

DEPARTMENT OF
COMPUTER SCIENCE AND ENGINEERING

 DIGITAL NOTES

 ON

COMPILER DESIGN

[R22A0511]

B.TECH IIIYEAR–ISEM(R22)

(2024-25)

 Prepared by

 K.Chandusha

 MALLA REDDY COLLEGE OF

ENGINEERING&TECHNOLOGY
(AutonomousInstitution–UGC,Govt.ofIndia)

Recognizedunder2(f)and12(B)ofUGCACT1956
(AffiliatedtoJNTUH,Hyderabad,Approved byAICTE-AccreditedbyNBA&NAAC–‘A’Grade-ISO9001:2015 Certified)

Maisammaguda,Dhulapally(PostVia. Hakimpet),Secunderabad–500100,TelanganaState,India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Vision

To acknowledge quality education and instill high patterns of discipline making the

students technologically superior and ethically strong which involves the

improvement in the quality of life in human race.

Mission

To achieve and impart holistic technical education using the best of infrastructure,

outstanding technical and teaching expertise to establish the students into competent

and confident engineers.

 Evolving the center of excellence through creative and innovative teaching learning

practicesforpromotingacademicachievementtoproduceinternationallyacceptedcompetiti

veand world class professionals.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1–ANALYTICALSKILLS

To facilitate the graduates with the ability to visualize, gather information, articulate, analyze,

solve complex problems, and make decisions. These are essential to address the challenges of

complex and computation intensive problems increasing their productivity.

PEO2–TECHNICALSKILLS

Tofacilitatethegraduateswiththetechnicalskillsthatpreparethemforimmediateemploymentandpurs

ue certification providing a deeper understanding of the technology in advanced areas of

computer science and related fields, thus encouraging pursuing higher education and research

based on their interest.

PEO3–SOFTSKILLS

To facilitate the graduates with the soft skills that include fulfilling the mission, setting goals,

showing self confidence by communicating effectively, having a positive attitude, get

involved in team-work, being a leader, managing their career and their life.

PEO4–PROFESSIONALETHICS

To facilitate the graduates with the knowledge of professional and ethical responsibilities by

paying attention to grooming, being conservative with style, following dress codes, safety

codes, and adapting them to technological advancements.

PROGRAM SPECIFIC OUTCOMES (PSOs)

After the completion of the course, B.Tech Computer Science and Engineering, the graduates

will have the following Program Specific Outcomes:

1. FundamentalsandcriticalknowledgeoftheComputerSystem:-

AbletoUnderstandtheworkingprinciples of the computer System and its components, Apply

the knowledge to build, asses, and analyze the software and hardware aspects of it.

2. The comprehensive and Applicative knowledge of Software Development: Comprehensive

skills of Programming Languages, Software process models, methodologies, and able to plan,

develop, test, analyze, and manage the software and hardware intensive systems in

heterogeneous platforms individually or working in teams.

3. Applications of Computing Domain & Research: Able to use the professional, managerial,

interdisciplinary skill set, and domain specific tools in development processes, identify their

search gaps, and provide innovative solutions to them.

PROGRAM OUTCOMES (POs)

Engineering Graduates should possess the following:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals,andanengineeringspecializationtothesolutionofcomplexengineeringproblems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design / development of solutions: Design solutions for complex

 engineeringproblemsanddesignsystemcomponentsorprocessesthatmeetthespecifiedneedswit

happropriateconsideration for the public health and safety, and the

 cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to

the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as member or leader in
diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and

receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage
in independent and life-long learning in the broadest context of technological change.

 MALLA REDDY COLLEGE OF ENGINEERING&TECHNOLOGY

 IIIYEAR–ISEM(R22)

COMPILERDESIGN[R22A0511]

CourseObjectives:

1. Totrainthestudents tounderstanddifferenttypesofAIagents.

2. TounderstandvariousAIsearchalgorithms.

3. Fundamentalsofknowledgerepresentation,building ofsimpleknowledge-basedsystemsand toapply k
 knowledge representation.

4. Fundamentalsofreasoning

5. StudyofMarkovModels enablethestudentreadytostepintoappliedAI.

UNIT–I:

Language Translation: Introduction, Basics, Necessity, Steps involved in a typical language

processing system, Types of translators, Compilers: Overview, Phases, Pass and Phases of

translation, bootstrapping, data structures in compilation
Lexical Analysis (Scanning): Functions of Scanner, Specification of tokens: Regular expressions

and Regular grammars for common PL constructs. Recognition of Tokens: Finite Automata in

recognitionand generation of tokens. Scanner generators: LEX-Lexical Analyzer Generators,LEX.
Syntax Analysis (Parsing) : Functions of a parser, Classification of parsers. Context free grammars

in syntax specification, benefits and usage in compilers.

UNIT–II:

Top down parsing –Definition, types of top down parsers: Backtracking, Recursive descent,

Predictive, LL (1), Preprocessing the grammars used in top down parsing, Error recovery, and

Limitations. Bottom up parsing: Definition,Handle pruning. Types of bottom up parsers: Shift
Reduce parsing, LR parsers: LR(0), SLR, CALR and LALR parsing, Error recovery, Handling

ambiguous grammar, Parser generators: YACC-yet another compiler compiler. .

UNIT–III:
Semantic analysis: Attributed grammars, Syntax directed definition and Translation schemes, Type

checker: functions, type expressions, type systems, types checking of various constructs.

Intermediate Code Generation: Functions, intermediate code forms- syntax tree, DAG, Polish
notation, and Three address codes. Translation of different source language constructs into

intermediate code.

Symbol Tables: Definition, contents, and formats to represent names in a Symbol table. Different

approaches of symbol tableimplementationfor blockstructuredandnonblockstructuredlanguages, such

as Linear Lists, SelfOrganized Lists, and Binary trees, Hashing based STs.

UNIT–IV:

Runtime Environment: Introduction, Activation Trees, Activation Records and Control stacks.

Runtimestorageorganization:Static,StackandHeapstorageallocation. Storageallocationfor arrays,
strings, and records etc.

Code optimization: goals and Considerations, and Scope of Optimization: Machine Dependent and

Independent Optimization, Localoptimizations, DAGs, Loop optimization, Global Optimizations.
Commonoptimizationtechniques:Folding,Copypropagation,CommonSubexpressioneliminations,

Code motion, Frequency reduction, Strength reduction etc.

UNIT–V:

Control flow and Data flow analysis: Flow graphs, Data flow equations, global optimization:

Redundant sub expression elimination, Induction variable eliminations, Live Variable analysis.
Object code generation: Object code forms, machine dependent code optimization, register

allocation and assignment. Algorithms- generic code generation algorithms and other modern

algoritms, DAG for register allocation.

TEXTBOOKS:

1. Compilers,Principle,Techniques,andTools.–Alfred.VAho,MonicaS.Lam,RaviSethi,Jeffrey

D.Ullman;2ndEdition,PearsonEducation.
2. ModernCompilerimplementationinC,-AndrewN.AppelCambridgeUniversityPress.

REFERENCES:

1. lex&yacc,-JohnRLevine,TonyMason, DougBrown;O’reilly.

2. CompilerConstruction,-LOUDEN,Thomson.
3. Engineeringacompiler–Cooper&Linda,Elsevier

4. ModernCompilerDesign–DickGrune,HenryE.Bal,CarielTHJacobs, WileyDreatech

Outcomes:

Bytheendof thesemester,thestudentwillbeableto:

 Understandthenecessityandtypesofdifferentlanguagetranslatorsinuse.

 Applythetechniquesanddesigndifferentcomponents(phases)ofacompilerbyhand.

 Solveproblems,WriteAlgorithms,Programsandtestthemfortheresults.

Us

INDEX

UNITNO TOPIC PAGENO

I

LanguageTranslation 01–03

Compilers 04–08

LexicalAnalysis(Scanning) 09–15

SyntaxAnalysis (Parsing) 16–17

II
Topdownparsing 18–33

Bottomup parsing 34–59

III

Semanticanalysis 60–67

Intermediate CodeGeneration 68–92

SymbolTables 93–106

IV

RuntimeEnvironment 107–122

Codeoptimization 122-134

V

ControlflowandDataflowanalysis 135-141

Objectcodegeneration 142-152

1|Page DEPARTMENT OF CSE

TargetProgram

COMPILER DESIGN

UNIT-I

A.Y 2024-25

INTRODUCTIONTOLANGUAGEPROCESSING:

AsComputersbecame inevitableand indigenouspartofhumanlife, and severallanguages

withdifferentandmoreadvancedfeaturesareevolvedintothisstreamtosatisfyorcomforttheuser in

communicating with the machine , the development of the translators or mediator Software‘s

have become essential to fill the huge gap between the human and machine understanding. This

process is called Language Processing to reflect the goaland intent ofthe process. On the wayto

this process to understand it in a better way, we have to be familiar with some key terms and

concepts explained in following lines.

LANGUAGETRANSLATORS:

Is a computer programwhich translates a program written in one (Source) language to its

equivalentprograminother[Target]language.TheSourceprogramisahighlevellanguagewhereas the

Target language can be any thing from the machine language of a target machine (between

Microprocessor to Supercomputer) to another high level language program.

TwocommonlyUsedTranslatorsareCompiler andInterpreter

1. Compiler:Compilerisaprogram,readsprograminonelanguagecalledSourceLanguage

andtranslatesintoitsequivalent programinanotherLanguagecalledTarget Language, in

addition to this its presents the error information to the User.

 Ifthetarget programisanexecutable machine-languageprogram, it canthenbecalled by

the users to process inputs and produce outputs.

Input Output

Figure1.1:RunningthetargetProgram

2|Page DEPARTMENTOFCSE

Interpreter

2. Interpreter:Aninterpreterisanothercommonlyusedlanguageprocessor.Insteadofproducing a

target program as a single translation unit, an interpreter appears to directly execute the
operations specified in the source program on inputs supplied by theuser.

SourceProgram

Input Output

Figure1.2:Running thetargetProgram

LANGUAGE PROCESSING SYSTEM:

Basedonthe inputthetranslatortakesandtheoutputit produces,alanguagetranslatorcanbe called

as any one of the following.

Preprocessor:Apreprocessortakestheskeletalsourceprogramasinput andproducesanextended

version of it, which is the resultant of expanding the Macros, manifest constants if any, and

includingheader filesetcinthesourcefile.Forexample,theCpreprocessorisa macro processor

thatisusedautomaticallybytheCcompilertotransformoursourcebeforeactualcompilation.Over and

above a preprocessor performs the following activities:

Collectsallthemodules,filesincaseifthesourceprogramisdivided intodifferent modules stored

at different files.

Expandsshorthands/macrosintosourcelanguagestatements.

Compiler: Is atranslator that takes as input a source program written in high level language and

convertsitinto itsequivalent target programinmachine language. Inadditiontoabovethecompiler also

Reportstoitsuserthepresenceoferrorsinthesourceprogram.

Facilitatestheuserinrectifyingtheerrors,andexecutethecode.

Assembler:Isaprogramthattakesas input anassemblylanguageprogramandconverts it intoits equivalent

machine language code.

Loader/Linker: This isaprogramthattakesasinput arelocatable codeand collectsthe library

functions, relocatable object files, and produces its equivalent absolute machine code.

Specifically,

Loadingconsistsoftakingtherelocatable machinecode,alteringtherelocatableaddresses, and

placing the altered instructions and data in memoryat the proper locations.

Linkingallowsustomakeasingleprogramfromseveralfilesofrelocatable machine code. These

files may have been result of several differentcompilations, one or more may be

libraryroutines provided by the system available to anyprogramthat needs them.

A.Y 2024-25 COMPILER DESIGN

Loader/Linker

Compiler

In addition to these translators, programs like interpreters, text formatters etc., may be used in

language processing system. To translate a program in a high level language program to an

executable one, the Compiler performs by default the compile and linking functions.

Normally the steps in a language processing system includes Preprocessing the skeletal Source

program which produces an extended or expanded source program or a ready to compile unit of

the source program, followed by compiling the resultant, then linking / loading , and finally its

equivalentexecutablecodeisproduced.AsIsaidearliernotallthesestepsaremandatory.Insome cases,

the Compiler only performs this linking and loading functions implicitly.

The steps involved in a typical language processing system can be understood with following

diagram.

SourceProgram [Example:filename.C]

Preprocessor

ModifiedSourceProgram [Example:filename.C]

TargetAssemblyProgram

RelocatableMachineCode[Example: filename.obj]

Library files

RelocatableObjectfiles

TargetMachineCode [Example: filename.exe]

Figure1.3:ContextofaCompilerinLanguageProcessingSystem

TYPESOF COMPILERS:

Basedonthespecific input ittakesandtheoutputitproduces,theCompilerscanbeclassified into

the following types;

TraditionalCompilers(C,C++,Pascal):TheseCompilersconvert asourceprograminaHLL into its

equivalent in native machine code or object code.

Assembler

A.Y 2024-25 COMPILER DESIGN

Interpreters(LISP, SNOBOL, Java1.0): These Compilers first convert Source code into

intermediate code, and then interprets (emulates) it to its equivalent machine code.

Cross-Compilers:Thesearethecompilersthatrunononemachineandproducecodeforanother

machine.

Incremental Compilers: These compilers separate the source into user defined–steps;

Compiling/recompiling step- by- step; interpreting steps in a given order

Converters (e.g. COBOL to C++): These Programs will be compiling from one high level

language to another.

Just-In-Time (JIT) Compilers (Java, Micosoft.NET): These are the runtime compilers from

intermediate language (byte code, MSIL) to executable code or native machine code. These

perform type –based verification which makes the executable code more trustworthy

Ahead-of-Time (AOT) Compilers (e.g., .NET ngen): These are the pre-compilers to the native

code for Java and .NET

BinaryCompilation:Thesecompilers willbecompilingobject codeofoneplatformintoobject code of

another platform.

PHASESOFACOMPILER:

Due to the complexity of compilation task, a Compiler typically proceeds in a Sequence of

compilation phases. The phases communicate with each other via clearly defined interfaces.

GenerallyaninterfacecontainsaDatastructure(e.g.,tree),Setofexportedfunctions.Eachphase

worksonanabstract intermediate representationofthesourceprogram, notthesourceprogram text

itself (except the first phase)

Compiler Phases arethe individual modules which are chronologicallyexecutedto performtheir

respective Sub-activities, and finally integrate the solutions to give target code.

It is desirable to have relativelyfew phases, since it takes time to read and write immediate files.

Following diagram(Figure1.4) depictsthe phasesofa compiler through which it goesduring the

compilation. There fore a typical Compiler is having the following Phases:

1. LexicalAnalyzer(Scanner),2.SyntaxAnalyzer(Parser),3.SemanticAnalyzer,

4.IntermediateCodeGenerator(ICG),5.CodeOptimizer(CO),and6.CodeGenerator(CG)

In addition to these, it also has Symbol table management, and Error handler phases. Not all

the phases are mandatory in everyCompiler. e.g, Code Optimizer phase is optional in some

A.Y2024-25 COMPILER DESIGN

5|Pa ge DEPARTMENT OF CSE

cases.Thedescriptionisgiveninnextsection.

ThePhasesofcompilerdivided intotwo parts,firstthreephaseswearecalledasAnalysis part

remaining three called as Synthesis part.

Figure1.4:PhasesofaCompiler

PHASE,PASSESOFACOMPILER:

In some application we can have a compiler that is organized into what is called passes.

Where a pass is a collection of phases that convert the input from one representation to a

completelydeferentrepresentation. Eachpassmakesacompletescanoftheinput andproducesits

output to be processed bythe subsequent pass. For example a two pass Assembler.

THEFRONT-END&BACK-ENDOFACOMPILER

A.Y 2024-25 COMPILER DESIGN

6|Page DEPARTMENT OF CSE

All of these phases of a general Compiler are conceptually divided into The Front-end,

andTheBack-end.Thisdivisionisduetotheir dependenceoneithertheSourceLanguageorthe Target

machine. This model is called an Analysis & Synthesis model ofa compiler.

The Front-end of the compiler consists of phases that depend primarily on the Source

language and are largely independent on the target machine. For example, front-end of the

compiler includes Scanner, Parser, Creation of Symbol table, Semantic Analyzer, and the

Intermediate Code Generator.

The Back-end of the compiler consists of phases that depend on the target machine, and

thoseportionsdon‘t dependent ontheSourcelanguage, just theIntermediate language. Inthiswe

havedifferentaspectsofCodeOptimizationphase,codegenerationalongwiththenecessaryError

handling, and Symbol table operations.

LEXICALANALYZER(SCANNER):TheScanneristhefirstphasethatworksasinterface

betweenthecompilerandtheSourcelanguageprogramandperformsthefollowingfunctions:

ReadsthecharactersintheSourceprogramandgroupsthemintoastreamoftokensinwhich each

token specifies a logically cohesive sequence of characters, such as an identifier , a
Keyword , a punctuation mark, a multi character operator like := .

Thecharactersequenceforming a tokeniscalled alexeme ofthetoken.

TheScannergeneratesatoken-id,andalso entersthatidentifiersname intheSymbol table if
it doesn‘t exist.

AlsoremovestheComments,andunnecessaryspaces.

Theformatofthetokenis<Token name,Attributevalue>

SYNTAXANALYZER(PARSER):TheParserinteractswiththeScanner,anditssubsequent phase

Semantic Analyzer and performs the following functions:

Groupstheabovereceived, andrecordedtokenstreamintosyntacticstructures,usually into a

structure called Parse Tree whose leaves are tokens.

The interiornodeofthistreerepresentsthestreamoftokensthat logicallybelongs together.

Itmeansitchecksthesyntaxofprogramelements.

SEMANTICANALYZER: This phase receives the syntax tree as input, and checks the

semanticallycorrectnessoftheprogram.Thoughthetokensarevalidandsyntacticallycorrect,it

A.Y 2024-25 COMPILER DESIGN

7|Page DEPARTMENT OF CSE

mayhappenthattheyarenotcorrectsemantically. Thereforethesemanticanalyzerchecksthe

semantics (meaning) of the statements formed.

TheSyntacticallyandSemanticallycorrect structuresareproducedhereinthe formofa

Syntax tree or DAG or some other sequential representation like matrix.

INTERMEDIATE CODE GENERATOR(ICG): This phase takes the syntactically and

semantically correct structure as input, and produces its equivalent intermediate notation of the

source program. The Intermediate Code should have two important properties specified below:

Itshould beeasytoproduce,andEasytotranslateintothetargetprogram.Example

intermediate code forms are:

Three addresscodes,

Polishnotations,etc.

CODEOPTIMIZER: Thisphase isoptional in some Compilers, but so useful and beneficial in

terms of saving development time, effort, and cost. This phase performs the following specific

functions:

Attemptsto improvetheICso asto havea faster machinecode.Typicalfunctions include –

LoopOptimization, Removalofredundant computations, Strengthreduction, Frequency

reductions etc.

Sometimesthedatastructuresusedinrepresentingthe intermediateforms mayalsobe

changed.

CODE GENERATOR: This is the final phase of the compiler and generates the target code,

normallyconsistingoftherelocatable machinecodeorAssemblycodeorabsolutemachinecode.

Memorylocationsareselectedforeachvariable used,andassignmentofvariablesto registers

is done.

Intermediateinstructionsaretranslated intoasequenceofmachineinstructions.

TheCompileralso performstheSymboltablemanagementandErrorhandlingthroughoutthe

compilation process. Symbol table is nothing but a data structure that stores different source

language constructs, and tokens generated during the compilation. These two interact with all

phases of the Compiler.

A.Y 2024-25 COMPILER DESIGN

8|Page DEPARTMENT OF CSE

Forexamplethesourceprogramisanassignment statement;thefollowing figureshowshowthe phases

of compiler will process the program.

TheinputsourceprogramisPosition=initial+rate*60

Figure1.5:TranslationofanassignmentStatement

COMPILER DESIGN A.Y 2024-25

9|Page DEPARTMENT OF CSE

LEXICALANALYSIS:

Asthe first phaseofacompiler, the maintaskofthelexicalanalyzeristoreadthe input

charactersofthesourceprogram, grouptheminto lexemes, andproduceasoutputtokens for each

lexeme inthe source program. This streamoftokens is sent to the parser for syntaxanalysis. It is

common for the lexical analyzer to interact with the symbol table as well.

Whenthe lexicalanalyzer discoversa lexemeconstitutinganidentifier,it needsto enter that

lexeme into the symboltable. This process is shown in the following figure.

Figure1.6:LexicalAnalyzer

. When lexical analyzer identifies the first token it will send it to the parser, the parser

receivesthetokenandcallsthe lexicalanalyzertosendnexttokenbyissuingthegetNextToken()

command. This Process continues until the lexical analyzer identifies all the tokens. During this

process the lexical analyzer will neglect or discard the white spaces and comment lines.

TOKENS,PATTERNS ANDLEXEMES:

A token is a pair consistingofatokennameandanoptionalattribute value.The tokenname is an

abstract symbolrepresenting a kind of lexical unit, e.g., a particular keyword, or a sequence of

input characters denoting an identifier. The token names are the input symbols that the parser

processes.Inwhatfollows, weshallgenerallywritethenameofatokeninboldface. Wewilloften refer to

a token by its token name.

Apattern isadescriptionoftheformthatthelexemesofatokenmaytake[ormatch]. Inthe case ofa

keyword as atoken, the pattern is just the sequence ofcharactersthatformthe keyword. For

identifiersandsomeothertokens,thepatternisa morecomplexstructurethatis matched bymany

strings.

A.Y 2024-25
COMPILER DESIGN

10|Pa ge DEPARTMENT OF CSE

Alexeme isasequenceofcharactersinthesourceprogramthat matchesthepatternfora token

and is identified by the lexical analyzer as an instance of that token.

Example:InthefollowingClanguagestatement, printf

("Total = %d\n‖, score) ;

bothprintfandscorearelexemesmatchingthepattern fortokenid,and"Total=%d\n‖ is a

lexeme matching literal [or string].

Figure1.7:ExamplesofTokens

LEXICALANALYSISVsPARSING:

Thereareanumberofreasonswhytheanalysisportionofacompiler isnormallyseparated into lexical

analysis and parsing (syntax analysis) phases.

1.Simplicityofdesignisthemostimportantconsideration. TheseparationofLexicaland

Syntactic analysis often allows us to simplify at least one ofthesetasks.For example,a

parser thathad to deal with comments and whitespace as syntactic units would be

considerably more complex than one that can assume commentsand whitespace have

already been removed by the lexicalanalyzer.

2. Compiler efficiency is improved. A separate lexical analyzer allows us to apply

specialized techniques that serve only the lexical task, not the job of parsing. In addition,

specialized buffering techniques for reading input characters can speed up the compiler

significantly.

3.Compilerportabilityisenhanced:Input-device-specificpeculiaritiescanbe

restricted to the lexical analyzer.

A.Y 2024-25
COMPILER DESIGN

11|Pa ge DEPARTMENT OF CSE

INPUTBUFFERING:

Before discussing the problemofrecognizinglexemesinthe input,let us examine some

waysthatthesimplebutimportanttaskofreadingthesourceprogramcanbespeeded.This

taskismadedifficult bythe factthat weoftenhavetolookoneormorecharactersbeyond thenext

lexemebeforewecanbesurewehavetheright lexeme. Therearemanysituationswhereweneed tolookat

leastoneadditionalcharacterahead. Forinstance, wecannot besure we'veseentheend ofan identifier

until we see a character that is not a letter or digit, and therefore is not part ofthe lexeme for

id.InC, single-characteroperators like-,=,or<could also be the beginning ofa two-character

operator like ->, ==, or <=. Thus, we shall introduce a two-buffer scheme that handles large look

aheads safely. We then consider an improvement involving "sentinels" that saves time checking

for the ends of buffers.

BufferPairs

Because of the amountof time taken toprocess characters and thelarge number of characters that

must be processed during the compilation of a large source program, specialized buffering

techniques have been developed to reduce the amount of overhead required to process a single

input character. An important scheme involves two buffers that are alternately reloaded.

Figure1.8:UsingaPairofInputBuffers

EachbufferisofthesamesizeN,andNisusuallythesizeofadisk block,e.g.,4096bytes. Using

one systemread command we can read N characters in toa buffer,rather than using one system

call per character. If fewer than N characters remain in the input file, then a special character,

represented by eof, marks the end of the source file and is different from any possible character

of the source program.

Twopointerstotheinputaremaintained:

1. ThePointerlexemeBegin,marksthebeginningofthecurrent lexeme,whoseextent we

are attempting to determine.

2. Pointer forward scans ahead until a pattern match is found; the exact strategy

wherebythisdeterminationis madewillbecoveredinthebalanceofthischapter.

A.Y 2024-25
COMPILER DESIGN

12|Pa ge DEPARTMENT OF CSE

Once the next lexeme is determined, forward is set to the character at its right end. Then,

after the lexeme is recorded as an attribute value of a token returned to the parser, 1exemeBegin

is set tothe character immediatelyafter the lexeme just found. In Fig, we see forward has passed

the end of the next lexeme, ** (the FORTRAN exponentiation operator), and must be retracted

one position to its left.

Advancing forwardrequiresthat wefirst testwhether we havereachedtheendof oneof the

buffers, and if so, we mustreload the other bufferfrom the input, and move forward to the

beginning ofthe newly loaded buffer. As long aswenever need to lookso far ahead ofthe actual

lexemethat thesumofthe lexeme's lengthplusthedistancewelookahead isgreaterthanN, we shall

never overwrite the lexeme in its buffer before determining it.

SentinelsTo ImproveScannersPerformance:

If we use the above scheme as described, we must check, each time we advance forward,

thatwehavenot movedoffoneofthebuffers;ifwedo,thenwe must alsoreloadtheotherbuffer. Thus, for

each character read, we make two tests: one for the end of the buffer, and oneto determine what

character is read (the latter may be a multi way branch). We can combine the buffer-end test with

the test for the current character if we extend each buffer to hold a sentinel character at the end.

The sentinel is a special characterthat cannot be partofthe source program, andanaturalchoice

isthecharactereof.Figure1.8showsthesamearrangement asFigure1.7, but with the sentinels added.

Notethat eof retains its use as a marker for the end of the entire input.

Figure1.8:Sententialattheendofeachbuffer

Anyeofthatappearsotherthanattheendofabuffermeansthatthe input isat anend. Figure1.9 summarizesthe

algorithm for advancing forward.Notice howthe first test,whichcanbepart of

A.Y 2024-25
COMPILER DESIGN

13|Pa ge DEPARTMENT OF CSE

amultiwaybranchbasedonthecharacterpointedtobyforward,istheonlytest wemake,except in the

case where we actually are at the end ofa buffer or the end ofthe input.

switch(*forward++)

{

caseeof:if(forward isatendoffirstbuffer)

{

reloadsecondbuffer;

forward=beginningofsecond buffer;

}

elseif(forwardisatendofsecondbuffer)

{

break;

}

reloadfirstbuffer;

forward=beginningoffirstbuffer;

}

else /*eofwithinabuffer markstheendofinput */

terminate lexical analysis;

Figure1.9:useofswitch-caseforthesentential

SPECIFICATIONOFTOKENS:

Regular expressions areanimportant notationfor specifyinglexemepatterns. Whiletheycannot express

allpossiblepatterns, theyareveryeffectiveinspecifyingthosetypes of patterns that weactuallyneedfor

tokens.

LEXtheLexicalAnalyzergenerator

Lex is a toolused to generate lexicalanalyzer, the input notation for the Lex tool is

referredtoastheLexlanguageandthetoolitselfis theLexcompiler.Behindthescenes,the

Lexcompilertransformstheinputpatterns intoatransitiondiagramandgeneratescode,ina

filecalledlex.yy.c, it isacprogramgivenforCCompiler, givestheObject code.Hereweneed to know

how to write the Lex language. The structure of the Lex program is given below.

A.Y 2024-25
COMPILER DESIGN

14|Pa ge DEPARTMENT OF CSE

Declarations

%%

Translationrules

%%

Auxiliaryfunctionsdefinitions

StructureofLEX Program:ALexprogramhasthefollowingform:

Thedeclarationssection : includesdeclarationsofvariables, manifest constants(identifiers

declaredtostandforaconstant, e.g.,thenameofatoken), andregular definitions. It appears

between %{. . .%}

Inthe Translation rules section, We place PatternActionpairswhere eachpair have the form

Pattern {Action}

Theauxiliary function definitionssectionincludesthedefinitionsoffunctionsusedto install

identifiers and numbers in the Symbol tale.

LEXProgramExample:

%{

/*definitionsofmanifestconstantsLT,LE,EQ,NE,GT,GE,IF,THEN,ELSE,ID,NUMBER,
RELOP */

%}

/*regulardefinitions*/

delim [\t\n]

ws { delim}+

letter

digit

[A-Za-z]

[o-91

id

{letter}({letter}| {digit})*

number

{digit}+(\.{digit}+)?(E[+-I]?{digit}+)?

%%

{ws}

{/*noactionandnoreturn*/}

if {return(1F);}

A.Y 2024-25 COMPILER DESIGN

15|Pa ge DEPARTMENT OF CSE

then {return(THEN);}

else {return(ELSE);}

(id) {yylval=(int)installID();return(1D);}

(number) {yylval=(int)installNum();return(NUMBER); }

‖<‖ {yylval=LT;return(REL0P);)}

—<=‖ {yylval= LE;return(REL0P);}

―=‖ {yylval= EQ;return(REL0P);}

―<>‖ {yylval= NE;return(REL0P);}

―<‖ {yylval=GT;return(REL0P);)}

―<=‖ {yylval=GE;return(REL0P);}

%%

intinstallID0(){/*functiontoinstallthe lexeme,whose first characterispointedto byyytext, and

whose length is yyleng, into the symbol table and return a pointer thereto

*/

intinstallNum(){/*similarto installID,butputsnumericalconstantsintoaseparatetable*/}

Figure1.10:LexProgramfortokens commontokens

A.Y 2024-25 COMPILER DESIGN

16|Pa ge DEPARTMENT OF CSE

SYNTAXANALYSIS(PARSER)

THEROLEOFTHEPARSER:

In our compiler model, the parser obtains a string of tokens from thelexical analyzer,as

shown in the below Figure, and verifiesthatthestringoftoken names canbe generated by the

grammarfor the source language.We expect the parser to report any syntax errors in an

intelligible fashion and to recover from commonly occurring errors to continue processing the

remainder ofthe program. Conceptually, for well-formed programs, the parser constructs a parse

tree and passes it to the rest ofthe compiler for further processing.

Figure2.1: ParserintheCompiler

Duringtheprocessofparsing itmayencountersomeerrorandpresenttheerrorinformationback to the

user

Syntacticerrorsincludemisplacedsemicolonsorextraormissingbraces;thatis,

―{" or"}."Asanotherexample,inCorJava,the appearance ofacasestatementwithout anenclosing

switch is a syntactic error (however, this situationisusuallyallowedbythe parser and caught later

in the processing, as the compiler attempts to generate code).

Basedontheway/ordertheParseTreeisconstructed, Parsing isbasicallyclassified into following

two types:

1. TopDownParsing:Parsetreeconstructionstartattherootnodeandmovestothe

children nodes (i.e., top down order).

2. BottomupParsing:Parsetreeconstructionbegins fromthe leafnodesandproceeds

towards the root node (called the bottom up order).

A.Y 2024-25 COMPILER DESIGN

17|Pa ge DEPARTMENT OF CSE

IMPORTANT(OR)EXPECTEDQUESTIONS

1. WhatisaCompiler?ExplaintheworkingofaCompilerwithyourownexample?

2. WhatistheLexicalanalyzer?DiscusstheFunctionsofLexicalAnalyzer.

3. Writeshortnotesontokens,patternandlexemes?

4. WriteshortnotesonInput bufferingscheme?Howdoyouchangethebasic input
buffering algorithm to achieve better performance?

5. Whatdoyou meanbyaLexicalanalyzergenerator?Explain LEXtool.

ASSIGNMENTQUESTIONS:

1. Writethedifferencesbetweencompilersandinterpreters?

2. Writeshortnotesontoken reorganization?

3. WritetheApplicationsoftheFiniteAutomata?

4. ExplainHowFiniteautomataareusefulinthelexicalanalysis?

5. ExplainDFAandNFAwithanExample?

 A.Y 2024-25 COMPILER DESIGN

18|Pa ge DEPARTMENT OF CSE

TOPDOWNPARSING:

UNIT-II

 Top-down parsing can be viewed as the problem of constructing a parse tree for the given

input string, starting from the root and creating the nodes of the parse tree in preorder

(depth-first left to right).

