MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

Autonomous Institution — UGC, Govt. of India

Department of COMPUTATIONAL INTELLIGENCE

(CSE-AIML, AIML)
B.TECH(R-22 Regulation)
(11 YEAR -1 SEM)

2024-25

INTRODUCTION TO DATASCIENCE
(R22A6702)

LECTURE NOTES

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution — UGC, Govt. of India)
Recognized under 2(f) and 12(B) of UGC ACT 1956
(Affiliated to JINTUH, Hyderabad, Approved by AICTE-Accredited by NBA & NAAC — ‘A’ Grade - ISO 9001:2015 Certified)
Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad—-500100, Telangana State, India

Department of COMPUTATIONAL INTELLIGENCE
(CSE-AIML, AIML)

INTRODUCTION DATASCIENCE
(R22A6702)

LECTURE NOTES

Prepared by
Mr.T.HARI BABU

ASSISTANT PROFESSOR

Department of Computational Intelligence

COMPUTER SCIENCE & ENGINEERING (AIML)
Vision

To be a premier centre for academic excellence and research through innovative
interdisciplinary collaborations and making significant contributions to the community,
organizations, and society as a whole.

Mission

¢+ To impart cutting-edge Artificial Intelligence technology in accordance with industry

norms.

Rl

+* To instill in students a desire to conduct research in order to tackle challenging
technical problems for industry.
+» To develop effective graduates who are responsible for their professional growth,

leadership qualities and are committed to lifelong learning.

QUALITY POLICY

% To provide sophisticated technical infrastructure and to inspire students to reach their
full potential.

% To provide students with a solid academic and research environment for a
comprehensive learning experience.

%+ To provide research development, consulting, testing, and customized training to satisfy
specific industrial demands, thereby encouraging self-employment and
entrepreneurship among students.

For more information: www.mrcet.ac.in

http://www.mrcet.ac.in/

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
Ill Year B.Tech AIML - | Sem
L/T/P/C
3 -/-/-3
(R20DS501) Introduction to Datascience

COURSE OBJECTIVES:

An understanding of the data operations

2. An overview of simple statistical models and the basics of machine
learning techniques of regression.

3. Anunderstanding good practices of data science
Skills in the use of tools such as python, IDE

5. Understanding of the basics of the Supervised learning

UNIT-1

Introduction, Toolboxes: Python, fundamental libraries for data Scientists.
Integrated development environment (IDE). Data operations: Reading, selecting,
filtering, manipulating, sorting, grouping, rearranging, ranking, and plotting.
UNIT-2

Descriptive statistics, data preparation. Exploratory Data Analysis data
summarization, data distribution, measuring asymmetry. Sample and estimated
mean, variance and standard score. Statistical Inference frequency approach,
variability of estimates, hypothesis testing using confidence intervals, using p-
values

UNIT-3

Supervised Learning: First step, learning curves, training-validation and test.
Learning models generalities, support vector machines, random forest. Examples
UNIT-4

Regression analysis, Regression: linear regression simple linear regression,
multiple & Polynomial regression, Sparse model. Unsupervised learning,
clustering, similarity and distances, quality measures of clustering, case study.

UNIT-5
Network Analysis, Graphs, Social Networks, centrality, drawing centrality of
Graphs, PageRank, Ego-Networks, community Detection

TEXT/REFERENCES BOOK:

1. Introduction to Data Science a Python approach to concepts, Techniques and
Applications, lgual, L;Seghi’, S. Springer, ISBN:978-3-319-50016-4

2. Data Analysis with Python A Modern Approach, David Taieb, Packt Publishing,
ISBN-9781789950069

3. Python Data Analysis, Second Ed., Armando Fandango, Packt Publishing, ISBN:
9781787127487

COURSE OUTCOMES:

1. Describe what Data Science is and the skill sets needed to be a data scientist

2. Explain the significance of exploratory data analysis (EDA) in data science

3. Ability to learn the supervised learning, SVM

4. Apply basic machine learning algorithms (Linear Regression)

5. Explore the Networks, PageRank

UNIT NO

TOPIC PAGE NO
Introduction
Introduction, Toolboxes: Python, fundamental
I libraries for data Scientists. 5-10
Integrated development environment 10-16
(IDE).
Data O ti

ata Operations 17-29
Descriptive statistics, data
preparation
Descriptive statistics 30-33

II Exploratory Data Analysis data 33-49
summarilzation
Statistical Inference frequency 50-60
approach

11T Supervised Learning
Supervised Learning 61-75
Learning models generalities, 76-95
support vector machines

Iv Regression analysis
Regression analysis,

. . . . 96-112
linear regression simple linear
regression
Unsupervised learning 113-137

\' Network Analysis
Network Analysis, Graphs 139-159

community Detection

160-161

UNIT-1

Introduction, Toolboxes: Python, fundamental libraries for data Scientists.
Integrated development environment (IDE). Data operations: Reading, selecting,
filtering, manipulating, sorting, grouping, rearranging, ranking, and plotting.

Introduction to Data Science

1.1 What is Data Science?

You have, no doubt, already experienced data science in several forms. When
you are looking for information on the web by using a search engine or asking
your mobile phone for directions, you are interacting with data science
products. Data science has been behind resolving some of our most common
daily tasks for several years.

Most of the scientific methods that power data science are not new and
they havebeen out there, waiting for applications to be developed, for a long
time. Statistics is an old science that stands on the shoulders of eighteenth-
century giants such as Pierre Simon Laplace (1749-1827) and Thomas Bayes
(1701-1761). Machine learning isyounger, but it has already moved beyond
its infancy and can be considered a well- established discipline. Computer
science changed our lives several decades ago andcontinues to do so; but it
cannot be considered new.

So, why is data science seen as a novel trend within business reviews, in
technologyblogs, and at academic conferences?

The novelty of data science is not rooted in the latest scientific knowledge,
but in a disruptive change in our society that has been caused by the evolution of
technology: datification. Datification is the process of rendering into data aspects
of the world that have never been quantified before. At the personal level, the
list of datified conceptsis very long and still growing: business networks, the
lists of books we are reading,the films we enjoy, the food we eat, our physical
activity, our purchases, our drivingbehavior, and so on. Even our thoughts are
datified when we publish them on our favorite social network; and in a not so
distant future, your gaze could be datified by wearable vision registering
devices. At the business level, companies are datifying semi-structured data
that were previously discarded: web activity logs, computer network activity,
machinery signals, etc. Nonstructured data, such as written reports,e-mails, or
voice recordings, are now being stored not only for archive purposes butalso
to be analyzed.

However, datification is not the only ingredient of the data science revolution. The
other ingredient is the democratization of data analysis. Large companies such as
Google, Yahoo, IBM, or SAS were the only players in this field when data science
had no name. At the beginning of the century, the huge computational resources
of those companies allowed them to take advantage of datification by using
analytical techniques to develop innovative products and even to take decisions
about their own business. Today, the analytical gap between those companies
and the rest of the world (companies and people) is shrinking. Access to cloud
computing allows any individual to analyze huge amounts of data in short periods
of time. Analyticalknowledge is free and most of the crucial algorithms that are
needed to create a solution can be found, because open-source development is the
norm in this field. As a result, the possibility of using rich data to take evidence-
based decisions is open to virtually any person or company.

Data science is commonly defined as a methodology by which actionable insights
can be inferred from data. This is a subtle but important difference with respect
to previous approaches to data analysis, such as business intelligence or
exploratory statistics. Performing data science is a task with an ambitious
objective: the produc-tion of beliefs informed by data and to be used as the basis
of decision-making. In the absence of data, beliefs are uninformed and decisions,
in the best of cases, are based on best practices or intuition. The representation of
complex environments by rich data opens up the possibility of applying all the
scientific knowledge we have regarding how to infer knowledge from data.

In general, data science allows us to adopt four different strategies to explore
theworld using data:

1. Probing reality. Data can be gathered by passive or by active methods. In the
latter case, data represents the response of the world to our actions. Analysis
of those responses can be extremely valuable when it comes to taking
decisions about our subsequent actions. One of the best examples of this
strategy is the use of A/B testing for web development: What is the best
button size and color? The best answer can only be found by probing the
world.

2. Pattern discovery. Divide and conquer is an old heuristic used to solve complex
problems; but it is not always easy to decide how to apply this common sense
to problems. Datified problems can be analyzed automatically to discover
useful patterns and natural clusters that can greatly simplify their solutions.
The use of this technique to profile users is a critical ingredient today in such
importantfields as programmatic advertising or digital marketing.

3. Predicting future events. Since the early days of statistics, one of the most impor-
tant scientific questions has been how to build robust data models that are
capa- ble of predicting future data samples. Predictive analytics allows
decisions to be taken in response to future events, not only reactively. Of
course, it is not possible to predict the future in any environment and there will
always be unpre- dictable events; but the identification of predictable events
represents valuableknowledge. For example, predictive analytics can be used

to optimize the tasks
What is Data Science? 3

planned for retail store staff during the following week, by analyzing data
suchas weather, historic sales, traffic conditions, etc.

4. Understanding people and the world. This is an objective that at the
moment is beyond the scope of most companies and people, but large
companies and governments are investing considerable amounts of money in
research areas such as understanding natural language, computer vision,
psychology and neu- roscience. Scientific understanding of these areas is
important for data science because in the end, in order to take optimal
decisions, it is necessary to know the real processes that drive people’s
decisions and behavior. The development of deep learning methods for
natural language understanding and for visual object recognition is a good
example of this kind of research.

Toolboxes for DataScientists

Introduction

In this chapter, first we introduce some of the tools that data scientists use. The
toolbox of any data scientist, as for any kind of programmer, is an essential
ingredient for success and enhanced performance. Choosing the right tools can
save a lot of time and thereby allow us to focus on data analysis.

The most basic tool to decide on is which programming language we will use.
Many people use only one programming language in their entire life: the first and
only one they learn. For many, learning a new language is an enormous task that,
if at all possible, should be undertaken only once. The problem is that some
languages are intended for developing high-performance or production code,
such as C, C++, or Java, while others are more focused on prototyping code,
among these the best known are the so-called scripting languages: Ruby, Perl, and
Python. So, depending on the first language you learned, certain tasks will, at the
very least, be rather tedious. The main problem of being stuck with a single
language is that many basic tools simply will not be available in it, and eventually
you will have either to reimplementthem or to create a bridge to use some other
language just for a specific task.

Toolboxes for Data Scientists

In conclusion, you either have to be ready to change to the best language for
each task and then glue the results together, or choose a very flexible language
with a rich ecosystem (e.g., third-party open-source libraries). In this book we
have selected Python as the programming language.

Why Python?

Python? is a mature programming language but it also has excellent properties
for newbie programmers, making it ideal for people who have never programmed
before. Some of the most remarkable of those properties are easy to read code,
suppression of non-mandatory delimiters, dynamic typing, and dynamic memory
usage. Pythonis an interpreted language, so the code is executed immediately in
the Python con- sole without needing the compilation step to machine language.
Besides the Pythonconsole (which comes included with any Python installation)
you can find other in-teractive consoles, such as IPython,? which give you a richer
environment in whichto execute your Python code.

Currently, Python is one of the most flexible programming languages. One of
its main characteristics that makes it so flexible is that it can be seen as a
multiparadigm language. This is especially useful for people who already know how
to program with other languages, as they can rapidly start programming with Python
in the same way. For example, Java programmers will feel comfortable using
Python as it supports the object-oriented paradigm, or C programmers could mix
Python and C code using cython. Furthermore, for anyone who is used to
programming in functional languages such as Haskell or Lisp, Python also has basic
statements for functional programming in its own core library.

In this book, we have decided to use Python language because, as explained
before, it is a mature language programming, easy for the newbies, and can be
used as a specific platform for data scientists, thanks to its large ecosystem of
scientific libraries and its high and vibrant community. Other popular alternatives
to Python for data scientists are R and MATLAB/Octave.

Fundamental Python Libraries for Data Scientists

The Python community is one of the most active programming communities with
a huge number of developed toolboxes. The most popular Python toolboxes for
any data scientist are NumPy, SciPy, Pandas, and Scikit-Learn.

Numeric and Scientific Computation: NumPy and SciPy

NumPy? is the cornerstone toolbox for scientific computing with Python. NumPy
provides, among other things, support for multidimensional arrays with basic
oper-ations on them and useful linear algebra functions. Many toolboxes use the
NumPyarray representations as an efficient basic data structure. Meanwhile, SciPy
provides a collection of numerical algorithms and domain-specific toolboxes,
including signal processing, optimization, statistics, and much more. Another core
toolbox in SciPyis the plotting library Matplotlib. This toolbox has many tools for
data visualization.

