0 i.e.,6/0 (shows error a number cannot be divided by zero))
This is not easy compared to the above two errors because it is not done by the
system, it is (mistake) done by the user.

The things we need to observe are:

1. You should be able to understand the mistakes; the error might be done by user, DB
connection or server.
2. Whenever there is an error execution should not stop.

113

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
Ex: Banking Transaction

3. The aim is execution should not stop even though an error occurs.

For ex:

a=5

b=2

print(a/b)

print("Bye")

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex1.py
2.5

Bye

e The above is normal execution with no error, but if we say when b=0, it is a
critical and gives error, see below

a=5

b=0

print(a/b)

print("bye") #this has to be printed, but abnormal termination
Output:

Traceback (most recent call last):

File "C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex2.py"”, line
3, in <module>

print(a/b)
ZeroDivisionError: division by zero

e To overcome this we handle exceptions using except keyword

114

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
a=5

b=0

try:
print(a/b)

except Exception:
print("number can not be divided by zero")
print("bye")

Output:

C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex3.py
number can not be divided by zero
bye

e The except block executes only when try block has an error, check it below
a=5
b=2
try:

print(a/b)
except Exception:

print("number can not be divided by zero")

print("bye")
Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex4.py
2.5

e For example if you want to print the message like what is an error in a program
then we use “e” which is the representation or object of an exception.

a=b
b=0

115

PYTHON PROGRAMMING I1l YEAR/I SEM
try:

print(a/b)
except Exception as e:

print(number can not be divided by zero",e)
print(“bye")
Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex5.py
number can not be divided by zero division by zero
bye l

(Type of error)

Let us see some more examples:
I don’t want to print bye but I want to close the file whenever it is opened.
a=5
b=2
try:

print("resource opened")

print(a/b)

print(*'resource closed")
except Exception as e:

print("number can not be divided by zero",e)
Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex6.py
resource opened

2.5

116

MRCET

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
resource closed

o Note: the file is opened and closed well, but see by changing the value of b to 0,
a=5
b=0
try:

print(*'resource opened™)

print(a/b)

print("resource closed™)
except Exception as e:

print(number can not be divided by zero",e)
Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex7.py
resource opened
number can not be divided by zero division by zero

e Note: resource not closed
e To overcome this, keep print(“resource closed”) in except block, see it

a=5
b=0
try:
print(*resource opened")
print(a/b)
except Exception as e:
print("number can not be divided by zero"e)

print(*resource closed")

117

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
Output:

C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex8.py
resource opened

number can not be divided by zero division by zero

resource closed

e The result is fine that the file is opened and closed, but again change the value of
b to back (i.e., value 2 or other than zero)

a=5
b=2
try:
print(“resource opened")
print(a/b)
except Exception as e:
print("number can not be divided by zero",e)
print("resource closed™)
Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex9.py

resource opened
2.5

e But again the same problem file/resource is not closed
e To overcome this python has a feature called finally:

This block gets executed though we get an error or not

Note: Except block executes, only when try block has an error, but finally block
executes, even though you get an exception.

a=5
b=0

118

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
try:
print(*'resource open")
print(a/b)
k=int(input("enter a number"))
print(k)
except ZeroDivisionError as e:
print(“the value can not be divided by zero",e)
finally:
print(“resource closed")
Output:

C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex10.py
resource open

the value can not be divided by zero division by zero

resource closed

e change the value of b to 2 for above program, you see the output like

C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex10.py
resource open

2.5

enter a number 6

6

resource closed

e Instead give input as some character or string for above program, check the
output
C:/UserssyMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex10.py
resource open
2.5
enter a number p
resource closed
Traceback (most recent call last):
File "C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex10.py", line
7, in <module>
k=int(input(“enter a number"))
ValueError: invalid literal for int() with base 10: ' p'

119

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

. S

a=5

b=0

try:
print(*'resource open")
print(a/b)
k=int(input(“enter a number"))
print(k)

except ZeroDivisionError as e:

print(“the value can not be divided by zero",e)
except ValueError as e:

print(“invalid input™)
except Exception as e:

print(*something went wrong...",e)

finally:
print("resource closed")

Output:
C:/UserssyMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex11.py
resource open

the value can not be divided by zero division by zero

resource closed

e Change the value of b to 2 and give the input as some character or string (other
than int)
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ex12.py
resource open
2.5
enter a number p
invalid input
resource closed

120

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
Introduction to basic standard libraries:

Modules refer to a file containing Python statements and definitions.

We use modules to break down large programs into small manageable and organized
files. Furthermore, modules provide reusability of code.

We can define our most used functions in a module and import it, instead of copying
their definitions into different programs.

Modular programming refers to the process of breaking a large, unwieldy
programming task into separate, smaller, more manageable subtasks or modules.

Advantages :

Simplicity: Rather than focusing on the entire problem at hand, a module typically
focuses on one relatively small portion of the problem. If you’re working on a single
module, you’ll have a smaller problem domain to wrap your head around. This makes
development easier and less error-prone.

Maintainability: Modules are typically designed so that they enforce logical
boundaries between different problem domains. If modules are written in a way that
minimizes interdependency, there is decreased likelihood that modifications to a
single module will have an impact on other parts of the program. This makes it more
viable for a team of many programmers to work collaboratively on a large application.

Reusability: Functionality defined in a single module can be easily reused (through
an appropriately defined interface) by other parts of the application. This eliminates
the need to recreate duplicate code.

Scoping: Modules typically define a separate namespace, which helps avoid
collisions between identifiers in different areas of a program.

Functions, modules and packages are all constructs in Python that promote code
modularization.

A file containing Python code, for e.g.: example.py, is called a module and its module name
would be example.

>>> def add(a,b):

result=a+b

121

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
return result

""This program adds two numbers and return the result""*

By
|Lﬂ'
{ File Edit Format Run Options Window Help
add(a,b) :
" This program adds two numbers and return the result™™"
result=a+b
i result

Here, we have defined a function add() inside a module named example. The function takes
In two numbers and returns their sum.