Equivalently, top-downparsingcanbeviewedasfindingaleftmostderivationforaninput string.

Itisclassified intotwodifferent variantsnamely;onewhichusesBackTrackingandtheotheris Non

Back Tracking in nature.

NonBackTrackingParsing:Therearetwovariantsofthisparser asgivenbelow.

1. TableDrivenPredictiveParsing:

i. LL(1) Parsing

2. RecursiveDescentparsing

BackTracking

1.BruteForcemethod

NONBACKTRACKING:

LL(1)ParsingorPredictiveParsing

LL(1)standsfor,left toright scanofinput,usesaLeft mostderivation, andtheparser takes

1 symbol as the look ahead symbol fromthe input in taking parsing action decision.

Anonrecursivepredictiveparsercanbebuilt bymaintainingastackexplicitly,ratherthan

implicitly via recursive calls. The parser mimics a leftmost derivation. Ifw istheinput that has

been matchedso far, thenthestackholdsa sequence ofgrammar symbols a such that

Thetable-drivenparserinthefigurehas

Aninput bufferthatcontainsthestringto beparsed followedbya$Symbol,usedto indicate

end of input.

Astack, containinga sequenceofgrammar symbolswitha$atthebottomofthestack, which
initially contains the start symbol of the grammar on top of$.

Aparsing table containingtheproductionrulestobeapplied.Thisisatwo dimensional array M

[Non terminal, Terminal].

AparsingAlgorithmthattakesinput Stringanddeterminesifit isconformantto

Grammar and it uses the parsing table and stack to take such decision.

A.Y 2024-25 COMPILER DESIGN

19|Pa ge DEPARTMENT OF CSE

Figure2.2:Modelfortabledrivenparsing

TheStepsInvolvedInconstructinganLL(1) Parserare:

1. WritetheContextFreegrammarforgiveninputString

2. Checkfor Ambiguity.Ifambiguousremoveambiguityfromthegrammar

3. CheckforLeft Recursion.Removeleftrecursionifitexists.

4. CheckForLeftFactoring.Performleftfactoringifitcontainscommonprefixesin more

than one alternates.

5. ComputeFIRSTandFOLLOWsets

6. ConstructLL(1) Table

7. UsingLL(1)AlgorithmgenerateParsetreeastheOutput

Context Free Grammar (CFG): CFG used to describe or denote the syntax of the
programming language constructs.The CFG is denoted asG,and defined using a fourtuple
notation.

Let GbeCFG,thenG iswrittenas, G=(V,T,P,S)

Where

V isa finite set ofNonterminal;Nonterminals are syntactic variablesthat denote setsof

strings. The setsofstringsdenoted bynonterminalshelp definethe languagegenerated

bythe grammar. Nonterminals impose a hierarchicalstructureonthe language that

iskeytosyntaxanalysisandtranslation.

TisaFinitesetofTerminal;Terminalsarethebasicsymbolsfromwhichstringsareformed. The

term "token name" is a synonym for '"terminal" and frequently we will use the word

"token" for terminal when it is clear that we are talking about just the token name. We

assume that the terminals are the first components of the tokens output by the lexical

analyzer.

 S is the Starting Symbol of the grammar, one non terminal is distinguished as the start
symbol, and the set ofstrings itdenotes isthelanguage generatedbythe grammar. P is finite
set ofProductions;the productions ofa grammar specifythe manner inwhichthe

A.Y 2024-25 COMPILER DESIGN

20|Pa ge DEPARTMENT OF CSE

terminalsandnonterminalscanbecombinedtoformstrings,eachproductionisinα->β form,

where α is a single non terminal, β is (VUT)*.Each production consists of:

(a) A non terminal called the head or left side of the production;this production

defines some of the strings denoted by the head.

(b) Thesymbol->.Some times:=hasbeenusedinplace ofthe arrow.

(c) Abodyorrightsideconsistingofzeroormoreterminalsandnon- terminals. The

components ofthe bodydescribe one way in which strings of the nonterminalat the

head can be constructed.

Conventionally,theproductionsforthestartsymbolarelistedfirst.

Example:ContextFreeGrammartoacceptArithmeticexpressions.

Theterminals are+,*,-,(,),id.

TheNonterminalsymbolsareexpression,term,factorandexpressionisthestartingsymbol.

expression expression +term

expression expression –term

expression term

term term*factor

term term / factor

term factor

factor (expression)

factor id

Figure2.3:GrammarforSimpleArithmeticExpressions

NotationalConventionsUsedInWritingCFGs:

To avoid always having to state that ―these are the terminals,""these are the non

terminals,"andsoon,thefollowing notationalconventions forgrammarswillbeusedthroughout our

discussions.

1. Thesesymbolsareterminals:

(a) Lowercaselettersearlyinthealphabet,suchasa,b,e.

(b) Operatorsymbolssuchas+,*,andso on.

(c) Punctuationsymbolssuchasparentheses,comma,andsoon.

(d) Thedigits0,1...9.

(e) Boldfacestringssuchasidorif,eachofwhichrepresentsasingle

terminal symbol.

A.Y 2024-25 COMPILER DESIGN

21|Pa ge DEPARTMENT OF CSE

2. Thesesymbolsarenonterminals:

(a) Uppercase lettersearlyinthealphabet,suchasA,B,C.

(b) TheletterS,which, whenitappears, isusuallythestartsymbol.

(c) Lowercase,italicnamessuchasexprorstmt.

(d) Whendiscussingprogrammingconstructs,uppercase lettersmaybeusedtorepresent

Nonterminals for the constructs. For example, non terminal for expressions, terms,

and factors are often represented by E, T, and F, respectively.

Usingtheseconventionsthegrammarforthearithmeticexpressionscanbewrittenas

E E +T |E–T |T

TT*F|T/F|F F

(E) | id

DERIVATIONS:
Theconstructionofaparsetreecanbemadeprecisebytakingaderivationalview,inwhich

productions are treated as rewriting rules. Beginning with the start symbol, each rewriting step

replacesa Nonterminal bythe bodyofone ofitsproductions. Thisderivationalview corresponds to

the top-down construction of a parse tree as well as the bottom construction of theparse tree.

DerivationsareclassifiedintoLetmostDerivationandRightMostDerivations.

LeftMostDerivation(LMD):

Itistheprocessofconstructing theparsetreeoracceptingthegiveninput string,inwhich at

everytime we need to rewrite the production rule it is done with left most nonterminalonly.

Ex:-IftheGrammarisE->E+E| E*E|-E|(E)|id andtheinputstringisid +id* id

The productionE->- Esignifies that ifE denotesanexpression, then – E must also denote an

expression. The replacement of a single E by - E will be described bywriting

E=>-Ewhichisread as“Ederives_E”

Forageneraldefinitionofderivation,consideranonterminalAinthemiddleofasequence

ofgrammar symbols, as inαAβ, where α and βarearbitrarystringsofgrammar symbol. Suppose A -

>γ is a production. Then, we write αAβ => αγβ. The symbol => means "derives in one step".

Often, we wish to say, "Derives in zero or more steps." For this purpose,we can use the symbol

,Ifwe wishto say, "Derives in oneormore steps." We cnuse the symbol .IfS

a,whereSisthe start symbolofa grammar G, wesaythat αisa sententialformofG. The

Leftmost Derivation for the given input string id + id* id is

E=>E+E

A.Y 2024-25 COMPILER DESIGN

22|Pa ge DEPARTMENT OF CSE

=>id+E

=>id+ E*E

=>id+ id*E

=>id+ id*id

NOTE:Everytimewe needto startfromtherootproductiononly,theunder lineusingat Non terminal

indicating that, it is the non terminal (left most one) we are choosing to rewrite the productions

to accept the string.

RightMostDerivation(RMD):

Itistheprocessofconstructingtheparsetreeoracceptingthegiveninput string,every time we

need to rewrite the production rule with Right most Nonterminal only.

TheRightmostderivationforthegiveninputstringid+id*idis

E=>E+ E

=>E+E *E

=>E+E*id

=>E+ id*id

=>id+ id*id

NOTE:Everytimeweneedtostart fromtherootproductiononly, theunder lineusingat Non

terminalindicating that,it isthe non terminal(Right most one) weare choosing to rewrite the

productions to accept the string.

WhatisaParseTree?

Aparsetreeisagraphicalrepresentationofaderivationthat filtersouttheorderinwhich

productions are applied to replace non terminals.

Eachinteriornodeofa parsetreerepresentstheapplicationofaproduction.

Alltheinteriornodesare Nonterminalsand alltheleafnodesterminals.

Alltheleafnodesreadingfromtheleftto rightwillbetheoutputoftheparsetree.

If anodenislabeledXand haschildrenn1,n2,n3,…nkwithlabelsX1,X2,…Xk

respectively, then there must be a production A->X1X2…Xk in the grammar.

Example1:-Parsetreefortheinputstring- (id+id) usingtheaboveContextfreeGrammaris

A.Y 2024-25 COMPILER DESIGN

23|Pa ge DEPARTMENT OF CSE

Figure2.4:ParseTreefortheinputstring-(id+id)

TheFollowingfigureshowsstepbystepconstructionofparsetreeusingCFG fortheparsetree for the

input string - (id + id).

Figure2.5:SequenceoutputsoftheParseTreeconstructionprocessfortheinputstring–(id+id)

Example2:-Parsetreefortheinputstringid+id*idusingtheaboveContextfreeGrammaris

Figure2.6:Parsetreeforthe inputstringid+id*id

A.Y 2024-25 COMPILER DESIGN

24|Pa ge DEPARTMENT OF CSE

AMBIGUITYinCFGs:
Definition:Agrammarthat producesmorethanoneparsetreeforsomesentence(input string) is said

to be ambiguous.

Inotherwords,anambiguousgrammar isonethatproducesmorethanone leftmost

derivation or more than one rightmost derivation for the same sentence.

Or If the right hand production of the grammar is having two non terminals which are

exactlysameasleft handsideproductionNonterminalthenit issaidtoanambiguousgrammar.

Example : Ifthe Grammaris E-> E+E | E*E | -E|(E) | id and the Input String is id + id* id

Twoparsetreesforgiveninputstring are

(a)

TwoLeftmostDerivationsforgiveninputStringare:

E=>E+E E=>E*E

(b)

=>id+E =>E+E*E

=>id+ E*E =>id+ E *E

=>id+id*E =>id+ id*E

=>id+id*id =>id+ id*id

(a) (b)

TheaboveGrammar isgivingtwo parsetreesortwo derivations forthegiven input string so, it is an

ambiguous Grammar

Note: LL (1) parser will not accept the ambiguous grammars or We cannot construct an
LL(1) parser for the ambiguous grammars. Because such grammars may cause the Top
Down parser to go into infinite loop or make it consume more time for parsing. If necessary
we must remove all types of ambiguity from it and then construct.

ELIMINATING AMBIGUITY: SinceAmbiguous grammars may cause the top down Parser go

into infinite loop, consume more time during parsing.

Therefore, sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity. The

general form of ambiguous productions that cause ambiguity in grammars is

A.Y 2024-25 COMPILER DESIGN

25|Pa ge DEPARTMENT OF CSE

βAꞌ

Aꞌ αAꞌ|ε

Thiscanbewrittenas(introduceonenewnonterminalinthe place ofsecondnonterminal)

Example:Letthegrammar is E E+E|E*E|-E|(E) |id.It isshownthatit isambiguousthat can be

written as
E E+E

E E-E

E E*E
E -E
E (E)
E id

Intheabovegrammar the1stand 2ndproductionsarehaving ambiguity. So,theycanbewritten as

E->E+E| E*Ethisproductionagaincanbe writtenas

E->E+E|β,whereβisE*E

Theaboveproductionissameasthegeneralform. so,thatcanbewrittenas E-

>E+T|T

T->β

ThevalueofβisE*Eso,abovegrammarcanbewrittenas

1) E->E+T|T
2) T-> E*E ThefirstproductionisfreefromambiguityandsubstituteE->Tin the

2nd production then it can be written as

T->T*T|-E|(E)|idthisproductionagaincanbewrittenas

T->T*T|βwhereβis-E|(E)|id, introducenewnonterminalintheRight handside

production then it becomes

T->T*F|F

F->-E|(E)|id nowtheentiregrammarturnedintoitequivalentunambiguous,

TheUnambiguousgrammarequivalenttothe givenambiguousoneis

1) E E +T |T

2) T T *F|F

3) F -E |(E)|id

LEFTRECURSION:
Another feature of the CFGs which is not desirable to be used in top down parsers is left

recursion. A grammar is left recursive if it has a non terminal A such that there is a derivation

A=>Aα for some string α in (TUV)*. LL(1) or Top Down Parsers can not handle the Left

Recursive grammars, so we need to remove the left recursion from the grammars before being

used in Top Down Parsing.

A Aα|β

A.Y 2024-25 COMPILER DESIGN

26|Pa ge DEPARTMENT OF CSE

A Aα|β

A βAꞌ

Aꞌ αAꞌ|€

A αA1|αA2|αA3|

αA4 |… | αAn

αA′

A′ A1|A2|A3|A4…|An

TheGeneralformofLeftRecursionis

Theaboveleftrecursiveproductioncanbewrittenasthenonleftrecursiveequivalent:

Example:-Isthe followinggrammar left recursive?Ifso,findanonleft recursivegrammar
equivalent to it.

E E +T |T

T T * F | F

F -E | (E) | id

Yes,thegrammarisleftrecursiveduetothefirsttwoproductionswhicharesatisfyingthe

generalformofLeftrecursion,sotheycanberewrittenafterremovingleftrecursionfrom

E→E+T,andT→T*F is

E TE′

E′ +TE′ |€

T F T′

T′ *FT′|€

F (E) | id

LEFTFACTORING:

Left factoring is a grammar transformation that is useful for producing a grammar suitable for

predictiveortop-downparsing.Agrammarinwhichmorethanoneproductionhascommonprefix is to

be rewritten by factoring out the prefixes.

Forexample,inthefollowinggrammartherearenAproductionshavethecommonprefixα,
whichshouldberemovedorfactoredoutwithoutchangingthelanguagedefinedfor A.

Wecanfactorouttheαfromallnproductionsbyaddinga newAproductionA αA′

,andrewritingtheA′productionsgrammar as

FIRSTandFOLLOW:

A.Y 2024-25 COMPILER DESIGN

27|Pa ge DEPARTMENT OF CSE

Theconstructionofbothtop-downandbottom-upparsersisaidedbytwofunctions,FIRST and

FOLLOW, associated with a grammar G. During top down parsing, FIRST and FOLLOW allow

us to choose which production to apply, based on the next input (look a head) symbol.

ComputationofFIRST:
FIRSTfunctioncomputesthesetofterminalsymbolswithwhichtheright handsideofthe

productions begin. To compute FIRST (A) for all grammar symbols, applythe following rules

until no more terminals or € can be added to any FIRST set.

1. IfAisaterminal,thenFIRST{A}={A}.

2. IfAisaNonterminalandA->X1X2…Xi

FIRST(A)=FIRST(X1) if X1is not null, if X1 is a non terminal and X1->€, add

FIRST(X2)to FIRST(A), ifX2->€add FIRST(X3)to FIRST(A), …ifXi->€,

i.e.,allXi‘sfori=1..iarenull,add€FIRST(A).

3. IfA->€isaproduction,thenadd€toFIRST(A).

ComputationOfFOLLOW:
Follow(A) isnothing butthesetofterminalsymbolsofthegrammar thatareimmediately

following the Nonterminal A. Ifa is to the immediate right ofnon terminal A, then Follow(A)=

{a}.TocomputeFOLLOW(A) for allnonterminals A,applythe followingrulesuntilnomore

symbols can be added to any FOLLOW set.

1. Place$inFOLLOW(S),whereS isthestartsymbol,and$istheinput right end

marker.

2. IfthereisaproductionA->αBβ,theneverything inFIRST(β)except €isin

FOLLOW(B).

3. IfthereisaproductionA->αBoraproductionA->αBβwithFIRST(β) contains€, then

FOLLOW (B) = FOLLOW (A).

Example:-ComputetheFIRSTandFOLLOWvaluesoftheexpressiongrammar

1. E TE′

2. E′ +TE′|€

3. T FT′

4. T′ *FT′|€

5. F (E)|id

ComputingFIRSTValues:

FIRST(E)=FIRST(T)=FIRST(F)={(,id}

FIRST(E′)={+,€}

FIRST(T′)={*,€}

A.Y 2024-25 COMPILER DESIGN

28|Pa ge DEPARTMENT OF CSE

ComputingFOLLOWValues:
FOLLOW (E) = { $,), } Becauseitisthestartsymbolofthegrammar.

FOLLOW (E′) = {FOLLOW (E)} satisfying the 3rd rule of FOLLOW()

= { $,)}

FOLLOW(T)={FIRSTE′} ItisSatisfyingthe2ndrule.

U{FOLLOW(E′)}

= {+,FOLLOW(E′)}

= { +,$,)}

FOLLOW(T′)={FOLLOW(T)} Satisfyingthe3rdRule

= {+, $,)}

FOLLOW(F)={FIRST(T′)} ItisSatisfyingthe2ndrule.

U{FOLLOW(E′)}

={*,FOLLOW(T)}

={*,+,$,)}

NONTERMINAL FIRST FOLLOW

E {(,id} {$,)}

E′ {+,€} {$,)}

T {(,id} { +,$,)}

T′ {*,€} { +,$,)}

F { (,id} {*,+,$,)}

Table2.1:FIRSTandFOLLOWvalues

A top-down parser builds the parse tree from the top down, starting with the start non-
terminal. There are two types of Top-Down Parsers:

1. Top-Down Parser with Backtracking
2. Top-Down Parsers without Backtracking

Top-Down Parsers without backtracking can further be divided into two parts:

A.Y 2024-25 COMPILER DESIGN

29|Pa ge DEPARTMENT OF CSE

ConstructingPredictiveOrLL(1)ParseTable:
Itistheprocessofplacing theallproductionsofthegrammar intheparsetablebased onthe FIRST

and FOLLOW values of the Productions.

TherulestobefollowedtoConstructtheParsingTable(M)are:

1. ForEachproductionA->αofthegrammar,dothebellowsteps.

2. Foreachterminalsymbol‗a‘inFIRST(α),addtheproductionA->αtoM[A,a].

3. i.If€ isinFIRST(α) addproductionA->αtoM[A,b],wherebisallterminalsin

FOLLOW (A).

ii.If€ is inFIRST(α) and$is inFOLLOW(A)thenaddproductionA->αto M [A,

$].

4. Markotherentriesintheparsingtableaserror.

NON-TERMINALS

INPUTSYMBOLS

+ * () id $

E
 E TE′ E id

E′
E′ +TE′ E′ € E′ €

T
 T FT′ T FT′

T′
T′ € T′ *FT′ T′ € T′ €

F
 F (E) F id

Table2.2:LL(1)ParsingTablefortheExpressionsGrammar

Note:ifthereareno multipleentriesinthetable for singleaterminalthengrammar isaccepted by

LL(1) Parser.

LL(1)ParsingAlgorithm:

The parseractsonbasis onthebasisoftwosymbols

i. A,thesymbolonthetopofthestack

ii. a,thecurrentinputsymbol

TherearethreeconditionsforAand‗a‘,thatareusedfrotheparsing program.

1. IfA=a=$thenparsingisSuccessful.

2. IfA=a≠$thenparserpopsoffthestackandadvancesthecurrent input pointertothe next.

3. If A is a Nonterminalthe parser consults the entryM [A, a] inthe parsing table. If

A.Y 2024-25 COMPILER DESIGN

30|Pa ge DEPARTMENT OF CSE

M[A,a] isaProductionA->X1X2..Xn,thenthe programreplacestheAonthetopof the

Stack byX1X2..Xnin such a way that X1comes on thetop.

STRINGACCEPTANCEBYPARSER:

Iftheinput string fortheparser isid+id*id,thebelowtableshowshowtheparser accept the

string with the help of Stack.

Stack Input Action Comments

$E id+id*id$ E TE` EontopofthestackisreplacedbyTE`

$E`T id+id*id$ T FT` Tontopofthestackis replacedbyFT`

$E`T`F id+id*id$ F id Fontopofthestackis replacedbyid

$E`T`id id+id*id$ popandremoveid Condition2issatisfied

$E`T` +id*id$ T` € T`ontopofthestackis replacedby€

$E` +id*id$ E` +TE` E`ontopofthestackis replacedby+TE`

$E`T+ +id*id$ Popandremove+ Condition2issatisfied

$E`T id*id$ T FT` Tontopofthestackis replacedbyFT`

$E`T`F id*id$ F id Fontopofthestackis replacedbyid

$E`T`id id*id$ popandremoveid Condition2issatisfied

A.Y 2024-25 COMPILER DESIGN

31|Pa ge DEPARTMENT OF CSE

$E`T` *id$ T` *FT` T`ontopofthestackis replacedby*FT`

$E`T`F* *id$ popandremove* Condition2issatisfied

$E`T`F id$ F id Fontopofthestackis replacedbyid

$E`T`id id$ Popandremoveid Condition2issatisfied

$E`T` $ T` € T`ontopofthestackis replacedby€

$E` $ E` € E`ontopofthestackis replacedby€

$ $ Parsingissuccessful Condition1satisfied

Table2.3:Sequenceofstepstakenbyparserinparsingtheinputtokenstreamid+id*id

Figure2.7:Parsetreefortheinputid+id*id

ERRORHANDLING(RECOVERY)INPREDICTIVEPARSING:

Intabledrivenpredictiveparsing, it isclear astowhichterminaland Nonterminalsthe parser

expects fromthe rest of input. An error can be detected in the following situations:

1. Whentheterminalontopofthe stackdoesnotmatchthe currentinputsymbol.

2. whenNonterminalA isontopofthe stack,aisthe current inputsymbol, and M[A, a] is

empty or error

Theparser recoversfromtheerror andcontinues itsprocess. Thefollowingerrorrecovery

schemes are use in predictive parsing:

PanicmodeErrorRecovery:
It is based on the idea that when an error is detected, the parser will skips the

remaininginput untilasynchronizingtokenisencounteredinthe input.Someexamplesare listed

below:

1. For a Non Terminal A, place all symbols in FOLLOW (A) are adde into the

synchronizingsetofnonterminalA. ForExample, consider theassignmentstatement

―c=;‖ Here, the expression on the right hand side is missing. So the Follow of this is

considered. It is ―;‖ and is taken as synchronizing token. On encountering it, parser

emits an error message ―Missing Expression‖.

2. ForaNonTerminalA,placeallsymbolsinFIRST(A)areaddeintothesynchronizing set

ofnon terminal A. For Example, consider the assignmentstatement
―22c=a+ b;‖Here,FIRST(expr) is22.It is ―;‖ and istakenas synchronizingtoken and

then the reports the error as ―extraneous token‖.

A.Y 2024-25 COMPILER DESIGN

32|Pa ge DEPARTMENT OF CSE

PhraseLevelRecovery:

Itcanbeimplementedinthepredictiveparsingbyfillinguptheblankentries inthe
predictiveparsingtablewithpointerstoerrorHandlingroutines.Theseroutinescan insert,

modify or delete symbols in the input.

RECURSIVEDESCENTPARSING:

A recursive-descent parsing program consists of a set of recursive procedures, one for each non

terminal. Each procedure is responsible for parsing the constructs defined by its non terminal,

Executionbeginswiththeprocedureforthestartsymbol, whichhaltsandannouncessuccess if its

procedure body scans the entire input string.

Ifthegivengrammaris

E TE′

E′ +TE′|€

T FT′

T′ *FT′|€

F (E)|id

Reccursiveproceduresfortherecursivedescentparserforthegivengrammararegivenbelow.

procedureE()

{

T();

E′();

}

procedureT()

{

F();

T′();

}

ProcedureE′()

{

ifinput=‗+‘

{
advance();

T ();

E′();

returntrue;

}

elseerror;

}

procedureT′()

{

ifinput=‗*‘

{

advance();

F ();

A.Y 2024-25 COMPILER DESIGN

33|Pa ge DEPARTMENT OF CSE

T′();

returntrue;

}

elsereturnerror;

}

procedureF()

{

ifinput=‗(‗

{

advance();

E ();

ifinput=‗)‘

advance();

return true;

}

elseifinput=―id‖

{

advance();

returntrue;

}

elsereturnerror;

}

advance()

{

input=next token;

}

BACK TRACKING: This parsing method uses the technique called Brute Force method
during the parsetree construction process. This allowsthe processto go back (back track)and
redo the steps byundoing the work done so far in the point of processing.

Bruteforcemethod:It isaTopdownParsing technique,occurswhenthereismore than
one alternative in the productions to be tried while parsing the input string. It selects
alternativesintheordertheyappearandwhenit realizesthat somethinggonewrongittrieswith next
alternative.

Forexample,considerthegrammarbellow.

S cAd

A ab|a

To generatethe input string ―cad‖, initiallythe first parse tree given below is generated.

Asthestringgeneratedisnot―cad‖,inputpointerisbacktrackedtoposition―A‖,toexaminethe

nextalternate of ―A‖. Now a match to the input string occurs as shown in the 2nd parse trees

given below.

A.Y 2024-25 COMPILER DESIGN

34|Pa ge DEPARTMENT OF CSE

(1) (2)

IMPORTANTANDEXPECTEDQUESTIONS

1. ExplainthecomponentsofworkingofaPredictiveParserwithanexample?

2. WhatdotheFIRSTandFOLLOWvaluesrepresent?Givethealgorithmforcomputing

FIRST n FOLLOW of grammar symbols with an example?

3. ConstructtheLL(1)Parsingtableforthefollowinggrammar? E

E+T|T

T T*F

F (E)|id

4. Fortheabovegrammarconstruct,andexplaintheRecursiveDescentParser?

5. WhathappensifmultipleentriesoccurringinyourLL(1)Parsingtable?Justifyyour

answer? How does the Parser

ASSIGNMENTQUESTIONS

1. EliminatetheLeftrecursionfromthebelow grammar?

A->Aab|AcB|b

B->Ba|d

2. Explaintheprocedureto removetheambiguityfromthegivengrammar with yourown

example?

3. Writethegrammarfortheif-elsestatement intheCprogrammingandcheckfortheleft

factoring?

4. WillthePredictiveparseraccepttheambiguousGrammarjustifyyouranswer?

5. IsthegrammarG={S->L=R,S->R,R->L,L->*R|id}anLL(1)grammar?

6. Construct an LR parsing table for the given context-free grammar –

 S–>AA

 A–>aA|b

A.Y 2024-25 COMPILER DESIGN

35|Pa ge DEPARTMENT OF CSE

BOTTOM-UPPARSING

Bottom-up parsing corresponds to the construction of a parse tree for an input string

beginning at the leaves (the bottom nodes) and working up towards the root (the top node). It

involves ―reducing an input string ‗w‘ to the Start Symbol of the grammar. in each reduction

step, aperticular substring matching the right side ofthe production is replaced by symbolonthe

left of that production and it is the Right most derivation. For example consider the following

Grammar:

E E+T|T

T T*F

F (E)|id

Bottomupparsing oftheinputstring“id *id“isas follows:

INPUTSTRING SUB STRING REDUCINGPRODUCTION

id*id Id F->id

F*id T F->T

T*id Id F->id

T*F * T->T*F

T T*F E->T

E
 Startsymbol.Hence,theinput String

is accepted

ParseTreerepresentationisasfollows:

Figure3.1:ABottom-upParsetreeforthe inputString“id*id”

A.Y 2024-25 COMPILER DESIGN

36|Pa ge DEPARTMENT OF CSE

Bottomupparsing isclassified into 1.Shift-ReduceParsing, 2. OperatorPrecedenceparsing , and

3. [Table Driven] L R Parsing

i. SLR(1)

ii. CALR(1)

iii. LALR(1)

SHIFT-REDUCEPARSING:

Shift-reduce parsing is a form of bottom-up parsing in which a stack holds grammar

symbolsandaninput bufferholdstherestofthestringto beparsed,Weuse$to markthebottom

ofthestackandalsotheright endofthe input. And it makesuseoftheprocessofshift andreduce

actionstoaccepttheinput string. Here,theparsetreeisConstructedbottomupfromthe leafnodes

towards the root node.

Whenweareparsingthegiveninput string, ifthe matchoccurstheparsertakesthe reduce

actionotherwise it willgo for shift action. And it can accept ambiguous grammarsalso.

Forexample,considerthebelowgrammartoacceptthe inputstring―id*id―,usingS-Rparser

E E+T|T

T T*F|F

F (E)|id

ActionsoftheShift-reduceparserusing Stackimplementation

STACK INPUT ACTION

$ Id*id$ Shift

$id *id$ ReducewithF d

$F *id$ ReducewithT F

$T *id$ Shift

$T* id$ Shift

$T*id $ ReducewithF id

$T*F $ ReducewithT T*F

$T $ ReducewithE T

$E $ Accept

A.Y 2024-25 COMPILER DESIGN

37|Pa ge DEPARTMENT OF CSE

Considerthefollowinggrammar:

S aAcBe

A Ab|b

B d

Lettheinputstringis―abbcde‖.Theseriesofshiftandreductionstothestartsymbolareas follows.

abbcde aAbcde aAcde aAcBe S

Note:intheaboveexampletherearetwoactionspossible inthesecondStep,theseareas follows :

1. Shiftactiongoingto3rdStep

2. Reduceaction,thatisA->b

Iftheparser istakingthe1stactionthenit cansuccessfullyacceptsthegiveninput string,

ifitisgoing for second actionthen it can‘t accept given input string. This iscalled shift reduce

conflict. Where, S-Rparser is notabletakeproperdecision, so it notrecommended for parsing.

OPERATOR PRECEDENCE PARSING:

Operatorprecedencegrammar iskindsofshift reduceparsing methodthatcanbeappliedtoa small

class ofoperator grammars. And it can process ambiguous grammars also.

Anoperatorgrammarhastwo importantcharacteristics:

1. Thereareno€productions.

2. Noproductionwouldhavetwoadjacentnonterminals.

Theoperatorgrammartoacceptexpressionsisgivebelow:

E E+E/E E-E /E E*E/E E/E/E E^E/E -E/E (E)/E

id

TwomainChallengesintheoperatorprecedenceparsingare:

1. IdentificationofCorrecthandlesinthereductionstep,suchthatthegiveninput shouldbe

reduced to starting symbol of the grammar.

2. Identificationofwhichproductionto useforreducing inthereductionsteps, suchthat we

should correctlyreduce the given input to the starting symbol of the grammar.

Operatorprecedenceparserconsistsof:

1. Aninputbufferthatcontainsstringto beparsedfollowed bya$,asymbolusedto
indicate the ending of input.

2. Astackcontaininga sequenceofgrammarsymbols witha $atthebottomofthestack.

3. Anoperator precedence relation table O, containing the precedence ralations between the

pair ofterminal. There are three kinds of precedence relations will exist between the pair
of terminal pair ‗a‘ and ‗b‘ as follows:

4. Therelationa<•bimpliesthatheterminal‗a‘haslowerprecedencethanterminal‗b‘.

5. Therelationa•>bimpliesthatheterminal‗a‘hashigherprecedencethanterminal‗b‘.

6. Therelationa=•bimpliesthatheterminal‗a‘haslowerprecedencethanterminal‗b‘.

A.Y 2024-25 COMPILER DESIGN

38|Pa ge DEPARTMENT OF CSE

Operatorprecedence

ParsingAlgorithm

OperatorPrecedence Table

$

a1a2 a3 ……….. $

7. An operator precedence parsing program takes an input string and determines whether it

conforms to the grammar specifications. It uses an operator precedence parse table and

stack to arrive at the decision.

InputBuffer

Output

Stack

Figure3.2:Componentsofoperatorprecedenceparser

Example,Ifthegrammaris

E E+E

E E-E

E E*E

E E/E

E E^E

E -E

E (E)

E id,Constructoperatorprecedencetableandacceptinputstring“id+id*id”

Theprecedencerelationsbetweentheoperatorsare

(id)>(^)>(*/)>(+-)>$,„^‟operatorisRight Associativeand reaming alloperators are Left

Associative

 + - * / ^ id () $

+ •> •> <• <• <• <• <• •> •>

- •> •> <• <• <• <• <• •> •>

* •> •> •> •> <• <• <• •> •>

/ •> •> •> •> <• <• <• •> •>

^ •> •> •> •> <• <• <• •> •>

Id •> •> •> •> •> Err Err •> •>

(<• <• <• <• <• <• <• = Err

) •> •> •> •> •> Err Err •> •>

$ <• <• <• <• <• <• <• Err Err

A.Y 2024-25 COMPILER DESIGN

39|Pa ge DEPARTMENT OF CSE

Theintentionoftheprecedencerelationsistodelimit thehandleofthegiveninput Stringwith<• marking

the left end ofthe Handle and •> marking the right end ofthe handle.