SCIKIT-Learn: Machine Learning in Python

Scikit-learn® is a machine learning library built from NumPy, SciPy, and Matplotlib.
Scikit-learn offers simple and efficient tools for common tasks in data analysis such
as classification, regression, clustering, dimensionality reduction, model
selection, and preprocessing.

PANDAS: Python Data Analysis Library

Pandas® provides high-performance data structures and data analysis tools. The
keyfeature of Pandas is a fast and efficient DataFrame object for data manipulation
withintegrated indexing. The DataFrame structure can be seen as a spreadsheet
which offers very flexible ways of working with it. You can easily transform any
dataset in the way you want, by reshaping it and adding or removing columns or
rows. It also provides high-performance functions for aggregating, merging, and
joining dataset-

s. Pandas also has tools for importing and exporting data from different formats:
comma-separated value (CSV), text files, Microsoft Excel, SQL databases, and the
fast HDF5 format. In many situations, the data you have in such formats will not
be complete or totally structured. For such cases, Pandas offers handling of miss-
ing data and intelligent data alignment. Furthermore, Pandas provides a
convenientMatplotlib interface.

Data Science Ecosystem Installation

Before we can get started on solving our own data-oriented problems, we will need
toset up our programming environment. The first question we need to answer
concerns

Toolboxes for Data Scientists

Python language itself. There are currently two different versions of Python: Python
2.X and Python 3.X. The differences between the versions are important, so there
isno compatibility between the codes, i.e., code written in Python 2.X does not
workin Python 3.X and vice versa. Python 3.X was introduced in late 2008; by then,
a lotof code and many toolboxes were already deployed using Python 2.X (Python
2.0 was initially introduced in 2000). Therefore, much of the scientific community
didnot change to Python 3.0 immediately and they were stuck with Python 2.7. By
now, almost all libraries have been ported to Python 3.0; but Python 2.7 is sti |l
maintained, so one or another version can be chosen. However, those who
already have a large amount of code in 2.X rarely change to Python 3.X. In our
examples throughout thisbook we will use Python 2.7.

Once we have chosen one of the Python versions, the next thing to decide is

whether we want to install the data scientist Python ecosystem by individual
tool- boxes, or to perform a bundle installation with all the needed toolboxes
(and a lot more). For newbies, the second option is recommended. If the first
option is chosen,then it is only necessary to install all the mentioned toolboxes in the
previous section, in exactly that order.

However, if a bundle installation is chosen, the Anaconda Python
distribution® is then a good option. The Anaconda distribution provides
integration of all the Python toolboxes and applications needed for data
scientists into a single directory without mixing it with other Python toolboxes
installed on the machine. It contain- s, of course, the core toolboxes and
applications such as NumPy, Pandas, SciPy, Matplotlib, Scikit-learn, IPython,
Spyder, etc., but also more specific tools for other related tasks such as data
visualization, code optimization, and big data processing.

Integrated Development Environments (IDE)

For any programmer, and by extension, for any data scientist, the integrated de-
velopment environment (IDE) is an essential tool. IDEs are designed to maximize
programmer productivity. Thus, over the years this software has evolved in order
tomake the coding task less complicated. Choosing the right IDE for each person
is crucial and, unfortunately, there is no “one-size-fits-all” programming
environment. The best solution is to try the most popular IDEs among the
community and keep whichever fits better in each case.

In general, the basic pieces of any IDE are three: the editor, the compiler, (or
interpreter) and the debugger. Some IDEs can be used in multiple programming
languages, provided by language-specific plugins, such as Netbeans’ or Eclipse.®
Others are only specific for one language or even a specific programming task. In

Integrated Development Environments (IDE) 9

the case of Python, there are a large number of specific IDEs, both commercial
(PyCharm,® WingIDE ...) and open-source. The open-source community helps
IDEs to spring up, thus anyone can customize their own environment and share it
with the rest of the community. For example, Spyder!! (Scientific Python
Development EnviRonment) is an IDE customized with the task of the data
scientistin mind.

Web Integrated Development Environment (WIDE): Jupyter

With the advent of web applications, a new generation of IDEs for interactive lan-
guages such as Python has been developed. Starting in the academia and e-
learningcommunities, web-based IDEs were developed considering how not only
your codebut also all your environment and executions can be stored in a server.
One of the first applications of this kind of WIDE was developed by William Stein in
early 2005 using Python 2.3 as part of his SageMath mathematical software. In

SageMath, a server can be set up in a center, such as a university or school, and
then students can work on their homework either in the classroom or at home,
starting from exactly the same point they left off. Moreover, students can execute
all the previous steps overand over again, and then change some particular code
cell (a segment of the docu- ment that may content source code that can be
executed) and execute the operation again. Teachers can also have access to
student sessions and review the progress orresults of their pupils.

Nowadays, such sessions are called notebooks and they are not only used in
classrooms but also used to show results in presentations or on business
dashboards. The recent spread of such notebooks is mainly due to IPython. Since
December 2011, IPython has been issued as a browser version of its interactive
console, called IPython notebook, which shows the Python execution results very
clearly and concisely by means of cells. Cells can contain content other than code.
For example, markdown (a wiki text language) cells can be added to introduce
algorithms. It is also possible toinsert Matplotlib graphics to illustrate examples or
even web pages. Recently, some scientific journals have started to accept
notebooks in order to show experimental results, complete with their code and
data sources. In this way, experiments can become completely and absolutely
replicable.

Since the project has grown so much, IPython notebook has been separated
fromIPython software and now it has become a part of a larger project: Jupyter'?.
Jupyter (for Julia, Python and R) aims to reuse the same WIDE for all these
interpreted languages and not just Python. All old IPython notebooks are
automatically imported to the new version when they are opened with the
Jupyter platform; but once they

Get Started with Python for Data Scientists

Throughout this book, we will come across many practical examples. In this chapter,
we will see a very basic example to help get started with a data science
ecosystem from scratch. To execute our examples, we will use Jupyter notebook,
although anyother console or IDE can be used.

The Jupyter Notebook Environment

Once all the ecosystem is fully installed, we can start by launching the Jupyter
notebook platform. This can be done directly by typing the following command
onyour terminal or command line: $ jupyter notebook

If we chose the bundle installation, we can start the Jupyter notebook platform by
clicking on the Jupyter Notebook icon installed by Anaconda in the start menu or
onthe desktop.

The browser will immediately be launched displaying the Jupyter notebook home-
page, whose URL is http://localhost:8888/tree. Note that a special port is used;
by default it is 8888. As can be seen in Fig. 2.1, this initial page displays a tree view of
a directory. If we use the command line, the root directory is the same directory
where we launched the Jupyter notebook. Otherwise, if we use the Anaconda

launcher, theroot directory is the ser directory. Now, to start a new
New)) Notebooks)Python 2

In[]:

notebook, we only
need to press button at the top on the right of the
thehome page.

As can be seen in Fig. 2.2, a blank notebook is created called Untitled. First of
all, we are going to change the name of the notebook to something more
appropriate. To do this, just click on the notebook name and rename it:
DataScience-GetStartedExample.

Let us begin by importing those toolboxes that we will need for our program. In the
first cell we put the code to import the Pandas library as pd. This is for convenience;
every time we need to use some functionality from the Pandas library, we will
write pd instead of pandas. We will also import the two core libraries mentioned
above: the numpy library as npand the matplotlib library as plt.

import pandas as pd
import numpy as np
import matplotlib .pyplot as plt

Get Started with Python for Data Scientists 11

oee - -

€O e =

Z Jupyter

Files Running Clusters
Select items 1o perform actions on them. Upload New~ O
- N

& Pandas-Book.ipynb

Fig.2.1 IPython notebook home page, displaying a home tree directory

ove ol — =
L L — N —— =

ZJupyter untitied wssssa e
File Edit View Insert Coli Kemal Help 7 |Python2 O
+ ¥ A B 4 ¥ N B C Code $ Cell Toolbar: None

In [): |

Fig.2.2 An empty new notebook

To execute just one cell, we press the , button or click on or press
the keys While execution is underway, the header of the cell shows the
* mark:

In[*]: import pandas as pd
import numpy as np

import matplotlib .pyplot as plt

In[1]:

In[2]:

12 2 Toolboxes for Data Scientists

While a cell is being executed, no other cell can be executed. If you try to
executeanother cell, its execution will not start until the first cell has finished its
execution.Once the execution is finished, the header of the cell will be replaced
by the next number of execution. Since this will be the first cell executed, the
number shown will

be 1. If the process of importing the libraries is correct, no output cell is produced.

import pandas as pd
import numpy as np
import matplotlib .pyplot as plt

For simplicity, other chaptersin this book will avoid writing these imports.

The DataFrame Data Structure

The key data structure in Pandas is the DataFrame object. A DataFrame is basically a
tabular data structure, with rows and columns. Rows have a specific index to access
them, which can be any name or value. In Pandas, the columns are called Series,a
special type of data, which in essence consists of a list of several values, where
each value has an index. Therefore, the DataFrame data structure can be seen as
a spreadsheet, but it is much more flexible. To understand how it works, let us
see how to create a DataFrame from a common Python dictionary of F'ﬁ,
we will B
create a new cell by clicking [Insert)nsert Cell Below | or pressing the keys Ctrl +
Then, we write in the following code:

data = {’year’: [
2010, 2011, 2012,
2010, 2011, 2012,
2010, 2011, 2012
I
"team ': [
" FCBarcelona ’, 'FCBarcelona ',
"FCBarcelona ' Mad
' RMadrid ’, ' RM

[30, =28, 32, 29, 32, 26, 21, 17, 19],
6, 7, 4 5 4, 7, 8 10, 8],
2, 3 2, 4 2, 5 9, 11, 1i]

! year ', team’, ’'wins ’, " draws’, '’ locs

1

pd . Data Frame (data , columns = [
’

In this example, we use the pandas DataFrame object constructor with a dictionary
of lists as argument. The value of each entry in the dictionary is the name of the
column, and the lists are their values.

The DataFrame columns can be arranged at construction time by entering a
key-word columnswith a list of the names of the columns ordered as we want. If
the

Get Started
with Python for Data Scientists 13

column keyword is not present in the constructor, the columns will be arranged
in alphabetical order. Now, if we execute this cell, the result will be a table like

out): this:
year [team wins |draws |losses
02010 |FCBarcelona 30 6 2
1|2011 |FCBarcelona 28 7 3
22012 |FCBarcelona 32 4 2
3/2010 |RMadrid 29 5 4
4|2011 |RMadrid 32 4 2
5/2012 |RMadrid 26 7 5
62010 |ValenciaCF 21 8 9
72011 |ValenciaCF 17 10 11
82012 |ValenciaCF 19 8 11

where each entry in the dictionary is a column. The index of each row is created
automatically taking the position of its elements inside the entry lists, starting from 0.
Although it is very easy to create DataFrames from scratch, most of the time
what we will need to do is import chunks of data into a DataFrame structure, and
we willsee how to do this in later examples.

Apart from DataFrame data structure creation, Panda offers a lot of
functions to manipulate them. Among other things, it offers us functions for
aggregation, manipulation, and transformation of the data. In the following
sections, we will introduce some of these functions.

Open Government Data Analysis Example Using Pandas

To illustrate how we can use Pandas in a simple real problem, we will start doing
some basic analysis of government data. For the sake of transparency, data
producedby government entities must be open, meaning that they can be freely
used, reused,and distributed by anyone. An example of this is the Eurostat, which
is the home ofEuropean Commission data. Eurostat’s main role is to process and
publish compa- rable statistical information at the European level. The data in
Eurostat are providedby each member state and it is free to reuse them, for both
noncommercial and commercial purposes (with some minor exceptions).

Since the amount of data in the Eurostat database is huge, in our first study
we are only going to focus on data relative to indicators of educational funding
by the member states. Thus, the first thing to do is to retrieve such data from
Eurostat. Since open data have to be delivered in a plain text format, CSV (or any
other delimiter-separated value) formats are commonly used to store tabular
data. In a delimiter-separated value file, each line is a data record and each
record consist- s of one or more fields, separated by the delimiter character
(usually a comma). Therefore, the data we will use can be found already
processed at book’s Github repository as educ_figdp_1_ Data.csv file. Of course, it
can also be download- ed as unprocessed tabular data from the Eurostat database
site3 following the path:

In[1]:

Out[1]:

14 2 Toolboxes for Data Scientists

Tables by themes > Population and social conditions Education and training Education

Indicators on education finance Public expenditure on education ,

Reading

Let us start reading the data we downloaded. First of all, we have to create a new
notebook called Open Government Data Analysis and open it. Then, after ensuring
that the educ_figdp_1_Data.csvfile is stored in the same directoryas our notebook
directory, we will write the following code to read and show the content:

edu = pd. read csv (’ files/ch02/educ_figdp_ 1 Data .csv’,
na_values = '
usecols = ["TIME","GEO","Value"])
edu
TIME|GEO Value
0 2000|European Union ...|NaN
1 2001|European Union ... |NaN
2 2002|European Union ... |[5.00
3 2003|European Union ...|[5.03
382(2010|Finland 6.85
383(2011|Finland 6.76

384 rows x 5 columns

The way to read CSV (or any other separated value, providing the separator
character) files in Pandas is by calling the read_csvmethod. Besides the nameof
the file, we add the na_values key argument to this method along with the character
that represents “non available data” in the file. Normally, CSV files have aheader
with the names of the columns. If this is the case, we can use the usecols
parameter to select which columns in the file will be used.

In this case, the DataFrame resulting from reading our datais stored in edu. The
output of the execution shows that the edu DataFrame size is 384 rowg 3 columns.
Since the DataFrame is too large to be fully displayed, three dots appear in the middle
of each row.

Beside this, Pandas also has functions for reading files with formats such as Excel,
HDF5, tabulated files, or even the content from the clipboard (read_excel(),
read_hdf(), read_table(), read_clipboard()). Whichever function we use, the
result of reading a file is stored as a DataFrame structure.

To see how the data looks, we can use the head() method, which shows just the
first five rows. If we use a number as an argument to this method, this will be the
number of rows that will be listed:

In[2]:

Out[2]:

In[3]:

Out[3]:

In[4]:

Out[4]:

2.6 Get Started with Python for Data Scientists 15

edu . head ()

TIME|GEO Value
0/2000(European Union ...|NaN
1/2001|European Union ... |NaN
2/2002|European Union ...|5.00
3/2003|European Union ...|5.03
4/2004|European Union ...|4.95

Similarly, it exists the tail()method, which returns the last five rows by default.

edu . tail ()

379/2007/Finland|5.90

380|2008|Finland|6.10

382|2010|Finland|6.85

5

6
381|2009|Finland|6.81

6

6

383|2011|Finland|6.76

If we want to know the names of the columns or the names of the indexes, we
can use the DataFrame attributes columns and index respectively. The names of the
columns or indexes can be changed by assigning a new list of the same length to
these attributes. The values of any DataFrame can be retrieved as a Python array
bycalling its valuesattribute.

If we just want quick statistical information on all the numeric columns in a
DataFrame, we can use the function describe(). The result shows the count, the
mean, the standard deviation, the minimum and maximum, and the percentiles,
by default, the 25th, 50th, and 75th, for all the values in each column or series.

edu . describe ()

TIME Value

count|384.000000 |361.000000

mean |2005.500000/5.203989

std 3.456556 1.021694

min 2000.000000(2.880000

25% 2002.750000(4.620000

75% 2008.250000(5.660000

2
4
50% 2005.500000(5.060000
5
8

max 2011.000000(8.810000

Name: Value, dtype: float64

In[5]:

Out[5]: 0

Out[6]:

In[7]:

16 2 Toolboxes for Data Scientists

Selecting Data

If we want to select a subset of data from a DataFrame, it is necessary to indicate this
subset using square brackets ([]) after the DataFrame. The subset can be specified
in several ways. If we want to select only one column from a DataFrame, we only
need to put its name between the square brackets. The result will be a Series
data structure, not a DataFrame, because only one column is retrieved.

edu [’ Value "]

NaN
1 NaN

2 5.00

3 5.03

4 4.95

...... 3806.10

381 6.81

382 6.85

383 6.76

Name: Value, dtype: float64

If we want to select asubset of rows from a DataFrame, we can do so by indicating

a range of rows separated by a colon (:) inside the square brackets. This is commonly
known as a slice of rows:

edu [10:14]

TIME|GEO Value
10(/2010[{European Union (28 countries) |5.41
11({2011|European Union (28 countries) |5.25
12(2000[{European Union (27 countries) [4.91
13[/2001|European Union (27 countries) [4.99

This instruction returns the slice of rows from the 10th to the 13th position.
Notethat the slice does not use the index labels as references, but the position. In
this case, the labels of the rows simply coincide with the position of the rows.

If we want to select a subset of columns and rows using the labels as our
references instead of the positions, we can use ixindexing:

edu . ix [90:94 , ["TIME ', ' GEO ']]

2.6 Get Started with Python for Data Scientists 17

Out[7]: TIME | GEO

90| 2006 |Belgium
912007 |Belgium
922008 | Belgium
93|2009 | Belgium
942010 | Belgium

This returns all the rows between the indexes specified in the slice before the
comma, and the columns specified as a list after the comma. In this case, ixreferences
the index labels, which means that ix does not return the 90th to 94th rows, but it
returns all the rows between the row labeled 90 and the row labeled 94; thus if
the index 100 is placed between the rows labeled as 90 and 94, this row would
also bereturned.

Filtering Data

Another way to select a subset of data is by applying Boolean indexing. This indexing
is commonly known as a filter. For instance, if we want to filter those values less
than or equal to 6.5, we can doit like this:

edu [edu [’ Value "] > 6.5]. tail ()

Out[8]: TIME| GEO Value
218| 2002|Cyprus 6.60
281| 2005/ Malta 6.58
94 | 2010|Belgium [6.58
93 | 2009|Belgium |6.57
95 | 2011|Belgium |6.55

Boolean indexing uses the result of a Boolean operation over the data,
returninga mask with True or False for each row. The rows marked True in the
mask will be selected. In the previous example, the Boolean operation
edu[’Value’] >produces a Boolean mask. When an element in the “Value” column
is greaterthan 6.5, the corresponding value in the mask is set to True, otherwise
it is set to False. Then, when this mask is applied as an index in edu[edu[’'Value’] >
6.5], the result is a filtered DataFrame containing only rows with values higher
than 6.5. Of course, any of the usual Boolean operators can be used for filtering:
<(less than),<= (less than or equal to), > (greater than), >= (greater than or equal
to), = (equal to), and != (not equal to).

Filtering Missing Values

Pandasuses the special value NaN(not a number) to represent missing values. InPython, NaNis

In[9]:

Out[9]:

In[10]:

18 2 Toolboxes for Data Scientists

Table 2.1 List of most common aggregation functions

Function Description

count() Number of non-null observations
sum() Sum of values

mean() Mean of values

median() Arithmetic median of values
min() Minimum

max() Maximum

prod() Product of values

std() Unbiased standard deviation
var() Unbiased variance

one of their results ends in an undefined value. A subtle feature of NaN values is that
two NaN are never equal. Because of this, the only safe way to tell whether a value is
missing in a DataFrame is by using the isnull() function. Indeed, this function can be
used to filter rows with missing values:

edu [edu [" Value "]. isnull ()]. head ()

TIME | GEO Value
0 |2000 |European Union (28 countries) NaN
1 |2001 | European Union (28 countries) NaN
36(2000 | Euroarea (18 countries) NaN
37(2001 | Euroarea (18 countries) NaN
48|2000 | Euroarea (17 countries) NaN

Manipulating Data

Once we know how to select the desired data, the next thing we need to know is
howto manipulate data. One of the most straightforward things we can do is to
operate with columns or rows using aggregation functions. Table 2.1 shows a list of
the most common aggregation functions. The result of all these functions applied
to a row or column is always a number. Meanwhile, if a function is applied to a
DataFrame or aselection of rows and columns, then you can specify if the function
should be appliedto the rows for each column (setting the axis=Okeyword on the
invocation of thefunction), or it should be applied on the columns for each row
(setting the axis=1keyword on the invocation of the function).

edu . max (axis = 0)

2.6 Get Started with Python for Data Scientists 19

Out[10]:TImME 2011
GEO Spain
Value 8.81

In[11]:

dtype: object

Note that these are functions specific to Pandas, not the generic Python
functions. There are differences in their implementation. In Python, NaN values
propagate through all operations without raising an exception. In contrast,
Pandas operations exclude NaNvalues representing missing data. For example, the
pandas maxfunctionexcludes NaN values, thus they are interpreted as missing values,
while the standard Python max function will take the mathematical interpretation of
NaN and return it as the maximum:

print " Pandas max function :", edu [’ Value'].max ()

print " Python max funct

max (edu [’ Value’])

Out[11]:Pandas max function: 8.81Python max function:

In[12]:

Out[12]:0

In[13]:

Out[13]:0

nan

Beside these aggregation functions, we can apply operations over all the values in
rows, columns or a selection of both. The rule of thumb is that an operation
between columns means that it is applied to each row in that column and an
operation between rows means that it is applied to each column in that row. For
example we can applyany binary arithmetical operation (+,-,*,/) to an entire row:

s = edu ["Value "]1/100
s. head ()
NaN
1 NaN
2 0.0500
3 0.0503
4 0.0495
Name: Value, dtype: float64

However, we can apply any function to a DataFrame or Series just setting its name
as argument of the apply method. For example, in the following code, we apply
the sqgrtfunction from the NumPy library to perform the square root of each value
in the Valuecolumn.

s = edu ["Value "].apply (np.sqrt)
s. head ()
NaN
1 NaN
2 2.236068
3 2.242766
4 2.224860

Name: Value, dtype: float64

In[14]:

Out[14]: 0

In [15]:

Out[15]:

In[16]:

20 2 Toolboxes for Data Scientists

If we need to design a specific function to apply it, we can write an in-line function,
commonly known as a A-function. A A-function is a function without a name. It is
only necessary to specify the parameters it receives, between the lambda keyword
and the colon (:). In the next example, only one parameter is needed, which will
bethe value of each element in the Value column. The value the function returns will
be the square of that value.

s = edu ["Value "].apply (lambda d: ol i)
s. head ()
NaN
1 NaN
2 25.0000
3 25.3009
4 24.5025
Name: Value, dtype: float64

Another basic manipulation operation is to set new values in our DataFrame. This
can be done directly using the assign operator (=) over a DataFrame. For example, to
add a new column to a DataFrame, we can assign a Series to a selection of a
column that does not exist. This will produce a new column in the DataFrame
after all the others. You must be aware that if a column with the same name
already exists, the previous values will be overwritten. In the following example,
we assign the Seriesthat results from dividing the Value column by the maximum
value in the same column to a new column named ValueNorm.

edu [’/ ValueNorm '] = edu [’ Value'’]/edu [’ Value ’'].max ()
edu. tail ()
TIME|GEO Value|ValueNorm

379/2007(Finland|5.90 (0.669694

380/2008|Finland|6.10 [0.692395
381(2009|Finland|6.81 |0.772985
382(2010|Finland|6.85 |0.777526
383[(2011|Finland|6.76 |0.767310

Now, if we want to remove this column from the DataFrame, we can use the drop
function; this removes the indicated rows if axis=0, or the indicated columns if
axis=1. In Pandas, all the functions that change the contents of a DataFrame, such
as the drop function, will normally return a copy of the modified data, instead of
overwriting the DataFrame. Therefore, the original DataFrame is kept. If you do
notwant to keep the old values, you can set the keyword inplaceto True. By default,
this keyword is set to False, meaning that a copy of the data is returned.

edu.drop (' ValueNorm’, axis = 1, inplace = True)
edu . head ()

Out[16]:

In[17]:

Out[17]:

In[18]:

Out[18]:

In[19]:

2.6 Get Started with Python for Data Scientists 21

TIME|GEO Value
0/2000(European Union (28 countries) [NaN
1/2001|European Union (28 countries) |NaN
2/2002|European Union (28 countries) |5
3/2003|European Union (28 countries) [5.03
4/2004|European Union (28 countries) [4.95

Instead, if what we want to do is to insert a new row at the bottom of the
DataFrame,we can use the Pandas append function. This function receives as
argument the new row, which is represented as a dictionary where the keys
are the nameof the columns and the values are the associated value. You must be
aware to setting the ignore_index flag in the append method to True, otherwise
the index 0 is given to this new row, which will produce an error if it already

xists:
edu = edu.append ({"TIME": 2000, "Value": 5.00,"GEO": ’a’},
ignore_index = True)
edu . tail ()
TIME|GEO Value

380/2008|Finland|6.1

381|2009|Finland|6.81

382|2010|Finland|6.85

383|2011|Finland|6.76

384|2000|a 5

Finally, if we want to remove this row, we need to use the drop function again.
Now we have to set the axis to 0, and specify the index of the row we want to
remove. Since we want to remove the last row, we can use the max function over
the indexesto determine which row is.

edu . drop (max (edu. index), axis = 0, inplace = True)
edu. tail ()
TIME| GEO Value

379(2007|Finland|5.9

380(2008|Finland|6.1

381(2009|Finland|6.81
382|2010|Finland|6.85
383|2011|Finland|6.76

The drop()function is also used to remove missing values by applying it overthe
result of the isnull() function. This has a similar effect to filtering the NaN values, as
we explained above, but here the difference is that a copy of the DataFramewithout
the NaNvalues is returned, instead of a view.

eduDrop = edu.drop (edu[" Value"].isnull (), axis = 0)
eduDrop . head ()

Out[19]:

In[20]:

Out[20]:

In[21]:

Out[21]:

22 2 Toolboxes for Data Scientists

TIME|GEO Value
2| 2002|European Union (28 countries) |5.00
3/2003|European Union (28 countries) |5.03
4/2004|European Union (28 countries) [4.95
5/2005|European Union (28 countries) [4.92
6/2006(European Union (28 countries) [4.91

To remove NaN values, instead of the generic drop function, we can use the
specificdropna() function. If we want to erase any row that contains an NaN value, we
have to set the how keyword to any. To restrict it to a subset of columns, we can
specify it using the subset keyword. As we can see below, the result will be the same
as using the dropfunction:

eduDrop = edu.dropna (how = ’any’, subset = ["Value"])
eduDrop . head ()

TIME|GEO Value
2/2002|European Union (28 countries) [5.00
3/2003|European Union (28 countries) [5.03
4/2004|European Union (28 countries) [4.95
5/2005|European Union (28 countries) [4.92
6/2006|European Union (28 countries) [4.91

If, instead of removing the rows containing NaN, we want to fill them with another
value, then we can use the fillna() method, specifying which value has to be used. If
we want to fill only some specific columns, we have to set as argument to the
fillna() function a dictionary with the name of the columns as the key and which
character to be used for filling as the value.

eduFilled = edu.fillna (value = {"Value": 0})
eduFilled . head ()

TIME | GEO Value
0[2000 |European Union (28 countries) 0.00
1/2001 | European Union (28 countries) 0.00
2|2002 | European Union (28 countries) 5.00
3/2003 | European Union (28 countries) 4.95
4(2004 |European Union (28 countries) 4.95

Sorting

Another important functionality we will need when inspecting our data is to sort
bycolumns. We can sort a DataFrame using any column, using the sortfunction. If
we want to see the first five rows of data sorted in descending order (i.e., from
the largest to the smallest values) and using the Value column, then we just need to
do this:

In[22]:

Out[22]:

In[23]:

Out[23]:

In [24]:

2.6 Get Started with Python for Data Scientists 23

edu.sort_values (by = ’Value’, ascending = False,
inplace = True)
edu . head ()
TIME|GEO Value

130(2010|Denmark|8.81
131/2011|Denmark|8.75
129/2009|Denmark|8.74
8
8

12112001|Denmark|8.44
12212002|Denmark|8.44

Note that the inplace keyword means that the DataFrame will be overwritten, and
hence no new DataFrame is returned. If instead of ascending = False we use
ascending = True, the values are sorted in ascending order (i.e., from thesmallest
to the largest values).

If we want to return to the original order, we can sort by an index using the
sort_indexfunction and specifying axis=0:

edu. sort_index (axis = 0, ascending = True, inplace = True)
edu . head ()
TIME | GEO Value
02000 |European Union ... NaN
1/2001 | European Union ... NaN
2{2002 | European Union ... 5.00
3| 2003 | European Union ... 5.03
412004 |European Union ... 4.95

Grouping Data

Another very useful way to inspect data is to group it according to some criteria.
For instance, in our example it would be nice to group all the data by country,
regardlessof the year. Pandas has the groupby function that allows us to do exactly
this. The value returned by this function is a special grouped DataFrame. To have
a proper DataFrame as a result, it is necessary to apply an aggregation function.
Thus, this function will be applied to all the values in the same group.

For example, in our case, if we want a DataFrame showing the mean of the
valuesfor each country over all the years, we can obtain it by grouping according to
country and using the mean function as the aggregation method for each group.
The result would be a DataFrame with countries as indexes and the mean values as

he golumn:

roup = edu [["GEO", "Value"]].groupby (’ GEO ') .mean ()
group . head ()

Out[24]:

In [25]:

Out[25]:

In[26]:

Out[26]:

24 2 Toolboxes for Data Scientists

Value
GEO
Austria 5.618333
Belgium 6.189091
Bulgaria 4.093333
Cyprus 7.023333
Czech Republic 4.16833

Rearranging Data

Up until now, our indexes have been just a numeration of rows without much
meaning. We can transform the arrangement of our data, redistributing the indexes
and columns for better manipulation of our data, which normally leads to better
performance. Wecan rearrange our data using the pivot_table function. Here, we
can specifywhich columns will be the new indexes, the new values, and the new
columns.

For example, imagine that we want to transform our DataFrame to a
spreadsheet- like structure with the country names as the index, while the
columns will be the years starting from 2006 and the values will be the previous
Value column. To do this, first we need to filter out the data and then pivot it in

this way:
filtered_data = edufedu[" TIME"] > 2005]
pivedu = pd.pivot table (filtered data , values = 'Value’,
index = [’/GEO’],
columns = [/ TIME’])
pivedu . head ()
TIME 2006|2007/2008/2009/2010/2011
GEO
Austria 5.40(5.33/5.47/5.98/5.91|5.80
Belgium 5.98/6.00/6.43/6.57/6.58/6.55
Bulgaria 4.04|3.88/4.44/4.58/4.10|3.82
Cyprus 7.0216.95/7.45/7.98/7.92|7.87
Czech Republic|4.42|4.05/3.92(4.36/4.25/4.51

Now we can use the new index to select specific rows by label, using the ix
operator:

pivedu . ix [[’ Spain ’,’ Portugal '], [2006 ,2011]]
TIME 2006 | 2011
GEO
Spain 4.26 | 4.82
Portugal 5.07 | 5.27

Pivot also offers the option of providing an argument aggr_function thatallows us
to perform an aggregation function between the values if there is more

In[27]:

Out[27]:

In[28]:

2.6 Get Started with Python for Data Scientists 25

than one value for the given row and column after the transformation. As usual,
you can design any custom function you want, just giving its name or using a A-
function.

Ranking Data

Another useful visualization feature is to rank data. For example, we would like to
know how each country is ranked by year. To see this, we will use the pandas rank
function. But first, we need to clean up our previous pivoted table a bit so that it
only has real countries with real data. To do this, first we drop the Euro area
entries andshorten the Germany name entry, using the renamefunction and then
we drop allthe rows containing any NaN, using the dropnafunction.

Now we can perform the ranking using the rank function. Note here that the
parameter ascending=False makes the ranking go from the highest values to the
lowest values. The Pandas rank function supports different tie-breaking methods,
specified with the method parameter. In our case, we use the first method, in which
ranks are assigned in the order they appear in the array, avoiding gaps between
ranking.

pivedu = pivedu.drop([
Euro area (13 countries)’/Euro area (
15 countries)’,’Euro area (17 countries
), Euro area (18 countries)’,
’ European Union (25 countri es) ’,’ European
Union (27 countri es) ’, ’ Eur opean Union (28
countries)’
1
axis = 0)
pivedu =pivedu . rename (index ={’Germany (until 1990 former territory of the FRG): 'Germany’})
pivedu = pivedu.dropna()
pivedurank(as ¢ ending = False, method = 'first’).head()
TIME 2006|2007/2008/2009/2010/2011
GEO
Austria 10 7 11 7 8 8
Belgium 5 4 3 4 5 5
Bulgaria 21 21 20 20 22 21
Cyprus 2 2 2 2 2 3
Czech Republic|19 20 21 21 20 18

If we want to make a global ranking taking into account all the years, we can
sum up all the columns and rank the result. Then we can sort the resulting values
toretrieve the top five countries for the last 6 years, in this way:

totalSum = pivedu . sum (axis = 1)
totalSum . rank (ascending = False, method = ’dense’)

.sort_values () . head ()

26 2 Toolboxes for Data Scientists

Out[28]: GEO

Denmark

Cyprus

Finland

Malta

Belgium

dtype: float64
Notice that the method keyword argument in the in the rank function specifies

how items that compare equals receive ranking. In the case of dense, items that

compare equals receive the same ranking number, and the next not equal item

receives the immediately following ranking number.

u b WN

Plotting

Pandas DataFrames and Series can be plotted using the plot function, which uses the
library for graphics Matplotlib. For example, if we want to plot the accumulated
values for each country over the last 6 years, we can take the Series obtained in
theprevious example and plot it directly by calling the plot function as shown in the

next cell:
In[29]:
totalSum = pivedu . sum (axis = 1)
. sort_values (ascending = False)
totalSum . plot (kind = ’bar’, style = 'b’, alpha = 0.4,
title = "Total Values for Country")
Out[29]:
[29] Total Values for Country

50
0
w0
20
10
o
*

Note that if we want the bars ordered from the highest to the lowest value,
we need to sort the values in the Series first. The parameter kind used in the plot
function defines which kind of graphic will be used. In our case, a bar graph. The
parameter stylerefers to the style properties of the graphic, in our case, the color

Austria
Estonin
Portugal
Latyia
Hungary
Bulgaria
Slovakin

s ——
o,

Denmar]
Cyprus
Finland
Malta
Belgium
France
Notherlands
Slovenia
Lithuania
Poland
Germany
Spain
Caech Republic

Q
=
[=]

In [30]:

Out([30]:

with Python for Data Scientists 27

of bars is set to b (blue). The alpha channel can be modified adding a keyword
parameter alpha with a percentage, producing a more translucent plot. Finally,using
the titlekeyword the name of the graphic can be set.

It is also possible to plot a DataFrame directly. In this case, each column is treated
as a separated Series. For example, instead of printing the accumulated value
over the years, we can plot the value for each year.

my_colors = ['b’, 'r’, 'g', 'y', 'm’, ’c’]
ax = pivedu .plot (kind = ’barh’,
stacked = True ,
color = my_colors)
ax . legend (loc = 'center left ’, bbox_to_anchor = (1, .5))

TIME

2006
2007
2008
2009
2010
2011

i

GEO

In this case, we have used a horizontal bar graph (kind="barh’) stacking all the
years in the same country bar. This can be done by setting the parameter stacked
to True. The number of default colors in a plot is only 5, thus if you have more
than 5 Series to show, you need to specify more colors or otherwise the same set
ofcolors will be used again. We can set a new set of colors using the keyword color
with a list of colors. Basic colors have a single-character code assigned to each,
for example, “b” is for blue, “r” for red, “g” for green, “y” for yellow, “m” for
magenta, and “c” for cyan. When several Series are shown in a plot, a legend is
created for identifying each one. The name for each Series is the name of the
column in the DataFrame. By default, the legend goes inside the plot area. If we
want to change this, we can use the legend function of the axis object (this is the
object returned when the plot function is called). By using the loc keyword, we can
set the relative position of the legend with respect to the plot. It can be a
combination of right or left and upper, lower, or center. With bbox_to_anchor we
can set an absolute position with respect to the plot, allowing us to put the
legend outside the graph.

Get Started

UNIT-2
Descriptive statistics, data preparation. Exploratory Data Analysis data summarization,
data distribution, measuring asymmetry. Sample and estimated mean, variance and
standard score. Statistical Inference frequency approach, variability of estimates,
hypothesis testing using confidence intervals, using p-values

DescriptiveStatistics

Descriptive statistics helps to simplify large amounts of data in a sensible
way. In contrast to inferential statistics, which will be introduced in a later
chapter, in descriptive statistics we do not draw conclusions beyond the data we
are analyzing; neither do we reach any conclusions regarding hypotheses we may
make. We do nottry to infer characteristics of the “population” (see below) of the
data, but claim to present quantitative descriptions of it in a manageable form. It
is simply a way to describe the data.

Statistics, and in particular descriptive statistics, is based on two main concepts:

. a population is a collection of objects, items (“units”) about which information
issought;
. asample is a part of the population that is observed.

Descriptive statistics applies the concepts, measures, and terms that are used
to describe the basic features of the samples in a study. These procedures are
essential to provide summaries about the samples as an approximation of the
population. Together with simple graphics, they form the basis of every
guantitative analysis ofdata. In order to describe the sample data and to be able
to infer any conclusion, weshould go through several steps:

1. Data preparation: Given a specific example, we need to prepare the data
forgenerating statistically valid descriptions.

2. Descriptive statistics: This generates different statistics to describe and
summa-rize the data concisely and evaluate different ways to visualize them.

30 3 Descriptive Statistics

Data Preparation

One of the first tasks when analyzing data is to collect and prepare the data in a
format appropriate for analysis of the samples. The most common steps for data
preparationinvolve the following operations.

1. Obtaining the data: Data can be read directly from a file or they might be obtained
by scraping the web.

2. Parsing the data: The right parsing procedure depends on what format the
dataare in: plain text, fixed columns, CSV, XML, HTML, etc.

3. Cleaning the data: Survey responses and other data files are almost always in-
complete. Sometimes, there are multiple codes for things such as, not asked,
did not know, and declined to answer. And there are almost always errors. A
simplestrategy is to remove or ignore incomplete records.

4. Building data structures: Once you read the data, it is necessary to store them
ina data structure that lends itself to the analysis we are interested in. If the
data fit into the memory, building a data structure is usually the way to go. If
not, usually a database is built, which is an out-of-memory data structure.
Most databases provide a mapping from keys to values, so they serve as
dictionaries.

The Adult Example

Let us consider a public database called the “Adult” dataset, hosted on the UCI’s
Machine Learning Repository.! It contains approximately 32,000 observations con-
cerning different financial parameters related to the US population: age, sex,
marital(marital status of the individual), country, income (Boolean variable: whether
the per- son makes more than $50,000 per annum), education (the highest level of
educationachieved by the individual), occupation, capital gain, etc.

We will show that we can explore the data by asking questions like: “Are men
more likely to become high-income professionals than women, i.e., to receive an
income of over $50,000 per annum?”

Data Preparation

First, let us read the data:

In[1]:
file = open ('’ files /ch03 /adult . data ',)
def chr_int (a):
if a.isdigit () : return int (a)
else: return O
data = []
for line in file :
datal = 1line .split (', ")
if len (datal) == 15:
data .append ([chr_int (datal [0]) , datal [1],
chr_int (datal [2]) , datal [3],
chr_int (datal [4]) , datal [5],
datal [6] , datal [7], datal [8],
datal [9] , chr_int (datal [10]) ,
chr int (datal [11]) ,
chr int (datal [12]) ,
datal [13] , datal [14]
1)
Checking the data, we obtain:
In[2]: .
print data [1:2]

Out[2]: [[50, 'Self-emp-not-inc’, 83311, 'Bachelors’, 13,
'Married-civ-spouse’, ‘Exec-managerial’, "Husband’, "White’,’Male’, 0, 0, 13, 'United-
States’, " <= 50K"]]
One of the easiest ways to manage data in Python is by using the DataFrame
structure, defined in the Pandas library, which is a two-dimensional, size-
mutable,potentially heterogeneous tabular data structure with labeled axes:

In[3]:
df = pd.DataFrame (data)
df . columns = [
age’, " type_employer ', " fnlwgt ',
" education ', " education num ', "marital ',
"occupation’,’ relationship’, ' race’,
"'sex ', "capital gain ’, "capital loss ',
"hr per week'’, 'country’, ’income ’
1
The command shapegives exactly the number of data samples (in rows, in this
case) and features (in columns):
In[4]: df . shape

out[4]: (32561, 15)

32 3 Descriptive Statistics

Thus, we can see that our dataset contains 32,561 data records with 15
featureseach. Let us count the number of items per country:

In[5]:
counts = df . groupby ('’ country ’). size ()
print counts . head ()

Out[5]: country
?583
Cambodia 19
Vietnam 67
Yugoslavia 16

The first row shows the number of samples with unknown country, followed

bythe number of samples corresponding to the first countries in the dataset.
Let us split people according to their gender into two groups: men and women.

In(6l: ml = df[(df.sex == 'Male’)]
If we focus on high-income professionals separated by sex, we can do:
In[7]: . _
mll = df[(df.sex == 'Male'’) & (df . income ==’ >50K\ n"’)
fm = df[(df.sex == ' Female ')]
fml

= df [(df .sex == ' Female ') & (df . income ==’ >50K\ n
)]

Exploratory Data Analysis

The data that come from performing a particular measurement on all the
subjects in a sample represent our observations for a single characteristic like
country, age, education, etc. These measurements and categories represent a
sample distribution of the variable, which in turn approximately represents the
population distribution of the variable. One of the main goals of exploratory
data analysis is to visualize and summarize the sample distribution, thereby

allowing us to make tentative assumptions about the population distribution.
Summarizing the Data

The data in general can be categorical or quantitative. For categorical data, a
simple tabulation of the frequency of each category is the best non-graphical
exploration for data analysis. For example, we can ask ourselves what is the

proportion of high-income professionals in our database:

3.3 Exploratory Data Analysis 33

In[8]:)

dfl = df[(df.income ==’ >50K\n"’)]

print ' The rate of people with high income is: '/,
int (len (dfl)/ float (len (df)) *100) , ’%. '

print ' The rate of men with high income is: 7/,
int (len (mll)/ float (len (ml)) *100) , ’%. '

print ' The rate of women with high income is: 7/,
int (len (fml)/ float (len (fm)) *100) , ’%. "’

Out[8]: The rate of people with high income is: 24 %.
The rate of men with high income is: 30 %. The rate of women
with high income is: 10 %.

Given a quantitative variable, exploratory data analysis is a way to make
prelim-inary assessments about the population distribution of the variable using
the data of the observed samples. The characteristics of the population
distribution of a quanti- tative variable are its mean, deviation, histograms,
outliers, etc. Our observed datarepresent just a finite set of samples of an often
infinite number of possible samples.The characteristics of our randomly observed
samples are interesting only to the degree that they represent the population of
the data they came from.

Mean

One of the first measurements we use to have a look at the data is to obtain
samplestatistics from the data, such as the sample mean [1]. Given a sample of
n values,

{ %,i=1,...,n, the mean, y, is the sum of the values divided by the number of
values,? in other words:

X . (3.1)
i=1

The terms mean and average are often used interchangeably. In fact, the

maindistinction between them is that the mean of a sample is the summary

statistic com-puted by Eq. (3.1), while an average is not strictly defined and could

be one of manysummary statistics that can be chosen to describe the central

tendency of a sample.

In our case, we can consider what the average age of men and women samples

inour dataset would be in terms of their mean:

Descriptive Statistics

Info): print ’ The average age of men is: ',

ml [’ age ']. mean ()

print ’ The average age of women is: ',
fm [7 age ']. mean ()

print '’ The average age of high -income men is: ',
mll [/ age "]. mean ()

print ’ The average age of high - income women is : ',
fml [’ age '] . mean ()

Out[9]: The average age of men is: 39.4335474989 The average age of
women is: 36.8582304336
The average age of high-income men is: 44.6257880516
The average age of high-income women is: 42.1255301103

This difference in the sample means can be considered initial evidence that
thereare differences between men and women with high income!

Comment: Later, we will work with both concepts: the population mean and
thesample mean. We should not confuse them! The first is the mean of samples
takenfrom the population; the second, the mean of the whole population.

Sample Variance
The mean is not usually a sufficient descriptor of the data. We can go further by
knowing two numbers: mean and variance. The variance o? describes the spread
ofthe data and it is defined as follows:
0’ = 1 (x —p)> (3.2)
no,

The term (x; w)is called the deviation from the mean, so the variance is the mean
squared deviation. The square root of the variance, o, is called the standard
deviation. We consider the standard deviation, because the variance is hard to
interpret (e.g., ifthe units are grams, the variance is in grams squared).

Let us compute the mean and the variance of hours per week men and women
inour dataset work:

In[10]: ml mu = ml[’age’]. mean ()
fm_ mu = fm [’ age ’]. mean ()
ml var = ml["age’']. var ()
fm var = fm [’ age "]. var ()
ml std = ml[’"age’]. std ()
fm std = fm[’age’]. std ()
print ' Statistics of age for men: mu:’,

3.3 Exploratory Data Analysis 35

Out[10]: Statistics of age for men: mu: 39.4335474989 var: 178.773751745std: 13.3706301925
Statistics of age for women: mu: 36.8582304336 var:196.383706395 std:
14.0136970994
We can see that the mean number of hours worked per week by women is signif-
icantly lesser than that worked by men, but with much higher variance and
standarddeviation.

Sample Median
The mean of the samples is a good descriptor, but it has an important drawback:
what will happen if in the sample set there is an error with a value very different
from the rest? For example, considering hours worked per week, it would
normally be in a range between 20 and 80; but what would happen if by mistake
there was a value of 1000? An item of data that is significantly different from the
rest of the data is called an outlier. In this case, the mean, u, will be drastically
changed towards the outlier. One solution to this drawback is offered by the
statistical median, p1,, which is an order statistic giving the middle value of a
sample. In this case, all the values are ordered by their magnitude and the
median is defined as the value that is in themiddle of the ordered list. Hence, it is
a value that is much more robust in the face of outliers.

Let us see, the median age of working men and women in our dataset and the
median age of high-income men and women:

In[11]: ml median = ml[’age’].median ()
fm_median = fm[’age’']. median ()
print "Median age per men and women : ",
ml median , fm median
ml median_age = mll|[’age’].median ()
fm median age = fml[’age’].median ()
pr‘;nt " Me_dian age per men and women with high -
income : ",
ml median_age , fm _median_age

Out[11]:Median age per men and women: 38.0 35.0
Median age per men and women with high-income: 44.0 41.0
As expected, the median age of high-income people is higher than the whole
setof working people, although the difference between men and women in both
sets isthe same.

Quantiles and Percentiles
Sometimes we are interested in observing how sample data are distributed in

general. In this case, we can order t{he}samples x;, then find the x, so that it
divides the datainto two parts, where:

In[12]:

In[13]:

36 3 Descriptive Statistics

2500 3000
os , 2500
Py 9
9 2. 2000
[=%
2 1500 5
s o 1500
2 1000 E
£ 5 1000
500 500
0 0
10 20 30 4 S 6 70 8 9% 10 20 30 4 S0 6 70 8 9%
Age Age

Fig.3.1 Histogram of the age of working men (left) and women (right)

. afraction p of the data values is less than or equal to x, and
. the remaining fraction (1 - p)is greater than x,.

That value, x,, is the p-th quantile, or the 100 p-th percentile. For example, a 5-
number summary is defined by the values Xmin, Q1i, Q2, Q3, Xmax, Where Q; is the

25 p-tikpercentile, Q; is the 50 p-th percentile and Qs is the 75 p-th percenmtile.

Data Distributions

Summarizing data by just looking at their mean, median, and variance can be danger-
ous: very different data can be described by the same statistics. The best thing to
do is to validate the data by inspecting them. We can have a look at the data
distribution, which describes how often each value appears (i.e., what is its
frequency).

The most common representation of a distribution is a histogram, which is a graph
that shows the frequency of each value. Let us show the age of working men and
women separately.

ml age = ml[’age’]
ml _age .hist (normed = 0, histtype = ’'stepfilled’,
bins = 20)
J
fm_age = fm [’ age’]
fm_age .hist (normed = 0, histtype = ’'stepfilled’,
bins = 10)

The output can be seen in Fig. 3.1. If we want to compare the histograms, we
canplot them overlapping in the same graphic as follows:

In[14]:

In[15]:

3.3 Exploratory Data Analysis 37

4500 0030
0% 0025
3500
% 3000 0020
2 2500
g = 0015
£ 2000
9 1500 0010
1000
0.005
500
0 0000
0 20 30 4 SO 6 70 8 9 0 20 30 4 50 € 70 8 9
Age Age

Fig. 3.2 Histogram of the age of working men (in ochre) and women (in violet) (left). Histogram of the
age of working men (in ochre), women (in blue), and their intersection (in violet) after samples
normalization (right)

import seaborn as sns

fm_age .hist (normed = 0, histtype = 'stepfilled’,
alpha = .5, bins = 20)

ml_age .hist (normed = 0, histtype = 'stepfilled’,
alpha = .5,
color = sns .desaturate (" indianred ",

o 18) 4

bins 10)

The output can be seen in Fig. 3.2 (left). Note that we are visualizing the absolute
values of the number of people in our dataset according to their age (the abscissa
ofthe histogram). As a side effect, we can see that there are many more men in
these conditions than women.

We can normalize the frequencies of the histogram by dividing/normalizing by
n, the number of samples. The normalized histogram is called the Probability
MassFunction (PMF).

fm_age .hist (normed = 1, histtype = 'stepfilled’,
alpha = .5, bins = 20)
ml _age .hist (normed = 1, histtype = ’'stepfilled’,
alpha = .5, bins = 10,
color = sns .desaturate (" indianred ",
.75))

This outputs Fig. 3.2 (right), where we can observe a comparable range of indi-
viduals (men and women).

The Cumulative Distribution Function (CDF), or just distribution function,
describes the probability that a real-valued random variable X with a given proba-
bility distribution will be found to have a value less than or equal to x . Let us show
the CDF of age distribution for both men and women.

In[16]:

38 3 Descriptive Statistics

Fig. 3.3 The CDF of the ageof 10
working male (in blue)
and female (in red) samples 08
0.6
[F
o
o
0.4
0.2
0.0
10 20 30 40 50 60 70 80 90
Age
ml _age . hist (normed =1, histtype ="' step ’,
cumulative = True, linewidth = 3.5,
bins = 20)
fm_age . hist (normed = 1, histtype ='step’,
cumulative = True , linewidth = 3.5,
bins = 20,
color = sns .desaturate (" indianred ",
.75))

The output can be seen in Fig. 3.3, which illustrates the CDF of the age distributions
for both men and women.

Outlier Treatment

As mentioned before, outliers are data samples with a value that is far from the
centraltendency. Different rules can be defined to detect outliers, as follows:

+ Computing samples that are far from the median.
+ Computing samples whose values exceed the mean by 2 or 3 standard deviations.

For example, in our case, we are interested in the age statistics of men versus
women with high incomes and we can see that in our dataset, the minimum age is
17years and the maximum is 90 years. We can consider that some of these samples
are due to errors or are not representable. Applying the domain knowledge, we
focus onthe median age (37, in our case) up to 72 and down to 22 years old, and
we considerthe rest as outliers.

3.3 Exploratory Data Analysis 39
Inf17]: df2 = df.d ;
= .drop (df. index [
(df . income == ' >50K\n’) &
(df["age’] > df[’age’].median () + 35) &
(df [" age '] > df[’age’]. median () -15)
1)
mll age = mll [’ age’]
fml age = fml [’ age ']
ml2 age = mll age .drop (mll age .index [
(mll age > df[’age’].median () + 35) &
(mll age > df[’age’].median () - 15)
1)
fm2 age = fml age .drop (fml_age . index [
(fml _age > df[’age’].median () + 35) &
(fml_age > df[’age’].median () - 15)
1)
We can check how the mean and the median changed once the data were cleaned:
In[18]: mu2ml = ml2 age .mean ()
std2ml = ml2_ age . std ()
md2ml = ml2 age .median ()
mu 2fm = fm2 age . mean ()
std2fm = fm2_ age . std ()
md2fm = fm2 age .median ()
print "Men statistics :"
print "Mean :", mu2ml , "Std:", std2ml
print "Median :", md2ml
print "Min :", ml2 age .min (), "Max :", ml2 age .max ()
print " Women statistics "
print "Mean :", mu2fm, "Std:", std2fm
print "Median :", md2fm
print "Min :", fm2_age .min (), "Max : ", fm2_ age . max ()

Out[18]: Men statistics: Mean: 44.3179821239 Std: 10.0197498572 Median:

In[19]:

44.0 Min: 19 Max: 72

Women statistics: Mean: 41.877028181 Std: 10.0364418073 Median:
41.0 Min: 19 Max: 72

Let us visualize how many outliers are removed from the whole data by:

plt . figure (figsize = (13.4, 5))
df . age [(df . income == ' >50K\n’)]

.plot (alpha = .25, <color = 'Dblue’)
df2.age [(df2.income == ' >50K\n’)]

.plot (alpha = .45, color = 'red’)

40 3 Descriptive Statistics

90
80
70
il
o
50
24
4
30
20
10
0 5000 10000 15000 20000 25000 30000
Samples

Fig.3.4 The red shows the cleaned data without the considered outliers (in blue)

Figure 3.4 shows the outliers in blue and the rest of the data in red. Visually,
wecan confirm that we removed mainly outliers from the dataset.

Next we can see that by removing the outliers, the difference between the
popula-tions (men and women) actually decreased. In our case, there were more
outliers inmen than women. If the difference in the mean values before removing
the outliersis 2.5, after removing them it slightly decreased to 2.44:

In[20]: print ' The mean difference with outliers is: %4.2f.
4
% (ml_age .mean () - fm_age .mean ())
print ' The mean difference without outliers is:
$4.2 £. 7
% (ml2_ age .mean () - fm2 age .mean ())

Out[20]:The mean difference with outliers is: 2.58.
The mean difference without outliers is: 2.44.

Let us observe the difference of men and women incomes in the cleaned
subsetwith some more details.

In[21]:

countx , divisionx = np.histogram (ml2_age , normed
True)

county , divisiony = np.histogram (fm2 age, normed =
True)

val = [(divisionx [i] + divisionx [1i+1]) /2
for i in range (len (divisionx) - 1)]
plt .plot (val, countx - county, ‘o-')

The results are shown in Fig. 3.5. One can see that the differences between
male and female values are slightly negative before age 42 and positive after it.
Hence, women tend to be promoted (receive more than 50K) earlier than men.

In[22]:

3.3 Exploratory Data Analysis 41

Differences in promoting men vs. women
0.008 = =

0.006
0.004
0.002
0.000
-0.002

Differences

-0.004
-0.006
-0.008

-0.010
20 30 40 50 60 70

Age

Fig.3.5 Differences in high-income earner men versus women as a function of age

Measuring Asymmetry: Skewness and Pearson’s Median
Skewness Coefficient

For univariate data, the formula for skewness is a statistic that measures the
asym-metry of the set of n data samples, x;:

9, - LMK, (3:3)
where p is the mean, o is the standard deviation, and n is the number of data points.
Negative deviation indicates that the distribution “skews left” (it extends
further to the left than to the right). One can easily see that the skewness for a
normal distribution is zero, and any symmetric data must have a skewness of
zero. Note that skewness can be affected by outliers! A simpler alternative is to
look at the relationship between the mean u and the median pi,.

def skewness (x):
res = 0
m = x.mean ()
s = x. std ()
for 1 in x:
res += (i-m) * (i-m) * (i-m)
res /= (len (X) *s * s * g)
return res

print " Skewness of the male population = ",
skewness (ml2_ age)
print " Skewness of the female population is = ",

skewness (fm2 age)

42 3 Descriptive Statistics

Out[22]: Skewness of the male population = 0.266444383843 Skewness of the female

In[23]:

population =0.386333524913

That is, the female population is more skewed than the male, probably since
mencould be most prone to retire later than women.

The Pearson’s median skewness coefficient is a more robust alternative to the
skewness coefficient and is defined as follows:

gp = 3(u - p12)o.
There are many other definitions for skewness that will not be discussed here.

In our case, if we check the Pearson’s skewness coefficient for both men and
women,we can see that the difference between them actually increases:

def pearson (x):

return 3*(x.mean () - x.median ())*x. std ()

print "Pearson 's coefficient of the male population
",

pearson (ml2_ age)
print " Pearson ’'s coefficient of the female
population = ",
pearson (fm2_ age)

Out[23]: Pearson’s coefficient of the male population = 9.55830402221 Pearson'’s coefficient of the

female population =26.4067269073

Continuous Distribution

The distributions we have considered up to now are based on empirical
observationsand thus are called empirical distributions. As an alternative, we may
be interested in considering distributions that are defined by a continuous
function and are calledcontinuous distributions [2]. Remember that we defined the
PMF, f x (x), of a discreterandore=variable X as fx(x) P(X x)forall x.Inthe case

of a continuous random variable X , we speak of the Probability Density Function
(PDF), which

3.3 Exploratory Data Analysis 43

6 Exponential CDF:)\ =3.00 40 Exponential PDF: A =3.00

0.8

0.6

CDF
PDF

0.4

0.0 0.0 - - - -
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5

X X
Fig.3.6 Exponential CDF (left) and PDF (right) with A = 3.00

is defined as F,(x) where this satisfies: F,(x) = X ft)ét for all x. There are

oo

many continuous distributions; here, we will consider the most common ones: the
exponential and the normal distributions.

The Exponential Distribution
Exponential distributions are well known since they describe the inter-arrival
time between events. When the events are equally likely to occur at any time,
the distri-bution of the inter-arrival time tends to an exponential distribution. The
CDF and the PDF of the exponential distribution are defined by the following
equations:
CDF(x) =1-¢e™, PDF(x) = Ae™.
The parameter A defines the shape of the distribution. An example is given

inFig.3.6. It is easy to show that the mean of the distribution is 1, the variance is_

. A2
and the medianis 2

Note that for a small number of samples, it is difficult to see that the exact
empiricaldistribution fits a continuous distribution. The best way to observe this
match is to generate samples from the continuous distribution and see if these
samples match the data. As an exercise, you can consider the birthdays of a large
enough group of people, sorting them and computing the inter-arrival time in
days. If you plot the CDF of the inter-arrival times, you will observe the
exponential distribution.

There are a lot of real-world events that can be described with this
distribution, including the time until a radioactive particle decays; the time it
takes before your next telephone call; and the time until default (on payment to
company debt holders)in reduced-form credit risk modeling. The random variable X
of the lifetime of some

batteries is associated with a probability density function of the form: PDF(x) =

1 X _[X_’JA)L
—49_46 2

44 3 Descriptive Statistics

Gaussian PDF: ;=6.0, 0=2.0
.20

0.15

0.10

Probability density

0.05

0.00

0 2 4 6 10 12 14 16

o

Fig.3.7 Normal PDF with u =6 and 0 =2

The Normal Distribution
The normal distribution, also called the Gaussian distribution, is the most common
since it represents many real phenomena: economic, natural, social, and others.
Some well-known examples of real phenomena with a normal distribution are as
follows:

+ The size of living tissue (length, height, weight).
+ The length of inert appendages (hair, nails, teeth) of biological specimens.
- Different physiological measurements (e.g., blood pressure), etc.

The normal CDF has no closed-form expression and its most common

represen-tation is the PDF:
(x -?

1
PDF(x) = «/ €" 202 .
271

The parameter o defines the shape of the distribution. An example of the PDF
ofa normal distribution with u =6 and o = 2 is given in Fig. 3.7.

Kernel Density

In many real problems, we may not be interested in the parameters of a
particular distribution of data, but just a continuous representation of the data.
In this case, we should estimate the distribution non-parametrically (i.e., making
no assumptionsabout the form of the underlying distribution) using kernel density
estimation. Let us imagine that we have a set of data measurements without
knowing their distribution and we need to estimate the continuous
representation of their distribution. In this case, we can consider a Gaussian
kernel to generate the density around the data. Let us consider a set of random
data generated by a bimodal normal distribution. If we consider a Gaussian
kernel around the data, the sum of those kernels can give us

In[24]:

Explorator

2

0.6

0.4

0.3

0.2

8 10

~
()

10

y Data Analysis 45

Fig. 3.8 Summed kernel functions around a random set of points (/eft) and the kernel density
estimate with the optimal bandwidth (right) for our dataset. Random data shown in blue, kernel
shown in black and summed function shown in red

a continuous function that when normalized would approximate the density of the

distribution:
xl = np.random .normal (-1, 0.5, 15)
X2 = np.random .normal (6, 1, 10)

Calculate

plt . plot (y,

y =np .r_[x1

concatenation along the first axis.
x = np.linspace (min (y) , max (y), 100)
s = 0.4 # Smoothing parameter

kernels = np.transpose ([norm.pdf (x, vyi, s) for yi
in yl)

plt . plot (x, kernels , "k: ")

plt . plot (x, kernels . sum (1) , 'r?’)

, X2] # r t ranslate s slice objects to

the kernels

np . zeros (len (y)) , "bo ', ms = 10)

Figure 3.8 (left) shows the result of the construction of the continuous

functionfrom the kernel summarization.

In fact, the library SciPy® implements a Gaussian kernel density estimation that

automatically chooses the appropriate bandwidth parameter for the kernel. Thus,
thefinal construction of the density estimate will be obtained by:

In[25]:

46 3 Descriptive Statistics

from scipy . stats import kde

density = kde.gaussian kde (y)

xgrid = np.linspace (x.min (), x.max (), 200)
plt . hist (y, bins = 28, normed = True)

plt . plot (xgrid , density (xgrid), "'r-")

Figure 3.8 (right) shows the result of the kernel density estimate for our example.

Estimation

An important aspect when working with statistical data is being able to use
estimatesto approximate the values of unknown parameters of the dataset. In this
section, we will review different kinds of estimators (estimated mean, variance,
standard score,etc.).