How to import the module is:

« We can import the definitions inside a module to another module or the Interactive
interpreter in Python.

« We use theimportkeyword to do this. To import our previously defined
module example we type the following in the Python prompt.

» Using the module name we can access the function using dot (.) operation. For Eg:
>>> import example
>>> example.add(5,5)
10

« Python has a ton of standard modules available. Standard modules can be imported
the same way as we import our user-defined modules.

Reloading a module:
def hi(a,b):

print(a+b)
hi(4,4)
Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/add.py
8

122

https://www.programiz.com/python-programming/function

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
>>> jmport add

8
>>> jmport add
>>> jmport add

>>>

Python provides a neat way of doing this. We can use the reload() function inside
the imp module to reload a module. This is how its done.

e >>>importimp
* >>>import my_module

* This code got executed >>> import my_module >>> imp.reload(my_module) This
code got executed <module 'my_module' from '\\my_module.py>how its done.

>>> import imp
>>> import add

>>> jmp.reload(add)
8

<module ‘'add" from 'C:/UserssMRCET/AppData/Local/Programs/Python/Python38-
32/pyyy\add.py">

The dir() built-in function
>>> import example

>>> dir(example)

[builtins_',' cached ' ' doc_ ' ' file ' ' loader ',' name_' ' package ‘'
' _spec_ ', 'add

>>> dir()

[_annotations_ ', ' builtins_ ', ' doc_' ' file ', ' loader_ ', ' name_ '
' package ',' spec_ ',' warningregistry ', 'add’, 'example’, 'hi’, 'imp']

123

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
It shows all built-in and user-defined modules.

For ex:

>>>example. _name

‘example’

Modules (Datetime, Time, os, calendar, math):
Datetime module:

Write a python program to display date, time
>>> import datetime

>>> a=(datetime.datetime(2019,5,27,6,35,40)
>>>q

datetime.datetime(2019, 5, 27, 6, 35, 40)

write a python program to display date
import datetime

a=datetime.date(2000,9,18)

print(a)

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/dl1.py =
2000-09-18

write a python program to display time
import datetime

a=datetime.time(5,3)

print(a)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/d1l.py =

124

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
05:03:00

#write a python program to print date, time for today and now.

import datetime

a=datetime.datetime.today()

b=datetime.datetime.now()

print(a)

print(b)

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/dl1.py =
2019-11-29 12:49:52.235581

2019-11-29 12:49:52.235581

#write a python program to add some days to your present date and print the date
added.

import datetime

a=datetime.date.today()

b=datetime.timedelta(days=7)

print(a+b)

Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/d1.py =
2019-12-06

#write a python program to print the no. of days to write to reach your birthday
import datetime

a=datetime.date.today()

b=datetime.date(2020,5,27)

125

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
c=b-a

print(c)

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/d1.py =
180 days, 0:00:00

#write an python program to print date, time using date and time functions
import datetime

t=datetime.datetime.today/()

print(t.date())

print(t.time())

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/d1.py =
2019-11-29

12:53:39.226763

Time module:

#write a python program to display time.

import time

print(time.time())

Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/tl.py =
1575012547.1584706

#write a python program to get structure of time stamp.

import time

print(time.localtime(time.time()))

126

PYTHON PROGRAMMING I YEAR/I SEM MRCET
Output:

C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/tl.py =

time.struct_time(tm_year=2019, tm_mon=11, tm_mday=29, tm_hour=13, tm_min=1,
tm_sec=15, tm_wday=4, tm_yday=333, tm_isdst=0)

#write a python program to make a time stamp.

import time

a=(1999,5,27,7,20,15,1,27,0)

print(time.mktime(a))

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/tl.py =
927769815.0

#write a python program using sleep().

import time

time.sleep(6) #prints after 6 seconds

print("Python Lab")

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/tl.py =
Python Lab (#prints after 6 seconds)

0s module:

>>> import 0S

>>> 0s.name

nt

>>> 0s.getcwd()

'C:\\UsersW\MRCET\\AppData\\Local\\Programs\\Python\\Python38-32\\pyyy"

127

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
>>> os.mkdir("templ")

[=4] - | P¥YYY -
Home Share View

« S « Python » Python38-32 > pyyy v O Search pyyy
|=| Documents " Mame Date modified Type
&=| Pictures _pycache_ 11/29/201912:32... Filef
ey temp1 11/29/2019 1113 PM File i

Note: templ dir is created

>>> 0s.getcwd()
'C:\\Users\MRCET\\AppData\\Local\\Programs\\Python\\Python38-32\\pyyy"'
>>> open("tl.py","a")

<_i0.TextlOWrapper name="t1.py' mode="a' encoding="cp1252">

>>> ps.access("tl.py",0s.F_OK)

True

>>> ps.access("tl.py"”,0s.W_OK)

True

>>> os.rename("'t1.py","t3.py")

>>> ps.access("tl.py",0s.F_OK)

False

>>> p0s.access("'t3.py",0s.F_OK)

True

>>> os.rmdir(‘templ’)

(or)
os.rmdir('C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/temp1’)

128

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

| * | PY¥Y
m Hame Share View

— v « Python » Python38-32 » pyyy w

Fat

| Documents 2 Mame

= Pictures _pycache_

Note: Templdir is removed
>>> 0s.remove("t3.py")

Note: We can check with the following cmd whether removed or not
>>> ps.access("'t3.py",0s.F_OK)
False

>>> 0s.listdir()