ParsingAction:
Tolocatethehandlefollowingstepsarefollowed:

1. Add$ symbolat the bothendsofthegiveninputstring.

2. Scantheinputstringfromlefttorightuntiltherightmost•>isencountered.

3. Scantowardsleftoveralltheequalprecedence‘suntilthe first <•precedenceis

encountered.

4. Everything between<•and•>isahandle.

5. $onSmeansparsingissuccess.

Example,Explaintheparsing ActionsoftheOPParserforthe input string is“id*id”andthe

grammar is:

E E+E

E E*E

E id

1. $<•id•>*<•id•>$

The first handle is ‗id‘ and match for the ‗id ‗in the grammar is E id.

So, id is replaced with the Non terminalE. the given input string can be

written as

2. $<•E•>*<•id•>$

Theparserwillnot considertheNonterminalasaninput. So,theyarenot

considered in the input string. So , the string becomes

3. $<•*<•id•>$

Thenexthandleis‗id‘andmatchforthe‗id‗inthegrammarisE id. So, id is

replaced with the NonterminalE. the given input string can be written as

4. $<•*<•E•>$

Theparserwillnot considertheNonterminalasaninput. So,theyarenot

considered in the input string. So, the string becomes

5. $<•*•>$

6. $E $

The next handle is ‗*‘ and match for the ‗ ‗in the grammar is E E*E.

So, id is replaced with the Non terminal E. the given input string can be

written as

Theparserwillnot considertheNonterminalasaninput. So,theyarenot considered in

the input string. So, the string becomes

A.Y 2024-25 COMPILER DESIGN

40|Pa ge DEPARTMENT OF CSE

E *

7. $$

Onmeansparsing successful.

OperatorParsingAlgorithm:

TheoperatorprecedenceParser parsingprogramdeterminestheactionoftheparser depending on

1. ‗a‘istopmostsymbolonthe Stack

2. ‗b‘isthecurrentinputsymbol

Thereare3conditionsfor ‗a‘and‗b‘thatareimportant fortheparsingprogram

1. a=b=$,theparsingissuccessful

2. a<•bor a=b,theparser shiftsthe input symbolontothestackand advancesthe input

pointer to the next input symbol.

3. a •>b, parser performs the reduce action. The parser popsout elementsone by

one fromthe stackuntilwe find the current topofthe stack element has lower

precedence than the most recently popped out terminal.

Example,thesequenceofactionstakenbytheparserusingthestackfortheinputstring―id*id

—andcorrespondingParseTreeareasunder.

STACK INPUT OPERATIONS

$ id*id$ $<•id,shift‗id‘ intostack

$id *id$ id•>*,reduce‗id‘using E->id

$E *id$ $<•*,shift‗*‘ intostack

$E* id$ *<•id,shift‗id‘intoStack

$E*id $ id•>$,reduce‗id‘using E->id

$E*E $ *•>$,reduce‗*‘usingE->E*E

$E $ $=$=$,soparsingissuccessful

E

E

id id

AdvantagesandDisadvantagesofOperatorPrecedenceParsing:
Thefollowing aretheadvantagesofoperatorprecedenceparsing

1. Itissimpleandeasytoimplementparsingtechnique.

2. Theoperatorprecedenceparsercanbeconstructedbyhandafterunderstandingthe

grammar. It is simple to debug.

Thefollowingarethedisadvantagesofoperatorprecedenceparsing:

1. Itisdifficulttohandletheoperatorlike‗-‗whichcanbeeitherunaryorbinaryandhence

different precedence‘s and associativities.

2. Itcanparseonlyasmallclass ofgrammar.

A.Y 2024-25 COMPILER DESIGN

41|Pa ge DEPARTMENT OF CSE

Shift GOTO

LRParsingTable

3. Newadditionordeletionoftherulesrequirestheparsertoberewritten.

4. Toomanyerrorentriesintheparsingtables.

LRParsing:

Most prevalent type of bottom up parsing is LR (k) parsing. Where, L is left to right scan of the
giveninput string,RisRight Mostderivationinreverseand Kisno ofinputsymbolsastheLook ahead.

Itisthemostgeneralnonbacktrackingshiftreduceparsingmethod

Theclassofgrammarsthat canbeparsed usingtheLRmethodsisapropersupersetof the class
of grammars that can be parsed with predictive parsers.

AnLRparser candetect asyntacticerrorassoonas it ispossibletodo so,onaleft to right scan

of the input.

a1 a2 a3 ………. $

LRPARSINGALGORTHM

InputBuffer

OUTPUT

Stack

Figure3.3:ComponentsofLRParsing

LRParserConsistsof

Aninput bufferthat containsthestringtobeparsedfollowed bya$Symbol,usedto indicate

end of input.

Astackcontaining asequenceofgrammar symbolswitha$atthebottomofthestack, which

initially contains the Initial state of the parsing table on top of$.

Aparsingtable(M), it isatwodimensionalarrayM[state,terminalorNonterminal]and it

contains two parts

$

A.Y 2024-25 COMPILER DESIGN

42|Pa ge DEPARTMENT OF CSE

1. ACTIONPart

The ACTION part ofthe table is a two dimensionalarrayindexed bystateand the

input symbol, i.e. ACTION[state][input], An action table entry can have one of

following four kinds of values in it. They are:

1. ShiftX,whereXisaStatenumber.

2. ReduceX,whereXisaProductionnumber.

3. Accept,signifyingthecompletionofasuccessfulparse.

4. Errorentry.

2. GOTOPart

TheGOTOpartofthetable isatwodimensionalarrayindexed bystateandaNon

terminal, i.e. GOTO[state][NonTerminal]. A GO TO entry has astate number in

the table.

 A parsing Algorithmuses the current State X, the next input symbol‗a‘ to consult the

entryat action[X][a]. it makes one ofthe four following actions as given below:

1. If the action[X][a]=shift Y, the parser executes a shift of Y on to the top of the stack

and advances the input pointer.

2. Ifthe action[X][a]= reduce Y (Y is the production number reduced in the State X), if

the production is Y->β, then the parser pops 2*β symbols from the stack and push Y

on to the Stack.

3. If the action[X][a]= accept, then the parsing is successful and the input string is

accepted.

4. If the action[X][a]= error, then the parser has discovered an error and calls the error

routine.

Theparsingisclassified into

1. LR(0)

2. SimpleLR(1)

3. CanonicalLR(1)

4. Lookahead LR(1)

LR(1)Parsing:VariousstepsinvolvedintheLR(1)Parsing:

1. WritetheContextfreeGrammarforthegiveninputstring
2. CheckfortheAmbiguity

3. AddAugmentproduction

4. Create CanonicalcollectionofLR(0)items

5. DrawDFA

6. ConstructtheLR(0)Parsingtable

7. BasedontheinformationfromtheTable,withhelpofStackandParsingalgorithm

generate the output.

AugmentGrammar

A.Y 2024-25 COMPILER DESIGN

43|Pa ge DEPARTMENT OF CSE

The Augment Grammar G`, is G with a new starting symbol S` an additional production

S`S.thishelpstheparserto identifywhentostoptheparsing andannouncetheacceptanceofthe

input.Theinput string isaccepted ifandonlyifthe parser isabouttoreducebyS`S.Forexample let us

consider the Grammar below:

theAugmentgrammarG`isRepresented by

NOTE:Augment Grammar issimplyaddingoneextraproductionbypreservingtheactual

meaning of the given Grammar G.

CanonicalcollectionofLR(0)items

LR(0) items

AnLR (0) itemofa Grammar is a production G with dot at some position on the right

sideoftheproduction. Anitemindicateshow muchofthe input has beenscanneduptoagiven point in

the process ofparsing. For example, ifthe Production is X YZ then, The LR (0) items are:

1. X •AB,indicatesthattheparser expectsastring derivablefromAB.

2. X A•B, indicatesthattheparserhasscannedthestringderivablefromtheAand

expecting the string from Y.

3. X AB•, indicatesthatheparserhasscannedthestringderivablefromAB. If the

grammar is X € the, the LR (0) item is

X •, indicating thattheproduction isreducedone.

CanonicalcollectionofLR(0)Items:

ThisistheprocessofgroupingtheLR(0)itemstogether basedontheclosureandGoto operations

Closureoperation

IfIisaninitialState,thentheClosure (I)isconstructedasfollows:

1. Initially,addAugment Productiontothestateandcheck forthe•symbolintheRight hand

side production, if the • is followed by a Non terminal then Add Productions which

are Stating with that Non Terminal in the State I.

2. If a production X α•Aβ is in I, then add Production which are starting with X in the

StateI.Rule2 isapplieduntilno moreproductionsaddedtotheStateI(meaningthat

 the•isfollowedbyaTerminalsymbol).

E

T

E+T|T

T*F

F (E)|id

E` E

E E+T|T

T T*F

F (E)|id

A.Y 2024-25 COMPILER DESIGN

44|Pa ge DEPARTMENT OF CSE

Example:

0.E` E E` • E

1. E E+T LR(0)itemsfortheGrammaris E • E+T

2. T F T •F

3. T T*F T • T*F

4. F (E) F • (E)

5.

Closure (I0)State

F id F • id

AddE` •EinI0State

Since,the‗•‘symbolintheRight handsideproductionisfollowed byANon

terminal E. So, add productions starting with E in to Io state. So, the state

becomes

E ̀ •E

0. E •E+T

1. T •F

The1stand2ndproductionsaresatisfiesthe2ndrule.So,addproductions which

are starting with E and T in I0

Note:onceproductionsareadded inthestatethesameproductionshould not

added for the 2nd time in the same state. So, the state becomes

0.E` •E

1. E • E+T

2.T •F

3.T • T*F

4.F • (E)
5.F • id

GO TOOperation

Go to (I0, X), where I0 is set of items and X is the grammar Symbolonwhichwe

aremovingthe„•‟ symbol. It islike findingthe next stateoftheNFAfor agiveStateI0andthe input

symbol is X. For example, if the production is E•E+T

Goto (I0,E)isE` •E,E E•+T

Note:OncewecompletetheGotooperation,weneedtocomputeclosureoperationforthe output

production

A.Y 2024-25 COMPILER DESIGN

ngineering&Technology/Hyderabad/In

erstate(I)onaNonterminal val

Goto(I0, E)isE E•+T,E` E.=Closure({E` E•,E E•+T})

E`->.E E`->E.

E->.E+T
E E->E.+T

T->.T*F

ConstructionofLR(0)parsingTable:

Oncewe haveCreatedthecanonicalcollectionofLR(0)items,needtofollowthesteps

mentioned below:

Ifthereisatransactionfromonestate(Ii)to another state(Ij)onaterminalvaluethen, we

should write the shift entry in the action part as shown below:

a

A->α•aβ A->αa•β

Ii Ij

Ifthereisa transactionfromone state(Ii)toanoth j ue
then, weshouldwritethesubscript valueofIiintheGOTOpart asshownbelow:part asshown below:

A

A->α•Aβ A->αA•β

Ii Ij

Ifthere is one state (Ii), where there is one production which has no transitions. Then, the

productionissaidtobeareducedproduction. Theseproductionsshouldhavereducedentryinthe

Actionpartalongwiththeirproductionnumbers.IftheAugmentproductionisreducingthen,write

accept in the Action part.

1 A->αβ•

States ACTION

a $

GOTO

A

Ii r1 r1

DEPARTMENTOFCSE 44|Pa ge

States ACTION GOTO

 a $ A

Ii Sj

Ij

States ACTION GOTO

a $ A

Ii

j

Ij

A.Y 2024-25 COMPILER DESIGN

45|Pa ge DEPARTMENT OF CSE

Ii

Ii

ForExample,ConstructtheLR(0)parsing TableforthegivenGrammar(G)

S aB

B bB|b

Sol:1.AddAugmentProductionandinsert„•‟symbolatthefirstpositionforevery

production in G

I0State:

0. S′ •S

1. S •aB

2. B •bB

3. B •b

1. AddAugmentproductiontotheI0StateandComputethe Closure

I0=Closure(S′ •S)

Since‗•‘isfollowed bytheNonterminal,addallproductionsstartingwithSintoI0State.So, the I0State

becomes

I0= S′ •S
S •aBHere,intheSproduction‗.‘Symbolisfollowedbyaterminalvalueso close the state.

I1=Go to(I0,S)

S` S•

Closure(S` S•)=S′ S• Here,TheProductionisreducedsoclosetheState.

I1=S′ S•

I2=Goto(I0,a)=closure(S a•B)

Here,the‗•‘symbolis followed byTheNonterminalB. So,addtheproductionswhichare Starting

B.

I2= B •bB

B •bHere,the‗•‘symbolintheBproductionis followedbytheterminalvalue. So, Close the

State.

I2= S a•B

B •bB

A.Y 2024-25 COMPILER DESIGN

46|Pa ge DEPARTMENT OF CSE

B •b

I3= Go to (I2,B) = Closure(S aB•)= S aB•

I4= Go to (I2, b) =closure ({B b•B, B b•})

AddproductionsstartingwithBinI4.

 B • bB

 B •b TheDotSymbolis followedbytheterminalvalue.So,closetheState.

I4= B

B

b•B

• bB
 B •b
 B b•

I5=Goto(I2,b)=Closure(B b•)=B b•

I6=Go to(I4,B) =Closure(B bB•)=B bB• I7 =

Go to (I4 , b) = I4

DrawingFiniteStatediagramDFA:Following DFAgivesthestatetransitionsoftheparser and is

useful in constructing the LR parsing table.

S->aB•

S′->•S

S->•aB

S′->S•

S I3

I1 B

B->b•B B

a S->a•B

I0 B->•bB

B->•b

b B->•bB

B->•b

B->b•
b

I4

B->bB•

I5

I2 I4

A.Y 2024-25 COMPILER DESIGN

47|Pa ge DEPARTMENT OF CSE

Ii:

1A->α•

2B->β•

1A->β•aα
a

2B->b•

LRParsingTable:

States
ACTION GOTO

a B $ S B

I0 S2 1

I1 ACC

I2 S4 3

I3 R1 R1 R1

I4 R3 S4/R3 R3 5

I5 R2 R2 R2

Note:iftherearemultipleentriesintheLR(1)parsingtable,thenitwillnotacceptedbytheLR(1) parser.

In the above table I3 row is giving two entries for the single terminal value ‗b‘ and it is called as

Shift- Reduce conflict.

Shift-ReduceConflictinLR(0)Parsing:Shift ReduceConflict intheLR(0)parsing

occurs when a state has

1. AReduceditemoftheformA α•and

2. AnincompleteitemoftheformA β•aαasshownbelow:

Ij

Ii

Reduce-ReduceConflictinLR(0)Parsing:

Reduce-ReduceConflict intheLR(1)parsingoccurswhenastatehastwoormore reduced

items of the form

1. A α•

2. B β•asshownbelow:

States Action GOTO

a $ A B

Ii r1/r2 r1/r2

States Action GOTO

a $ A B

Ii Sj/r2 r2

Ij

A.Y 2024-25

48|Page DEPARTMENTOFCSE

States ACTION GOTO

a $ A

Ii

j

Ij

a

A->α•aβ A->αa•β

A->α•Aβ A->αA•β

COMPILERDESIGN

SLRPARSERCONSTRUCTION:WhatisSLR(1)Parsing
VariousstepsinvolvedintheSLR(1)Parsingare:

1. WritetheContextfreeGrammarforthegiveninputstring

2. CheckfortheAmbiguity

3. AddAugment production

4. Create CanonicalcollectionofLR(0)items

5. DrawDFA

6. Construct theSLR(1)Parsing table

7. BasedontheinformationfromtheTable,withhelpofStackandParsingalgorithm

generate the output.

SLR(1)ParsingTableConstruction

Oncewe haveCreatedthecanonicalcollectionofLR(0)items,needto followthesteps

mentioned below:

Ifthereisatransactionfromonestate(Ii)to another state(Ij)onaterminalvaluethen, we

should write the shift entry in the action part as shown below:

Ii Ij

Ifthere is a transaction fromone state (Ii) to another state (Ij) on a Non terminal value

then, weshouldwritethesubscript valueofIiintheGOTOpart asshownbelow:part asshown below:

States ACTION GOTO

 a $ A

Ii Sj

Ij

A.Y 2024-25 COMPILER DESIGN

49|Page DEPARTMENT OF CSE

2 A->αβ•

Ii

Ii Ij

1Ifthere isonestate(Ii),wherethere isoneproduction(A->αβ•)which has no transitions to the next

State. Then, the production is said to be a reduced production. Forallterminals X in

FOLLOW (A), write the reduce entry along with theirproduction numbers. If the

Augment production is reducing then write accept.

1 S->•aAb

2 A->αβ•
Follow(S)={$}

Follow(A)=(b}

Ii

SLR(1)tableforthe Grammar

S aB

B bB|b

Follow(S)={$},Follow(B)={$}

States
ACTION GOTO

A b $ S B

I0 S2 1

I1 ACCEPT

I2 S4 3

I3 R1

I4 S4 R3 5

I5 R2

Note:WhenMultipleEntriesoccursintheSLRtable. Then,thegrammar isnot acceptedby SLR(1)

Parser.

ConflictsintheSLR(1)Parsing :

Whenmultipleentriesoccurinthetable.Then,thesituation issaidtobeaConflict.

States ACTION GOTO

a b $ S A

Ii

r2

A.Y 2024-25 COMPILER DESIGN

50|Page DEPARTMENT OF CSE

1A->β•aα

a
2B->b•

States Action GOTO

a $ A B

Ii r1/r2

1A->α•

2B->β•

Shift-ReduceConflictinSLR(1)Parsing:Shift ReduceConflict intheLR(1)parsingoccurs when a

state has

1. AReduceditemoftheformA α•andFollow(A)includestheterminalvalue

‗a‘.

2. AnincompleteitemoftheformA β•aαasshownbelow:

Ij

Ii

Reduce-ReduceConflictinSLR(1)Parsing

Reduce-ReduceConflict intheLR(1) parsingoccurswhenastatehastwoormore reduced

items of the form

1. A α•

2. B β•andFollow (A) ∩Follow(B)≠nullasshownbelow:

IfTheGrammaris

S->αAaBa

A->α

B->β
Follow(S)={$}

Follow(A)={a}andFollow(B)={a}

Ii

CanonicalLR(1)Parsing:Variousstepsinvolved intheCLR(1)Parsing:

1. WritetheContextfreeGrammarforthegiveninputstring

2. CheckfortheAmbiguity

3. AddAugmentproduction

States Action GOTO

a $ A B

Ii Sj/r2

A.Y 2024-25 COMPILER DESIGN

51|Page DEPARTMENT OF CSE

4. Create CanonicalcollectionofLR(1)items

5. DrawDFA

6. ConstructtheCLR(1)Parsing table

7. BasedontheinformationfromtheTable,withhelpofStackandParsing

algorithm generate the output.

LR(1)items:

TheLR(1) itemisdefined byproduction,positionofdataandaterminalsymbol.The terminal is

called as Look ahead symbol.

GeneralformofLR(1)itemis

Rulestocreatecanonicalcollection:

1. EveryelementofIisaddedtoclosureofI

2. If an LR (1) item [X-> A•BC, a] exists in I, and there exists a production B->b1b2…..,

then additem[B->• b1b2, z] where z is a terminal in FIRST(Ca),if itis not already in

Closure(I).keep applying this rule until there are no more elements adde.

Forexample,ifthegrammaris

S->CC

C->cC

C->d

TheCanonicalcollectionofLR(1)itemscanbecreatedasfollows:

0. S′->•S(AugmentProduction)

1. S->•CC

2. C->•cC

3. C->•d

I0State: AddAugmentproductionandcomputetheClosure, thelookaheadsymbolfor theAugment
Production is $.

S′->•S,$=Closure(S′->•S,$)

ThedotsymbolisfollowedbyaNonterminalS.So,addproductionsstarting withSinI0

State.

S->•CC,FIRST($),using2ndrule

S->•CC, $

S->α•Aβ, $

A->•γ,FIRST(β,$)

A.Y 2024-25 COMPILER DESIGN

52|Page DEPARTMENT OF CSE

ThedotsymbolisfollowedbyaNonterminalC.So,add productionsstartingwithCinI0

State.

C->•cC,FIRST(C,$)

C->•d, FIRST(C, $)

FIRST(C) ={c,d}so,theitemsare

C->•cC,c/d

C->•d, c/d

Thedotsymbolisfollowedbyaterminal value.So,closetheI0State.So,theproductionsinthe

I0are

S′->•S , $

S->•CC,$

C->•cC,c/d

C->•d,c/d

I1=Goto(I0,S)=S′->S•,$

I2=Goto(I0,C)=Closure(S->C•C,$)

S->C->•cC ,$

C->•d,$So,theI2Stateis

S->C•C,$

C->•cC,$

C->•d,$

I3=Goto(I0,c)=Closure(C->c•C,c/d)

C->•cC,c/d

C->•d,c/dSo,theI3Stateis

C->c•C,c/d

C->•cC,c/d

C->•d , c/d

I4=Goto(I0,d)=Colsure(C->d•,c/d)=C->d•,c/d

I5=Goto(I2,C)=closure(S->CC•,$)=S->CC•,$ I6=

Goto (I2, c)= closure(C->c•C , $)=

C->•cC,$

C->•d,$S0,theI6Stateis

A.Y 2024-25 COMPILER DESIGN

53|Page DEPARTMENT OF CSE

S′->S•,$
S->CC•, $

I1 C I5 C->cC•,$

0S′->•S ,$

1 S->•CC ,$

2C->•cC,c/d

3C->•d,c/d

S->C•C,$

C->•cC,$

C->•d,$

I9

c

C->c•C,$

C->•cC,$

C->•d,$
c

I6

I2 I6 I7

I0 c

d

C->d•,c/d

I4

C->c•C,c/d

C->•cC,c/d

C->•d,c/d

C->d•,$

I7

d I3 c

I4 I3

C->cC•,c/d
I8

C->c•C,$

C->•cC,$

C->•d,$

I7 =Goto(I2, d)=Closure(C->d•,$)=C->d•, $

Goto(I3, c)= closure(C->•cC, c/d)= I3.

I8=Goto(I3, C)=Closure(C->cC•,c/d)=C->cC•,c/d Go

to (I3 , c)= Closure(C->c•C, c/d) = I3

Goto(I3,d)=Closure(C->d•,c/d)= I4

I9=Goto(I6, C)=Closure(C->cC•, $)= C->cC•,$

Goto(I6, c)=Closure(C->c•C ,$)= I6

Goto(I6,d)= Closure(C->d•,$)=I7

DrawingtheFiniteStateMachineDFAfortheaboveLR(1)items

A.Y 2024-25 COMPILER DESIGN

54|Page DEPARTMENT OF CSE

Construction ofCLR(1)Table

Rule1:ifthere isanitem[A->α•Xβ,b] inIiandgoto(Ii,X)isinIjthenaction[Ii][X]=Shift j,

Where X is Terminal.

Rule2:ifthere isanitem[A->α•,b] inIiand(A≠S`) set action[Ii][b]=reducealongwith the

production number.

Rule3:ifthereisanitem[S`->S•,$]inIithensetaction[Ii][$]=Accept.

Rule4:ifthere isanitem[A->α•Xβ,b] inIiandgoto(Ii,X)isinIjthengoto[Ii][X]=j, Where X

is Non Terminal.

States
ACTION GOTO

c d $ S C
I0 S3 S4 1 2
I1 ACCEPT

I2 S6 S7 5
I3 S3 S4 8
I4 R3 R3 5
I5 R1

I6 S6 S7 9
I7 R3

I8 R2 R2

I9
 R2

Table:LR(1)Table

LALR(1)Parsing
The CLR Parser avoids the conflicts in the parse table. But it produces more number of

States when compared to SLR parser. Hence more space is occupied by the table in the memory.

So LALR parsing can be used. Here, the tables obtained are smaller than CLR parse table. But it

also as efficient as CLRparser. Here LR(1)items that have same productions but different look-

aheads are combined to form a single set of items.

For example, consider thegrammar inthepreviousexample. Consider thestatesI4and I7as

given below:

I4=Goto(I0,d)=Colsure(C->d•, c/d)=C->d•,c/d I7=

Go to (I2, d)= Closure(C->d•,$) = C->d•, $

These statesarediffering onlyinthe look-aheads. Theyhave thesameproductions. Hencethese

states are combined to form a single state called as I47.

SimilarlythestatesI3andI6differing onlyintheirlook-aheadsasgivenbelow:

I3=Goto(I0,c)=

A.Y 2024-25 COMPILER DESIGN

55|Page DEPARTMENT OF CSE

1A->β•aα,$
a

2B->b•,a

C->c•C,c/d

C->•cC,c/d

C->•d , c/d

I6=Goto(I2,c)=
C->c•C,$

C->•cC,$

C->•d,$

Thesestatesaredifferingonlyinthe look-aheads.Theyhavethesameproductions. Hencethese states

are combined to form a single state called as I36.

SimilarlytheStatesI8andI9differingonlyinlook-aheads. Hencetheycombinedtoform the

state I89.

States
ACTION GOTO

c d $ S C
I0 S36 S47 1 2
I1 ACCEPT

I2 S36 S47 5
I36 S36 S47 89
I47 R3 R3 R3 5
I5 R1

I89 R2 R2 R2

Table:LALRTable

ConflictsintheCLR(1)Parsing:Whenmultiple entriesoccurinthetable.Then,the

situation is said to be a Conflict.

Shift-ReduceConflictinCLR(1)Parsing

ShiftReduceConflictintheCLR(1)parsing occurswhenastatehas

3. AReduceditemoftheformA α•,aand

4. AnincompleteitemoftheformA β•aαasshownbelow:

Ij

Ii

States Action GOTO

a $ A B

Ii Sj/r2

A.Y 2024-25 COMPILER DESIGN

56|Page DEPARTMENT OF CSE

1A->α•,a

2B->β•,a

Reduce/ReduceConflictinCLR(1)Parsing

Reduce-ReduceConflict intheCLR(1)parsingoccurswhenastatehastwoormore reduced

items of the form

3. A α•

4. B β•Iftwoproductionsinastate(I)reducingonsamelookaheadsymbol as

shown below:

Ii

StringAcceptanceusingLRParsing:

Considertheaboveexample,iftheinputStringiscdd

States
ACTION GOTO

c D $ S C
I0 S3 S4 1 2
I1 ACCEPT

I2 S6 S7 5
I3 S3 S4 8
I4 R3 R3 5
I5 R1

I6 S6 S7 9
I7 R3

I8 R2 R2

I9 R2

0 S′->•S(AugmentProduction)

1 S->•CC

2 C->•cC

3 C->•d

STACK INPUT ACTION

$0 cdd$ ShiftS3

$0c3 dd$ ShiftS4

$0c3d4 d$ ReducewithR3,C->d,pop 2*βsymbolsfromthestack
$0c3C d$ Goto(I3,C)=8ShiftS6

States Action GOTO

a $ A B

Ii r1/r2

A.Y 2024-25 COMPILER DESIGN

57|Page DEPARTMENT OF CSE

$0c3C8 d$ ReducewithR2,C->cC,pop2*β symbolsfromthestack

$0C d$ Goto(I0,C)=2

$0C2 d$ ShiftS7

$0C2d7 $ ReducewithR3,C->d,pop 2*βsymbolsfromthestack
$0C2C $ Goto(I2,C)=5

$0C2C5 $ ReducewithR1,S->CC,pop2*βsymbolsfromthestack

$0S $ Goto(I0,S)=1

$0S1 $ Accept

HandingAmbiguousgrammar

Ambiguity:AGrammar canhave morethanoneparsetreeforastring.Forexample,consider grammar.

stringstring+string

|string- string

|0|1|.|9

String9-5+2hastwoparsetrees

Agrammar issaidtobeanambiguousgrammar ifthereissomestringthat it cangeneratein more

thanone way(i.e., the string has more thanone parse tree or morethanone leftmostderivation). A

language is inherently ambiguous if it can only be generated by ambiguous grammars.

Forexample,considerthefollowinggrammar:

stringstring+string

|string- string

|0|1|.|9

Inthisgrammar,thestring9-5+2 hastwo possibleparsetreesasshowninthenextslide.

Consider the parse trees for string 9-5+2, expression like this has more than one parse tree. The
two trees for 9-5+2 correspond to the two ways of parenthesizing the expression: (9-5)+2 and 9-
(5+2). The second parenthesization gives the expression the value 2 instead of 6.

A.Y 2024-25 COMPILER DESIGN

58|Page DEPARTMENT OF CSE

Ambiguityisproblematicbecausemeaningoftheprogramscanbeincorrect

 Ambiguitycanbehandledinseveralways

- Enforceassociativityandprecedence

- Rewritethegrammar(cleanestway)

Therearenogeneraltechniquesforhandlingambiguity,but

.Itisimpossibletoconvertautomaticallyanambiguousgrammartoanunambiguousone

Ambiguityisharmfultothe intent ofthe program. The input might be deciphered ina waywhich was

not really the intention of the programmer, as shown above in the 9-5+2 example. Though there

is no general technique to handle ambiguity i.e., it is not possible to develop some feature which

automatically identifies and removes ambiguity from any grammar. However, it can be removed,

broadly speaking, in the following possible ways:-

1) Rewritingthewholegrammarunambiguously.

2) Implementingprecedenceandassociativelyrulesinthegrammar. Weshalldiscussthis
technique in the later slides.

Ifanoperand has operatoronboththe sides, the sideonwhichoperatortakesthis operand is the

associativity of that operator

.Ina+b+c bistakenbyleft+

.+,-,*,/areleftassociative

.^,=arerightassociative

Grammartogeneratestringswithright associativeoperatorsright àletter=right |letterletter a|

b |.| z

A binary operation * on a set S that does not satisfy the associative law is called non-

associative. A left-associative operation is a non-associative operation that is conventionally

evaluated from left to right i.e., operand is taken bythe operator onthe left side.

Forexample,

6*5*4 =(6*5)*4andnot6*(5*4)

6/5/4 =(6/5)/4andnot6/(5/4)

Aright-associative operation isa non-associative operationthat isconventionallyevaluated from right
to lefti.e., operand is taken by the operator on the right side.

Forexample,

A.Y 2024-25 COMPILER DESIGN

59|Page DEPARTMENT OF CSE

6^5^4=>6^(5^4)andnot(6^5)^4)

x=y=z=5 => x=(y=(z=5))

Following isthegrammar to generatestringswithleft associativeoperators.(Notethatthis is left

recursiveandmaygointoinfiniteloop.Butwewillhandlethisproblemlateronbymakingit right

recursive)

left left+letter|letter

letter a | b | | z

IMPORTANT QUESTIONS

1. DiscussthetheworkingofBottomupparsingandspecificallytheOperatorPrecedence

Parsing with an exaple?

2. WhatdoyoumeanbyanLRparser?ExplaintheLR(1)Parsingtechnique?

3. WritethedifferencesbetweencanonicalcollectionofLR(0)itemsandLR(1)items?

4. WritetheDifferencebetweenCLR(1) andLALR(1)parsing?

5. WhatisYACC?Explainhowdoyouuseitinconstructingtheparserusingit.

ASSIGNMENTQUESTIONS

1. ExplaintheconflictsintheShiftreduceParsing withanexample?

2. E E+T|T

T T*F

F (E)|id,constructtheLR(1)Parsing table?AndexplaintheConflicts?

3. E E+T|T

T T*F

F (E)|id, constructtheSLR(1)Parsingtable?AndexplaintheConflicts?

4. E E+T|T

T T*F

F (E)|id,constructtheCLR(1)Parsingtable?AndexplaintheConflicts?

5. E E+T|T

T T*F

F (E)|id,constructtheLALR(1)Parsingtable?AndexplaintheConflicts?

COMPILER DESIGN A.Y 2024-25

DEPARTMENT OF CSE

UNIT-III

INTERMEDIATECODEGENERATION

In Intermediate code generation we use syntax directed methods to translate the source
program into an intermediate form programming language constructs such as declarations,
assignments and flow-of-control statements.

Figure4.1:IntermediateCodeGenerator

Intermediatecodeis:

 TheoutputoftheParserandtheinputtotheCodeGenerator.

 Relativelymachine-independentandallowsthecompilertoberetargeted.

 Relativelyeasytomanipulate(optimize).

WhataretheAdvantagesofanintermediatelanguage?