Sample and Estimated Mean, Variance and Standard Scores

In continuation, we will deal with point estimators that are single numerical estimates
of parameters of a population.
Mean
Let us assume that we know that our data are coming from a normal distribution
andthe random samples drawn are as follows:

{0.33,-1.76, 2.34, 0.56, 0.89}.
The question is can we guess the mean u of the distribution? One approximation
isgiven by the sample mean, x . This process is called estimation and the statistic (e.g.,
the sample mean) is called an estimator. In our case, the sample mean is 0.472, and
it seems a logical choice to represent the mean of the distribution. It is not so
evident ifwe add a sample with a-value of 465. In this case, the sample mear will be
77.11, which does not look like the mean of the distribution. The reason is due to
the fact that the last value seems to be an outlier compared to the rest of the
sample. In orderto avoid this effect, we can try first to remove outliers and then to
estimate the mean;or we can use the sample median as an estimator of the
mean of the distribution.If there are no outliers, the sample mean x minimizes
the following mean squared error:

MSE - (x up
n
where n is the number of times we estimate the
mean.Let us compute the MSE of a set of random
data:

In[26]:

3.4 Estimation 47

NTs = 200

mu = 0.0

var = 1.0

err = 0.0

NPs = 1000

for 1 in range (NTs):
X = np.random .normal (mu, var, NPs)
err += (x.mean () -mu) **2

print 'MSE: ', err /NTests

Out[26]: MSE: 0.00019879541147

Variance
If we ask ourselves what is the variance, ¢?, of the distribution of X, analogously

wecan use the sample variance as an estimator. Let us den~ote by ¢* the sample
varianceestimator:

For large samples, this estimator works well, but for a small number of
samplesit is biased. In those cases, a better estimator is given by:

iol

n-1

Standard Score

In many real problems, when we want to compare data, or estimate their
correlations or some other kind of relations, we must avoid data that come in
different units. For example, weight can come in kilograms or grams. Even data
that come in the same units can still belong to different distributions. We need to
normalize them tostandard scores. Given a dataset ais a}series of values, x; , we
convert the data to standard scores by subtracting the mean and dividing them by
the standard deviation:

R

Note that this measure is dimensionless and its distribution has a mean of 0
and variance of 1. It inherits the “shape” of the dataset: if X is normally
distributed, so is Z; if X is skewed, so is Z.

Zi=

Covariance, and Pearson’s and Spearman’s Rank Correlation

Variables of data can express relations. For example, countries that tend to invest

in research also tend to invest more in education and health. This kind of
relationshipis captured by the covariance.

48 3 Descriptive Statistics
9 14
8
o g 12 &%
T @ o0 a ®
oy % 10 @
B ¢ =i
< 6 () (] 5 [} o
] o 8
£ 5 (1] @ g
K ° I
= <
@ 3 (] g @
S o 4 000,000
2 (1] S @
w0 P ®
1 (6] -
0 ’ - ? - : 0
0 2 1 6 8 10 12 14 16 18 0 2 4 6] 10 12 14

World Oil Production(T) Economic growth(T)

Fig. 3.9 Positive correlation between economic growth and stock market returns worldwide (/eft).
Negative correlation between the world oil production and gasoline prices worldwide (right)

Covariance
When two variables share the same tendency, we speak about covariance. Let us
consider two series,{x; 3nd y{ . ket us center the data with respect to their mean:
dxi =% mxanddy, y= ur. Itis easy to show that when X hnd {y;} vary
together, their deviations tend to have the same sign. The covariance is defined
as the mean of the following products:

Cov(X,Y) = n dxdy,
i

where n is the length of both sets. Still, the covariance itself is hard to interpret.

Correlation and the Pearson’s Correlation
If we normalize the data with respect to their deviation, that leads to the
standardscores; and then multiplying them, we get:

_Xi —HUx Vi — Uy
Pi = Ox oy’
The mean of this product is p=1 ~" p . Equivalently, we can rewrite p in
=1 !
terms of the covariance, and thus obtain the Pearson’s correlation:

Cov(X, Y)

p—- — .

Ox Oy

Note that the Pearson’s correlation is always between 1 apd 1, where
themagnitude depends on the degree of correlation. If the Pearson’s correlation is

— 1 (orl), it means that the variables are perfectly correlated (positively or
negatively) (see Fig. 3.9). This means that one variable can predict the other very

well. However,

19
12 10
11) 9 () ®]
(] @
10 o 8 (] (]
C
9 ® - . o
8 @
= ® (<] = 6 (]
7 @
5
6 (]
e i
: o
4 ® 3 (]
3 2
2 4 6 8 10 12 14 16 2 1 6 8 10 12 14 16
x1 x1
14 13
o
13 ® 12
12 11
11 10
10 9
i - 8
> 9 >
! . s .
8 ® () 7 '
@
7 PS e 6
o |
6 ® @ 5
. ® :
')'.’ 1 G 8 10 12 14 16 "6 8 10 12 14 16 18 20
x1 x1

Fig.3.10 Anscombe configurations

having p @, does not necessarily mean that the variables are not correlated! Pear-
son’s correlation captures correlations of first order, but not nonlinear

correlations.Moreover, it does not work well in the presence of outliers.

Spearman’s Rank Correlation
The Spearman’s rank correlation comes as a solution to the robustness problem
of Pearson’s correlation when the data contain outliers. The main idea is to use
the ranks of the sorted sample data, instead of the values themselves. For
example, in the list [4, 3, 7, 5], the rank of 4 is 2, since it will appear second in the
ordered list ([3, 4, 5, 7]). Spearman’s correlation computes the correlation
between the ranks

of the data. For example, considering the data: X= [10, 20, 30, 40, 1000], and

Y =[70, 1000, 9, 16 206, where we have an outlier in each one set. If we
compute the ranks, they are [1.0, 2.0, 3.0, 4.0, 5.0] and [2.0, 1.0, 3.0, 5.0, 4.0]. As

value of the Pearson’s coefficient, we get 0.28, which does not show much

Estimation

correlation

between the sets. However, the Spearman’s rank coefficient, capturing the
correlation between the ranks, gives as a final value of 0.80, confirming the
correlation betweenthe sets. As an exercise, you can compute the Pearson’s and
the Spearman’s rank correlations for the different Anscombe configurations given in
Fig. 3.10. Observe if linear and nonlinear correlations can be captured by the
Pearson’s and the Spearman’s rank correlations.

Statistical Inference

Introduction

There is not only one way to address the problem of statistical inference. In fact,
there are two main approaches to statistical inference: the frequentist and
Bayesianapproaches. Their differences are subtle but fundamental:

. In the case of the frequentist approach, the main assumption is that there is a
population, which can be represented by several parameters, from which we

can obtain numerous random samples. Population parameters are fixed but
they are not accessible to the observer. The only way to derive information
about these parameters is to take a sample of the population, to compute the
parameters of thesample, and to use statistical inference techniques to make
probable propositionsregarding population parameters.

. The Bayesian approach is based on a consideration that data are fixed, not the
result of a repeatable sampling process, but parameters describing data can be

described probabilistically. To this end, Bayesian inference methods focus on
producing parameter distributions that represent all the knowledge we can
extract from the sample and from prior information about the problem.

A deep understanding of the differences between these approaches is far
beyondthe scope of this chapter, but there are many interesting references that
will enable you to learn about it [1]. What is really important is to realize that the
approaches are based on different assumptions which determine the validity of
their inferences.The assumptions are related in the first case to a sampling process;
and to a statistical model in the second case. Correct inference requires these
assumptions to be correct. The fulfillment of this requirement is not part of the
method, but it is the responsibility of the data scientist.

In this chapter, to keep things simple, we will only deal with the first approach,
but we suggest the reader also explores the second approach as it is well worth it!

Statistical Inference: The Frequentist Approach

As we have said, the ultimate objective of statistical inference, if we adopt the
fre- quentist approach, is to produce probable propositions concerning population

param- eters from analysis of a sample. The most important classes of
propositions are as follows:

. Propositions about point estimates. A point estimate is a particular value that
bestapproximates some parameter of interest. For example, the mean or the

varianceof the sample.

. Propositions about confidence intervals or set estimates. A confidence interval
isa range of values that best represents some parameter of interest.

. Propositions about the acceptance or rejection of a hypothesis.

In all these cases, the production of propositions is based on a simple
assumption: we can estimate the probability that the result represented by the
proposition has been caused by chance. The estimation of this probability by
sound methods is oneof the main topics of statistics.

The development of traditional statistics was limited by the scarcity of
computa- tional resources. In fact, the only computational resources were
mechanical devices and human computers, teams of people devoted to
undertaking long and tedious calculations. Given these conditions, the main
results of classical statistics are theo- retical approximations, based on idealized
models and assumptions, to measure the effect of chance on the statistic of
interest. Thus, concepts such as the Central Limit Theorem, the empirical sample
distribution or the t-test are central to understandingthis approach.

The development of modern computers has opened an alternative strategy for
measuring chance that is based on simulation; producing computationally inten-
sive methods including resampling methods (such as bootstrapping), Markov
chain Monte Carlo methods, etc. The most interesting characteristic of these
methods is that they allow us to treat more realistic models.

Measuring the Variability in Estimates
Estimates produced by descriptive statistics are not equal to the truth but they
are better as more data become available. So, it makes sense to use them as
central elements of our propositions and to measure its variability with respect to the
sample size.

Point Estimates

Let us consider a dataset of accidents in Barcelona in 2013. This dataset can be
downloaded from the OpenDataBCN website,! Barcelona City Hall’s open data
service. Each register in the dataset represents an accident via a series of
features: weekday, hour, address, number of dead and injured people, etc. This
dataset will represent our population: the set of all reported traffic accidents in
Barcelona during2013.

In[1]:

Sampling Distribution of Point Estimates
Let us suppose that we are interested in describing the daily number of traffic
acci- dents in the streets of Barcelona in 2013. If we have access to the
population, the computation of this parameter is a simple operation: the total
number of accidents divided by 365.

data = pd . read_csv (" files 'ACC,L?;‘NL‘SiGuij‘CNi2013 .csv ")
data [' Date '] = data [u’ Dia de mes’]. apply (lambda x: str (x))

+ =7+

data [u’ Mes de any’]. apply (lambda x: str (x))

data [’ Date’] = pd.to_datetime (data [’ Date

Out[1]:
Mean:
25.9095

suppose that we only have access to a limited part of the data (the
sample): the number of accidents during some days of 2013. Can we
still give an approximation of the population mean?

The most intuitive way to go about providing such a mean is simply

10.000 sam

B to take the sample mean. The sample mean is a point estimate of the
u population mean. If we can only choose one value to estimate the
t population mean, then thisis our best guess.
The problem we face is that estimates generally vary from one
n sample to another, and this sampling variation suggests our estimate
o may be close, but it will not be exactly equal to our parameter of
w interest. How can we measure this variability?
, In our example, because we have access to the population, we can
empirically buildthe sampling distribution of the sample mean? for a
f given number of observations.Then, we can use the sampling
o distribution to compute a measure of the variability.In Fig. 42, we can
r see the empirical sample distribution of the mean for s
200 observations from our dataset. This empirical distribution has
i been built in the following way: Statistical Inference
I
1600
500
<
400
t
r'l()()
@00
1100
i
\ 0 - =
2 24 25 26 27 28 29
e
Fig.4.1 Empirical distribution of the sample mean. In red, the mean value of this distribution
p
;J 1. Draw s (a large number) independent samples {x!,..., x*} from the
populationwhere each element x/ is composed of {x /}i-1,..n.
o .
E 2. Evaluate the sample mean = I{ =n x! of each sample.
s 3. Estimate the sampling distfibution of uby the empirical distribution of the
sample
replications.

]

I
e

t

|n[21#: population

df = accidents .to frame ()

N_test = 10000 -

elements = 200

mean array of samples

means = [0] * N_test

sample generation

for i in range (N_test):
rows = np. random . choice (df. index . values , elements)
sampled _df = df . ix [rows]
means [i] = sampled_df .mean ()

te from a sample of size n, we define its samplingdistribution as the

distribution of the point estimate based on samples of size n from its
population. This definition is valid for point estimates of other

n population parameters, such as the population median or population
standard deviation, but we will focus on the analysis of the sample
; mean. . . |
The sampling distribution of an estimate plays an important role in
n understanding the real meaning of propositions concerning point
€ estimates. It is very useful to think of a particular point estimate as
2 being drawn from such a distribution.
| The Traditional Approach
In real problems, we do not have access to the real population and
! so estimation of the sampling distribution of the estimate from the
empirical distribution of the sample replications is not an option. But
.g this problem can be solved by making use of some theoretical results
:/ from traditional statistics.
2.3 Measuring the Variability in Estimates 55
n

It can be mathematically shown that given n independent observati?nS}X; i=1,.n
&f a population with a standard deviation gy, the standard deviation of the

samplemean oy, or standard error, can be approximated by this formula:
P sE =

o n

i The demonstration of this result is based on the Central Limit Theorem: an
Noldtheorem with a history that starts in 1810 when Laplace released his first paper
t onit.This formula uses the standard deviation of the population o, which is not

known, but it can be shown that if it is substituted by its empirica”!| estimate oy, the
e estimationis sufficiently good if n >30 and the population distribution is not
sskewed. Thisallows us to estimate the standard error of the sample mean even if
t we do not have
iaccess to the population.
m So, how can we give a measure of the variability of the sample mean? The
answeris simple: by giving the empirical standard error of the mean distribution.

rows = np. random . choice (df . index . values , 200)

sampled_df = df.ix[rows]

est_sigma_mean = sampled_df .std () /math . sgrt (200)

print ' Direct estimation of SE from one sample of
200 elements :’, est_sigma_mean [0]

print ’ Estimation of the SE by simulating 10000 samples of
200 elements :/, np . array (means). std ()

Out[3]: Direct estimation of SE from one sample of 200 elements: 0.6536Estimation of the SE by

simulating 10000 samples of 200
elements: 0.6362

Unlike the case of the sample mean, there is no formula for the standard error
ofother interesting sample estimates, such as the median.

The Computationally Intensive Approach
Let us consider from now that our full dataset is a sample from a hypothetical
population (this is the most common situation when analyzing real data!).

A modern alternative to the traditional approach to statistical inference is the
bootstrapping method [2]. In the bootstrap, we draw n observations with
replacement from the original data to create a bootstrap sample or resample. Then,
we can calculate the mean for this resample. By repeating this process a large
number of times, we can build a good approximation of the mean sampling
distribution (see Fig. 4.2).

56 4 Statistical Inference

Number of accidents

5 10 15 20 25 30 35 40 45 50

Fig.4.2 Mean sampling distribution by bootstrapping. In red, the mean value of this distribution

In[4]: def meanBootstrap (X, numberb):
x = [0]* numberb
for i in range (numberb):
sample = [X[]j]
for j
in np. random . randint (len (X), size =len (X))
]
x[1i] = np.mean (sample)

return x
m = meanBootstrap (accidents , 10000)
print "Mean estimate :", np.mean (m)

Out[4]: Mean estimate: 25.9094

The basic idea of the bootstrapping method is that the observed sample
contains sufficient information about the underlying distribution. So, the
information we canextract from resampling the sample is a good approximation of
what can be expected from resampling the population.

The bootstrapping method can be applied to other simple estimates such as
the median or the variance and also to more complex operations such as
estimates of censored data.?

Confidence Intervals

A point estimate O, such as the sample mean, provides a single plausible value
fora parameter. However, as we have seen, a point estimate is rarely perfect;
usually there is some error in the estimate. That is why we have suggested using the
standard error as a measure of its variability.

Instead of that, a next logical step would be to provide a plausible range of
valuesfor the parameter. A plausible range of values for the sample parameter is
called a confidence interval.

In[5]:

We will base the definition of confidence interval on two ideas:

1. Our point estimate is the most plausible value of the parameter, soit makes
senseto build the confidence interval around the point estimate.

2. The plausibility of a range of values can be defined from the sampling
distributionof the estimate.

For the case of the mean, the Central Limit Theorem states that its
samplingdistribution is normal:

Theorem 4.1 Given a population with a finite mean u and a finite non-zero variance o
2 the sampling distribution of the mean approaches a normal distribution with a
mean of pand a variance of */n as n, the sample size, increases.

In this case, and in order to define an interval, we can make use of a well-
knownresult from probability that applies to normal distributions: roughly 95% of
the timeour estimate will be within 1.96 standard errors of the true mean of the
distribution. If the interval spreads out 1.96 standard errors from a normally
distributed point estimate, intuitively we can say that we are roughly 95%
confident that we have captured the true parameter.

Cl =[0-1.96 x SE, O +1.96 x SE]

m = accidents .mean ()

se = accidents .std () /math . sqrt (len (accidents))
ci = [m - se*1.96, m + se*1.96]

print "Confidence interval :", ci

Out[5]: Confidence interval: [24.975, 26.8440]

Suppose we want to consider confidence intervals where the confidence level
issomewhat higher than 95%: perhaps we would like a confidence level of 99%.
To create a 99% confidence interval, change 1.96 in the 95% confidence interval
formula to be 2.58 (it can be shown that 99% of the time a normal random
variable will be within 2.58 standard deviations of the mean).

In general, if the point estimate follows the normal model with standard error SE,
then a confidence interval for the population parameter is

O+zxSE
where z corresponds to the confidence level selected:

Confidence Level 90% 95% 99% 99.9%

zValue 1.65 1.96 2.58 3.291

This is how we would compute a 95% confidence interval of the sample mean
using bootstrapping:

1. Repeat the following steps for a large number, s, of times:

a. Draw n observations with replacement from the original data to create
abootstrap sample or resample.
b. Calculate the mean for the resample.

2. Calculate the mean of your s values of the sample statistic. This process
givesyou a “bootstrapped” estimate of the sample statistic.

3. Calculate the standard deviation of your s values of the sample statistic.
Thisprocess gives you a “bootstrapped” estimate of the SE of the sample
statistic.

4. Obtain the 2.5th and 97.5th percentiles of your s values of the sample statistic.

In[6]: m = meanBootstrap (accidents , 10000)
sample mean = np.mean (m)
sample se = np . std (m)
print estimate :", sample mean
print the estimate :", sample_se
ci = [np.percentile (m, 2.5), np.percentile (m, 97.5)1]
print "Confidence interval :", ci

Out[6]: Mean estimate: 25.9039
SE of the estimate: 0.4705
Confidenceinterval: [24.9834, 26.8219]

But What Does “95% Confident” Mean?
The real meaning of “confidence” is not evident and it must be understood from
thepoint of view of the generating process.

Suppose we took many (infinite) samples from a population and built a 95%
confidence interval from each sample. Then about 95% of those intervals would
contain the actual parameter. In Fig. 4.3 we show how many confidence intervals
computed from 100 different samples of 100 elements from our dataset contain
the real population mean. If this simulation could be done with infinite different
samples, 5% of those intervals would not contain the true mean.

So, when faced with a sample, the correct interpretation of a confidence
intervalis as follows:

In 95% of the cases, when | compute the 95% confidence interval from this sample, the
true mean of the population will fall within the interval defined by these bounds: +1.96 x
SE.

We cannot say either that our specific sample contains the true parameter or
that the interval has a 95% chance of containing the true parameter. That
interpretation would not be correct under the assumptions of traditional

statistics.

Hypothesis Testing

Giving a measure of the variability of our estimates is one way of producing a
statistical proposition about the population, but not the only one. R.A. Fisher
(1890-1962) proposed an alternative, known as hypothesis testing, that is based
on the concept of statistical significance.

Let us suppose that a deeper analysis of traffic accidents in Barcelona results in
a difference between 2010 and 2013. Of course, the difference could be caused
only by chance, because of the variability of both estimates. But it could also be
the case that traffic conditions were very different in Barcelona during the two
periods and, because of that, data from the two periods can be considered as
belonging to two different populations. Then, the relevant question is: Are the
observed effects real ornot?

Technically, the question is usually translated to: Were the observed effects statis-
tically significant?

The process of determining the statistical significance of an effect is called hypoth-
esis testing.

This process starts by simplifying the options into two competing hypotheses:

+ Ho: The mean number of daily traffic accidents is the same in 2010 and 2013
(there is only one population, one true mean, and 2010 and 2013 are just
differentsamples from the same population).

+ Ha: The mean number of daily traffic accidents in 2010 and 2013 is different
(2010 and 2013 are two samples from two different populations).

Confidence interval for the samples’ mean estimate

0 20 10 60 80 100
Sample (with 100 observations).

Fig. 4.3 This graph shows 100 sample means (green points) and its corresponding confidence
intervals, computed from 100 different samples of 100 elements from our dataset. It can be
observed that a few of them (those in red) do not contain the mean of the population (black
horizontal line)

60 4 Statistical Inference

We call Ho the null hypothesis and it represents a skeptical point of view: the
effect we have observed is due to chance (due to the specific sample bias). Ha is
thealternative hypothesis and it represents the other point of view: the effect is
real.

The general rule of frequentist hypothesis testing: we will not discard Ho (and
hence we will not consider H,) unless the observed effect is implausible under
Ho.

Testing Hypotheses Using Confidence Intervals

We can use the concept represented by confidence intervals to measure the
plausi-bility of a hypothesis.

We can illustrate the evaluation of the hypothesis setup by comparing the
meanrate of traffic accidents in Barcelona during 2010 and 2013:

In[7]: data = pd.read_csv (" files /ch04 /ACCIDENTS GU BCN_ 2010 .csv",
encoding="'1latin-1")
Create a new column which is the date
data [’ Date’] = data[’Dia de mes’]. apply (lambda x: str (x))
+ -+
data [’ Mes de any’]. apply (lambda x: str (x))
data2 = data[’Date’]
counts2010 = data[’Date’].value_counts ()
print 7 2010: Mean’, counts2010 .mean ()
data = pd. read csv (" files /ch04 /ACCIDENTS GU_BCN_2013 .csv",
encoding="'latin-1")
Create a new column which is the date
data [’ Date’] = data[’Dia de mes’]. apply (lambda =x: str (x))
+ -+
data [’ Mes de any’]. apply (lambda x: str (x))
data2 = data [’ Date’]
counts2013 = data[’Date’].value_counts ()
print 2013: Mean’, counts2013 .mean ()

Out[7]: 2010: Mean 24.8109
2013: Mean 25.9095

This estimate suggests that in 2013 the mean rate of traffic accidents in
Barcelonawas higher than it was in 2010. But is this effect statistically significant?

Based on our sample, the 95% confidence interval for the mean rate of
trafficaccidents in Barcelona during 2013 can be calculated as follows:

In[8]: n = len (counts2013)
mean = counts2013 .mean ()
s = counts2013 . std ()
ci = [mean - s*1.96/ np.sqgrt (n), mean + s *1.96/ np.sqgrt (n)]
print ’ 2010 accident rate :/, counts2010 . mean ()
print ’ 2013 accident rate 7, counts2013 . mean ()

print ’CI for 2013:’',ci

4.4 Hypothesis Testing 61

Out[8]: 2010 accident rate estimate: 24.8109
2013 accident rate estimate: 25.9095
Cl for 2013:[24.9751, 26.8440]

Because the 2010 accident rate estimate does not fall in the range of plausible
values of 2013, we say the alternative hypothesis cannot be discarded. That is, it
cannot be ruled out that in 2013 the mean rate of traffic accidents in Barcelona
washigher than in 2010.

Interpreting Cl Tests

Hypothesis testing is built around rejecting or failing to reject the null hypothesis.
That is, we do not reject Hp unless we have strong evidence against it. But what
precisely does strong evidence mean? As a general rule of thumb, for those cases
where the null hypothesis is actually true, we do not want to incorrectly reject Ho
more than 5% of the time. This corresponds to a significance level of & 0.05. In
this case, the correct interpretation of our test is as follows:

If we use a 95% confidence interval to test a problem where the null hypothesis is true,
we will make an error whenever the point estimate is at least 1.96 standard errors away
from thepopulation parameter. This happens about 5% of the time (2.5% in each tail).

Testing Hypotheses Using p-Values

A more advanced notion of statistical significance was developed by R.A. Fisher in
the 1920s when he was looking for a test to decide whether variation in crop
yields was due to some specific intervention or merely random factors beyond
experimental control.

Fisher first assumed that fertilizer caused no difference (null hypothesis) and
thencalculated P, the probability that an observed yield in a fertilized field would
occurif fertilizer had no real effect. This probability is called the p-value.

The p-value is the probability of observing data at least as favorable to the
alter-native hypothesis as our current dataset, if the null hypothesis is true. We
typically use a summary statistic of the data to help compute the p-value and
evaluate the hypotheses.

Usually, if P is less than 0.05 (the chance of a fluke is less than 5%) the result is
declared statistically significant.

It must be pointed out that this choice is rather arbitrary and should not be
takenas a scientific truth.

The goal of classical hypothesis testing is to answer the question, “ Given a sample
and an apparent effect, what is the probability of seeing such an effect by
chance?’Here is how we answer that question:

. The first step is to quantify the size of the apparent effect by choosing a test
statistic. In our case, the apparent effect is a difference in accident rates, so a

natural choicefor the test statistic is the difference in means between the two
periods.

62 4 Statistical Inference

. The second step is to define a null hypothesis, which is a model of the system
based on the assumption that the apparent effect is not real. In our case, the

null hypothesis is that there is no difference between the two periods.

. The third step is to compute a p-value, which is the probability of seeing the
apparent effect if the null hypothesis is true. In our case, we would compute

the difference in means, then compute the probability of seeing a difference as
big, orbigger, under the null hypothesis.

. The last step is to interpret the result. If the p-value is low, the effect is said to
be statistically significant, which means that it is unlikely to have occurred by

chance. In this case we infer that the effect is more likely to appear in the larger
population.

In our case, the test statistic can be easily computed:

In [3]: m= len (counts2010)

n= len (counts2013)
p = (counts2013 .mean () - counts2010 .mean ())
print 'm:’, m, ’'n:’' n

r
print ’'mean differenc

Out[9]: m:365n:365
mean difference: 1.0986

To approximate the p-value, we can follow the following procedure:

1. Pool the distributions, generate samples with size n and compute the
differencein the mean.

2. Generate samples with size n and compute the