['add.py’, ‘ali.py’, ‘alia.py’, ‘arr.py’, ‘arr2.py’, ‘arr3.py', ‘arrd.py', ‘arr5.py’, ‘arr6.py’, 'br.py’,
'br2.py’, '‘bubb.py’, 'bubb2.py’, '‘bubb3.py’, 'bubb4.py’, ‘bubbdesc.py’, ‘clo.py’, ‘cmndlinarg.py’,
‘comm.py’, ‘conl.py’, ‘cont.py', ‘cont2.py’, ‘d1l.py’, 'dic.py’, ‘el.py’, ‘example.py’, 'fl.y.py’,
‘flowof.py', 'fr.py', 'fr2.py', 'fr3.py', 'fu.py', ful.py’, 'ifl.py', 'if2.py', 'ifelif.py’, 'ifelse.py’,
Iff.py', 'insertdesc.py’, 'inserti.py’, 'k1.py', 'I1.py', '12.py', 'link1l.py', 'linklisttt.py’, 'lis.py’,
listlooop.py', 'ml.py, 'merg.py’, ‘nesforr.py’, ‘'nestedif.py’, ‘opprec.py', ‘'paraarg.py’,
‘qucksort.py’, 'qukdesc.py’, 'quu.py’, 'r.py', 'rec.py’, 'ret.py', 'rn.py', 'sl.py', 'scoglo.py’,
'selecasce.py’, 'selectdecs.py’, 'stk.py', 'strmodl.py’, 'strr.py’, 'strrl.py', 'strr2.py’, 'strr3.py’,
'strrd.py’, ‘strrmodl.py’, ‘wh.py', ‘whl.py', ‘wh2.py', ‘wh3.py’, ‘wh4.py’, ‘wh5.py’,
' _pycache ']

>>> 0s.listdir(‘C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32")

['argpar.py’, 'br.py', ‘bu.py’, ‘cmndlinarg.py’, 'DLLs', 'Doc’, 'fl.py', 'fl.txt', ‘'filess',
‘functupretval.py', 'funturet.py’, 'gtopt.py’, 'include’, 'Lib’, 'libs', 'LICENSE.txt', 'lisparam.py’,
'mysite’, 'NEWS.txt', 'niru’, 'python.exe’, 'python3.dll', 'python38.dII', ‘pythonw.exe’, 'pyyy’,
'Scripts’, 'srp.py’, 'sy.py’, ‘'symod.py', ‘tcl’, ‘the weather’, 'Tools', ‘tupretval.py’,
'veruntime140.dil']

Calendar module:

129

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
#write a python program to display a particular month of a year using calendar

module.
import calendar
print(calendar.month(2020,1))

Output:

i
= RESTART: C:/Users/MRCET/LppData/Local/Programs/Eyvcthon/PFython38-32/pyvv/cll.pv
January 2020
Mo Tu We Th Fr 5a Su
1 2 3 4 &

& 7 & 9 10 11 12
13 14 15 1e 17 18 19
20 21 22 23 24 25 Z2&
2T 28 29 30 =1

write a python program to check whether the given year is leap or not.
import calendar

print(calendar.isleap(2021))

Output:
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/cll.py
False

#write a python program to print all the months of given year.

import calendar

print(calendar.calendar(2020,1,1,1))

Output:

130

PYTHON PROGRAMMING Il YEAR/I SEM MRCET

T
= RESTART: C:/Usexrs/MRCET/LppData/Local/Programs/Python/Python3g-32,
2020
Jamuary February March
Mo Tu We Th Fr 5a 5u Mo Tu We Th Fr 5a S5u Ho Tu We Th Fr 5a Su
1 2 3 4 5 1 2

& T & 5 10 11 12 I 4 5 & 7 2 -
13 14 15 16 17 18 15 10 11 12 13 14 15 16 9 10 11 12 13 14 15
23 16 17 18 19 20

23

8]

20 21 22 23 24 25 26 17 18 19 20 21 22 21 22
27 28 29 30 31 24 25 Za 27 Z8 28 24 25 28 27 28 295
30 31
April HMay June

Mo Tu We Th Fr Sa S5u Mo Tu We Th Fr Sa Su Mo Tu We Th Fr S5a Su
1 2 3 4 5 3 4 5 & 7
& T 8 9 10 11 12 4 5 & T & 9 10 8 9 10 11 12 13 14

%]
L#]
%]

13 14 15 16 17 18 19 11 12 13 14 15 16 17 15 16 17 18 19 20 21
20 21 22 23 24 25 2 18 18 20 21 22 23 24 22 23 24 25 28 27 28
27 28 2% 30 25 26 27 28 2% 30 31 29 30
July August Septenber
Mo Tu We Th Fr S5a S5u Mo Tu We Th Fr 5a S5u Mo Tu We Th Fr 5a Su
1 2 3 4 5 1 2 1 2 3 4 5 &

6 T & 5 10 11 12 I 4 5 i i 3 10 11 12 13
13 14 15 16 17 18 15 10 11 12 13 14 15 16 14 15 1&e 17 18 19 20
9

&

o
-1
o

(]
-1

[x]

20 21 22 23 24 25 26 17 18 18 20 21 22 23 21 22 23 24 25 28 27
27 28 29 30 31 24 25 26 27 28 2% 30 28 2% 30
31
Cctober Hovenber Decenber
Mo Tu We Th Fr S5a S5u Mo Tu We Th Fr 5a S5u Mo Tu We Th Fr S5a Su
1 2 3 4 1 1 2 3 4 5 &
5 & 7 8 9 10 11 Z 3 4 5 & T B 7 8 9 10 11 12 13
12 13 14 15 16 17 18 5 10 11 12 13 14 15 14 15 16 17 18 139 20
9 20 21 22 23 24 25 16 17 18 19 20 21 22 21 22 23 24 25 26 27
26 27 28 29 30 31 23 24 25 26 27 28 29 28 29 30 31
30

math module:

write a python program which accepts the radius of a circle from user and computes
the area.

import math
r=int(input("Enter radius:"))
area=math.pi*r*r

print("Area of circle is:",area)

Output:

131

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
C:/UserssMRCET/AppData/Local/Programs/Python/Python38-32/pyyy/m.py =

Enter radius:4
Area of circle is: 50.26548245743669
>>> import math
>>> print(**The value of pi is"', math.pi)
O/P: The value of pi is 3.141592653589793
Import with renaming:
« We can import a module by renaming it as follows.
* For Eg:
>>> import math as m
>>> print(**The value of pi is**, m.pi)

O/P: The value of pi is 3.141592653589793

* We have renamed the math module as m. This can save us typing time in some cases.