AdvantagesofUsinganIntermediateLanguageincludes:

1. Retargetingisfacilitated-Buildacompiler foranew machine byattachinganewcode

generator to an existing front-end.

2. Optimization-reuseintermediatecodeoptimizersincompilersfordifferentlanguages and

different machines.

Note: the terms ―intermediate code‖, ―intermediate language‖, and ―intermediate

representation‖ are all used interchangeably.

TypesofIntermediaterepresentations/forms:Therearethreetypesofintermediate

representation:-

1. SyntaxTrees

2. Postfixnotation

3. ThreeAddressCode

Semanticrulesforgeneratingthree-addresscodefromcommonprogramminglanguage

constructs are similar to those for constructing syntaxtrees of for generating postfix notation.

60|Page

A.Y 2024-25 COMPILER DESIGN

61|Page DEPARTMENT OF CSE

GraphicalRepresentations

A syntax tree depicts the natural hierarchical structure of a source program. A DAG

(DirectedAcyclicGraph)givesthesameinformationbutinamorecompact waybecausecommon sub-

expressions are identified. Asyntaxtree forthe assignment statement a:=b*-c+b*-cappear in the

following figure.

. assign

a +

* *

b uniminus b uniminus

c c

Figure4.2:AbstractSyntaxTreeforthestatementa:=b*-c+b*-c

Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of the in

whichanodeappears immediatelyafter itschildren. Thepostfixnotationforthesyntaxtreeinthe fig is

a bcuminus+bc uminus *+assign

The edges in a syntax tree do not appear explicitly in postfix notation. They can be

recoveredintheorderinwhichthenodesappearandtheno.ofoperandsthattheoperatoratanode

expects.Therecoveryofedgesissimilartotheevaluation, usingastaff, ofanexpressioninpostfix

notation.

WhatisThreeAddressCode?

Three-addresscodeisasequenceofstatementsofthe generalform:X:=YOpZ

where x, y, and z are names, constants, or compiler-generated temporaries; op stands for

any operator, such as a fixed- or floating-point arithmetic operator, or a logical operator on

Boolean-valued data. Note that no built-up arithmetic expressions are permitted, as there is only

oneoperatorontheright sideofastatement. Thusasourcelanguageexpression likex+y*z might be

translated into a sequence

A.Y 2024-25 COMPILER DESIGN

62|Page DEPARTMENT OF CSE

t1 := y * z

t2:=x+t1

Wheret1andt2arecompiler-generatedtemporarynames. Thisunravelingofcomplicated

arithmeticexpressionsandofnestedflow-of-controlstatementsmakesthree-addresscodedesirable

fortargetcodegenerationandoptimization.Theuseofnamesfortheintermediatevaluescomputed bya

programallow- three-address codeto be easily rearranged – unlike postfix notation. Three -

address code is a linearzed representation of a syntax tree or a dag in which explicit names

correspond to the interior nodes of the graph.

IntermediatecodeusingSyntaxfortheabovearithmeticexpression t1

:= -c

t2:=b*t1
t3:=-c
t4 := b * t3

t5:=t2 +t4 a

:=t5

The reason for the term‖three-address code‖ is that each statement usually contains three

addresses, two for the operands and one for the result. In the implementations of three-address

codegiven later inthis section, a programmer-defined name is replaced bya pointertcasymbol-

table entry for that name.

 Three Address Code is Used in Compiler Applications

Optimization: Three address code is often used as an intermediate representation of code

during optimization phases of the compilation process. The three address code allows the

compiler to analyze the code and perform optimizations that can improve the performance of the

generated code.

Code generation: Three address code can also be used as an intermediate representation

of code during the code generation phase of the compilation process. The three address code

allows the compiler to generate code that is specific to the target platform, while also ensuring

that the generated code is correct and efficient.

 Debugging: Three address code can be helpful in debugging the code generated by the compiler. Since

three address code is a low-level language, it is often easier to read and understand than the final

generated code. Developers can use the three address code to trace the execution of the program and

identify errors or issues that may be present.

Language translation: Three address code can also be used to translate code from one programming

language to another. By translating code to a common intermediate representation, it becomes easier to

translate the code to multiple target languages.
General Representation
 a = b op c
Where a, b or c represents operands like names, constants or compiler generated temporaries and op

represents the operator

Example-1: Convert the expression a * – (b + c) into three address code.

A.Y 2024-25 COMPILER DESIGN

63|Page DEPARTMENT OF CSE

TypesofThree-AddressStatements

Three-address statements are akinto assemblycode. Statements canhave symbolic labels

and there are statements for flow of control. A symbolic label represents the index of a three-

address statement in the array holding inter- mediate code. Actual indices can be substituted for

the labels either by making a separate pass, or byusing ‖back patching,‖ discussed in Section

8.6.Herearethecommonthree-addressstatementsusedintheremainderofthisbook:

1. Assignment statements of the form x: = y op z, where op is a binary arithmetic or logical

operation.

2. Assignment instructions ofthe formx:= op y, where op is a unaryoperation. Essentialunary

operations include unary minus, logical negation, shift operators, and conversion operators that,

for example, convert a fixed-point number to a floating-point number.

3. Copy statementsofthe formx:=ywhere thevalueofyisassignedtox.

4. TheunconditionaljumpgotoL.Thethree-addressstatement withlabelListhenexttobe

executed.

A.Y 2024-25 COMPILER DESIGN

64|Page DEPARTMENT OF CSE

5. Conditionaljumpssuchasifxrelop ygoto L.Thisinstructionappliesarelationaloperator(<,

=,>=,etc.)toxandy,andexecutesthestatementwithlabelLnextifxstandsinrelationrelopto

y.Ifnot,thethree-addressstatement following ifxrelopygotoLisexecutednext,asintheusual sequence.

6. paramxandcallp,n forprocedurecallsandreturny,where yrepresentingareturnedvalue is

optional. Their typical use is as the sequence of three-address statements

paramx1

paramx2

paramxn

call p, n

Generated as part of a call of the procedure p(x,, x~,..., x‖). The integern indicating the number

ofactualparametersin‖callp,n‖isnotredundantbecausecallscanbenested.Theimplementation of

procedure calls is outline d in Section 8.7.

7. Indexedassignmentsofthe formx:= y[i]and x[i]:= y.The firstofthese setsxtothevalue in the

location i memory units beyond location y. The statement x[i]:=y sets the contents ofthe

locationiunitsbeyondxtothevalueofy.Inboththeseinstructions,x,y,andirefertodataobjects.

8. Address and pointer assignments of the form x:= &y, x:= *y and *x: = y. The first of these

setsthevalueofxtobethelocationofy.Presumablyyisaname,perhapsatemporary,thatdenotes

anexpressionwithanI-value suchas A[i, j], and x is a pointer name ortemporary. That is, the r-

value of x is the l-value (location) of some object!. In the statement x: = ~y, presumablyy is a

pointeror atemporarywhose r- value is a location. The r-value ofx is made equaltothe contents

ofthat location. Finally, +x: = ysets the r-value ofthe object pointed to by x to the r- value of y.

The choice of allowable operators is an important issue in the design of an intermediate

form. The operator set must clearly be rich enough to implement the operations in the source

language. A small operator set is easier to implement on a new target machine. However, a

restrictedinstructionsetmayforcethefront endtogeneratelongsequencesofstatementsforsome

source, language operations. The optimizer and code generator may then have to work harder if

good code is to be generated.

SYNTAXDIRECTEDTRANSLATIONOFTHREEADDRESSCODE

Whenthree-addresscodeisgenerated,temporarynamesaremadeup fortheinteriornodes of a

syntax tree. The value of non-

A.Y 2024-25 COMPILER DESIGN

65|Page DEPARTMENT OF CSE

computed into a new temporary t. In general, the three- address code for id: = E consists of code

to evaluate E intosome temporaryt, followedbythe assignmentid.place: = t. Ifanexpression is

asingle identifier, sayy,thenyitselfholdsthevalueoftheexpression. Forthemoment, wecreate a new

name every time a temporary is needed; techniques forreusing temporaries are given in Section

S.3. The S-attributed definition in Fig. 8.6 generates three-address code for assignment

statements. Given input a: = b+ – c + b+ – c, it producesthe code inFig. 8.5(a). The synthesized

attribute S.code represents the three- address code for the assignment S. The non- terminalE has

two attributes:

1. E.place,thenamethatwillholdthevalueofE,and

2. E.code,thesequenceofthree-addressstatementsevaluatingE.

The function newtemp returns a sequence of distinct names t1, t2,... in response to

successive calls. For convenience, we use the notation gen(x‘: =‘ y‘+‘ z) inFig. 8.6to represent

thethree-address statement x: = y+ z. Expressions appearing instead ofvariables like x, y, and z

are evaluated when passed to gen, and quoted operators or operands, like ‘+‘, are taken literally.

In practice, three- address statements might be sent to an output file, rather than built up into the

code attributes. Flow-of-controlstatements can be added to the language ofassignments in Fig.

8.6byproductionsandsemanticrules)liketheonesfor whilestatementsinFig. 8.7.Inthefigure, the

code for S - while E do S, is generated using‘ new attributes S.begin and S.after to mark the first

statement in the code for E and the statement following the code forS, respectively.

These attributes represent labels created by a function new label that returns a new label

every time itis called.

A.Y 2024-25 COMPILER DESIGN

66|Page DEPARTMENT OF CSE

 op Arg1 Arg2 Result

(0) uminus c t1

(1) * b t1 t2

(2) uminus c t3

(3) * b t3 t4

(4) + t2 t4 t5

(5) := t5 A

 op Arg1 Arg2

(0) uminus C

(1) * B (0)

(2) uminus C

(3) * B (2)

(4) + (1) (3)

(5) := A (4)

IMPLEMENTATIONSOF THREE-ADDRESSSTATEMENTS:

A three-address statement is an abstract form of intermediate code. In a compiler, these

statements can be implemented as records with fields for the operator and the operands. Three

such representations are quadruples, triples, and indirect triples.

QUADRUPLES:

Aquadrupleisarecordstructurewithfour fields,whichwecallop,argl, arg2,and result. The op

field contains an internal code for the operator. The three-address statement x:= y op z is

represented byplacing y inarg 1. z in arg 2. and x in result. Statements with unaryoperatorslike x:

= – y or x: = y do not use arg 2. Operators like param use neither arg2 norresult. Conditional and

unconditional jumps put the target label in result. The quadruples in Fig. H.S(a) are for the

assignmenta: = b+ – c + b i– c. Theyare obtained fromthe three-address code

.Thecontentsoffieldsarg1,arg2,andresult arenormallypointerstothesymbol-tableentries for the

names represented by these fields. If so, temporary names mustbe entered into the symbol table

as they are created.

TRIPLES:

To avoid entering temporary names into the symbol table. We might refer to a temporary

value bi the position of the statement that computes it. If we do so, three-address statements can

be represented by records with only three fields: op, arg 1 and arg2, as Shown below. The fields

arg l and arg2, for the arguments of op, are either pointers to the symbol table (for programmer-

definednamesorconstants)orpointersintothetriplestructure(fortemporaryvalues). Since three fields

are used, this intermediate code format is known as triples.‘ Except for the treatment of

programmer-defined names, triples correspond to the representation of a syntax tree or dag byan

array of nodes, as in

Table8.8(a):Qudraples Table8.8(b):Triples:Triples

Parenthesized numbers represent pointers into the triple structure, while symbol-table

pointersarerepresented bythe namesthemselves. Inpractice, the informationneeded to interpret the

different kinds ofentries in the arg 1and arg2fields can be encoded into theopfield or some

additional fields. The triples in Fig. 8.8(b) correspond to the quadruples in Fig. 8.8(a). Note that

A.Y 2024-25 COMPILER DESIGN

DEPARTMENT OF CSE v67|Page

thecopystatementa:=t5isencoded inthetriplerepresentationbyplacinga inthearg1field and using the

operator assign. A ternary operation like x[i]: = y requires two entries in the triple

structure,asshowninFig.8.9(a),whilex:=y[i]isnaturallyrepresentedastwooperationsinFig. 8.9(b).

IndirectTriples

Another implementation of three-address code that has been considered is that of listing

pointerstotriples,ratherthanlistingthetriplesthemselves.Thisimplementationisnaturallycalled

indirect triples. For example, let us use an arraystatement to list pointers to triples in the desired

order. Then the triples in Fig. 8.8(b) might be represented as in Fig. 8.10.

Figure 8.10 : Indirect Triples

SEMANTICANALYSIS:Thisphasefocusesmainlyonthe

.Checkingthesemantics,

.Errorreporting

.Disambiguateoverloadedoperators

.Typecoercion,

.Staticchecking

A.Y 2024-25 COMPILER DESIGN

DEPARTMENT OF CSE v68|Page

- Typechecking

-Controlflowchecking

- Uniquenesschecking

- Namecheckingaspectsoftranslation

Assume that the program has been verified to be syntactically correct and converted into

somekindofintermediaterepresentation(aparsetree).Onenowhasparsetreeavailable.The next phase

will be semantic analysis ofthe generated parse tree. Semantic analysis also includes error

reporting in case any semantic error is found out.

Semantic analysis is a pass bya compiler that adds semantic information to the parse tree

and performs certain checks based on this information. It logically follows the parsing phase, in

which the parse tree is generated, and logically precedes the code generation phase, in which

(intermediate/target) code is generated. (Ina compiler implementation, it may be possible to fold

different phases into one pass.) Typical examples of semantic information that is added and

checked is typing information (type checking) and the binding of variables and function names

to their definitions (object binding). Sometimes also some early code optimization is done inthis

phase. For this phase the compiler usually maintains symbol tables in which it stores what each

symbol (variable names, function names, etc.) refers to.

FOLLOWINGTHINGSAREDONEINSEMANTICANALYSIS:

DisambiguateOverloadedoperators:Ifanoperatorisoverloaded,onewould liketospecifythe

meaning ofthat particular operator because fromone willgo into code generation phase next.

TYPECHECKING:Theprocessofverifyingandenforcingtheconstraintsoftypesiscalledtype

checking. This may occur either at compile-time (a static check) or run-time(a dynamic check).

Static type checking is a primary task of the semantic analysis carried out by a compiler. If type

rules are enforced strongly (that is, generally allowing only those automatic type conversions

which do not lose information), the process is called strongly typed, if not, weakly typed.

UNIQUENESSCHECKING:Whetheravariablenameisuniqueornot,intheitsscope.

Typecoersion:Ifsomekindofmixingoftypesisallowed.Done inlanguageswhicharenot strongly
typed. This can be done dynamically as well as statically.

NAMECHECKS:Checkwhetheranyvariablehasanamewhichisnotallowed.Ex.Nameis same as an

identifier (Ex. int in java).

 Parsercannotcatchalltheprogramerrors

 Thereisalevelofcorrectnessthatisdeeper thansyntaxanalysis

 Somelanguage featurescannotbemodeledusingcontextfreegrammarformalism

http://en.wikipedia.org/wiki/Type_checking
http://en.wikipedia.org/wiki/Object_binding
http://en.wikipedia.org/wiki/Compile-time
http://en.wikipedia.org/wiki/Run-time

A.Y 2024-25 COMPILER DESIGN

DEPARTMENT OF CSE v69|Page

- Whetheranidentifierhasbeendeclaredbeforeuse,thisproblemisofidentifyingalanguage

{w αw|wεΣ*}

- Thislanguage isnotcontextfree

A parser has its own limitationsin catching program errors related to semantics,something that is

deeper than syntax analysis. Typical features of semantic analysis cannot be modeled using

context free grammar formalism. If one tries to incorporate those features in the definition of a

language then that language doesn't remain context free anymore.

Example: in

stringx;inty;

y = x + 3 theuseofxisatypeerror int

a, b;

a = b+ccisnotdeclared

Anidentifiermayrefertodifferentvariables indifferentpartsoftheprogram.Anidentifier may be

usable inone part ofthe programbut not another These are acouple ofexamples whichtellus

thattypicallywhat acompiler has to do beyond syntaxanalysis. The third point can be explained

like this: An identifier x can be declaredin twoseparate functions in the program, once of the type

int and then of the type char. Hence the same identifier will have to be bound to these two

differentpropertiesinthetwodifferent contexts.Thefourthpoint canbeexplainedinthismanner: A

variable declared within one function cannot be used within the scope of the definition of the

other function unless declared there separately. This is just anexample. Probably you can think

ofmanymoreexamples inwhichavariabledeclaredinonescopecannotbeused inanother scope.

ABSTRACTSYNTAX TREE:Isnothingbutthecondensedformofaparsetree,Itis

Usefulforrepresentinglanguageconstructssonaturally.

TheproductionS ifB thens1 else s2mayappearas

Inthenextfewslideswewillseehowabstractsyntaxtreescanbeconstructedfromsyntaxdirected

definitions. Abstract syntax trees are condensed form of parse trees. Normally operators and

keywordsappearasleavesbut inanabstractsyntaxtreetheyareassociatedwiththe interior nodes

thatwouldbetheparentofthoseleaves intheparsetree.This isclearlyindicatedbythe examples in these

slides.

A.Y 2024-25 COMPILER DESIGN

DEPARTMENT OF CSE v70|Page

Chainofsingleproductionsmaybecollapsed,andoperatorsmovetotheparentnodes

Chainofsingleproductionsare collapsed intoonenodewiththeoperatorsmoving upto become the

node.

CONSTRUCTINGABSTRACTSYNTAXTREEFOREXPRESSIONS:

Inconstructingthe SyntaxTree,wefollowtheconventionthat:

.Eachnodeofthetreecanberepresented asarecordconsistingofat least twofieldstostore operators

and operands.

.operators:onefieldforoperator,remainingfieldsptrstooperands mknode(op,left,right)

.identifier:onefieldwithlabelidandanotherptrtosymboltablemkleaf(id,id.entry)

.number:onefieldwithlabelnumandanothertokeepthe valueofthenumbermkleaf(num,val)

Each node in an abstract syntax tree can be implemented as a record with several fields. In the

node for an operator one field identifies the operator (called the label of the node) and the

remaining contain pointers to the nodes for operands. Nodes of an abstract syntax tree may have

additional fields to hold values (or pointers to values) of attributes attached to the node. The

functions given in the slide are used to create the nodes of abstract syntax trees for expressions.

Each function returns a pointer to a newly created note.

ForExample:thefollowing

sequence of function

callscreatesaparse

treeforw=a-4+c

P1=mkleaf(id,entry.a) P

2 = mkleaf(num, 4)

P3=mknode(-,P1,P2) P 4

= mkleaf(id, entry.c)

A.Y 2024-25 COMPILER DESIGN

71|Page DEPARTMENT OF CSE

P5=mknode(+,P3,P4)

An example showing the formation of an abstract syntax tree by the given function calls for the

expression a-4+c.The call sequence can be defined based on its postfix form, which is explained

blow.

A-Writethepostfixequivalentoftheexpressionforwhichwewanttoconstruct asyntaxtree For

above string w=a-4+c, it is a4-c+

B-Callthe functionsinthesequence,asdefinedbythesequence inthepostfixexpressionwhich
resultsinthedesiredtree.Inthecaseabove,callmkleaf()fora,mkleaf()for 4,mknode()for

-,mkleaf()forc,andmknode()for+atlast.

1. P1=mkleaf(id, a.entry):Aleafnodemade fortheidentifier a,andanentryforais madein the

symbol table.

2. P2=mkleaf(num,4):Aleafnodemadeforthenumber 4, andentryfor itsvalue.

3. P3=mknode(-,P1,P2):Aninternalnodeforthe-,takesthepointerto previouslymadenodes P1, P2
as arguments and represents the expression a-4.

4. P4=mkleaf(id, c.entry):Aleafnodemade fortheidentifierc,andanentryforc.entrymade in the

symbol table.

5. P5=mknode(+,P3,P4):Aninternalnodeforthe+,takesthepointerto previouslymade nodes
P3,P4 as arguments and represents the expression a- 4+c .

Followingisthesyntaxdirecteddefinitionfor constructing syntaxtreeabove

E E 1+ T E.ptr= mknode(+,E1.ptr,T.ptr)

E T E.ptr=T.ptr

T T 1*F T.ptr:=mknode(*,T1.ptr,F.ptr)

T F T.ptr:=F.ptr

F (E) F.ptr :=E.ptr

F id F.ptr:=mkleaf(id,id.entry)

F num F.ptr:=mkleaf(num,val)

Nowwehave the syntaxdirected definitions to constructthe parsetreeforagivengrammar. All the
rules mentioned in slide 29 are taken care ofand an abstract syntax tree is formed.

ATTRIBUTEGRAMMARS:ACFGG=(V,T,P,S),iscalledanAttributedGrammariff, where in
G, each grammar symbol XƐ VUT, has an associated set of attributes, and each
production,pƐP,isassociatedwithasetofattributeevaluationrulescalledSemantic Actions.

A.Y 2024-25 COMPILER DESIGN

72|Page DEPARTMENT OF CSE

InanAG,thevaluesofattributes at aparsetree node arecomputed bysemantic rules. There are two

different specifications ofAGs used bythe Semantic Analyzer inevaluating the semantics of the

program constructs. They are,

- Syntaxdirecteddefinition(SDD)s

o Highlevelspecifications

o Hidesimplementationdetails
o Explicit orderofevaluationisnotspecified

- SyntaxdirectedTranslationschemes(SDT)s

Nothingbut anSDD, whichindicatesorderinwhichsemanticrulesaretobe evaluated
and

Allowsomeimplementationdetailstobeshown.

An attribute grammar is the formal expression of the syntax-derived semantic checks

associated with a grammar. It represents the rules of a language not explicitly imparted by the

syntax. In a practical way, it defines the information that is needed in the abstract syntax tree in

order to successfully perform semantic analysis. This information is stored as attributes of the

nodes ofthe abstract syntax tree. The values ofthose attributes are calculated bysemantic rule.

Therearetwowaysforwritingattributes:

1) SyntaxDirectedDefinition(SDD):Isacontextfreegrammar inwhichaset ofsemantic
actions are embedded (associated) with each production of G.

It is a high level specification in which implementation details are hidden, e.g., S.sys =

A.sys + B.sys;

/*doesnotgiveanyimplementationdetails. It justtellsus.Thiskindofattributeequation we

will be using, Details like at what point oftime is it evaluated and in what manner are hidden

from the programmer.*/

E E1+ T {E.val= E1.val+E2.val}

E T {E.val=T.val}

T T 1*F {T.val=T1.val+F.val)

T F {T.val=F.val}

F (E) { F.val=E.val}

F id {F.val=id.lexval}

F num {F.val=num.lexval}

2) Syntax directed Translation(SDT) scheme: Sometimes we want to control the way the

attributes are evaluated, the order and place where they are evaluated. This is ofa slightly lower

level.

AnSDTisanSDD inwhichsemanticactionscanbeplacedat anypositioninthebodyofthe
production.

A.Y 2024-25 COMPILER DESIGN

73|Page DEPARTMENT OF CSE

Forexample,followingSDT printstheprefixequivalentofanarithmeticexpressionconsistinga

+and *operators.

L En{printf(„E.val‟)}

E {printf(„+‟)}E1+TE

T
T {printf(„*‟)}T1*F T

F
F (E)

F {printf(„id.lexval‟)}id

F {printf(„num.lexval‟)}num

ThisactioninanSDT, isexecutedassoonasitsnodeintheparsetreeisvisited inapreorder traversal

of the tree.

ConceptuallyboththeSDDand SDTschemeswill:

Parseinputtokenstream

Buildparsetree

Traversetheparsetreetoevaluatethesemanticrulesattheparsetreenodes Evaluation may:

Generatecode

Saveinformationinthesymboltable

Issue errormessages

Performanyotheractivity

Toavoidrepeatedtraversaloftheparsetree, actionsaretakensimultaneouslywhenatokenis found.

So calculation of attributes goes along with the construction of the parse tree.

Along with the evaluation of the semantic rules the compiler may simultaneously generate code,

save the information in the symbol table, and/or issue error messages etc. at the same time while

building the parse tree.

Thissavesmultiplepassesoftheparsetree.

Example

Number signlist

sign + | -

list listbit|bit

bit 0|1

Buildattributegrammar thatannotatesNumberwiththevalueitrepresents

.Associateattributeswithgrammarsymbols

A.Y 2024-25 COMPILER DESIGN

74|Page DEPARTMENT OF CSE

symbol attributes

Number value

sign negative

list position,value

bit position,value

productionAttributerulenumber signlist

list.position 0

ifsign.negative

then number.value -list.value

else number.value list.value

sign + sign.negative false sign - sign.negative truelist bit

bit.position list.position

list.value bit.value

list0 list 1 bit

list1 .position list0.position+1

bit.position list 0 .position

list0 .value list1.value+bit.value

bit 0 bit.value 0 bit 1 bit.value 2bit.position

Explanationofattribute rules

Num->signlist /*sincelististherightmost soit isassignedposition0

*Signdetermineswhetherthevalueofthenumberwouldbe

sameorthe negative ofthe value of list/

Sign-> +|- /*SettheBooleanattribute(negative)for sign*/

List->bit /*bitpositionisthesameaslist positionbecausethisbitistherightmost

value ofthe list is same as bit./

List0 -> List1 bit /*positionand valuecalculations*/

Bit -> 0 | 1 /*set the corresponding value*/

AttributesofRHScanbecomputedfromattributesofLHSandviceversa.

TheParseTreeandtheDependencegraphareasunder

A.Y 2024-25 COMPILER DESIGN

75|Page DEPARTMENT OF CSE

.

Dependence graph shows the dependence of attributes on other attributes, along with the

syntaxtree.Top downtraversalis followed bya bottomuptraversalto resolve the dependencies.

Number, val and neg are synthesized attributes. Pos is an inherited attribute.

Attributes : . Attributes fall into two classes namely synthesized attributes and inherited

attributes.Valueofasynthesizedattributeiscomputedfromthevaluesofitschildrennodes.Value of an

inherited attribute is computed fromthe sibling and parent nodes.

The attributes are divided into two groups, called synthesized attributes and inherited

attributes. The synthesized attributes are the result of the attribute evaluation rules also using the

values of the inherited attributes. The values of the inherited attributes are inherited from parent

nodes and siblings.

Each grammar production A ahasassociatedwithit asetofsemanticrulesoftheform b=

f(c1,c2,...,ck),Wherefisafunction,and either ,bisasynthesizedattributeofAOr

-bisan inheritedattributeofoneofthegrammarsymbolsontheright

.attributebdependsonattributesc1,c2,...,ck

Dependence relation tells us what attributes we need to know before hand to calculate a

particular attribute.

Here the value ofthe attribute b depends on the values ofthe attributes c1 to ck. Ifc1 to
ckbelong to the children nodes and b to A then b will be called a synthesized attribute. And if b

belongstooneamonga(childnodes)thenitisaninheritedattributeofoneofthegrammarsymbols on the
right.

A.Y 2024-25 COMPILER DESIGN

76|Page DEPARTMENT OF CSE

SynthesizedAttributes:Asyntaxdirecteddefinitionthat usesonlysynthesizedattributes is
said to be an S- attributed definition

.Aparsetreefor anS-attributeddefinitioncanbeannotatedbyevaluatingsemantic rules for
attributes

S-attributed grammars are a class of attribute grammars, comparable with L-attributed grammars

butcharacterizedbyhavingnoinheritedattributesatall.Inheritedattributes,whichmustbepassed

downfromparent nodesto childrennodesoftheabstract syntaxtreeduringthesemantic analysis, pose

a problem for bottom-up parsing because in bottom-up parsing, the parent nodesof the abstract

syntax tree are createdafter creation of all of their children.Attribute evaluation in S- attributed

grammars can be incorporated conveniently in both top-down parsing and bottom-up parsing .

SyntaxDirectedDefinitionsforadeskcalculatorprogram

L E n Print(E.val)

E E+ T E.val=E.val+T.val

E T E.val=T.val

T T*F T.val=T.val*F.val

T F T.val=F.val

F (E) F.val=E.val

F digit F.val=digit.lexval

.terminals are assumed to have onlysynthesized attribute valuesofwhichare supplied bylexical

analyzer

.startsymboldoesnothaveanyinheritedattribute

Thisisagrammarwhichusesonlysynthesizedattributes.Startsymbolhasno parents,henceno inherited
attributes.

Parsetreefor3*4+5n

A.Y 2024-25 COMPILER DESIGN

77|Page DEPARTMENT OF CSE

Usingthepreviousattributegrammar calculationshave beenworkedoutherefor3*4+5n. Bottom
up parsing has been done.

InheritedAttributes:Aninheritedattributeisonewhosevalue isdefined intermsof attributes
at the parent and/or siblings

.Usedforfindingoutthecontextinwhichitappears

.possibletouseonlyS-attributesbut morenaturaltouseinheritedattributes D

T L L.in = T.type

T real T.type=real

T int T.type=int

L L1,id L1.in=L.in;addtype(id.entry,L.in)

L id addtype(id.entry,L.in)

Inherited attributes help tofind thecontext(type,scope etc.) ofa token e.g., the type of a token or

scopewhenthe same variable name is used multiple times in a program indifferent functions. An

inherited attribute system may be replaced by an S -attribute system but it is more natural to use

inherited attributes in some cases like the example given above.

Hereaddtype(a,b)functionsaddsasymboltableentryfortheid aandattachestoitthetypeofb

.

Parsetreeforrealx,y,z

A.Y 2024-25 COMPILER DESIGN

78|Page DEPARTMENT OF CSE

Dependence of attributes in an inherited attribute system. The value of in (an inherited attribute)

at the three L nodes gives the type of the three identifiers x , y and z . These are determined by

computing the value ofthe attribute T.type atthe left child ofthe root and thenvaluating L.intop

down at the three L nodes in the rightsubtreeofthe root. Ateach L node the procedure addtype is

called which inserts the type of the identifier to its entry in the symbol table. The figure also

shows the dependence graph which is introduced later.

Dependence Graph: . Ifanattribute bdepends onanattribute cthenthe semantic rule for b
must be evaluated after the semantic rule for c

.Thedependenciesamongthenodescanbedepictedbyadirectedgraphcalleddependency graph

DependencyGraph:Directedgraphindicatinginterdependenciesamongthesynthesizedand

inherited attributes of various nodes in a parse tree.

Algorithmtoconstructdependencygraph for

each node n in the parse tree do

foreachattributeaofthegrammarsymboldo construct a

node in the dependency graph

fora

foreachnodenintheparsetreedo

foreachsemanticrule b=f(c1,c2,...,ck)do

{associatedwithproductionatn}

A.Y 2024-25 COMPILER DESIGN

79|Page DEPARTMENT OF CSE

fori=1tokdo

Constructanedgefromcitob

Analgorithmtoconstructthedependencygraph.Aftermakingonenodeforeveryattribute of all
the nodes of the parse tree, make one edge from each of the other attributes on which it depends.

Forexample,

The semantic rule A.a = f(X.x , Y.y) for the production A -> XY defines the synthesized

attribute a of A to be dependent on the attribute x of X and the attribute y of Y . Thus the

dependency graph will contain an edge from X.x to A.a and Y.y to A.a accounting for the two

dependencies.SimilarlyforthesemanticruleX.x= g(A.a,Y.y)forthesameproductiontherewill be an

edge from A.a to X.x and an edg e from Y.y to X.x.

Example

.Wheneverfollowingproductionisusedinaparsetree E

E 1 + E 2 E.val = E 1 .val + E 2 .val

wecreate adependencygraph

A.Y 2024-25 COMPILER DESIGN

80|Page DEPARTMENT OF CSE

ThesynthesizedattributeE.valdependsonE1.valandE2.valhencethetwoedgesoneeach from

E 1 .val & E 2 .val

Forexample, thedependencygraphforthestingrealid1,id2,id3

.Put adummysynthesized attributebfor asemanticrulethatconsistsofaprocedurecall

The figure shows the dependencygraph for the statement real id1, id2, id3 along with the

parse tree. Procedure calls can be thought of as rules defining the values of dummy synthesized

attributes of the nonterminal on the left side of the associated production. Blue arrows constitute

thedependencygraphandblack lines,theparsetree.Eachofthesemanticrulesaddtype(id.entry, L.in)

associated with the L productions leads to the creation of the dummy attribute.

