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DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

Vision 

To acknowledge quality education and instill high patterns of discipline making the 

students   technologically   superior   and   ethically     strong     which     involves the 

improvement in the quality of life in human race. 

 
Mission 

To achieve and impart holistic technical education using the best of infrastructure, 

outstanding technical and teaching expertise to establish the students into competent 

and confident engineers. 

 Evolving the center of excellence through creative and   innovative   teaching learning 

practicesforpromotingacademicachievementtoproduceinternationallyacceptedcompetiti

veand world class professionals. 



 

 

 

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) 

 
PEO1–ANALYTICALSKILLS 

To facilitate the graduates with the ability to visualize, gather information, articulate, analyze, 

solve complex problems, and make decisions. These are essential to address the challenges of 

complex and computation intensive problems increasing their productivity. 

PEO2–TECHNICALSKILLS 

Tofacilitatethegraduateswiththetechnicalskillsthatpreparethemforimmediateemploymentandpurs

ue certification providing a deeper understanding of the technology in advanced areas of 

computer science and related fields, thus encouraging pursuing higher education and research 

based on their interest. 

PEO3–SOFTSKILLS 

To facilitate the graduates with the soft skills that include fulfilling the mission, setting goals, 

showing  self confidence by communicating effectively, having a positive attitude, get 

involved in team-work, being a leader, managing their career and their life. 

PEO4–PROFESSIONALETHICS 

To facilitate the graduates with the knowledge of professional and ethical responsibilities by 

paying attention to grooming, being conservative with style, following dress codes, safety 

codes, and adapting them to technological advancements. 

 

PROGRAM SPECIFIC OUTCOMES (PSOs) 

After the completion of the course, B.Tech Computer Science and Engineering, the graduates 

will have the following Program Specific Outcomes: 

 
1. FundamentalsandcriticalknowledgeoftheComputerSystem:-

AbletoUnderstandtheworkingprinciples of the computer System and its components, Apply 

the knowledge to build, asses, and analyze the software and hardware aspects of it. 

 
2. The comprehensive and Applicative knowledge of Software Development: Comprehensive  

skills of Programming Languages, Software process models, methodologies, and able to plan,  

develop, test, analyze,  and  manage  the  software  and  hardware  intensive  systems in 

heterogeneous platforms individually or working in teams. 

 
3. Applications of Computing Domain & Research: Able to use the professional, managerial, 

interdisciplinary skill set, and domain specific tools in development processes, identify their 

search gaps, and provide innovative solutions to them. 



 

 

 

PROGRAM OUTCOMES (POs) 

Engineering Graduates should possess the following: 

 

1. Engineering knowledge:  Apply the  knowledge  of  mathematics,  science, engineering 

fundamentals,andanengineeringspecializationtothesolutionofcomplexengineeringproblems.  

 

2. Problem analysis: Identify, formulate, review research   literature,   and   analyze complex 

engineering  problems  reaching  substantiated  conclusions  using   first principles of 

mathematics, natural sciences, and engineering sciences. 

 

3. Design / development  of solutions:  Design  solutions for complex

 engineeringproblemsanddesignsystemcomponentsorprocessesthatmeetthespecifiedneedswit

happropriateconsideration for the public health  and safety, and the 

 cultural, societal, and environmental considerations. 

 

4. Conduct investigations of complex problems: Use research-based knowledge and research 

methods including design of experiments, analysis and interpretation of data, and synthesis of 

the information to provide valid conclusions. 

 

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern 

engineering and IT tools including prediction and modeling to complex engineering activities 

with an understanding of the limitations. 

 

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess 

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to 

the professional engineering practice. 

 

7. Environment and sustainability: Understand the impact of the professional engineering 

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need 

for sustainable development. 

 
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and 
norms of the engineering practice. 

 
9. Individual and team work: Function effectively as an individual, and as member or leader in 
diverse teams, and in multidisciplinary settings. 

 

10. Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend and write 

effective reports and design documentation, make effective presentations, and give and 

receive clear instructions. 

 

11. Project management and finance: Demonstrate knowledge and understanding of the 

engineering and management principles and apply these to one’s own work, as a member and 

leader in a team, to manage projects and in multidisciplinary environments. 

 
12. Life-long learning: Recognize the need for, and have the preparation and ability to engage 
in independent and life-long learning in the broadest context of technological change. 
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CourseObjectives: 

 

1. Totrainthestudents tounderstanddifferenttypesofAIagents. 

2. TounderstandvariousAIsearchalgorithms. 

3. Fundamentalsofknowledgerepresentation,building ofsimpleknowledge-basedsystemsand toapply k 
 knowledge representation. 

4. Fundamentalsofreasoning 

5. StudyofMarkovModels enablethestudentreadytostepintoappliedAI. 

 

 

 
UNIT–I: 

Language Translation: Introduction, Basics, Necessity, Steps involved in a typical language 

processing system, Types of translators, Compilers: Overview, Phases, Pass and Phases of 

translation, bootstrapping, data structures in compilation 
Lexical Analysis (Scanning): Functions of Scanner, Specification of tokens: Regular expressions 

and Regular grammars for common PL constructs. Recognition of Tokens: Finite Automata in 

recognitionand generation of tokens. Scanner generators: LEX-Lexical Analyzer Generators,LEX. 
Syntax Analysis (Parsing) : Functions of a parser, Classification of parsers. Context free grammars 

in syntax specification, benefits and usage in compilers. 

 

UNIT–II: 

Top down parsing –Definition, types of top down parsers: Backtracking, Recursive descent, 

Predictive, LL (1), Preprocessing the grammars used in top down parsing, Error recovery, and 

Limitations. Bottom up parsing: Definition,Handle pruning. Types of bottom up parsers: Shift 
Reduce parsing, LR parsers: LR(0), SLR, CALR and LALR parsing, Error recovery, Handling 

ambiguous grammar, Parser generators: YACC-yet another compiler compiler. . 

 

UNIT–III: 
Semantic analysis: Attributed grammars, Syntax directed definition and Translation schemes, Type 

checker: functions, type expressions, type systems, types checking of various constructs. 

Intermediate Code Generation: Functions, intermediate code forms- syntax tree, DAG, Polish 
notation, and Three address codes. Translation of different source language constructs into 

intermediate code. 

Symbol Tables: Definition, contents, and formats to represent names in a Symbol table. Different 

approaches of symbol tableimplementationfor blockstructuredandnonblockstructuredlanguages, such 

as Linear Lists, SelfOrganized Lists, and Binary trees, Hashing based STs. 

 



 

 

UNIT–IV: 

Runtime Environment: Introduction, Activation Trees, Activation Records and Control stacks. 

Runtimestorageorganization:Static,StackandHeapstorageallocation. Storageallocationfor arrays, 
strings, and records etc. 

 

Code optimization: goals and Considerations, and Scope of Optimization: Machine Dependent and 

Independent Optimization, Localoptimizations, DAGs, Loop optimization, Global Optimizations. 
Commonoptimizationtechniques:Folding,Copypropagation,CommonSubexpressioneliminations, 

Code motion, Frequency reduction, Strength reduction etc. 

 

UNIT–V: 

Control flow and Data flow analysis: Flow graphs, Data flow equations, global optimization: 

Redundant sub expression elimination, Induction variable eliminations, Live Variable analysis. 
Object code generation: Object code forms, machine dependent code optimization, register 

allocation and assignment. Algorithms- generic code generation algorithms and other modern 

algoritms, DAG for register allocation. 
 

 

 

TEXTBOOKS: 

1. Compilers,Principle,Techniques,andTools.–Alfred.VAho,MonicaS.Lam,RaviSethi,Jeffrey 

D.Ullman;2ndEdition,PearsonEducation. 
2. ModernCompilerimplementationinC,-AndrewN.AppelCambridgeUniversityPress. 

 

REFERENCES: 

1. lex&yacc,-JohnRLevine,TonyMason, DougBrown;O’reilly. 

2. CompilerConstruction,-LOUDEN,Thomson. 
3. Engineeringacompiler–Cooper&Linda,Elsevier 

4. ModernCompilerDesign–DickGrune,HenryE.Bal,CarielTHJacobs, WileyDreatech 

 

Outcomes: 

Bytheendof thesemester,thestudentwillbeableto: 

 Understandthenecessityandtypesofdifferentlanguagetranslatorsinuse. 

 Applythetechniquesanddesigndifferentcomponents(phases)ofacompilerbyhand. 

 Solveproblems,WriteAlgorithms,Programsandtestthemfortheresults. 

Us 
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LanguageTranslation 01–03 

Compilers 04–08 

LexicalAnalysis(Scanning) 09–15 

SyntaxAnalysis (Parsing) 16–17 

II 
Topdownparsing 18–33 

Bottomup parsing 34–59 

 

 

III 

Semanticanalysis 60–67 

Intermediate CodeGeneration 68–92 

SymbolTables 93–106 

IV 

RuntimeEnvironment 107–122 

Codeoptimization 122-134 
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ControlflowandDataflowanalysis 135-141 

Objectcodegeneration 142-152 
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INTRODUCTIONTOLANGUAGEPROCESSING: 

AsComputersbecame inevitableand indigenouspartofhumanlife, and severallanguages 

withdifferentandmoreadvancedfeaturesareevolvedintothisstreamtosatisfyorcomforttheuser in 

communicating with the machine , the development of the translators or mediator Software‘s 

have become essential to fill the huge gap between the human and machine understanding. This 

process is called Language Processing to reflect the goaland intent ofthe process. On the wayto 

this process to understand it in a better way, we have to be familiar with some key terms and 

concepts explained in following lines. 

LANGUAGETRANSLATORS: 

Is a computer programwhich translates a program written in one (Source) language to its 

equivalentprograminother[Target]language.TheSourceprogramisahighlevellanguagewhereas the 

Target language can be any thing from the machine language of a target machine (between 

Microprocessor to Supercomputer) to another high level language program. 

TwocommonlyUsedTranslatorsareCompiler andInterpreter 

1. Compiler:Compilerisaprogram,readsprograminonelanguagecalledSourceLanguage 

andtranslatesintoitsequivalent programinanotherLanguagecalledTarget Language, in 

addition to this its presents the error information to the User. 

 

 

 

 

 
 Ifthetarget programisanexecutable machine-languageprogram, it canthenbecalled by 

the users to process inputs and produce outputs. 

 
Input Output 

 

Figure1.1:RunningthetargetProgram 
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Interpreter 

           

 
2. Interpreter:Aninterpreterisanothercommonlyusedlanguageprocessor.Insteadofproducing a 

target program as a single translation unit, an interpreter appears to directly execute the 
operations specified in the source program on inputs supplied by theuser. 

 

SourceProgram 

Input Output 

 
Figure1.2:Running thetargetProgram 

 

LANGUAGE PROCESSING SYSTEM: 

Basedonthe inputthetranslatortakesandtheoutputit produces,alanguagetranslatorcanbe called 

as any one of the following. 

Preprocessor:Apreprocessortakestheskeletalsourceprogramasinput andproducesanextended 

version of it, which is the resultant of expanding the Macros, manifest constants if any, and 

includingheader filesetcinthesourcefile.Forexample,theCpreprocessorisa macro processor 

thatisusedautomaticallybytheCcompilertotransformoursourcebeforeactualcompilation.Over and 

above a preprocessor performs the following activities: 

Collectsallthemodules,filesincaseifthesourceprogramisdivided intodifferent modules stored 

at different files. 

Expandsshorthands/macrosintosourcelanguagestatements. 

Compiler: Is atranslator that takes as input a source program written in high level language and 

convertsitinto itsequivalent target programinmachine language. Inadditiontoabovethecompiler also 

Reportstoitsuserthepresenceoferrorsinthesourceprogram. 

Facilitatestheuserinrectifyingtheerrors,andexecutethecode. 

Assembler:Isaprogramthattakesas input anassemblylanguageprogramandconverts it intoits equivalent 

machine language code. 

Loader/Linker: This isaprogramthattakesasinput arelocatable codeand collectsthe library 

functions, relocatable object files, and produces its equivalent absolute machine code. 

Specifically, 

Loadingconsistsoftakingtherelocatable machinecode,alteringtherelocatableaddresses, and 

placing the altered instructions and data in memoryat the proper locations. 

Linkingallowsustomakeasingleprogramfromseveralfilesofrelocatable machine code. These 

files may have been result of several differentcompilations, one or more may be 

libraryroutines provided by the system available to anyprogramthat needs them. 
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Loader/Linker 

Compiler 

 

In addition to these translators, programs like interpreters, text formatters etc., may be used in 

language processing system. To translate a program in a high level language program to an 

executable one, the Compiler performs by default the compile and linking functions. 

Normally the steps in a language processing system includes Preprocessing the skeletal Source 

program which produces an extended or expanded source program or a ready to compile unit of 

the source program, followed by compiling the resultant, then linking / loading , and finally its 

equivalentexecutablecodeisproduced.AsIsaidearliernotallthesestepsaremandatory.Insome cases, 

the Compiler only performs this linking and loading functions implicitly. 

The steps involved in a typical language processing system can be understood with following 

diagram. 

SourceProgram [Example:filename.C] 

 

 

Preprocessor 

 
ModifiedSourceProgram [Example:filename.C] 

 

TargetAssemblyProgram 

 
RelocatableMachineCode[Example: filename.obj] 

 

Library files 

RelocatableObjectfiles 

TargetMachineCode [Example: filename.exe] 

Figure1.3:ContextofaCompilerinLanguageProcessingSystem 

TYPESOF COMPILERS: 

Basedonthespecific input ittakesandtheoutputitproduces,theCompilerscanbeclassified into 

the following types; 

TraditionalCompilers(C,C++,Pascal):TheseCompilersconvert asourceprograminaHLL into its 

equivalent in native machine code or object code. 

 

 

 

Assembler 
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Interpreters(LISP, SNOBOL, Java1.0): These Compilers first convert Source code into 

intermediate code, and then interprets (emulates) it to its equivalent machine code. 

Cross-Compilers:Thesearethecompilersthatrunononemachineandproducecodeforanother 

machine. 

Incremental Compilers: These compilers separate the source into user defined–steps; 

Compiling/recompiling step- by- step; interpreting steps in a given order 

Converters (e.g. COBOL to C++): These Programs will be compiling from one high level 

language to another. 

Just-In-Time (JIT) Compilers (Java, Micosoft.NET): These are the runtime compilers from 

intermediate language (byte code, MSIL) to executable code or native machine code. These 

perform type –based verification which makes the executable code more trustworthy 

Ahead-of-Time (AOT) Compilers (e.g., .NET ngen): These are the pre-compilers to the native 

code for Java and .NET 

BinaryCompilation:Thesecompilers willbecompilingobject codeofoneplatformintoobject code of 

another platform. 

PHASESOFACOMPILER: 

Due to the complexity of compilation task, a Compiler typically proceeds in a Sequence of 

compilation phases. The phases communicate with each other via clearly defined interfaces. 

GenerallyaninterfacecontainsaDatastructure(e.g.,tree),Setofexportedfunctions.Eachphase 

worksonanabstract intermediate representationofthesourceprogram, notthesourceprogram text 

itself (except the first phase) 

Compiler Phases arethe individual modules which are chronologicallyexecutedto performtheir 

respective Sub-activities, and finally integrate the solutions to give target code. 

It is desirable to have relativelyfew phases, since it takes time to read and write immediate files. 

Following diagram(Figure1.4) depictsthe phasesofa compiler through which it goesduring the 

compilation. There fore a typical Compiler is having the following Phases: 

1. LexicalAnalyzer(Scanner),2.SyntaxAnalyzer(Parser),3.SemanticAnalyzer, 

4.IntermediateCodeGenerator(ICG),5.CodeOptimizer(CO),and6.CodeGenerator(CG) 

In addition to these, it also has Symbol table management, and Error handler phases. Not all 

the phases are mandatory in everyCompiler. e.g, Code Optimizer phase is optional in some 
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cases.Thedescriptionisgiveninnextsection. 

 

ThePhasesofcompilerdivided intotwo parts,firstthreephaseswearecalledasAnalysis part 

remaining three called as Synthesis part. 

 

Figure1.4:PhasesofaCompiler 

PHASE,PASSESOFACOMPILER: 

In some application we can have a compiler that is organized into what is called passes. 

Where a pass is a collection of phases that convert the input from one representation to a 

completelydeferentrepresentation. Eachpassmakesacompletescanoftheinput andproducesits 

output to be processed bythe subsequent pass. For example a two pass Assembler. 

THEFRONT-END&BACK-ENDOFACOMPILER 
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All of these phases of a general Compiler are conceptually divided into The Front-end, 

andTheBack-end.Thisdivisionisduetotheir dependenceoneithertheSourceLanguageorthe Target 

machine. This model is called an Analysis & Synthesis model ofa compiler. 

The Front-end of the compiler consists of phases that depend primarily on the Source 

language and are largely independent on the target machine. For example, front-end of the 

compiler includes Scanner, Parser, Creation of Symbol table, Semantic Analyzer, and the 

Intermediate Code Generator. 

The Back-end of the compiler consists of phases that depend on the target machine, and 

thoseportionsdon‘t dependent ontheSourcelanguage, just theIntermediate language. Inthiswe 

havedifferentaspectsofCodeOptimizationphase,codegenerationalongwiththenecessaryError 

handling, and Symbol table operations. 

LEXICALANALYZER(SCANNER):TheScanneristhefirstphasethatworksasinterface 

betweenthecompilerandtheSourcelanguageprogramandperformsthefollowingfunctions: 

ReadsthecharactersintheSourceprogramandgroupsthemintoastreamoftokensinwhich each 

token specifies a logically cohesive sequence of characters, such as an identifier , a 
Keyword , a punctuation mark, a multi character operator like := . 

Thecharactersequenceforming a tokeniscalled alexeme ofthetoken. 

TheScannergeneratesatoken-id,andalso entersthatidentifiersname intheSymbol table if 
it doesn‘t exist. 

AlsoremovestheComments,andunnecessaryspaces. 

Theformatofthetokenis<Token name,Attributevalue> 

SYNTAXANALYZER(PARSER):TheParserinteractswiththeScanner,anditssubsequent phase 

Semantic Analyzer and performs the following functions: 

Groupstheabovereceived, andrecordedtokenstreamintosyntacticstructures,usually into a 

structure called Parse Tree whose leaves are tokens. 

The interiornodeofthistreerepresentsthestreamoftokensthat logicallybelongs together. 

Itmeansitchecksthesyntaxofprogramelements. 

SEMANTICANALYZER: This phase receives the syntax tree as input, and checks the 

semanticallycorrectnessoftheprogram.Thoughthetokensarevalidandsyntacticallycorrect,it 
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mayhappenthattheyarenotcorrectsemantically. Thereforethesemanticanalyzerchecksthe 

semantics (meaning) of the statements formed. 

TheSyntacticallyandSemanticallycorrect structuresareproducedhereinthe formofa 

Syntax tree or DAG or some other sequential representation like matrix. 

INTERMEDIATE CODE GENERATOR(ICG): This phase takes the syntactically and 

semantically correct structure as input, and produces its equivalent intermediate notation of the 

source program. The Intermediate Code should have two important properties specified below: 

Itshould beeasytoproduce,andEasytotranslateintothetargetprogram.Example 

intermediate code forms are: 

Three addresscodes, 

 

Polishnotations,etc. 

CODEOPTIMIZER: Thisphase isoptional in some Compilers, but so useful and beneficial in 

terms of saving development time, effort, and cost. This phase performs the following specific 

functions: 

Attemptsto improvetheICso asto havea faster machinecode.Typicalfunctions include –

LoopOptimization, Removalofredundant computations, Strengthreduction, Frequency 

reductions etc. 

Sometimesthedatastructuresusedinrepresentingthe intermediateforms mayalsobe 

changed. 

CODE GENERATOR: This is the final phase of the compiler and generates the target code, 

normallyconsistingoftherelocatable machinecodeorAssemblycodeorabsolutemachinecode. 

Memorylocationsareselectedforeachvariable used,andassignmentofvariablesto registers 

is done. 

Intermediateinstructionsaretranslated intoasequenceofmachineinstructions. 

 

TheCompileralso performstheSymboltablemanagementandErrorhandlingthroughoutthe 

compilation process. Symbol table is nothing but a data structure that stores different source 

language constructs, and tokens generated during the compilation. These two interact with all 

phases of the Compiler. 

 

 

 

 

 



A.Y 2024-25 COMPILER DESIGN 

8|Page DEPARTMENT OF CSE 

 

  

 

Forexamplethesourceprogramisanassignment statement;thefollowing figureshowshowthe phases 

of compiler will process the program. 

TheinputsourceprogramisPosition=initial+rate*60 
 

              

 
Figure1.5:TranslationofanassignmentStatement 
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LEXICALANALYSIS: 

Asthe first phaseofacompiler, the maintaskofthelexicalanalyzeristoreadthe input 

charactersofthesourceprogram, grouptheminto lexemes, andproduceasoutputtokens for each 

lexeme inthe source program. This streamoftokens is sent to the parser for syntaxanalysis. It is 

common for the lexical analyzer to interact with the symbol table as well. 

Whenthe lexicalanalyzer discoversa lexemeconstitutinganidentifier,it needsto enter that 

lexeme into the symboltable. This process is shown in the following figure. 

 

 
Figure1.6:LexicalAnalyzer 

. When lexical analyzer identifies the first token it will send it to the parser, the parser 

receivesthetokenandcallsthe lexicalanalyzertosendnexttokenbyissuingthegetNextToken() 

command. This Process continues until the lexical analyzer identifies all the tokens. During this 

process the lexical analyzer will neglect or discard the white spaces and comment lines. 

TOKENS,PATTERNS ANDLEXEMES: 

A token is a pair consistingofatokennameandanoptionalattribute value.The tokenname is an 

abstract symbolrepresenting a kind of lexical unit, e.g., a particular keyword, or a sequence of 

input characters denoting an identifier. The token names are the input symbols that the parser 

processes.Inwhatfollows, weshallgenerallywritethenameofatokeninboldface. Wewilloften refer to 

a token by its token name. 

Apattern isadescriptionoftheformthatthelexemesofatokenmaytake[ormatch]. Inthe case ofa 

keyword as atoken, the pattern is just the sequence ofcharactersthatformthe keyword. For 

identifiersandsomeothertokens,thepatternisa morecomplexstructurethatis matched bymany 

strings. 
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Alexeme isasequenceofcharactersinthesourceprogramthat matchesthepatternfora token 

and is identified by the lexical analyzer as an instance of that token. 

Example:InthefollowingClanguagestatement, printf 

("Total = %d\n‖, score) ; 

bothprintfandscorearelexemesmatchingthepattern fortokenid,and"Total=%d\n‖ is a 

lexeme matching literal [or string]. 

 

 

Figure1.7:ExamplesofTokens 

 

LEXICALANALYSISVsPARSING: 

 

Thereareanumberofreasonswhytheanalysisportionofacompiler isnormallyseparated into lexical 

analysis and parsing (syntax analysis) phases. 

1.Simplicityofdesignisthemostimportantconsideration. TheseparationofLexicaland 

Syntactic analysis often allows us to simplify at least one ofthesetasks.For example,a 

parser thathad to deal with comments and whitespace as syntactic units would be 

considerably more complex than one that can assume commentsand whitespace have 

already been removed by the lexicalanalyzer. 

2. Compiler efficiency is improved. A separate lexical analyzer allows us to apply 

specialized techniques that serve only the lexical task, not the job of parsing. In addition, 

specialized buffering techniques for reading input characters can speed up the compiler 

significantly. 

3.Compilerportabilityisenhanced:Input-device-specificpeculiaritiescanbe 

restricted to the lexical analyzer. 
 

 

 



A.Y 2024-25 
COMPILER DESIGN 

11|Pa ge DEPARTMENT OF CSE 

 

 

 

INPUTBUFFERING: 

 
Before discussing the problemofrecognizinglexemesinthe input,let us examine some 

waysthatthesimplebutimportanttaskofreadingthesourceprogramcanbespeeded.This 

taskismadedifficult bythe factthat weoftenhavetolookoneormorecharactersbeyond thenext 

lexemebeforewecanbesurewehavetheright lexeme. Therearemanysituationswhereweneed tolookat 

leastoneadditionalcharacterahead. Forinstance, wecannot besure we'veseentheend ofan identifier 

until we see a character that is not a letter or digit, and therefore is not part ofthe lexeme for 

id.InC, single-characteroperators like-,=,or<could also be the beginning ofa two-character 

operator like ->, ==, or <=. Thus, we shall introduce a two-buffer scheme that handles large look 

aheads safely. We then consider an improvement involving "sentinels" that saves time checking 

for the ends of buffers. 

BufferPairs 

Because of the amountof time taken toprocess characters and thelarge number of characters that 

must be processed during the compilation of a large source program, specialized buffering 

techniques have been developed to reduce the amount of overhead required to process a single 

input character. An important scheme involves two buffers that are alternately reloaded. 

 

Figure1.8:UsingaPairofInputBuffers 

EachbufferisofthesamesizeN,andNisusuallythesizeofadisk block,e.g.,4096bytes. Using 

one systemread command we can read N characters in toa buffer,rather than using one system 

call per character. If fewer than N characters remain in the input file, then a special character, 

represented by eof, marks the end of the source file and is different from any possible character 

of the source program. 

Twopointerstotheinputaremaintained: 

1. ThePointerlexemeBegin,marksthebeginningofthecurrent lexeme,whoseextent we 

are attempting to determine. 

2. Pointer forward scans ahead until a pattern match is found; the exact strategy 

wherebythisdeterminationis madewillbecoveredinthebalanceofthischapter. 
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Once the next lexeme is determined, forward is set to the character at its right end. Then, 

after the lexeme is recorded as an attribute value of a token returned to the parser, 1exemeBegin 

is set tothe character immediatelyafter the lexeme just found. In Fig, we see forward has passed 

the end of the next lexeme, ** (the FORTRAN exponentiation operator), and must be retracted 

one position to its left. 

Advancing forwardrequiresthat wefirst testwhether we havereachedtheendof oneof the 

buffers, and if so, we mustreload the other bufferfrom the input, and move forward to the 

beginning ofthe newly loaded buffer. As long aswenever need to lookso far ahead ofthe actual 

lexemethat thesumofthe lexeme's lengthplusthedistancewelookahead isgreaterthanN, we shall 

never overwrite the lexeme in its buffer before determining it. 

SentinelsTo ImproveScannersPerformance: 

If we use the above scheme as described, we must check, each time we advance forward, 

thatwehavenot movedoffoneofthebuffers;ifwedo,thenwe must alsoreloadtheotherbuffer. Thus, for 

each character read, we make two tests: one for the end of the buffer, and oneto determine what 

character is read (the latter may be a multi way branch). We can combine the buffer-end test with 

the test for the current character if we extend each buffer to hold a sentinel character at the end. 

The sentinel is a special characterthat cannot be partofthe source program, andanaturalchoice 

isthecharactereof.Figure1.8showsthesamearrangement asFigure1.7, but with the sentinels added. 

Notethat eof retains its use as a marker for the end of the entire input. 

 

 

 

 

Figure1.8:Sententialattheendofeachbuffer 

Anyeofthatappearsotherthanattheendofabuffermeansthatthe input isat anend. Figure1.9 summarizesthe 

algorithm for advancing forward.Notice howthe first test,whichcanbepart of 
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amultiwaybranchbasedonthecharacterpointedtobyforward,istheonlytest wemake,except in the 

case where we actually are at the end ofa buffer or the end ofthe input. 

switch(*forward++) 

{ 

caseeof:if(forward isatendoffirstbuffer) 

{ 

reloadsecondbuffer; 

forward=beginningofsecond buffer; 

} 

elseif(forwardisatendofsecondbuffer) 

{ 
 

 

 

 

 

 

 

 

 

break; 

} 

reloadfirstbuffer; 

forward=beginningoffirstbuffer; 

} 

else /*eofwithinabuffer markstheendofinput */ 

terminate lexical analysis; 

 

 

 

Figure1.9:useofswitch-caseforthesentential 

SPECIFICATIONOFTOKENS: 

Regular expressions areanimportant notationfor specifyinglexemepatterns. Whiletheycannot express 

allpossiblepatterns, theyareveryeffectiveinspecifyingthosetypes of patterns that weactuallyneedfor 

tokens. 

LEXtheLexicalAnalyzergenerator 

Lex is a toolused to generate lexicalanalyzer, the input notation for the Lex tool is 

referredtoastheLexlanguageandthetoolitselfis theLexcompiler.Behindthescenes,the 

Lexcompilertransformstheinputpatterns intoatransitiondiagramandgeneratescode,ina 

filecalledlex.yy.c, it isacprogramgivenforCCompiler, givestheObject code.Hereweneed to know 

how to write the Lex language. The structure of the Lex program is given below. 
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Declarations 

%% 

Translationrules 

%% 

Auxiliaryfunctionsdefinitions 

 

StructureofLEX Program:ALexprogramhasthefollowingform: 
 

Thedeclarationssection : includesdeclarationsofvariables, manifest constants(identifiers 

declaredtostandforaconstant, e.g.,thenameofatoken), andregular definitions. It appears 

between %{. . .%} 

Inthe Translation rules section, We place PatternActionpairswhere eachpair have the form 

Pattern {Action} 

Theauxiliary function definitionssectionincludesthedefinitionsoffunctionsusedto install 

identifiers and numbers in the Symbol tale. 

LEXProgramExample: 

%{ 

/*definitionsofmanifestconstantsLT,LE,EQ,NE,GT,GE,IF,THEN,ELSE,ID,NUMBER, 
RELOP */ 

%} 

/*regulardefinitions*/ 
 

delim  [\t\n] 

ws { delim}+ 

letter 

digit 

 
[A-Za-z] 

[o-91 

id 
 

{letter}({letter}| {digit})* 

number 
 

{digit}+(\.{digit}+)?(E[+-I]?{digit}+)? 

%% 
  

{ws} 
 

{/*noactionandnoreturn*/} 

if  {return(1F);} 
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then {return(THEN);} 

else {return(ELSE);} 

(id) {yylval=(int)installID();return(1D);} 

(number) {yylval=(int)installNum();return(NUMBER); } 

‖<‖ {yylval=LT;return(REL0P);)} 

—<=‖ {yylval= LE;return(REL0P);} 

―=‖ {yylval= EQ;return(REL0P);} 

―<>‖ {yylval= NE;return(REL0P);} 

―<‖ {yylval=GT;return(REL0P);)} 

―<=‖ {yylval=GE;return(REL0P);} 

%% 

intinstallID0(){/*functiontoinstallthe lexeme,whose first characterispointedto byyytext, and 

whose length is yyleng, into the symbol table and return a pointer thereto 

*/ 

intinstallNum(){/*similarto installID,butputsnumericalconstantsintoaseparatetable*/} 

Figure1.10:LexProgramfortokens commontokens 
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SYNTAXANALYSIS(PARSER) 

THEROLEOFTHEPARSER: 

In our compiler model, the parser obtains a string of tokens from thelexical analyzer,as 

shown in the below Figure, and verifiesthatthestringoftoken names canbe generated by the 

grammarfor the source language.We expect the parser to report any syntax errors in an 

intelligible fashion and to recover from commonly occurring errors to continue processing the 

remainder ofthe program. Conceptually, for well-formed programs, the parser constructs a parse 

tree and passes it to the rest ofthe compiler for further processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure2.1: ParserintheCompiler 

Duringtheprocessofparsing itmayencountersomeerrorandpresenttheerrorinformationback to the 

user 

Syntacticerrorsincludemisplacedsemicolonsorextraormissingbraces;thatis, 

―{" or"}."Asanotherexample,inCorJava,the appearance ofacasestatementwithout anenclosing 

switch is a syntactic error (however, this situationisusuallyallowedbythe parser and caught later 

in the processing, as the compiler attempts to generate code). 

Basedontheway/ordertheParseTreeisconstructed, Parsing isbasicallyclassified into following 

two types: 

1. TopDownParsing:Parsetreeconstructionstartattherootnodeandmovestothe 

children nodes (i.e., top down order). 

2. BottomupParsing:Parsetreeconstructionbegins fromthe leafnodesandproceeds 

towards the root node (called the bottom up order). 
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IMPORTANT(OR)EXPECTEDQUESTIONS 

 

1. WhatisaCompiler?ExplaintheworkingofaCompilerwithyourownexample? 

2. WhatistheLexicalanalyzer?DiscusstheFunctionsofLexicalAnalyzer. 

3. Writeshortnotesontokens,patternandlexemes? 

4. WriteshortnotesonInput bufferingscheme?Howdoyouchangethebasic input 
buffering algorithm to achieve better performance? 

5. Whatdoyou meanbyaLexicalanalyzergenerator?Explain LEXtool. 
 

 

 

 

 

 

ASSIGNMENTQUESTIONS: 

1. Writethedifferencesbetweencompilersandinterpreters? 

2. Writeshortnotesontoken reorganization? 

3. WritetheApplicationsoftheFiniteAutomata? 

4. ExplainHowFiniteautomataareusefulinthelexicalanalysis? 

5. ExplainDFAandNFAwithanExample? 
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TOPDOWNPARSING: 

UNIT-II 

 

 Top-down parsing can be viewed as the problem of constructing a parse tree for the given 

input string, starting from the root and creating the nodes of the parse tree in preorder 

(depth-first left to right). 

Equivalently, top-downparsingcanbeviewedasfindingaleftmostderivationforaninput string. 

Itisclassified intotwodifferent variantsnamely;onewhichusesBackTrackingandtheotheris Non 

Back Tracking in nature. 

NonBackTrackingParsing:Therearetwovariantsofthisparser asgivenbelow. 

1. TableDrivenPredictiveParsing: 

i. LL(1) Parsing 

2. RecursiveDescentparsing 

BackTracking 

1.BruteForcemethod 

NONBACKTRACKING: 

LL(1)ParsingorPredictiveParsing 

LL(1)standsfor,left toright scanofinput,usesaLeft mostderivation, andtheparser takes 

1 symbol as the look ahead symbol fromthe input in taking parsing action decision. 

Anonrecursivepredictiveparsercanbebuilt bymaintainingastackexplicitly,ratherthan 

implicitly via recursive calls. The parser mimics a leftmost derivation. Ifw istheinput that has 

been matchedso far, thenthestackholdsa sequence ofgrammar symbols a such that 

 

Thetable-drivenparserinthefigurehas 

Aninput bufferthatcontainsthestringto beparsed followedbya$Symbol,usedto indicate 

end of input. 

Astack, containinga sequenceofgrammar symbolswitha$atthebottomofthestack, which 
initially contains the start symbol of the grammar on top of$. 

Aparsing table containingtheproductionrulestobeapplied.Thisisatwo dimensional array M 

[Non terminal, Terminal]. 

AparsingAlgorithmthattakesinput Stringanddeterminesifit isconformantto 

Grammar and it uses the parsing table and stack to take such decision. 
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Figure2.2:Modelfortabledrivenparsing 

TheStepsInvolvedInconstructinganLL(1) Parserare: 

1. WritetheContextFreegrammarforgiveninputString 

2. Checkfor Ambiguity.Ifambiguousremoveambiguityfromthegrammar 

3. CheckforLeft Recursion.Removeleftrecursionifitexists. 

4. CheckForLeftFactoring.Performleftfactoringifitcontainscommonprefixesin more 

than one alternates. 

5. ComputeFIRSTandFOLLOWsets 

6. ConstructLL(1) Table 

7. UsingLL(1)AlgorithmgenerateParsetreeastheOutput 

Context Free Grammar (CFG): CFG used to describe or denote the syntax of the 
programming language constructs.The CFG is denoted asG,and defined using a fourtuple 
notation. 

Let GbeCFG,thenG iswrittenas, G=(V,T,P,S) 

Where 

V isa finite set ofNonterminal;Nonterminals are syntactic variablesthat denote setsof 

strings. The setsofstringsdenoted bynonterminalshelp definethe languagegenerated 

bythe grammar. Nonterminals impose a hierarchicalstructureonthe language that 

iskeytosyntaxanalysisandtranslation. 

TisaFinitesetofTerminal;Terminalsarethebasicsymbolsfromwhichstringsareformed. The 

term "token name" is a synonym for '"terminal" and frequently we will use the word 

"token" for terminal when it is clear that we are talking about just the token name. We 

assume that the terminals are the first components of the tokens output by the lexical 

analyzer. 

 S is the Starting Symbol of the grammar, one non terminal is distinguished as the start 
symbol, and the set ofstrings itdenotes isthelanguage generatedbythe grammar. P is finite 
set ofProductions;the productions ofa grammar specifythe manner inwhichthe 
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terminalsandnonterminalscanbecombinedtoformstrings,eachproductionisinα->β form, 

where α is a single non terminal, β is (VUT)*.Each production consists of: 

(a) A non terminal called the head or left side of the production;this production 

defines some of the strings denoted by the head. 

(b) Thesymbol->.Some times:=hasbeenusedinplace ofthe arrow. 

(c) Abodyorrightsideconsistingofzeroormoreterminalsandnon- terminals. The 

components ofthe bodydescribe one way in which strings of the nonterminalat the 

head can be constructed. 

Conventionally,theproductionsforthestartsymbolarelistedfirst. 

Example:ContextFreeGrammartoacceptArithmeticexpressions. 

Theterminals are+,*,-,(,),id. 

TheNonterminalsymbolsareexpression,term,factorandexpressionisthestartingsymbol. 

expression  expression +term 

expression  expression –term 

expression  term 

term  term*factor 

term term / factor 

term factor 

factor ( expression ) 

factor id 

Figure2.3:GrammarforSimpleArithmeticExpressions 

NotationalConventionsUsedInWritingCFGs: 

To avoid always having to state that ―these are the terminals,""these are the non 

terminals,"andsoon,thefollowing notationalconventions forgrammarswillbeusedthroughout our 

discussions. 

1. Thesesymbolsareterminals: 

(a) Lowercaselettersearlyinthealphabet,suchasa,b,e. 

(b) Operatorsymbolssuchas+,*,andso on. 

(c) Punctuationsymbolssuchasparentheses,comma,andsoon. 

(d) Thedigits0,1...9. 

(e) Boldfacestringssuchasidorif,eachofwhichrepresentsasingle 

terminal symbol. 
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2. Thesesymbolsarenonterminals: 

(a) Uppercase lettersearlyinthealphabet,suchasA,B,C. 

(b) TheletterS,which, whenitappears, isusuallythestartsymbol. 

(c) Lowercase,italicnamessuchasexprorstmt. 

(d) Whendiscussingprogrammingconstructs,uppercase lettersmaybeusedtorepresent 

Nonterminals for the constructs. For example, non terminal for expressions, terms, 

and factors are often represented by E, T, and F, respectively. 

Usingtheseconventionsthegrammarforthearithmeticexpressionscanbewrittenas 

E E +T |E–T |T 

TT*F|T/F|F F 

(E) | id 

 

DERIVATIONS: 
Theconstructionofaparsetreecanbemadeprecisebytakingaderivationalview,inwhich 

productions are treated as rewriting rules. Beginning with the start symbol, each rewriting step 

replacesa Nonterminal bythe bodyofone ofitsproductions. Thisderivationalview corresponds to 

the top-down construction of a parse tree as well as the bottom construction of theparse tree. 

DerivationsareclassifiedintoLetmostDerivationandRightMostDerivations. 

 

LeftMostDerivation(LMD): 

Itistheprocessofconstructing theparsetreeoracceptingthegiveninput string,inwhich at 

everytime we need to rewrite the production rule it is done with left most nonterminalonly. 

Ex:-IftheGrammarisE->E+E| E*E|-E|(E)|id andtheinputstringisid +id* id 

The productionE->- Esignifies that ifE denotesanexpression, then – E must also denote an 

expression. The replacement of a single E by - E will be described bywriting 

E=>-Ewhichisread as“Ederives_E” 

Forageneraldefinitionofderivation,consideranonterminalAinthemiddleofasequence 

ofgrammar symbols, as inαAβ, where α and βarearbitrarystringsofgrammar symbol. Suppose A -

>γ is a production. Then, we write αAβ => αγβ. The symbol => means "derives in one step". 

Often, we wish to say, "Derives in zero or more steps." For this purpose,we can use the symbol 

,Ifwe wishto say, "Derives in oneormore steps." We cnuse the symbol .IfS 

a,whereSisthe start symbolofa grammar G, wesaythat αisa sententialformofG. The 

Leftmost Derivation for the given input string id + id* id is 

E=>E+E 
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=>id+E 

=>id+ E*E 

=>id+ id*E 

=>id+ id*id 

 

NOTE:Everytimewe needto startfromtherootproductiononly,theunder lineusingat Non terminal 

indicating that, it is the non terminal (left most one) we are choosing to rewrite the productions 

to accept the string. 

RightMostDerivation(RMD): 

Itistheprocessofconstructingtheparsetreeoracceptingthegiveninput string,every time we 

need to rewrite the production rule with Right most Nonterminal only. 

TheRightmostderivationforthegiveninputstringid+id*idis 

 

E=>E+ E 

=>E+E *E 

=>E+E*id 

=>E+ id*id 

=>id+ id*id 

 

NOTE:Everytimeweneedtostart fromtherootproductiononly, theunder lineusingat Non 

terminalindicating that,it isthe non terminal(Right most one) weare choosing to rewrite the 

productions to accept the string. 

WhatisaParseTree? 

Aparsetreeisagraphicalrepresentationofaderivationthat filtersouttheorderinwhich 

productions are applied to replace non terminals. 

Eachinteriornodeofa parsetreerepresentstheapplicationofaproduction. 

Alltheinteriornodesare Nonterminalsand alltheleafnodesterminals. 

Alltheleafnodesreadingfromtheleftto rightwillbetheoutputoftheparsetree. 

If anodenislabeledXand haschildrenn1,n2,n3,…nkwithlabelsX1,X2,…Xk 

respectively, then there must be a production A->X1X2…Xk in the grammar. 

 

Example1:-Parsetreefortheinputstring- (id+id) usingtheaboveContextfreeGrammaris 
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Figure2.4:ParseTreefortheinputstring-(id+id) 

TheFollowingfigureshowsstepbystepconstructionofparsetreeusingCFG fortheparsetree for the 

input string - (id + id). 

 

Figure2.5:SequenceoutputsoftheParseTreeconstructionprocessfortheinputstring–(id+id) 

 

Example2:-Parsetreefortheinputstringid+id*idusingtheaboveContextfreeGrammaris 

 

Figure2.6:Parsetreeforthe inputstringid+id*id 
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AMBIGUITYinCFGs: 
Definition:Agrammarthat producesmorethanoneparsetreeforsomesentence(input string) is said 

to be ambiguous. 

Inotherwords,anambiguousgrammar isonethatproducesmorethanone leftmost 

derivation or more than one rightmost derivation for the same sentence. 

Or If the right hand production of the grammar is having two non terminals which are 

exactlysameasleft handsideproductionNonterminalthenit issaidtoanambiguousgrammar. 

Example : Ifthe Grammaris E-> E+E | E*E | -E|(E) | id and the Input String is id + id* id 

Twoparsetreesforgiveninputstring are 
 

 

 

(a) 

TwoLeftmostDerivationsforgiveninputStringare: 

E=>E+E E=>E*E 

 

(b) 

 

=>id+E =>E+E*E 

=>id+ E*E =>id+ E *E 

=>id+id*E =>id+ id*E 

=>id+id*id =>id+ id*id 

(a) (b) 

TheaboveGrammar isgivingtwo parsetreesortwo derivations forthegiven input string so, it is an 

ambiguous Grammar 

Note: LL (1) parser will not accept the ambiguous grammars or We cannot construct an 
LL(1) parser for the ambiguous grammars. Because such grammars may cause the Top 
Down parser to go into infinite loop or make it consume more time for parsing. If necessary 
we must remove all types of ambiguity from it and then construct. 

ELIMINATING AMBIGUITY: SinceAmbiguous grammars may cause the top down Parser go 

into infinite loop, consume more time during parsing. 

Therefore, sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity. The 

general form of ambiguous productions that cause ambiguity in grammars is 
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βAꞌ 

Aꞌ αAꞌ|ε 

 

 

Thiscanbewrittenas(introduceonenewnonterminalinthe place ofsecondnonterminal) 

Example:Letthegrammar is E E+E|E*E|-E|(E) |id.It isshownthatit isambiguousthat can be 

written as 
E E+E 

E E-E 

E E*E 
E -E 
E (E) 
E id 

Intheabovegrammar the1stand 2ndproductionsarehaving ambiguity. So,theycanbewritten as 

E->E+E| E*Ethisproductionagaincanbe writtenas 

E->E+E|β,whereβisE*E 

Theaboveproductionissameasthegeneralform. so,thatcanbewrittenas E-

>E+T|T 

T->β 

ThevalueofβisE*Eso,abovegrammarcanbewrittenas 

1) E->E+T|T 
2) T-> E*E ThefirstproductionisfreefromambiguityandsubstituteE->Tin the 

2nd production then it can be written as 

T->T*T|-E|(E)|idthisproductionagaincanbewrittenas 

T->T*T|βwhereβis-E|(E)|id, introducenewnonterminalintheRight handside 

production then it becomes 

T->T*F|F 

F->-E|(E)|id nowtheentiregrammarturnedintoitequivalentunambiguous, 

TheUnambiguousgrammarequivalenttothe givenambiguousoneis 

1) E E +T |T 

2) T T *F|F 

3) F -E |(E)|id 

 

LEFTRECURSION: 
Another feature of the CFGs which is not desirable to be used in top down parsers is left 

recursion. A grammar is left recursive if it has a non terminal A such that there is a derivation 

A=>Aα for some string α in (TUV)*. LL(1) or Top Down Parsers can not handle the Left  

Recursive grammars, so we need to remove the left recursion from the grammars before being 

used in Top Down Parsing. 
 

 

A Aα|β 
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A Aα|β 

A βAꞌ 

Aꞌ αAꞌ|€ 

A  αA1|αA2|αA3| 

αA4 |… | αAn 

αA′ 

A′ A1|A2|A3|A4…|An 

 

TheGeneralformofLeftRecursionis 

 

Theaboveleftrecursiveproductioncanbewrittenasthenonleftrecursiveequivalent: 
 

Example:-Isthe followinggrammar left recursive?Ifso,findanonleft recursivegrammar 
equivalent to it. 

E E +T |T 

T T * F | F 

F -E | (E) | id 

Yes,thegrammarisleftrecursiveduetothefirsttwoproductionswhicharesatisfyingthe 

generalformofLeftrecursion,sotheycanberewrittenafterremovingleftrecursionfrom 

E→E+T,andT→T*F is 

E TE′ 

E′ +TE′ |€ 

T F T′ 

T′ *FT′|€ 

F (E) | id 

 

LEFTFACTORING: 

Left factoring is a grammar transformation that is useful for producing a grammar suitable for 

predictiveortop-downparsing.Agrammarinwhichmorethanoneproductionhascommonprefix is to 

be rewritten by factoring out the prefixes. 

Forexample,inthefollowinggrammartherearenAproductionshavethecommonprefixα, 
whichshouldberemovedorfactoredoutwithoutchangingthelanguagedefinedfor A. 

 

Wecanfactorouttheαfromallnproductionsbyaddinga newAproductionA αA′ 

,andrewritingtheA′productionsgrammar as 
 

FIRSTandFOLLOW: 
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Theconstructionofbothtop-downandbottom-upparsersisaidedbytwofunctions,FIRST and 

FOLLOW, associated with a grammar G. During top down parsing, FIRST and FOLLOW allow 

us to choose which production to apply, based on the next input (look a head) symbol. 

ComputationofFIRST: 
FIRSTfunctioncomputesthesetofterminalsymbolswithwhichtheright handsideofthe 

productions begin. To compute FIRST (A) for all grammar symbols, applythe following rules 

until no more terminals or € can be added to any FIRST set. 

1. IfAisaterminal,thenFIRST{A}={A}. 

2. IfAisaNonterminalandA->X1X2…Xi 

FIRST(A)=FIRST(X1) if X1is not null, if X1 is a non terminal and X1->€, add 

FIRST(X2)to FIRST(A), ifX2->€add FIRST(X3)to FIRST(A), …ifXi->€, 

i.e.,allXi‘sfori=1..iarenull,add€FIRST(A). 

3. IfA->€isaproduction,thenadd€toFIRST(A). 

 

ComputationOfFOLLOW: 
Follow(A) isnothing butthesetofterminalsymbolsofthegrammar thatareimmediately 

following the Nonterminal A. Ifa is to the immediate right ofnon terminal A, then Follow(A)= 

{a}.TocomputeFOLLOW(A) for allnonterminals A,applythe followingrulesuntilnomore 

symbols can be added to any FOLLOW set. 

 

1. Place$inFOLLOW(S),whereS isthestartsymbol,and$istheinput right end 

marker. 

2. IfthereisaproductionA->αBβ,theneverything inFIRST(β)except €isin 

FOLLOW(B). 

3. IfthereisaproductionA->αBoraproductionA->αBβwithFIRST(β) contains€, then 

FOLLOW (B) = FOLLOW (A). 

 

Example:-ComputetheFIRSTandFOLLOWvaluesoftheexpressiongrammar 

1. E TE′ 

2. E′ +TE′|€ 

3. T FT′ 

4. T′ *FT′|€ 

5. F (E)|id 

 

ComputingFIRSTValues: 

FIRST(E)=FIRST(T)=FIRST(F)={(,id} 

FIRST(E′)={+,€} 

FIRST(T′)={*,€} 
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ComputingFOLLOWValues: 
FOLLOW (E) = { $, ), } Becauseitisthestartsymbolofthegrammar. 

FOLLOW (E′) = {FOLLOW (E)} satisfying the 3rd rule of FOLLOW() 

= { $ , )} 

FOLLOW(T)={FIRSTE′} ItisSatisfyingthe2ndrule. 

U{FOLLOW(E′)} 

= {+,FOLLOW(E′)} 

= { +,$, )} 

FOLLOW(T′)={FOLLOW(T)} Satisfyingthe3rdRule 

= {+, $,)} 

FOLLOW(F)={FIRST(T′)} ItisSatisfyingthe2ndrule. 

U{FOLLOW(E′)} 

={*,FOLLOW(T)} 

={*,+,$, )} 
 

NONTERMINAL FIRST FOLLOW 

E {(,id} {$,)} 

E′ {+,€} {$,)} 

T {(,id} { +,$,)} 

T′ {*,€} { +,$,)} 

F { (,id} {*,+,$,)} 

Table2.1:FIRSTandFOLLOWvalues 

A top-down parser builds the parse tree from the top down, starting with the start non-
terminal. There are two types of Top-Down Parsers:  

1. Top-Down Parser with Backtracking 
2. Top-Down Parsers without Backtracking 

Top-Down Parsers without backtracking can further be divided into two parts:  
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ConstructingPredictiveOrLL(1)ParseTable: 
Itistheprocessofplacing theallproductionsofthegrammar intheparsetablebased onthe FIRST 

and FOLLOW values of the Productions. 

TherulestobefollowedtoConstructtheParsingTable(M)are: 

1. ForEachproductionA->αofthegrammar,dothebellowsteps. 

2. Foreachterminalsymbol‗a‘inFIRST(α),addtheproductionA->αtoM[A,a]. 

3. i.If€ isinFIRST(α) addproductionA->αtoM[A,b],wherebisallterminalsin 

FOLLOW (A). 

ii.If€ is inFIRST(α) and$is inFOLLOW(A)thenaddproductionA->αto M [A, 

$]. 

4. Markotherentriesintheparsingtableaserror. 
 

 

NON-TERMINALS 

INPUTSYMBOLS 

+ * ( ) id $ 

 

 

 

E 
  E TE′  E id  

E′ 
E′ +TE′   E′ €  E′ € 

T 
  T FT′  T FT′  

T′ 
T′ € T′ *FT′  T′ €  T′ € 

F 
  F (E)  F id  

Table2.2:LL(1)ParsingTablefortheExpressionsGrammar 

Note:ifthereareno multipleentriesinthetable for singleaterminalthengrammar isaccepted by 

LL(1) Parser. 

LL(1)ParsingAlgorithm: 

The parseractsonbasis onthebasisoftwosymbols 

i. A,thesymbolonthetopofthestack 

ii. a,thecurrentinputsymbol 

TherearethreeconditionsforAand‗a‘,thatareusedfrotheparsing program. 

1. IfA=a=$thenparsingisSuccessful. 

2. IfA=a≠$thenparserpopsoffthestackandadvancesthecurrent input pointertothe next. 

3.  If A is a Nonterminalthe parser consults the entryM [A, a] inthe parsing table. If 
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M[A,a] isaProductionA->X1X2..Xn,thenthe programreplacestheAonthetopof the 

Stack byX1X2..Xnin such a way that X1comes on thetop. 

STRINGACCEPTANCEBYPARSER: 

Iftheinput string fortheparser isid+id*id,thebelowtableshowshowtheparser accept the 

string with the help of Stack. 
 

Stack Input Action Comments 

$E id+id*id$ E TE` EontopofthestackisreplacedbyTE` 

$E`T id+id*id$ T FT` Tontopofthestackis replacedbyFT` 

$E`T`F id+id*id$ F id Fontopofthestackis replacedbyid 

$E`T`id id+id*id$ popandremoveid Condition2issatisfied 

$E`T` +id*id$ T` € T`ontopofthestackis replacedby€ 

$E` +id*id$ E` +TE` E`ontopofthestackis replacedby+TE` 

$E`T+ +id*id$ Popandremove+ Condition2issatisfied 

$E`T id*id$ T FT` Tontopofthestackis replacedbyFT` 

$E`T`F id*id$ F id Fontopofthestackis replacedbyid 

$E`T`id id*id$ popandremoveid Condition2issatisfied 
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$E`T` *id$ T` *FT` T`ontopofthestackis replacedby*FT` 

$E`T`F* *id$ popandremove* Condition2issatisfied 

$E`T`F id$ F id Fontopofthestackis replacedbyid 

$E`T`id id$ Popandremoveid Condition2issatisfied 

$E`T` $ T` € T`ontopofthestackis replacedby€ 

$E` $ E` € E`ontopofthestackis replacedby€ 

$ $ Parsingissuccessful Condition1satisfied 

Table2.3:Sequenceofstepstakenbyparserinparsingtheinputtokenstreamid+id*id 

 

Figure2.7:Parsetreefortheinputid+id*id 

ERRORHANDLING(RECOVERY)INPREDICTIVEPARSING: 

Intabledrivenpredictiveparsing, it isclear astowhichterminaland Nonterminalsthe parser 

expects fromthe rest of input. An error can be detected in the following situations: 

1. Whentheterminalontopofthe stackdoesnotmatchthe currentinputsymbol. 

2. whenNonterminalA isontopofthe stack,aisthe current inputsymbol, and M[A, a] is 

empty or error 

Theparser recoversfromtheerror andcontinues itsprocess. Thefollowingerrorrecovery 

schemes are use in predictive parsing: 

PanicmodeErrorRecovery: 
It is based on the idea that when an error is detected, the parser will skips the 

remaininginput untilasynchronizingtokenisencounteredinthe input.Someexamplesare listed 

below: 

1. For a Non Terminal A, place all symbols in FOLLOW (A) are adde into the 

synchronizingsetofnonterminalA. ForExample, consider theassignmentstatement 

―c=;‖ Here, the expression on the right hand side is missing. So the Follow of this is 

considered. It is ―;‖ and is taken as synchronizing token. On encountering it, parser 

emits an error message ―Missing Expression‖. 

2. ForaNonTerminalA,placeallsymbolsinFIRST(A)areaddeintothesynchronizing set 

ofnon terminal A. For Example, consider the assignmentstatement 
―22c=a+ b;‖Here,FIRST(expr) is22.It is ―;‖ and istakenas synchronizingtoken and 

then the reports the error as ―extraneous token‖. 
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PhraseLevelRecovery: 

Itcanbeimplementedinthepredictiveparsingbyfillinguptheblankentries inthe 
predictiveparsingtablewithpointerstoerrorHandlingroutines.Theseroutinescan insert, 

modify or delete symbols in the input. 

RECURSIVEDESCENTPARSING: 

A recursive-descent parsing program consists of a set of recursive procedures, one for each non 

terminal. Each procedure is responsible for parsing the constructs defined by its non terminal, 

Executionbeginswiththeprocedureforthestartsymbol, whichhaltsandannouncessuccess if its 

procedure body scans the entire input string. 

Ifthegivengrammaris 

E TE′ 

E′ +TE′|€ 

T FT′ 

T′ *FT′|€ 

F (E)|id 

Reccursiveproceduresfortherecursivedescentparserforthegivengrammararegivenbelow. 

procedureE() 

{ 

T(); 

E′( ); 

} 

procedureT() 

{ 

F(); 

T′( ); 

} 

ProcedureE′() 

{ 

ifinput=‗+‘ 

{ 
advance(); 

T ( ); 

E′( ); 

returntrue; 

} 

elseerror; 

} 

procedureT′() 

{ 

ifinput=‗*‘ 

{ 

advance(); 

F ( ); 
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T′( ); 

returntrue; 

} 

elsereturnerror; 

} 

procedureF() 

{ 

ifinput=‗(‗ 

{ 

advance(); 

E ( ); 

ifinput=‗)‘ 

advance( ); 

return true; 

} 

elseifinput=―id‖ 

{ 

 

advance(); 

returntrue; 

} 

elsereturnerror; 

} 

advance() 

{ 

input=next token; 

} 

BACK TRACKING: This parsing method uses the technique called Brute Force method 
during the parsetree construction process. This allowsthe processto go back (back track)and 
redo the steps byundoing the work done so far in the point of processing. 

Bruteforcemethod:It isaTopdownParsing technique,occurswhenthereismore than 
one alternative in the productions to be tried while parsing the input string. It selects 
alternativesintheordertheyappearandwhenit realizesthat somethinggonewrongittrieswith next 
alternative. 

Forexample,considerthegrammarbellow. 

S cAd 

A ab|a 

To generatethe input string ―cad‖, initiallythe first parse tree given below is generated. 

Asthestringgeneratedisnot―cad‖,inputpointerisbacktrackedtoposition―A‖,toexaminethe 

nextalternate of ―A‖. Now a match to the input string occurs as shown in the 2nd parse trees 

given below. 
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(1) (2) 

IMPORTANTANDEXPECTEDQUESTIONS 

1. ExplainthecomponentsofworkingofaPredictiveParserwithanexample? 

2. WhatdotheFIRSTandFOLLOWvaluesrepresent?Givethealgorithmforcomputing 

FIRST n FOLLOW of grammar symbols with an example? 

3. ConstructtheLL(1)Parsingtableforthefollowinggrammar? E

E+T|T 

T T*F 

F (E)|id 

4. Fortheabovegrammarconstruct,andexplaintheRecursiveDescentParser? 

5. WhathappensifmultipleentriesoccurringinyourLL(1)Parsingtable?Justifyyour 

answer? How does the Parser 

ASSIGNMENTQUESTIONS 

 

1. EliminatetheLeftrecursionfromthebelow grammar? 

A->Aab|AcB|b 

B->Ba|d 

2. Explaintheprocedureto removetheambiguityfromthegivengrammar with yourown 

example? 

3. Writethegrammarfortheif-elsestatement intheCprogrammingandcheckfortheleft 

factoring? 

 

4. WillthePredictiveparseraccepttheambiguousGrammarjustifyyouranswer? 

 

5. IsthegrammarG={S->L=R,S->R,R->L,L->*R|id}anLL(1)grammar? 

 

6. Construct an LR parsing table for the given context-free grammar – 

      S–>AA 

      A–>aA|b 
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BOTTOM-UPPARSING 

Bottom-up parsing corresponds to the construction of a parse tree for an input string 

beginning at the leaves (the bottom nodes) and working up towards the root (the top node). It 

involves ―reducing an input string ‗w‘ to the Start Symbol of the grammar. in each reduction 

step, aperticular substring matching the right side ofthe production is replaced by symbolonthe 

left of that production and it is the Right most derivation. For example consider the following 

Grammar: 

E E+T|T 

T T*F 

F (E)|id 

Bottomupparsing oftheinputstring“id *id“isas follows: 

 

INPUTSTRING SUB STRING REDUCINGPRODUCTION 

id*id Id F->id 

F*id T F->T 

T*id Id F->id 

T*F * T->T*F 

T T*F E->T 

E 
 Startsymbol.Hence,theinput String 

is accepted 

ParseTreerepresentationisasfollows: 
 
 

 

 

 

 

Figure3.1:ABottom-upParsetreeforthe inputString“id*id” 
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Bottomupparsing isclassified into 1.Shift-ReduceParsing, 2. OperatorPrecedenceparsing , and 

3. [Table Driven] L R Parsing 

i. SLR( 1) 

ii. CALR(1) 

iii. LALR( 1) 

SHIFT-REDUCEPARSING: 

Shift-reduce parsing is a form of bottom-up parsing in which a stack holds grammar 

symbolsandaninput bufferholdstherestofthestringto beparsed,Weuse$to markthebottom 

ofthestackandalsotheright endofthe input. And it makesuseoftheprocessofshift andreduce 

actionstoaccepttheinput string. Here,theparsetreeisConstructedbottomupfromthe leafnodes 

towards the root node. 

Whenweareparsingthegiveninput string, ifthe matchoccurstheparsertakesthe reduce 

actionotherwise it willgo for shift action. And it can accept ambiguous grammarsalso. 

Forexample,considerthebelowgrammartoacceptthe inputstring―id*id―,usingS-Rparser 

E E+T|T 

T T*F|F 

F (E)|id 

ActionsoftheShift-reduceparserusing Stackimplementation 
 

STACK INPUT ACTION 

$ Id*id$ Shift 

$id *id$ ReducewithF d 

$F *id$ ReducewithT F 

$T *id$ Shift 

$T* id$ Shift 

$T*id $ ReducewithF id 

$T*F $ ReducewithT T*F 

$T $ ReducewithE T 

$E $ Accept 
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Considerthefollowinggrammar: 

S aAcBe 

A Ab|b 

B d 

Lettheinputstringis―abbcde‖.Theseriesofshiftandreductionstothestartsymbolareas follows. 

abbcde aAbcde aAcde aAcBe S 

Note:intheaboveexampletherearetwoactionspossible inthesecondStep,theseareas follows : 

1. Shiftactiongoingto3rdStep 

2. Reduceaction,thatisA->b 

Iftheparser istakingthe1stactionthenit cansuccessfullyacceptsthegiveninput string, 

ifitisgoing for second actionthen it can‘t accept given input string. This iscalled shift reduce 

conflict. Where, S-Rparser is notabletakeproperdecision, so it notrecommended for parsing. 

OPERATOR PRECEDENCE PARSING: 

Operatorprecedencegrammar iskindsofshift reduceparsing methodthatcanbeappliedtoa small 

class ofoperator grammars. And it can process ambiguous grammars also. 

Anoperatorgrammarhastwo importantcharacteristics: 

1. Thereareno€productions. 

2. Noproductionwouldhavetwoadjacentnonterminals. 

Theoperatorgrammartoacceptexpressionsisgivebelow: 

E E+E/E E-E /E E*E/E E/E/E E^E/E -E/E (E)/E  

id 

TwomainChallengesintheoperatorprecedenceparsingare: 

1. IdentificationofCorrecthandlesinthereductionstep,suchthatthegiveninput shouldbe 

reduced to starting symbol of the grammar. 

2. Identificationofwhichproductionto useforreducing inthereductionsteps, suchthat we 

should correctlyreduce the given input to the starting symbol of the grammar. 

Operatorprecedenceparserconsistsof: 

1. Aninputbufferthatcontainsstringto beparsedfollowed bya$,asymbolusedto 
indicate the ending of input. 

2. Astackcontaininga sequenceofgrammarsymbols witha $atthebottomofthestack. 

3. Anoperator precedence relation table O, containing the precedence ralations between the 

pair ofterminal. There are three kinds of precedence relations will exist between the pair 
of terminal pair ‗a‘ and ‗b‘ as follows: 

4. Therelationa<•bimpliesthatheterminal‗a‘haslowerprecedencethanterminal‗b‘. 

5. Therelationa•>bimpliesthatheterminal‗a‘hashigherprecedencethanterminal‗b‘. 

6. Therelationa=•bimpliesthatheterminal‗a‘haslowerprecedencethanterminal‗b‘. 
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Operatorprecedence 

ParsingAlgorithm 

OperatorPrecedence Table 

 

 

 
 

 

 

$ 

a1a2 a3 ……….. $ 

 

7. An operator precedence parsing program takes an input string and determines whether it 

conforms to the grammar specifications. It uses an operator precedence parse table and 

stack to arrive at the decision. 

InputBuffer 

 

 

 

Output 

 

 

Stack 

 

 

 

 
Figure3.2:Componentsofoperatorprecedenceparser 

Example,Ifthegrammaris 

E E+E 

E E-E 

E E*E 

E E/E 

E E^E 

E -E 

E (E) 

E id,Constructoperatorprecedencetableandacceptinputstring“id+id*id” 

Theprecedencerelationsbetweentheoperatorsare 

(id)>(^)>(*/)>(+-)>$,„^‟operatorisRight Associativeand reaming alloperators are Left 

Associative 

 + - * / ^ id ( ) $ 

+ •> •> <• <• <• <• <• •> •> 

- •> •> <• <• <• <• <• •> •> 

* •> •> •> •> <• <• <• •> •> 

/ •> •> •> •> <• <• <• •> •> 

^ •> •> •> •> <• <• <• •> •> 

Id •> •> •> •> •> Err Err •> •> 

( <• <• <• <• <• <• <• = Err 

) •> •> •> •> •> Err Err •> •> 

$ <• <• <• <• <• <• <• Err Err 
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Theintentionoftheprecedencerelationsistodelimit thehandleofthegiveninput Stringwith<• marking 

the left end ofthe Handle and •> marking the right end ofthe handle. 

ParsingAction: 
Tolocatethehandlefollowingstepsarefollowed: 

1. Add$ symbolat the bothendsofthegiveninputstring. 

2. Scantheinputstringfromlefttorightuntiltherightmost•>isencountered. 

3. Scantowardsleftoveralltheequalprecedence‘suntilthe first <•precedenceis 

encountered. 

4. Everything between<•and•>isahandle. 

5. $onSmeansparsingissuccess. 

Example,Explaintheparsing ActionsoftheOPParserforthe input string is“id*id”andthe 

grammar is: 

E E+E 

E E*E 

E id 

1. $<•id•>*<•id•>$ 

 

The first handle is ‗id‘ and match for the ‗id ‗in the grammar is E id. 

So, id is replaced with the Non terminalE. the given input string can be 

written as 

2. $<•E•>*<•id•>$ 

Theparserwillnot considertheNonterminalasaninput. So,theyarenot 

considered in the input string. So , the string becomes 

3. $<•*<•id•>$ 

 

Thenexthandleis‗id‘andmatchforthe‗id‗inthegrammarisE id. So, id is 

replaced with the NonterminalE. the given input string can be written as 

4. $<•*<•E•>$ 

Theparserwillnot considertheNonterminalasaninput. So,theyarenot 

considered in the input string. So, the string becomes 

5. $<•*•>$ 
 

 

 

 

6. $E $ 

The next handle is ‗*‘ and match for the ‗ ‗in the grammar is E E*E. 

So, id is replaced with the Non terminal E. the given input string can be 

written as 

 

Theparserwillnot considertheNonterminalasaninput. So,theyarenot considered in 

the input string. So, the string becomes 
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E * 

 

7. $$ 

$On$meansparsing successful. 

OperatorParsingAlgorithm: 

TheoperatorprecedenceParser parsingprogramdeterminestheactionoftheparser depending on 

1. ‗a‘istopmostsymbolonthe Stack 

2. ‗b‘isthecurrentinputsymbol 

Thereare3conditionsfor ‗a‘and‗b‘thatareimportant fortheparsingprogram 

1. a=b=$,theparsingissuccessful 

2. a<•bor a=b,theparser shiftsthe input symbolontothestackand advancesthe input 

pointer to the next input symbol. 

3. a •>b, parser performs the reduce action. The parser popsout elementsone by 

one fromthe stackuntilwe find the current topofthe stack element has lower 

precedence than the most recently popped out terminal. 

Example,thesequenceofactionstakenbytheparserusingthestackfortheinputstring―id*id 

—andcorrespondingParseTreeareasunder. 

 

STACK INPUT OPERATIONS 

$ id*id$ $<•id,shift‗id‘ intostack 

$id *id$ id•>*,reduce‗id‘using E->id 

$E *id$ $<•*,shift‗*‘ intostack 

$E* id$ *<•id,shift‗id‘intoStack 

$E*id $ id•>$,reduce‗id‘using E->id 

$E*E $ *•>$,reduce‗*‘usingE->E*E 

$E $ $=$=$,soparsingissuccessful 

E 

E 

id id 

AdvantagesandDisadvantagesofOperatorPrecedenceParsing: 
Thefollowing aretheadvantagesofoperatorprecedenceparsing 

1. Itissimpleandeasytoimplementparsingtechnique. 

2. Theoperatorprecedenceparsercanbeconstructedbyhandafterunderstandingthe 

grammar. It is simple to debug. 

Thefollowingarethedisadvantagesofoperatorprecedenceparsing: 

1. Itisdifficulttohandletheoperatorlike‗-‗whichcanbeeitherunaryorbinaryandhence 

different precedence‘s and associativities. 

2. Itcanparseonlyasmallclass ofgrammar. 
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Shift GOTO 

LRParsingTable 

 

3. Newadditionordeletionoftherulesrequirestheparsertoberewritten. 

4. Toomanyerrorentriesintheparsingtables. 

 

LRParsing: 

Most prevalent type of bottom up parsing is LR (k) parsing. Where, L is left to right scan of the 
giveninput string,RisRight Mostderivationinreverseand Kisno ofinputsymbolsastheLook ahead. 

Itisthemostgeneralnonbacktrackingshiftreduceparsingmethod 

Theclassofgrammarsthat canbeparsed usingtheLRmethodsisapropersupersetof the class 
of grammars that can be parsed with predictive parsers. 

AnLRparser candetect asyntacticerrorassoonas it ispossibletodo so,onaleft to right scan 

of the input. 
 

 

 
 

 

 

 

a1 a2 a3 ………. $ 
 
 
 

 
LRPARSINGALGORTHM 

InputBuffer 

 

 

 

 

OUTPUT 

 

 

 

 

Stack 
 

 

Figure3.3:ComponentsofLRParsing 

LRParserConsistsof 

Aninput bufferthat containsthestringtobeparsedfollowed bya$Symbol,usedto indicate 

end of input. 

Astackcontaining asequenceofgrammar symbolswitha$atthebottomofthestack, which 

initially contains the Initial state of the parsing table on top of$. 

Aparsingtable(M), it isatwodimensionalarrayM[state,terminalorNonterminal]and it 

contains two parts 
 

 

 
 

 

 

 

 

$ 
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1. ACTIONPart 

The ACTION part ofthe table is a two dimensionalarrayindexed bystateand the 

input symbol, i.e. ACTION[state][input], An action table entry can have one of 

following four kinds of values in it. They are: 

1. ShiftX,whereXisaStatenumber. 

2. ReduceX,whereXisaProductionnumber. 

3. Accept,signifyingthecompletionofasuccessfulparse. 

4. Errorentry. 

2. GOTOPart 

TheGOTOpartofthetable isatwodimensionalarrayindexed bystateandaNon 

terminal, i.e. GOTO[state][NonTerminal]. A GO TO entry has astate number in 

the table. 

 A parsing Algorithmuses the current State X, the next input symbol‗a‘ to consult the 

entryat action[X][a]. it makes one ofthe four following actions as given below: 

1. If the action[X][a]=shift Y, the parser executes a shift of Y on to the top of the stack 

and advances the input pointer. 

2. Ifthe action[X][a]= reduce Y (Y is the production number reduced in the State X), if 

the production is Y->β, then the parser pops 2*β symbols from the stack and push Y 

on to the Stack. 

3. If the action[X][a]= accept, then the parsing is successful and the input string is 

accepted. 

4. If the action[X][a]= error, then the parser has discovered an error and calls the error 

routine. 

Theparsingisclassified into 

1. LR(0) 

2. SimpleLR(1 ) 

3. CanonicalLR(1) 

4. Lookahead LR(1) 

LR(1)Parsing:VariousstepsinvolvedintheLR(1)Parsing: 

1. WritetheContextfreeGrammarforthegiveninputstring 
2. CheckfortheAmbiguity 

3. AddAugmentproduction 

4. Create CanonicalcollectionofLR(0)items 

5. DrawDFA 

6. ConstructtheLR(0 )Parsingtable 

7. BasedontheinformationfromtheTable,withhelpofStackandParsingalgorithm 

generate the output. 

AugmentGrammar 
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The Augment Grammar G`, is G with a new starting symbol S` an additional production 

S`S.thishelpstheparserto identifywhentostoptheparsing andannouncetheacceptanceofthe 

input.Theinput string isaccepted ifandonlyifthe parser isabouttoreducebyS`S.Forexample let us 

consider the Grammar below: 

 

 

theAugmentgrammarG`isRepresented by 

 

 

 

 

NOTE:Augment Grammar issimplyaddingoneextraproductionbypreservingtheactual 

meaning of the given Grammar G. 

CanonicalcollectionofLR(0)items 

 

LR(0) items 

AnLR (0) itemofa Grammar is a production G with dot at some position on the right 

sideoftheproduction. Anitemindicateshow muchofthe input has beenscanneduptoagiven point in 

the process ofparsing. For example, ifthe Production is X YZ then, The LR (0) items are: 

1. X •AB,indicatesthattheparser expectsastring derivablefromAB. 

2. X A•B, indicatesthattheparserhasscannedthestringderivablefromtheAand 

expecting the string from Y. 

3. X AB•, indicatesthatheparserhasscannedthestringderivablefromAB. If the 

grammar is X € the, the LR (0) item is 

X •, indicating thattheproduction isreducedone. 

CanonicalcollectionofLR(0)Items: 

ThisistheprocessofgroupingtheLR(0)itemstogether basedontheclosureandGoto operations 

Closureoperation 

IfIisaninitialState,thentheClosure (I)isconstructedasfollows: 

1. Initially,addAugment Productiontothestateandcheck forthe•symbolintheRight hand 

side production, if the • is followed by a Non terminal then Add Productions which 

are Stating with that Non Terminal in the State I. 

 

2. If a production X α•Aβ is in I, then add Production which are starting with X in the 

StateI.Rule2 isapplieduntilno moreproductionsaddedtotheStateI(meaningthat 

 the•isfollowedbyaTerminalsymbol).  

E 

T 

E+T|T 

T*F 

F (E)|id 

E` E 

E E+T|T 

T T*F 

F (E)|id 
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Example: 

0.E` E E` • E 

1. E E+T LR(0)itemsfortheGrammaris E • E+T 

2. T F T •F 

3. T T*F T • T*F 

4. F (E) F • (E) 

5. 

Closure (I0)State 

F id F • id 

AddE` •EinI0State 

Since,the‗•‘symbolintheRight handsideproductionisfollowed byANon 

terminal E. So, add productions starting with E in to Io state. So, the state 

becomes 

E  ̀ •E  

0. E •E+T 

1. T •F 

The1stand2ndproductionsaresatisfiesthe2ndrule.So,addproductions which 

are starting with E and T in I0 

Note:onceproductionsareadded inthestatethesameproductionshould not 

added for the 2nd time in the same state. So, the state becomes 

0.E` •E 

1. E • E+T 

2.T •F 

3.T • T*F 

4.F •  (E) 
5.F • id 

 

GO TOOperation 

Go to (I0, X), where I0 is set of items and X is the grammar Symbolonwhichwe 

aremovingthe„•‟ symbol. It islike findingthe next stateoftheNFAfor agiveStateI0andthe input 

symbol is X. For example, if the production is E•E+T 

 

Goto (I0,E)isE` •E,E E•+T 

 

Note:OncewecompletetheGotooperation,weneedtocomputeclosureoperationforthe output 

production 
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Goto(I0, E)isE E•+T,E` E.=Closure({E` E•,E E•+T}) 

 
E`->.E E`->E. 

E->.E+T 
E E->E.+T 

T->.T*F 

 

ConstructionofLR(0)parsingTable: 

Oncewe haveCreatedthecanonicalcollectionofLR(0)items,needtofollowthesteps 

mentioned below: 

Ifthereisatransactionfromonestate(Ii)to another state(Ij)onaterminalvaluethen, we 

should write the shift entry in the action part as shown below: 

 

a 

A->α•aβ A->αa•β 

 

Ii Ij 

 

Ifthereisa transactionfromone state(Ii)toanoth j ue 
then, weshouldwritethesubscript valueofIiintheGOTOpart asshownbelow:part asshown below: 

 

 

 

A 

A->α•Aβ A->αA•β 

 

Ii Ij 

 

 

 

 

 

Ifthere is one state (Ii), where there is one production which has no transitions. Then, the 

productionissaidtobeareducedproduction. Theseproductionsshouldhavereducedentryinthe 

Actionpartalongwiththeirproductionnumbers.IftheAugmentproductionisreducingthen,write 

accept in the Action part. 

 

 

1 A->αβ• 

States  ACTION 

a $ 

GOTO 

A 

 

Ii r1 r1 
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Ii Sj 
 

Ij   

 

States ACTION GOTO 

a $ A 

Ii 
  

j 

Ij 
   

 

   

   

   

   

 

   

   

    

    

 



A.Y 2024-25 COMPILER DESIGN 

45|Pa ge DEPARTMENT OF CSE 

 

 

 

Ii 

Ii 

 

ForExample,ConstructtheLR(0)parsing TableforthegivenGrammar(G) 

S aB 

B bB|b 

Sol:1.AddAugmentProductionandinsert„•‟symbolatthefirstpositionforevery 

production in G 

 

 

 

 

I0State: 

0. S′ •S 

1. S •aB 

2. B •bB 

3. B •b 

 

1. AddAugmentproductiontotheI0StateandComputethe Closure 

 

I0=Closure(S′ •S) 

Since‗•‘isfollowed bytheNonterminal,addallproductionsstartingwithSintoI0State.So, the I0State 

becomes 

I0= S′ •S 
S •aBHere,intheSproduction‗.‘Symbolisfollowedbyaterminalvalueso close the state. 

I1=Go to(I0,S) 

S` S• 

Closure(S` S•)=S′ S• Here,TheProductionisreducedsoclosetheState. 

 

I1=S′ S• 

 

I2=Goto(I0,a)=closure(S a•B) 

Here,the‗•‘symbolis followed byTheNonterminalB. So,addtheproductionswhichare Starting 

B. 

I2= B •bB 

B •bHere,the‗•‘symbolintheBproductionis followedbytheterminalvalue. So, Close the 

State. 

 

I2= S  a•B 

B •bB 
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B •b 

I3= Go to ( I2,B) = Closure( S aB•)= S aB• 

I4= Go to ( I2, b) =closure ({B b•B, B b•}) 

AddproductionsstartingwithBinI4. 

 

 B • bB 

 B •b TheDotSymbolis followedbytheterminalvalue.So,closetheState. 

I4= B 

B 

b•B 

• bB 
 B •b 
 B b• 

 

I5=Goto(I2,b)=Closure(B b•)=B b• 

I6=Go to(I4,B) =Closure(B bB•)=B bB• I7 = 

Go to ( I4 , b) = I4 

DrawingFiniteStatediagramDFA:Following DFAgivesthestatetransitionsoftheparser and is 

useful in constructing the LR parsing table. 

 

 

S->aB• 
 

 

 

 

S′->•S 

S->•aB 

S′->S• 

S I3 

I1 B 

 

B->b•B B 

 

a S->a•B 

I0 B->•bB 

B->•b 

b B->•bB 

B->•b 

B->b• 
b

 

 

I4 

 

 

B->bB• 
 

 

 

I5 

 

I2 I4 
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Ii: 
 

1A->α• 

2B->β• 

1A->β•aα 
a 

2B->b• 

 

LRParsingTable: 
 

States 
ACTION GOTO 

a B $ S B 

I0 S2   1  

I1   ACC   

I2  S4   3 

I3 R1 R1 R1   

I4 R3 S4/R3 R3  5 

I5 R2 R2 R2   

Note:iftherearemultipleentriesintheLR(1)parsingtable,thenitwillnotacceptedbytheLR(1) parser. 

In the above table I3 row is giving two entries for the single terminal value ‗b‘ and it is called as 

Shift- Reduce conflict. 

 

Shift-ReduceConflictinLR(0)Parsing:Shift ReduceConflict intheLR(0)parsing 

occurs when a state has 

1. AReduceditemoftheformA α•and 

2. AnincompleteitemoftheformA β•aαasshownbelow: 
 

 

 

Ij 

 

 

 

 

 

Ii 

 

 

 

Reduce-ReduceConflictinLR(0)Parsing: 

Reduce-ReduceConflict intheLR(1)parsingoccurswhenastatehastwoormore reduced 

items of the form 

1. A α• 

2. B β•asshownbelow: 

 

States Action GOTO 

a $ A B 

 

Ii r1/r2 r1/r2 

  

States Action GOTO 

a $ A B 

Ii Sj/r2 r2 
  

 

 

Ij 
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States ACTION GOTO 

a $ A 

Ii 
  

j 

Ij 
   

 

a 

A->α•aβ A->αa•β 

A->α•Aβ A->αA•β 

COMPILERDESIGN 

SLRPARSERCONSTRUCTION:WhatisSLR(1)Parsing 
VariousstepsinvolvedintheSLR(1)Parsingare: 

1. WritetheContextfreeGrammarforthegiveninputstring 

2. CheckfortheAmbiguity 

3. AddAugment production 

4. Create CanonicalcollectionofLR(0)items 

5. DrawDFA 

6. Construct theSLR(1)Parsing table 

7. BasedontheinformationfromtheTable,withhelpofStackandParsingalgorithm 

generate the output. 

SLR(1)ParsingTableConstruction 

Oncewe haveCreatedthecanonicalcollectionofLR(0)items,needto followthesteps 

mentioned below: 

Ifthereisatransactionfromonestate(Ii)to another state(Ij)onaterminalvaluethen, we 

should write the shift entry in the action part as shown below: 
 

 

Ii Ij 

 

 

 

Ifthere is a transaction fromone state (Ii ) to another state (Ij ) on a Non terminal value 

then, weshouldwritethesubscript valueofIiintheGOTOpart asshownbelow:part asshown below: 

States ACTION GOTO 

 a $ A 

Ii Sj 
 

Ij   
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2 A->αβ• 

Ii 

Ii Ij 

 

1Ifthere isonestate(Ii),wherethere isoneproduction(A->αβ•)which has no transitions to the next 

State. Then, the production is said to be a reduced production. Forallterminals X in 

FOLLOW (A), write the reduce entry along with theirproduction numbers. If the 

Augment production is reducing then write accept. 

1 S->•aAb 

2 A->αβ• 
Follow(S)={$} 

Follow(A)=(b} 

 

 

 

Ii 

 

 

 

 

 

SLR(1)tableforthe Grammar 

 

S aB 

B bB|b 

 

Follow(S)={$},Follow(B)={$} 

 

States 
ACTION GOTO 

A b $ S B 

I0 S2   1  

I1   ACCEPT   

I2  S4   3 

I3   R1   

I4  S4 R3  5 

I5   R2   

 

Note:WhenMultipleEntriesoccursintheSLRtable. Then,thegrammar isnot acceptedby SLR(1) 

Parser. 

ConflictsintheSLR(1)Parsing : 

Whenmultipleentriesoccurinthetable.Then,thesituation issaidtobeaConflict. 

States ACTION GOTO 

a b $ S A 

Ii 
 

r2 
   

 



A.Y 2024-25 COMPILER DESIGN 

50|Page DEPARTMENT OF CSE 

 

 

1A->β•aα 

a 
2B->b• 

States Action GOTO 

a $ A B 

 

Ii r1/r2 
   

 

 

1A->α• 

2B->β• 

 

Shift-ReduceConflictinSLR(1)Parsing:Shift ReduceConflict intheLR(1)parsingoccurs when a 

state has 

1. AReduceditemoftheformA α•andFollow(A)includestheterminalvalue 

‗a‘. 

2. AnincompleteitemoftheformA β•aαasshownbelow: 

 

 

 

 

Ij 

 

 

 

Ii 

 

Reduce-ReduceConflictinSLR(1)Parsing 

Reduce-ReduceConflict intheLR(1) parsingoccurswhenastatehastwoormore reduced 

items of the form 

1. A α• 

2. B β•andFollow (A) ∩Follow(B)≠nullasshownbelow: 

IfTheGrammaris 

S->αAaBa 

A->α 

B->β 
Follow(S)={$} 

Follow(A)={a}andFollow(B)={a} 

 

Ii 

CanonicalLR(1)Parsing:Variousstepsinvolved intheCLR(1)Parsing: 

1. WritetheContextfreeGrammarforthegiveninputstring 

2. CheckfortheAmbiguity 

3. AddAugmentproduction 

States Action GOTO 

a $ A B 

 

Ii Sj/r2 
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4. Create CanonicalcollectionofLR(1)items 

5. DrawDFA 

6. ConstructtheCLR(1)Parsing table 

7. BasedontheinformationfromtheTable,withhelpofStackandParsing 

algorithm generate the output. 

LR(1)items: 

TheLR(1) itemisdefined byproduction,positionofdataandaterminalsymbol.The terminal is 

called as Look ahead symbol. 

GeneralformofLR(1)itemis 

 

 

 

Rulestocreatecanonicalcollection: 

1. EveryelementofIisaddedtoclosureofI 

2. If an LR (1) item [X-> A•BC, a] exists in I, and there exists a production B->b1b2….., 

then additem[B->• b1b2, z] where z is a terminal in FIRST(Ca),if itis not already in 

Closure(I).keep applying this rule until there are no more elements adde. 

Forexample,ifthegrammaris 

S->CC 

C->cC 

C->d 

TheCanonicalcollectionofLR(1)itemscanbecreatedasfollows: 

0. S′->•S(AugmentProduction) 

1. S->•CC 

2. C->•cC 

3. C->•d 
 

I0State: AddAugmentproductionandcomputetheClosure, thelookaheadsymbolfor theAugment 
Production is $. 

S′->•S,$=Closure(S′->•S,$) 

ThedotsymbolisfollowedbyaNonterminalS.So,addproductionsstarting withSinI0 

State. 

S->•CC,FIRST($),using2ndrule 

S->•CC, $ 

S->α•Aβ, $ 

A->•γ,FIRST(β,$) 
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ThedotsymbolisfollowedbyaNonterminalC.So,add productionsstartingwithCinI0 

State. 

 

C->•cC,FIRST(C,$) 

C->•d, FIRST(C, $) 

FIRST(C) ={c,d}so,theitemsare 

 

C->•cC,c/d 

C->•d, c/d 

Thedotsymbolisfollowedbyaterminal value.So,closetheI0State.So,theproductionsinthe 

I0are 

S′->•S , $ 

S->•CC,$ 

C->•cC,c/d 

C->•d,c/d 

I1=Goto(I0,S)=S′->S•,$ 

I2=Goto(I0,C)=Closure(S->C•C,$) 

S->C->•cC ,$ 

C->•d,$So,theI2Stateis 

S->C•C,$ 

C->•cC,$ 

C->•d,$ 

I3=Goto(I0,c)=Closure(C->c•C,c/d) 

C->•cC,c/d 

C->•d,c/dSo,theI3Stateis 

C->c•C,c/d 

C->•cC,c/d 

C->•d , c/d 

I4=Goto(I0,d)=Colsure(C->d•,c/d)=C->d•,c/d 

I5=Goto(I2,C)=closure(S->CC•,$)=S->CC•,$ I6= 

Goto ( I2, c)= closure(C->c•C , $)= 

C->•cC,$ 

C->•d,$S0,theI6Stateis 
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S′->S•,$ 
S->CC•, $ 

I1 C I5 C->cC•,$ 

0S′->•S ,$ 

1 S->•CC ,$ 

2C->•cC,c/d 

3C->•d,c/d 

S->C•C,$ 

C->•cC,$ 

C->•d,$ 

I9 

c 

C->c•C,$ 

C->•cC,$ 

C->•d,$ 
c 

I6 

I2 I6 I7 

I0 c 

d 

 
C->d•,c/d 

I4 

C->c•C,c/d 

C->•cC,c/d 

C->•d,c/d 

C->d•,$ 

I7 

d I3 c 

I4 I3 

C->cC•,c/d 
I8 

 
C->c•C,$ 

C->•cC,$ 

C->•d,$ 

I7 =Goto(I2, d)=Closure(C->d•,$)=C->d•, $ 

Goto(I3, c)= closure(C->•cC, c/d)= I3. 

I8=Goto(I3, C)=Closure(C->cC•,c/d)=C->cC•,c/d Go 

to (I3 , c)= Closure(C->c•C, c/d) = I3 

Goto(I3,d)=Closure(C->d•,c/d)= I4 

I9=Goto(I6, C)=Closure(C->cC•, $)= C->cC•,$ 

Goto(I6, c)=Closure(C->c•C ,$)= I6 

Goto(I6,d)= Closure(C->d•,$)=I7 

DrawingtheFiniteStateMachineDFAfortheaboveLR(1)items 
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Construction ofCLR(1)Table 

Rule1:ifthere isanitem[A->α•Xβ,b] inIiandgoto(Ii,X)isinIjthenaction[Ii][X]=Shift j, 

Where X is Terminal. 

Rule2:ifthere isanitem[A->α•,b] inIiand(A≠S`) set action[Ii][b]=reducealongwith the 

production number. 

Rule3:ifthereisanitem[S`->S•,$]inIithensetaction[Ii][$]=Accept. 

Rule4:ifthere isanitem[A->α•Xβ,b] inIiandgoto(Ii,X)isinIjthengoto[Ii][X]=j, Where X 

is Non Terminal. 

 

States 
ACTION GOTO 

c d $ S C 
I0 S3 S4  1 2 
I1   ACCEPT   

I2 S6 S7   5 
I3 S3 S4   8 
I4 R3 R3   5 
I5   R1   

I6 S6 S7   9 
I7   R3   

I8 R2 R2    

I9 
  R2   

Table:LR(1)Table 

 

LALR(1)Parsing 
The CLR Parser avoids the conflicts in the parse table. But it produces more number of 

States when compared to SLR parser. Hence more space is occupied by the table in the memory. 

So LALR parsing can be used. Here, the tables obtained are smaller than CLR parse table. But it 

also as efficient as CLRparser. Here LR(1)items that have same productions but different look- 

aheads are combined to form a single set of items. 

For example, consider thegrammar inthepreviousexample. Consider thestatesI4and I7as 

given below: 

I4=Goto( I0,d)=Colsure( C->d•, c/d)=C->d•,c/d I7= 

Go to (I2, d)= Closure(C->d•,$ ) = C->d•, $ 

These statesarediffering onlyinthe look-aheads. Theyhave thesameproductions. Hencethese 

states are combined to form a single state called as I47. 

SimilarlythestatesI3andI6differing onlyintheirlook-aheadsasgivenbelow: 

I3=Goto(I0,c)= 
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1A->β•aα,$ 
a 

2B->b•,a 

 

C->c•C,c/d 

C->•cC,c/d 

C->•d , c/d 

I6=Goto(I2,c)= 
C->c•C,$ 

C->•cC,$ 

C->•d,$ 

Thesestatesaredifferingonlyinthe look-aheads.Theyhavethesameproductions. Hencethese states 

are combined to form a single state called as I36. 

SimilarlytheStatesI8andI9differingonlyinlook-aheads. Hencetheycombinedtoform the 

state I89. 

 

States 
ACTION GOTO 

c d $ S C 
I0 S36 S47  1 2 
I1   ACCEPT   

I2 S36 S47   5 
I36 S36 S47   89 
I47 R3 R3 R3  5 
I5   R1   

I89 R2 R2 R2   

 

Table:LALRTable 

ConflictsintheCLR(1)Parsing:Whenmultiple entriesoccurinthetable.Then,the 

situation is said to be a Conflict. 

Shift-ReduceConflictinCLR(1)Parsing 

ShiftReduceConflictintheCLR(1)parsing occurswhenastatehas 

3. AReduceditemoftheformA α•,aand 

4. AnincompleteitemoftheformA  β•aαasshownbelow: 

 

 

 

 

Ij 

 

 

 

Ii 

States Action GOTO 

a $ A B 

 

Ii Sj/r2 
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1A->α•,a 

2B->β•,a 

 

Reduce/ReduceConflictinCLR(1)Parsing 

Reduce-ReduceConflict intheCLR(1)parsingoccurswhenastatehastwoormore reduced 

items of the form 

3. A α• 

4. B β•Iftwoproductionsinastate(I)reducingonsamelookaheadsymbol as 

shown below: 

 

 

Ii 

StringAcceptanceusingLRParsing: 

Considertheaboveexample,iftheinputStringiscdd 
 

States 
ACTION GOTO 

c D $ S C 
I0 S3 S4  1 2 
I1   ACCEPT   

I2 S6 S7   5 
I3 S3 S4   8 
I4 R3 R3   5 
I5   R1   

I6 S6 S7   9 
I7   R3   

I8 R2 R2    

I9   R2   

 

0 S′->•S(AugmentProduction) 

1 S->•CC 

2 C->•cC 

3 C->•d 

STACK INPUT ACTION 

$0 cdd$ ShiftS3 

$0c3 dd$ ShiftS4 

$0c3d4 d$ ReducewithR3,C->d,pop 2*βsymbolsfromthestack 
$0c3C d$ Goto(I3,C)=8ShiftS6 

States Action GOTO 

a $ A B 

 

Ii r1/r2 
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$0c3C8 d$ ReducewithR2,C->cC,pop2*β symbolsfromthestack 

$0C d$ Goto(I0,C)=2 

$0C2 d$ ShiftS7 

$0C2d7 $ ReducewithR3,C->d,pop 2*βsymbolsfromthestack 
$0C2C $ Goto(I2,C)=5 

$0C2C5 $ ReducewithR1,S->CC,pop2*βsymbolsfromthestack 

$0S $ Goto(I0,S)=1 

$0S1 $ Accept 

 
HandingAmbiguousgrammar 

Ambiguity:AGrammar canhave morethanoneparsetreeforastring.Forexample,consider grammar. 

stringstring+string 

|string- string 

|0|1|.|9 

String9-5+2hastwoparsetrees 

 

Agrammar issaidtobeanambiguousgrammar ifthereissomestringthat it cangeneratein more 

thanone way(i.e., the string has more thanone parse tree or morethanone leftmostderivation). A 

language is inherently ambiguous if it can only be generated by ambiguous grammars. 

 

Forexample,considerthefollowinggrammar: 

 

stringstring+string 

|string- string 

|0|1|.|9 

Inthisgrammar,thestring9-5+2 hastwo possibleparsetreesasshowninthenextslide. 
 

 

 

 
Consider the parse trees for string 9-5+2, expression like this has more than one parse tree. The 
two trees for 9-5+2 correspond to the two ways of parenthesizing the expression: (9-5)+2 and 9- 
(5+2). The second parenthesization gives the expression the value 2 instead of 6. 
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Ambiguityisproblematicbecausemeaningoftheprogramscanbeincorrect 

 Ambiguitycanbehandledinseveralways 

- Enforceassociativityandprecedence 

- Rewritethegrammar(cleanestway) 

Therearenogeneraltechniquesforhandlingambiguity,but 

.Itisimpossibletoconvertautomaticallyanambiguousgrammartoanunambiguousone 

Ambiguityisharmfultothe intent ofthe program. The input might be deciphered ina waywhich was 

not really the intention of the programmer, as shown above in the 9-5+2 example. Though there 

is no general technique to handle ambiguity i.e., it is not possible to develop some feature which 

automatically identifies and removes ambiguity from any grammar. However, it can be removed, 

broadly speaking, in the following possible ways:- 

1) Rewritingthewholegrammarunambiguously. 

 
2) Implementingprecedenceandassociativelyrulesinthegrammar. Weshalldiscussthis 
technique in the later slides. 

 
Ifanoperand has operatoronboththe sides, the sideonwhichoperatortakesthis operand is the 

associativity of that operator 

 

.Ina+b+c bistakenbyleft+ 

.+,-,*,/areleftassociative 

.^,=arerightassociative 

Grammartogeneratestringswithright associativeoperatorsright àletter=right |letterletter  a| 

b |.| z 

A binary operation * on a set S that does not satisfy the associative law is called non- 

associative. A left-associative operation is a non-associative operation that is conventionally 

evaluated from left to right i.e., operand is taken bythe operator onthe left side. 

Forexample, 

6*5*4 =(6*5)*4andnot6*(5*4) 

6/5/4 =(6/5)/4andnot6/(5/4) 

 
Aright-associative operation isa non-associative operationthat isconventionallyevaluated from right 
to lefti.e., operand is taken by the operator on the right side. 

 

Forexample, 
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6^5^4=>6^(5^4)andnot(6^5)^4) 

x=y=z=5 => x=(y=(z=5)) 

Following isthegrammar to generatestringswithleft associativeoperators.(Notethatthis is left 

recursiveandmaygointoinfiniteloop.Butwewillhandlethisproblemlateronbymakingit right 

recursive) 

 

left left+letter|letter 

letter a | b | ...... | z 

 

IMPORTANT QUESTIONS 

1. DiscussthetheworkingofBottomupparsingandspecificallytheOperatorPrecedence 

Parsing with an exaple? 

2. WhatdoyoumeanbyanLRparser?ExplaintheLR(1)Parsingtechnique? 

3. WritethedifferencesbetweencanonicalcollectionofLR(0)itemsandLR(1)items? 

4. WritetheDifferencebetweenCLR(1) andLALR(1)parsing? 

5. WhatisYACC?Explainhowdoyouuseitinconstructingtheparserusingit. 

 

ASSIGNMENTQUESTIONS 

1. ExplaintheconflictsintheShiftreduceParsing withanexample? 

2. E E+T|T 

T T*F 

F (E)|id,constructtheLR(1)Parsing table?AndexplaintheConflicts? 

3. E E+T|T 

T T*F 

F (E)|id, constructtheSLR(1)Parsingtable?AndexplaintheConflicts? 

4. E E+T|T 

T T*F 

F (E)|id,constructtheCLR(1)Parsingtable?AndexplaintheConflicts? 

 

5. E E+T|T 

T T*F 

F (E)|id,constructtheLALR(1)Parsingtable?AndexplaintheConflicts? 
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UNIT-III 

INTERMEDIATECODEGENERATION 

In Intermediate code generation we use syntax directed methods to translate the source 
program into an intermediate form programming language constructs such as declarations, 
assignments and flow-of-control statements. 

 

 

 

 

Figure4.1:IntermediateCodeGenerator 

Intermediatecodeis: 

 TheoutputoftheParserandtheinputtotheCodeGenerator. 

 Relativelymachine-independentandallowsthecompilertoberetargeted. 

 Relativelyeasytomanipulate(optimize). 

 

WhataretheAdvantagesofanintermediatelanguage? 

AdvantagesofUsinganIntermediateLanguageincludes: 

1. Retargetingisfacilitated-Buildacompiler foranew machine byattachinganewcode 

generator to an existing front-end. 

2. Optimization-reuseintermediatecodeoptimizersincompilersfordifferentlanguages and 

different machines. 

Note: the terms ―intermediate code‖, ―intermediate language‖, and ―intermediate 

representation‖ are all used interchangeably. 

TypesofIntermediaterepresentations/forms:Therearethreetypesofintermediate 

representation:- 

 

1. SyntaxTrees 

 

2. Postfixnotation 

 

3. ThreeAddressCode 

 

Semanticrulesforgeneratingthree-addresscodefromcommonprogramminglanguage 

constructs are similar to those for constructing syntaxtrees of for generating postfix notation. 
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GraphicalRepresentations 

 

A syntax tree depicts the natural hierarchical structure of a source program. A DAG 

(DirectedAcyclicGraph)givesthesameinformationbutinamorecompact waybecausecommon sub-

expressions are identified. Asyntaxtree forthe assignment statement a:=b*-c+b*-cappear in the 

following figure. 

 

. assign 
 

a + 

* * 

 

b uniminus b uniminus 

 

 

c c 

 

Figure4.2:AbstractSyntaxTreeforthestatementa:=b*-c+b*-c 

 

Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of the in 

whichanodeappears immediatelyafter itschildren. Thepostfixnotationforthesyntaxtreeinthe fig is 

 

a bcuminus+bc uminus *+assign 

 

The edges in a syntax tree do not appear explicitly in postfix notation. They can be 

recoveredintheorderinwhichthenodesappearandtheno.ofoperandsthattheoperatoratanode 

expects.Therecoveryofedgesissimilartotheevaluation, usingastaff, ofanexpressioninpostfix 

notation. 

 

WhatisThreeAddressCode? 

 

Three-addresscodeisasequenceofstatementsofthe generalform:X:=YOpZ 

 

where x, y, and z are names, constants, or compiler-generated temporaries; op stands for 

any operator, such as a fixed- or floating-point arithmetic operator, or a logical operator on 

Boolean-valued data. Note that no built-up arithmetic expressions are permitted, as there is only 

oneoperatorontheright sideofastatement. Thusasourcelanguageexpression likex+y*z might be 

translated into a sequence 
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t1 := y * z 

t2:=x+t1 

Wheret1andt2arecompiler-generatedtemporarynames. Thisunravelingofcomplicated 

arithmeticexpressionsandofnestedflow-of-controlstatementsmakesthree-addresscodedesirable 

fortargetcodegenerationandoptimization.Theuseofnamesfortheintermediatevaluescomputed bya 

programallow- three-address codeto be easily rearranged – unlike postfix notation. Three - 

address code is a linearzed representation of a syntax tree or a dag in which explicit names 

correspond to the interior nodes of the graph. 

IntermediatecodeusingSyntaxfortheabovearithmeticexpression t1 

:= -c 

t2:=b*t1 
t3:=-c 
t4 := b * t3 

t5:=t2 +t4 a 

:=t5 

The reason for the term‖three-address code‖ is that each statement usually contains three 

addresses, two for the operands and one for the result. In the implementations of three-address 

codegiven later inthis section, a programmer-defined name is replaced bya pointertcasymbol- 

table entry for that name. 

              Three Address Code is Used in Compiler Applications 

Optimization: Three address code is often used as an intermediate representation of code 

during optimization phases of the compilation process. The three address code allows the 

compiler to analyze the code and perform optimizations that can improve the performance of the 

generated code. 

Code generation: Three address code can also be used as an intermediate representation 

of code during the code generation phase of the compilation process. The three address code 

allows the compiler to generate code that is specific to the target platform, while also ensuring 

that the generated code is correct and efficient. 

  Debugging: Three address code can be helpful in debugging the code generated by the compiler. Since 

three address code is a low-level language, it is often easier to read and understand than the final 

generated code. Developers can use the three address code to trace the execution of the program and 

identify errors or issues that may be present. 

Language translation: Three address code can also be used to translate code from one programming 

language to another. By translating code to a common intermediate representation, it becomes easier to 

translate the code to multiple target languages. 
General Representation 
 a = b op c  
Where a, b or c represents operands like names, constants or compiler generated temporaries and op 

represents the operator  

Example-1: Convert the expression a * – (b + c) into three address code. 
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TypesofThree-AddressStatements 

Three-address statements are akinto assemblycode. Statements canhave symbolic labels 

and there are statements for flow of control. A symbolic label represents the index of a three- 

address statement in the array holding inter- mediate code. Actual indices can be substituted for 

the labels either by making a separate pass, or byusing ‖back patching,‖ discussed in Section 

8.6.Herearethecommonthree-addressstatementsusedintheremainderofthisbook: 

 

1. Assignment statements of the form x: = y op z, where op is a binary arithmetic or logical 

operation. 

 

2. Assignment instructions ofthe formx:= op y, where op is a unaryoperation. Essentialunary 

operations include unary minus, logical negation, shift operators, and conversion operators that, 

for example, convert a fixed-point number to a floating-point number. 

3. Copy statementsofthe formx:=ywhere thevalueofyisassignedtox. 

 

4. TheunconditionaljumpgotoL.Thethree-addressstatement withlabelListhenexttobe 

executed. 
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5. Conditionaljumpssuchasifxrelop ygoto L.Thisinstructionappliesarelationaloperator(<, 

=,>=,etc.)toxandy,andexecutesthestatementwithlabelLnextifxstandsinrelationrelopto 

y.Ifnot,thethree-addressstatement following ifxrelopygotoLisexecutednext,asintheusual sequence. 

 

6. paramxandcallp,n forprocedurecallsandreturny,where yrepresentingareturnedvalue is 

optional. Their typical use is as the sequence of three-address statements 

 

paramx1 

paramx2 

paramxn 

call p, n 

Generated as part of a call of the procedure p(x,, x~,..., x‖). The integern indicating the number 

ofactualparametersin‖callp,n‖isnotredundantbecausecallscanbenested.Theimplementation of 

procedure calls is outline d in Section 8.7. 

7. Indexedassignmentsofthe formx:= y[ i]and x[ i]:= y.The firstofthese setsxtothevalue in the 

location i memory units beyond location y. The statement x[i]:=y sets the contents ofthe 

locationiunitsbeyondxtothevalueofy.Inboththeseinstructions,x,y,andirefertodataobjects. 

 

8. Address and pointer assignments of the form x:= &y, x:= *y and *x: = y. The first of these 

setsthevalueofxtobethelocationofy.Presumablyyisaname,perhapsatemporary,thatdenotes 

anexpressionwithanI-value suchas A[i, j], and x is a pointer name ortemporary. That is, the r- 

value of x is the l-value (location) of some object!. In the statement x: = ~y, presumablyy is a 

pointeror atemporarywhose r- value is a location. The r-value ofx is made equaltothe contents 

ofthat location. Finally, +x: = ysets the r-value ofthe object pointed to by x to the r- value of y. 

 

The choice of allowable operators is an important issue in the design of an intermediate 

form. The operator set must clearly be rich enough to implement the operations in the source 

language. A small operator set is easier to implement on a new target machine. However, a 

restrictedinstructionsetmayforcethefront endtogeneratelongsequencesofstatementsforsome 

source, language operations. The optimizer and code generator may then have to work harder if 

good code is to be generated. 

 

SYNTAXDIRECTEDTRANSLATIONOFTHREEADDRESSCODE 

 
Whenthree-addresscodeisgenerated,temporarynamesaremadeup fortheinteriornodes of a 

syntax tree. The value of non- 
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computed into a new temporary t. In general, the three- address code for id: = E consists of code 

to evaluate E intosome temporaryt, followedbythe assignmentid.place: = t. Ifanexpression is 

asingle identifier, sayy,thenyitselfholdsthevalueoftheexpression. Forthemoment, wecreate a new 

name every time a temporary is needed; techniques forreusing temporaries are given in Section 

S.3. The S-attributed definition in Fig. 8.6 generates three-address code for assignment 

statements. Given input a: = b+ – c + b+ – c, it producesthe code inFig. 8.5(a). The synthesized 

attribute S.code represents the three- address code for the assignment S. The non- terminalE has 

two attributes: 

 

1. E.place,thenamethatwillholdthevalueofE,and 

 

2. E.code,thesequenceofthree-addressstatementsevaluatingE. 

 

The function newtemp returns a sequence of distinct names t1, t2,... in response to 

successive calls. For convenience, we use the notation gen(x‘: =‘ y‘+‘ z) inFig. 8.6to represent 

thethree-address statement x: = y+ z. Expressions appearing instead ofvariables like x, y, and z 

are evaluated when passed to gen, and quoted operators or operands, like ‘+‘, are taken literally. 

In practice, three- address statements might be sent to an output file, rather than built up into the 

code attributes. Flow-of-controlstatements can be added to the language ofassignments in Fig. 

8.6byproductionsandsemanticrules)liketheonesfor whilestatementsinFig. 8.7.Inthefigure, the 

code for S - while E do S, is generated using‘ new attributes S.begin and S.after to mark the first 

statement in the code for E and the statement following the code forS, respectively. 

 

 

These attributes represent labels created by a function new label that returns a new label 

every time itis called. 
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 op Arg1 Arg2 Result 

(0) uminus c  t1 

(1) * b t1 t2 

(2) uminus c  t3 

(3) * b t3 t4 

(4) + t2 t4 t5 

(5) := t5  A 

 

 op Arg1 Arg2 

(0) uminus C  

(1) * B (0) 

(2) uminus C  

(3) * B (2) 

(4) + (1) (3) 

(5) := A (4) 

 

 

IMPLEMENTATIONSOF THREE-ADDRESSSTATEMENTS: 

A three-address statement is an abstract form of intermediate code. In a compiler, these 

statements can be implemented as records with fields for the operator and the operands. Three 

such representations are quadruples, triples, and indirect triples. 

 

QUADRUPLES: 

 

Aquadrupleisarecordstructurewithfour fields,whichwecallop,argl, arg2,and result. The op 

field contains an internal code for the operator. The three-address statement x:= y op z is 

represented byplacing y inarg 1. z in arg 2. and x in result. Statements with unaryoperatorslike x: 

= – y or x: = y do not use arg 2. Operators like param use neither arg2 norresult. Conditional and 

unconditional jumps put the target label in result. The quadruples in Fig. H.S(a) are for the 

assignmenta: = b+ – c + b i– c. Theyare obtained fromthe three-address code 

.Thecontentsoffieldsarg1,arg2,andresult arenormallypointerstothesymbol-tableentries for the 

names represented by these fields. If so, temporary names mustbe entered into the symbol table 

as they are created. 

 

TRIPLES: 

To avoid entering temporary names into the symbol table. We might refer to a temporary 

value bi the position of the statement that computes it. If we do so, three-address statements can 

be represented by records with only three fields: op, arg 1 and arg2, as Shown below. The fields 

arg l and arg2, for the arguments of op, are either pointers to the symbol table (for programmer- 

definednamesorconstants)orpointersintothetriplestructure(fortemporaryvalues). Since three fields 

are used, this intermediate code format is known as triples.‘ Except for the treatment of 

programmer-defined names, triples correspond to the representation of a syntax tree or dag byan 

array of nodes, as in 

 

Table8.8(a):Qudraples Table8.8(b):Triples:Triples 

 

Parenthesized numbers represent pointers into the triple structure, while symbol-table 

pointersarerepresented bythe namesthemselves. Inpractice, the informationneeded to interpret the 

different kinds ofentries in the arg 1and arg2fields can be encoded into theopfield or some 

additional fields. The triples in Fig. 8.8(b) correspond to the quadruples in Fig. 8.8(a). Note that 
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thecopystatementa:=t5isencoded inthetriplerepresentationbyplacinga inthearg1field and using the 

operator assign. A ternary operation like x[ i ]: = y requires two entries in the triple 

structure,asshowninFig.8.9(a),whilex:=y[i]isnaturallyrepresentedastwooperationsinFig. 8.9(b). 

 

 

IndirectTriples 

 

Another implementation of three-address code that has been considered is that of listing 

pointerstotriples,ratherthanlistingthetriplesthemselves.Thisimplementationisnaturallycalled 

indirect triples. For example, let us use an arraystatement to list pointers to triples in the desired 

order. Then the triples in Fig. 8.8(b) might be represented as in Fig. 8.10. 

 

 

 

Figure 8.10 : Indirect Triples 

SEMANTICANALYSIS:Thisphasefocusesmainlyonthe 

.Checkingthesemantics, 

.Errorreporting 

.Disambiguateoverloadedoperators 

.Typecoercion, 

.Staticchecking 
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- Typechecking 

-Controlflowchecking 

- Uniquenesschecking 

- Namecheckingaspectsoftranslation 

 

Assume that the program has been verified to be syntactically correct and converted into 

somekindofintermediaterepresentation(aparsetree).Onenowhasparsetreeavailable.The next phase 

will be semantic analysis ofthe generated parse tree. Semantic analysis also includes error 

reporting in case any semantic error is found out. 

 

Semantic analysis is a pass bya compiler that adds semantic information to the parse tree 

and performs certain checks based on this information. It logically follows the parsing phase, in 

which the parse tree is generated, and logically precedes the code generation phase, in which 

(intermediate/target) code is generated. (Ina compiler implementation, it may be possible to fold 

different phases into one pass.) Typical examples of semantic information that is added and 

checked is typing information ( type checking ) and the binding of variables and function names 

to their definitions ( object binding). Sometimes also some early code optimization is done inthis 

phase. For this phase the compiler usually maintains symbol tables in which it stores what each 

symbol (variable names, function names, etc.) refers to. 

 

FOLLOWINGTHINGSAREDONEINSEMANTICANALYSIS: 

DisambiguateOverloadedoperators:Ifanoperatorisoverloaded,onewould liketospecifythe 

meaning ofthat particular operator because fromone willgo into code generation phase next. 

 

TYPECHECKING:Theprocessofverifyingandenforcingtheconstraintsoftypesiscalledtype 

checking. This may occur either at compile-time (a static check) or run-time(a dynamic check). 

Static type checking is a primary task of the semantic analysis carried out by a compiler. If type 

rules are enforced strongly (that is, generally allowing only those automatic type conversions 

which do not lose information), the process is called strongly typed, if not, weakly typed. 

 

UNIQUENESSCHECKING:Whetheravariablenameisuniqueornot,intheitsscope. 

 
Typecoersion:Ifsomekindofmixingoftypesisallowed.Done inlanguageswhicharenot strongly 
typed. This can be done dynamically as well as statically. 

 

NAMECHECKS:Checkwhetheranyvariablehasanamewhichisnotallowed.Ex.Nameis same as an 

identifier (Ex. int in java). 

 Parsercannotcatchalltheprogramerrors 

 Thereisalevelofcorrectnessthatisdeeper thansyntaxanalysis 

 Somelanguage featurescannotbemodeledusingcontextfreegrammarformalism 

http://en.wikipedia.org/wiki/Type_checking
http://en.wikipedia.org/wiki/Object_binding
http://en.wikipedia.org/wiki/Compile-time
http://en.wikipedia.org/wiki/Run-time
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- Whetheranidentifierhasbeendeclaredbeforeuse,thisproblemisofidentifyingalanguage 

{w αw|wεΣ*} 

- Thislanguage isnotcontextfree 

 

A parser has its own limitationsin catching program errors related to semantics,something that is 

deeper than syntax analysis. Typical features of semantic analysis cannot be modeled using 

context free grammar formalism. If one tries to incorporate those features in the definition of a 

language then that language doesn't remain context free anymore. 

Example: in 

stringx;inty; 

y = x + 3 theuseofxisatypeerror int 

a, b; 

a = b+ccisnotdeclared 

Anidentifiermayrefertodifferentvariables indifferentpartsoftheprogram.Anidentifier may be 

usable inone part ofthe programbut not another These are acouple ofexamples whichtellus 

thattypicallywhat acompiler has to do beyond syntaxanalysis. The third point can be explained 

like this: An identifier x can be declaredin twoseparate functions in the program, once of the type 

int and then of the type char. Hence the same identifier will have to be bound to these two 

differentpropertiesinthetwodifferent contexts.Thefourthpoint canbeexplainedinthismanner: A 

variable declared within one function cannot be used within the scope of the definition of the 

other function unless declared there separately. This is just anexample. Probably you can think 

ofmanymoreexamples inwhichavariabledeclaredinonescopecannotbeused inanother scope. 

 

ABSTRACTSYNTAX TREE:Isnothingbutthecondensedformofaparsetree,Itis 

Usefulforrepresentinglanguageconstructssonaturally. 

TheproductionS ifB thens1 else s2mayappearas 

 

 

Inthenextfewslideswewillseehowabstractsyntaxtreescanbeconstructedfromsyntaxdirected 

definitions. Abstract syntax trees are condensed form of parse trees. Normally operators and 

keywordsappearasleavesbut inanabstractsyntaxtreetheyareassociatedwiththe interior nodes 

thatwouldbetheparentofthoseleaves intheparsetree.This isclearlyindicatedbythe examples in these 

slides. 
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Chainofsingleproductionsmaybecollapsed,andoperatorsmovetotheparentnodes 
 

 

Chainofsingleproductionsare collapsed intoonenodewiththeoperatorsmoving upto become the 

node. 

 

CONSTRUCTINGABSTRACTSYNTAXTREEFOREXPRESSIONS: 

Inconstructingthe SyntaxTree,wefollowtheconventionthat: 

 

.Eachnodeofthetreecanberepresented asarecordconsistingofat least twofieldstostore operators 

and operands. 

.operators:onefieldforoperator,remainingfieldsptrstooperands mknode(op,left,right) 

.identifier:onefieldwithlabelidandanotherptrtosymboltablemkleaf(id,id.entry) 

.number:onefieldwithlabelnumandanothertokeepthe valueofthenumbermkleaf(num,val) 

Each node in an abstract syntax tree can be implemented as a record with several fields. In the 

node for an operator one field identifies the operator (called the label of the node) and the 

remaining contain pointers to the nodes for operands. Nodes of an abstract syntax tree may have 

additional fields to hold values (or pointers to values) of attributes attached to the node. The 

functions given in the slide are used to create the nodes of abstract syntax trees for expressions. 

Each function returns a pointer to a newly created note. 

ForExample:thefollowing 

sequence of function 

callscreatesaparse 

treeforw=a-4+c 

 

P1=mkleaf(id,entry.a) P 

2 = mkleaf(num, 4) 

P3=mknode(-,P1,P2) P 4 

= mkleaf(id, entry.c) 
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P5=mknode(+,P3,P4) 

 

An example showing the formation of an abstract syntax tree by the given function calls for the 

expression a-4+c.The call sequence can be defined based on its postfix form, which is explained 

blow. 

 

A-Writethepostfixequivalentoftheexpressionforwhichwewanttoconstruct asyntaxtree For 

above string w=a-4+c, it is a4-c+ 

B-Callthe functionsinthesequence,asdefinedbythesequence inthepostfixexpressionwhich 
resultsinthedesiredtree.Inthecaseabove,callmkleaf()fora,mkleaf()for 4,mknode()for 

-,mkleaf()forc,andmknode()for+atlast. 

 

1. P1=mkleaf(id, a.entry):Aleafnodemade fortheidentifier a,andanentryforais madein the 

symbol table. 

2. P2=mkleaf(num,4):Aleafnodemadeforthenumber 4, andentryfor itsvalue. 

 
3. P3=mknode(-,P1,P2):Aninternalnodeforthe-,takesthepointerto previouslymadenodes P1, P2 
as arguments and represents the expression a-4. 

 

4. P4=mkleaf(id, c.entry):Aleafnodemade fortheidentifierc,andanentryforc.entrymade in the 

symbol table. 

 

5. P5=mknode(+,P3,P4):Aninternalnodeforthe+,takesthepointerto previouslymade nodes 
P3,P4 as arguments and represents the expression a- 4+c . 

 

Followingisthesyntaxdirecteddefinitionfor constructing syntaxtreeabove 

 

E E 1+ T E.ptr= mknode(+,E1.ptr,T.ptr) 

E T E.ptr=T.ptr 

T T 1*F T.ptr:=mknode(*,T1.ptr,F.ptr) 

T F T.ptr:=F.ptr 

F (E) F.ptr :=E.ptr 

F id F.ptr:=mkleaf(id,id.entry) 

F num F.ptr:=mkleaf(num,val) 

 
Nowwehave the syntaxdirected definitions to constructthe parsetreeforagivengrammar. All the 
rules mentioned in slide 29 are taken care ofand an abstract syntax tree is formed. 

 
ATTRIBUTEGRAMMARS:ACFGG=(V,T,P,S),iscalledanAttributedGrammariff, where in 
G, each grammar symbol XƐ VUT, has an associated set of attributes, and each 
production,pƐP,isassociatedwithasetofattributeevaluationrulescalledSemantic Actions. 
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InanAG,thevaluesofattributes at aparsetree node arecomputed bysemantic rules. There are two 

different specifications ofAGs used bythe Semantic Analyzer inevaluating the semantics of the 

program constructs. They are, 

 

- Syntaxdirecteddefinition(SDD)s 

o Highlevelspecifications 

o Hidesimplementationdetails 
o Explicit orderofevaluationisnotspecified 

- SyntaxdirectedTranslationschemes(SDT)s 

Nothingbut anSDD, whichindicatesorderinwhichsemanticrulesaretobe evaluated 
and 

Allowsomeimplementationdetailstobeshown. 

An attribute grammar is the formal expression of the syntax-derived semantic checks 

associated with a grammar. It represents the rules of a language not explicitly imparted by the 

syntax. In a practical way, it defines the information that is needed in the abstract syntax tree in 

order to successfully perform semantic analysis. This information is stored as attributes of the 

nodes ofthe abstract syntax tree. The values ofthose attributes are calculated bysemantic rule. 

Therearetwowaysforwritingattributes: 

 
1) SyntaxDirectedDefinition(SDD):Isacontextfreegrammar inwhichaset ofsemantic 
actions are embedded (associated) with each production of G. 

 

It is a high level specification in which implementation details are hidden, e.g., S.sys = 

A.sys + B.sys; 

/*doesnotgiveanyimplementationdetails. It justtellsus.Thiskindofattributeequation we 

will be using, Details like at what point oftime is it evaluated and in what manner are hidden 

from the programmer.*/ 

 

E E1+ T {E.val= E1.val+E2.val} 

E T {E.val=T.val} 

T T 1*F {T.val=T1.val+F.val) 

T F {T.val=F.val} 

F (E) { F.val=E.val} 

F id {F.val=id.lexval} 

F num {F.val=num.lexval} 

 

2) Syntax directed Translation(SDT) scheme: Sometimes we want to control the way the 

attributes are evaluated, the order and place where they are evaluated. This is ofa slightly lower 

level. 

 
AnSDTisanSDD inwhichsemanticactionscanbeplacedat anypositioninthebodyofthe 
production. 
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Forexample,followingSDT printstheprefixequivalentofanarithmeticexpressionconsistinga 

+and *operators. 

 

L En{printf(„E.val‟)} 

E {printf(„+‟)}E1+TE

T 
T {printf(„*‟)}T1*F T 

F 
F (E) 

F {printf(„id.lexval‟)}id 

F {printf(„num.lexval‟)}num 

ThisactioninanSDT, isexecutedassoonasitsnodeintheparsetreeisvisited inapreorder traversal 

of the tree. 

ConceptuallyboththeSDDand SDTschemeswill: 

Parseinputtokenstream 

Buildparsetree 

Traversetheparsetreetoevaluatethesemanticrulesattheparsetreenodes Evaluation may: 

Generatecode 

Saveinformationinthesymboltable 

Issue errormessages 

Performanyotheractivity 

 

Toavoidrepeatedtraversaloftheparsetree, actionsaretakensimultaneouslywhenatokenis found. 

So calculation of attributes goes along with the construction of the parse tree. 

Along with the evaluation of the semantic rules the compiler may simultaneously generate code, 

save the information in the symbol table, and/or issue error messages etc. at the same time while 

building the parse tree. 

 

Thissavesmultiplepassesoftheparsetree. 

Example 

Number signlist 

sign + | - 

list listbit|bit 

bit 0|1 

 

Buildattributegrammar thatannotatesNumberwiththevalueitrepresents 

 

.Associateattributeswithgrammarsymbols 



A.Y 2024-25 COMPILER DESIGN 

74|Page DEPARTMENT OF CSE 

 

 

 

symbol attributes 

Number value 

sign negative 

list position,value 

bit position,value 

productionAttributerulenumber signlist 

list.position  0 

ifsign.negative 

 

then number.value   -list.value 

else number.value  list.value 

sign + sign.negative  false sign - sign.negative  truelist bit 

bit.position  list.position 

list.value  bit.value 

list0 list 1 bit 

list1 .position   list0.position+1 

bit.position  list 0 .position 

list0 .value  list1.value+bit.value 

bit 0 bit.value  0 bit 1 bit.value  2bit.position
 

 

Explanationofattribute rules 

Num->signlist /*sincelististherightmost soit isassignedposition0 

*Signdetermineswhetherthevalueofthenumberwouldbe 

*sameorthe negative ofthe value of list*/ 

Sign-> +|- /*SettheBooleanattribute(negative)for sign*/ 

List->bit /*bitpositionisthesameaslist positionbecausethisbitistherightmost 

*value ofthe list is same as bit.*/ 

List0 -> List1 bit /*positionand valuecalculations*/ 

Bit -> 0 | 1 /*set the corresponding value*/ 

 

 

 

AttributesofRHScanbecomputedfromattributesofLHSandviceversa. 

TheParseTreeandtheDependencegraphareasunder 
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. 

 

Dependence graph shows the dependence of attributes on other attributes, along with the 

syntaxtree.Top downtraversalis followed bya bottomuptraversalto resolve the dependencies. 

Number, val and neg are synthesized attributes. Pos is an inherited attribute. 

 

Attributes : . Attributes fall into two classes namely synthesized attributes and inherited 

attributes.Valueofasynthesizedattributeiscomputedfromthevaluesofitschildrennodes.Value of an 

inherited attribute is computed fromthe sibling and parent nodes. 

 

The attributes are divided into two groups, called synthesized attributes and inherited 

attributes. The synthesized attributes are the result of the attribute evaluation rules also using the 

values of the inherited attributes. The values of the inherited attributes are inherited from parent 

nodes and siblings. 

 

Each grammar production A ahasassociatedwithit asetofsemanticrulesoftheform b= 

f(c1,c2,...,ck),Wherefisafunction,and either ,bisasynthesizedattributeofAOr 

-bisan inheritedattributeofoneofthegrammarsymbolsontheright 

.attributebdependsonattributesc1,c2,...,ck 

 

Dependence relation tells us what attributes we need to know before hand to calculate a 

particular attribute. 

 

Here the value ofthe attribute b depends on the values ofthe attributes c1 to ck. Ifc1 to 
ckbelong to the children nodes and b to A then b will be called a synthesized attribute. And if b 

belongstooneamonga(childnodes)thenitisaninheritedattributeofoneofthegrammarsymbols on the 
right. 
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SynthesizedAttributes:Asyntaxdirecteddefinitionthat usesonlysynthesizedattributes is 
said to be an S- attributed definition 

 
.Aparsetreefor anS-attributeddefinitioncanbeannotatedbyevaluatingsemantic rules for 
attributes 

 

S-attributed grammars are a class of attribute grammars, comparable with L-attributed grammars 

butcharacterizedbyhavingnoinheritedattributesatall.Inheritedattributes,whichmustbepassed 

downfromparent nodesto childrennodesoftheabstract syntaxtreeduringthesemantic analysis, pose 

a problem for bottom-up parsing because in bottom-up parsing, the parent nodesof the abstract 

syntax tree are createdafter creation of all of their children.Attribute evaluation in S- attributed 

grammars can be incorporated conveniently in both top-down parsing and bottom-up parsing . 

 

SyntaxDirectedDefinitionsforadeskcalculatorprogram 

L E n Print(E.val) 

E E+ T E.val=E.val+T.val 

E T E.val=T.val 

T T*F T.val=T.val*F.val 

T F T.val=F.val 

F (E) F.val=E.val 

F digit F.val=digit.lexval 

 

.terminals are assumed to have onlysynthesized attribute valuesofwhichare supplied bylexical 

analyzer 

 

.startsymboldoesnothaveanyinheritedattribute 

 

Thisisagrammarwhichusesonlysynthesizedattributes.Startsymbolhasno parents,henceno inherited 
attributes. 

 

Parsetreefor3*4+5n 
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Usingthepreviousattributegrammar calculationshave beenworkedoutherefor3*4+5n. Bottom 
up parsing has been done. 

 

InheritedAttributes:Aninheritedattributeisonewhosevalue isdefined intermsof attributes 
at the parent and/or siblings 

 

.Usedforfindingoutthecontextinwhichitappears 

.possibletouseonlyS-attributesbut morenaturaltouseinheritedattributes D 

T L L.in = T.type 

T real T.type=real 

T int T.type=int 

L L1,id L1.in=L.in;addtype(id.entry,L.in) 

L id addtype(id.entry,L.in) 

 

Inherited attributes help tofind thecontext(type,scope etc.) ofa token e.g., the type of a token or 

scopewhenthe same variable name is used multiple times in a program indifferent functions. An 

inherited attribute system may be replaced by an S -attribute system but it is more natural to use 

inherited attributes in some cases like the example given above. 

Hereaddtype(a,b)functionsaddsasymboltableentryfortheid aandattachestoitthetypeofb 

. 

 

Parsetreeforrealx,y,z 
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Dependence of attributes in an inherited attribute system. The value of in (an inherited attribute) 

at the three L nodes gives the type of the three identifiers x , y and z . These are determined by 

computing the value ofthe attribute T.type atthe left child ofthe root and thenvaluating L.intop 

down at the three L nodes in the rightsubtreeofthe root. Ateach L node the procedure addtype is 

called which inserts the type of the identifier to its entry in the symbol table. The figure also 

shows the dependence graph which is introduced later. 

 

Dependence Graph: . Ifanattribute bdepends onanattribute cthenthe semantic rule for b 
must be evaluated after the semantic rule for c 

 
.Thedependenciesamongthenodescanbedepictedbyadirectedgraphcalleddependency graph 

 

DependencyGraph:Directedgraphindicatinginterdependenciesamongthesynthesizedand 

inherited attributes of various nodes in a parse tree. 

 

Algorithmtoconstructdependencygraph for 

each node n in the parse tree do 

foreachattributeaofthegrammarsymboldo construct a 

node in the dependency graph 

fora 

foreachnodenintheparsetreedo 

 

foreachsemanticrule b=f(c1,c2,...,ck)do 

{associatedwithproductionatn} 
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fori=1tokdo 

 

Constructanedgefromcitob 
 

Analgorithmtoconstructthedependencygraph.Aftermakingonenodeforeveryattribute of all 
the nodes of the parse tree, make one edge from each of the other attributes on which it depends. 

 

Forexample, 
 

 

The semantic rule A.a = f(X.x , Y.y) for the production A -> XY defines the synthesized 

attribute a of A to be dependent on the attribute x of X and the attribute y of Y . Thus the 

dependency graph will contain an edge from X.x to A.a and Y.y to A.a accounting for the two 

dependencies.SimilarlyforthesemanticruleX.x= g(A.a,Y.y)forthesameproductiontherewill be an 

edge from A.a to X.x and an edg e from Y.y to X.x. 

Example 

 

.Wheneverfollowingproductionisusedinaparsetree E 

E 1 + E 2 E.val = E 1 .val + E 2 .val 

wecreate adependencygraph 
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ThesynthesizedattributeE.valdependsonE1.valandE2.valhencethetwoedgesoneeach from 

E 1 .val & E 2 .val 

Forexample, thedependencygraphforthestingrealid1,id2,id3 

 

.Put adummysynthesized attributebfor asemanticrulethatconsistsofaprocedurecall 

 

 

The figure shows the dependencygraph for the statement real id1, id2, id3 along with the 

parse tree. Procedure calls can be thought of as rules defining the values of dummy synthesized 

attributes of the nonterminal on the left side of the associated production. Blue arrows constitute 

thedependencygraphandblack lines,theparsetree.Eachofthesemanticrulesaddtype(id.entry, L.in) 

associated with the L productions leads to the creation of the dummy attribute. 

 

EvaluationOrder: 

Anytopologicalsortofdependencygraphgivesavalidorderinwhichsemanticrules must be 

evaluated 

 
a4=real 
a5 = a4 

addtype(id3.entry,a5) 

a7 = a5 

addtype(id2.entry,a7) 
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a9:=a7addtype(id1.entry,a9) 

 

Atopological sort ofa directed acyclic graph is anyordering m1, m2, m3mk ofthe 
nodesofthegraphsuchthatedgesgofromnodesearlierintheorderingtolaternodes.Thusifmi 

-> mj is an edge from mi to mj then mi appears before mj in the ordering. The order of the 

statementsshownintheslide isobtainedfromthetopologicalsortofthedependencygraphinthe 

previousslide. 'an'stands fortheattributeassociatedwiththenodenumbered ninthe dependency 

graph. The numbering is as shown in the previous slide. 

 

AbstractSyntaxTree isthecondensedformoftheparsetree,which is 

 

.Usefulforrepresentinglanguageconstructs. 

.Theproduction:S ifBthens1elses2mayappearas 
 

 

Inthenext fewslideswewillsee howabstract syntaxtreescanbeconstructedfromsyntax 

directed definitions. Abstract syntax trees are condensed form of parse trees. Normallyoperators 

and keywords appear as leaves but in an abstract syntax tree theyare associated with the interior 

nodes that would be the parent of those leaves in the parse tree. This is clearly indicated by the 

examples in these slides. 

 

.Chainofsingleproductionsmaybecollapsed,andoperatorsmovetotheparentnodes 
 

 

Chainofsingleproductionarecollapsed intoonenodewiththeoperatorsmovingupto become the 

node. 
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ForConstructingtheAbstractSyntaxtreeforexpressions, 

 

.Eachnodecanbe representedasarecord 

 

.operators:onefieldforoperator,remainingfieldsptrstooperandsmknode( 

op,left,right ) 

.identifier:onefieldwith labelidandanotherptrtosymboltablemkleaf(id,entry) 

 

.number:onefieldwithlabelnumandanothertokeepthevalueofthenumber 

mkleaf(num,val) 

Eachnode inanabstractsyntaxtreecanbe implemented asarecordwithseveralfields. In the 

node for an operator one field identifies the operator (called the label of the node) and the 

remaining contain pointers to the nodes for operands. Nodes of an abstract syntax tree may have 

additional fields to hold values (or pointers to values) of attributes attached to the node. The 

functions given in the slide are used to create the nodes of abstract syntax trees for expressions. 

Each function returns a pointer to a newly created note. 

 

Example:Thefollowing 

sequence of function 

calls creates a parse 

tree for a- 4 + c 

 

P1=mkleaf(id,entry.a) P 

2 = mkleaf(num, 4) 

P3=mknode(-,P1,P2) P 4 

= mkleaf(id, entry.c) 

P5=mknode(+,P3,P4) 

 

Anexampleshowingthe formationofanabstract syntaxtreebythegivenfunctioncalls forthe 

expression a-4+c.The call sequence can be explained as: 

1. P1=mkleaf(id,entry.a):Aleafnodemade fortheidentifierQaRandanentryforQaRis made in 

the symbol table. 

2. P2=mkleaf(num,4):AleafnodemadeforthenumberQ4 R. 

3. P3=mknode(-,P1,P2):Aninternalnode fortheQ-Q.Itakesthepreviouslymade nodesas 

arguments and represents the expression Qa-4 R. 

4. P4=mkleaf(id,entry.c): Aleafnodemade fortheidentifierQcRandanentryforQcRis made in 

the symbol table. 

5. P5=mknode(+,P3,P4):AninternalnodefortheQ+Q.Itakesthepreviouslymadenodesas 

arguments and represents the expression Qa- 4+c R. 
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Asyntaxdirecteddefinitionforconstructing syntaxtree 
E E 1+ T E.ptr=mknode(+,E1.ptr,T.ptr) 

E T E.ptr=T.ptr 

T T 1*F T.ptr:=mknode(*,T 1.ptr,F.ptr) 

T F T.ptr:=F.ptr 

F (E) F.ptr :=E.ptr 

F id F.ptr:=mkleaf(id, entry.id) 

F num F.ptr:=mkleaf(num,val) 
 

 
Nowwehavethesyntaxdirecteddefinitionstoconstructtheparsetreeforagivengrammar.All the rules 
mentioned in slide 29 are taken care ofand an abstract syntax tree is formed. 

 
Translationschemes : ACFGwheresemanticactionsoccurwithintheright handsideof 
production, A translation scheme to map infix to postfix. 

E TR 
addopT{print(addop)}R|e T 

num {print(num)} 

Parsetreefor9-5+2 

 

 

Weassumethat theactionsareterminalsymbolsand Performdepthfirst ordertraversaltoobtain 9 5 - 2 

+. 

Whendesigningtranslationscheme, ensureattributevalueisavailablewhenreferredto 

Incaseofsynthesized attributeitistrivial(why?) 

Inatranslationscheme,aswearedealingwithimplementation,wehavetoexplicitlyworry 

abouttheorderoftraversal. We cannowputinbetweentherulessomeactionsas partoftheRHS. We put 

this rules in order to control the order of traversals. In the given example, we have two terminals 

(num and addop). It can generally be seen as a number followed by R (which 
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necessarily has to begin with an addop). The given grammar is in infix notation and we need to 

convert it into postfix notation. If we ignore all the actions, the parse tree is in black, without the 

rededges.Ifweincludetherededgeswegetaparsetreewithactions.Theactionsaresofartreated 

asaterminal.Now,ifwedoadepthfirsttraversal,andwheneverweencounteraactionweexecute it, we 

get a post-fix notation. Intranslation scheme, we have to take care ofthe evaluation order; 

otherwise some of the parts may be left undefined. For different actions, different result will be 

obtained. Actions aresomething we write and wehave to control it. Please note that translation 

scheme is different from a syntax driven definition.In the latter, we do not have any evaluation 

order;inthiscasewehaveanexplicit evaluationorder.Byexplicit evaluationorderwehavetoset correct 

action at correct places, in order to get the desired output. Place of each action is very important. 

We have to find appropriate places, and that is that translation scheme is all about. If we talk 

ofonly synthesized attribute, the translation scheme is verytrivial. This is because, when 

wereachweknowthatallthechildrenmust havebeenevaluatedandalltheirattributes must have also 

been dealt with. This is because finding the placefor evaluation is very simple, it is the rightmost 

place. 

 

Incaseofbothinheritedand synthesizedattributes 

 

. Aninherited attribute for asymbolonrhsofa production must be computed inanactionbefore that 

symbol 

 

SA1A2{A1.in=1,A2.in=2} 

A a {print(A.in)} 

 

 

Depthfirstordertraversalgives errorundefined 

 
.Asynthesized attributefor nonterminalonthe lhscanbecomputedafter allattributes it 
references, have beencomputed. The action normallyshould be placed at the end ofrhs 

 

We have a problem when we have both synthesized as well as inherited attributes. For the given 

example, if we place the actions as shown, we cannot evaluate it. This is because, when doing a 

depth first traversal, we cannot print anything for A1. This is because A1 has not yet been 

initialized. We, therefore have to find the correct places for the actions. This can be that the 

inheritedattributeofAmust becalculatedonitsleft.Thiscanbeseenlogicallyfromthedefinition of L-

attribute definition, which says that when we reach a node, then everything on its left must have 

been computed. Ifwe do this, we will always have the attribute evaluated at the 



A.Y 2024-25 COMPILER DESIGN 

85|Page DEPARTMENT OF CSE 

 

 

 
correctplace.Forsuchspecificcases(likethegivenexample)calculatinganywhereonthe left 

willwork, but generally it must be calculated immediately at the left. 

 

Example:TranslationschemeforEQN 

 

S B B.pts=10 

S.ht=B.ht 

B B1 B2 B1.pts=B.pts 

B2.pts=B.pts 

B.ht=max(B1.ht,B2.ht) 

B B1subB2 B1.pts=B.pts; 

B 2 .pts = shrink(B.pts) 

B.ht=disp(B1.ht,B2.ht) 

B text B.ht=text.h*B.pts 

 

Wenowlookatanotherexample.ThisisthegrammarforfindingouthowdoIcomposetext.EQN was 

equation setting system which was used as an early type setting system for UNIX. It was earlier 

used as an latex equivalent for equations. We say that start symbol is a block: S - >B We can also 

have a subscript and superscript. Here, we look at subscript. A Block is composedof 

severalblocks:B->B1B2andB2isasubscriptofB1.Wehavetodeterminewhat isthepointsize 

(inherited) and height Size (synthesized). We have the relevant functionfor height and point size 

given along side. After putting actions in the right place 

 

 

We have put allthe actions at the correct places as per the rules stated. Read it from left to right, 

and topto bottom. We notethat all inherited attribute are calculated onthe left ofB symbols and 

synthesized attributes are on the right. 

 

TopdownTranslation:UsepredictiveparsingtoimplementL-attributeddefinitions 

EE 1+T E.val:= E1.val+T.val 
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EE 1-TE.val:= E1.val-T.val 

E T E.val:=T.val 

T (E) T.val:=E.val 

T num T.val:=num.lexval 

 

We now come to implementation. We decide how we use parse tree and L-attribute 

definitions to construct the parse tree with a one-to-one correspondence. We first look at the top- 

down translation scheme. The firstmajor problem is leftrecursion. If we remove leftrecursion 

byour standard mechanism, we introduce new symbols, and new symbols willnot work withthe 

existing actions. Also, we have to do the parsing in a single pass. 

 

TYPESYSTEMANDTYPECHECKING: 

.Ifboththeoperandsofarithmeticoperators+,-,xareintegers thentheresultisoftypeinteger 

.Theresultofunary&operatorisapointertotheobjectreferredtobytheoperand. 

-Ifthe type ofoperandisXthentype ofresultispointertoX 

InPascal,typesareclassifiedunder: 

 

1. Basictypes: These areatomictypeswithno internalstructure.Theyinclude thetypesboolean, 

character, integer and real. 

2. Sub-rangetypes: Asub-range type defines a rangeofvalues withinthe range ofanothertype. For 

example, type A = 1..10; B = 100..1000; U = 'A'..'Z'; 

3. Enumerated types: An enumerated type is defined by listing all of the possible values for the 

type. For example: type Colour = (Red, Yellow, Green); Country = (NZ, Aus, SL, WI, Pak, Ind, 

SA, Ken, Zim, Eng); Both the sub-range and enumerated types can be treated as basic types. 

 

4. Constructed types: A constructed type is constructed from basic types and other basic types. 
Examples of constructed types are arrays, records and sets. Additionally, pointers and functions 

can also be treated as constructed types. 

 

TYPEEXPRESSION: 

Itisanexpressionthat denotesthetypeofanexpression. Thetypeofa languageconstruct is denoted 
by a type expression 

 

Itiseither abasictypeorit is formedbyapplyingoperatorscalledtypeconstructorto other 
type expressions 

Atype constructorapplied toatypeexpressionisatypeexpression 

Abasic typeistype expression 

- typeerror:errorduringtypechecking 

- void:notypevalue 
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The type of a language construct is denoted by a type expression. A type expression is either a 

basictypeorisformedbyapplyinganoperatorcalledatypeconstructortoothertypeexpressions. 

Formally, a type expression is recursively defined as: 

 

1. Abasictypeisatypeexpression.Amongthebasictypesareboolean,char,integer,andreal 

.A special basic type, type_error , is used to signal an error during type checking. Another 

specialbasictypeisvoidwhichdenotes"theabsenceofavalue"and isusedto checkstatements. 

2. Sincetypeexpressionsmaybenamed,atypenameisatypeexpression. 

3. Theresultofapplyingatypeconstructortoatypeexpressionisatypeexpression. 

4. Typeexpressionsmaycontainvariableswhosevaluesaretypeexpressions themselves. 

 

TYPECONSTRUCTORS:areusedtodefineorconstructthetypeofuserdefinedtypesbased on their 

dependent types. 

Arrays: IfT isatypeexpressionandI isarangeofintegers,thenarray( I,T)isthetype expression 

denoting the type of arraywith elements oftype T and index set I. 

Forexample,thePascaldeclaration, varA:array[1 .. 10]ofinteger;associatesthetype 

expression array ( 1..10, integer ) with A. 

Products: IfT1andT2aretypeexpressions,thentheirCartesianproduct T1XT2isalso atype 

expression. 

 

Records:Arecordtypeconstructorisappliedtoatuple formed fromfield namesand field types. 

For example, the declaration 

Considerthedeclaration 

type row = record 

addr:integer; 
lexeme:array[1..15]ofchar 

end; 

vartable:array[1..10]ofrow; 

Thetyperowhastypeexpression: record((addrxinteger)x(lexemexarray(1..15,char))) 

andtypeexpressionoftableisarray(1..10,row) 

 

Note:Includingthefieldnames inthetypeexpressionallowsustodefineanotherrecordtype with 

the same fields but with different names without being forced to equatethe two. 

Pointers:IfT isatypeexpression,thenpointer(T)isatypeexpressiondenotingthetype "pointer to 

an object of type T". 

Forexample,inPascal,thedeclaration 

var p: row declaresvariableptohavetypepointer(row). 
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Functions : Analogous to mathematical functions, functions in programming languages may be 

defined as mapping a domaintype Dto arangetype R. Thetype ofsucha function is denotedby the 

type expression D R. For example, the built-in function mod ofPascal has domain type int X int, 

and range type int . Thus we say mod has the type: int xint -> int 

Asanotherexample,accordingtothePascaldeclaration 

function f(a, b: char) : integer; 

Herethetypeoffisdenotedbythetypeexpressionischarxcharpointer(integer) 

 

SPECIFICATIONSOFATYPECHECKER:Consider alanguagewhichconsistsofa 

sequence of declarations followed by a single expression 

P D;E 

 

D D ;D |id:T 

 

T char| integer |array[num]ofT|^T E 

literal| num | E mod E | E [E] | E ^ 

Atypecheckerisatranslationschemethatsynthesizesthetypeofeachexpressionfromthetypes 

ofitssub-expressions. Considertheabovegivengrammarthat generatesprogramsconsistingofa 

sequence of declarations D followed by a single expression E. 

Specificationsofatypecheckerforthelanguage oftheabovegrammar:Aprogramgenerated by this 

grammaris 

 

key: integer; 

keymod 1999 

 

Assumptions: 

1. Thelanguagehasthreebasictypes:char,intandtype-error 

 

2. Forsimplicity, allarraysstart at1.Forexample, thedeclarationarray[256]ofchar leadstothe type 

expression array ( 1.. 256, char). 

 

RulesforSymbolTableentry 

D id:T addtype(id.entry,T.type) 

T char T.type=char 

T integer T.type=int 

T ^T1 T.type=pointer(T1.type) 

T array[num]ofT1 T.type=array(1..num, T1.type) 
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TYPECHECKINGOFFUNCTIONS: 

ConsidertheSyntaxDirected Definition, 

 

E E1( E2) E.type=ifE2.type==sand 

E1.type == s t 

thent 

elsetype-error 

 
Therules forthesymboltableentryarespecifiedabove. Thesearebasicallythewayinwhich the 
symbol table entries corresponding to the productions are done. 

 

Typecheckingoffunctions 

 

The production E -> E ( E ) where an expression is the application of one expression to another 

can be used to represent the application of a function to an argument. The rule for checking the 

type of a function application is 

 

E ->E1(E2){E.type:=ifE2.type== s andE1.type== s ->tthentelsetype_error } 

 

Thisrulesaysthat inanexpressionformedbyapplyingE1toE2,thetypeofE1must bea function s-

>tfromthetype sofE2to some range type t ;the type ofE1 (E2)ist .The above rule canbe 

generalizedtofunctionswithmorethanoneargument byconstructingaproducttype consistingof the 

arguments. Thus n arguments of type T1 , T2 

 

...Tncanbe viewedasasingleargumentofthetypeT1XT2...XTn. Forexample, root : ( real 

real) X real real 

declaresafunctionrootthattakesafunction fromrealstorealsandarealasargumentsand returns a 

real. The Pascal-like syntax for this declaration is 

functionroot(functionf(real):real;x:real):real 

 

TYPECHECKINGFOREXPRESSIONS:considerthefollowingSDDforexpressions 

 

E literal E.type=char 

E num E.type=integer 

E id E.type=lookup(id.entry) 

E E1modE2 E.type=ifE 1.type==integerand 

E2.type==integer 

then integer 
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elsetype_error 

E E1[E2 ] E.type=ifE2.type==integerand 

E1.type==array(s,t) 

thent 

elsetype_error 

E E1^ E.type=ifE1.type==pointer(t) 

then t 

elsetype_error 

 

Toperformtypecheckingofexpressions,followingrulesareused.Wherethesynthesizedattribute 

typeforEgivesthetypeexpressionassigned bythetypesystemtotheexpressiongeneratedbyE. 

Thefollowingsemanticrulessaythat constantsrepresentedbythetokensliteralandnumhave type char 

and integer , respectively: 

 

E -> literal { E.type := char } 

E->num{E.type:=integer } 

.The functionlookup(e)isusedtofetchthetypesavedinthesymbol-tableentrypointedtoby 

e.Whenanidentifierappearsinanexpression, itsdeclaredtype isfetchedandassignedtothe 

attribute type: 

E ->id{ E.type:=lookup(id.entry )} 

 

.Accordingtothefollowingrule, theexpressionformedbyapplyingthe modoperatortotwo sub-

expressions oftype integer has type integer ; otherwise, its type is type_error . 

E ->E1modE2{E.type:= ifE1.type==integer andE2.type== integertheninteger else 

type_error} 

 
InanarrayreferenceE1[E2],theindexexpressionE2must havetypeinteger, inwhichcase the 
result is the element type t obtained fromthe type array ( s, t ) ofE1. 

 

E->E1[E2]{E.type:= ifE2.type== integer andE1.type== array (s,t)thentelse 

type_error} 

 
Withinexpressions,thepostfixoperator yieldstheobject pointedtobyitsoperand.ThetypeofE is the 
type t of the object pointed to bythe pointer E: 

 

EE1{E.type:=ifE1.type ==pointer(t)thentelse type_error} 
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TYPECHECKINGOFSTATEMENTS:Statementstypicallydonothavevalues.Specialbasic type 

void can be assigned to them. Consider the SDD for the grammar below which generates 

Assignment statements conditional, and looping statements. 

 

S id := E S.Type=ifid.type==E.type 

then void 

elsetype_error 

S ifE thenS1 S.Type=ifE.type== boolean 

then S1.type 

elsetype_error 

S whileEdoS1 S.Type=ifE.type== boolean 

thenS1.type 

elsetype_error 

S S1 ; S2 S.Type=ifS1.type==void 

and S2.type == void 

thenvoid 

elsetype_error 

 
Sincestatementsdo nothavevalues,thespecialbasictypevoid isassignedtothem, but ifan error is 

detected within a statement, the type assigned to the statementis type_error . 

 

The statements considered below are assignment, conditional, and whilestatements. Sequences of 

statements are separated by semi-colons. The productions given below can be combined with 

thosegivenbeforeifwechangetheproductionforacompleteprogramtoP->D;S.Theprogram now 

consists of declarations followed by statements. 

 

Rulesfortypechecking thestatementsaregivenbelow. 

 

1. Sid:=E{ S.type:=ifid.type==E.typethenvoidelsetype_error} 

 

Thisrulechecksthattheleftandrightsidesofanassignmentstatementhavethesametype. 

 

2. SifEthenS1{S.type := ifE.type == booleanthenS1.type else type_error} 

 

Thisrulespecifiesthattheexpressionsinanif-thenstatementmusthavethetypeboolean. 

 

3. Swhile Edo S1{S.type:=ifE.type==booleanthenS1.typeelsetype_error} 

 

Thisrulespecifiesthattheexpressioninawhilestatementmusthavethetypeboolean. 

 

4. SS1;S2 {S.type:=ifS1.type ==voidand S2.type==voidthenvoid elsetype_error} 
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Errorsarepropagatedbythis last rule becauseasequenceofstatementshastypevoidonlyif each 

sub-statement has type void. 

 

 

 

IMPORTANT&EXPECTEDQUESTIONS 

1. WhatdoyoumeanbyTHREEADDRESSCODE?Generatethethree-addresscodefor the 

following code. 

begin 

 

 
do 
begin 

 

I:=1; 

PROD:= 0; 

 

 

End 

PROD:=PROD+A[I]B[I]; 

I:=I+1 
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2. Writeashort noteonAttributed grammar&Annotated parsetree. 

3. Defineanintermediatecodeform.Explainvariousintermediatecodeforms? 

4. WhatisSyntaxDirectedTranslation?ConstructSyntaxDirectedTranslationschemeto 

convert a given arithmetic expression into three address code. 

5. WhatareSynthesizedandInheritedattributes?Explainwithexamples? 

6. ExplainSDTforSimpleTypechecker? 

7. Defineandconstructtriples,quadruplesandindirecttriplenotationsofanexpression:a* 

-(b+c). 

 

ASSIGNMENTQUESTIONS: 

1. WriteThreeaddresscodeforthebelowexample 

While( i<10) 

{ 
a=b+c*-d; 

i++; 

} 

 

2. What isaSyntaxDirectedDefinition?WriteSyntaxDirecteddefinitiontoconvert binary 
value in to decimal? 
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SYMBOLTABLE 
SymbolTable(ST) : Isadatastructureused bythe compiler to keeptrackofscope and binding 

information about names 

-Symboltableischangedeverytimeanameisencounteredinthesource; 

Changestotableoccur whenever anew name isdiscovered;new informationaboutanexisting name 

is discovered 

Asweknowthecompilerusesasymboltabletokeeptrackofscopeandbindinginformationabout 

names.ItisfilledaftertheAST is madebywalkingthroughthetree,discoveringand assimilating 

information about the names. There should be two basic operations - to insert a new name or 

information intothe symboltable asand whendiscovered and to efficiently lookup aname inthe 

symbol table to retrieve its information. 

Twocommondata structuresused forthesymboltableorganizationare- 

1. Linearlists:-Simpletoimplement,Poorperformance. 

2. Hash tables:- Greater programming / space overhead, but, Good performance. 

Ideallyacompilershouldbeableto growthesymboltabledynamically, i.e.,insert newentries or 

information as and when needed. 

Butifthesizeofthetable isfixed inadvancethen(anarrayimplementationforexample),then the size 

must be big enough in advance to accommodate the largest possible program. 

Foreachentryindeclarationofaname 

- The formatneednot beuniformbecauseinformationdependsupontheusageofthename 

- Eachentryisarecordconsistingofconsecutivewords 

- Tokeeprecordsuniformsomeentriesmaybeoutsidethesymboltable 

Information is entered into symbol table at various times. For example, 

- keywordsareenteredinitially, 

- identifierlexemesareenteredbythelexicalanalyzer. 

.Symboltableentrymaybeset upwhenroleofname becomesclear,attributevaluesare filled in as 

information is available during the translation process. 

Foreachdeclarationofaname,there isanentryinthesymboltable. Different entriesneed to 

store different information because of the different contexts in which a name can occur. An 

entrycorresponding to a particular name can be inserted into the symbol table at different stages 

dependingonwhentheroleofthe name becomesclear. The variousattributesthatanentryinthe symbol 

table can have are lexeme, type of name, size of storage and in case of functions - the parameter 

list etc. 

Anamemaydenoteseveralobjectsinthesameblock 

- intx;structx{floaty,z;} 

The lexicalanalyzer returnsthe name itselfand not pointer to symboltable entry. Arecord inthe 

symboltableiscreatedwhenroleofthenamebecomesclear. Inthiscasetwo symboltableentries are 

created. 

Aattributesofanameare entered inresponse todeclarations 
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Labelsareoften identifiedbycolon 

Thesyntaxofprocedure/functionspecifiesthat certainidentifiersare formals, charactersina name. 

There is a distinction between token id, lexeme and attributes of the names. 

Itisdifficulttoworkwithlexemes 

ifthereismodestupper boundonlengththenlexemescanbestoredinsymboltable 

iflimitislargestorelexemesseparately 

 

There might be multiple entries inthe symboltable forthe same name, allofthemhaving 

differentroles.Itisquiteintuitivethatthesymboltableentrieshavetobemadeonlywhenthe role of a 

particular name becomes clear. The lexical analyzer therefore just returns the name and not the 

symbol table entryas it cannot determine the context of that name. Attributes corresponding 

tothesymboltableareenteredforaname inresponsetothecorresponding declaration. Therehas to be 

an upper limit for the length of the lexemes for themto be stored in the symboltable. 

 

STORAGEALLOCATIONINFORMATION: Informationabout storagelocationsiskept in the 

symbol table. 

 
Iftarget codeisassemblycode,thenassembler cantakecareofstorage forvariousnamesand the 
compiler needs to generate data definitions to be appended to assembly code 

 

Iftarget codeis machinecode,thencompiler doestheallocation. Nostorageallocationisdone for 

names whose storage is allocated at runtime 

Information about the storage locations that will be bound to names at run time is kept in 

thesymboltable. Ifthetarget isassemblycode,theassembler cantakecareofstoragefor various names. 

Allthecompiler hasto do istoscanthesymboltable, aftergeneratingassemblycode, and 

generateassemblylanguagedatadefinitionstobeappendedtotheassemblylanguageprogramfor 

eachname.Ifmachinecodeistobegeneratedbythecompiler,thenthepositionofeachdataobject 

relativetoafixedoriginmust beascertained. Thecompilerhastodothe allocationinthiscase. In the 

case of names whose storage is allocated on a stack or heap, the compiler does not allocate 

storage at all, it plans out the activation record for each procedure. 

 

STORAGEORGANIZATION: Theruntimestoragemightbe 
subdivided into : 

Targetcode, 

Dataobjects, 

Stacktokeeptrackofprocedureactivation,and 

Heaptokeepallotherinformation 

 

This kind of organization of run-time storage is used for languages such as 

Fortran, Pascal and C. The size of the generated target code, as well as that of 

some ofthe dataobjects, is known at compile time. Thus, these can be stored 
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instaticallydeterminedareasinthememory. 

STORAGEALLOCATIONPROCEDURECALLS: PascalandCusethe 

stack for procedure activations. Whenever a procedure is called, execution of 

activationgetsinterrupted,andinformationaboutthemachinestate(likeregister 

values) is stored on the stack. 

 

When the called procedure returns, the interrupted activation can be restarted after restoring the 

saved machine state. The heap may be used to store dynamically allocated data objects, and also 

otherstuffsuchasactivationinformation(inthecaseoflanguageswhereanactivationtree cannot be 

used to represent lifetimes). Both the stack and the heap change in size during program 

execution,sotheycannotbeallocatedafixedamountofspace. Generallytheystartfromopposite ends of 

the memory and can grow as required, towards each other, until the space available has filled up. 

 

ACTIVATION RECORD: An Activation Record is a data structure that is activated/ created 

when a procedure / function are invoked and it contains the following information about the 

function. 

 

Temporaries:usedinexpressionevaluation 

Localdata:fieldforlocaldata 

Savedmachinestatus:holdsinfoaboutmachinestatusbefore 
procedure call 

Accesslink:toaccessnonlocaldata 

Controllink:pointstoactivationrecordofcaller 

Actualparameters: fieldtohold actualparameters 

Returnedvalue:fieldforholdingvaluetobereturned 

The activation record is used to store the information required by a 

single procedure call. Not all the fields shown in the figure may be 

neededforalllanguages.Therecordstructurecanbemodifiedasperthe 

language/compiler requirements. 

 

ForPascalandC,theactivationrecordisgenerallystoredontherun- time 

stack during the period when the procedure is executing. 

 

Ofthefieldsshowninthefigure,accesslinkandcontrollinkareoptional(e.g.FORTRANdoesn't need 

access links). Also, actual parameters and return values are often stored in registers instead of the 

activation record, for greater efficiency. 

 

Theactivationrecordforaprocedurecallisgeneratedbythecompiler. Generally, all field 

sizes can be determined at compile time. 
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However,thisisnotpossible inthecaseofaprocedurewhichhasalocalarraywhosesizedepends on a 

parameter. The strategies used for storage allocation in such cases will be discussedin forth 

coming lines. 

 

STORAGEALLOCATIONSTRATEGIES:Thestorageisallocatedbasicallyinthefollowing 

THREE ways, 

Staticallocation:laysoutstorageatcompiletimeforalldataobjects 

Stackallocation:managestheruntimestorageasastack 

Heapallocation:allocatesandde-allocatesstorageasneededatruntimefromheap 

 

These represent the different storage-allocation strategies used in the distinct parts of the 

run-time memoryorganization(as shown inslide 8). We willnow look atthe possibilityofusing 

these strategies to allocate memory for activation records. Different languages use different 

strategies for this purpose. For example, old FORTRAN used static allocation, Algol type 

languages use stack allocation, and LISP type languages use heap allocation. 

 

STATIC ALLOCATION: Inthisapproach memoryisallocated statically. So,Namesare bound to 

storage as the program is compiled 

Noruntimesupportisrequired 

Bindingsdonotchangeatruntime 

Oneveryinvocationofprocedure namesareboundtothe samestorage 

Valuesoflocalnamesare retainedacrossactivationsofaprocedure 

 

These are the fundamental characteristics of static allocation. Since name binding occurs during 

compilation, there is no need for a run-time support package. The retention oflocal name values 

across procedure activations means that when control returns to a procedure, the values of the 

localsarethesameastheywerewhencontrollastleft.Forexample,supposewehadthe following code, 

written in a language using static allocation: 

 

functionF() 

{ 

int a; 

print(a); 

a = 10; 

} 

Aftercalling F()once, ifit wascalledasecondtime, thevalueofawould initiallybe10,andthis is what 

would get printed. 

The type of a name determines its storage requirement. The address for this storage is an offset 

fromtheprocedure'sactivationrecord,andthecompilerpositionstherecordsrelativetothetarget code 

and to one another (on some computers, it may be possible to leave thisrelative 
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position unspecified, and let the link editor link the activation records to the executable code). 

After this position has been decided, the addresses of the activation records, and hence of the 

storage for eachname inthe records,are fixed. Thus, at compile time, the addressesat which the 

target codecanfind thedatait operatesuponcanbe filled in. Theaddressesat which information is to 

be saved whena procedure calltakes place are also knownat compile time. Static allocation does 

have some limitations. 

- Sizeofdataobjects,aswellasanyconstraintsontheirpositionsinmemory, must be 

available at compile time. 

- Norecursion, becauseallactivationsofagivenprocedureusethesame bindingsfor local 

names. 

- Nodynamicdatastructures,sincenomechanismisprovidedforruntimestorageallocation. 

 

STACK ALLOCATION: Figure shows the activation records that are pushed onto and popped 

for the run time stack as the control flows through the given activation tree. 

 

 

First the procedure is activated. Procedure readarray 's activation is pushed onto the stack, when 

thecontrolreachesthefirst line intheproceduresort.Afterthecontrolreturnsfromtheactivation ofthe 

readarray, its activation is popped. Inthe activation ofsort ,the controlthen reaches a call of qsort 

with actuals 1 and 9 and an activation of qsort is pushed onto the top of thestack. In the last stage 

the activations for partition (1,3) and qsort (1,0) have begun and ended during the life time of 

qsort (1,3), so their activation records have come and gone from the stack, leaving the activation 

record for qsort (1,3) on top. 

 

CALLINGSEQUENCES:Acallsequenceallocatesanactivationrecordandentersinformation into 

its field. A return sequence restores the state of the machine so that calling procedure can 

continue execution. 

 
Callingsequenceandactivationrecordsdiffer,evenforthesamelanguage.Thecodeinthecalling 
sequence is often divided between the calling procedure and the procedure it calls. 
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Thereisnoexactdivisionofruntimetasksbetweenthecaller and 

the colleen. 

Asshowninthefigure,theregisterstacktoppointstotheend of the 

machine status field in the activation record. 

 

 

 
This position is known to the caller, so it can be made 
responsible for setting up stack top before control flows to the 
called procedure. 

 

 

ThecodefortheCalleecanaccess itstemporariesandthe local data 

using offsets from stack top. 

 

 

 

 

 

 

CallSequence:Inacallsequence,followingsequenceofoperationsisperformed. 

 

Callerevaluatestheactualparameters 

Caller storesreturnaddressandothervalues(controllink)intocallee‘sactivationrecord 

Calleesavesregistervaluesandother statusinformation 

Calleeinitializesitslocaldataandbeginsexecution 

The fields whose sizes arefixed early are placedin the middle. The decision of whether or 

not to usethe controland access links is part ofthe design of the compiler, so these fields can be 

fixed at compiler constructiontime. Ifexactlythe same amount ofmachine-status information 

issaved foreachactivation,thenthesamecodecandothesavingandrestoring forallactivations. 

Thesizeoftemporaries may not beknowntothe front end. Temporariesneeded bytheprocedure may 

be reduced by careful code generation or optimization. This field is shown after that for the local 

data. The caller usually evaluates the parameters and communicates themto the activation 

recordofthe callee. Inthe runtime stack, the activation recordof the calleris just below that for the 

callee. The fields for parameters and a potential return value are placed next to the activation 

record of the caller. The caller can then access these fields using offsets from the end of its own 

activation record. In particular, there is no reason for the caller to know about the local data or 

temporaries of the callee. 

 

ReturnSequence:Inareturnsequence,followingsequenceofoperationsareperformed. 
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Calleeplacesareturnvaluenext toactivationrecordofcaller 

Restoresregistersusinginformationinstatusfield 

Branchtoreturnaddress 

Callercopiesreturnvalueintoitsownactivationrecord 

As described earlier, in the runtime stack, the activation record of the caller is just below 

that for the callee. The fields for parameters and a potential return value are placed next to the 

activation record of the caller.The caller can then access thesefields using offsets from the end of 

its own activation record. The caller copies the return value into its own activation record. In 

particular,thereisno reasonforthecallertoknowaboutthelocaldataortemporariesofthe callee. The 

given calling sequence allows the number ofarguments ofthe called procedureto depend on the 

call. At compile time, the target code of the caller knows the number of arguments it is supplying 

to the callee. The caller knows the size of the parameter field. The target code of the called must 

be prepared to handle other calls as well, so it waits until it is called, then examines the parameter 

field. Information describing the parameters must be placed next to the status field so the callee 

can find it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LongLengthData: 

 

The procedure P has three local arrays. The storage for these arrays is not part of the 

activation record for P; only a pointer to the beginning of each array appears in the activation 

record. The relative addresses ofthese pointers are known at the compile time, so the target code 

can access array elements through the pointers. Also shown is the procedure Q called by P . The 

activation record for Q begins after the arrays of P. Access to data on the stack is through two 

pointers, top and stack top. The first ofthese marks the actualtopofthe stack; it points to the 
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positionat whichthe next activation record begins. The second is used to find the local data. For 

consistencywiththe organizationofthe figure inslide 16, supposethe stacktop pointstothe end 

ofthemachinestatusfield.Inthisfigurethestacktoppointstotheendofthisfield inthe activation 

recordfor Q. Within the field isacontrollink tothepreviousvalueofstacktopwhencontrolwas 

incalling activationofP. The codethat repositions top and stacktopcanbe generated at compile 

time, using the sizesofthe fields in the activationrecord. Whenq returns, the new value oftopis 

stacktopminus the lengthofthe machine statusandthe parameter fields inQ's activationrecord. This 

length is knownat the compile time, at least to the caller. After adjusting top,the new value of 

stack top can be copied from the control link of Q. 

DanglingReferences:Referringto locationswhichhave beende-allocated. 

void main() 

{ 

int*p; 

p=dangle();/*danglingreference*/ 

} 

 

int*dangle(); 

{ 

int i=23; 

return&i; 

} 

Theproblemofdanglingreferencesarises,wheneverstorageisde-allocated.Adanglingreference 

occurs when there is a reference to storage that has been de-allocated. It is a logical error to use 

danglingreferences,sincethevalueofde-allocatedstorageisundefinedaccordingtothesemantics of 

most languages. Since that storage may later be allocated to another datum, mysterious bugs can 

appear in the programs with dangling references. 

 

HEAP ALLOCATION: Ifa procedure wantstoput avalue that is to be used after its activation is 

over then we cannot use stack for that purpose. That is language like Pascal allows data to be 

allocatedunderprogramcontrol.Also incertainlanguageacalledactivationmayoutlivethecaller 

procedure. Insucha case last-in-first-out queuewillnot workand wewillrequire a data structure 

likeheaptostoretheactivation.Thelast caseisnottrueforthoselanguageswhoseactivationtrees 

correctly depict the flow of control between procedures. 

 

LimitationsofStackallocation:It cannotbeusedif, 

 

o Thevaluesofthelocalvariablesmustberetainedwhenanactivationends 

o Acalledactivationoutlivesthecaller 

Insucha casede-allocationofactivationrecordcannotoccurin last-infirst-outfashion 

Heap allocationgivesoutpiecesofcontiguousstorageforactivationrecords 
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Therearetwo aspectsofdynamicallocation-: 

- Runtimeallocationand de-allocationofdata structures. 

- Languages like Algolhavedynamicdatastructuresand it reservessomepartofmemory for 

it. 

Initializing data-structures may require allocating memory but where to allocate this 

memory. After doingtype inferencewe haveto dostorageallocation. It willallocatesomechunk of 

bytes. But in language like LISP, it will try to give continuous chunk. The allocation in 

continuous bytes may lead to problem of fragmentation i.e. you may develop hole in process of 

allocation and de-allocation. Thus storage allocation of heap may lead us with many holes and 

fragmentedmemorywhichwillmakeithardtoallocatecontinuouschunkofmemorytorequesting 

program.So,wehave heap mangerswhichmanagethefreespaceandallocationandde-allocation 

ofmemory. It would beefficient to handle smallactivationsand activationsofpredictablesizeas a 

specialcase as described in the next slide. The various allocation and de- allocationtechniques 

used will be discussed later. 

Fillarequestofsize swithblock ofsize s'wheres'isthesmallestsizegreaterthanorequaltos 

- Forlargeblocksofstorageuseheapmanager 

- Forlarge amount ofstoragecomputation maytakesometime to use upmemoryso that 

time taken by the manager may be negligible compared to the computation time 

Asmentionedearlier,forefficiencyreasonswecanhandlesmallactivationsandactivationsof 
predictable size as a special case as follows: 

 

1. Foreachsizeofinterest,keepalinkedlistiffreeblocksofthatsize 

 

2. If possible, fill a request for size s with a block of size s', where s' is the smallest size greater 

thanorequaltos.Whentheblockiseventuallyde-allocated, itisreturnedtothelinked list it came from. 

 

3. Forlargeblocksofstorageusetheheapmanger. 

Heapmangerwilldynamicallyallocate memory. Thiswillcomewitharuntimeoverhead. 

Asheapmanagerwillhavetotakecareofdefragmentationandgarbagecollection. Butsinceheap 

manger saves space otherwise we will have to fix size of activation at compile time, runtime 

overhead is the price worth it. 

 

ACCESSTONON-LOCALNAMES: 

Thescoperulesofa languagedecide howtoreferencethenon-localvariables. Therearetwo 

methods that are commonly used: 

1. StaticorLexicalscoping:Itdeterminesthedeclarationthat appliesto anamebyexamining the 

program text alone. E.g., Pascal, C and ADA. 

2. DynamicScoping:Itdeterminesthedeclarationapplicabletoanameat runtime,by 

considering the current activations. E.g., Lisp 
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ORGANIZATIONFORBLOCKSTRUCTURES: 

Ablock isaanysequenceofoperationsorinstructionsthat areusedtoperforma[sub] task.In any 

programming language, 

Blockscontainits ownlocaldatastructure. 

Blockscanbenestedandtheir starting andendsaremarkedbyadelimiter. 

 They ensure that either block is independent of other or nested in another block. Thatis,it 

isnotpossiblefortwoblocksB1andB2tooverlapinsuchawaythatfirstblockB1begins, then B2, 

but B1 end before B2. 

This nestingpropertyiscalledblockstructure.Thescopeofadeclaration inablock- 

structured language is given by the most closely nested rule: 

1. Thescopeofadeclaration inablock BincludesB. 

2. Ifaname Xis notdeclaredin a block B, then an occurrence of Xin B isin the scope ofa 

declarationofX inanenclosing block B 'suchthat. B'has a declarationofX, and. B' is more 

closely nested around B then anyother block with a declaration ofX. 

 

Forexample, considerthefollowingcodefragment. 

 

For the example, in the above figure, the scope of declaration of b in B0 does not include B1 

because b is re-declared in B1. We assume that variables are declared before the first statementin 

which they are accessed. The scope of the variables will be as follows: 
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DECLARATION SCOPE 

inta=0 B0notincludingB2 

intb=0 B0notincludingB1 

intb=1 B1notincludingB3 

inta=2 B2 only 

intb=3 B3 only 

 

Theoutcomeoftheprintstatementwillbe,therefore: 

21 

03 

01 

00 

Blocks:.Blocksaresimplertohandlethanprocedures 

 

.Blockscanbetreatedasparameterlessprocedures 

.Usestackformemoryallocation 

.Allocatespacefor completeprocedurebodyatonetime 

 

 

 

 

 

Therearetwomethodsofimplementingblockstructureincompilerconstruction: 

1. STACKALLOCATION:Thisisbasedontheobservationthat scopeofadeclarationdoesnot extend 

outside the block in which it appears, the space for declared name can be allocated when the 

block is entered and de-allocated when controls leave the block. The view treat blockas a 

"parameter less procedure" called only fromthe point just before the block and returning onlyto 

the point just before the block. 

 

2. COMPLETE ALLOCATION: Here you allocate the complete memory at one time. If there 

are blocks within the procedure, then allowance is made for the storage needed for declarations 

withinthe books.Iftwo variables are never alive at the same time and are at same depththeycan be 

assigned same storage. 
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DYNAMICSTORAGEALLOCATION: 

 

GenerallylanguageslikeLispandMLwhichdo notallow forexplicit de-allocationofmemorydo 

garbage collection. Areference to apointerthat isno longer valid is called a'danglingreference'. For 

example, consider this C code: 

 

intmain(void) 

{ 

int*a=fun(); 

} 

int* fun() 

{ 
int a=3; 

int*b=&a; 

return b; 

} 

Here, the pointer returned by fun() no longer points to a valid address in memory as the 

activation of fun() has ended. This kind of situation is called a 'dangling reference'. In case of 

explicitallocationit is more likelytohappenastheusercande-allocateanypartofmemory, even 

something that has to a pointer pointing to a valid piece of memory. 

InExplicit AllocationofFixed Sized Blocks, Linktheblocks ina list ,and Allocationand de- 

allocation can be done with very little overhead. 
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The simplest formofdynamic allocation involves blocks ofa fixed size. By linking the blocks in a 

list, as shown in the figure, allocation and de-allocation can be done quickly with little or no 

storage overhead. 

 

ExplicitAllocationof FixedSizedBlocks:Inthisapproach,blocksaredrawnfrom 
contiguous area ofstorage, and an area ofeach block is used as pointer to the next block 

Thepointer availablepointstothefirstblock 

Allocationmeansremovingablockfromtheavailablelist 

De-allocation meansputtingtheblockintheavailablelist 

Compilerroutinesneednotknowthetype ofobjectsto beheldintheblocks 

Eachblockistreatedasavariantrecord 

Supposethat blocksareto bedrawnfromacontiguousareaofstorage.Initializationofthe 

areaisdonebyusingaportionofeachblockforalinktothenext block. Apointeravailablepoints to the 

first block. Generally a list of free nodes and a list of allocated nodes is maintained, and 

whenever a new block has to be allocated, the block at the head of the free list is taken off and 

allocated (added tothe list ofallocated nodes). Whena node has to be de-allocated, it is removed 

from the list of allocated nodes by changing the pointer to it in the list to point to the block 

previously pointed to by it, and then the removed block is added to the head of the list of free 

blocks.Thecompiler routinesthatmanage blocksdo notneedtoknowthetypeofobject thatwill 

beheldintheblock bytheuser program. These blockscancontainanytypeofdata (i.e.,theyare used as 

generic memory locations by the compiler). We can treat each block as a variant record, with the 

compiler routines viewing the block as consisting of some other type. Thus, there is no 

spaceoverhead becausetheuser programcanusetheentireblock for itsownpurposes. Whenthe block 

is returned, then the compiler routines use some ofthe space fromthe block itselfto link it into the 

list ofavailable blocks, as shown in the figure in the last slide. 

 

ExplicitAllocationofVariableSizeBlocks: 

Limitations of Fixed sized block allocation: In explicit allocation of fixed size blocks, internal 

fragmentation canoccur,that is, the heap mayconsist ofalternate blocks that arefree and in use, as 
shown in the figure. 

 

Thesituationshowncanoccur ifaprogramallocates five blocksandthende-allocatesthesecond and 

the fourth, for example. 

Fragmentation is of no consequence if blocks are of fixed size, but if theyare of variable size, a 

situation like this is a problem, because we could not allocate a block larger than any one of the 

free blocks, even though the space is available in principle. 

 

So, ifvariable- sized blocks are allocated,then internalfragmentationcanbe avoided, as weonly 

allocate as much space as we need in a block. But this creates the problem of external 

fragmentation, where enough space is available in total for our requirements, but not enough 
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spaceisavailable incontinuousmemorylocations,asneeded forablockofallocatedmemory. For 

example, consider another case where we need to allocate 400 bytes of data for the next request, 

and theavailablecontinuousregionsofmemorythat wehaveareofsizes300, 200and 100bytes. So we 

have a total of 600 bytes, which is more than what we need. But still we are unable to allocate the 

memory as we do not have enough contiguous storage. 

 

Theamountofexternalfragmentationwhileallocatingvariable-sizedblockscanbecomeveryhigh on 

using certain strategies for memory allocation. 

 

Sowetrytousecertainstrategiesformemoryallocation,sothatwecanminimizememorywastage due to 

external fragmentation. These strategies are discussed in the next few lines. 

.Storagecanbecomefragmented,Situation mayarise,Ifprogramallocatesfiveblocks 

.thende-allocatessecond andfourthblock 

 

 

IMPORTANT QUESTIONS: 

1. Whatarecallingsequence,andReturnsequences?Explainbriefly. 

2. WhatisthemaindifferencebetweenStatic&Dynamicstorageallocation?Explainthe 

problems associated with dynamic storage allocation schemes. 

3. What istheneedofadisplayassociatedwithaprocedure?Discusstheproceduresfor 

maintaining the display when the procedures are not passed as parameters. 

4. Writenotesonthestaticstorageallocationstrategywithexampleanddiscuss its 

limitations? 

5. Discussaboutthestackallocationstrategyofruntimeenvironmentwithanexample? 

6. Explaintheconceptofimplicitdeallocationofmemory. 

7. Giveanexampleofcreating danglingreferencesandexplain howgarbageiscreated. 

 

ASSIGNMENTQUESTIONS: 

1. Whatisacallingsequence?Explain briefly. 

2. Explaintheproblemsassociatedwithdynamicstorageallocationschemes. 

3. ListandexplaintheentriesofActivationRecord. 

4. Explainaboutparameterpassing mechanisms. 
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UNIT-IV 

 

RUNTIMESTORAGEMANAGEMENT: 

Tostudytherun-timestoragemanagementsystemitissufficienttofocusonthestatements:action, 

call,returnandhalt,becausetheybythemselvesgiveussufficient insight intothebehaviorshown by 

functions in calling each other and returning. 

 

And the run-time allocation and de-allocation of activations occur on the call of functions and 

when they return. 

 

There are mainly two kinds of run-time allocation systems: Static allocation and Stack 

Allocation. While static allocation is used bythe FORTRAN class of languages, stack allocation 

is used by the Ada class of languages. 
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STATICALLOCATION: Inthis,Acallstatement isimplementedbyasequenceoftwo 

instructions. 

 

Amoveinstructionsavesthereturnaddress 

Agototransfers controltothetargetcode. 

The instruction sequence is 

MOV#here+20,callee.static-area 

GOTO callee.code-area 

callee.static-areaandcallee.code-areaareconstantsreferringtoaddressoftheactivationrecord and the 

first address of called procedure respectively. 

 
.#here+20 inthe move instructionisthereturnaddress;theaddressofthe instructionfollowing the 
goto instruction 

 

.Areturnfromprocedurecallee is implementedby 

GOTO *callee.static-area 

Forthecallstatement, weneedto savethereturnaddresssomewhereand thenjumptothe 

locationofthecallee function. Andtoreturnfroma function, wehaveto accessthereturnaddress as 

stored byits caller, and then jump to it. So for call, we first say: MOV #here+20, callee.static- 

area. Here, #here refers to the location ofthe current MOV instruction, and callee.static- area is a 

fixed location in memory. 20 is added to #here here, as the code corresponding to the call 

instruction takes 20 bytes (at 4 bytes for each parameter: 4*3 for this instruction, and 8 for the 

next). Thenwe sayGOTO callee. code-area,totake usto the codeofthecallee,ascallee.codearea is 

merely the address where the code of the callee starts. Then a return from the callee is 

implemented by:GOTO*callee.staticarea. Notethat thisworksonlybecausecallee.static-area is a 

constant. 

Example: 

 

.Assumeeach 100:ACTION-l 

action 120: MOV140, 364 

blocktakes 20 132:GOTO200 

bytesofspace 140:ACTION-2 

.Startaddress 160:HALT 

ofcodeforc : 

andpis 200:ACTION-3 

100and200 220:GOTO*364 



 

 

COMPILERDESIGN 

 

.The activation 
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: 

Records 300: 

arestatically 304: 

allocatedstarting : 

ataddresses 364: 

300and364. 368: 

 

Thisexamplecorrespondstothecodeshowninslide57.Staticallywesaythatthecodefor c starts 

at 100 and that for p starts at 200. At some point, c calls p. Using the strategy discussed 

earlier,andassumingthatcallee.staticareaisatthememorylocation364,wegetthecodeasgiven. Here 

we assume that a call to 'action' corresponds to a single machine instruction which takes 20 bytes. 

 

STACK ALLOCATION :.Positionoftheactivationrecordisnotknownuntilruntime 

 

. Positionisstoredinaregisteratruntime, and wordsintherecordareaccessedwithan offset from 

the register 

. Thecodeforthefirst procedureinitializesthestackbysettingupSPtothestartofthe stack area 

 

MOV#Stackstart, SP 

 

codeforthefirstprocedure 

HALT 

In stack allocation we do not need to know the position ofthe activation record until run- 

time. This gives us an advantage over static allocation, as we can have recursion. So this is used 

in many modern programming languages like C, Ada, etc. The positions of the activations are 

stored in the stack area, and the position for the most recent activation is pointed to bythe stack 

pointer. Words in a record are accessed with an offset from the register. The code for the first 

procedureinitializesthestackbysettingupSPtothestackareabythe followingcommand: MOV 

#Stackstart, SP. Here, #Stackstart is the location in memory where the stack starts. 

 

Aprocedurecallsequence incrementsSP,savesthereturnaddressandtransferscontroltothe called 

procedure 

 

ADD#caller.recordsize,SP 

MOVE #here+ 16, *SP 

GOTO callee.code_area 
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Consider the situation when a function (caller) calls the another function(callee), then 

procedure call sequence increments SP by the caller record size, saves the return address and 

transfers control to the callee by jumping to its code area. In the MOV instruction here, we only 

need to add 16, as SP is a register, and so no space is needed to store *SP. The activations keep 

getting pushed on the stack, so #caller.recordsize needs to be added to SP, to update the value of 

SPtoitsnewvalue. Thisworksas#caller.recordsizeisaconstant forafunction,regardlessofthe 

particular activation being referred to. 

 

 

DATASTRUCTURES:Followingdatastructuresareusedtoimplementsymboltables 

 

 

LISTDATASTRUCTURE:Couldbeanarraybasedorpointerbased list. Butthis 

implementation is 

 

- Simplesttoimplement 

- Useasingle arraytostorenamesandinformation 

- Searchforanameislinear 

- Entryandlookupareindependentoperations 

- Costofentryandsearchoperationsareveryhighandlotoftimegoesintobookkeeping 

 

Hashtable:Hashtable isadatastructurewhichgivesO(1)performance inaccessingany element 

of it. It uses the features of both arrayand pointer based lists. 

 

-Theadvantagesareobvious 

 

REPRESENTINGSCOPEINFORMATION 

Theentries inthesymboltableare for declarationofnames. Whenanoccurrenceofa nameinthe 

sourcetextislookedupinthesymboltable,theentryfortheappropriatedeclaration, accordingto the 

scoping rules of the language, must be returned. A simple approach is to maintain a separate 

symbol table for each scope. 

 

Mostcloselynestedscoperulescanbe implementedbyadaptingthedatastructuresdiscussed in the 

previous section. Each procedure is assigned a unique number. If the language isblock- 

structured,theblocks must also beassigneduniquenumbers.Thename isrepresentedasa pairof a 

number and a name. This new name is added to the symbol table. Most scope rules can be 

implemented in terms of following operations: 

 

a) Lookup-findthemostrecentlycreatedentry. 

b) Insert-makeanewentry. 

c) Delete-removethemostrecentlycreated entry. 

d) Symboltable structure 

e) .Assignvariablestostorageclassesthatprescribescope,visibility, andlifetime 
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f) - scoperulesprescribe the symboltablestructure 

g) -scope:unitofstaticprogramstructurewithoneormore variabledeclarations 

h) -scopemaybe nested 

i) .Pascal:proceduresarescopingunits 

j) .C:blocks,functions,filesarescopingunits 

k) .Visibility,lifetimes,globalvariables 

l) . Common(inFortran) 

m) . Automatic orstackstorage 

n) .Staticvariables 

o) storageclass:Astorageclass isanextrakeywordatthebeginningofadeclarationwhich 

modifiesthedeclarationinsomeway.Generally,thestorageclass(ifany) isthe first word in the 

declaration, preceding the type name. Ex. static, extern etc. 

p) Scope:Thescopeofavariable issimplythepartoftheprogramwhere itmaybeaccessed 

orwritten.It isthepartoftheprogramwherethe variable's name maybeused.Ifavariable is 

declared within a function, it is localtothatfunction. Variables ofthe same name may be 

declared and used within other functions without any conflicts. For instance, 

q) intfun1() 

{ 

inta; 

intb; 

.... 

} 

 

intfun2() 

{ 
inta; 

intc; 

.... 

} 
Visibility: The visibility of a variable determines how much of the rest of the program 

canaccessthat variable.Youcanarrangethatavariable isvisibleonlywithinonepartof one 

function, or in one function, or in one source file, or anywhere in the program. 

r) Local and Global variables: A variable declared within the braces {} of a function is 

visible only within that function; variables declared within functions are called local 

variables.Ontheotherhand,avariabledeclaredoutsideofanyfunctionisaglobalvariable 

,anditispotentiallyvisibleanywherewithintheprogram. 

 

 

s) Automatic Vs Static duration: How long do variables last? By default, local variables 

(thosedeclaredwithinafunction)haveautomaticduration:theyspringintoexistencewhen 

thefunctioniscalled,andthey(andtheirvalues)disappearwhenthefunction 
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returns. Global variables, onthe other hand, have static duration: they last, and the values 

storedinthempersist,foraslongastheprogramdoes.(Ofcourse,thevaluescaningeneral still be 

overwritten, so they don't necessarily persist forever.) By default, local variables 

haveautomaticduration.Togivethemstaticduration(sothat,insteadofcomingandgoing as the 

function is called, they persist for as long as the function does), you precede their 

declaration with the static keyword: static int i; By default,a declaration of a global 

variable (especially if it specifies an initial value) is the defining instance. To make it an 

externaldeclaration,ofavariablewhichisdefinedsomewhereelse, youprecedeit withthe 

keywordextern:externint j;Finally,to arrangethataglobalvariable isvisibleonlywithin its 

containing source file, you precede it with the static keyword: static int k; Notice that the 

static keyword can do two different things: it adjuststhe duration of a local variable 

fromautomatic to static, orit adjusts the visibilityofa global variable fromtrulyglobalto 

private-to-the-file. 

t) Symbolattributesandsymboltableentries 

u) Symbolshaveassociatedattributes 

v) Typicalattributesarename,type,scope,size,addressingmodeetc. 

w) Asymboltableentrycollectstogether attributessuchthattheycanbeeasilyset and 

retrieved 

x) Exampleoftypicalnamesinsymboltable 

 

Name Type 

name characterstring 

class enumeration 

size integer 

type enumeration 

 

 

LOCALSYMBOLTABLEMANAGEMENT: 

 

Followingareprototypesoftypicalfunctiondeclarationsused formanaging localsymboltable. The 

right hand side ofthe arrows is the output ofthe procedure and the left side has the input. 

NewSymTab : SymTab SymTab 

DestSymTab : SymTab SymTab 

InsertSym : SymTab X Symbol boolean 

LocateSym:SymTabXSymbol boolean 

GetSymAttr : SymTab X Symbol X Attr boolean 

SetSymAttr:SymTabXSymbolXAttrXvalue boolean 

NextSym : SymTab X Symbol Symbol 

MoreSyms:SymTabXSymbol boolean 



A.Y 2024-25 COMPILER DESIGN 

113|Page DEPARTMENT OF CSE 

 

 

 
Amajorconsiderationindesigningasymboltable isthat insertionandretrievalshouldbeasfast as 

possible 

.Onedimensionaltable:searchisveryslow 

 

.Balancedbinarytree:quick insertion, searchingandretrieval;extraworkrequiredtokeepthe tree 

balanced 

.Hashtables:quickinsertion,searchingandretrieval;extraworktocomputehashkeys 

 

.Hashing withachainofentriesisgenerallyagood approach 

 

Amajor considerationindesigningasymboltable isthat insertionandretrievalshould be as 

fast as possible. We talked about theone dimensionaland hashtables a few slides back. Apart 

fromthese balanced binarytrees can be used too. Hashing is the most common approach. 

 

HASHEDLOCALSYMBOLTABLE 
 

 

 

 

Hash tables can clearly implement 'lookup' and 'insert' operations. For implementing the 

'delete', we do not want to scan the entire hash table looking for lists containing entries to be 

deleted. Each entry should have two links: 

 

a) Ahashlinkthat chainstheentrytoother entrieswhosenameshashtothesame value-the usual 

link in the hash table. 
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b) A scope link that chains all entries in the same scope - an extra link. If the scope link is left 

undisturbedwhenanentryisdeletedfromthehashtable,thenthechainformedbythescope links will 

constitute an inactive symbol table for the scope in question. 

 

NestingstructureofanexamplePascalprogram 

 

Lookatthenestingstructureofthisprogram. Variablesa,bandcappearinglobalaswell as 

localscopes. Localscopeofa variable overrides the globalscopeoftheother variable withthe same 

name within its own scope. The next slide will show the global as well as the localsymbol tables 

for this structure. Here procedure I and h lie within the scope of g ( are nested within g). 

 
GLOBALSYMBOLTABLESTRUCTURETheglobalsymboltablewill beacollectionof symbol 
tables connected with pointers. 

 

. Scope and visibility rules 

determine the structure of 

global symbol table 

 

. For ALGOL class of 

languages scoping rules 

structure the symbol table as 

tree of local tables 

 

- Globalscopeasroot 

 

- Tables for nested scope as 

children of the table for the 

scope they are nested in 
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Theexactstructurewillbedeterminedbythescopeandvisibilityrulesofthelanguage.The global 

symbol table will be a collection of symbol tables connected with pointers. The exact structure 

will be determined by the scope and visibility rules of the language. Whenever a new scope 

isencountered a new symboltable is created. This new table containsa pointer back tothe 

enclosing scope's symbol table and the enclosing one also contains a pointerto this new symbol 

table. Anyvariable used inside the new scope should either be present in its own symboltable or 

inside the enclosing scope's symbol table and all the way up to the root symbol table. A sample 

global symbol table is shown in the below figure. 

 

 

 

 

 

 

 

 

 

BLOCK STRUCTURESANDNONBLOCKSTRUCTURESTORAGEALLOCATION 

Storage bindingand symbolicregisters : Translatesvariablenamesintoaddressesandthe 
process must occur before or during code generation 

 

- .Eachvariableisassigned anaddressoraddressingmethod 

- .Eachvariable isassignedanoffset withrespecttobasewhichchangeswithevery 

invocation 

- .Variablesfallinfourclasses:global,globalstatic,stack,local(non-stack)static 

- Thevariablenameshavetobetranslatedintoaddressesbeforeorduringcodegeneration. 
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There isa baseaddressand everyname isgivenanoffset withrespecttothisbasewhichchanges with 
every invocation. The variables can be divided into four categories: 

 

a) GlobalVariables:fixedrelocatableaddressoroffsetwithrespect tobaseasglobalpointer 

 

b) GlobalStaticVariables:.Globalvariables, ontheotherhand,havestaticduration(hencealso called 

static variables): theylast, andthe values stored inthempersist, for as long asthe program does. (Of 

course, the values can in general still be overwritten, so they don't necessarily persist forever.) 

Therefore they have fixed relocatable address or offset with respect to base as global pointer. 

 

c) Stack Variables : allocate stack/global in registers and registers are not indexable, therefore, 

arrays cannot be in registers 

.Assignsymbolicregisterstoscalar variables 

 

.Usedforgraphcoloringfor globalregister allocation 

 

 

 

d) Stack Static Variables : Bydefault, local variables (stack variables) (those declared within a 

function)haveautomaticduration:theyspring intoexistencewhenthefunctioniscalled,andthey (and 

their values) disappear when the function returns. This is why they are stored in stacks and have 

offset from stack/frame pointer. 

 

 

 

Registerallocationisusuallydoneforglobalvariables.Sinceregistersarenotindexable,therefore, 

arrays cannot be in registers as they are indexed data structures. Graph coloring is a simple 

techniqueforallocatingregisterandminimizingregisterspillsthat workswellinpractice.Register spills 

occur when a register is needed for a computation but allavailable registers are inuse. The 

contents of one of the registers must be stored in memory to free itup for immediate use. We 

assign symbolic registers to scalar variables which are used in the graph coloring. 
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LocalVariablesinFrame 

 

Assigntoconsecutivelocations;allowenoughspaceforeach 

Mayputwordsizeobjectinhalfwordboundaries 

Requirestwohalfwordloads 

Requiresshift,or,and 

Alignondoubleword boundaries 

Wastesspace 

AndMachinemayallowsmalloffsets 

wordboundaries-themostsignificant byteoftheobject must be locatedatanaddresswhose two 

least significant bits are zero relative to the frame pointer 

 
half-wordboundaries-themostsignificant byteoftheobject beinglocatedatanaddress whose 
least significant bit is zero relative to the frame pointer . 

 

Sortvariablesbythealignmenttheyneed 

 

- Storelargestvariablesfirst 

- Utomaticallyalignsallthevariables 

- Doesnotrequirepadding 

- Storesmallestvariablesfirst 

- Requiresmorespace(padding) 

- Forlargestackframemakesmorevariablesaccessiblewithsmalloffsets 

 

Whileallocatingmemorytothevariables, sort variablesbythealignmenttheyneed.Youmay: 

 

Storelargestvariablesfirst:Itautomaticallyalignsallthevariablesanddoesnotrequirepadding since 

the next variable's memory allocation starts at the end ofthat ofthe earlier variable 
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. Store smallest variables first: It requires more space (padding) since you have to accommodate 

forthebiggest possible lengthofanyvariabledatastructure.Theadvantage isthat for largestack 

frame, more variables become accessible within small offsets 

 

Howtostorelargelocaldatastructures?BecausetheyRequires largespace inlocalframesand 

therefore large offsets 

 

- Iflargeobjectisput neartheboundaryotherobjectsrequire largeoffset either fromfp(if put 

near beginning) or sp (if put near end) 

- Allocateanother baseregistertoaccesslargeobjects 

- Allocatespaceinthe middleorelsewhere;storepointertothese locations fromat asmall 

offset from fp 

- Requiresextraloads 

 

Large local data structures require large space in local frames and therefore large offsets. 

Astoldinthepreviousslide'snotes,iflargeobjectsareputneartheboundarythentheotherobjects require 

large offset. You can either allocate another base register to access large objectsor you can 

allocate space in the middle or elsewhere and then store pointers to these locations starting from 

at a small offset from the frame pointer, fp. 

 

 

Intheunsortedallocationyoucanseethewasteofspace ingreen. Insortedframethere isno waste 
of space. 

 

STORAGEALLOCATIONFORARRAYS 
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Elementsofanarrayarestoredinablockofconsecutive locations. Forasingledimensionalarray, if low 

is the lower bound of the index and base is the relative address of the storage allocated to 

thearrayi.e.,therelativeaddressofA[low],thentheithElementsofanarrayare storedinablock of 

consecutive locations 

 

Forasingledimensionalarray,iflowisthelowerboundoftheindexandbaseistherelative address 

of the storage allocated to the array i.e., the relative address of A[low], then the i th 

elementsbeginsatthe location: base+(I-low)*w.Thisexpressioncanbereorganizedas i*w+ (base -

low*w) . The sub-expression base-low*w is calculated and stored in the symbol table at compile 

time when the array declaration is processed, so that the relative address of A[i] can be obtained 

by just adding i*w to it. 

 

- AddressingArrayElements 

- Arraysare storedinablockofconsecutivelocations 
- Assumewidthofeachelementisw 
- ithelementofarrayAbeginsinlocationbase+(i-low)xwwherebase isrelative address 

of A[low] 

- Theexpressionisequivalentto 

- ixw+(base-lowxw) 

i x w + const 

2-DIMENSIONALARRAY:For arowmajortwodimensionalarraytheaddressofA[i][j] can be 

calculated by the formula : 

base+((i-lowi)*n2+j- lowj)*wwhere lowiand lowjare lowervaluesofIand jand n2 is number of 

values jcan take i.e. n2 = high2 - low2 + 1. 

Thiscanagainbewrittenas: 

 

((i*n2)+j)*w+(base-((lowi*n2)+lowj)*w)andthesecondtermcanbecalculatedatcompile time. 

 

In the same manner, the expression for the location of an element in column major two- 

dimensionalarraycanbeobtained.Thisaddressing canbegeneralizedtomultidimensionalarrays. 

Storage can be either row major or column major approach. 

 

Example: Let Abea10x20 arraytherefore, n1=10 and n2=20and assume w=4 The 

Three address code to access A[y,z] is 

t 1 = y* 20 

t 1 = t 1 + z 

t2= 4 * t 1 

t3=A-84{((low1Xn2)+low2)Xw)=(1*20+1)*4=84} 

t4=t2+t3 
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x=t4 

LetAbea10x20array n1 

= 10 and n2 = 20 

 

Assumewidthofthetypestoredinthearrayis4. Thethreeaddresscodetoaccess A[y,z] is t1 = y * 

20 

t1=t1+z 

t2=4*t1 

t3=baseA-84{((low1*n2)+low2)*w)=(1*20+1)*4=84} t4 

=t2 +t3 

x=t4 

 

Thefollowingoperationsaredesigned:1.mktable(previous):createsanewsymboltableand returns 

a pointer to this table. Previous is pointer to the symbol table ofparent procedure. 

 

2. entire(table,name,type,offset):createsanewentryfornameinthesymboltablepointed toby 

table. 

 

3. addwidth(table,width):recordscumulativewidthofentriesofatablein itsheader. 

 

4. enterproc(table,name,newtable):createsanentryforprocedurenameinthesymboltable 

pointed to bytable . newtable is a pointer to symboltable for name. 

 

P  {t=mktable(nil); 

push(t,tblptr); 

push(0,offset)} 

D 

{addwidth(top(tblptr),top(offset)); 

pop(tblptr); 

pop(offset)} 

D D; D 
 

 

The symboltablesare created using two stacks: tblptrto hold pointersto symboltablesof the 

enclosing procedures and offset whose top element is the next available relative address for a 

local of the current procedure. Declarations in nested procedures can be processed by the syntax 

directed definitions given below. Note that they are basically same as those given above but we 

have separatelydealt with the epsilon productions. Go to the next page for the explanation. 
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D proc id; 

{ t = mktable(top(tblptr)); 

push(t,tblptr);push(0,offset)} 

D1;S 

 

 

 

 

Did:T 

 

{ t = top(tblptr); 

addwidth(t,top(offset)); 

pop(tblptr);pop(offset);; 

enterproc(top(tblptr),id.name,t)} 

 

{enter(top(tblptr),id.name,T.type,top(offset)); 

top(offset) = top (offset) + T.width } 

 

The action for M creates a symboltable for the outermost scope and hence a nilpointer is passed 

in place of previous. When the declaration, D proc id ; ND1 ; S is processed, the action 

corresponding to N causes the creation ofa symboltable for the procedure;the pointerto symbol 

table of enclosing procedure is given by top(tblptr). The pointer to the new table is pushed on to 

the stack tblptr and 0 is pushed as the initial offset on the offset stack. When the actions 

corresponding to the subtrees ofN, D1and S have been executed, theoffset corresponding to the 

currentprocedurei.e.,top(offset)containsthetotalwidthofentriesinit.Hencetop(offset)isadded to the 

header of symbol table of the current procedure. The top entries of tblptr and offset are popped so 

that the pointer and offset of the enclosing procedure are now on top of these stacks. Theentryfor 

id isaddedtothesymboltableofthe enclosingprocedure. Whenthe declarationD- 

>id:T isprocessed entryfor id iscreated inthesymboltableofcurrent procedure. Pointer to the 

symbol tableof currentprocedure is again obtainedfrom top(tblptr). 
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Offsetcorrespondingtothecurrentprocedurei.e.top(offset)isincrementedbythewidth required 

by type T to point to the next available location. 

STORAGEALLOCATIONFORRECORDS 

Fieldnamesinrecords 

T  record 

{t=mktable(nil); 

 

push(t,tblptr);push(0,offset)} D 

end 

{T.type=record(top(tblptr)); 

T.width = top(offset); 

pop(tblptr); pop(offset)} 

T->recordLDend {t=mktable(nil); 

push(t,tblptr);push(0,offset) 

} 

L -> {T.type=record(top(tblptr)); 

T.width = top(offset); 

pop(tblptr); pop(offset) 

} 

The processing done corresponding to records is similar to that done for 

procedures.AfterthekeywordrecordisseenthemarkerLcreatesanewsymboltable. Pointertothistable 

and offset 0 are pushed on the respective stacks. The action for the declaration D-> id :T push the 

information about the field names on the table created. At the end the top of the offset stack 

containsthetotalwidthofthedataobjectswithintherecord.This isstoredintheattribute T.width. The 

constructor record is applied to the pointer to the symbol table to obtainT.type. 

NamesintheSymboltable: 

S id := E 

{p=lookup(id.place); 

ifp<>nilthenemit(p:=E.place) else 

error} 

E id 

{p=lookup(id.name); 

ifp<>nilthenE.place=p 
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elseerror} 

The operation lookup in the translation scheme above checks if there is an entry for this 

occurrence of the name in the symbol table. If an entry is found, pointer to the entry is returned 

else nilis returned. Lookup first checks whether the name appears inthe current symboltable. If 

notthenit looksforthename inthesymboltableoftheenclosingprocedureandsoon.Thepointer to the 

symbol table of the enclosing procedure is obtained from the header of the symbol table. 

 

CODEOPTIMIZATION 

Considerations for optimization : The code produced by the straight forward compiling 

algorithmscanoftenbemadetorunfasterortakelessspace,orboth.Thisimprovementisachieved by 

program transformations that are traditionally called optimizations. Machine independent 

optimizations are program transformations that improve the target code without taking into 

considerationanypropertiesofthetargetmachine. Machinedependantoptimizationsarebasedon 

register allocation and utilization of special machine-instruction sequences. 

 

Criteriaforcodeimprovementtransformations 

- Simplystated,thebest programtransformationsarethosethatyieldthemost benefit for the 

least effort. 

- First,thetransformationmustpreservethemeaningofprograms.Thatis,theoptimization must 

not change the output produced by a program for a given input, or cause an error. 

- Second,atransformationmust,ontheaverage,speedupprogramsbyameasurable amount. 

- Third,thetransformationmustbeworththeeffort. 

Some transformations can only be applied after detailed, often time-consuming analysis of the 

source program, so there is little point in applying them to programs that will be run only a few 

times. 
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OBJECTIVESOFOPTIMIZATION:Themainobjectivesoftheoptimizationtechniquesare as 

follows 

1. Exploitthefastpathincaseofmultiplepaths froagivensituation. 

2. Reduceredundantinstructions. 

3. Produceminimumcodeformaximumwork. 

4. Tradeoffbetweenthe size ofthe codeandthe speedwithwhichitgetsexecuted. 

5. Placecodeanddatatogetherwhenever it isrequiredto avoidunnecessarysearchingof 

data/code 

Duringcodetransformationintheprocessofoptimization,thebasicrequirementsareasfollows: 

1. Retainthesemanticsofthesourcecode. 

2. Reducetimeand/orspace. 

3. Reducetheoverheadinvolvedintheoptimizationprocess. 

 

ScopeofOptimization:Control-FlowAnalysis 

Consider all that has happened up to this point in the compiling process—lexical 

analysis, syntactic analysis, semantic analysis and finally intermediate-code generation. The 

compiler has done an enormous amount of analysis, but it still doesn‘t really know how the 

program does what it does. In control-flow analysis, the compiler figures out even more 

information about how the program does its work, only now it can assume that there are no 

syntactic or semantic errors in the code. 

 

Control-flow analysisbegins by constructing a control-flow graph, which is a graph ofthe 

different possible paths program flow could take through a function. To build the graph, we first 

dividethecodeintobasic blocks. Abasic block isasegmentofthecodethat aprogrammust enter at the 

beginning and exit only at the end. This means that only the first statement can be reached from 

outside the block (there are no branches into the middle of the block) and all statements are 

executed consecutively after the first one is (no branches or halts until the exit). Thus a basic 

block has exactly one entrypoint and one exit point. If a programexecutes the first instruction ina 

basic block, it must execute every instruction in the block sequentiallyafter it. 

 

Abasicblockbeginsinoneofseveralways: 

• Theentrypointintothefunction 
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• Thetargetofabranch(inourexample,anylabel) 

• Theinstructionimmediatelyfollowingabranchorareturn 

 

 

Abasicblock endsinanyofthefollowingways: 

• Ajumpstatement 

• Aconditionalorunconditionalbranch 

• Areturnstatement 

Now we can construct the control-flow graph between the blocks. Each basic block is a 

node inthe graph, and the possible different routes a program might take arethe connections, i.e. 

ifablockendswitha branch, therewillbeapathleading fromthat blocktothebranchtarget. The 

blocksthat can follow a block are called its successors. There may be multiple successorsor just 

one. Similarly the block may have many, one, or no predecessors. Connect up the flow graphfor 

Fibonacci basic blocks given above. What does an if then-else look likein a flow graph? What 

aboutaloop?Youprobablyhaveallseenthegccwarningorjavacerrorabout:"Unreachablecode at line 

XXX." How can the compiler tell when code is unreachable? 

 

LOCALOPTIMIZATIONS 

Optimizations performed exclusively within a basic block are called "local 

optimizations". These are typically the easiest to perform since we do not consider any control 

flow information; we just work with the statements within the block. Many of the local 

optimizations we will discuss have corresponding global optimizations that operate on the same 

principle, but require additional analysis to perform. We'll consider some of the more common 

local optimizations as examples. 

 

FUNCTIONPRESERVINGTRANSFORMATIONS 

Commonsubexpressionelimination 

Constantfolding 

Variablepropagation 

DeadCodeElimination 

Codemotion 

StrengthReduction 

 

1. CommonSubExpressionElimination: 

Two operations are common if they produce the same result. In such a case, it is likely more 

efficienttocomputetheresultonceandreferenceitthesecondtimeratherthanre-evaluateit.An 
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expressionisalive iftheoperandsusedto computetheexpressionhavenot beenchanged.An 

expression that is no longer alive is dead. 

Example: 

a=b*c; 

d=b*c+x-y; 

Wecaneliminatethesecondevaluationofb*c fromthiscodeifnoneoftheintervening 

statements has changed its value. We can thus rewrite the code as 

t1=b*c; 

a=t1; 

d=t1+x-y; 

Letusconsiderthefollowingcode 

a=b*c; 

b=x; 

d=b*c+x-y; 

inthiscode, wecannoteliminatethesecondevaluationofb*cbecausethe valueofbischanged due to 

the assignment b=x before it is used in calculating d. 

Wecansaythetwoexpressionsarecommonif 

Theylexicallyequivalent i.e.,theyconsist ofidenticaloperandsconnectedtoeachother by 

identical operator. 

Theyevaluatetheidenticalvalues i.e.,no assignment statements foranyoftheiroperands exist 

between the evaluations of these expressions. 

Thevalueofanyoftheoperandsuse intheexpressionshouldnot be changedevendueto the 

procedure call. 

Example: 

c=a*b; 

x=a; 

d=x*b; 

We maynotethateventhoughexpressionsa*band x*barecommonintheabovecode, they can 

not be treated as common sub expressions. 

 

2. VariablePropagation: 

Letusconsidertheabovecodeonceagain c=a*b; 

x=a; 

d=x*b+4; 



A.Y 2024-25 COMPILER DESIGN 

127|Page DEPARTMENT OF CSE 

 

 

 

if we replace x by a in the last statement, we can identify a*b and x*b as common sub 

expressions.Thistechniqueiscalledvariablepropagationwheretheuseofonevariableisreplaced by 

another variable if it has been assigned the value of same 

CompileTimeevaluation 

The execution efficiency of the program can be improved by shifting execution time 

actions to compile time so that they are not performed repeatedly during the program execution. 

Wecanevaluateanexpressionwithconstantsoperandsatcompiletimeandreplacethatexpression bya 

single value. This is called folding. Consider the following statement: 

 

a= 2*(22.0/7.0)*r; 

Here,wecanperformthecomputation2*(22.0/7.0)atcompiletimeitself. 

 

3. DeadCodeElimination: 
If the value contained in the variable at a point is not used anywhere in the program 

subsequently, the variable is said to be dead at that place. If an assignment is made to a dead 

variable,thenthatassignmentisadeadassignmentanditcanbesafelyremovedfromtheprogram. 

Similarly,apiece ofcodeissaid to bedead, which computesvaluethat arenever used anywhere in 

the program. 

c=a*b; 

x=a; 

d=x*b+4; 

Usingvariablepropagation,thecodecanbewrittenasfollows: 

c=a*b; 

x=a; 

d=a*b+4; 

UsingCommonSubexpressionelimination,the codecanbewrittenasfollows: 

t1=a*b; 

c=t1; 

x=a; 

d=t1+4; 

Here,x=awillconsideredasdeadcode.Henceitiseliminated. t1= 

a*b; 

c=t1; 

d=t1+4; 

 

4. CodeMovement: 
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The motivation for performing code movement in a program is to improve the execution time of 

theprogrambyreducingtheevaluationfrequencyofexpressions. Thiscanbedonebymovingthe 

evaluation ofan expression to other parts ofthe program. Let us consider the bellow code: 

If(a<10) 

{ 

b=x^2-y^2; 

} 

else 

{ 

b=5; 

a=(x^2-y^2)*10; 

} 

 

Atthetimeofexecutionoftheconditiona<10, x^2-y^2 isevaluatedtwice. So,wecanoptimize the code 

by moving the out side to the block as follows: 

t=x^2-y^2; 

If(a<10) 

{ 

b=t; 

} 

else 

{ 

b=5; 

a=t*10; 

} 

5. StrengthReduction: 
Inthefrequencyreductiontransformationwetriedtoreducetheexecutionfrequencyofthe 

expressionsbymovingthecode.Thereisother classoftransformationswhichperformequivalent 

actions indicated in the source program by reducing the strength of operators. By strength 

reduction, we mean replacing the high strength operator with low strength operator with out 

affecting the program meaning. Let us consider the bellow example: 

i=1; 

while(i<10) 

{ 

y=i*4; 

} 

 

Theabovecanwrittenasfollows: i=1; 

t=4; 
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while(i<10) 

{ 

y=t; 

t=t+4; 

} 

Herethehighstrengthoperator*isreplacedwith+. 

 

GLOBALOPTIMIZATIONS,DATA-FLOW ANALYSIS: 

So far we were only considering making changes within one basic block. With some 

Additional analysis, we can apply similar optimizations across basic blocks, making them global 

optimizations. It‘s worth pointing out that global in this case does not mean across the entire 

program. We usually optimize only one function at a time. Inter procedural analysis is an even 

larger task, one not even attempted by some compilers. 

The additionalanalysis the optimizer doesto performoptimizations across basic blocks is 

called data-flow analysis. Data-flow analysis is much more complicated than control-flow 

analysis, and we can only scratch the surface here. 

Let‘s consider a global common sub expression elimination optimization as our example. 

Careful analysis across blocks can determine whether an expression is alive on entry to a block. 

Such an expression is said to be available at thatpoint. Once the set ofavailable expressions is 

known, commonsub-expressionscanbeeliminatedonaglobalbasis. Eachblock isanodeinthe flow 

graph of a program. The successor set (succ(x)) for a node x is the set of all nodes that x directly 

flows into. The predecessor set (pred(x)) for a node x is the set of all nodes that flow directly into 

x. Anexpression is defined at the point where it is assigned a value and killed when 

oneofitsoperandsissubsequentlyassignedanewvalue. Anexpressionisavailableat some point p in a 

flow graph if everypath leading to p contains a prior definition ofthat expression which is not 

subsequently killed. Lets define such useful functions in DF analysis in following lines. 

avail[B] =setofexpressions availableonentrytoblockB 

exit[B]=setofexpressionsavailableonexitfromB 

avail[B]=∩exit[x]: x∈pred[B](i.e. Bhasavailablethe intersectionoftheexit ofits 

predecessors) 

killed[B]=setoftheexpressionskilled inB 

defined[B]=setofexpressionsdefined inB 

exit[B] = avail[B]- killed[B] + defined[B] 
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avail[B]=∩(avail[x]-killed[x]+defined[x]):x∈pred[B] 

HereisanAlgorithmforGlobalCommonSub-expressionElimination: 

1) First,computedefinedandkilledsetsforeachbasicblock(thisdoesnotinvolveanyofits 

predecessors or successors). 

2) Iterativelycomputetheavailandexit setsforeachblock byrunningthefollowingalgorithm until 

you hit a stable fixed point: 

a) Identifyeachstatement softheforma=bopcinsomeblockBsuchthat bopcis available 

at the entryto B and neither b nor c is redefined in B prior to s. 

b) Followflowofcontrolbackward inthegraphpassingbacktobutnotthrougheach 

blockthat definesbopc.The last computationofbopcinsuchablockreachess. 

c) After eachcomputationd=bopcidentified instep2a,addstatement t =dtothat block 

where t is a new temp. 

d) Replacesbya=t. 

Tryanexampletomakethingsclearer: 

main: 

BeginFunc28; 
b=a+2; 

c = 4 * b ; 
tmp1=b<c; 
ifNZtmp1gotoL1; b 
= 1 ; 

L1: 

d=a+2; 

EndFunc ; 

First, divide the code above into basic blocks. Now calculate the available expressions for each 

block.Thenfindanexpressionavailableinablockandperformstep2cabove.Whatcommonsub- 

expression can you share between the two blocks? What if the above code were: 

main: 
BeginFunc28; 

b=a+2; 

c = 4 * b ; 

tmp1=b<c; 

IfNZtmp1GotoL1; b 

= 1 ; 

z=a+2;<========= anadditionallinehere 

L1: 

d=a+2; 

EndFunc; 
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MACHINEOPTIMIZATIONS 

Infinalcodegeneration, there isa lotofopportunityforcleverness ingeneratingefficient 

target code. In this pass, specific machines features (specialized instructions, hardware pipeline 

abilities, register details) are taken into account to produce code optimized for this particular 

architecture. 

REGISTERALLOCATION: 

Onemachineoptimizationofparticular importanceisregisterallocation,whichisperhaps 
thesinglemosteffectiveoptimizationforallarchitectures.Registersarethefastestkindofmemory 
available, but as a resource, they can be scarce. 

The problem is how to minimize traffic between the registers and what lies beyond them 

in the memoryhierarchyto eliminate time wasted sending data back and forthacross the bus and 

the different levels of caches. Your Decaf back-end uses a very naïve and inefficient means of 

assigning registers, it just fills them before performing an operation and spills them right 

afterwards. 

Amuchmoreeffectivestrategywould betoconsiderwhichvariablesare moreheavilyin 

demand and keep those in registers and spill those that are no longer needed or won'tbe needed 

until much later. 

One common register allocation technique is called "register coloring", after the central 

idea to view register allocation as a graph coloring problem. Ifwe have 8 registers, then wetryto 

color a graph with eight different colors. The graph‘s nodes are made of "webs" and the arcs are 

determined by calculating interference between the webs. A web represents a variable‘s 

definitions, places where it is assigned a value (as in x = …), and the possible different uses of 

those definitions (asin y = x + 2). This problem,in fact,can be approached as anothergraph. The 

definition and uses of a variable are nodes, and if a definition reaches a use, there is an arc 

between the two nodes. Iftwo portions ofa variable‘s definition-use graph are unconnected, then 

we have two separate websfor a variable. Inthe interference graphforthe routine, each node isa 

web. We seek to determine which webs don't interfere with one another, so we know we can use 

the same register for those two variables. For example, consider the following code: 

i=10; 
j=20; 

x = i+ j; 

y= j+k; 

We say that i interferes with j because at least one pair of i‘s definitions and uses is 

separated by a definition or use of j, thus, i and j are "alive" at the same time. A variable is alive 

betweenthetimeit hasbeendefinedandthatdefinition‘slast use,afterwhichthevariable isdead. If two 

variables interfere, then we cannot use the same register for each. But two variables that don't 

interferecansincethere isnooverlap inthelivenessandcanoccupythesameregister. Once we have the 

interference graph constructed, we r-color it so that no two adjacent nodes share the same color (r 

is the number of registers we have, each color represents a different register). 

Wemayrecallthat graph-coloring isNP-complete,so weemployaheuristicratherthanan 

optimalalgorithm. Here is a simplified version of something that might be used: 
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1. Findthenodewiththeleastneighbors.(Breaktiesarbitrarily.) 

2. Removeitfromtheinterferencegraphandpushitontoastack 

3. Repeatsteps1and 2untilthe graph isempty. 

4. Now,rebuildthegraphasfollows: 

a. Takethetopnodeoffthestackand reinsertitintothe graph 

b. Chooseacolorforit based onthecolorofanyofitsneighborspresentlyinthegraph, 

rotating colors in case there is more than one choice. 

c. Repeata,andbuntilthegraphiseithercompletelyrebuilt,orthereisno color 

available to color the node. 

Ifwegetstuck,thenthegraphmaynotber-colorable,wecouldtryagainwithadifferentheuristic, sayreusing 

colors as often as possible. Ifno otherchoice, we have to spilla variable to memory. 

INSTRUCTIONSCHEDULING: 

Another extremely important optimization of the final code generator is instruction 

scheduling. Because many machines, including most RISC architectures, have some sort of 

pipelining capability, effectively harnessing that capability requires judicious ordering of 

instructions. 

InMIPS,eachinstructionisissuedinonecycle,butsometakemultiplecyclestocomplete. It takes 

an additional cycle before the value of a load is available and two cycles for a branch to 

reachitsdestination,butaninstructioncanbeplacedinthe"delayslot"afterabranchandexecuted in that 

slack time. On the left is one arrangement of a set of instructions that requires 7 cycles. It 

assumes no hardware interlock and thus explicitly stalls between the second and third slots while 

the load completes and has a Dead cycle after thebranchbecause the delayslot holds a noop. On 

theright, amorefavorablerearrangementofthesame instructionswillexecutein5 cycleswithno dead 

Cycles. 

lw$t2,4($fp) 

lw$t3,8($fp) 

noop 

add$t4,$t2,$t3 

subi $t5, $t5, 1 

goto L1 

noop 
lw $t2, 4($fp) 

lw $t3, 8($fp) 

subi$t5,$t5,1 

goto L1 

add $t4,$t2,$t3 

 

PEEPHOLEOPTIMIZATIONS: 
Peephole optimization is a pass that operates onthe target assembly and onlyconsiders a 

few instructions at atime (through a "peephole") and attemptsto do simple, machine dependent 
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code improvements. For example, peephole optimizations might include elimination of 

multiplication by 1, elimination of load of a value into a register when the previous instruction 

storedthatvalue fromtheregistertoamemorylocation, orreplacingasequenceofinstructionsby a 

single instruction with the same effect. Because of its myopic view, a peephole optimizer does 

not have the potential payoff of a full-scale optimizer, but it can significantly improve code at a 

very local level and can be useful for cleaning up the finalcode that resulted from more complex 

optimizations. Much of the work done in peephole optimization can be though of as find-replace 

activity, looking for certain idiomatic patterns in a single or sequence of two to threeInstructions 

than can be replaced by more efficient alternatives. 

For example, MIPS has instructions that canadd asmallinteger constant tothe value ina 

registerwithoutloadingtheconstantintoaregisterfirst,sothesequenceontheleftcanbereplaced with 

that on the right: 

li$t0,10 

lw $t1, -8($fp) 

add$t2,$t1,$t0 

sw $t1, -8($fp) 

lw $t1, -8($fp) 

addi$t2,$t1,10 

sw $t1, -8($fp) 

Whatwouldyoureplacethefollowingsequencewith? lw 

$t0, -8($fp) 

sw $t0, -

8($fp)Whataboutthi

sone? mul $t1, $t0, 

2 

AbstractSyntaxTree/DAG:Isnothingbut thecondensedformofaparsetreeandis 

.Usefulfor representinglanguageconstructs 

.Depictsthenaturalhierarchicalstructureofthesourceprogram 

 

- Eachinternalnoderepresentsanoperator 

- Childrenofthe nodesrepresentoperands 

- Leafnodesrepresentoperands 
 

.DAG is more compact thanabstract syntaxtreebecause commonsubexpressions are eliminated 

Asyntaxtreedepictsthenaturalhierarchicalstructureofasourceprogram.Itsstructurehasalready 

beendiscussedinearlier lectures. DAGsaregeneratedasacombinationoftrees:operandsthatare being 

reused are linked together, and nodes may be annotated with variable names (to denote 

assignments). This way, DAGs are highly compact, since they eliminate local common sub- 

expressions. Ontheother hand, theyare not so easytooptimize, since theyare more specific tree 

forms. However, it can be seen that proper building ofDAG for a given 



A.Y 2024-25 COMPILER DESIGN 

134|Page DEPARTMENT OF CSE 

 

 

 

sequenceofinstructionscancompactlyrepresenttheoutcomeofthecalculation. An 

example ofa syntax tree and DAG has been given in the next slide . 

a:=b*-c+b*-c 
 

 

 

Youcanseethatthenode"*"comesonlyonce intheDAGaswellasthe leaf"b", but the 

meaningconveyedbyboththerepresentations(ASTaswellastheDAG)remainsthesame. 

 

 

IMPORTANT QUESTIONS: 

1. WhatisCodeoptimization?Explaintheobjectivesofit.Also discussFunctionpreserving 

transformations with your own examples? 

2. Explainthefollowingoptimizationtechniques 

(a) CopyPropagation 

(b) Dead-CodeElimination 

(c) CodeMotion 

(d) ReductioninStrength. 

4. Explaintheprinciplesourcesofcode-improvingtransformations. 

5. Whatdoyoumeanbymachinedependentandmachineindependentcodeoptimization? 

Explain about machine dependent code optimization with examples. 

 

ASSIGNMENTQUESTIONS: 

 

1. ExplainLocalOptimizationtechniqueswithyourownExamples? 

2. Explainindetailtheprocedurethateliminatingglobalcommonsubexpression? 

3. Whatistheneed ofcodeoptimization?Justifyyouranswer? 
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UNIT-V 

CONTROL/DATAFLOWANALYSIS: 

FLOWGRAPHS: 

We can add flow control information to the set of basic blocks making up a program by 

constructing a directed graph called a flow graph. The nodes ofa flow graph are the basic nodes. 

One node is distinguished as initial; it is the block whose leader is the first statement. There is a 

directed edge from block B1 to block B2 if B2 can immediately follow B1 in some execution 

sequence; that is, if 

 

- Thereisconditionalorunconditionaljump fromthe last statement ofB1tothefirst 

statement of B2, or 
- B2 immediately follows B1 in the order of the program, and B1 does not end in an 

unconditionaljump. Wesaythat B1isthepredecessorofB2,and B2isasuccessorofB1. 

Forregisterandtemporaryallocation 

- Removevariablesfromregistersifnotused 
- StatementX=YopZdefinesXand usesYand Z 
- Scaneachbasic blocksbackwards 

- Assumealltemporariesaredeadonexitandalluservariablesareliveonexit 

 

Theuseofanameinathree-addressstatementisdefinedasfollows.Supposethree-address 

statement i assigns a value to x. If statement j has x as an operand, and control can flow from 

statement ito jalong a paththat has no intervening assignments to x,thenwe saystatementjuses the 

value of x computed at i. 

 

We wish to determine for each three-address statement x := y op z, what the next uses of 

x, y and z are. We collect next-use information about names in basic blocks. If the name in a 

register is no longer needed, then the register can be assigned to some other name. This idea of 

keeping a name in storage only if it will be used subsequently can be applied in a number of 

contexts. It is used to assign space for attribute values. 

 

Thesimplecodegenerator applies it to register assignment. Ouralgorithmis to determine 

next uses makes a backward pass over each basic block, recording (in the symbol table) for each 

name xwhether xhasa next use inthe block and ifnot, whether it is liveonexit fromthat block. We 

can assume that all non-temporary variables are live on exit and all temporary variables are dead 

on exit. 

 

Algorithmtocomputenextuse information 

 

- Supposewearescanningi:X:= YopZ inbackwardscan 



A.Y 2024-25 COMPILER DESIGN 

DEPARTMENT OF CSE 136|Page 

 

 

 
- Attachtoi,informationinsymboltableaboutX,Y,Z 
- SetXtonotliveandnonextuseinsymboltable 
- SetYandZtobeliveandnextuseiniinsymboltable 

 

Asanapplication, weconsidertheassignment ofstoragefortemporarynames. Supposewe 

reachthree-addressstatementi:x:=yop zinourbackwardscan.Wethendothefollowing: 

 
1. Attachtostatementithe informationcurrentlyfoundinthesymboltableregardingthe next 
use and live ness of x, yand z. 

 

2. Inthesymboltable,setxto"notlive"and"nonextuse". 

 
3. Inthesymboltable, set yandzto "live"andthenext usesofyand ztoi. Notethatthe order 
ofsteps (2) and (3) may not be interchanged because x may be y or z. 

 

Ifthree-addressstatementiisofthe formx:= yorx:=opy, thestepsarethesameasabove, ignoring z. 

consider the below example: 

1: t1 = a * a 

2:t2=a*b 3: 

t3 = 2 * 

t24:t4=t1+t35: 

t5 = b * b 

6:t6=t4+t57: 

X = t 6 

Example: 

 

Wecanallocatestoragelocations fortemporariesbyexaminingeachinturnandassigning 

atemporarytothefirst locationinthe field fortemporariesthat doesnot containa live temporary. If a 

temporary cannot be assigned to any previously created location, add a new location to the 

dataareaforthe current procedure. Inmanycases,temporaries canbe packed intoregisters rather 

than memory locations, as in the next section. 
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Example. 

 

 

Thesixtemporariesinthebasicblockcanbepackedintotwolocations.Theselocations correspond 
to t 1 and t 2 in: 

 

1:t1=a*a,2:t2=a*b,3:t2=2*t2,4:t1=t1+t2,5:t2=b*b 
 

6:t1=t1+t2,7:X=t1 

 

DATAFLOWEQUATIONS: 

 

Dataanalysisisneeded forglobalcodeoptimization,e.g.:Isavariable liveonexit fromablock? Does a 

definition reach a certain point in the code? Data flow equations are used to collect dataflow 

information A typical dataflow equation has the form 

 

Out[s]=Gen[s]U(in[s]-kill[s]) 

Thenotionofgenerationandkillingdependsonthe dataflowanalysisproblemtobe solved 

Let'sfirst considerReachingDefinitionsanalysisforstructuredprogramsAdefinitionofavariable x is a 

statement that assigns or may assign a value to x An assignment to x is an unambiguous 

definitionofxAnambiguous assignment to xcanbe anassignment to a pointer or a functioncall 

where x is passed by reference When x is defined, we say the definition is generated An 

unambiguous definition of x kills all otherdefinitions of x When all definitions ofx are the same 

at a certain point, we can use this information to do some optimizations Example: all definitions 

of x define x to be 1. Now, by performing constant folding, we can do strength reduction if x is 

used in z=x*y. 
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GLOBALOPTIMIZATIONS,DATA-FLOW ANALYSIS 

 

So far we were only considering making changes within one basic block. With some 

additional analysis, we can apply similar optimizations across basic blocks, making them global 

optimizations. It‘s worth pointing out that global in this case does not mean across the entire 

program. We usually only optimize one function at a time. Interprocedural analysis is an even 

largertask,onenot evenattemptedbysomecompilers.Theadditionalanalysistheoptimizer must 

dotoperformoptimizationsacrossbasicblocksiscalleddata-flowanalysis.Data-flowanalysis is much 

more complicated than control-flow analysis. 

Let‘s consider a global commonsub-expression elimination optimization as ourexample. 

Careful analysis across blocks can determine whether an expression is alive on entry to a block. 

Such an expression is said to be available at that point. 

Once the set of available expressions is known, common sub-expressions can be 

eliminated on a global basis. Each block is a node in the flow graph of a program. The successor 

set (succ(x)) for a node x is the set of all nodes that x directly flows into. The predecessor set 

(pred(x)) for a node x is the set of all nodes that flow directly into x. An expression is defined at 

thepoint where it isassignedavalueandkilledwhenoneofitsoperands issubsequentlyassigned a new 

value. Anexpression is available at some point p ina flow graph ifeverypath leading to p contains 

a prior definition of that expression which is not 

subsequentlykilled. 

 

avail[B]=setofexpressionsavailableonentrytoblockB 

exit[B]=setofexpressionsavailable onexitfromB 

avail[B]=∩exit[x]: x∈pred[B](i.e.Bhasavailablethe intersectionofthe exit of 

its predecessors) 

killed[B] =setoftheexpressionskilled inB 

defined[B]=setofexpressionsdefined inB 

exit[B] = avail[B] - killed[B] + defined[B] 

avail[B]=∩(avail[x]-killed[x]+defined[x]):x∈pred[B] 

Hereisanalgorithmfor globalcommonsub-expressionelimination: 

1) First,computedefinedandkilledsetsforeachbasicblock(thisdoesnotinvolveanyofits 

redecessors or successors). 

2) Iterativelycomputetheavailandexit setsforeachblock byrunningthefollowingalgorithm until 

you hit a stable fixed point: 

a) Identifyeachstatement softheforma=bopcinsomeblock Bsuchthat bopcis available 

at the entryto B and neither b nor c is redefined in B prior to s. 

b) Followflowofcontrolbackward inthegraphpassingbacktobutnotthrougheach block 

that defines b op c. The last computation ofb op c insuch a block reachess. 

c) After eachcomputationd=bopcidentified instep2a,addstatement t =dtothat block 

where t is a new temp. 

d) Replacesbya=t. 
Letstryanexampletomakethingsclearer: main: 
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BeginFunc28; 

b=a+2; 
c = 4 * b ; 
tmp1=b<c; 

ifNZtmp1gotoL1; b 

= 1 ; 

L1: 

d=a+2; 

EndFunc ; 

 

First,dividethecodeaboveintobasicblocks.Nowcalculatetheavailableexpressions for 

each block. Then find an expression available in a block and performstep 2c above. 

Whatcommonsubexpressioncanyousharebetweenthetwoblocks?What iftheabove code 

were: 

main: 

BeginFunc28; 

b=a+2; 
c = 4 * b ; 
tmp1=b<c; 

IfNZtmp1GotoL1; b 

= 1 ; 

z=a+2;<=========anadditionalline here L1: 

d=a+2; 

EndFunc ; 

 

CommonSubexpression Elimination 

Twooperations are common iftheyproducethe same result. Insucha case, it is likely more 

efficient to computethe result once and reference itthe secondtime ratherthanre-evaluate it. An 

expression is alive if the operands used to compute the expression have not been changed. An 

expression that is no longer alive is dead. 

main() 

{ 

intx,y,z; 

x=(1+20)*-x; 

y=x*x+(x/y); 

y=z=(x/y)/(x*x); 
} 
straighttranslation: 

tmp1 = 1 + 20 ; 

tmp2 = -x ; 

x=tmp1*tmp2; 

tmp3 = x * x ; 
tmp4 = x / y ; 

y=tmp3+tmp4; 
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tmp5 = x/ y; 

tmp6=x* x; 

z=tmp5/tmp6; y 

= z ; 

 

What sub-expressions can be eliminated? How can valid common sub-expressions (live ones) be 

determined?Here isanoptimized version, afterconstant foldingandpropagationandelimination of 

common sub-expressions: 

tmp2= -x; 
x=21*tmp2; 

tmp3 = x * x ; 

tmp4 = x / y ; 

y=tmp3+tmp4; 

tmp5 = x / y ; 

z=tmp5/tmp3; y 

= z ; 

 

InductionVariableElimination 

Constantfoldingreferstotheevaluationatcompile-timeofexpressionswhoseoperands are 

knownto be constant. In its simplest form, it involves determining that all of the operands in an 

expression are constant-valued, performing the evaluation of the expression at compile-time, and 

thenreplacing the expressionbyits value. Ifanexpressionsuchas 10 + 2 *3is encountered, the 

compiler can compute the result at compile-time (16) and emit code as if the input contained the 

result rather thantheoriginalexpression. Similarly, constant conditions, suchas a conditional 

branchifa <b goto L1else goto L2 whereaandb areconstant canbe replaced bya Goto L1or Goto 

L2 depending on the truth of the expression evaluated at compile-time. The constant 

expressionhasto beevaluatedat least once,but ifthecompilerdoesit, it means youdon‘t haveto do it 

againasneeded during runtime. Onething tobecarefulabout isthatthe compiler mustobey the 

grammar and semantic rules from the source language that apply to expression evaluation, which 

may not necessarily match the language you are writing the compiler in. (For example, if you 

were writing an APL compiler,you would need to take care that you were respecting its 

Iversonian precedence rules). It should also respect the expected treatment of any exceptional 

conditions (divide by zero, over/underflow). Consider the Decaf code on the far left and its un 

optimizedTACtranslationinthe middle,whichisthentransformedbyconstant-foldingonthefar right: 

a = 10*5+6-b;_tmp0= 10; 

_tmp1=5; 

_tmp2=_tmp0*_tmp1; 

_tmp3=6; 

_tmp4=_tmp2+_tmp3 ; 

_tmp5=_tmp4–b; a 

= _tmp5 ; 

_tmp0 = 56;_tmp1=_tmp0–b;a =_tmp1; 
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Constant-foldingiswhatallowsalanguagetoacceptconstantexpressionswhereaconstantis required 

(such as a case label or arraysize) as in these C language examples: 

intarr[20*4+3]; 

switch (i) { 

case10*5:... 

} 

In both snippets shown above, the expression can be resolved to an integer constant at compile 

time and thus, we have the information needed to generate code. If either expression involved a 

variable, though, there would be an error. How could you rewrite the grammar to allow the 

grammar to do constant folding incase statements?Thissituation isa classic exampleofthe gray 

area between syntactic and semantic analysis. 

 

LiveVariableAnalysis 

Avariableisliveat acertainpoint inthecodeifit holdsa valuethat maybe needed inthe future. 

Solvebackwards: 

FinduseofavariableThisvariable is livebetweenstatementsthathave founduseasnext statement 

Recursive until you find a definition of the variable 

Usingthesetsuse[B]anddef[B] 

 
def[B]isthesetofvariablesassigned values inB priortoanyuseofthat variable inB use[B] is the 

set ofvariables whose values may be used in [B] prior to anydefinition ofthe variable. 

 

A variable comes live into a block (in in[B]), if it is either used before redefinition of it is 

livecomingoutoftheblockand isnotredefined intheblock.Avariablecomes liveoutofablock (in 

out[B]) ifand only if itis live coming into one of its successors 

In[B]=use[B]U(out[B]-def[B]) 

Out[B]= Uin[s] 

Ssucc[B] 

Notetherelationbetweenreaching-definitionsequations: therolesofin andout areinterchanged 

 

CopyPropagation 

This optimization is similar to constant propagation, but generalized to non-constant 

values. If we have an assignment a = b in our instruction stream, we can replace later 

occurrencesofawithb(assumingthereareno changesto eithervariable in-between).Giventhe 

waywe generate TAC code, this is a particularly valuable optimization since it is able to 
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eliminate a large number of instructions that only serve to copy values from one variable to 

another.Thecodeonthe left makesacopyoftmp1intmp2 andacopyoftmp3 intmp4. Inthe 

optimized version on the right, we eliminated those unnecessary copies and propagated the 

original variable into the later uses: 

tmp2=tmp1; 

tmp3=tmp2*tmp1; tmp4 

= tmp3 ; 

tmp5=tmp3*tmp2; c 

= tmp5 + tmp4 ; 

tmp3=tmp1*tmp1; 

tmp5=tmp3*tmp1; c 

= tmp5 + tmp3 ; 

We can also drive this optimization "backwards", where we can recognize that the original 
assignment made to atemporarycanbe eliminated in favorofdirect assignment tothe finalgoal: 
tmp1 = LCall _Binky ; 

a=tmp1; 

tmp2=LCall_Winky; b 

= tmp2 ; 
tmp3=a*b; c 
= tmp3 ; 

a=LCall_Binky; 

b= LCall_Winky; 

c=a*b; 

 

IMPORTANT QUESTIONS: 

1. WhatisDAG?ExplaintheapplicationsofDAG. 

2. Explainbrieflyaboutcodeoptimizationanditsscopeinimprovingthecode. 
3. ConstructtheDAG forthefollowingbasicblock: 

D:=B*C 
E :=A+B 

B:=B+C 

A:=E-D. 

3. ExplainDetectionofLoopInvariantComputation 

4. ExplainCode Motion. 

 

ASSIGNMENTQUESTIONS: 

1. Whatisloops?Explainaboutthefollowingtermsinloops: 
(a)Dominators 

(b) Naturalloops 
(c) Innerloops 

(d) pre-headers. 

2. WriteshortnotesonGlobaloptimization? 
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OBJECTCODEGENERATION 

 

Machinedependentcodeoptimization: 

In final code generation, there is a lot of opportunity for cleverness in generating efficient 

target code. In this pass, specific machines features (specialized instructions, hardware pipeline 

abilities, register details) are taken into account to produce code optimized for this particular 

architecture. 

 

RegisterAllocation 

One machine optimization of particular importance is register allocation, which is 

perhaps the single most effective optimization for all architectures. Registers are the fastest kind 

ofmemoryavailable,but asaresource,theycanbescarce.Theproblemis howtominimize traffic 

betweentheregistersandwhatliesbeyondtheminthememoryhierarchytoeliminatetimewasted 

sendingdatabackand forthacrossthebusandthedifferent levelsofcaches. YourDecafback-end uses a 

verynaïve and inefficient means ofassigning registers, it just fills thembefore performing 

anoperationandspillsthemright afterwards.Amuchmoreeffectivestrategywouldbetoconsider which 

variables are more heavily indemand and keep those inregisters andspillthose that are no longer 

needed or won't be needed until much later. One common register allocation technique is called 

"register coloring", after the central idea to view register allocation as a graph coloring 

problem.Ifwehave8registers,thenwetrytocoloragraphwitheight differentcolors.Thegraph‘s nodes 

are made of "webs" and the arcs are determinedby calculating interference between the webs. 

Awebrepresentsavariable‘sdefinitions,placeswhere it isassignedavalue(as inx=…), and the 

possible different uses ofthose definitions (as in y = x + 2). This problem, in fact, can be 

approached as another graph. The definition and uses of a variable are nodes, and if a definition 

reaches a use, there is anarc betweenthe two nodes. Iftwo portions of a variable‘s definition-use 

graph are unconnected, then we have two separate webs for a variable. In the interference graph 

for the routine, each node is a web. We seek to determine which webs don't interfere with one 

another, so we know we can usethe same register for thosetwo variables. For example, consider 

the following code: 

 

i=10; 
j=20; 
x= i+ j; 

y=j+k; 

We say that i interferes with j because at least one pair of i‘s definitions and uses is 

separated by a definition or use ofj, thus, i and j are "alive" at the same time. A variable is alive 

betweenthetimeit hasbeendefinedandthat definition‘slast use,afterwhichthevariableisdead. If two 

variables interfere, then we cannot use the same register for each. But two variables that don't 

interfere can since there is no overlap in the liveness and can occupythe same register. 
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Oncewehavetheinterferencegraphconstructed,wer-colorit sothatnotwo adjacent nodesshare the 

same color (r is the number of registers we have, each color represents a different register). You 

may recall that graph-coloring is NP-complete, so we employ a heuristic rather than an 

optimalalgorithm. Here is a simplified version ofsomething that might be used: 

1. Findthenodewiththeleastneighbors.(Breaktiesarbitrarily.) 

2. Removeitfromtheinterferencegraphandpushitontoastack 

3. Repeatsteps1and2untilthegraph isempty. 

4. Now,rebuildthe graphasfollows: 

a. Takethetopnodeoffthestackand reinsertitintothegraph 

b. Chooseacolorforit based onthecolorofanyofitsneighborspresentlyinthe graph, 

rotating colors in case there is more than one choice. 

c. Repeataandbuntilthegraphiseithercompletelyrebuilt,orthereisno color 

available to color the node. 

Ifwegetstuck,thenthegraphmaynotber-colorable,wecouldtryagainwithadifferentheuristic, 

sayreusing colors as oftenas possible. Ifno other choice, we have to spill a variable tomemory. 

InstructionScheduling: 

Another extremely important optimization of the final code generator is instruction 

scheduling. Because many machines, including most RISC architectures, have some sort of 

pipelining capability, effectively harnessing that capability requires judicious ordering of 

instructions. In MIPS, each instruction is issued in one cycle, but some take multiple cycles to 

complete. It takes an additional cycle before the value of a load is available and two cycles for a 

branch to reach its destination, but an instruction can be placed in the "delay slot" after a branch 

andexecutedinthat slacktime.Ontheleftisonearrangementofasetofinstructionsthat requires 7 cycles. 

It assumesno hardware interlock and thusexplicitly stalls betweenthe second and third slots while 

the load completes and has a Dead cycle after the branch because the delay slot holds a noop. On 

the right, a more Favorable rearrangement of the same instructions will execute in 5 cycles with 

no dead Cycles. 

 

lw$t2,4($fp) 

lw$t3,8($fp) 

noop 

add$t4,$t2,$t3 

subi $t5, $t5, 1 

goto L1 

noop 
lw $t2, 4($fp) 

lw $t3, 8($fp) 

subi$t5,$t5,1 

goto L1 

add $t4,$t2,$t3 
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RegisterAllocation 

One machine optimization of particular importance is register allocation, which is 

perhaps the single most effective optimization for all architectures. Registers are the fastest kind 

ofmemoryavailable,but asaresource,theycanbe scarce.Theproblemishowtominimize traffic 

betweentheregistersandwhatliesbeyondtheminthememoryhierarchytoeliminatetimewasted 

sendingdatabackand forthacrossthebusandthedifferent levelsofcaches. YourDecafback-end uses a 

verynaïve and inefficient means ofassigning registers, it just fills thembefore performing 

anoperationandspillsthemright afterwards.Amuchmoreeffectivestrategywouldbetoconsider which 

variables are more heavilyin demand and keep those inregisters andspillthose that are no longer 

needed or won't be needed until much later. One common register allocation technique is called 

"register coloring", after the central idea to view register allocation as a graph coloring 

problem.Ifwehave8registers,thenwetrytocoloragraphwitheight differentcolors.Thegraph‘s nodes 

are made of "webs" and the arcs are determinedby calculating interference between the webs. 

Awebrepresentsavariable‘sdefinitions,placeswhere it isassignedavalue(as inx=…), and the 

possible different uses ofthose definitions (as in y = x + 2). This problem, in fact, canbe 

approached as another graph. The definition and uses of a variable are nodes, and if a definition 

reaches a use, there is anarc betweenthe two nodes. Iftwo portions of a variable‘s definition-use 

graph are unconnected, then we have two separate webs for a variable. In the interference graph 

for the routine, each node is a web. We seek to determine which webs don't interfere with one 

another, so we know we can usethe same register for thosetwo variables. For example, consider 

the following code: 

 

i=10; 

j=20; 

x= i+ j; 

y=j+k; 

We saythat i interferes with j because at least one pair of i‘s definitions and uses is 

separatedbyadefinitionoruseofj,thus, iandj are"alive"atthesametime. A variable isalive between 

the time it has been defined and that definition‘s last use, after which the variable is dead.Iftwo 

variablesinterfere,thenwecannot usethesameregisterforeach.Buttwovariables thatdon't 

interferecansincethere isno overlap inthelivenessandcanoccupythesameregister. Once we have 

the interference graph constructed, we r-color it so that no two adjacent nodes share the same 

color (r is the number of registers we have, each color represents a different register). You may 

recall that graph-coloring is NP-complete, so we employ a heuristic rather than anoptimal 

algorithm. Here is a simplified version of something that might be used: 

1. Findthenodewiththeleastneighbors.(Breaktiesarbitrarily.) 

2. Removeitfromtheinterferencegraphandpushitonto astack 

3. Repeatsteps1and 2untilthe graph isempty. 

4. Now,rebuildthegraphasfollows: 

a. Takethetopnodeoffthestackand reinsertitintothe graph 
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b. Chooseacolorforit based onthecolorofanyofitsneighborspresentlyinthegraph, 

rotating colors in case there is more than one choice. 

c. Repeataandbuntilthegraphiseither completelyrebuilt,orthereisno coloravailable to 

color the node. 

Ifwegetstuck,thenthegraphmaynotber-colorable,wecouldtryagainwithadifferentheuristic, 

sayreusing colors as oftenas possible. Ifno other choice, we have to spill a variable tomemory. 

 

CODEGENERATION: 

The code generator generates target code for a sequence of three-address statement. It 

considerseachstatementinturn,remembering ifanyoftheoperandsofthestatement arecurrently 

inregisters, and taking advantageofthat fact, ifpossible. The code-generationuses descriptorsto 

keep track of register contents and addresses for names. 

 

1. A register descriptor keeps track ofwhat is currently in each register. It is consulted whenever 

a new register is needed. We assume that initially the register descriptor shows that all registers 

are empty. (If registers are assigned across blocks, this would not be the case). As the code 

generationfortheblockprogresses, eachregisterwillholdthevalueofzeroormorenamesat any given 

time. 

 

2. An address descriptor keeps track of the location (or locations) where the current value of the 

namecanbefoundatruntime.Thelocationmightbearegister, astacklocation,amemoryaddress, or some 

set ofthese, since when copied, a value also stays where it was. This informationcanbe stored in 

the symboltable andis used to determine the accessingmethod fora name. 

 

CODEGENERATIONALGORITHM: 

 

foreachX=YopZdo 

- Invokeafunctiongetregtodetermine locationLwhereX must bestored.UsuallyLisa 

register. 

- ConsultaddressdescriptorofYtodetermineY'.Prefer aregister forY'.IfvalueofYnot already 
in L generate 

 

MovY',L 

 

- Generate 

op Z', L 
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AgainpreferaregisterforZ.UpdateaddressdescriptorofXtoindicateXisinL.IfLisaregister 

updateitsdescriptortoindicatethatitcontainsXandremoveXfromallotherregisterdescriptors. 

 

.Ifcurrent valueofYand/or Zhasno next useandaredeadonexit fromblockandarein registers, 

change register descriptor to indicate that they no longer contain Y and/or Z. 

 

The code generation algorithmtakes as input a sequence ofthree-address statements constituting a 

basic block. For each three-address statement ofthe formx := yop z we performthe following 

actions: 

 

1. InvokeafunctiongetregtodeterminethelocationLwheretheresultofthecomputation 

yopzshouldbestored.Lwillusuallybearegister,butit couldalso beamemorylocation. We 

shall describe getreg shortly. 

 

2. Consulttheaddressdescriptorforutodeterminey',(oneof)thecurrentlocation(s)of 

y. Prefer the register for y' if the value of y is currently both in memory and a register. If 

the value ofu is not already in L, generatethe instruction MOV y', L to place a copyof y in 

L. 

 

3. Generate the instruction OP z', L where z' is a current location of z. Again, prefer a 

registerto amemorylocation ifz is inboth. Updatethe addressdescriptorto indicatethat 

xisinlocationL.IfLisaregister,updateitsdescriptortoindicatethatitcontainsthevalue of x, and 

remove x from all other register descriptors. 

 

4. Ifthecurrent valuesofyand/or yhave no next uses, arenotliveonexit fromthe block, and 

are in registers,alter the register descriptor to indicate that, after execution ofx := y op z, 

those registers no longer will contain y and/or z, respectively. 

 

FUNCTIONgetreg: 

1. IfYisinregister(thatholdsnoothervalues)andYisnotliveandhasnonext useafter X = Y op 
Z 

thenreturnregisterofYforL. 

2. Failing(1)returnanemptyregister 

3. Failing(2) ifXhasanext useintheblockoroprequiresregisterthenget aregister R, storeits content 

into M (by Mov R, M) and use it. 

4. ElseselectmemorylocationXasL 

 

Thefunctiongetreg returnsthelocationLtohold thevalue ofxfortheassignmentx:=yop z. 

 

1. Ifthe name y is in a register that holds the value of no other names (recall that copy 

instructionssuchasx:=ycouldcausearegistertoholdthevalueof twoormorevariables 
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simultaneously),and yisnotliveandhasno next useafter executionofx:= yopz,thenreturn the 

register of yfor L. Updatethe address descriptorof yto indicate that y is no longer in L. 

 

2. Failing(1),returnanemptyregisterforLifthereisone. 

 

3. Failing(2),ifxhasanextuseintheblock, oropisanoperatorsuchas indexing, thatrequires a register, 

find an occupied register R. Storethe value ofR into memory location (by MOVR, M)if itis 

notalreadyinthe proper memorylocationM,updatethe addressdescriptorM, and 

returnR.IfRholdsthevalueofseveralvariables,aMOV instructionmust begeneratedforeach 

variablethatneedstobestored.Asuitableoccupiedregistermightbeonewhosedatumis referenced 

furthest in the future, orone whose value is also in memory. 

 

4. Ifxisnotusedinthe block,ornosuitableoccupiedregistercanbe found,select thememory location 

of x as L. 

 

Example: 

Stmt 

 

code 

 

regdesc 

 

addrdesc 

t1=a-b mova,R0 

subb,R0 

R0contains t1 t1inR0 

t2=a-c mova,R1 

subc,R1 

R0containst1 

R1containst2 

t1inR0 

t2inR1 

t3=t1+t2 addR1,R0 R0contains t3 

R1contains t2 

t3inR0 

t2inR1 

d=t3+t2 addR 1,R 0 

movR0,d 

R0containsd dinR0 

dinR0and 
   memory 

 

Forexample,theassignment d:=(a-b)+(a-c)+(a-c)might betranslated intothefollowing three- 

address code sequence: 

t1=a- b 

t2=a-c 

t3=t1+t2d=t

3+t2 

The code generation algorithm that we discussed would produce the code sequence as shown. 

Shown alongside are the values of the register and address descriptors as code generation 

progresses. 
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DAGforRegisterallocation: 

DAG (Directed Acyclic Graphs) are useful data structures for implementing 

transformationsonbasicblocks. ADAGgivesapictureofhowthevaluecomputedbyastatement in a 

basic block is used in subsequent statements of the block. Constructing a DAG from three- 

addressstatements isagoodwayofdeterminingcommonsub-expressions(expressionscomputed more 

thanonce) withina block, determining whichnames are used insidethe block but evaluated 

outsidetheblock,anddeterminingwhichstatementsoftheblockcould havetheir computedvalue used 

outside the block. 

 

ADAGforabasicblockisadirectedcyclicgraphwiththefollowinglabelsonnodes: 

 

1. Leaves are labeled by unique identifiers, either variable names or constants. From the 

operatorappliedtoanamewedeterminewhetherthe l-valueorr-valueofanameisneeded;most 

leavesrepresentr-values.Theleavesrepresent initialvaluesofnames,andwesubscriptthemwith 0 to 

avoid confusion with labels denoting "current" values of names as in (3) below. 

 

2. Interiornodesarelabeledbyanoperator symbol. 

 

3. Nodesarealsooptionallygivenasequenceofidentifiersforlabels.Theintentionisthat 
interior nodes represent computed values, and the identifiers labeling a node are deemed to have 
that value. 

 

DAGrepresentationExample: 

 

 

Forexample,theslideshowsathree-addresscode.ThecorrespondingDAG isshown. Weobserve 

thateachnodeoftheDAGrepresentsaformula intermsoftheleaves,thatis,thevaluespossessed by 

variables and constants upon entering the block. For example, the node labeled t 4 represents the 

formula 

 

b[4*i] 
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thatis,thevalueofthewordwhoseaddress is4*ibytesoffset fromaddressb, whichisthe intended 

value of t 4 . 

 

CodeGenerationfromDAG 

 

S1=4*i S1=4*i 

S2=addr(A)-4 S2=addr(A)-4 

S3=S2[S1] S3= S2[S1] 

S4= 4*i 

S5=addr(B)-4 S5=addr(B)-4 

S6= S5[S4] S6=S5[S4 ] 

S7= S3*S6 S7=S3*S6 

S8=prod+S7 

prod=S8 prod=prod+S7 

S9= I+1 

I= S9 I=I+1 

IfI<=20 goto(1) IfI<=20goto(1) 

 

WeseehowtogeneratecodeforabasicblockfromitsDAGrepresentation.Theadvantage of 

doing so is that from a DAG we can more easily see how to rearrange the order of the final 

computation sequence than we can starting from a linear sequence ofthree-address statements or 

quadruples. If the DAG is a tree, we can generate code that we can prove is optimalunder such 

criteria as program length or the fewest number of temporaries used. The algorithm for optimal 

code generation froma tree is also useful when the intermediate code is a parse tree. 

 

Rearrangingorderofthecode 

 

Considerfollowingbasic 

block : 

 

t 1 =a +b t 

2 = c +d t 

3 =e-t 2 

X=t1-t 3 

 

 

and itsDAGgivenhere. 
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Here,webrieflyconsiderhowtheorderinwhichcomputationsaredonecanaffectthe cost of 

resulting object code. Consider the basic block and its corresponding DAG representationas 

shown in the slide. 

 

Rearrangingorder. 
 

 

Three adress code 

for the DAG 

(assuming only two 

registers are 

available) 

Rearrangingthecodeas 

t2= c + d 

t3=e-t2 

 

t1=a+b 

 

MOVa,R0 X=t1-t3 

ADDb,R0 gives 

MOVc,R1 MOVc,R0 

ADDd,R1 ADDd,R0 

MOVR0,t1 Registerspilling MOVe,R1 

MOVe,R0 SUBR 0,R1 

SUBR1,R0 MOVa,R 0 

MOVt1,R1 Registerreloading ADDb, R0 

SUBR0,R1 SUBR 1, R0 

MOVR1,X MOV R1,X 
 

 

Ifwegeneratecodeforthethree-addressstatementsusingthecodegenerationalgorithmdescribed 

before, we get the code sequence as shown (assuming two registers R0 and R1 are available, and 

onlyXisliveonexit).Ontheotherhandsupposewerearrangedtheorderofthe statementssothat the 

computation of t 1 occurs immediately before that of X as: 

 

t2 = c + d 

t3 = e -t 2 

t1 = a + b 

X=t1-t3 

 

Then, using the code generation algorithm, we get the new code sequence as shown (again only 

R0andR1areavailable).Byperformingthecomputationinthisorder,wehave beenableto save two 

instructions;MOV R0, t 1(whichstoresthe value ofR0 in memorylocationt 1)and MOVt 1 , R1 

(which reloads the value of t 1 in the register R1). 
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IMPORTANT&EXPECTEDQUESTIONS: 

ConstructtheDAG forthefollowingbasicblock: 

D:=B*C 

E :=A+B 

B:=B+C 

A:=E-D. 

 

1. WhatisObjectcode?Explainaboutthefollowingobjectcodeforms: 

(a) Absolutemachine-language 

(b) Relocatablemachine-language 

(c) Assembly-language. 

2. Explainabout Genericcodegenerationalgorithm? 

3. Writeandexplainaboutobjectcodeforms? 

4. ExplainPeepholeOptimization 

 

ASSIGNMENTQUESTIONS: 

1. Explainabout Genericcodegenerationalgorithm? 

2. Explainabout Data-Flowanalysisofstructuredflowgraphs. 

3. WhatisDAG?ExplaintheapplicationsofDAG. 
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