 Note that the name mathis not recognized in our scope. Hence, math.piis
invalid, m.pi is the correct implementation.

Python from...import statement:

« We can import specific names from a module without importing the module as a
whole. Here is an example.

>>> from math import pi
>>> print("The value of pi is", pi)
O/P: The value of pi is 3.141592653589793
* We imported only the attribute pi from the module.

 Insuch case we don't use the dot operator. We could have imported multiple attributes
as follows.

132

PYTHON PROGRAMMING I YEAR/I SEM MRCET
>>> from math import pi, e

>>> i
3.141592653589793
>>>e
2.718281828459045
Import all names:

« We can import all names(definitions) from a module using the following construct.
>>>from math import *
>>>print("The value of pi is", pi)

» We imported all the definitions from the math module. This makes all names except
those beginnig with an underscore, visible in our scope.

Installation of pip

Introduction

PIP is a package management system used to install and manage software packages written
in Python. It stands for “preferred installer program” or “Pip Installs Packages.”

PIP for Python is a utility to manage PyPI package installations from the command line.

If you are using an older version of Python on Windows, you may need to install PIP. You
can easily install PIP on Windows by downloading the installation package, opening the
command line, and launching the installer.

Note: The latest versions of Python come with PIP pre-installed, but older versions require
manual installation. The following guide is for version 3.4 and above. If you are using an
older version of Python, you can upgrade Python via the Python website.

Step 1: Check if PIP is Already Installed
Before you install PIP on Windows, check if PIP is already installed.

133

https://www.python.org/downloads/

P
Type in the following command at the command prompt:

pip help

If PIP responds, then PIP is installed. Otherwise, there will be an error saying the program
could not be found.

PIP is automatically installed with Python 2.7.9+ and Python 3.4+.

PIP also comes with the virtualenv and pyvenv virtual environments.

Step 2: Verify Python Installation

As a Python utility, PIP requires an active Python installation. In newer versions of
Python and Python-enabled virtual environments, PIP is already installed, and you do not
need to reinstall it.

To determine whether you have Python installed:
Open the Command Prompt window.
When the console window opens, type in:

python

If this command is not unrecognized, you need to install Python before you can install PIP.
If the command is recognized, Python responds with its version and a list of commands.
When Python is installed correctly, you should see:

Python 3.7.0 (v3.7.0:1bf9cc5093, Jan 25 2019, 07:44:31) [MSC v.1914 64 bit (AMD64)]
on win32

Type "help™, ""copyright™, *"credits' or "'license for more information.
Installing PIP on Windows

Step 1: Download PIP get-pip.py

Before installing PIP, download the get-pip.py file: get-pip.py on pypa.io.

Download the file to the desired folder in Windows. You can save the file to any location,
but remember the path so you can use it later.

134

https://bootstrap.pypa.io/get-pip.py

pr—mcrmm = mm s s e o e

Step 2: Launch Windows Command Line
PIP is a command-line program. When you install PIP, the PIP command is added to your
system.

To launch the Command Prompt window:
Press Windows Key + X.

Click Run.

Type in cmd.exe and hit enter.

Alternatively, type cmd in the Windows search bar and click the “Command Prompt” icon.

Both options open the Command Prompt window. However, note that you may need to run
the Command Prompt “As Administrator.” If you get an error at any point stating that you
don’t have the necessary permissions to perform a task, you will need to open the app as
admin.

99

To run the Command Prompt window “As Administrator,” right-click “Command Prompt
and then select the “Run as...” option.

Step 3: Installing PIP on Windows

Open the Command Prompt if it isn’t already open. Use the cd command followed by a
folder name to navigate to the location of the get-pip.py file. This is the folder you
previously used as the download location.

To install PIP type in the following:

python get-pip.py

PIP installation should start. If the file isn’t found, double-check the path to the folder where
you saved the file.

You can view the contents of your current directory using the following command:
dir
The dir command returns a full listing of the contents of a directory.

Step 4: How to Check PIP Version
To check the current version of PIP, type the following command:

pip --version

This command returns the current version of the platform.

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
Step 5: Verify Installation

Once you’ve installed PIP, you can test whether the installation has been successful by
typing the following:

pip help

If PIP has been installed, the program runs, and you should see:

pip 18.0 from c:\users\administrator\appdata\local\programs\python\python37\lib\site-
packages\pip (python 3.7)

If you receive an error, repeat the installation process.

Step 6: Configuration

In Windows, the PIP configuration file is %HOME%o\pip\pip.ini.

There is also a legacy per-user configuration file. The file is located
at %APPDATA%\pip\pip.ini.

You can set a custom path location for this config file using the environment
variable PIP_CONFIG_FILE.

Upgrading PIP for Python on Windows

New versions of PIP are released occasionally. These versions may improve the
functionality or be obligatory for security purposes.

You can upgrade PIP on Windows using the Command Prompt window.
To upgrade PIP on Windows, enter the following in the command prompt:
python -m pip install --upgrade pip

This command first uninstalls the old version of PIP and then installs the most current
version of PIP.

Downgrade PIP Version

This may be necessary if a new version of PIP starts performing undesirably.

If you want to downgrade PIP to a prior version, you can do so by specifying the version.
To downgrade PIP, enter:

python -m pip install pip==18.1

136

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
You should now see the version of PIP that you specified.

Conclusion
Congratulations, you have installed PIP for Python on Windows.
Now that you have PIP up and running, you are ready to manage your Python packages.

NumPy is a library for the Python programming language, adding support for large, multi-
dimensional arrays and matrices. Check out our guide and learn how to install NumPy using
PIP.