EvaluationOrder:

Anytopologicalsortofdependencygraphgivesavalidorderinwhichsemanticrules must be

evaluated

a4=real
a5 = a4

addtype(id3.entry,a5)

a7 = a5

addtype(id2.entry,a7)

A.Y 2024-25 COMPILER DESIGN

81|Page DEPARTMENT OF CSE

a9:=a7addtype(id1.entry,a9)

Atopological sort ofa directed acyclic graph is anyordering m1, m2, m3mk ofthe
nodesofthegraphsuchthatedgesgofromnodesearlierintheorderingtolaternodes.Thusifmi

-> mj is an edge from mi to mj then mi appears before mj in the ordering. The order of the

statementsshownintheslide isobtainedfromthetopologicalsortofthedependencygraphinthe

previousslide. 'an'stands fortheattributeassociatedwiththenodenumbered ninthe dependency

graph. The numbering is as shown in the previous slide.

AbstractSyntaxTree isthecondensedformoftheparsetree,which is

.Usefulforrepresentinglanguageconstructs.

.Theproduction:S ifBthens1elses2mayappearas

Inthenext fewslideswewillsee howabstract syntaxtreescanbeconstructedfromsyntax

directed definitions. Abstract syntax trees are condensed form of parse trees. Normallyoperators

and keywords appear as leaves but in an abstract syntax tree theyare associated with the interior

nodes that would be the parent of those leaves in the parse tree. This is clearly indicated by the

examples in these slides.

.Chainofsingleproductionsmaybecollapsed,andoperatorsmovetotheparentnodes

Chainofsingleproductionarecollapsed intoonenodewiththeoperatorsmovingupto become the

node.

A.Y 2024-25 COMPILER DESIGN

82|Page DEPARTMENT OF CSE

ForConstructingtheAbstractSyntaxtreeforexpressions,

.Eachnodecanbe representedasarecord

.operators:onefieldforoperator,remainingfieldsptrstooperandsmknode(

op,left,right)

.identifier:onefieldwith labelidandanotherptrtosymboltablemkleaf(id,entry)

.number:onefieldwithlabelnumandanothertokeepthevalueofthenumber

mkleaf(num,val)

Eachnode inanabstractsyntaxtreecanbe implemented asarecordwithseveralfields. In the

node for an operator one field identifies the operator (called the label of the node) and the

remaining contain pointers to the nodes for operands. Nodes of an abstract syntax tree may have

additional fields to hold values (or pointers to values) of attributes attached to the node. The

functions given in the slide are used to create the nodes of abstract syntax trees for expressions.

Each function returns a pointer to a newly created note.

Example:Thefollowing

sequence of function

calls creates a parse

tree for a- 4 + c

P1=mkleaf(id,entry.a) P

2 = mkleaf(num, 4)

P3=mknode(-,P1,P2) P 4

= mkleaf(id, entry.c)

P5=mknode(+,P3,P4)

Anexampleshowingthe formationofanabstract syntaxtreebythegivenfunctioncalls forthe

expression a-4+c.The call sequence can be explained as:

1. P1=mkleaf(id,entry.a):Aleafnodemade fortheidentifierQaRandanentryforQaRis made in

the symbol table.

2. P2=mkleaf(num,4):AleafnodemadeforthenumberQ4 R.

3. P3=mknode(-,P1,P2):Aninternalnode fortheQ-Q.Itakesthepreviouslymade nodesas

arguments and represents the expression Qa-4 R.

4. P4=mkleaf(id,entry.c): Aleafnodemade fortheidentifierQcRandanentryforQcRis made in

the symbol table.

5. P5=mknode(+,P3,P4):AninternalnodefortheQ+Q.Itakesthepreviouslymadenodesas

arguments and represents the expression Qa- 4+c R.

A.Y 2024-25 COMPILER DESIGN

83|Page DEPARTMENT OF CSE

Asyntaxdirecteddefinitionforconstructing syntaxtree
E E 1+ T E.ptr=mknode(+,E1.ptr,T.ptr)

E T E.ptr=T.ptr

T T 1*F T.ptr:=mknode(*,T 1.ptr,F.ptr)

T F T.ptr:=F.ptr

F (E) F.ptr :=E.ptr

F id F.ptr:=mkleaf(id, entry.id)

F num F.ptr:=mkleaf(num,val)

Nowwehavethesyntaxdirecteddefinitionstoconstructtheparsetreeforagivengrammar.All the rules
mentioned in slide 29 are taken care ofand an abstract syntax tree is formed.

Translationschemes : ACFGwheresemanticactionsoccurwithintheright handsideof
production, A translation scheme to map infix to postfix.

E TR
addopT{print(addop)}R|e T

num {print(num)}

Parsetreefor9-5+2

Weassumethat theactionsareterminalsymbolsand Performdepthfirst ordertraversaltoobtain 9 5 - 2

+.

Whendesigningtranslationscheme, ensureattributevalueisavailablewhenreferredto

Incaseofsynthesized attributeitistrivial(why?)

Inatranslationscheme,aswearedealingwithimplementation,wehavetoexplicitlyworry

abouttheorderoftraversal. We cannowputinbetweentherulessomeactionsas partoftheRHS. We put

this rules in order to control the order of traversals. In the given example, we have two terminals

(num and addop). It can generally be seen as a number followed by R (which

A.Y 2024-25 COMPILER DESIGN

84|Page DEPARTMENT OF CSE

necessarily has to begin with an addop). The given grammar is in infix notation and we need to

convert it into postfix notation. If we ignore all the actions, the parse tree is in black, without the

rededges.Ifweincludetherededgeswegetaparsetreewithactions.Theactionsaresofartreated

asaterminal.Now,ifwedoadepthfirsttraversal,andwheneverweencounteraactionweexecute it, we

get a post-fix notation. Intranslation scheme, we have to take care ofthe evaluation order;

otherwise some of the parts may be left undefined. For different actions, different result will be

obtained. Actions aresomething we write and wehave to control it. Please note that translation

scheme is different from a syntax driven definition.In the latter, we do not have any evaluation

order;inthiscasewehaveanexplicit evaluationorder.Byexplicit evaluationorderwehavetoset correct

action at correct places, in order to get the desired output. Place of each action is very important.

We have to find appropriate places, and that is that translation scheme is all about. If we talk

ofonly synthesized attribute, the translation scheme is verytrivial. This is because, when

wereachweknowthatallthechildrenmust havebeenevaluatedandalltheirattributes must have also

been dealt with. This is because finding the placefor evaluation is very simple, it is the rightmost

place.

Incaseofbothinheritedand synthesizedattributes

. Aninherited attribute for asymbolonrhsofa production must be computed inanactionbefore that

symbol

SA1A2{A1.in=1,A2.in=2}

A a {print(A.in)}

Depthfirstordertraversalgives errorundefined

.Asynthesized attributefor nonterminalonthe lhscanbecomputedafter allattributes it
references, have beencomputed. The action normallyshould be placed at the end ofrhs

We have a problem when we have both synthesized as well as inherited attributes. For the given

example, if we place the actions as shown, we cannot evaluate it. This is because, when doing a

depth first traversal, we cannot print anything for A1. This is because A1 has not yet been

initialized. We, therefore have to find the correct places for the actions. This can be that the

inheritedattributeofAmust becalculatedonitsleft.Thiscanbeseenlogicallyfromthedefinition of L-

attribute definition, which says that when we reach a node, then everything on its left must have

been computed. Ifwe do this, we will always have the attribute evaluated at the

A.Y 2024-25 COMPILER DESIGN

85|Page DEPARTMENT OF CSE

correctplace.Forsuchspecificcases(likethegivenexample)calculatinganywhereonthe left

willwork, but generally it must be calculated immediately at the left.

Example:TranslationschemeforEQN

S B B.pts=10

S.ht=B.ht

B B1 B2 B1.pts=B.pts

B2.pts=B.pts

B.ht=max(B1.ht,B2.ht)

B B1subB2 B1.pts=B.pts;

B 2 .pts = shrink(B.pts)

B.ht=disp(B1.ht,B2.ht)

B text B.ht=text.h*B.pts

Wenowlookatanotherexample.ThisisthegrammarforfindingouthowdoIcomposetext.EQN was

equation setting system which was used as an early type setting system for UNIX. It was earlier

used as an latex equivalent for equations. We say that start symbol is a block: S - >B We can also

have a subscript and superscript. Here, we look at subscript. A Block is composedof

severalblocks:B->B1B2andB2isasubscriptofB1.Wehavetodeterminewhat isthepointsize

(inherited) and height Size (synthesized). We have the relevant functionfor height and point size

given along side. After putting actions in the right place

We have put allthe actions at the correct places as per the rules stated. Read it from left to right,

and topto bottom. We notethat all inherited attribute are calculated onthe left ofB symbols and

synthesized attributes are on the right.

TopdownTranslation:UsepredictiveparsingtoimplementL-attributeddefinitions

EE 1+T E.val:= E1.val+T.val

A.Y 2024-25 COMPILER DESIGN

86|Page DEPARTMENT OF CSE

EE 1-TE.val:= E1.val-T.val

E T E.val:=T.val

T (E) T.val:=E.val

T num T.val:=num.lexval

We now come to implementation. We decide how we use parse tree and L-attribute

definitions to construct the parse tree with a one-to-one correspondence. We first look at the top-

down translation scheme. The firstmajor problem is leftrecursion. If we remove leftrecursion

byour standard mechanism, we introduce new symbols, and new symbols willnot work withthe

existing actions. Also, we have to do the parsing in a single pass.

TYPESYSTEMANDTYPECHECKING:

.Ifboththeoperandsofarithmeticoperators+,-,xareintegers thentheresultisoftypeinteger

.Theresultofunary&operatorisapointertotheobjectreferredtobytheoperand.

-Ifthe type ofoperandisXthentype ofresultispointertoX

InPascal,typesareclassifiedunder:

1. Basictypes: These areatomictypeswithno internalstructure.Theyinclude thetypesboolean,

character, integer and real.

2. Sub-rangetypes: Asub-range type defines a rangeofvalues withinthe range ofanothertype. For

example, type A = 1..10; B = 100..1000; U = 'A'..'Z';

3. Enumerated types: An enumerated type is defined by listing all of the possible values for the

type. For example: type Colour = (Red, Yellow, Green); Country = (NZ, Aus, SL, WI, Pak, Ind,

SA, Ken, Zim, Eng); Both the sub-range and enumerated types can be treated as basic types.

4. Constructed types: A constructed type is constructed from basic types and other basic types.
Examples of constructed types are arrays, records and sets. Additionally, pointers and functions

can also be treated as constructed types.

TYPEEXPRESSION:

Itisanexpressionthat denotesthetypeofanexpression. Thetypeofa languageconstruct is denoted
by a type expression

Itiseither abasictypeorit is formedbyapplyingoperatorscalledtypeconstructorto other
type expressions

Atype constructorapplied toatypeexpressionisatypeexpression

Abasic typeistype expression

- typeerror:errorduringtypechecking

- void:notypevalue

A.Y 2024-25 COMPILER DESIGN

87|Page DEPARTMENT OF CSE

The type of a language construct is denoted by a type expression. A type expression is either a

basictypeorisformedbyapplyinganoperatorcalledatypeconstructortoothertypeexpressions.

Formally, a type expression is recursively defined as:

1. Abasictypeisatypeexpression.Amongthebasictypesareboolean,char,integer,andreal

.A special basic type, type_error , is used to signal an error during type checking. Another

specialbasictypeisvoidwhichdenotes"theabsenceofavalue"and isusedto checkstatements.

2. Sincetypeexpressionsmaybenamed,atypenameisatypeexpression.

3. Theresultofapplyingatypeconstructortoatypeexpressionisatypeexpression.

4. Typeexpressionsmaycontainvariableswhosevaluesaretypeexpressions themselves.

TYPECONSTRUCTORS:areusedtodefineorconstructthetypeofuserdefinedtypesbased on their

dependent types.

Arrays: IfT isatypeexpressionandI isarangeofintegers,thenarray(I,T)isthetype expression

denoting the type of arraywith elements oftype T and index set I.

Forexample,thePascaldeclaration, varA:array[1 .. 10]ofinteger;associatesthetype

expression array (1..10, integer) with A.

Products: IfT1andT2aretypeexpressions,thentheirCartesianproduct T1XT2isalso atype

expression.

Records:Arecordtypeconstructorisappliedtoatuple formed fromfield namesand field types.

For example, the declaration

Considerthedeclaration

type row = record

addr:integer;
lexeme:array[1..15]ofchar

end;

vartable:array[1..10]ofrow;

Thetyperowhastypeexpression: record((addrxinteger)x(lexemexarray(1..15,char)))

andtypeexpressionoftableisarray(1..10,row)

Note:Includingthefieldnames inthetypeexpressionallowsustodefineanotherrecordtype with

the same fields but with different names without being forced to equatethe two.

Pointers:IfT isatypeexpression,thenpointer(T)isatypeexpressiondenotingthetype "pointer to

an object of type T".

Forexample,inPascal,thedeclaration

var p: row declaresvariableptohavetypepointer(row).

A.Y 2024-25 COMPILER DESIGN

88|Page DEPARTMENT OF CSE

Functions : Analogous to mathematical functions, functions in programming languages may be

defined as mapping a domaintype Dto arangetype R. Thetype ofsucha function is denotedby the

type expression D R. For example, the built-in function mod ofPascal has domain type int X int,

and range type int . Thus we say mod has the type: int xint -> int

Asanotherexample,accordingtothePascaldeclaration

function f(a, b: char) : integer;

Herethetypeoffisdenotedbythetypeexpressionischarxcharpointer(integer)

SPECIFICATIONSOFATYPECHECKER:Consider alanguagewhichconsistsofa

sequence of declarations followed by a single expression

P D;E

D D ;D |id:T

T char| integer |array[num]ofT|^T E

literal| num | E mod E | E [E] | E ^

Atypecheckerisatranslationschemethatsynthesizesthetypeofeachexpressionfromthetypes

ofitssub-expressions. Considertheabovegivengrammarthat generatesprogramsconsistingofa

sequence of declarations D followed by a single expression E.

Specificationsofatypecheckerforthelanguage oftheabovegrammar:Aprogramgenerated by this

grammaris

key: integer;

keymod 1999

Assumptions:

1. Thelanguagehasthreebasictypes:char,intandtype-error

2. Forsimplicity, allarraysstart at1.Forexample, thedeclarationarray[256]ofchar leadstothe type

expression array (1.. 256, char).

RulesforSymbolTableentry

D id:T addtype(id.entry,T.type)

T char T.type=char

T integer T.type=int

T ^T1 T.type=pointer(T1.type)

T array[num]ofT1 T.type=array(1..num, T1.type)

A.Y 2024-25 COMPILER DESIGN

89|Page DEPARTMENT OF CSE

TYPECHECKINGOFFUNCTIONS:

ConsidertheSyntaxDirected Definition,

E E1(E2) E.type=ifE2.type==sand

E1.type == s t

thent

elsetype-error

Therules forthesymboltableentryarespecifiedabove. Thesearebasicallythewayinwhich the
symbol table entries corresponding to the productions are done.

Typecheckingoffunctions

The production E -> E (E) where an expression is the application of one expression to another

can be used to represent the application of a function to an argument. The rule for checking the

type of a function application is

E ->E1(E2){E.type:=ifE2.type== s andE1.type== s ->tthentelsetype_error }

Thisrulesaysthat inanexpressionformedbyapplyingE1toE2,thetypeofE1must bea function s-

>tfromthetype sofE2to some range type t ;the type ofE1 (E2)ist .The above rule canbe

generalizedtofunctionswithmorethanoneargument byconstructingaproducttype consistingof the

arguments. Thus n arguments of type T1 , T2

...Tncanbe viewedasasingleargumentofthetypeT1XT2...XTn. Forexample, root : (real

real) X real real

declaresafunctionrootthattakesafunction fromrealstorealsandarealasargumentsand returns a

real. The Pascal-like syntax for this declaration is

functionroot(functionf(real):real;x:real):real

TYPECHECKINGFOREXPRESSIONS:considerthefollowingSDDforexpressions

E literal E.type=char

E num E.type=integer

E id E.type=lookup(id.entry)

E E1modE2 E.type=ifE 1.type==integerand

E2.type==integer

then integer

A.Y 2024-25 COMPILER DESIGN

90|Page DEPARTMENT OF CSE

elsetype_error

E E1[E2] E.type=ifE2.type==integerand

E1.type==array(s,t)

thent

elsetype_error

E E1^ E.type=ifE1.type==pointer(t)

then t

elsetype_error

Toperformtypecheckingofexpressions,followingrulesareused.Wherethesynthesizedattribute

typeforEgivesthetypeexpressionassigned bythetypesystemtotheexpressiongeneratedbyE.

Thefollowingsemanticrulessaythat constantsrepresentedbythetokensliteralandnumhave type char

and integer , respectively:

E -> literal { E.type := char }

E->num{E.type:=integer }

.The functionlookup(e)isusedtofetchthetypesavedinthesymbol-tableentrypointedtoby

e.Whenanidentifierappearsinanexpression, itsdeclaredtype isfetchedandassignedtothe

attribute type:

E ->id{ E.type:=lookup(id.entry)}

.Accordingtothefollowingrule, theexpressionformedbyapplyingthe modoperatortotwo sub-

expressions oftype integer has type integer ; otherwise, its type is type_error .

E ->E1modE2{E.type:= ifE1.type==integer andE2.type== integertheninteger else

type_error}

InanarrayreferenceE1[E2],theindexexpressionE2must havetypeinteger, inwhichcase the
result is the element type t obtained fromthe type array (s, t) ofE1.

E->E1[E2]{E.type:= ifE2.type== integer andE1.type== array (s,t)thentelse

type_error}

Withinexpressions,thepostfixoperator yieldstheobject pointedtobyitsoperand.ThetypeofE is the
type t of the object pointed to bythe pointer E:

EE1{E.type:=ifE1.type ==pointer(t)thentelse type_error}

A.Y 2024-25 COMPILER DESIGN

91|Page DEPARTMENT OF CSE

TYPECHECKINGOFSTATEMENTS:Statementstypicallydonothavevalues.Specialbasic type

void can be assigned to them. Consider the SDD for the grammar below which generates

Assignment statements conditional, and looping statements.

S id := E S.Type=ifid.type==E.type

then void

elsetype_error

S ifE thenS1 S.Type=ifE.type== boolean

then S1.type

elsetype_error

S whileEdoS1 S.Type=ifE.type== boolean

thenS1.type

elsetype_error

S S1 ; S2 S.Type=ifS1.type==void

and S2.type == void

thenvoid

elsetype_error

Sincestatementsdo nothavevalues,thespecialbasictypevoid isassignedtothem, but ifan error is

detected within a statement, the type assigned to the statementis type_error .

The statements considered below are assignment, conditional, and whilestatements. Sequences of

statements are separated by semi-colons. The productions given below can be combined with

thosegivenbeforeifwechangetheproductionforacompleteprogramtoP->D;S.Theprogram now

consists of declarations followed by statements.

Rulesfortypechecking thestatementsaregivenbelow.

1. Sid:=E{ S.type:=ifid.type==E.typethenvoidelsetype_error}

Thisrulechecksthattheleftandrightsidesofanassignmentstatementhavethesametype.

2. SifEthenS1{S.type := ifE.type == booleanthenS1.type else type_error}

Thisrulespecifiesthattheexpressionsinanif-thenstatementmusthavethetypeboolean.

3. Swhile Edo S1{S.type:=ifE.type==booleanthenS1.typeelsetype_error}

Thisrulespecifiesthattheexpressioninawhilestatementmusthavethetypeboolean.

4. SS1;S2 {S.type:=ifS1.type ==voidand S2.type==voidthenvoid elsetype_error}

A.Y 2024-25 COMPILER DESIGN

92|Page DEPARTMENT OF CSE

Errorsarepropagatedbythis last rule becauseasequenceofstatementshastypevoidonlyif each

sub-statement has type void.

IMPORTANT&EXPECTEDQUESTIONS

1. WhatdoyoumeanbyTHREEADDRESSCODE?Generatethethree-addresscodefor the

following code.

begin

do
begin

I:=1;

PROD:= 0;

End

PROD:=PROD+A[I]B[I];

I:=I+1

Comiler

designwhileCIO<M=P2IL0ERenDdESIGN

A.Y 2024-25

93|Page DEPARTMENTOFCSE

2. Writeashort noteonAttributed grammar&Annotated parsetree.

3. Defineanintermediatecodeform.Explainvariousintermediatecodeforms?

4. WhatisSyntaxDirectedTranslation?ConstructSyntaxDirectedTranslationschemeto

convert a given arithmetic expression into three address code.

5. WhatareSynthesizedandInheritedattributes?Explainwithexamples?

6. ExplainSDTforSimpleTypechecker?

7. Defineandconstructtriples,quadruplesandindirecttriplenotationsofanexpression:a*

-(b+c).

ASSIGNMENTQUESTIONS:

1. WriteThreeaddresscodeforthebelowexample

While(i<10)

{
a=b+c*-d;

i++;

}

2. What isaSyntaxDirectedDefinition?WriteSyntaxDirecteddefinitiontoconvert binary
value in to decimal?

A.Y 2024-25 COMPILER DESIGN

94|Page DEPARTMENT OF CSE

SYMBOLTABLE
SymbolTable(ST) : Isadatastructureused bythe compiler to keeptrackofscope and binding

information about names

-Symboltableischangedeverytimeanameisencounteredinthesource;

Changestotableoccur whenever anew name isdiscovered;new informationaboutanexisting name

is discovered

Asweknowthecompilerusesasymboltabletokeeptrackofscopeandbindinginformationabout

names.ItisfilledaftertheAST is madebywalkingthroughthetree,discoveringand assimilating

information about the names. There should be two basic operations - to insert a new name or

information intothe symboltable asand whendiscovered and to efficiently lookup aname inthe

symbol table to retrieve its information.

Twocommondata structuresused forthesymboltableorganizationare-

1. Linearlists:-Simpletoimplement,Poorperformance.

2. Hash tables:- Greater programming / space overhead, but, Good performance.

Ideallyacompilershouldbeableto growthesymboltabledynamically, i.e.,insert newentries or

information as and when needed.

Butifthesizeofthetable isfixed inadvancethen(anarrayimplementationforexample),then the size

must be big enough in advance to accommodate the largest possible program.

Foreachentryindeclarationofaname

- The formatneednot beuniformbecauseinformationdependsupontheusageofthename

- Eachentryisarecordconsistingofconsecutivewords

- Tokeeprecordsuniformsomeentriesmaybeoutsidethesymboltable

Information is entered into symbol table at various times. For example,

- keywordsareenteredinitially,

- identifierlexemesareenteredbythelexicalanalyzer.

.Symboltableentrymaybeset upwhenroleofname becomesclear,attributevaluesare filled in as

information is available during the translation process.

Foreachdeclarationofaname,there isanentryinthesymboltable. Different entriesneed to

store different information because of the different contexts in which a name can occur. An

entrycorresponding to a particular name can be inserted into the symbol table at different stages

dependingonwhentheroleofthe name becomesclear. The variousattributesthatanentryinthe symbol

table can have are lexeme, type of name, size of storage and in case of functions - the parameter

list etc.

Anamemaydenoteseveralobjectsinthesameblock

- intx;structx{floaty,z;}

The lexicalanalyzer returnsthe name itselfand not pointer to symboltable entry. Arecord inthe

symboltableiscreatedwhenroleofthenamebecomesclear. Inthiscasetwo symboltableentries are

created.

Aattributesofanameare entered inresponse todeclarations

A.Y 2024-25 COMPILER DESIGN

95|Page DEPARTMENT OF CSE

Labelsareoften identifiedbycolon

Thesyntaxofprocedure/functionspecifiesthat certainidentifiersare formals, charactersina name.

There is a distinction between token id, lexeme and attributes of the names.

Itisdifficulttoworkwithlexemes

ifthereismodestupper boundonlengththenlexemescanbestoredinsymboltable

iflimitislargestorelexemesseparately

There might be multiple entries inthe symboltable forthe same name, allofthemhaving

differentroles.Itisquiteintuitivethatthesymboltableentrieshavetobemadeonlywhenthe role of a

particular name becomes clear. The lexical analyzer therefore just returns the name and not the

symbol table entryas it cannot determine the context of that name. Attributes corresponding

tothesymboltableareenteredforaname inresponsetothecorresponding declaration. Therehas to be

an upper limit for the length of the lexemes for themto be stored in the symboltable.

STORAGEALLOCATIONINFORMATION: Informationabout storagelocationsiskept in the

symbol table.

Iftarget codeisassemblycode,thenassembler cantakecareofstorage forvariousnamesand the
compiler needs to generate data definitions to be appended to assembly code

Iftarget codeis machinecode,thencompiler doestheallocation. Nostorageallocationisdone for

names whose storage is allocated at runtime

Information about the storage locations that will be bound to names at run time is kept in

thesymboltable. Ifthetarget isassemblycode,theassembler cantakecareofstoragefor various names.

Allthecompiler hasto do istoscanthesymboltable, aftergeneratingassemblycode, and

generateassemblylanguagedatadefinitionstobeappendedtotheassemblylanguageprogramfor

eachname.Ifmachinecodeistobegeneratedbythecompiler,thenthepositionofeachdataobject

relativetoafixedoriginmust beascertained. Thecompilerhastodothe allocationinthiscase. In the

case of names whose storage is allocated on a stack or heap, the compiler does not allocate

storage at all, it plans out the activation record for each procedure.

STORAGEORGANIZATION: Theruntimestoragemightbe
subdivided into :

Targetcode,

Dataobjects,

Stacktokeeptrackofprocedureactivation,and

Heaptokeepallotherinformation

This kind of organization of run-time storage is used for languages such as

Fortran, Pascal and C. The size of the generated target code, as well as that of

some ofthe dataobjects, is known at compile time. Thus, these can be stored

A.Y 2024-25 COMPILER DESIGN

96|Page DEPARTMENT OF CSE

instaticallydeterminedareasinthememory.

STORAGEALLOCATIONPROCEDURECALLS: PascalandCusethe

stack for procedure activations. Whenever a procedure is called, execution of

activationgetsinterrupted,andinformationaboutthemachinestate(likeregister

values) is stored on the stack.

When the called procedure returns, the interrupted activation can be restarted after restoring the

saved machine state. The heap may be used to store dynamically allocated data objects, and also

otherstuffsuchasactivationinformation(inthecaseoflanguageswhereanactivationtree cannot be

used to represent lifetimes). Both the stack and the heap change in size during program

execution,sotheycannotbeallocatedafixedamountofspace. Generallytheystartfromopposite ends of

the memory and can grow as required, towards each other, until the space available has filled up.

ACTIVATION RECORD: An Activation Record is a data structure that is activated/ created

when a procedure / function are invoked and it contains the following information about the

function.

Temporaries:usedinexpressionevaluation

Localdata:fieldforlocaldata

Savedmachinestatus:holdsinfoaboutmachinestatusbefore
procedure call

Accesslink:toaccessnonlocaldata

Controllink:pointstoactivationrecordofcaller

Actualparameters: fieldtohold actualparameters

Returnedvalue:fieldforholdingvaluetobereturned

The activation record is used to store the information required by a

single procedure call. Not all the fields shown in the figure may be

neededforalllanguages.Therecordstructurecanbemodifiedasperthe

language/compiler requirements.

ForPascalandC,theactivationrecordisgenerallystoredontherun- time

stack during the period when the procedure is executing.

Ofthefieldsshowninthefigure,accesslinkandcontrollinkareoptional(e.g.FORTRANdoesn't need

access links). Also, actual parameters and return values are often stored in registers instead of the

activation record, for greater efficiency.

Theactivationrecordforaprocedurecallisgeneratedbythecompiler. Generally, all field

sizes can be determined at compile time.

A.Y 2024-25 COMPILER DESIGN

97|Page DEPARTMENT OF CSE

However,thisisnotpossible inthecaseofaprocedurewhichhasalocalarraywhosesizedepends on a

parameter. The strategies used for storage allocation in such cases will be discussedin forth

coming lines.

STORAGEALLOCATIONSTRATEGIES:Thestorageisallocatedbasicallyinthefollowing

THREE ways,

Staticallocation:laysoutstorageatcompiletimeforalldataobjects

Stackallocation:managestheruntimestorageasastack

Heapallocation:allocatesandde-allocatesstorageasneededatruntimefromheap

These represent the different storage-allocation strategies used in the distinct parts of the

run-time memoryorganization(as shown inslide 8). We willnow look atthe possibilityofusing

these strategies to allocate memory for activation records. Different languages use different

strategies for this purpose. For example, old FORTRAN used static allocation, Algol type

languages use stack allocation, and LISP type languages use heap allocation.

STATIC ALLOCATION: Inthisapproach memoryisallocated statically. So,Namesare bound to

storage as the program is compiled

Noruntimesupportisrequired

Bindingsdonotchangeatruntime

Oneveryinvocationofprocedure namesareboundtothe samestorage

Valuesoflocalnamesare retainedacrossactivationsofaprocedure

These are the fundamental characteristics of static allocation. Since name binding occurs during

compilation, there is no need for a run-time support package. The retention oflocal name values

across procedure activations means that when control returns to a procedure, the values of the

localsarethesameastheywerewhencontrollastleft.Forexample,supposewehadthe following code,

written in a language using static allocation:

functionF()

{

int a;

print(a);

a = 10;

}

Aftercalling F()once, ifit wascalledasecondtime, thevalueofawould initiallybe10,andthis is what

would get printed.

The type of a name determines its storage requirement. The address for this storage is an offset

fromtheprocedure'sactivationrecord,andthecompilerpositionstherecordsrelativetothetarget code

and to one another (on some computers, it may be possible to leave thisrelative

A.Y 2024-25 COMPILER DESIGN

98|Page DEPARTMENT OF CSE

position unspecified, and let the link editor link the activation records to the executable code).

After this position has been decided, the addresses of the activation records, and hence of the

storage for eachname inthe records,are fixed. Thus, at compile time, the addressesat which the

target codecanfind thedatait operatesuponcanbe filled in. Theaddressesat which information is to

be saved whena procedure calltakes place are also knownat compile time. Static allocation does

have some limitations.

- Sizeofdataobjects,aswellasanyconstraintsontheirpositionsinmemory, must be

available at compile time.

- Norecursion, becauseallactivationsofagivenprocedureusethesame bindingsfor local

names.

- Nodynamicdatastructures,sincenomechanismisprovidedforruntimestorageallocation.

STACK ALLOCATION: Figure shows the activation records that are pushed onto and popped

for the run time stack as the control flows through the given activation tree.

First the procedure is activated. Procedure readarray 's activation is pushed onto the stack, when

thecontrolreachesthefirst line intheproceduresort.Afterthecontrolreturnsfromtheactivation ofthe

readarray, its activation is popped. Inthe activation ofsort ,the controlthen reaches a call of qsort

with actuals 1 and 9 and an activation of qsort is pushed onto the top of thestack. In the last stage

the activations for partition (1,3) and qsort (1,0) have begun and ended during the life time of

qsort (1,3), so their activation records have come and gone from the stack, leaving the activation

record for qsort (1,3) on top.

CALLINGSEQUENCES:Acallsequenceallocatesanactivationrecordandentersinformation into

its field. A return sequence restores the state of the machine so that calling procedure can

continue execution.

Callingsequenceandactivationrecordsdiffer,evenforthesamelanguage.Thecodeinthecalling
sequence is often divided between the calling procedure and the procedure it calls.

A.Y 2024-25 COMPILER DESIGN

99|Page DEPARTMENT OF CSE

Thereisnoexactdivisionofruntimetasksbetweenthecaller and

the colleen.

Asshowninthefigure,theregisterstacktoppointstotheend of the

machine status field in the activation record.

This position is known to the caller, so it can be made
responsible for setting up stack top before control flows to the
called procedure.

ThecodefortheCalleecanaccess itstemporariesandthe local data

using offsets from stack top.

CallSequence:Inacallsequence,followingsequenceofoperationsisperformed.

Callerevaluatestheactualparameters

Caller storesreturnaddressandothervalues(controllink)intocallee‘sactivationrecord

Calleesavesregistervaluesandother statusinformation

Calleeinitializesitslocaldataandbeginsexecution

The fields whose sizes arefixed early are placedin the middle. The decision of whether or

not to usethe controland access links is part ofthe design of the compiler, so these fields can be

fixed at compiler constructiontime. Ifexactlythe same amount ofmachine-status information

issaved foreachactivation,thenthesamecodecandothesavingandrestoring forallactivations.

Thesizeoftemporaries may not beknowntothe front end. Temporariesneeded bytheprocedure may

be reduced by careful code generation or optimization. This field is shown after that for the local

data. The caller usually evaluates the parameters and communicates themto the activation

recordofthe callee. Inthe runtime stack, the activation recordof the calleris just below that for the

callee. The fields for parameters and a potential return value are placed next to the activation

record of the caller. The caller can then access these fields using offsets from the end of its own

activation record. In particular, there is no reason for the caller to know about the local data or

temporaries of the callee.

ReturnSequence:Inareturnsequence,followingsequenceofoperationsareperformed.

A.Y 2024-25 COMPILER DESIGN

100|Page DEPARTMENT OF CSE

Calleeplacesareturnvaluenext toactivationrecordofcaller

Restoresregistersusinginformationinstatusfield

Branchtoreturnaddress

Callercopiesreturnvalueintoitsownactivationrecord

As described earlier, in the runtime stack, the activation record of the caller is just below

that for the callee. The fields for parameters and a potential return value are placed next to the

activation record of the caller.The caller can then access thesefields using offsets from the end of

its own activation record. The caller copies the return value into its own activation record. In

particular,thereisno reasonforthecallertoknowaboutthelocaldataortemporariesofthe callee. The

given calling sequence allows the number ofarguments ofthe called procedureto depend on the

call. At compile time, the target code of the caller knows the number of arguments it is supplying

to the callee. The caller knows the size of the parameter field. The target code of the called must

be prepared to handle other calls as well, so it waits until it is called, then examines the parameter

field. Information describing the parameters must be placed next to the status field so the callee

can find it.

LongLengthData:

The procedure P has three local arrays. The storage for these arrays is not part of the

activation record for P; only a pointer to the beginning of each array appears in the activation

record. The relative addresses ofthese pointers are known at the compile time, so the target code

can access array elements through the pointers. Also shown is the procedure Q called by P . The

activation record for Q begins after the arrays of P. Access to data on the stack is through two

pointers, top and stack top. The first ofthese marks the actualtopofthe stack; it points to the

A.Y 2024-25 COMPILER DESIGN

101|Page DEPARTMENT OF CSE

positionat whichthe next activation record begins. The second is used to find the local data. For

consistencywiththe organizationofthe figure inslide 16, supposethe stacktop pointstothe end

ofthemachinestatusfield.Inthisfigurethestacktoppointstotheendofthisfield inthe activation

recordfor Q. Within the field isacontrollink tothepreviousvalueofstacktopwhencontrolwas

incalling activationofP. The codethat repositions top and stacktopcanbe generated at compile

time, using the sizesofthe fields in the activationrecord. Whenq returns, the new value oftopis

stacktopminus the lengthofthe machine statusandthe parameter fields inQ's activationrecord. This

length is knownat the compile time, at least to the caller. After adjusting top,the new value of

stack top can be copied from the control link of Q.

DanglingReferences:Referringto locationswhichhave beende-allocated.

void main()

{

int*p;

p=dangle();/*danglingreference*/

}

int*dangle();

{

int i=23;

return&i;

}

Theproblemofdanglingreferencesarises,wheneverstorageisde-allocated.Adanglingreference

occurs when there is a reference to storage that has been de-allocated. It is a logical error to use

danglingreferences,sincethevalueofde-allocatedstorageisundefinedaccordingtothesemantics of

most languages. Since that storage may later be allocated to another datum, mysterious bugs can

appear in the programs with dangling references.

HEAP ALLOCATION: Ifa procedure wantstoput avalue that is to be used after its activation is

over then we cannot use stack for that purpose. That is language like Pascal allows data to be

allocatedunderprogramcontrol.Also incertainlanguageacalledactivationmayoutlivethecaller

procedure. Insucha case last-in-first-out queuewillnot workand wewillrequire a data structure

likeheaptostoretheactivation.Thelast caseisnottrueforthoselanguageswhoseactivationtrees

correctly depict the flow of control between procedures.

LimitationsofStackallocation:It cannotbeusedif,

o Thevaluesofthelocalvariablesmustberetainedwhenanactivationends

o Acalledactivationoutlivesthecaller

Insucha casede-allocationofactivationrecordcannotoccurin last-infirst-outfashion

Heap allocationgivesoutpiecesofcontiguousstorageforactivationrecords

A.Y 2024-25 COMPILER DESIGN

102|Page DEPARTMENT OF CSE

Therearetwo aspectsofdynamicallocation-:

- Runtimeallocationand de-allocationofdata structures.

- Languages like Algolhavedynamicdatastructuresand it reservessomepartofmemory for

it.

Initializing data-structures may require allocating memory but where to allocate this

memory. After doingtype inferencewe haveto dostorageallocation. It willallocatesomechunk of

bytes. But in language like LISP, it will try to give continuous chunk. The allocation in

continuous bytes may lead to problem of fragmentation i.e. you may develop hole in process of

allocation and de-allocation. Thus storage allocation of heap may lead us with many holes and

fragmentedmemorywhichwillmakeithardtoallocatecontinuouschunkofmemorytorequesting

program.So,wehave heap mangerswhichmanagethefreespaceandallocationandde-allocation

ofmemory. It would beefficient to handle smallactivationsand activationsofpredictablesizeas a

specialcase as described in the next slide. The various allocation and de- allocationtechniques

used will be discussed later.

Fillarequestofsize swithblock ofsize s'wheres'isthesmallestsizegreaterthanorequaltos

- Forlargeblocksofstorageuseheapmanager

- Forlarge amount ofstoragecomputation maytakesometime to use upmemoryso that

time taken by the manager may be negligible compared to the computation time

Asmentionedearlier,forefficiencyreasonswecanhandlesmallactivationsandactivationsof
predictable size as a special case as follows:

1. Foreachsizeofinterest,keepalinkedlistiffreeblocksofthatsize

2. If possible, fill a request for size s with a block of size s', where s' is the smallest size greater

thanorequaltos.Whentheblockiseventuallyde-allocated, itisreturnedtothelinked list it came from.

3. Forlargeblocksofstorageusetheheapmanger.

Heapmangerwilldynamicallyallocate memory. Thiswillcomewitharuntimeoverhead.

Asheapmanagerwillhavetotakecareofdefragmentationandgarbagecollection. Butsinceheap

manger saves space otherwise we will have to fix size of activation at compile time, runtime

overhead is the price worth it.

ACCESSTONON-LOCALNAMES:

Thescoperulesofa languagedecide howtoreferencethenon-localvariables. Therearetwo

methods that are commonly used:

1. StaticorLexicalscoping:Itdeterminesthedeclarationthat appliesto anamebyexamining the

program text alone. E.g., Pascal, C and ADA.

2. DynamicScoping:Itdeterminesthedeclarationapplicabletoanameat runtime,by

considering the current activations. E.g., Lisp

A.Y 2024-25 COMPILER DESIGN

103|Page DEPARTMENT OF CSE

ORGANIZATIONFORBLOCKSTRUCTURES:

Ablock isaanysequenceofoperationsorinstructionsthat areusedtoperforma[sub] task.In any

programming language,

Blockscontainits ownlocaldatastructure.

Blockscanbenestedandtheir starting andendsaremarkedbyadelimiter.

 They ensure that either block is independent of other or nested in another block. Thatis,it

isnotpossiblefortwoblocksB1andB2tooverlapinsuchawaythatfirstblockB1begins, then B2,

but B1 end before B2.

This nestingpropertyiscalledblockstructure.Thescopeofadeclaration inablock-

structured language is given by the most closely nested rule:

1. Thescopeofadeclaration inablock BincludesB.

2. Ifaname Xis notdeclaredin a block B, then an occurrence of Xin B isin the scope ofa

declarationofX inanenclosing block B 'suchthat. B'has a declarationofX, and. B' is more

closely nested around B then anyother block with a declaration ofX.

Forexample, considerthefollowingcodefragment.

For the example, in the above figure, the scope of declaration of b in B0 does not include B1

because b is re-declared in B1. We assume that variables are declared before the first statementin

which they are accessed. The scope of the variables will be as follows:

A.Y 2024-25 COMPILER DESIGN

104|Page DEPARTMENT OF CSE

DECLARATION SCOPE

inta=0 B0notincludingB2

intb=0 B0notincludingB1

intb=1 B1notincludingB3

inta=2 B2 only

intb=3 B3 only

Theoutcomeoftheprintstatementwillbe,therefore:

21

03

01

00

Blocks:.Blocksaresimplertohandlethanprocedures

.Blockscanbetreatedasparameterlessprocedures

.Usestackformemoryallocation

.Allocatespacefor completeprocedurebodyatonetime

Therearetwomethodsofimplementingblockstructureincompilerconstruction:

1. STACKALLOCATION:Thisisbasedontheobservationthat scopeofadeclarationdoesnot extend

outside the block in which it appears, the space for declared name can be allocated when the

block is entered and de-allocated when controls leave the block. The view treat blockas a

"parameter less procedure" called only fromthe point just before the block and returning onlyto

the point just before the block.

2. COMPLETE ALLOCATION: Here you allocate the complete memory at one time. If there

are blocks within the procedure, then allowance is made for the storage needed for declarations

withinthe books.Iftwo variables are never alive at the same time and are at same depththeycan be

assigned same storage.

A.Y 2024-25 COMPILER DESIGN

105|Page DEPARTMENT OF CSE

DYNAMICSTORAGEALLOCATION:

GenerallylanguageslikeLispandMLwhichdo notallow forexplicit de-allocationofmemorydo

garbage collection. Areference to apointerthat isno longer valid is called a'danglingreference'. For

example, consider this C code:

intmain(void)

{

int*a=fun();

}

int* fun()

{
int a=3;

int*b=&a;

return b;

}

Here, the pointer returned by fun() no longer points to a valid address in memory as the

activation of fun() has ended. This kind of situation is called a 'dangling reference'. In case of

explicitallocationit is more likelytohappenastheusercande-allocateanypartofmemory, even

something that has to a pointer pointing to a valid piece of memory.

InExplicit AllocationofFixed Sized Blocks, Linktheblocks ina list ,and Allocationand de-

allocation can be done with very little overhead.

A.Y 2024-25 COMPILER DESIGN

106|Page DEPARTMENT OF CSE

The simplest formofdynamic allocation involves blocks ofa fixed size. By linking the blocks in a

list, as shown in the figure, allocation and de-allocation can be done quickly with little or no

storage overhead.

ExplicitAllocationof FixedSizedBlocks:Inthisapproach,blocksaredrawnfrom
contiguous area ofstorage, and an area ofeach block is used as pointer to the next block

Thepointer availablepointstothefirstblock

Allocationmeansremovingablockfromtheavailablelist

De-allocation meansputtingtheblockintheavailablelist

Compilerroutinesneednotknowthetype ofobjectsto beheldintheblocks

Eachblockistreatedasavariantrecord

Supposethat blocksareto bedrawnfromacontiguousareaofstorage.Initializationofthe

areaisdonebyusingaportionofeachblockforalinktothenext block. Apointeravailablepoints to the

first block. Generally a list of free nodes and a list of allocated nodes is maintained, and

whenever a new block has to be allocated, the block at the head of the free list is taken off and

allocated (added tothe list ofallocated nodes). Whena node has to be de-allocated, it is removed

from the list of allocated nodes by changing the pointer to it in the list to point to the block

previously pointed to by it, and then the removed block is added to the head of the list of free

blocks.Thecompiler routinesthatmanage blocksdo notneedtoknowthetypeofobject thatwill

beheldintheblock bytheuser program. These blockscancontainanytypeofdata (i.e.,theyare used as

generic memory locations by the compiler). We can treat each block as a variant record, with the

compiler routines viewing the block as consisting of some other type. Thus, there is no

spaceoverhead becausetheuser programcanusetheentireblock for itsownpurposes. Whenthe block

is returned, then the compiler routines use some ofthe space fromthe block itselfto link it into the

list ofavailable blocks, as shown in the figure in the last slide.

ExplicitAllocationofVariableSizeBlocks:

Limitations of Fixed sized block allocation: In explicit allocation of fixed size blocks, internal

fragmentation canoccur,that is, the heap mayconsist ofalternate blocks that arefree and in use, as
shown in the figure.

Thesituationshowncanoccur ifaprogramallocates five blocksandthende-allocatesthesecond and

the fourth, for example.

Fragmentation is of no consequence if blocks are of fixed size, but if theyare of variable size, a

situation like this is a problem, because we could not allocate a block larger than any one of the

free blocks, even though the space is available in principle.

So, ifvariable- sized blocks are allocated,then internalfragmentationcanbe avoided, as weonly

allocate as much space as we need in a block. But this creates the problem of external

fragmentation, where enough space is available in total for our requirements, but not enough

A.Y 2024-25 COMPILER DESIGN

107|Page DEPARTMENT OF CSE

spaceisavailable incontinuousmemorylocations,asneeded forablockofallocatedmemory. For

example, consider another case where we need to allocate 400 bytes of data for the next request,

and theavailablecontinuousregionsofmemorythat wehaveareofsizes300, 200and 100bytes. So we

have a total of 600 bytes, which is more than what we need. But still we are unable to allocate the

memory as we do not have enough contiguous storage.

Theamountofexternalfragmentationwhileallocatingvariable-sizedblockscanbecomeveryhigh on

using certain strategies for memory allocation.

Sowetrytousecertainstrategiesformemoryallocation,sothatwecanminimizememorywastage due to

external fragmentation. These strategies are discussed in the next few lines.

.Storagecanbecomefragmented,Situation mayarise,Ifprogramallocatesfiveblocks

.thende-allocatessecond andfourthblock

IMPORTANT QUESTIONS:

1. Whatarecallingsequence,andReturnsequences?Explainbriefly.

2. WhatisthemaindifferencebetweenStatic&Dynamicstorageallocation?Explainthe

problems associated with dynamic storage allocation schemes.

3. What istheneedofadisplayassociatedwithaprocedure?Discusstheproceduresfor

maintaining the display when the procedures are not passed as parameters.

4. Writenotesonthestaticstorageallocationstrategywithexampleanddiscuss its

limitations?

5. Discussaboutthestackallocationstrategyofruntimeenvironmentwithanexample?

6. Explaintheconceptofimplicitdeallocationofmemory.

7. Giveanexampleofcreating danglingreferencesandexplain howgarbageiscreated.

ASSIGNMENTQUESTIONS:

1. Whatisacallingsequence?Explain briefly.

2. Explaintheproblemsassociatedwithdynamicstorageallocationschemes.

3. ListandexplaintheentriesofActivationRecord.

4. Explainaboutparameterpassing mechanisms.

A.Y 2024-25 COMPILER DESIGN

108|Page DEPARTMENT OF CSE

UNIT-IV

RUNTIMESTORAGEMANAGEMENT:

Tostudytherun-timestoragemanagementsystemitissufficienttofocusonthestatements:action,

call,returnandhalt,becausetheybythemselvesgiveussufficient insight intothebehaviorshown by

functions in calling each other and returning.

And the run-time allocation and de-allocation of activations occur on the call of functions and

when they return.

There are mainly two kinds of run-time allocation systems: Static allocation and Stack

Allocation. While static allocation is used bythe FORTRAN class of languages, stack allocation

is used by the Ada class of languages.

A.Y 2024-25 COMPILER DESIGN

109|Page DEPARTMENT OF CSE

STATICALLOCATION: Inthis,Acallstatement isimplementedbyasequenceoftwo

instructions.

Amoveinstructionsavesthereturnaddress

Agototransfers controltothetargetcode.

The instruction sequence is

MOV#here+20,callee.static-area

GOTO callee.code-area

callee.static-areaandcallee.code-areaareconstantsreferringtoaddressoftheactivationrecord and the

first address of called procedure respectively.

.#here+20 inthe move instructionisthereturnaddress;theaddressofthe instructionfollowing the
goto instruction

.Areturnfromprocedurecallee is implementedby

GOTO *callee.static-area

Forthecallstatement, weneedto savethereturnaddresssomewhereand thenjumptothe

locationofthecallee function. Andtoreturnfroma function, wehaveto accessthereturnaddress as

stored byits caller, and then jump to it. So for call, we first say: MOV #here+20, callee.static-

area. Here, #here refers to the location ofthe current MOV instruction, and callee.static- area is a

fixed location in memory. 20 is added to #here here, as the code corresponding to the call

instruction takes 20 bytes (at 4 bytes for each parameter: 4*3 for this instruction, and 8 for the

next). Thenwe sayGOTO callee. code-area,totake usto the codeofthecallee,ascallee.codearea is

merely the address where the code of the callee starts. Then a return from the callee is

implemented by:GOTO*callee.staticarea. Notethat thisworksonlybecausecallee.static-area is a

constant.

Example:

.Assumeeach 100:ACTION-l

action 120: MOV140, 364

blocktakes 20 132:GOTO200

bytesofspace 140:ACTION-2

.Startaddress 160:HALT

ofcodeforc :

andpis 200:ACTION-3

100and200 220:GOTO*364

COMPILERDESIGN

.The activation

A.Y 2023-24

:

Records 300:

arestatically 304:

allocatedstarting :

ataddresses 364:

300and364. 368:

Thisexamplecorrespondstothecodeshowninslide57.Staticallywesaythatthecodefor c starts

at 100 and that for p starts at 200. At some point, c calls p. Using the strategy discussed

earlier,andassumingthatcallee.staticareaisatthememorylocation364,wegetthecodeasgiven. Here

we assume that a call to 'action' corresponds to a single machine instruction which takes 20 bytes.

STACK ALLOCATION :.Positionoftheactivationrecordisnotknownuntilruntime

. Positionisstoredinaregisteratruntime, and wordsintherecordareaccessedwithan offset from

the register

. Thecodeforthefirst procedureinitializesthestackbysettingupSPtothestartofthe stack area

MOV#Stackstart, SP

codeforthefirstprocedure

HALT

In stack allocation we do not need to know the position ofthe activation record until run-

time. This gives us an advantage over static allocation, as we can have recursion. So this is used

in many modern programming languages like C, Ada, etc. The positions of the activations are

stored in the stack area, and the position for the most recent activation is pointed to bythe stack

pointer. Words in a record are accessed with an offset from the register. The code for the first

procedureinitializesthestackbysettingupSPtothestackareabythe followingcommand: MOV

#Stackstart, SP. Here, #Stackstart is the location in memory where the stack starts.

Aprocedurecallsequence incrementsSP,savesthereturnaddressandtransferscontroltothe called

procedure

ADD#caller.recordsize,SP

MOVE #here+ 16, *SP

GOTO callee.code_area

DEPARTMENTOFCSE 109|Page

A.Y 2024-25 COMPILER DESIGN

110|Page DEPARTMENT OF CSE

Consider the situation when a function (caller) calls the another function(callee), then

procedure call sequence increments SP by the caller record size, saves the return address and

transfers control to the callee by jumping to its code area. In the MOV instruction here, we only

need to add 16, as SP is a register, and so no space is needed to store *SP. The activations keep

getting pushed on the stack, so #caller.recordsize needs to be added to SP, to update the value of

SPtoitsnewvalue. Thisworksas#caller.recordsizeisaconstant forafunction,regardlessofthe

particular activation being referred to.

DATASTRUCTURES:Followingdatastructuresareusedtoimplementsymboltables

LISTDATASTRUCTURE:Couldbeanarraybasedorpointerbased list. Butthis

implementation is

- Simplesttoimplement

- Useasingle arraytostorenamesandinformation

- Searchforanameislinear

- Entryandlookupareindependentoperations

- Costofentryandsearchoperationsareveryhighandlotoftimegoesintobookkeeping

Hashtable:Hashtable isadatastructurewhichgivesO(1)performance inaccessingany element

of it. It uses the features of both arrayand pointer based lists.

-Theadvantagesareobvious

REPRESENTINGSCOPEINFORMATION

Theentries inthesymboltableare for declarationofnames. Whenanoccurrenceofa nameinthe

sourcetextislookedupinthesymboltable,theentryfortheappropriatedeclaration, accordingto the

scoping rules of the language, must be returned. A simple approach is to maintain a separate

symbol table for each scope.

Mostcloselynestedscoperulescanbe implementedbyadaptingthedatastructuresdiscussed in the

previous section. Each procedure is assigned a unique number. If the language isblock-

structured,theblocks must also beassigneduniquenumbers.Thename isrepresentedasa pairof a

number and a name. This new name is added to the symbol table. Most scope rules can be

implemented in terms of following operations:

a) Lookup-findthemostrecentlycreatedentry.

b) Insert-makeanewentry.

c) Delete-removethemostrecentlycreated entry.

d) Symboltable structure

e) .Assignvariablestostorageclassesthatprescribescope,visibility, andlifetime

A.Y 2024-25 COMPILER DESIGN

111|Page DEPARTMENT OF CSE

f) - scoperulesprescribe the symboltablestructure

g) -scope:unitofstaticprogramstructurewithoneormore variabledeclarations

h) -scopemaybe nested

i) .Pascal:proceduresarescopingunits

j) .C:blocks,functions,filesarescopingunits

k) .Visibility,lifetimes,globalvariables

l) . Common(inFortran)

m) . Automatic orstackstorage

n) .Staticvariables

o) storageclass:Astorageclass isanextrakeywordatthebeginningofadeclarationwhich

modifiesthedeclarationinsomeway.Generally,thestorageclass(ifany) isthe first word in the

declaration, preceding the type name. Ex. static, extern etc.

p) Scope:Thescopeofavariable issimplythepartoftheprogramwhere itmaybeaccessed

orwritten.It isthepartoftheprogramwherethe variable's name maybeused.Ifavariable is

declared within a function, it is localtothatfunction. Variables ofthe same name may be

declared and used within other functions without any conflicts. For instance,

q) intfun1()

{

inta;

intb;

....

}

intfun2()

{
inta;

intc;

....

}
Visibility: The visibility of a variable determines how much of the rest of the program

canaccessthat variable.Youcanarrangethatavariable isvisibleonlywithinonepartof one

function, or in one function, or in one source file, or anywhere in the program.

r) Local and Global variables: A variable declared within the braces {} of a function is

visible only within that function; variables declared within functions are called local

variables.Ontheotherhand,avariabledeclaredoutsideofanyfunctionisaglobalvariable

,anditispotentiallyvisibleanywherewithintheprogram.

s) Automatic Vs Static duration: How long do variables last? By default, local variables

(thosedeclaredwithinafunction)haveautomaticduration:theyspringintoexistencewhen

thefunctioniscalled,andthey(andtheirvalues)disappearwhenthefunction

A.Y 2024-25 COMPILER DESIGN

112|Page DEPARTMENT OF CSE

returns. Global variables, onthe other hand, have static duration: they last, and the values

storedinthempersist,foraslongastheprogramdoes.(Ofcourse,thevaluescaningeneral still be

overwritten, so they don't necessarily persist forever.) By default, local variables

haveautomaticduration.Togivethemstaticduration(sothat,insteadofcomingandgoing as the

function is called, they persist for as long as the function does), you precede their

declaration with the static keyword: static int i; By default,a declaration of a global

variable (especially if it specifies an initial value) is the defining instance. To make it an

externaldeclaration,ofavariablewhichisdefinedsomewhereelse, youprecedeit withthe

keywordextern:externint j;Finally,to arrangethataglobalvariable isvisibleonlywithin its

containing source file, you precede it with the static keyword: static int k; Notice that the

static keyword can do two different things: it adjuststhe duration of a local variable

fromautomatic to static, orit adjusts the visibilityofa global variable fromtrulyglobalto

private-to-the-file.

t) Symbolattributesandsymboltableentries

u) Symbolshaveassociatedattributes

v) Typicalattributesarename,type,scope,size,addressingmodeetc.

w) Asymboltableentrycollectstogether attributessuchthattheycanbeeasilyset and

retrieved

x) Exampleoftypicalnamesinsymboltable

Name Type

name characterstring

class enumeration

size integer

type enumeration

LOCALSYMBOLTABLEMANAGEMENT:

Followingareprototypesoftypicalfunctiondeclarationsused formanaging localsymboltable. The

right hand side ofthe arrows is the output ofthe procedure and the left side has the input.

NewSymTab : SymTab SymTab

DestSymTab : SymTab SymTab

InsertSym : SymTab X Symbol boolean

LocateSym:SymTabXSymbol boolean

GetSymAttr : SymTab X Symbol X Attr boolean

SetSymAttr:SymTabXSymbolXAttrXvalue boolean

NextSym : SymTab X Symbol Symbol

MoreSyms:SymTabXSymbol boolean

A.Y 2024-25 COMPILER DESIGN

113|Page DEPARTMENT OF CSE

Amajorconsiderationindesigningasymboltable isthat insertionandretrievalshouldbeasfast as

possible

.Onedimensionaltable:searchisveryslow

.Balancedbinarytree:quick insertion, searchingandretrieval;extraworkrequiredtokeepthe tree

balanced

.Hashtables:quickinsertion,searchingandretrieval;extraworktocomputehashkeys

.Hashing withachainofentriesisgenerallyagood approach

Amajor considerationindesigningasymboltable isthat insertionandretrievalshould be as

fast as possible. We talked about theone dimensionaland hashtables a few slides back. Apart

fromthese balanced binarytrees can be used too. Hashing is the most common approach.

HASHEDLOCALSYMBOLTABLE

Hash tables can clearly implement 'lookup' and 'insert' operations. For implementing the

'delete', we do not want to scan the entire hash table looking for lists containing entries to be

deleted. Each entry should have two links:

a) Ahashlinkthat chainstheentrytoother entrieswhosenameshashtothesame value-the usual

link in the hash table.

A.Y 2024-25 COMPILER DESIGN

114|Page DEPARTMENT OF CSE

b) A scope link that chains all entries in the same scope - an extra link. If the scope link is left

undisturbedwhenanentryisdeletedfromthehashtable,thenthechainformedbythescope links will

constitute an inactive symbol table for the scope in question.

NestingstructureofanexamplePascalprogram

Lookatthenestingstructureofthisprogram. Variablesa,bandcappearinglobalaswell as

localscopes. Localscopeofa variable overrides the globalscopeoftheother variable withthe same

name within its own scope. The next slide will show the global as well as the localsymbol tables

for this structure. Here procedure I and h lie within the scope of g (are nested within g).

GLOBALSYMBOLTABLESTRUCTURETheglobalsymboltablewill beacollectionof symbol
tables connected with pointers.

. Scope and visibility rules

determine the structure of

global symbol table

. For ALGOL class of

languages scoping rules

structure the symbol table as

tree of local tables

- Globalscopeasroot

- Tables for nested scope as

children of the table for the

scope they are nested in

A.Y 2024-25 COMPILER DESIGN

115|Page DEPARTMENT OF CSE

Theexactstructurewillbedeterminedbythescopeandvisibilityrulesofthelanguage.The global

symbol table will be a collection of symbol tables connected with pointers. The exact structure

will be determined by the scope and visibility rules of the language. Whenever a new scope

isencountered a new symboltable is created. This new table containsa pointer back tothe

enclosing scope's symbol table and the enclosing one also contains a pointerto this new symbol

table. Anyvariable used inside the new scope should either be present in its own symboltable or

inside the enclosing scope's symbol table and all the way up to the root symbol table. A sample

global symbol table is shown in the below figure.

BLOCK STRUCTURESANDNONBLOCKSTRUCTURESTORAGEALLOCATION

Storage bindingand symbolicregisters : Translatesvariablenamesintoaddressesandthe
process must occur before or during code generation

- .Eachvariableisassigned anaddressoraddressingmethod

- .Eachvariable isassignedanoffset withrespecttobasewhichchangeswithevery

invocation

- .Variablesfallinfourclasses:global,globalstatic,stack,local(non-stack)static

- Thevariablenameshavetobetranslatedintoaddressesbeforeorduringcodegeneration.

A.Y 2024-25 COMPILER DESIGN

116|Page DEPARTMENT OF CSE

There isa baseaddressand everyname isgivenanoffset withrespecttothisbasewhichchanges with
every invocation. The variables can be divided into four categories:

a) GlobalVariables:fixedrelocatableaddressoroffsetwithrespect tobaseasglobalpointer

b) GlobalStaticVariables:.Globalvariables, ontheotherhand,havestaticduration(hencealso called

static variables): theylast, andthe values stored inthempersist, for as long asthe program does. (Of

course, the values can in general still be overwritten, so they don't necessarily persist forever.)

Therefore they have fixed relocatable address or offset with respect to base as global pointer.

c) Stack Variables : allocate stack/global in registers and registers are not indexable, therefore,

arrays cannot be in registers

.Assignsymbolicregisterstoscalar variables

.Usedforgraphcoloringfor globalregister allocation

d) Stack Static Variables : Bydefault, local variables (stack variables) (those declared within a

function)haveautomaticduration:theyspring intoexistencewhenthefunctioniscalled,andthey (and

their values) disappear when the function returns. This is why they are stored in stacks and have

offset from stack/frame pointer.

Registerallocationisusuallydoneforglobalvariables.Sinceregistersarenotindexable,therefore,

arrays cannot be in registers as they are indexed data structures. Graph coloring is a simple

techniqueforallocatingregisterandminimizingregisterspillsthat workswellinpractice.Register spills

occur when a register is needed for a computation but allavailable registers are inuse. The

contents of one of the registers must be stored in memory to free itup for immediate use. We

assign symbolic registers to scalar variables which are used in the graph coloring.

A.Y 2024-25 COMPILER DESIGN

117|Page DEPARTMENT OF CSE

LocalVariablesinFrame

Assigntoconsecutivelocations;allowenoughspaceforeach

Mayputwordsizeobjectinhalfwordboundaries

Requirestwohalfwordloads

Requiresshift,or,and

Alignondoubleword boundaries

Wastesspace

AndMachinemayallowsmalloffsets

wordboundaries-themostsignificant byteoftheobject must be locatedatanaddresswhose two

least significant bits are zero relative to the frame pointer

half-wordboundaries-themostsignificant byteoftheobject beinglocatedatanaddress whose
least significant bit is zero relative to the frame pointer .

Sortvariablesbythealignmenttheyneed

- Storelargestvariablesfirst

- Utomaticallyalignsallthevariables

- Doesnotrequirepadding

- Storesmallestvariablesfirst

- Requiresmorespace(padding)

- Forlargestackframemakesmorevariablesaccessiblewithsmalloffsets

Whileallocatingmemorytothevariables, sort variablesbythealignmenttheyneed.Youmay:

Storelargestvariablesfirst:Itautomaticallyalignsallthevariablesanddoesnotrequirepadding since

the next variable's memory allocation starts at the end ofthat ofthe earlier variable

A.Y 2024-25 COMPILER DESIGN

118|Page DEPARTMENT OF CSE

. Store smallest variables first: It requires more space (padding) since you have to accommodate

forthebiggest possible lengthofanyvariabledatastructure.Theadvantage isthat for largestack

frame, more variables become accessible within small offsets

Howtostorelargelocaldatastructures?BecausetheyRequires largespace inlocalframesand

therefore large offsets

- Iflargeobjectisput neartheboundaryotherobjectsrequire largeoffset either fromfp(if put

near beginning) or sp (if put near end)

- Allocateanother baseregistertoaccesslargeobjects

- Allocatespaceinthe middleorelsewhere;storepointertothese locations fromat asmall

offset from fp

- Requiresextraloads

Large local data structures require large space in local frames and therefore large offsets.

Astoldinthepreviousslide'snotes,iflargeobjectsareputneartheboundarythentheotherobjects require

large offset. You can either allocate another base register to access large objectsor you can

allocate space in the middle or elsewhere and then store pointers to these locations starting from

at a small offset from the frame pointer, fp.

Intheunsortedallocationyoucanseethewasteofspace ingreen. Insortedframethere isno waste
of space.

STORAGEALLOCATIONFORARRAYS

A.Y 2024-25 COMPILER DESIGN

119|Page DEPARTMENT OF CSE

Elementsofanarrayarestoredinablockofconsecutive locations. Forasingledimensionalarray, if low

is the lower bound of the index and base is the relative address of the storage allocated to

thearrayi.e.,therelativeaddressofA[low],thentheithElementsofanarrayare storedinablock of

consecutive locations

Forasingledimensionalarray,iflowisthelowerboundoftheindexandbaseistherelative address

of the storage allocated to the array i.e., the relative address of A[low], then the i th

elementsbeginsatthe location: base+(I-low)*w.Thisexpressioncanbereorganizedas i*w+ (base -

low*w) . The sub-expression base-low*w is calculated and stored in the symbol table at compile

time when the array declaration is processed, so that the relative address of A[i] can be obtained

by just adding i*w to it.

- AddressingArrayElements

- Arraysare storedinablockofconsecutivelocations
- Assumewidthofeachelementisw
- ithelementofarrayAbeginsinlocationbase+(i-low)xwwherebase isrelative address

of A[low]

- Theexpressionisequivalentto

- ixw+(base-lowxw)

i x w + const

2-DIMENSIONALARRAY:For arowmajortwodimensionalarraytheaddressofA[i][j] can be

calculated by the formula :

base+((i-lowi)*n2+j- lowj)*wwhere lowiand lowjare lowervaluesofIand jand n2 is number of

values jcan take i.e. n2 = high2 - low2 + 1.