Note: ex: pip install numpy
Demonstrate Modules:
Turtle:

“Turtle” is a Python feature like a drawing board, which lets us command a turtle to draw all
over it! We can use functions like turtle.forward(...) and turtle.right(...) which can move the
turtle around.Commonly used turtle methods are :

Turtle() None Creates and returns a new tutrle object
forward() amount Moves the turtle forward by the specified amount
backward() amount Moves the turtle backward by the specified amount
right() angle Turns the turtle clockwise
left() angle Turns the turtle counter clockwise
penup() None Picks up the turtle’s Pen
pendown() None Puts down the turtle’s Pen
up() None Picks up the turtle’s Pen

137

https://phoenixnap.com/kb/install-numpy

PYTHON PROGRAMMING

Il YEAR/I SEM MRCET

down() None Puts down the turtle’s Pen
color() Color name Changes the color of the turtle’s pen
fillcolor() Color name Changes the color of the turtle will use to fill a polygon
heading() None Returns the current heading
position() None Returns the current position
goto() X,y Move the turtle to position x,y
begin_fill() None Remember the starting point for a filled polygon
end_fill() None Close the polygon and fill with the current fill color
dot() None Leave the dot at the current position
stamp() None Leaves an impression of a turtle shape at the current location
shape() shapename Should be ‘arrow’, ‘classic’, ‘turtle’ or ‘circle’

Plotting using Turtle

To make use of the turtle methods and functionalities, we need to import turtle.”turtle”
comes packed with the standard Python package and need not be installed externally.The
roadmap for executing a turtle program follows 4 steps:

1. Import the turtle module
2. Create a turtle to control.

3. Draw around using the turtle methods.
4. Run turtle.done().

Example:

138

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
Write a python code to set background color and pic and draw a circle using turtle

graphics
PROGRAM:-

import turtle
t=turtle. Turtle()
t.circle(50)
s=turtle.Screen()
s.bgcolor("pink™)
s.bgpic("pic.gif")

OUTPUT:-

@ Python Turtle Graphics. [E=REE A

Pandas

Pandas is an open-source Python Library providing high-performance data manipulation and
analysis tool using its powerful data structures. The name Pandas is derived from the word
Panel Data — an Econometrics from Multidimensional data.

Using Pandas, we can accomplish five typical steps in the processing and analysis of data,
regardless of the origin of data — load, prepare, manipulate, model, and analyze.

Python with Pandas is used in a wide range of fields including academic and commercial
domains including finance, economics, Statistics, analytics, etc.

Key Features of Pandas

. Fast and efficient DataFrame object with default and customized indexing.
« Tools for loading data into in-memory data objects from different file formats.
. Data alignment and integrated handling of missing data.
- Reshaping and pivoting of date sets.
139

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
« Label-based slicing, indexing and subsetting of large data sets.

« Columns from a data structure can be deleted or inserted.
« Group by data for aggregation and transformations.

« High performance merging and joining of data.

« Time Series functionality.

Pandas deals with the following three data structures —

o Series
o DataFrame
« Panel

Dimension & Description

The best way to think of these data structures is that the higher dimensional data structure is
a container of its lower dimensional data structure. For example, DataFrame is a container
of Series, Panel is a container of DataFrame.

Data Dimensions | Description

Structure

Series 1 1D labeled homogeneous array, sizeimmutable.

Data Frames | 2 General 2D labeled, size-mutable tabular structure with

potentially heterogeneously typed columns.

Panel 3 General 3D labeled, size-mutable array.

Examples:
Write a python program to create a Data Frame with dictionary.

PROGRAM:-

import pandas as pd
one=pd.DataFrame({'Name":["Yoshitha","Anisha","Thejaswini"],
'sub_id":['subl’,'sub2','sub3],
140

PYTHON PROGRAMMING
'‘Marks':[92,88,76]},
index=[1,2,3])

print(one)
OUTPUT:-

Hams sub_id Marks
1 Yoshitha aukl a2
2 Inisha aub2 g8
3 Thejaswini sub3 TE

11l YEAR/I SEM MRCET

Write a python program to concatenate the dataframes with three different objects.

PROGRAM:-

Import pandas as pd

one=pd.DataFrame({'Name':["anisha","
'sub_id":['subl','sub2','sub31],
'‘Marks':[82,98,70]},
index=[1,2,3])

two=pd.DataFrame({'Name":["yukta","manoj","amar

'sub_id":['sub2','sub4','sub1,
‘Marks":[72,69,50]},
index=[4,5,6])
three=pd.DataFrame({'Name':["tarun","
'sub_id":['subl’,'sub3','sub41,
‘Marks':[67,54,40]},
index=[7,8,9])

print(pd.concat([one,two,three]))

yoshitha

" "john"],

1,

harsha","steve"],

141

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
OUTPUT:-

HED LA
Hams suk id Marks
1 anisha sukl B2
2 vwoshitha suk2 S8
3 Jjohn suk3 70
q yvukta suk2 T2
] manoj suk4d o9
] amar sukl a0
7 tarun sukl a7
] harsha suk3 o4
] . steve suk4 40
Numpy

NumPy, which stands for Numerical Python, is a library consisting of multidimensional
array objects and a collection of routines for processing those arrays. Using NumPy,
mathematical and logical operations on arrays can be performed.

Operations using NumPy

Using NumPy, a developer can perform the following operations —
. Mathematical and logical operations on arrays.
« Fourier transforms and routines for shape manipulation.

« Operations related to linear algebra. NumPy has in-built functions for linear algebra
and random number generation.

Examples:

Using a numpy module create array and check the following:
1. Reshape 3X4 array to 2X2X3 array

2. Sequence of integers from 0 to 30 with steps of 5

3. Flatten array

4. constant value array of complex type

PROGRAM:-

import numpy as np

arr = np.array([[1, 2, 3, 4],
[5, 2,4, 2],
[1, 2,0, 1]])

newarr = arr.reshape(2, 2, 3)
print ("\nOriginal array:\n", arr)

142

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
print ("Reshaped array:\n", newarr)

f = np.arange(0, 30, 5)
print ("\nA sequential array with steps of 5:\n", f)

arr = np.array([[1, 2, 3], [4, 5, 6]])
flarr = arr.flatten()

print ("\nOriginal array:\n", arr)
print ("Flattened array:\n", flarr)

d = np.full((3, 3), 6, dtype = 'complex’)
print ("\nAn array initialized with all 6s."
"Array type is complex:\n™, d)

OUTPUT:-

Criginal array:
[[1 2 3 4]
[5 2 4 2]
[1 2 0 1]1
Eeshaped array:
[[[1 2 3]
[2 5 2]]

[[2 2 1]
[2 0 11]]

Ia

A sequential array with steps of 5:
[O 5 10 15 20 25]

Criginal array:
[[1 2 3]
[4 5 6]]
Flattened array:
[1 2 3 4 5 6]

An array initialized with all &s.Array type is complex:
[[6.40.7 &6.40.7 &.+0.7]
[6.40.7 €.40.7 &.+40.731
[6.+0.7 €.+0.3 6.+0.3]1

143

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
‘Debugging' term is popularly used to process of locating and rectifying errors in a program.
Python's standard library contains pdb module which is a set of utilities for debugging of
Python programs.

The debugging functionality is defined in a Pdb class. The module internally makes used of
bdb and cmd modules.

The pdb module has a very convenient command line interface. It is imported at the time of
execution of Python script by using —m switch

python —m pdb script.py
Examples:

Write a python code to perform addition using functions with pdb
module.

PROGRAM:-

import pdb

def add(x,y):
pdb.set_trace()
sum=x+y
return sum

def main():
x=int(input("num1: "))
y=int(input("num2: "))
z=add(x,y)
print(z)

main()

OUTPUT:-

Python shell-

144

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
numl: 7
numz : 3
> ci\1T7r2lalzl7\wle.py(4)add()
—-> Sum=xH+y
(Pdk) c
10

Write a python Program to Add five different elements to the list dynamically using
pdb module.

PROGRAM:-

import pdb

12=[]

pdb.set_trace()

a=int(input("Enter first elemet"));
b=int(input("Enter second elemet"));
c=int(input("Enter third elemet"));
d=int(input("Enter fourth elemet"));
e=int(input("Enter five elemet"));
12.append(a)

12.append(b)

12.append(c)

12.append(d)

12.append(e)

print(12)

OUTPUT:-

Python shell-

145

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

=> amint (inpuc ("Enter firsc &lamat™));

(Pdb)
Entear
Enter
Enter
Enter
Enter

[E,

s
first &lamat 6

sacond alemat 8

third elemet 1
fourth elemet 3
five elemet 9

= 1 3 L=
= . =] 21

Explore packages:

We don't usually store all of our files in our computer in the same location. We use a
well-organized hierarchy of directories for easier access.

Similar files are kept in the same directory, for example, we may keep all the songs in
the "music” directory. Analogous to this, Python has packages for directories
and modules for files.

As our application program grows larger in size with a lot of modules, we place
similar modules in one package and different modules in different packages. This
makes a project (program) easy to manage and conceptually clear.

Similar, as a directory can contain sub-directories and files, a Python package can
have sub-packages and modules.

A directory must contain a file named __init__.py in order for Python to consider it as
a package. This file can be left empty but we generally place the initialization code for
that package in this file.

Here is an example. Suppose we are developing a game, one possible organization of
packages and modules could be as shown in the figure below.

146

https://www.programiz.com/python-programming/modules

PYTHON PROGRAMMING Il YEAR/I SEM MRCET

Package
Game
init by Sub-package Sub-package Sub-package
' Sound Image Level
init_.py o init_.py | _init_.py
load.py open.py 1 start.py
play.py - change.py 1 load.py
< pause.py < close.py | over.py

If a file named __init__.py is present in a package directory, it is invoked when the
package or a module in the package is imported. This can be used for execution of
package initialization code, such as initialization of package-level data.

Forexample __init__.py
A module in the package can access the global by importing it in turn
We can import modules from packages using the dot (.) operator.

For example, if want to import the start module in the above example, it is done as
follows.

import Game.Level.start

Now if this module contains a function named select_difficulty(), we must use the
full name to reference it.

Game.Level.start.select_difficulty(2)

147

https://www.programiz.com/python-programming/function

PYTHON PROGRAMMING I YEAR/I SEM MRCET
« If this construct seems lengthy, we can import the module without the package prefix

as follows.
* from Game.Level import start
» We can now call the function simply as follows.
 start.select_difficulty(2)

» Yet another way of importing just the required function (or class or variable) form a
module within a package would be as follows.

» from Game.Level.start import select_difficulty
» Now we can directly call this function.
» select_difficulty(2)

Examples:

#Write a python program to create a package (Il YEAR),sub-
package(CSE),modules(student) and create read and write function to module

def read():
print("Department™)
def write():
print("Student™)
Output:
>>> from II'YEAR.CSE import student
>>> student.read()
Department
>>> student.write()
Student
>>> from II'YEAR.CSE.student import read
>>> read

148

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
<function read at 0x03BD1070>

>>> read()

Department

>>> from II'YEAR.CSE.student import write
>>> write()

Student

Write a program to create and import module?
def add(a=4,b=6):

c=a+b

return c
Output:
C:\Users\MRCET\AppData\Local\Programs\Python\Python38-32\I'YEAR\modul.py
>>> from II'YEAR import modul
>>> modul.add()
10

Write a program to create and rename the existing module.

def a():

print("hello world")
a()
Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/11'YEAR/exam.py
hello world
>>> import exam as ex

hello world

149

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
UNIT -V

O0OPS , FRAMEWORK

Oops concepts: Object, Class, Method, Inheritance, Polymorphism, Data abstraction,
Encapsulation,
Python Frameworks: Explore django framework with an example

Oops concepts:

OOP uses the concept of objects and classes. A class can be thought of as a 'blueprint’ for
objects. These can have their own attributes (characteristics they possess), and methods
(actions they perform).

Python is a great programming language that supports OOP. You will use it to define a class
with attributes and methods, which you will then call. Python offers a number of benefits
compared to other programming languages like Java, C++ or R. It's a dynamic language,
with high-level data types. This means that development happens much faster than with Java
or C++. It does not require the programmer to declare types of variables and arguments. This
also makes Python easier to understand and learn for beginners, its code being more readable
and intuitive.

Class and object:

Class is a collection of data members and member functions.
Class is a blue print of an object.

Obiject is a real time entity. Instance of a class is called object.

Instantiating objects

To instantiate an object, type the class name, followed by two brackets. You can assign this
to a variable to keep track of the object and then print it

The process of creating object is called instantion (allocating memory to the data members
and member function of the class)

Class syntax:
Class <class name> :

150

PYTHON PROGRAMMING Il YEAR/I SEM
Object creation:

Variable name=class name()

def displayMethod(self):
self represents like this in java

A class contains static variables and instance variables and methods as well.
Programming to display mrcet by using classes and objects

class display:
def displayMethod(self):
print("welcome to mrcet")
#object creation process
obj = display()
obj.displayMethod()
Output:

welcome to mlrit

Defining method in a class:
To define a method in class we use def kweyword.
def keyword is used again, as well as the self argument.

calling variable and method:
#Programming to call data member and function using classes and objects
class display:
a="hello"
def displayMethod(self):
print("welcome to mrcet")
#object creation process
obj = display()
obj.displayMethod()
print(obj.a)
Output:

151

MRCET

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET

welcome to mrcet
hello

#write a program to find sum of two numbers using class and methods
class Addition:
a=0
b=0
c=0
def getData(self):
self.a=int(input("Enter a value"))
self.b=int(input("Enter b VValue™))
def add(self):
self.c=self.a+self.b
def display(self):
print(“addition is",self.c)

obj=Addition()
obj.getData()
obj.add()
obj.display()
Output:
Enter a value3
Enter b Value4
addition is 7

Constructors:

Constructor is special kind of method that will be called at the time of object creation.
Python depends on constructor to perform initialization i.e. assigning values to any instance
variables

Createing a constructor:
Constructor in python is a special method that begins with (__) double underscore.
Name of the constructor is always __init__(parameters)

Types of Constructors:

0 arguments constructor
152

PYTHON PROGRAMMING 11l YEAR/I SEM MRCET
Arguments constructor

Default constructor

Zero args constructor:
The constructor present with out arguments

Example:
1.Write a program with serial number,name of the student, through zero args constructors
assign the values and assign the same.
2.Instance 2 objects and observe the output
#Write a program with serial number,name of the student, through zero args
constructors assign the values and assign the same.
class student:
def __init__ (self):
self.serialNumber=1
self.nameOfStudent="nirosha"
def display(self):
print(“serial number " self.serialNumber)
print(“da: ",self.nameOfStudent)
objl=student()
objl.display()
obj2=student()
obj2.display()

Output:

serial number 1
da: nirosha
serial number 1
da: nirosha

#write a program to find factorial of the given number by using classes and objects
using zero args constructor
class factorial:
def __init_ (self):
self.first=1
self.fact=1

153

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
def getNumber(self):

self.n=int(input("Enter a number"))
def factoriall(self):
while self.first<=self.n:
self.fact=self.fact*self.first
self.first=self.first+1
def display(self):
print(*“factorial ",self.fact)
objl=factorial()
objl.getNumber()
obj1.factorial1()
obj1.display()
Output:
Enter a number5
factorial 120

parametarized constructor:

a constructor with parameters is know as parameterized constructor. Used to provide
different values to different objects.

Example:

Program to create student class serial no and name, Write a parameterized
constructor to provide values to serial no and name, Instance two objects display serial
no and name observe the output

class Student:

def __init__(self,sno,name):
self.sno=sno
self.name=name

def display(self):
print("'serial number ",self.sno)
print("name ",self.name)
obj1=Student(1,"nirosha™)
154

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
objl.display()

obj2=Student(2,"mrce")
obj2.display()

Output:

serial number 1

name nirosha

serial number 2

name mrcet

Inheriance:

Inheritance allows us to define a class that inherits all the methods and properties from
another class.

Parent class is the class being inherited from, also called base class.

Child class is the class that inherits from another class, also called derived class.

Syntax:
Class Base:

Class derived(base):
Example:

" Write a program to create a parent class and declare a method called parent name and
delare a child class declare a method child name, instance a object for child class and invoke
super class and sub class methods"™
class Parent:
def parentName(self):
print(“parent name")
class Child(Parent):
def childName(self):
print("child name")

155

PYTHON PROGRAMMING Il YEAR/I SEM
0=Child()
o.childName();
o.parentName();
output:
child name
parent name
>>>
""" constructors in parent and child"**
class Parent:
def __init__(self):
print(“parent class constructor is called")
def parentName(self):
print(*'parent name")
class Child(Parent):
def __init__ (self):
print(“child class constructor is called")
def childName(self):
print(“child name")
0=Child()
o.childName();
o.parentName();
output:
child class constructor is called
child name
parent name
>>>

“How to call parent class constructor from child constructor.”
Parent.__init__(self)
""" constructors in parent and child""*
class Parent:
def __init__ (self):
print(“parent class constructor is called")
def parentName(self):

print(“parent name")
156

MRCET

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
class Child(Parent):

def __init__ (self):
Parent.__init__(self)
print(“child class constructor is called")
def childName(self):
print(“child name")
0=Child()
o.childName();
o.parentName();
output:
parent class constructor is called
child class constructor is called
child name

parent name
>>>

Polymorphism:

Polymorphism in python defines methods in the child class that have the same name as the
methods in the parent class. In inheritance, the child class inherits the methods from the
parent class. Also, it is possible to modify a method in a child class that it has inherited from
the parent class.

We can use the concept of polymorphism while creating class methods as Python allows
different classes to have methods with the same name.

Polymorphism in Class Methods
class Cat:
def __init_ (self, name, age):
self.name = name
self.age = age

def info(self):
print(f"l am a cat. My name is {self.name}. | am {self.age} years old.")

157

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
def make_sound(self):

print("Meow")

class Dog:
def __init__ (self, name, age):
self.name = name
self.age = age

def info(self):
print(f"l1 am a dog. My name is {self.name}. | am {self.age} years old.")

def make_sound(self):
print("Bark")

catl = Cat("Kitty", 2.5)
dogl = Dog("Fluffy", 4)

for animal in (catl, dogl):
animal.make_sound()
animal.info()
animal.make_sound()

Output:

Meow

I am a cat. My name is Kitty. | am 2.5 years old.
Meow

Bark

| am a dog. My name is Fluffy. | am 4 years old.
Bark

Here, we have created two classes Cat and Dog. They share a similar structure and have the
same method names info() and make_sound().

158

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
However, notice that we have not created a common superclass or linked the classes together

in any way. Even then, we can pack these two different objects into a tuple and iterate
through it using a common animal variable. It is possible due to polymorphism.

Data Abstraction:

Abstraction in Python is the process of hiding the real implementation of an application from
the user and emphasizing only on usage of it.

Need: Through the process of abstraction in Python, a programmer can hide all the
irrelevant data/process of an application in order to reduce complexity and increase
efficiency.

Abstract Classes In Python

A class containing one or more abstract methods is called an abstract class.

Abstract methods do not contain any implementation. Instead, all the implementations can
be defined in the methods of sub-classes that inherit the abstract class. An abstract class is
created by importing a class named 'ABC' from the 'abc’ module and inheriting the 'ABC'
class. Below is the syntax for creating the abstract class.

Syntax
from abc import ABC

Class ClassName(ABC):
Example:
from abc import ABC, abstractmethod

class Animal(ABC):

def move(self):
pass

class Human(Animal):

def move(self):
print("'l can walk and run")

159

PYTHON PROGRAMMING
class Snake(Animal):

def move(self):
print("l can crawl")

class Dog(Animal):

def move(self):
print('l can bark")

class Lion(Animal):

def move(self):
print(*'l can roar")

Driver code
R = Human()
R.move()

K = Snake()
K.move()

R = Dog()
R.move()

K = Lion()
K.move()

Output:

I can walk and run
I can crawl

| can bark

| can roar

Encapsulation:

Il YEAR/I SEM

160

MRCET

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
The concept of Encapsulation is to keep together the implementation (code) and the data it

manipulates (variables). Having proper encapsulation ensures that the code and data both are
safe from misuse by outside entity.

Encapsulation in Python

In any object oriented language first step towards encapsulation is the class and
encapsulation in Python also starts from a class as the class encapsulates the methods and
variables.

When a Python class is created it contains the methods and the variables. Since it’s the code
in the methods that operates on the variables, in a properly encapsulated Python class,
methods should define how member variables can be used.

But that’s where the things differ a bit in Python from a language like Java where we have
access modifiers like public, private. In Python there are no explicit access modifiers and
everything written with in the class (methods and variables) are public by default.

For example in the class Person there are two variables as you can see those variables
are accessed through a method as well as directly.

class Person:
def __init__ (self, name, age=0):
self.name = name
self.age = age

def display(self):
print(self.name)
print(self.age)

person = Person('John’, 40)
#accessing using class method
person.display()

#accessing directly from outside
print(person.name)
print(person.age)

Qutput:

John
161

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
40

John
40

Explore django framework with an example:

Django is an open-source python web framework used for rapid development, pragmatic,
maintainable, clean design, and secures websites. .. The main goal of
the Django framework is to allow developers to focus on components of the application that
are new instead of spending time on already developed components.

To get the version of Django :
Python -m django —version

To start a project , go to python path, from there open command prompt and start
creating a project

$ django-admin startproject mysite

Move to dir mysite
cd mysite

python manage.py server

Performing system check

Strating development server at

http://127.0.0.1:8000/

copy thr url and paste it then it shows Django app successfully installed

162

http://127.0.0.1:8000/

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
To quit press ctrl+c

admin startproj
niru

cChom mar

apply the m ions for a

O Python Django Tutorial: Full-Feat % | [EJ Writing your first Django app, p= X @ Django: the Web framework for | X + - X

&« @ 127.001 H O

django View release notes for Django 2.2

The install worked successfully! Congratulations!
DEBUG=True

Q | Diango Documentation <> Jutonial: A Polling App g Diango Community

Mysite> python manage.py startapp polls

163

PYTHON PROGRAMMING

D Creating a Weather App in Djanc X | M Inbox (1.429) - niroshakunduru® X

&« C ® 127.0.0.1:3000/admin/login/?next=/admin/

D Creating a Weather App in Djanc X | M Inbox (1,428) - niroshakunduru® X @ Site administration | Django site X

<« C @ 127.0.0.1:8000/admin/

Django administration

Il YEAR/I SEM

@ Login| Django site admin

MRCET

Django administration

Username:

[|

Password:

+
* H1Q :

WELCOME, MRCET . VIEW SITE / CHANGE PASSWORD / LOG OUT

Site administration

AUTHENTICATION AND AUTHORIZATION

Groups + Add Change

Users + Add Change

Recent actions

My actions

None available

From here we create our views in polls/views.py

To create URLconf in polls dir create a fi
Next step to point URLconf at polls.urls

Mysite> python manage.py runserver

le urls.py i.e., polls/urls.py

164

PYTHON PROGRAMMING Il YEAR/I SEM MRCET
Next go to website and paste the url (127.0.0.0:8000/polls/) which you have efined in

index view to show the output

B Python Django Tutonal: Full-Feat X | m Whiting yeur first Django app, p= X @ 127.0.0.1:8000/polls/ » +
< C ® 127.0.0.1:8000/polls/

Hello, world. You're at the polls index.

165