Thiscanagainbewrittenas:

((i*n2)+j)*w+(base-((lowi*n2)+lowj)*w)andthesecondtermcanbecalculatedatcompile time.

In the same manner, the expression for the location of an element in column major two-

dimensionalarraycanbeobtained.Thisaddressing canbegeneralizedtomultidimensionalarrays.

Storage can be either row major or column major approach.

Example: Let Abea10x20 arraytherefore, n1=10 and n2=20and assume w=4 The

Three address code to access A[y,z] is

t 1 = y* 20

t 1 = t 1 + z

t2= 4 * t 1

t3=A-84{((low1Xn2)+low2)Xw)=(1*20+1)*4=84}

t4=t2+t3

A.Y 2024-25 COMPILER DESIGN

120|Page DEPARTMENT OF CSE

x=t4

LetAbea10x20array n1

= 10 and n2 = 20

Assumewidthofthetypestoredinthearrayis4. Thethreeaddresscodetoaccess A[y,z] is t1 = y *

20

t1=t1+z

t2=4*t1

t3=baseA-84{((low1*n2)+low2)*w)=(1*20+1)*4=84} t4

=t2 +t3

x=t4

Thefollowingoperationsaredesigned:1.mktable(previous):createsanewsymboltableand returns

a pointer to this table. Previous is pointer to the symbol table ofparent procedure.

2. entire(table,name,type,offset):createsanewentryfornameinthesymboltablepointed toby

table.

3. addwidth(table,width):recordscumulativewidthofentriesofatablein itsheader.

4. enterproc(table,name,newtable):createsanentryforprocedurenameinthesymboltable

pointed to bytable . newtable is a pointer to symboltable for name.

P {t=mktable(nil);

push(t,tblptr);

push(0,offset)}

D

{addwidth(top(tblptr),top(offset));

pop(tblptr);

pop(offset)}

D D; D

The symboltablesare created using two stacks: tblptrto hold pointersto symboltablesof the

enclosing procedures and offset whose top element is the next available relative address for a

local of the current procedure. Declarations in nested procedures can be processed by the syntax

directed definitions given below. Note that they are basically same as those given above but we

have separatelydealt with the epsilon productions. Go to the next page for the explanation.

A.Y 2024-25 COMPILER DESIGN

121|Page DEPARTMENT OF CSE

D proc id;

{ t = mktable(top(tblptr));

push(t,tblptr);push(0,offset)}

D1;S

Did:T

{ t = top(tblptr);

addwidth(t,top(offset));

pop(tblptr);pop(offset);;

enterproc(top(tblptr),id.name,t)}

{enter(top(tblptr),id.name,T.type,top(offset));

top(offset) = top (offset) + T.width }

The action for M creates a symboltable for the outermost scope and hence a nilpointer is passed

in place of previous. When the declaration, D proc id ; ND1 ; S is processed, the action

corresponding to N causes the creation ofa symboltable for the procedure;the pointerto symbol

table of enclosing procedure is given by top(tblptr). The pointer to the new table is pushed on to

the stack tblptr and 0 is pushed as the initial offset on the offset stack. When the actions

corresponding to the subtrees ofN, D1and S have been executed, theoffset corresponding to the

currentprocedurei.e.,top(offset)containsthetotalwidthofentriesinit.Hencetop(offset)isadded to the

header of symbol table of the current procedure. The top entries of tblptr and offset are popped so

that the pointer and offset of the enclosing procedure are now on top of these stacks. Theentryfor

id isaddedtothesymboltableofthe enclosingprocedure. Whenthe declarationD-

>id:T isprocessed entryfor id iscreated inthesymboltableofcurrent procedure. Pointer to the

symbol tableof currentprocedure is again obtainedfrom top(tblptr).

A.Y 2024-25 COMPILER DESIGN

122|Page DEPARTMENT OF CSE

Offsetcorrespondingtothecurrentprocedurei.e.top(offset)isincrementedbythewidth required

by type T to point to the next available location.

STORAGEALLOCATIONFORRECORDS

Fieldnamesinrecords

T record

{t=mktable(nil);

push(t,tblptr);push(0,offset)} D

end

{T.type=record(top(tblptr));

T.width = top(offset);

pop(tblptr); pop(offset)}

T->recordLDend {t=mktable(nil);

push(t,tblptr);push(0,offset)

}

L -> {T.type=record(top(tblptr));

T.width = top(offset);

pop(tblptr); pop(offset)

}

The processing done corresponding to records is similar to that done for

procedures.AfterthekeywordrecordisseenthemarkerLcreatesanewsymboltable. Pointertothistable

and offset 0 are pushed on the respective stacks. The action for the declaration D-> id :T push the

information about the field names on the table created. At the end the top of the offset stack

containsthetotalwidthofthedataobjectswithintherecord.This isstoredintheattribute T.width. The

constructor record is applied to the pointer to the symbol table to obtainT.type.

NamesintheSymboltable:

S id := E

{p=lookup(id.place);

ifp<>nilthenemit(p:=E.place) else

error}

E id

{p=lookup(id.name);

ifp<>nilthenE.place=p

A.Y 2024-25 COMPILER DESIGN

123|Page DEPARTMENT OF CSE

elseerror}

The operation lookup in the translation scheme above checks if there is an entry for this

occurrence of the name in the symbol table. If an entry is found, pointer to the entry is returned

else nilis returned. Lookup first checks whether the name appears inthe current symboltable. If

notthenit looksforthename inthesymboltableoftheenclosingprocedureandsoon.Thepointer to the

symbol table of the enclosing procedure is obtained from the header of the symbol table.

CODEOPTIMIZATION

Considerations for optimization : The code produced by the straight forward compiling

algorithmscanoftenbemadetorunfasterortakelessspace,orboth.Thisimprovementisachieved by

program transformations that are traditionally called optimizations. Machine independent

optimizations are program transformations that improve the target code without taking into

considerationanypropertiesofthetargetmachine. Machinedependantoptimizationsarebasedon

register allocation and utilization of special machine-instruction sequences.

Criteriaforcodeimprovementtransformations

- Simplystated,thebest programtransformationsarethosethatyieldthemost benefit for the

least effort.

- First,thetransformationmustpreservethemeaningofprograms.Thatis,theoptimization must

not change the output produced by a program for a given input, or cause an error.

- Second,atransformationmust,ontheaverage,speedupprogramsbyameasurable amount.

- Third,thetransformationmustbeworththeeffort.

Some transformations can only be applied after detailed, often time-consuming analysis of the

source program, so there is little point in applying them to programs that will be run only a few

times.

A.Y 2024-25 COMPILER DESIGN

124|Page DEPARTMENT OF CSE

OBJECTIVESOFOPTIMIZATION:Themainobjectivesoftheoptimizationtechniquesare as

follows

1. Exploitthefastpathincaseofmultiplepaths froagivensituation.

2. Reduceredundantinstructions.

3. Produceminimumcodeformaximumwork.

4. Tradeoffbetweenthe size ofthe codeandthe speedwithwhichitgetsexecuted.

5. Placecodeanddatatogetherwhenever it isrequiredto avoidunnecessarysearchingof

data/code

Duringcodetransformationintheprocessofoptimization,thebasicrequirementsareasfollows:

1. Retainthesemanticsofthesourcecode.

2. Reducetimeand/orspace.

3. Reducetheoverheadinvolvedintheoptimizationprocess.

ScopeofOptimization:Control-FlowAnalysis

Consider all that has happened up to this point in the compiling process—lexical

analysis, syntactic analysis, semantic analysis and finally intermediate-code generation. The

compiler has done an enormous amount of analysis, but it still doesn‘t really know how the

program does what it does. In control-flow analysis, the compiler figures out even more

information about how the program does its work, only now it can assume that there are no

syntactic or semantic errors in the code.

Control-flow analysisbegins by constructing a control-flow graph, which is a graph ofthe

different possible paths program flow could take through a function. To build the graph, we first

dividethecodeintobasic blocks. Abasic block isasegmentofthecodethat aprogrammust enter at the

beginning and exit only at the end. This means that only the first statement can be reached from

outside the block (there are no branches into the middle of the block) and all statements are

executed consecutively after the first one is (no branches or halts until the exit). Thus a basic

block has exactly one entrypoint and one exit point. If a programexecutes the first instruction ina

basic block, it must execute every instruction in the block sequentiallyafter it.

Abasicblockbeginsinoneofseveralways:

• Theentrypointintothefunction

A.Y 2024-25 COMPILER DESIGN

125|Page DEPARTMENT OF CSE

• Thetargetofabranch(inourexample,anylabel)

• Theinstructionimmediatelyfollowingabranchorareturn

Abasicblock endsinanyofthefollowingways:

• Ajumpstatement

• Aconditionalorunconditionalbranch

• Areturnstatement

Now we can construct the control-flow graph between the blocks. Each basic block is a

node inthe graph, and the possible different routes a program might take arethe connections, i.e.

ifablockendswitha branch, therewillbeapathleading fromthat blocktothebranchtarget. The

blocksthat can follow a block are called its successors. There may be multiple successorsor just

one. Similarly the block may have many, one, or no predecessors. Connect up the flow graphfor

Fibonacci basic blocks given above. What does an if then-else look likein a flow graph? What

aboutaloop?Youprobablyhaveallseenthegccwarningorjavacerrorabout:"Unreachablecode at line

XXX." How can the compiler tell when code is unreachable?

LOCALOPTIMIZATIONS

Optimizations performed exclusively within a basic block are called "local

optimizations". These are typically the easiest to perform since we do not consider any control

flow information; we just work with the statements within the block. Many of the local

optimizations we will discuss have corresponding global optimizations that operate on the same

principle, but require additional analysis to perform. We'll consider some of the more common

local optimizations as examples.

FUNCTIONPRESERVINGTRANSFORMATIONS

Commonsubexpressionelimination

Constantfolding

Variablepropagation

DeadCodeElimination

Codemotion

StrengthReduction

1. CommonSubExpressionElimination:

Two operations are common if they produce the same result. In such a case, it is likely more

efficienttocomputetheresultonceandreferenceitthesecondtimeratherthanre-evaluateit.An

A.Y 2024-25 COMPILER DESIGN

126|Page DEPARTMENT OF CSE

expressionisalive iftheoperandsusedto computetheexpressionhavenot beenchanged.An

expression that is no longer alive is dead.

Example:

a=b*c;

d=b*c+x-y;

Wecaneliminatethesecondevaluationofb*c fromthiscodeifnoneoftheintervening

statements has changed its value. We can thus rewrite the code as

t1=b*c;

a=t1;

d=t1+x-y;

Letusconsiderthefollowingcode

a=b*c;

b=x;

d=b*c+x-y;

inthiscode, wecannoteliminatethesecondevaluationofb*cbecausethe valueofbischanged due to

the assignment b=x before it is used in calculating d.

Wecansaythetwoexpressionsarecommonif

Theylexicallyequivalent i.e.,theyconsist ofidenticaloperandsconnectedtoeachother by

identical operator.

Theyevaluatetheidenticalvalues i.e.,no assignment statements foranyoftheiroperands exist

between the evaluations of these expressions.

Thevalueofanyoftheoperandsuse intheexpressionshouldnot be changedevendueto the

procedure call.

Example:

c=a*b;

x=a;

d=x*b;

We maynotethateventhoughexpressionsa*band x*barecommonintheabovecode, they can

not be treated as common sub expressions.

2. VariablePropagation:

Letusconsidertheabovecodeonceagain c=a*b;

x=a;

d=x*b+4;

A.Y 2024-25 COMPILER DESIGN

127|Page DEPARTMENT OF CSE

if we replace x by a in the last statement, we can identify a*b and x*b as common sub

expressions.Thistechniqueiscalledvariablepropagationwheretheuseofonevariableisreplaced by

another variable if it has been assigned the value of same

CompileTimeevaluation

The execution efficiency of the program can be improved by shifting execution time

actions to compile time so that they are not performed repeatedly during the program execution.

Wecanevaluateanexpressionwithconstantsoperandsatcompiletimeandreplacethatexpression bya

single value. This is called folding. Consider the following statement:

a= 2*(22.0/7.0)*r;

Here,wecanperformthecomputation2*(22.0/7.0)atcompiletimeitself.

3. DeadCodeElimination:
If the value contained in the variable at a point is not used anywhere in the program

subsequently, the variable is said to be dead at that place. If an assignment is made to a dead

variable,thenthatassignmentisadeadassignmentanditcanbesafelyremovedfromtheprogram.

Similarly,apiece ofcodeissaid to bedead, which computesvaluethat arenever used anywhere in

the program.

c=a*b;

x=a;

d=x*b+4;

Usingvariablepropagation,thecodecanbewrittenasfollows:

c=a*b;

x=a;

d=a*b+4;

UsingCommonSubexpressionelimination,the codecanbewrittenasfollows:

t1=a*b;

c=t1;

x=a;

d=t1+4;

Here,x=awillconsideredasdeadcode.Henceitiseliminated. t1=

a*b;

c=t1;

d=t1+4;

4. CodeMovement:

A.Y 2024-25 COMPILER DESIGN

128|Page DEPARTMENT OF CSE

The motivation for performing code movement in a program is to improve the execution time of

theprogrambyreducingtheevaluationfrequencyofexpressions. Thiscanbedonebymovingthe

evaluation ofan expression to other parts ofthe program. Let us consider the bellow code:

If(a<10)

{

b=x^2-y^2;

}

else

{

b=5;

a=(x^2-y^2)*10;

}

Atthetimeofexecutionoftheconditiona<10, x^2-y^2 isevaluatedtwice. So,wecanoptimize the code

by moving the out side to the block as follows:

t=x^2-y^2;

If(a<10)

{

b=t;

}

else

{

b=5;

a=t*10;

}

5. StrengthReduction:
Inthefrequencyreductiontransformationwetriedtoreducetheexecutionfrequencyofthe

expressionsbymovingthecode.Thereisother classoftransformationswhichperformequivalent

actions indicated in the source program by reducing the strength of operators. By strength

reduction, we mean replacing the high strength operator with low strength operator with out

affecting the program meaning. Let us consider the bellow example:

i=1;

while(i<10)

{

y=i*4;

}

Theabovecanwrittenasfollows: i=1;

t=4;

A.Y 2024-25 COMPILER DESIGN

129|Page DEPARTMENT OF CSE

while(i<10)

{

y=t;

t=t+4;

}

Herethehighstrengthoperator*isreplacedwith+.

GLOBALOPTIMIZATIONS,DATA-FLOW ANALYSIS:

So far we were only considering making changes within one basic block. With some

Additional analysis, we can apply similar optimizations across basic blocks, making them global

optimizations. It‘s worth pointing out that global in this case does not mean across the entire

program. We usually optimize only one function at a time. Inter procedural analysis is an even

larger task, one not even attempted by some compilers.

The additionalanalysis the optimizer doesto performoptimizations across basic blocks is

called data-flow analysis. Data-flow analysis is much more complicated than control-flow

analysis, and we can only scratch the surface here.

Let‘s consider a global common sub expression elimination optimization as our example.

Careful analysis across blocks can determine whether an expression is alive on entry to a block.

Such an expression is said to be available at thatpoint. Once the set ofavailable expressions is

known, commonsub-expressionscanbeeliminatedonaglobalbasis. Eachblock isanodeinthe flow

graph of a program. The successor set (succ(x)) for a node x is the set of all nodes that x directly

flows into. The predecessor set (pred(x)) for a node x is the set of all nodes that flow directly into

x. Anexpression is defined at the point where it is assigned a value and killed when

oneofitsoperandsissubsequentlyassignedanewvalue. Anexpressionisavailableat some point p in a

flow graph if everypath leading to p contains a prior definition ofthat expression which is not

subsequently killed. Lets define such useful functions in DF analysis in following lines.

avail[B] =setofexpressions availableonentrytoblockB

exit[B]=setofexpressionsavailableonexitfromB

avail[B]=∩exit[x]: x∈pred[B](i.e. Bhasavailablethe intersectionoftheexit ofits

predecessors)

killed[B]=setoftheexpressionskilled inB

defined[B]=setofexpressionsdefined inB

exit[B] = avail[B]- killed[B] + defined[B]

A.Y 2024-25 COMPILER DESIGN

130|Page DEPARTMENT OF CSE

avail[B]=∩(avail[x]-killed[x]+defined[x]):x∈pred[B]

HereisanAlgorithmforGlobalCommonSub-expressionElimination:

1) First,computedefinedandkilledsetsforeachbasicblock(thisdoesnotinvolveanyofits

predecessors or successors).

2) Iterativelycomputetheavailandexit setsforeachblock byrunningthefollowingalgorithm until

you hit a stable fixed point:

a) Identifyeachstatement softheforma=bopcinsomeblockBsuchthat bopcis available

at the entryto B and neither b nor c is redefined in B prior to s.

b) Followflowofcontrolbackward inthegraphpassingbacktobutnotthrougheach

blockthat definesbopc.The last computationofbopcinsuchablockreachess.

c) After eachcomputationd=bopcidentified instep2a,addstatement t =dtothat block

where t is a new temp.

d) Replacesbya=t.

Tryanexampletomakethingsclearer:

main:

BeginFunc28;
b=a+2;

c = 4 * b ;
tmp1=b<c;
ifNZtmp1gotoL1; b
= 1 ;

L1:

d=a+2;

EndFunc ;

First, divide the code above into basic blocks. Now calculate the available expressions for each

block.Thenfindanexpressionavailableinablockandperformstep2cabove.Whatcommonsub-

expression can you share between the two blocks? What if the above code were:

main:
BeginFunc28;

b=a+2;

c = 4 * b ;

tmp1=b<c;

IfNZtmp1GotoL1; b

= 1 ;

z=a+2;<========= anadditionallinehere

L1:

d=a+2;

EndFunc;

A.Y 2024-25 COMPILER DESIGN

131|Page DEPARTMENT OF CSE

MACHINEOPTIMIZATIONS

Infinalcodegeneration, there isa lotofopportunityforcleverness ingeneratingefficient

target code. In this pass, specific machines features (specialized instructions, hardware pipeline

abilities, register details) are taken into account to produce code optimized for this particular

architecture.

REGISTERALLOCATION:

Onemachineoptimizationofparticular importanceisregisterallocation,whichisperhaps
thesinglemosteffectiveoptimizationforallarchitectures.Registersarethefastestkindofmemory
available, but as a resource, they can be scarce.

The problem is how to minimize traffic between the registers and what lies beyond them

in the memoryhierarchyto eliminate time wasted sending data back and forthacross the bus and

the different levels of caches. Your Decaf back-end uses a very naïve and inefficient means of

assigning registers, it just fills them before performing an operation and spills them right

afterwards.

Amuchmoreeffectivestrategywould betoconsiderwhichvariablesare moreheavilyin

demand and keep those in registers and spill those that are no longer needed or won'tbe needed

until much later.

One common register allocation technique is called "register coloring", after the central

idea to view register allocation as a graph coloring problem. Ifwe have 8 registers, then wetryto

color a graph with eight different colors. The graph‘s nodes are made of "webs" and the arcs are

determined by calculating interference between the webs. A web represents a variable‘s

definitions, places where it is assigned a value (as in x = …), and the possible different uses of

those definitions (asin y = x + 2). This problem,in fact,can be approached as anothergraph. The

definition and uses of a variable are nodes, and if a definition reaches a use, there is an arc

between the two nodes. Iftwo portions ofa variable‘s definition-use graph are unconnected, then

we have two separate websfor a variable. Inthe interference graphforthe routine, each node isa

web. We seek to determine which webs don't interfere with one another, so we know we can use

the same register for those two variables. For example, consider the following code:

i=10;
j=20;

x = i+ j;

y= j+k;

We say that i interferes with j because at least one pair of i‘s definitions and uses is

separated by a definition or use of j, thus, i and j are "alive" at the same time. A variable is alive

betweenthetimeit hasbeendefinedandthatdefinition‘slast use,afterwhichthevariable isdead. If two

variables interfere, then we cannot use the same register for each. But two variables that don't

interferecansincethere isnooverlap inthelivenessandcanoccupythesameregister. Once we have the

interference graph constructed, we r-color it so that no two adjacent nodes share the same color (r

is the number of registers we have, each color represents a different register).

Wemayrecallthat graph-coloring isNP-complete,so weemployaheuristicratherthanan

optimalalgorithm. Here is a simplified version of something that might be used:

A.Y 2024-25 COMPILER DESIGN

132|Page DEPARTMENT OF CSE

1. Findthenodewiththeleastneighbors.(Breaktiesarbitrarily.)

2. Removeitfromtheinterferencegraphandpushitontoastack

3. Repeatsteps1and 2untilthe graph isempty.

4. Now,rebuildthegraphasfollows:

a. Takethetopnodeoffthestackand reinsertitintothe graph

b. Chooseacolorforit based onthecolorofanyofitsneighborspresentlyinthegraph,

rotating colors in case there is more than one choice.

c. Repeata,andbuntilthegraphiseithercompletelyrebuilt,orthereisno color

available to color the node.

Ifwegetstuck,thenthegraphmaynotber-colorable,wecouldtryagainwithadifferentheuristic, sayreusing

colors as often as possible. Ifno otherchoice, we have to spilla variable to memory.

INSTRUCTIONSCHEDULING:

Another extremely important optimization of the final code generator is instruction

scheduling. Because many machines, including most RISC architectures, have some sort of

pipelining capability, effectively harnessing that capability requires judicious ordering of

instructions.

InMIPS,eachinstructionisissuedinonecycle,butsometakemultiplecyclestocomplete. It takes

an additional cycle before the value of a load is available and two cycles for a branch to

reachitsdestination,butaninstructioncanbeplacedinthe"delayslot"afterabranchandexecuted in that

slack time. On the left is one arrangement of a set of instructions that requires 7 cycles. It

assumes no hardware interlock and thus explicitly stalls between the second and third slots while

the load completes and has a Dead cycle after thebranchbecause the delayslot holds a noop. On

theright, amorefavorablerearrangementofthesame instructionswillexecutein5 cycleswithno dead

Cycles.

lw$t2,4($fp)

lw$t3,8($fp)

noop

add$t4,$t2,$t3

subi $t5, $t5, 1

goto L1

noop
lw $t2, 4($fp)

lw $t3, 8($fp)

subi$t5,$t5,1

goto L1

add $t4,$t2,$t3

PEEPHOLEOPTIMIZATIONS:
Peephole optimization is a pass that operates onthe target assembly and onlyconsiders a

few instructions at atime (through a "peephole") and attemptsto do simple, machine dependent

A.Y 2024-25 COMPILER DESIGN

133|Page DEPARTMENT OF CSE

code improvements. For example, peephole optimizations might include elimination of

multiplication by 1, elimination of load of a value into a register when the previous instruction

storedthatvalue fromtheregistertoamemorylocation, orreplacingasequenceofinstructionsby a

single instruction with the same effect. Because of its myopic view, a peephole optimizer does

not have the potential payoff of a full-scale optimizer, but it can significantly improve code at a

very local level and can be useful for cleaning up the finalcode that resulted from more complex

optimizations. Much of the work done in peephole optimization can be though of as find-replace

activity, looking for certain idiomatic patterns in a single or sequence of two to threeInstructions

than can be replaced by more efficient alternatives.

For example, MIPS has instructions that canadd asmallinteger constant tothe value ina

registerwithoutloadingtheconstantintoaregisterfirst,sothesequenceontheleftcanbereplaced with

that on the right:

li$t0,10

lw $t1, -8($fp)

add$t2,$t1,$t0

sw $t1, -8($fp)

lw $t1, -8($fp)

addi$t2,$t1,10

sw $t1, -8($fp)

Whatwouldyoureplacethefollowingsequencewith? lw

$t0, -8($fp)

sw $t0, -

8($fp)Whataboutthi

sone? mul $t1, $t0,

2

AbstractSyntaxTree/DAG:Isnothingbut thecondensedformofaparsetreeandis

.Usefulfor representinglanguageconstructs

.Depictsthenaturalhierarchicalstructureofthesourceprogram

- Eachinternalnoderepresentsanoperator

- Childrenofthe nodesrepresentoperands

- Leafnodesrepresentoperands

.DAG is more compact thanabstract syntaxtreebecause commonsubexpressions are eliminated

Asyntaxtreedepictsthenaturalhierarchicalstructureofasourceprogram.Itsstructurehasalready

beendiscussedinearlier lectures. DAGsaregeneratedasacombinationoftrees:operandsthatare being

reused are linked together, and nodes may be annotated with variable names (to denote

assignments). This way, DAGs are highly compact, since they eliminate local common sub-

expressions. Ontheother hand, theyare not so easytooptimize, since theyare more specific tree

forms. However, it can be seen that proper building ofDAG for a given

A.Y 2024-25 COMPILER DESIGN

134|Page DEPARTMENT OF CSE

sequenceofinstructionscancompactlyrepresenttheoutcomeofthecalculation. An

example ofa syntax tree and DAG has been given in the next slide .

a:=b*-c+b*-c

Youcanseethatthenode"*"comesonlyonce intheDAGaswellasthe leaf"b", but the

meaningconveyedbyboththerepresentations(ASTaswellastheDAG)remainsthesame.

IMPORTANT QUESTIONS:

1. WhatisCodeoptimization?Explaintheobjectivesofit.Also discussFunctionpreserving

transformations with your own examples?

2. Explainthefollowingoptimizationtechniques

(a) CopyPropagation

(b) Dead-CodeElimination

(c) CodeMotion

(d) ReductioninStrength.

4. Explaintheprinciplesourcesofcode-improvingtransformations.

5. Whatdoyoumeanbymachinedependentandmachineindependentcodeoptimization?

Explain about machine dependent code optimization with examples.

ASSIGNMENTQUESTIONS:

1. ExplainLocalOptimizationtechniqueswithyourownExamples?

2. Explainindetailtheprocedurethateliminatingglobalcommonsubexpression?

3. Whatistheneed ofcodeoptimization?Justifyyouranswer?

DEPARTMENTOFCSE 135|Page

OMPILERDESIGN A.Y 2023-24

UNIT-V

CONTROL/DATAFLOWANALYSIS:

FLOWGRAPHS:

We can add flow control information to the set of basic blocks making up a program by

constructing a directed graph called a flow graph. The nodes ofa flow graph are the basic nodes.

One node is distinguished as initial; it is the block whose leader is the first statement. There is a

directed edge from block B1 to block B2 if B2 can immediately follow B1 in some execution

sequence; that is, if

- Thereisconditionalorunconditionaljump fromthe last statement ofB1tothefirst

statement of B2, or
- B2 immediately follows B1 in the order of the program, and B1 does not end in an

unconditionaljump. Wesaythat B1isthepredecessorofB2,and B2isasuccessorofB1.

Forregisterandtemporaryallocation

- Removevariablesfromregistersifnotused
- StatementX=YopZdefinesXand usesYand Z
- Scaneachbasic blocksbackwards

- Assumealltemporariesaredeadonexitandalluservariablesareliveonexit

Theuseofanameinathree-addressstatementisdefinedasfollows.Supposethree-address

statement i assigns a value to x. If statement j has x as an operand, and control can flow from

statement ito jalong a paththat has no intervening assignments to x,thenwe saystatementjuses the

value of x computed at i.

We wish to determine for each three-address statement x := y op z, what the next uses of

x, y and z are. We collect next-use information about names in basic blocks. If the name in a

register is no longer needed, then the register can be assigned to some other name. This idea of

keeping a name in storage only if it will be used subsequently can be applied in a number of

contexts. It is used to assign space for attribute values.

Thesimplecodegenerator applies it to register assignment. Ouralgorithmis to determine

next uses makes a backward pass over each basic block, recording (in the symbol table) for each

name xwhether xhasa next use inthe block and ifnot, whether it is liveonexit fromthat block. We

can assume that all non-temporary variables are live on exit and all temporary variables are dead

on exit.

Algorithmtocomputenextuse information

- Supposewearescanningi:X:= YopZ inbackwardscan

A.Y 2024-25 COMPILER DESIGN

DEPARTMENT OF CSE 136|Page

- Attachtoi,informationinsymboltableaboutX,Y,Z
- SetXtonotliveandnonextuseinsymboltable
- SetYandZtobeliveandnextuseiniinsymboltable

Asanapplication, weconsidertheassignment ofstoragefortemporarynames. Supposewe

reachthree-addressstatementi:x:=yop zinourbackwardscan.Wethendothefollowing:

1. Attachtostatementithe informationcurrentlyfoundinthesymboltableregardingthe next
use and live ness of x, yand z.

2. Inthesymboltable,setxto"notlive"and"nonextuse".

3. Inthesymboltable, set yandzto "live"andthenext usesofyand ztoi. Notethatthe order
ofsteps (2) and (3) may not be interchanged because x may be y or z.

Ifthree-addressstatementiisofthe formx:= yorx:=opy, thestepsarethesameasabove, ignoring z.

consider the below example:

1: t1 = a * a

2:t2=a*b 3:

t3 = 2 *

t24:t4=t1+t35:

t5 = b * b

6:t6=t4+t57:

X = t 6

Example:

Wecanallocatestoragelocations fortemporariesbyexaminingeachinturnandassigning

atemporarytothefirst locationinthe field fortemporariesthat doesnot containa live temporary. If a

temporary cannot be assigned to any previously created location, add a new location to the

dataareaforthe current procedure. Inmanycases,temporaries canbe packed intoregisters rather

than memory locations, as in the next section.

A.Y 2024-25 COMPILER DESIGN

DEPARTMENT OF CSE 137|Page

Example.

Thesixtemporariesinthebasicblockcanbepackedintotwolocations.Theselocations correspond
to t 1 and t 2 in:

1:t1=a*a,2:t2=a*b,3:t2=2*t2,4:t1=t1+t2,5:t2=b*b

6:t1=t1+t2,7:X=t1

DATAFLOWEQUATIONS:

Dataanalysisisneeded forglobalcodeoptimization,e.g.:Isavariable liveonexit fromablock? Does a

definition reach a certain point in the code? Data flow equations are used to collect dataflow

information A typical dataflow equation has the form

Out[s]=Gen[s]U(in[s]-kill[s])

Thenotionofgenerationandkillingdependsonthe dataflowanalysisproblemtobe solved

Let'sfirst considerReachingDefinitionsanalysisforstructuredprogramsAdefinitionofavariable x is a

statement that assigns or may assign a value to x An assignment to x is an unambiguous

definitionofxAnambiguous assignment to xcanbe anassignment to a pointer or a functioncall

where x is passed by reference When x is defined, we say the definition is generated An

unambiguous definition of x kills all otherdefinitions of x When all definitions ofx are the same

at a certain point, we can use this information to do some optimizations Example: all definitions

of x define x to be 1. Now, by performing constant folding, we can do strength reduction if x is

used in z=x*y.

A.Y 2024-25 COMPILER DESIGN

DEPARTMENT OF CSE 138|Page

GLOBALOPTIMIZATIONS,DATA-FLOW ANALYSIS

So far we were only considering making changes within one basic block. With some

additional analysis, we can apply similar optimizations across basic blocks, making them global

optimizations. It‘s worth pointing out that global in this case does not mean across the entire

program. We usually only optimize one function at a time. Interprocedural analysis is an even

largertask,onenot evenattemptedbysomecompilers.Theadditionalanalysistheoptimizer must

dotoperformoptimizationsacrossbasicblocksiscalleddata-flowanalysis.Data-flowanalysis is much

more complicated than control-flow analysis.

Let‘s consider a global commonsub-expression elimination optimization as ourexample.

Careful analysis across blocks can determine whether an expression is alive on entry to a block.

Such an expression is said to be available at that point.

Once the set of available expressions is known, common sub-expressions can be

eliminated on a global basis. Each block is a node in the flow graph of a program. The successor

set (succ(x)) for a node x is the set of all nodes that x directly flows into. The predecessor set

(pred(x)) for a node x is the set of all nodes that flow directly into x. An expression is defined at

thepoint where it isassignedavalueandkilledwhenoneofitsoperands issubsequentlyassigned a new

value. Anexpression is available at some point p ina flow graph ifeverypath leading to p contains

a prior definition of that expression which is not

subsequentlykilled.

avail[B]=setofexpressionsavailableonentrytoblockB

exit[B]=setofexpressionsavailable onexitfromB

avail[B]=∩exit[x]: x∈pred[B](i.e.Bhasavailablethe intersectionofthe exit of

its predecessors)

killed[B] =setoftheexpressionskilled inB

defined[B]=setofexpressionsdefined inB

exit[B] = avail[B] - killed[B] + defined[B]

avail[B]=∩(avail[x]-killed[x]+defined[x]):x∈pred[B]

Hereisanalgorithmfor globalcommonsub-expressionelimination:

1) First,computedefinedandkilledsetsforeachbasicblock(thisdoesnotinvolveanyofits

redecessors or successors).

2) Iterativelycomputetheavailandexit setsforeachblock byrunningthefollowingalgorithm until

you hit a stable fixed point:

a) Identifyeachstatement softheforma=bopcinsomeblock Bsuchthat bopcis available

at the entryto B and neither b nor c is redefined in B prior to s.

b) Followflowofcontrolbackward inthegraphpassingbacktobutnotthrougheach block

that defines b op c. The last computation ofb op c insuch a block reachess.

c) After eachcomputationd=bopcidentified instep2a,addstatement t =dtothat block

where t is a new temp.

d) Replacesbya=t.
Letstryanexampletomakethingsclearer: main:

A.Y 2024-25 COMPILER DESIGN

DEPARTMENT OF CSE 139|Page

BeginFunc28;

b=a+2;
c = 4 * b ;
tmp1=b<c;

ifNZtmp1gotoL1; b

= 1 ;

L1:

d=a+2;

EndFunc ;

First,dividethecodeaboveintobasicblocks.Nowcalculatetheavailableexpressions for

each block. Then find an expression available in a block and performstep 2c above.

Whatcommonsubexpressioncanyousharebetweenthetwoblocks?What iftheabove code

were:

main:

BeginFunc28;

b=a+2;
c = 4 * b ;
tmp1=b<c;

IfNZtmp1GotoL1; b

= 1 ;

z=a+2;<=========anadditionalline here L1:

d=a+2;

EndFunc ;

CommonSubexpression Elimination

Twooperations are common iftheyproducethe same result. Insucha case, it is likely more

efficient to computethe result once and reference itthe secondtime ratherthanre-evaluate it. An

expression is alive if the operands used to compute the expression have not been changed. An

expression that is no longer alive is dead.

main()

{

intx,y,z;

x=(1+20)*-x;

y=x*x+(x/y);

y=z=(x/y)/(x*x);
}
straighttranslation:

tmp1 = 1 + 20 ;

tmp2 = -x ;

x=tmp1*tmp2;

tmp3 = x * x ;
tmp4 = x / y ;

y=tmp3+tmp4;

A.Y 2024-25 COMPILER DESIGN

DEPARTMENT OF CSE 140|Page

tmp5 = x/ y;

tmp6=x* x;

z=tmp5/tmp6; y

= z ;

What sub-expressions can be eliminated? How can valid common sub-expressions (live ones) be

determined?Here isanoptimized version, afterconstant foldingandpropagationandelimination of

common sub-expressions:

tmp2= -x;
x=21*tmp2;

tmp3 = x * x ;

tmp4 = x / y ;

y=tmp3+tmp4;

tmp5 = x / y ;

z=tmp5/tmp3; y

= z ;

InductionVariableElimination

Constantfoldingreferstotheevaluationatcompile-timeofexpressionswhoseoperands are

knownto be constant. In its simplest form, it involves determining that all of the operands in an

expression are constant-valued, performing the evaluation of the expression at compile-time, and

thenreplacing the expressionbyits value. Ifanexpressionsuchas 10 + 2 *3is encountered, the

compiler can compute the result at compile-time (16) and emit code as if the input contained the

result rather thantheoriginalexpression. Similarly, constant conditions, suchas a conditional

branchifa <b goto L1else goto L2 whereaandb areconstant canbe replaced bya Goto L1or Goto

L2 depending on the truth of the expression evaluated at compile-time. The constant

expressionhasto beevaluatedat least once,but ifthecompilerdoesit, it means youdon‘t haveto do it

againasneeded during runtime. Onething tobecarefulabout isthatthe compiler mustobey the

grammar and semantic rules from the source language that apply to expression evaluation, which

may not necessarily match the language you are writing the compiler in. (For example, if you

were writing an APL compiler,you would need to take care that you were respecting its

Iversonian precedence rules). It should also respect the expected treatment of any exceptional

conditions (divide by zero, over/underflow). Consider the Decaf code on the far left and its un

optimizedTACtranslationinthe middle,whichisthentransformedbyconstant-foldingonthefar right:

a = 10*5+6-b;_tmp0= 10;

_tmp1=5;

_tmp2=_tmp0*_tmp1;

_tmp3=6;

_tmp4=_tmp2+_tmp3 ;

_tmp5=_tmp4–b; a

= _tmp5 ;

_tmp0 = 56;_tmp1=_tmp0–b;a =_tmp1;

A.Y 2024-25 COMPILER DESIGN

DEPARTMENT OF CSE 141|Page

Constant-foldingiswhatallowsalanguagetoacceptconstantexpressionswhereaconstantis required

(such as a case label or arraysize) as in these C language examples:

intarr[20*4+3];

switch (i) {

case10*5:...

}

In both snippets shown above, the expression can be resolved to an integer constant at compile

time and thus, we have the information needed to generate code. If either expression involved a

variable, though, there would be an error. How could you rewrite the grammar to allow the

grammar to do constant folding incase statements?Thissituation isa classic exampleofthe gray

area between syntactic and semantic analysis.

LiveVariableAnalysis

Avariableisliveat acertainpoint inthecodeifit holdsa valuethat maybe needed inthe future.

Solvebackwards:

FinduseofavariableThisvariable is livebetweenstatementsthathave founduseasnext statement

Recursive until you find a definition of the variable

Usingthesetsuse[B]anddef[B]

def[B]isthesetofvariablesassigned values inB priortoanyuseofthat variable inB use[B] is the

set ofvariables whose values may be used in [B] prior to anydefinition ofthe variable.

A variable comes live into a block (in in[B]), if it is either used before redefinition of it is

livecomingoutoftheblockand isnotredefined intheblock.Avariablecomes liveoutofablock (in

out[B]) ifand only if itis live coming into one of its successors

In[B]=use[B]U(out[B]-def[B])

Out[B]= Uin[s]

Ssucc[B]

Notetherelationbetweenreaching-definitionsequations: therolesofin andout areinterchanged

CopyPropagation

This optimization is similar to constant propagation, but generalized to non-constant

values. If we have an assignment a = b in our instruction stream, we can replace later

occurrencesofawithb(assumingthereareno changesto eithervariable in-between).Giventhe

waywe generate TAC code, this is a particularly valuable optimization since it is able to

A.Y 2024-25 COMPILER DESIGN

DEPARTMENT OF CSE 142|Page

eliminate a large number of instructions that only serve to copy values from one variable to

another.Thecodeonthe left makesacopyoftmp1intmp2 andacopyoftmp3 intmp4. Inthe

optimized version on the right, we eliminated those unnecessary copies and propagated the

original variable into the later uses:

tmp2=tmp1;

tmp3=tmp2*tmp1; tmp4

= tmp3 ;

tmp5=tmp3*tmp2; c

= tmp5 + tmp4 ;

tmp3=tmp1*tmp1;

tmp5=tmp3*tmp1; c

= tmp5 + tmp3 ;

We can also drive this optimization "backwards", where we can recognize that the original
assignment made to atemporarycanbe eliminated in favorofdirect assignment tothe finalgoal:
tmp1 = LCall _Binky ;

a=tmp1;

tmp2=LCall_Winky; b

= tmp2 ;
tmp3=a*b; c
= tmp3 ;

a=LCall_Binky;

b= LCall_Winky;

c=a*b;

IMPORTANT QUESTIONS:

1. WhatisDAG?ExplaintheapplicationsofDAG.

2. Explainbrieflyaboutcodeoptimizationanditsscopeinimprovingthecode.
3. ConstructtheDAG forthefollowingbasicblock:

D:=B*C
E :=A+B

B:=B+C

A:=E-D.

3. ExplainDetectionofLoopInvariantComputation

4. ExplainCode Motion.

ASSIGNMENTQUESTIONS:

1. Whatisloops?Explainaboutthefollowingtermsinloops:
(a)Dominators

(b) Naturalloops
(c) Innerloops

(d) pre-headers.

2. WriteshortnotesonGlobaloptimization?

COMPILER DESIGN A.Y 2024-25

143|Page
DEPARTMENT OF CSE

OBJECTCODEGENERATION

Machinedependentcodeoptimization:

In final code generation, there is a lot of opportunity for cleverness in generating efficient

target code. In this pass, specific machines features (specialized instructions, hardware pipeline

abilities, register details) are taken into account to produce code optimized for this particular

architecture.

RegisterAllocation

One machine optimization of particular importance is register allocation, which is

perhaps the single most effective optimization for all architectures. Registers are the fastest kind

ofmemoryavailable,but asaresource,theycanbescarce.Theproblemis howtominimize traffic

betweentheregistersandwhatliesbeyondtheminthememoryhierarchytoeliminatetimewasted

sendingdatabackand forthacrossthebusandthedifferent levelsofcaches. YourDecafback-end uses a

verynaïve and inefficient means ofassigning registers, it just fills thembefore performing

anoperationandspillsthemright afterwards.Amuchmoreeffectivestrategywouldbetoconsider which

variables are more heavily indemand and keep those inregisters andspillthose that are no longer

needed or won't be needed until much later. One common register allocation technique is called

"register coloring", after the central idea to view register allocation as a graph coloring

problem.Ifwehave8registers,thenwetrytocoloragraphwitheight differentcolors.Thegraph‘s nodes

are made of "webs" and the arcs are determinedby calculating interference between the webs.

Awebrepresentsavariable‘sdefinitions,placeswhere it isassignedavalue(as inx=…), and the

possible different uses ofthose definitions (as in y = x + 2). This problem, in fact, can be

approached as another graph. The definition and uses of a variable are nodes, and if a definition

reaches a use, there is anarc betweenthe two nodes. Iftwo portions of a variable‘s definition-use

graph are unconnected, then we have two separate webs for a variable. In the interference graph

for the routine, each node is a web. We seek to determine which webs don't interfere with one

another, so we know we can usethe same register for thosetwo variables. For example, consider

the following code:

i=10;
j=20;
x= i+ j;

y=j+k;

We say that i interferes with j because at least one pair of i‘s definitions and uses is

separated by a definition or use ofj, thus, i and j are "alive" at the same time. A variable is alive

betweenthetimeit hasbeendefinedandthat definition‘slast use,afterwhichthevariableisdead. If two

variables interfere, then we cannot use the same register for each. But two variables that don't

interfere can since there is no overlap in the liveness and can occupythe same register.

A.Y 2024-25 COMPILER DESIGN

144|Page DEPARTMENT OF CSE

Oncewehavetheinterferencegraphconstructed,wer-colorit sothatnotwo adjacent nodesshare the

same color (r is the number of registers we have, each color represents a different register). You

may recall that graph-coloring is NP-complete, so we employ a heuristic rather than an

optimalalgorithm. Here is a simplified version ofsomething that might be used:

1. Findthenodewiththeleastneighbors.(Breaktiesarbitrarily.)

2. Removeitfromtheinterferencegraphandpushitontoastack

3. Repeatsteps1and2untilthegraph isempty.

4. Now,rebuildthe graphasfollows:

a. Takethetopnodeoffthestackand reinsertitintothegraph

b. Chooseacolorforit based onthecolorofanyofitsneighborspresentlyinthe graph,

rotating colors in case there is more than one choice.

c. Repeataandbuntilthegraphiseithercompletelyrebuilt,orthereisno color

available to color the node.

Ifwegetstuck,thenthegraphmaynotber-colorable,wecouldtryagainwithadifferentheuristic,

sayreusing colors as oftenas possible. Ifno other choice, we have to spill a variable tomemory.

InstructionScheduling:

Another extremely important optimization of the final code generator is instruction

scheduling. Because many machines, including most RISC architectures, have some sort of

pipelining capability, effectively harnessing that capability requires judicious ordering of

instructions. In MIPS, each instruction is issued in one cycle, but some take multiple cycles to

complete. It takes an additional cycle before the value of a load is available and two cycles for a

branch to reach its destination, but an instruction can be placed in the "delay slot" after a branch

andexecutedinthat slacktime.Ontheleftisonearrangementofasetofinstructionsthat requires 7 cycles.

It assumesno hardware interlock and thusexplicitly stalls betweenthe second and third slots while

the load completes and has a Dead cycle after the branch because the delay slot holds a noop. On

the right, a more Favorable rearrangement of the same instructions will execute in 5 cycles with

no dead Cycles.

lw$t2,4($fp)

lw$t3,8($fp)

noop

add$t4,$t2,$t3

subi $t5, $t5, 1

goto L1

noop
lw $t2, 4($fp)

lw $t3, 8($fp)

subi$t5,$t5,1

goto L1

add $t4,$t2,$t3

A.Y 2024-25 COMPILER DESIGN

145|Page DEPARTMENT OF CSE

RegisterAllocation

One machine optimization of particular importance is register allocation, which is

perhaps the single most effective optimization for all architectures. Registers are the fastest kind

ofmemoryavailable,but asaresource,theycanbe scarce.Theproblemishowtominimize traffic

betweentheregistersandwhatliesbeyondtheminthememoryhierarchytoeliminatetimewasted

sendingdatabackand forthacrossthebusandthedifferent levelsofcaches. YourDecafback-end uses a

verynaïve and inefficient means ofassigning registers, it just fills thembefore performing

anoperationandspillsthemright afterwards.Amuchmoreeffectivestrategywouldbetoconsider which

variables are more heavilyin demand and keep those inregisters andspillthose that are no longer

needed or won't be needed until much later. One common register allocation technique is called

"register coloring", after the central idea to view register allocation as a graph coloring

problem.Ifwehave8registers,thenwetrytocoloragraphwitheight differentcolors.Thegraph‘s nodes

are made of "webs" and the arcs are determinedby calculating interference between the webs.

Awebrepresentsavariable‘sdefinitions,placeswhere it isassignedavalue(as inx=…), and the

possible different uses ofthose definitions (as in y = x + 2). This problem, in fact, canbe

approached as another graph. The definition and uses of a variable are nodes, and if a definition

reaches a use, there is anarc betweenthe two nodes. Iftwo portions of a variable‘s definition-use

graph are unconnected, then we have two separate webs for a variable. In the interference graph

for the routine, each node is a web. We seek to determine which webs don't interfere with one

another, so we know we can usethe same register for thosetwo variables. For example, consider

the following code:

i=10;

j=20;

x= i+ j;

y=j+k;

We saythat i interferes with j because at least one pair of i‘s definitions and uses is

separatedbyadefinitionoruseofj,thus, iandj are"alive"atthesametime. A variable isalive between

the time it has been defined and that definition‘s last use, after which the variable is dead.Iftwo

variablesinterfere,thenwecannot usethesameregisterforeach.Buttwovariables thatdon't

interferecansincethere isno overlap inthelivenessandcanoccupythesameregister. Once we have

the interference graph constructed, we r-color it so that no two adjacent nodes share the same

color (r is the number of registers we have, each color represents a different register). You may

recall that graph-coloring is NP-complete, so we employ a heuristic rather than anoptimal

algorithm. Here is a simplified version of something that might be used:

1. Findthenodewiththeleastneighbors.(Breaktiesarbitrarily.)

2. Removeitfromtheinterferencegraphandpushitonto astack

3. Repeatsteps1and 2untilthe graph isempty.

4. Now,rebuildthegraphasfollows:

a. Takethetopnodeoffthestackand reinsertitintothe graph

A.Y 2024-25 COMPILER DESIGN

146|Page DEPARTMENT OF CSE

b. Chooseacolorforit based onthecolorofanyofitsneighborspresentlyinthegraph,

rotating colors in case there is more than one choice.

c. Repeataandbuntilthegraphiseither completelyrebuilt,orthereisno coloravailable to

color the node.

Ifwegetstuck,thenthegraphmaynotber-colorable,wecouldtryagainwithadifferentheuristic,

sayreusing colors as oftenas possible. Ifno other choice, we have to spill a variable tomemory.

CODEGENERATION:

The code generator generates target code for a sequence of three-address statement. It

considerseachstatementinturn,remembering ifanyoftheoperandsofthestatement arecurrently

inregisters, and taking advantageofthat fact, ifpossible. The code-generationuses descriptorsto

keep track of register contents and addresses for names.

1. A register descriptor keeps track ofwhat is currently in each register. It is consulted whenever

a new register is needed. We assume that initially the register descriptor shows that all registers

are empty. (If registers are assigned across blocks, this would not be the case). As the code

generationfortheblockprogresses, eachregisterwillholdthevalueofzeroormorenamesat any given

time.

2. An address descriptor keeps track of the location (or locations) where the current value of the

namecanbefoundatruntime.Thelocationmightbearegister, astacklocation,amemoryaddress, or some

set ofthese, since when copied, a value also stays where it was. This informationcanbe stored in

the symboltable andis used to determine the accessingmethod fora name.

CODEGENERATIONALGORITHM:

foreachX=YopZdo

- Invokeafunctiongetregtodetermine locationLwhereX must bestored.UsuallyLisa

register.

- ConsultaddressdescriptorofYtodetermineY'.Prefer aregister forY'.IfvalueofYnot already
in L generate

MovY',L

- Generate

op Z', L

A.Y 2024-25 COMPILER DESIGN

147|Page DEPARTMENT OF CSE

AgainpreferaregisterforZ.UpdateaddressdescriptorofXtoindicateXisinL.IfLisaregister

updateitsdescriptortoindicatethatitcontainsXandremoveXfromallotherregisterdescriptors.

.Ifcurrent valueofYand/or Zhasno next useandaredeadonexit fromblockandarein registers,

change register descriptor to indicate that they no longer contain Y and/or Z.

The code generation algorithmtakes as input a sequence ofthree-address statements constituting a

basic block. For each three-address statement ofthe formx := yop z we performthe following

actions:

1. InvokeafunctiongetregtodeterminethelocationLwheretheresultofthecomputation

yopzshouldbestored.Lwillusuallybearegister,butit couldalso beamemorylocation. We

shall describe getreg shortly.

2. Consulttheaddressdescriptorforutodeterminey',(oneof)thecurrentlocation(s)of

y. Prefer the register for y' if the value of y is currently both in memory and a register. If

the value ofu is not already in L, generatethe instruction MOV y', L to place a copyof y in

L.

3. Generate the instruction OP z', L where z' is a current location of z. Again, prefer a

registerto amemorylocation ifz is inboth. Updatethe addressdescriptorto indicatethat

xisinlocationL.IfLisaregister,updateitsdescriptortoindicatethatitcontainsthevalue of x, and

remove x from all other register descriptors.

4. Ifthecurrent valuesofyand/or yhave no next uses, arenotliveonexit fromthe block, and

are in registers,alter the register descriptor to indicate that, after execution ofx := y op z,

those registers no longer will contain y and/or z, respectively.

FUNCTIONgetreg:

1. IfYisinregister(thatholdsnoothervalues)andYisnotliveandhasnonext useafter X = Y op
Z

thenreturnregisterofYforL.

2. Failing(1)returnanemptyregister

3. Failing(2) ifXhasanext useintheblockoroprequiresregisterthenget aregister R, storeits content

into M (by Mov R, M) and use it.

4. ElseselectmemorylocationXasL

Thefunctiongetreg returnsthelocationLtohold thevalue ofxfortheassignmentx:=yop z.

1. Ifthe name y is in a register that holds the value of no other names (recall that copy

instructionssuchasx:=ycouldcausearegistertoholdthevalueof twoormorevariables

A.Y 2024-25 COMPILER DESIGN

148|Page DEPARTMENT OF CSE

simultaneously),and yisnotliveandhasno next useafter executionofx:= yopz,thenreturn the

register of yfor L. Updatethe address descriptorof yto indicate that y is no longer in L.

2. Failing(1),returnanemptyregisterforLifthereisone.

3. Failing(2),ifxhasanextuseintheblock, oropisanoperatorsuchas indexing, thatrequires a register,

find an occupied register R. Storethe value ofR into memory location (by MOVR, M)if itis

notalreadyinthe proper memorylocationM,updatethe addressdescriptorM, and

returnR.IfRholdsthevalueofseveralvariables,aMOV instructionmust begeneratedforeach

variablethatneedstobestored.Asuitableoccupiedregistermightbeonewhosedatumis referenced

furthest in the future, orone whose value is also in memory.

4. Ifxisnotusedinthe block,ornosuitableoccupiedregistercanbe found,select thememory location

of x as L.

Example:

Stmt

code

regdesc

addrdesc

t1=a-b mova,R0

subb,R0

R0contains t1 t1inR0

t2=a-c mova,R1

subc,R1

R0containst1

R1containst2

t1inR0

t2inR1

t3=t1+t2 addR1,R0 R0contains t3

R1contains t2

t3inR0

t2inR1

d=t3+t2 addR 1,R 0

movR0,d

R0containsd dinR0

dinR0and
 memory

Forexample,theassignment d:=(a-b)+(a-c)+(a-c)might betranslated intothefollowing three-

address code sequence:

t1=a- b

t2=a-c

t3=t1+t2d=t

3+t2

The code generation algorithm that we discussed would produce the code sequence as shown.

Shown alongside are the values of the register and address descriptors as code generation

progresses.

A.Y 2024-25 COMPILER DESIGN

149|Page DEPARTMENT OF CSE

DAGforRegisterallocation:

DAG (Directed Acyclic Graphs) are useful data structures for implementing

transformationsonbasicblocks. ADAGgivesapictureofhowthevaluecomputedbyastatement in a

basic block is used in subsequent statements of the block. Constructing a DAG from three-

addressstatements isagoodwayofdeterminingcommonsub-expressions(expressionscomputed more

thanonce) withina block, determining whichnames are used insidethe block but evaluated

outsidetheblock,anddeterminingwhichstatementsoftheblockcould havetheir computedvalue used

outside the block.

ADAGforabasicblockisadirectedcyclicgraphwiththefollowinglabelsonnodes:

1. Leaves are labeled by unique identifiers, either variable names or constants. From the

operatorappliedtoanamewedeterminewhetherthe l-valueorr-valueofanameisneeded;most

leavesrepresentr-values.Theleavesrepresent initialvaluesofnames,andwesubscriptthemwith 0 to

avoid confusion with labels denoting "current" values of names as in (3) below.

2. Interiornodesarelabeledbyanoperator symbol.

3. Nodesarealsooptionallygivenasequenceofidentifiersforlabels.Theintentionisthat
interior nodes represent computed values, and the identifiers labeling a node are deemed to have
that value.

DAGrepresentationExample:

Forexample,theslideshowsathree-addresscode.ThecorrespondingDAG isshown. Weobserve

thateachnodeoftheDAGrepresentsaformula intermsoftheleaves,thatis,thevaluespossessed by

variables and constants upon entering the block. For example, the node labeled t 4 represents the

formula

b[4*i]

A.Y 2024-25 COMPILER DESIGN

150|Page DEPARTMENT OF CSE

thatis,thevalueofthewordwhoseaddress is4*ibytesoffset fromaddressb, whichisthe intended

value of t 4 .

CodeGenerationfromDAG

S1=4*i S1=4*i

S2=addr(A)-4 S2=addr(A)-4

S3=S2[S1] S3= S2[S1]

S4= 4*i

S5=addr(B)-4 S5=addr(B)-4

S6= S5[S4] S6=S5[S4]

S7= S3*S6 S7=S3*S6

S8=prod+S7

prod=S8 prod=prod+S7

S9= I+1

I= S9 I=I+1

IfI<=20 goto(1) IfI<=20goto(1)

WeseehowtogeneratecodeforabasicblockfromitsDAGrepresentation.Theadvantage of

doing so is that from a DAG we can more easily see how to rearrange the order of the final

computation sequence than we can starting from a linear sequence ofthree-address statements or

quadruples. If the DAG is a tree, we can generate code that we can prove is optimalunder such

criteria as program length or the fewest number of temporaries used. The algorithm for optimal

code generation froma tree is also useful when the intermediate code is a parse tree.

Rearrangingorderofthecode

Considerfollowingbasic

block :

t 1 =a +b t

2 = c +d t

3 =e-t 2

X=t1-t 3

and itsDAGgivenhere.

A.Y 2024-25 COMPILER DESIGN

151|Page DEPARTMENT OF CSE

Here,webrieflyconsiderhowtheorderinwhichcomputationsaredonecanaffectthe cost of

resulting object code. Consider the basic block and its corresponding DAG representationas

shown in the slide.

Rearrangingorder.

Three adress code

for the DAG

(assuming only two

registers are

available)

Rearrangingthecodeas

t2= c + d

t3=e-t2

t1=a+b

MOVa,R0 X=t1-t3

ADDb,R0 gives

MOVc,R1 MOVc,R0

ADDd,R1 ADDd,R0

MOVR0,t1 Registerspilling MOVe,R1

MOVe,R0 SUBR 0,R1

SUBR1,R0 MOVa,R 0

MOVt1,R1 Registerreloading ADDb, R0

SUBR0,R1 SUBR 1, R0

MOVR1,X MOV R1,X

Ifwegeneratecodeforthethree-addressstatementsusingthecodegenerationalgorithmdescribed

before, we get the code sequence as shown (assuming two registers R0 and R1 are available, and

onlyXisliveonexit).Ontheotherhandsupposewerearrangedtheorderofthe statementssothat the

computation of t 1 occurs immediately before that of X as:

t2 = c + d

t3 = e -t 2

t1 = a + b

X=t1-t3

Then, using the code generation algorithm, we get the new code sequence as shown (again only

R0andR1areavailable).Byperformingthecomputationinthisorder,wehave beenableto save two

instructions;MOV R0, t 1(whichstoresthe value ofR0 in memorylocationt 1)and MOVt 1 , R1

(which reloads the value of t 1 in the register R1).

152|Page DEPARTMENTOFCSE

Page|152

COMPILERDESIGN A.Y 2023-24

IMPORTANT&EXPECTEDQUESTIONS:

ConstructtheDAG forthefollowingbasicblock:

D:=B*C

E :=A+B

B:=B+C

A:=E-D.

1. WhatisObjectcode?Explainaboutthefollowingobjectcodeforms:

(a) Absolutemachine-language

(b) Relocatablemachine-language

(c) Assembly-language.

2. Explainabout Genericcodegenerationalgorithm?

3. Writeandexplainaboutobjectcodeforms?

4. ExplainPeepholeOptimization

ASSIGNMENTQUESTIONS:

1. Explainabout Genericcodegenerationalgorithm?

2. Explainabout Data-Flowanalysisofstructuredflowgraphs.

3. WhatisDAG?ExplaintheapplicationsofDAG.

	(AutonomousInstitution–UGC,Govt.ofIndia)
	MALLAREDDY COLLEGE OF ENGINEERING & TECHNOLOGY
	Vision
	Mission
	PEO1–ANALYTICALSKILLS
	PEO2–TECHNICALSKILLS
	PEO3–SOFTSKILLS
	PEO4–PROFESSIONALETHICS

	PROGRAM OUTCOMES (POs)
	Engineering Graduates should possess the following:

	(AutonomousInstitution–UGC,Govt.ofIndia)
	INDEX

	UNIT-I
	INTRODUCTIONTOLANGUAGEPROCESSING:
	LANGUAGETRANSLATORS:

	LANGUAGE PROCESSING SYSTEM:
	TYPESOF COMPILERS:
	PHASESOFACOMPILER:
	PHASE,PASSESOFACOMPILER:
	THEFRONT-END&BACK-ENDOFACOMPILER

	LEXICALANALYSIS:
	TOKENS,PATTERNS ANDLEXEMES:

	INPUTBUFFERING:
	SPECIFICATIONOFTOKENS:

	SYNTAXANALYSIS(PARSER)
	THEROLEOFTHEPARSER:

	IMPORTANT(OR)EXPECTEDQUESTIONS
	ASSIGNMENTQUESTIONS:
	UNIT-II
	BackTracking

	NONBACKTRACKING:
	NotationalConventionsUsedInWritingCFGs:
	1. Thesesymbolsareterminals:
	2. Thesesymbolsarenonterminals:
	E E +T |E–T |T

	DERIVATIONS:
	LeftMostDerivation(LMD):
	E=>E+E

	RightMostDerivation(RMD):
	E=>E+ E

	WhatisaParseTree?
	AMBIGUITYinCFGs:
	E=>E+E E=>E*E
	1) E->E+T|T
	T->T*F|F
	1) EE +T |T

	LEFTRECURSION:
	EE +T |T

	LEFTFACTORING:
	FIRSTandFOLLOW:
	ComputationofFIRST:
	ComputationOfFOLLOW:
	ConstructingPredictiveOrLL(1)ParseTable:

	LL(1)ParsingAlgorithm:
	STRINGACCEPTANCEBYPARSER:
	ERRORHANDLING(RECOVERY)INPREDICTIVEPARSING:
	PanicmodeErrorRecovery:
	PhraseLevelRecovery:

	RECURSIVEDESCENTPARSING:
	IMPORTANTANDEXPECTEDQUESTIONS
	ASSIGNMENTQUESTIONS

	BOTTOM-UPPARSING
	EE+T|T
	SHIFT-REDUCEPARSING:
	EE+T|T (1)
	EE+E/EE-E /EE*E/EE/E/EE^E/E-E/E(E)/E
	ParsingAction:
	EE+E
	6. $E $

	OperatorParsingAlgorithm:
	E

	AdvantagesandDisadvantagesofOperatorPrecedenceParsing:
	LRParsing:
	OUTPUT
	S`S•

	LRParsingTable:
	SLRPARSERCONSTRUCTION:WhatisSLR(1)Parsing
	1. S->•CC
	S->•CC, $
	S′->•S , $ S->•CC,$

	LALR(1)Parsing
	1 S->•CC
	IMPORTANT QUESTIONS
	ASSIGNMENTQUESTIONS

	UNIT-III
	INTERMEDIATECODEGENERATION
	General Representation
	SYNTAXDIRECTEDTRANSLATIONOFTHREEADDRESSCODE
	IMPLEMENTATIONSOF THREE-ADDRESSSTATEMENTS:
	QUADRUPLES:
	TRIPLES:
	FOLLOWINGTHINGSAREDONEINSEMANTICANALYSIS:
	CONSTRUCTINGABSTRACTSYNTAXTREEFOREXPRESSIONS:
	F(E)

	Asyntaxdirecteddefinitionforconstructing syntaxtree
	TYPESYSTEMANDTYPECHECKING:

	TYPEEXPRESSION:
	TYPECHECKINGOFFUNCTIONS:
	IMPORTANT&EXPECTEDQUESTIONS

	ASSIGNMENTQUESTIONS:
	SYMBOLTABLE
	LongLengthData:
	ACCESSTONON-LOCALNAMES:
	ORGANIZATIONFORBLOCKSTRUCTURES:
	DYNAMICSTORAGEALLOCATION:

	ExplicitAllocationofVariableSizeBlocks:
	IMPORTANT QUESTIONS:
	ASSIGNMENTQUESTIONS:

	RUNTIMESTORAGEMANAGEMENT:
	REPRESENTINGSCOPEINFORMATION
	LOCALSYMBOLTABLEMANAGEMENT:
	HASHEDLOCALSYMBOLTABLE
	BLOCK STRUCTURESANDNONBLOCKSTRUCTURESTORAGEALLOCATION
	STORAGEALLOCATIONFORARRAYS
	D
	STORAGEALLOCATIONFORRECORDS

	CODEOPTIMIZATION
	LOCALOPTIMIZATIONS
	FUNCTIONPRESERVINGTRANSFORMATIONS
	1. CommonSubExpressionElimination:
	2. VariablePropagation:
	3. DeadCodeElimination:
	4. CodeMovement:
	5. StrengthReduction:
	GLOBALOPTIMIZATIONS,DATA-FLOW ANALYSIS:
	MACHINEOPTIMIZATIONS
	REGISTERALLOCATION:
	INSTRUCTIONSCHEDULING:

	PEEPHOLEOPTIMIZATIONS:
	IMPORTANT QUESTIONS:
	ASSIGNMENTQUESTIONS:

	UNIT-V
	FLOWGRAPHS:
	DATAFLOWEQUATIONS:
	GLOBALOPTIMIZATIONS,DATA-FLOW ANALYSIS
	IMPORTANT QUESTIONS:
	ASSIGNMENTQUESTIONS:
	OBJECTCODEGENERATION
	CODEGENERATION:
	CODEGENERATIONALGORITHM:
	DAGforRegisterallocation:
	IMPORTANT&EXPECTEDQUESTIONS:
	ASSIGNMENTQUESTIONS:

