DEPARTMENT OF
COMPUTER SCIENCE AND ENGINEERING

DIGITAL NOTES
ON

COMPILER DESIGN
[R22A0511]

B.TECH IIIYEAR-ISEM(R22)
(2024-25)

EOWawro

Prepared by
K.Chandusha

MALLA REDDY COLLEGE OF
ENGINEERING& TECHNOLOGY

(Autonomouslnstitution-UGC,Govt.ofIndia)

Recognizedunder2(f)and12(B)ofUGCACT 1956
(AffiliatedtoJNTUH,Hyderabad,Approved byAICTE-AccreditedbyNBA&NAAC— A’Grade-1S09001:2015 Certified)

Maisammaguda,Dhulapally(PostVia. Hakimpet),Secunderabad-500100, TelanganaState, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Vision

To acknowledge quality education and instill high patterns of discipline making the

students technologically superior and ethically strong which involves the

improvement in the quality of life in human race.

Mission
®To achieve and impart holistic technical education using the best of infrastructure,
outstanding technical and teaching expertise to establish the students into competent
and confident engineers.
® Evolving the center of excellence through creative and innovative teaching learning
practicesforpromotingacademicachievementtoproduceinternationallyacceptedcompetiti

veand world class professionals.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1-ANALYTICALSKILLS

® To facilitate the graduates with the ability to visualize, gather information, articulate, analyze,
solve complex problems, and make decisions. These are essential to address the challenges of
complex and computation intensive problems increasing their productivity.
PEO2-TECHNICALSKILLS
® Tofacilitatethegraduateswiththetechnicalskillsthatpreparethemforimmediateemploymentandpurs
ue certification providing a deeper understanding of the technology in advanced areas of
computer science and related fields, thus encouraging pursuing higher education and research
based on their interest.
PEO3-SOFTSKILLS

® To facilitate the graduates with the soft skills that include fulfilling the mission, setting goals,
showing self confidence by communicating effectively, having a positive attitude, get
involved in team-work, being a leader, managing their career and their life.
PEO4-PROFESSIONALETHICS
® To facilitate the graduates with the knowledge of professional and ethical responsibilities by
paying attention to grooming, being conservative with style, following dress codes, safety

codes, and adapting them to technological advancements.

PROGRAM SPECIFIC OUTCOMES (PSOs)

After the completion of the course, B.Tech Computer Science and Engineering, the graduates
will have the following Program Specific Outcomes:

1.FundamentalsandcriticalknowledgeoftheComputerSystem: -
AbletoUnderstandtheworkingprinciples of the computer System and its components, Apply
the knowledge to build, asses, and analyze the software and hardware aspects of it.

2.The comprehensive and Applicative knowledge of Software Development. Comprehensive
skills of Programming Languages, Software process models, methodologies, and able to plan,
develop, test, analyze, and manage the software and hardware intensive systems in
heterogeneous platforms individually or working in teams.

3.Applications of Computing Domain & Research: Able to use the professional, managerial,
interdisciplinary skill set, and domain specific tools in development processes, identify their
search gaps, and provide innovative solutions to them.

PROGRAM OUTCOMES (POs)

Engineering Graduates should possess the following:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals,andanengineeringspecializationtothesolutionofcomplexengineeringproblems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions wusing first principles of
mathematics, natural sciences, and engineering sciences.

3. Design / development of solutions: Design solutions for complex
engineeringproblemsanddesignsystemcomponentsorprocessesthatmeetthespecifiedneedswit
happropriateconsideration for thepublic health and safety, and the
cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of
the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
the professional engineering practice.

7.Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as member or leader in
diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and
receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage
in independent and life-long learning in the broadest context of technological change.

MALLA REDDY COLLEGE OF ENGINEERING&TECHNOLOGY
I1IIYEAR-ISEM(R22)

COMPILERDESIGN[R22A0511]

CourseObjectives:

1. Totrainthestudents tounderstanddifferenttypesofAlagents.
2. TounderstandvariousAlsearchalgorithms.

3. Fundamentalsofknowledgerepresentation,building ofsimpleknowledge-basedsystemsand toapply k
knowledge representation.

4. Fundamentalsofreasoning

5. StudyofMarkovModels enablethestudentreadytostepintoapplied Al.

UNIT-I:

Language Translation: Introduction, Basics, Necessity, Steps involved in a typical language
processing system, Types of translators, Compilers: Overview, Phases, Pass and Phases of
translation, bootstrapping, data structures in compilation

Lexical Analysis (Scanning): Functions of Scanner, Specification of tokens: Regular expressions
and Regular grammars for common PL constructs. Recognition of Tokens: Finite Automata in
recognitionand generation of tokens. Scanner generators: LEX-Lexical Analyzer Generators,LEX.
Syntax Analysis (Parsing) : Functions of a parser, Classification of parsers. Context free grammars
in syntax specification, benefits and usage in compilers.

UNIT-II:

Top down parsing —Definition, types of top down parsers: Backtracking, Recursive descent,
Predictive, LL (1), Preprocessing the grammars used in top down parsing, Error recovery, and
Limitations. Bottom up parsing: Definition,Handle pruning. Types of bottom up parsers: Shift
Reduce parsing, LR parsers: LR(0), SLR, CALR and LALR parsing, Error recovery, Handling
ambiguous grammar, Parser generators: YACC-yet another compiler compiler. .

UNIT-III:

Semantic analysis: Attributed grammars, Syntax directed definition and Translation schemes, Type
checker: functions, type expressions, type systems, types checking of various constructs.
Intermediate Code Generation: Functions, intermediate code forms- syntax tree, DAG, Polish
notation, and Three address codes. Translation of different source language constructs into
intermediate code.

Symbol Tables: Definition, contents, and formats to represent names in a Symbol table. Different
approaches of symbol tableimplementationfor blockstructuredandnonblockstructuredlanguages, such
as Linear Lists, SelfOrganized Lists, and Binary trees, Hashing based STs.

UNIT-IV:

Runtime Environment: Introduction, Activation Trees, Activation Records and Control stacks.
Runtimestorageorganization:Static,StackandHeapstorageallocation. ~ Storageallocationfor arrays,
strings, and records etc.

Code optimization: goals and Considerations, and Scope of Optimization: Machine Dependent and
Independent Optimization, Localoptimizations, DAGs, Loop optimization, Global Optimizations.
Commonoptimizationtechniques:Folding, Copypropagation,CommonSubexpressioneliminations,
Code motion, Frequency reduction, Strength reduction etc.

UNIT-V:

Control flow and Data flow analysis: Flow graphs, Data flow equations, global optimization:
Redundant sub expression elimination, Induction variable eliminations, Live Variable analysis.
Object code generation: Object code forms, machine dependent code optimization, register
allocation and assignment. Algorithms- generic code generation algorithms and other modern
algoritms, DAG for register allocation.

TEXTBOOKS:
1. Compilers,Principle, Techniques,andTools.—Alfred.VAho,MonicaS.Lam,RaviSethi,Jeffrey

D.Ullman;2ndEdition,PearsonEducation.
2. ModernCompilerimplementationinC,-AndrewN.AppelCambridgeUniversityPress.

REFERENCES:

1. lex&yacc,-JohnRLevine, TonyMason, DougBrown;O’reilly.

2. CompilerConstruction,-LOUDEN, Thomson.

3. Engineeringacompiler—Cooper&L.inda,Elsevier

4. ModernCompilerDesign—DickGrune,HenryE.Bal,Cariel THJacobs, WileyDreatech

Outcomes:
Bytheendof thesemester,thestudentwillbeableto:

¢ Understandthenecessityandtypesofdifferentlanguagetranslatorsinuse.
o Applythetechniguesanddesigndifferentcomponents(phases)ofacompilerbyhand.
o Solveproblems,WriteAlgorithms,Programsandtestthemfortheresults.

UNITNO

TOPIC

PAGENO

LanguageTranslation

01-03

Compilers

04-08

LexicalAnalysis(Scanning)

09-15

SyntaxAnalysis (Parsing)

16-17

Topdownparsing

18-33

Bottomup parsing

34-59

Semanticanalysis

60-67

Intermediate CodeGeneration

68-92

SymbolTables

93-106

RuntimeEnvironment

107-122

Codeoptimization

122-134

ControlflowandDataflowanalysis

135-141

Objectcodegeneration

142-152

COMPILER DESIGN AY 2024-25

UNIT-I

INTRODUCTIONTOLANGUAGEPROCESSING:

AsComputersbecame inevitableand indigenouspartofhumanlife, and severallanguages
withdifferentandmoreadvancedfeaturesareevolvedintothisstreamtosatisfyorcomforttheuser in
communicating with the machine , the development of the translators or mediator Software‘s
have become essential to fill the huge gap between the human and machine understanding. This
process is called Language Processing to reflect the goaland intent ofthe process. On the wayto
this process to understand it in a better way, we have to be familiar with some key terms and
concepts explained in following lines.

LANGUAGETRANSLATORS:

Is a computer programwhich translates a program written in one (Source) language to its
equivalentprograminother|[Target]language. TheSourceprogramisahighlevellanguagewhereas the
Target language can be any thing from the machine language of a target machine (between
Microprocessor to Supercomputer) to another high level language program.

2. TwocommonlyUsedTranslatorsareCompiler andInterpreter
Compiler:Compilerisaprogram,readsprograminonelanguagecalledSourceLanguage

andtranslatesintoitsequivalent programinanotherLanguagecalledTarget Language, in
addition to this its presents the error information to the User.

An Equivalent Program in

COMPILER other Language or
Relocatable Object Code

\ or Target Program

Source program in
one language or
high level
Language

Error Information

> Ifthetarget programisanexecutable machine-languageprogram, it canthenbecalled by
the users to process inputs and produce outputs.

Input —» TargetProgram [, Output

Figurel.1l:RunningthetargetProgram

DEPARTMENT OF CSE

Interpreter: Aninterpreterisanothercommonlyusedlanguageprocessor.Insteadofproducing a
target program as a single translation unit, an interpreter appears to directly execute the
operations specified in the source program on inputs supplied by theuser.

SourceProgram ———»
Input ——> Interpreter > Output

Figurel.2:Running thetargetProgram

LANGUAGE PROCESSING SYSTEM:

Basedonthe inputthetranslatortakesandtheoutputit produces,alanguagetranslatorcanbe called
as any one of the following.

Preprocessor: Apreprocessortakestheskeletalsourceprogramasinput andproducesanextended
version of it, which is the resultant of expanding the Macros, manifest constants if any, and
includingheader filesetcinthesourcefile.Forexample,theCpreprocessorisa macro processor
thatisusedautomaticallybytheCcompilertotransformoursourcebeforeactualcompilation.Over and
above a preprocessor performs the following activities:

2 Collectsallthemodules, filesincaseifthesourceprogramisdivided intodifferent modules stored
at different files.

2 Expandsshorthands/macrosintosourcelanguagestatements.

Compiler: Is atranslator that takes as input a source program written in high level language and
convertsitinto itsequivalent target programinmachine language. Inadditiontoabovethecompiler also

> Reportstoitsuserthepresenceoferrorsinthesourceprogram.

> Facilitatestheuserinrectifyingtheerrors,andexecutethecode.

Assembler:lsaprogramthattakesas input anassemblylanguageprogramandconverts it intoits equivalent
machine language code.

Loader/Linker: This isaprogramthattakesasinput arelocatable codeand collectsthe library
functions, relocatable object files, and produces its equivalent absolute machine code.

Specifically,

> Loadingconsistsoftakingtherelocatable machinecode,alteringtherelocatableaddresses, and
placing the altered instructions and data in memoryat the proper locations.

> Linkingallowsustomakeasingleprogramfromseveralfilesofrelocatable machine code. These
files may have been result of several differentcompilations, one or more may be
libraryroutines provided by the system available to anyprogramthat needs them.

DEPARTMENTOFCSE

COMPILER DESIGN AY 2024-25

In addition to these translators, programs like interpreters, text formatters etc., may be used in
language processing system. To translate a program in a high level language program to an
executable one, the Compiler performs by default the compile and linking functions.

Normally the steps in a language processing system includes Preprocessing the skeletal Source
program which produces an extended or expanded source program or a ready to compile unit of
the source program, followed by compiling the resultant, then linking / loading , and finally its
equivalentexecutablecodeisproduced.Aslsaidearliernotallthesestepsaremandatory.Insome cases,
the Compiler only performs this linking and loading functions implicitly.

The steps involved in a typical language processing system can be understood with following
diagram.

SourceProgram [Example:filename.C]

Preprocessor

ModifiedSchceProgram [Example:filename.C]

Compiler

TargetAss*mblyP rogram

Assembler
|

v

RelocatableMachineCode[Example: filename.obj]

|

Loader/Linker | <«——Library files
1 RelocatableObijectfiles

TargetMachineCode [Example: filename.exe]

Figurel.3:ContextofaCompilerinLanguageProcessingSystem

TYPESOF COMPILERS:

Basedonthespecific input ittakesandtheoutputitproduces,theCompilerscanbeclassified into
the following types;

TraditionalCompilers(C,C++,Pascal): TheseCompilersconvert asourceprograminaHLL into its
equivalent in native machine code or object code.

COMPILER DESIGN AY 2024-25

Interpreters(LISP, SNOBOL, Javal.0): These Compilers first convert Source code into
intermediate code, and then interprets (emulates) it to its equivalent machine code.

Cross-Compilers: Thesearethecompilersthatrunononemachineandproducecodeforanother
machine.

Incremental Compilers: These compilers separate the source into user defined—steps;
Compiling/recompiling step- by- step; interpreting steps in a given order

Converters (e.g. COBOL to C++): These Programs will be compiling from one high level
language to another.

Just-In-Time (JIT) Compilers (Java, Micosoft. NET): These are the runtime compilers from
intermediate language (byte code, MSIL) to executable code or native machine code. These
perform type —based verification which makes the executable code more trustworthy

Ahead-of-Time (AOT) Compilers (e.g., .NET ngen): These are the pre-compilers to the native
code for Java and .NET

BinaryCompilation: Thesecompilers willbecompilingobject codeofoneplatformintoobject code of
another platform.

PHASESOFACOMPILER:

Due to the complexity of compilation task, a Compiler typically proceeds in a Sequence of
compilation phases. The phases communicate with each other via clearly defined interfaces.
GenerallyaninterfacecontainsaDatastructure(e.g.,tree),Setofexportedfunctions.Eachphase
worksonanabstract intermediate representationofthesourceprogram, notthesourceprogram text
itself (except the first phase)

Compiler Phases arethe individual modules which are chronologicallyexecutedto performtheir
respective Sub-activities, and finally integrate the solutions to give target code.

It is desirable to have relativelyfew phases, since it takes time to read and write immediate files.
Following diagram(Figurel.4) depictsthe phasesofa compiler through which it goesduring the
compilation. There fore a typical Compiler is having the following Phases:

1. LexicalAnalyzer(Scanner),2.SyntaxAnalyzer(Parser),3.SemanticAnalyzer,
4.IntermediateCodeGenerator(ICG),5.CodeOptimizer(CO),and6.CodeGenerator(CG)

In addition to these, it also has Symbol table management, and Error handler phases. Not all
the phases are mandatory in everyCompiler. e.g, Code Optimizer phase is optional in some

COMPILER DESIGN A.Y2024-25

cases. Thedescriptionisgiveninnextsection.

ThePhasesofcompilerdivided intotwo parts,firstthreephaseswearecalledasAnalysis part
remaining three called as Synthesis part.

Somce program

Lexical analysex

y

Syntax analyser

]

et Semantic analysex

ISvinbol-table manages ;

\‘\ Intermediate
code generator

i !
\ \‘1] Code optumise:

L

1

\\ =
\L Code generator

L
Target program

Figurel.4:PhasesofaCompiler
PHASE,PASSESOFACOMPILER:

In some application we can have a compiler that is organized into what is called passes.
Where a pass is a collection of phases that convert the input from one representation to a
completelydeferentrepresentation. Eachpassmakesacompletescanoftheinput andproducesits

output to be processed bythe subsequent pass. For example a two pass Assembler.

THEFRONT-END&BACK-ENDOFACOMPILER

DEPARTMENT OF CSE

COMPILER DESIGN AY 2024-25

All of these phases of a general Compiler are conceptually divided into The Front-end,
andTheBack-end.Thisdivisionisduetotheir dependenceoneithertheSourceLanguageorthe Target
machine. This model is called an Analysis & Synthesis model ofa compiler.

The Front-end of the compiler consists of phases that depend primarily on the Source
language and are largely independent on the target machine. For example, front-end of the
compiler includes Scanner, Parser, Creation of Symbol table, Semantic Analyzer, and the
Intermediate Code Generator.

The Back-end of the compiler consists of phases that depend on the target machine, and
thoseportionsdon‘t dependent ontheSourcelanguage, just thelntermediate language. Inthiswe
havedifferentaspectsofCodeOptimizationphase,codegenerationalongwiththenecessaryError
handling, and Symbol table operations.

LEXICALANALYZER(SCANNER):TheScanneristhefirstphasethatworksasinterface
betweenthecompilerandtheSourcelanguageprogramandperformsthefollowingfunctions:

> ReadsthecharactersintheSourceprogramandgroupsthemintoastreamoftokensinwhich ~ each
token specifies a logically cohesive sequence of characters, such as an identifier , a
Keyword , a punctuation mark, a multi character operator like :=.

> Thecharactersequenceforming a tokeniscalled alexeme ofthetoken.

2.TheScannergeneratesatoken-id,andalso entersthatidentifiersname intheSymbol table if
it doesn‘t exist.

2 AlsoremovestheComments,andunnecessaryspaces.

Theformatofthetokenis<Token name,Attributevalue>

SYNTAXANALYZER(PARSER):TheParserinteractswiththeScanner,anditssubsequent phase
Semantic Analyzer and performs the following functions:

2 .Groupstheabovereceived, andrecordedtokenstreamintosyntacticstructures,usually into a
structure called Parse Tree whose leaves are tokens.

>.The interiornodeofthistreerepresentsthestreamoftokensthat logicallybelongs together.

> Itmeansitchecksthesyntaxofprogramelements.

SEMANTICANALYZER: This phase receives the syntax tree as input, and checks the
semanticallycorrectnessoftheprogram. Thoughthetokensarevalidandsyntacticallycorrect, it

DEPARTMENT OF CSE

COMPILER DESIGN AY 2024-25

mayhappenthattheyarenotcorrectsemantically. Thereforethesemanticanalyzerchecksthe
semantics (meaning) of the statements formed.

2 TheSyntacticallyandSemanticallycorrect structuresareproducedhereinthe formofa
Syntax tree or DAG or some other sequential representation like matrix.

INTERMEDIATE CODE GENERATOR(ICG): This phase takes the syntactically and
semantically correct structure as input, and produces its equivalent intermediate notation of the
source program. The Intermediate Code should have two important properties specified below:

2 Itshould beeasytoproduce,andEasytotranslateintothetargetprogram.Example
intermediate code forms are:

> Three addresscodes,
> Polishnotations,etc.

CODEOPTIMIZER: Thisphase isoptional in some Compilers, but so useful and beneficial in
terms of saving development time, effort, and cost. This phase performs the following specific
functions:

2 Attemptsto improvethelCso asto havea faster machinecode.Typicalfunctions include —
LoopOptimization, Removalofredundant computations, Strengthreduction, Frequency
reductions etc.

2-Sometimesthedatastructuresusedinrepresentingthe intermediateforms mayalsobe
changed.

CODE GENERATOR: This is the final phase of the compiler and generates the target code,
normallyconsistingoftherelocatable machinecodeorAssemblycodeorabsolutemachinecode.

2> Memorylocationsareselectedforeachvariable used,andassignmentofvariablesto registers
is done.

2 Intermediateinstructionsaretranslated intoasequenceofmachineinstructions.

TheCompileralso performstheSymboltablemanagementandErrorhandlingthroughoutthe
compilation process. Symbol table is nothing but a data structure that stores different source
language constructs, and tokens generated during the compilation. These two interact with all
phases of the Compiler.

DEPARTMENT OF CSE

COMPILER DESIGN AY 2024-25

Forexamplethesourceprogramisanassignment statement;thefollowing figureshowshowthe phases
of compiler will process the program.

TheinputsourceprogramisPosition=initial+rate*60

PHASES OF COMPILER

position := initial + rate * 60 d

1. Lexical analyzer 4. Intermediate code generator

id, :=id, +id; * 60 temp, := inttoreal(60)
J{ temp,, :=id, * temp,
temp, :=id, + temp,
2. Syntax analyzer id, := temp3
PN !
. 5. Code optimizer

N temp, := id, * 60.0
id, 60 id, = id, + temp,

|

3. Semantic analyzer 6. Code generator

= MOVF id, , R
: Jl/ \“/+\ MULF #60.0 R,
_ MOVF id, , R,
N ADDF R,, R,
gy Intoreal MOVF R,, id,
60

Figurel.5:TranslationofanassignmentStatement

DEPARTMENT OF CSE

COMPILER DESIGN A.Y 2024-25

LEXICALANALYSIS:

Asthe first phaseofacompiler, the maintaskofthelexicalanalyzeristoreadthe input
charactersofthesourceprogram, grouptheminto lexemes, andproduceasoutputtokens for each
lexeme inthe source program. This streamoftokens is sent to the parser for syntaxanalysis. It is
common for the lexical analyzer to interact with the symbol table as well.

Whenthe lexicalanalyzer discoversa lexemeconstitutinganidentifier,it needsto enter that
lexeme into the symboltable. This process is shown in the following figure.

token

source Lexical to semantic
—— ——)

program Analyzer | analysis

getNextToken

Figurel.6:LexicalAnalyzer

When lexical analyzer identifies the first token it will send it to the parser, the parser
receivesthetokenandcallsthe lexicalanalyzertosendnexttokenbyissuingthegetNextToken()
command. This Process continues until the lexical analyzer identifies all the tokens. During this
process the lexical analyzer will neglect or discard the white spaces and comment lines.

TOKENS,PATTERNS ANDLEXEMES:

A token is a pair consistingofatokennameandanoptionalattribute value.The tokenname is an
abstract symbolrepresenting a kind of lexical unit, e.g., a particular keyword, or a sequence of
input characters denoting an identifier. The token names are the input symbols that the parser
processes.Inwhatfollows, weshallgenerallywritethenameofatokeninboldface. Wewilloften refer to
a token by its token name.

Apattern isadescriptionoftheformthatthelexemesofatokenmaytake[ormatch]. Inthe case ofa
keyword as atoken, the pattern is just the sequence ofcharactersthatformthe keyword. For
identifiersandsomeothertokens,thepatternisa morecomplexstructurethatis matched bymany
strings.

DEPARTMENT OF CSE

COMPILER DESIGN A.Y 2024-25

Alexeme isasequenceofcharactersinthesourceprogramthat matchesthepatternfora token
and is identified by the lexical analyzer as an instance of that token.

Example:InthefollowingClanguagestatement, printf
("Total = %d\nl, score) ;

bothprintfandscorearelexemesmatchingthepattern fortokenid,and"* Total=%d\nl is a
lexeme matching literal [or string].

TOKEN INFORMAL DESCRIPTION SAMPLE LEXEMES

if characters i, f if
else characters e, 1, s, e else
comparison | < or > or <= or >=or == or !=
id letter followed by letters and digits | pi, score, D2
number any numeric constant 3.14159, 0, 6.02e23

literal anything but ", surrounded by "’s | "core dumped"

Figurel.7:ExamplesofTokens

LEXICALANALYSISVSPARSING:

Thereareanumberofreasonswhytheanalysisportionofacompiler isnormallyseparated into lexical
analysis and parsing (syntax analysis) phases.

> 1.Simplicityofdesignisthemostimportantconsideration. TheseparationofLexicaland
Syntactic analysis often allows us to simplify at least one ofthesetasks.For example,a
parser thathad to deal with comments and whitespace as syntactic units would be
considerably more complex than one that can assume commentsand whitespace have
already been removed by the lexicalanalyzer.

2.2. Compiler efficiency is improved. A separate lexical analyzer allows us to apply
specialized techniques that serve only the lexical task, not the job of parsing. In addition,
specialized buffering techniques for reading input characters can speed up the compiler
significantly.

>.3.Compilerportabilityisenhanced:Input-device-specificpeculiaritiescanbe
restricted to the lexical analyzer.

DEPARTMENT OF CSE

COMPILER DESIGN A.Y 2024-25

INPUTBUFFERING:

Before discussing the problemofrecognizinglexemesinthe input,let us examine some
waysthatthesimplebutimportanttaskofreadingthesourceprogramcanbespeeded. This
taskismadedifficult bythe factthat weoftenhavetolookoneormorecharactersbeyond thenext
lexemebeforewecanbesurewehavetheright lexeme. Therearemanysituationswhereweneed tolookat
leastoneadditionalcharacterahead. Forinstance, wecannot besure we'veseentheend ofan identifier
until we see a character that is not a letter or digit, and therefore is not part ofthe lexeme for
id.InC, single-characteroperators like-,=,or<could also be the beginning ofa two-character
operator like ->, ==, or <=. Thus, we shall introduce a two-buffer scheme that handles large look
aheads safely. We then consider an improvement involving "sentinels" that saves time checking
for the ends of buffers.

BufferPairs

Because of the amountof time taken toprocess characters and thelarge number of characters that
must be processed during the compilation of a large source program, specialized buffering
techniques have been developed to reduce the amount of overhead required to process a single
input character. An important scheme involves two buffers that are alternately reloaded.

Cg*g*ngeoff

T forward
lexemeBegin

Figurel.8:UsingaPairofInputBuffers

EachbufferisofthesamesizeN,andNisusuallythesizeofadisk block,e.g.,4096bytes. Using
one systemread command we can read N characters in toa buffer,rather than using one system
call per character. If fewer than N characters remain in the input file, then a special character,
represented by eof, marks the end of the source file and is different from any possible character
of the source program.

2. Twopointerstotheinputaremaintained:

1. ThePointerlexemeBegin,marksthebeginningofthecurrent lexeme,whoseextent we
are attempting to determine.

Pointer forward scans ahead until a pattern match is found; the exact strategy
wherebythisdeterminationis madewillbecoveredinthebalanceofthischapter.

DEPARTMENT OF CSE

COMPILER DESIGN A.Y 2024-25

Once the next lexeme is determined, forward is set to the character at its right end. Then,
after the lexeme is recorded as an attribute value of a token returned to the parser, 1exemeBegin
is set tothe character immediatelyafter the lexeme just found. In Fig, we see forward has passed
the end of the next lexeme, ** (the FORTRAN exponentiation operator), and must be retracted
one position to its left.

Advancing forwardrequiresthat wefirst testwhether we havereachedtheendof oneof the
buffers, and if so, we mustreload the other bufferfrom the input, and move forward to the
beginning ofthe newly loaded buffer. As long aswenever need to lookso far ahead ofthe actual
lexemethat thesumofthe lexeme's lengthplusthedistancewelookahead isgreaterthanN, we shall

never overwrite the lexeme in its buffer before determining it.

SentinelsTo ImproveScannersPerformance:

If we use the above scheme as described, we must check, each time we advance forward,
thatwehavenot movedoffoneofthebuffers;ifwedo,thenwe must alsoreloadtheotherbuffer. Thus, for
each character read, we make two tests: one for the end of the buffer, and oneto determine what
character is read (the latter may be a multi way branch). We can combine the buffer-end test with
the test for the current character if we extend each buffer to hold a sentinel character at the end.
The sentinel is a special characterthat cannot be partofthe source program, andanaturalchoice
isthecharactereof.Figurel.8showsthesamearrangement asFigurel.7, but with the sentinels added.

Notethat eof retains its use as a marker for the end of the entire input.

fMé*geofcé*f*fzfeoff

forward
lexemeBegin

Figurel.8:Sententialattheendofeachbuffer

Anyeofthatappearsotherthanattheendofabuffermeansthatthe input isat anend. Figurel.9 summarizesthe
algorithm for advancing forward.Notice howthe first test,whichcanbepart of

DEPARTMENT OF CSE

COMPILER DESIGN A.Y 2024-25

amultiwaybranchbasedonthecharacterpointedtobyforward,istheonlytest wemake,except in the
case where we actually are at the end ofa buffer or the end ofthe input.
switch(*forward++)

{

caseeof:if(forward isatendoffirstbuffer)
{
reloadsecondbuffer;
forward=beginningofsecond buffer;

¥

elseif(forwardisatendofsecondbuffer)

{

reloadfirstbuffer;
forward=beginningoffirstbuffer;

}
else /*eofwithinabuffer markstheendofinput */

terminate lexical analysis;

Figurel.9:useofswitch-caseforthesentential
SPECIFICATIONOFTOKENS:

Regular expressions areanimportant notationfor specifyinglexemepatterns. Whiletheycannot express
allpossiblepatterns, theyareveryeffectiveinspecifyingthosetypes of patterns that weactuallyneedfor
tokens.

LEXtheLexicalAnalyzergenerator

Lex is a toolused to generate lexicalanalyzer, the input notation for the Lex tool is
referredtoastheLexlanguageandthetoolitselfis theLexcompiler.Behindthescenes,the
Lexcompilertransformstheinputpatterns intoatransitiondiagramandgeneratescode,ina
filecalledlex.yy.c, it isacprogramgivenforCCompiler, givestheObject code.Hereweneed to know
how to write the Lex language. The structure of the Lex program is given below.

DEPARTMENT OF CSE

COMPILER DESIGN A.Y 2024-25

StructureofLEX Program:ALexprogramhasthefollowingform:

Declarations
%%
Translationrules
%%

Auxiliaryfunctionsdefinitions

Thedeclarationssection : includesdeclarationsofvariables, manifest constants(identifiers
declaredtostandforaconstant, e.g.,thenameofatoken), andregular definitions. It appears
between %{. . .%}

Inthe Translation rules section, We place PatternActionpairswhere eachpair have the form
Pattern {Action}

Theauxiliary function definitionssectionincludesthedefinitionsoffunctionsusedto install
identifiers and numbers in the Symbol tale.

LEXProgramExample:
%{

[*definitionsofmanifestconstantsLT,LE,EQ,NE,GT,GE,IF, THEN,ELSE,ID,NUMBER,
RELOP */

%}

[*regulardefinitions*/

delim [\t\n]

WS delim}+

letter [A-Za-Z]

digit [0-91

id {letter}({letter}| {digit})*

number {digit}+(\.{digit}+)?(E[+-1]?{digit}+)?
%%

{ws} {/*noactionandnoreturn*/}

if {return(1F);}

DEPARTMENT OF CSE

COMPILER DESIGN A.Y 2024-25

then {return(THEN);}

else {return(ELSE);}

(id) {yylval=(int)installID();return(1D);}

(number) {yylval=(int)installNum();return(NUMBER); }
{yylval=LT;return(RELOP);)}
{yylval= LE;return(RELOP);}
{yylval= EQ;return(RELOP);}
{yylval= NE;return(RELOP);}
{yylval=GT;return(RELOP);)}
{yylval=GE;return(RELOP);}

intinstalliDO(){/*functiontoinstallthe lexeme,whose first characterispointedto byyytext, and
whose length is yyleng, into the symbol table and return a pointer thereto

*/

intinstalINum(){/*similarto installlD,butputsnumericalconstantsintoaseparatetable*/}

Figurel.10:LexProgramfortokens commontokens

DEPARTMENT OF CSE

COMPILER DESIGN A.Y 2024-25
SYNTAXANALYSIS(PARSER)

THEROLEOFTHEPARSER:

In our compiler model, the parser obtains a string of tokens from thelexical analyzer,as
shown in the below Figure, and verifiesthatthestringoftoken names canbe generated by the
grammarfor the source language.We expect the parser to report any syntax errors in an
intelligible fashion and to recover from commonly occurring errors to continue processing the
remainder ofthe program. Conceptually, for well-formed programs, the parser constructs a parse
tree and passes it to the rest ofthe compiler for further processing.

source | [Lexical ' Rest of intermediate

program | Analyzer re——— tree | Front End |representation

Symbol
Table

Figure2.1: ParserintheCompiler

Duringtheprocessofparsing itmayencountersomeerrorandpresenttheerrorinformationback to the
user

Syntacticerrorsincludemisplacedsemicolonsorextraormissingbraces;thatis,
—{" or"}."Asanotherexample,inCorJava,the appearance ofacasestatementwithout anenclosing
switch is a syntactic error (however, this situationisusuallyallowedbythe parser and caught later
in the processing, as the compiler attempts to generate code).

Basedontheway/ordertheParseTreeisconstructed, Parsing isbasicallyclassified into following
two types:

1. TopDownParsing:Parsetreeconstructionstartattherootnodeandmovestothe
children nodes (i.e., top down order).
BottomupParsing:Parsetreeconstructionbegins fromthe leafnodesandproceeds
towards the root node (called the bottom up order).

DEPARTMENT OF CSE

COMPILER DESIGN A.Y 2024-25
IMPORTANT(OR)EXPECTEDQUESTIONS

WhatisaCompiler?ExplaintheworkingofaCompilerwithyourownexample?

WhatistheLexicalanalyzer?DiscusstheFunctionsofLexical Analyzer.

Writeshortnotesontokens,patternandlexemes?

Writeshortnotesonlnput bufferingscheme?Howdoyouchangethebasic input
buffering algorithm to achieve better performance?

Whatdoyou meanbyal exicalanalyzergenerator?Explain LEXtool.

ASSIGNMENTOQUESTIONS:

Writethedifferencesbetweencompilersandinterpreters?
Writeshortnotesontoken reorganization?

Writethe ApplicationsoftheFiniteAutomata?
ExplainHowFiniteautomataareusefulinthelexicalanalysis?

ExplainDFAandNFAwithanExample?

DEPARTMENT OF CSE

COMPILER DESIGN AY 2024-25

UNIT-11
TOPDOWNPARSING:

2. Top-down parsing can be viewed as the problem of constructing a parse tree for the given
input string, starting from the root and creating the nodes of the parse tree in preorder
(depth-first left to right).

2 Equivalently, top-downparsingcanbeviewedasfindingaleftmostderivationforaninput string.

Itisclassified intotwodifferent variantsnamely;onewhichusesBackTrackingandtheotheris Non
Back Tracking in nature.

NonBackTrackingParsing: Therearetwovariantsofthisparser asgivenbelow.

1. TableDrivenPredictiveParsing:
i. LL(1) Parsing

2. RecursiveDescentparsing

BackTracking
1.BruteForcemethod

NONBACKTRACKING:

LL(1)ParsingorPredictiveParsing

LL(1)standsfor,left toright scanofinput,usesaleft mostderivation, andtheparser takes
1 symbol as the look ahead symbol fromthe input in taking parsing action decision.

Anonrecursivepredictiveparsercanbebuilt bymaintainingastackexplicitly,ratherthan
implicitly via recursive calls. The parser mimics a leftmost derivation. Ifw istheinput that has
been matchedso far, thenthestackholdsa sequence ofgrammar symbols a such that

+
S = wao
im

Thetable-drivenparserinthefigurehas

2. Aninput bufferthatcontainsthestringto beparsed followedbya$Symbol,usedto indicate
end of input.

2 Astack, containinga sequenceofgrammar symbolswitha$atthebottomofthestack, which
initially contains the start symbol of the grammar on top of$.

2 Aparsing table containingtheproductionrulestobeapplied. Thisisatwo dimensional array M
[Non terminal, Terminal].

2 AparsingAlgorithmthattakesinput Stringanddeterminesifit isconformantto
Grammar and it uses the parsing table and stack to take such decision.

DEPARTMENT OF CSE

COMPILER DESIGN AY 2024-25

mput [[[[Jal+[ofs]
/4

Predictive
Parsing
Program

M

Figure2.2:Modelfortabledrivenparsing
TheStepsinvolvedinconstructinganLL(1) Parserare:

1. WritetheContextFreegrammarforgiveninputString
2. Checkfor Ambiguity.lfambiguousremoveambiguityfromthegrammar
3. CheckforLeft Recursion.Removeleftrecursionifitexists.
4. CheckForLeftFactoring.Performleftfactoringifitcontainscommonprefixesin more
than one alternates.
5. ComputeFIRSTandFOLLOWSsets
6. ConstructLL(1) Table
7. UsingLL(1)AlgorithmgenerateParsetreeastheOutput
Context Free Grammar (CFG): CFG used to describe or denote the syntax of the

programming language constructs.The CFG is denoted asG,and defined using a fourtuple
notation.

Let GbeCFG,thenG iswrittenas, G=(V,T,P,S)
Where

2.V isa finite set ofNonterminal;Nonterminals are syntactic variablesthat denote setsof
strings. The setsofstringsdenoted bynonterminalshelp definethe languagegenerated
bythe grammar. Nonterminals impose a hierarchicalstructureonthe language that
iskeytosyntaxanalysisandtranslation.

2 TisaFinitesetofTerminal; Terminalsarethebasicsymbolsfromwhichstringsareformed. The
term "token name" is a synonym for "terminal™ and frequently we will use the word
"token™ for terminal when it is clear that we are talking about just the token name. We
assume that the terminals are the first components of the tokens output by the lexical
analyzer.

2. S is the Starting Symbol of the grammar, one non terminal is distinguished as the start
symbol, and the set ofstrings itdenotes isthelanguage generatedbythe grammar. P is finite
set ofProductions;the productions ofa grammar specifythe manner inwhichthe

DEPARTMENT OF CSE

COMPILER DESIGN AY 2024-25

terminalsandnonterminalscanbecombinedtoformstrings,eachproductionisina->f form,
where a is a single non terminal, § is (VUT)*.Each production consists of:

@ A non terminal called the head or left side of the production;this production
defines some of the strings denoted by the head.

© Thesymbol->.Some times:=hasbeenusedinplace ofthe arrow.

© Abodyorrightsideconsistingofzeroormoreterminalsandnon- ~ terminals. The
components ofthe bodydescribe one way in which strings of the nonterminalat the
head can be constructed.

2.Conventionally,theproductionsforthestartsymbolarelistedfirst.
Example:ContextFreeGrammartoacceptArithmeticexpressions.
Theterminals are+,*,-,(,),id.

TheNonterminalsymbolsareexpression,term,factorandexpressionisthestartingsymbol.

expression —* expression +term
expression —» expression —term
expression — term

term —» term*factor
term —»term / factor

term —factor

factor —»(expression)
factor —id

Figure2.3:GrammarforSimpleArithmeticExpressions

NotationalConventionsUsedInWritingCFGs:

To avoid always having to state that —these are the terminals,""these are the non
terminals,"andsoon,thefollowing notationalconventions forgrammarswillbeusedthroughout our
discussions.

1. Thesesymbolsareterminals:

(a) Lowercaselettersearlyinthealphabet,suchasa,b,e.
b) Operatorsymbolssuchas+,*,andso on.
¢) Punctuationsymbolssuchasparentheses,comma,andsoon.
d) Thedigits0,1...9.
)

e) Boldfacestringssuchasidorif,eachofwhichrepresentsasingle

(
(
(
(

terminal symbol.

DEPARTMENT OF CSE

COMPILER DESIGN AY 2024-25

2. Thesesymbolsarenonterminals:
(a) Uppercase lettersearlyinthealphabet,suchasA,B,C.
b) TheletterS,which, whenitappears, isusuallythestartsymbol.

(
(c) Lowercase,italicnamessuchasexprorstmt.
(

d) Whendiscussingprogrammingconstructs,uppercase lettersmaybeusedtorepresent
Nonterminals for the constructs. For example, non terminal for expressions, terms,
and factors are often represented by E, T, and F, respectively.

Usingtheseconventionsthegrammarforthearithmeticexpressionscanbewrittenas

EE™T|E-T|T

T T/IFIF F

(Bt id

DERIVATIONS:
Theconstructionofaparsetreecanbemadeprecisebytakingaderivationalview,inwhich
productions are treated as rewriting rules. Beginning with the start symbol, each rewriting step
replacesa Nonterminal bythe bodyofone ofitsproductions. Thisderivationalview corresponds to

the top-down construction of a parse tree as well as the bottom construction of theparse tree.

> DerivationsareclassifiedintoLetmostDerivationandRightMostDerivations.

LeftMostDerivation(LMD):

Itistheprocessofconstructing theparsetreeoracceptingthegiveninput string,inwhich at
everytime we need to rewrite the production rule it is done with left most nonterminalonly.
Ex:-IftheGrammarisE->E+E| E*E|-E|(E)|id andtheinputstringisid +id* id

The productionE->- Esignifies that ifE denotesanexpression, then - E must also denote an
expression. The replacement of a single E by - E will be described bywriting
E=>-Ewhichisread as“Ederives E”
Forageneraldefinitionofderivation,consideranonterminal Ainthemiddleofasequence
ofgrammar symbols, as ina AP, where a and Parearbitrarystringsofgrammar symbol. Suppose A -
>y is a production. Then, we write aAB => ayf. The symbol => means "derives in one step".
Often, we wish to say, "Derives in zero or more steps.” For this purpose,we can use the symbol

” . . . +
= ,Ifwe wishto say, "Derives |n-—-—+_>oneormore steps." We cnuse the symbol=>.1fS

éﬂa,whereSisthe start symbolofa grammar G, wesaythat aisa sententialformofG. The
Leftmost Derivation for the given input string id + id* id is
E=>E+E

DEPARTMENT OF CSE

COMPILER DESIGN AY 2024-25

=>id+E

=>jd+ E*E
=>id+ id*E
=>id+ id*id

NOTE:Everytimewe needto startfromtherootproductiononly,theunder lineusingat Non terminal
indicating that, it is the non terminal (left most one) we are choosing to rewrite the productions
to accept the string.

RightMostDerivation(RMD):
Itistheprocessofconstructingtheparsetreeoracceptingthegiveninput string,every time we
need to rewrite the production rule with Right most Nonterminal only.

TheRightmostderivationforthegiveninputstringid+id*idis

E=>E+E
=>E+E *E
=>E+E*id
=>E+ id*id
=>id+ id*id

NOTE:Everytimeweneedtostart fromtherootproductiononly, theunder lineusingat Non
terminalindicating that,it isthe non terminal(Right most one) weare choosing to rewrite the
productions to accept the string.

WhatisaParseTree?
Aparsetreeisagraphicalrepresentationofaderivationthat filtersouttheorderinwhich
productions are applied to replace non terminals.
> Eachinteriornodeofa parsetreerepresentstheapplicationofaproduction.
2 Alltheinteriornodesare Nonterminalsand alltheleafnodesterminals.
2 Alltheleafnodesreadingfromtheleftto rightwillbetheoutputoftheparsetree.
> If anodenislabeledXand haschildrennl,n2,n3,...nkwithlabelsX1,X2,...Xk
respectively, then there must be a production A->X1X2...Xk in the grammar.

Examplel:-Parsetreefortheinputstring- (id+id) usingtheaboveContextfreeGrammaris

DEPARTMENT OF CSE

COMPILER DESIGN AY 2024-25

id id
Figure2.4:ParseTreefortheinputstring-(id+id)

TheFollowingfigureshowsstepbystepconstructionofparsetreeusingCFG fortheparsetree for the
input string - (id + id).

E

E
~/ \
. /l\
E)
| ™\ /|\
+ E l

id
Figure2.5:SequenceoutputsoftheParseTreeconstructionprocessfortheinputstring—(id+id)

E
RN
E
(/I
A

Example2:-Parsetreefortheinputstringid+id*idusingtheaboveContextfreeGrammaris

/l\
/!\
I f

id id
Figure2.6:Parsetreeforthe inputstringid+id*id

DEPARTMENT OF CSE

COMPILER DESIGN AY 2024-25

AMBIGUITYInCFGs:
Definition: Agrammarthat producesmorethanoneparsetreeforsomesentence(input string) is said

to be ambiguous.

Inotherwords,anambiguousgrammar isonethatproducesmorethanone leftmost
derivation or more than one rightmost derivation for the same sentence.

Or If the right hand production of the grammar is having two non terminals which are
exactlysameasleft handsideproductionNonterminalthenit issaidtoanambiguousgrammar.
Example : Ifthe Grammaris E-> E+E | E*E | -E|(E) | id and the Input String is id + id* id

Twoparsetreesforgiveninputstring are

TwolLeftmostDerivationsforgiveninputStringare:
E=>E+E E=>E*E

=>id+E =>E+E*E

=>id+ E*E =>id+ E *E

=>id+id*E =>id+ id*E

=>id+id*id =>id+ id*id
(@) (b)

TheaboveGrammar isgivingtwo parsetreesortwo derivations forthegiven input string so, it is an
ambiguous Grammar

Note: LL (1) parser will not accept the ambiguous grammars or We cannot construct an
LL(1) parser for the ambiguous grammars. Because such grammars may cause the Top
Down parser to go into infinite loop or make it consume more time for parsing. If necessary
we must remove all types of ambiguity from it and then construct.

ELIMINATING AMBIGUITY: SinceAmbiguous grammars may cause the top down Parser go
into infinite loop, consume more time during parsing.

Therefore, sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity. The
general form of ambiguous productions that cause ambiguity in grammars is

DEPARTMENT OF CSE

COMPILER DESIGN AY 2024-25

A~ Adjp

Thiscanbewrittenas(introduceonenewnonterminalinthe place ofsecondnonterminal)
A—=>BA'
A'—> gA'le
Example:Letthegrammar is E—»E+E|E*E|-E|(E) |id.It isshownthatit isambiguousthat can be
written as
E—+» E+E
E—-» E-E
E— E*E
E—» -E
Eo» (E)
E—» id
Intheabovegrammar thel%and 2"productionsarehaving ambiguity. So,theycanbewritten as
E->E+E| E*Ethisproductionagaincanbe writtenas
E->E+E|p,wherefisE*E
Theaboveproductionissameasthegeneralform. so,thatcanbewrittenas E-
SE+T|T
T->B

ThevalueofBisE*Eso,abovegrammarcanbewrittenas

1) E->E+T|T

2) T->E*E ThefirstproductionisfreefromambiguityandsubstituteE->Tin the
2" production then it can be written as
T->T*T|-E|(E)|idthisproductionagaincanbewrittenas
T->T*T|Bwherepis-E|(E)|id, introducenewnonterminalintheRight handside
production then it becomes
T->T*F|F
F->-E|(E)|id nowtheentiregrammarturnedintoitequivalentunambiguous,

TheUnambiguousgrammarequivalenttothe givenambiguousoneis

) E»E+T|T

) T—>T*FIF

3 F>-E|(E)|id
LEFTRECURSION:

Another feature of the CFGs which is not desirable to be used in top down parsers is left

recursion. A grammar is left recursive if it has a non terminal A such that there is a derivation
A=>Aq for some string o in (TUV)*. LL(1) or Top Down Parsers can not handle the Left

Recursive grammars, so we need to remove the left recursion from the grammars before being
used in Top Down Parsing.

DEPARTMENT OF CSE

COMPILER DESIGN AY 2024-25

TheGeneralformofLeftRecursionis

A= Aalp

Theaboveleftrecursiveproductioncanbewrittenasthenonleftrecursiveequivalent:

A—> BA'
A= oA'|€
Example:-Isthe followinggrammar left recursive?Ifso,findanonleft recursivegrammar
equivalent to it.

E—»E+T|T

T+>T*F|F

F=E|(E)|id
Yes,thegrammarisleftrecursiveduetothefirsttwoproductionswhicharesatisfyingthe
generalformofLeftrecursion,sotheycanberewrittenafterremovingleftrecursionfrom
E—E+T,andT—T*F is

E*TE'

E'—*+TE' |€

T>FT

T'+»*FT'|€

F{&)|id

LEFTFACTORING:

Left factoring is a grammar transformation that is useful for producing a grammar suitable for
predictiveortop-downparsing. Agrammarinwhichmorethanoneproductionhascommonprefix is to
be rewritten by factoring out the prefixes.

Forexample,inthefollowinggrammartherearenAproductionshavethecommonprefixa,
whichshouldberemovedorfactoredoutwithoutchangingthelanguagedefinedfor A.

A = aAl|aA2|aA3|
aA4 |... | cAN

Wecanfactorouttheafromallnproductionsbyaddinga newAproductionA— oA’
,andrewritingthe A’productionsgrammar as

A= 0A’
A’— A1|A2|A3]A4...|AN

FIRSTandFOLL OW:

DEPARTMENT OF CSE

COMPILER DESIGN AY 2024-25

Theconstructionofbothtop-downandbottom-upparsersisaidedbytwofunctions,FIRST and
FOLLOW, associated with a grammar G. During top down parsing, FIRST and FOLLOW allow
us to choose which production to apply, based on the next input (look a head) symbol.

Computationof FIRST:

FIRSTfunctioncomputesthesetofterminalsymbolswithwhichtheright handsideofthe
productions begin. To compute FIRST (A) for all grammar symbols, applythe following rules
until no more terminals or € can be added to any FIRST set.

1. [IfAisaterminal,thenFIRST{A}={A}.
2. IfAisaNonterminalandA->X1X2...Xi
FIRST(A)=FIRST(X1) if X1is not null, if X1 is a non terminal and X1->€, add
FIRST(X2)to FIRST(A), ifX2->€add FIRST(X3)to FIRST(A), ...ifXi->€,
i.e.,allXi‘sfori=1..iarenull,add€FIRST(A).
3. IfA->€isaproduction,thenadd€toFIRST(A).

ComputationOfFOLLOW:

Follow(A) isnothing butthesetofterminalsymbolsofthegrammar thatareimmediately
following the Nonterminal A. Ifa is to the immediate right ofnon terminal A, then Follow(A)=
{a}.TocomputeFOLLOW(A) for allnonterminals A,applythe followingrulesuntilnomore
symbols can be added to any FOLLOW set.

1. Place$inFOLLOW(S),whereS isthestartsymbol,and$istheinput right end
marker.
IfthereisaproductionA->aBp,theneverything inFIRST(B)except €isin
FOLLOW(B).
IfthereisaproductionA->aBoraproductionA->aBBwithFIRST(B) contains€, then
FOLLOW (B) = FOLLOW (A).

Example:-ComputetheFIRSTandFOLLOWvaluesoftheexpressiongrammar

E—TE'
E'>+TE'|€
. TFT
. T—*FT'l€
F—(E)|id

ComputingFIRSTValues:

FIRST(E)=FIRST(T)=FIRST(F)={(,id}
FIRST(E")={+€}
FIRST(T"={*€}

DEPARTMENT OF CSE

COMPILER DESIGN AY 2024-25

ComputingFOLLOWValues:

FOLLOW (E)={$%,).} Becauseitisthestartsymbolofthegrammar.
FOLLOW (E") = {FOLLOW (E)} satisfying the 3" rule of FOLLOW/()
={$.)}
FOLLOW(T)={FIRSTE"} ItisSatisfyingthe2"rule.
U{FOLLOW(E"}
= {+FOLLOW(E"}
= {+$)}
FOLLOW(T")={FOLLOW(T)} Satisfyingthe3™Rule
={+, %)}
FOLLOW(F)={FIRST(T")} ItisSatisfyingthe2"rule.
U{FOLLOW(E"}
={* FOLLOW(T)}
={*+3.)}
NONTERMINAL FIRST FOLLOW
E {(id} {$.)}
E' {+.€} {$.)}
T {(id} {+3)}
L {*€} {+3)}
F { (id} {*+3$)}

Table2.1:FIRSTandFOLLOWvalues
A top-down parser builds the parse tree from the top down, starting with the start non-
terminal. There are two types of Top-Down Parsers:
Top-Down Parser with Backtracking
2. Top-Down Parsers without Backtracking
Top-Down Parsers without backtracking can further be divided into two parts:

=

Bruteforce Method | l

Recursive Non-Recursive
Descent Descent (LL{1))

DEPARTMENT OF CSE 28|Pa ge

COMPILER DESIGN AY 2024-25

ConstructingPredictiveOrLL(1)ParseTable:
Itistheprocessofplacing theallproductionsofthegrammar intheparsetablebased onthe FIRST
and FOLLOW values of the Productions.

TherulestobefollowedtoConstructtheParsingTable(M)are:
1. ForEachproductionA->aofthegrammar,dothebellowsteps.

2. Foreachterminalsymbol_a‘inFIRST(a),addtheproductionA->atoM[A,a].

3. 1If€ isinFIRST(a) addproductionA->atoM[A,b],wherebisallterminalsin
FOLLOW (A).
iL.If€ is inFIRST(a) and$is inFOLLOW(A)thenaddproductionA->ato M [A,
$].
Markotherentriesintheparsingtableaserror.

INPUTSYMBOLS

NON-TERMINALS

F B

Table2.2:LL(1)ParsingTablefortheExpressionsGrammar
Note:ifthereareno multipleentriesinthetable for singleaterminalthengrammar isaccepted by

LL(1) Parser.
LL(1)ParsingAlgorithm:

The parseractsonbasis onthebasisoftwosymbols
i. A thesymbolonthetopofthestack
ii. a,thecurrentinputsymbol
TherearethreeconditionsforAand_a‘,thatareusedfrotheparsing program.
1. IfA=a=$thenparsingisSuccessful.
2. IfA=a#S$thenparserpopsoftthestackandadvancesthecurrent input pointertothe next.
3. If Ais a Nonterminalthe parser consults the entryM [A, a] inthe parsing table. If

DEPARTMENT OF CSE 29|Pa ge

COMPILER DESIGN A.Y 2024-25
MI[A,a] isaProductionA->X1X>.. Xy, thenthe programreplacesthe Aonthetopof the

Stack byX1Xz..Xnin such a way that Xicomes on thetop.

STRINGACCEPTANCEBYPARSER:
Iftheinput string fortheparser isid+id*id,thebelowtableshowshowtheparser accept the
string with the help of Stack.

Stack 1nput Action Comments
$E id+id*id$ |E TE Eontopofthestackisreplacedby TE
$SE'T id+id*id$ | T FT Tontopofthestackis replacedbyFT"
$SETF id+id*id$ | F id Fontopofthestackis replacedbyid
$E'T id id+id*id$ | popandremoveid Condition2issatisfied
$E'T +id*id$ T € T ontopofthestackis replacedby€
$E +id*id$ E° +TE E ontopofthestackis replacedby+TE"
$ET+ +id*id$ Popandremove+ Condition2issatisfied
$SE'T id*id$ T FT Tontopofthestackis replacedbyFT"
$SE'TF id*id$ F id Fontopofthestackis replacedbyid
$E'T id id*id$ popandremoveid Condition2issatisfied

DEPARTMENT OF CSE 30[Pa ge

COMPILER DESIGN AY 2024-25

$SE'T T *FT T ontopofthestackis replacedby*FT"
$SETF* popandremove* Condition2issatisfied

$SETF i F id Fontopofthestackis replacedbyid
$ETid i Popandremoveid Condition2issatisfied

$E'T $ T € T ontopofthestackis replacedby€
$E $ E € E ontopofthestackis replacedby€

$ $ Parsingissuccessful | Conditionlsatisfied

Table2.3:Sequenceofstepstakenbyparserinparsingtheinputtokenstreamid-+id*id

‘T’
I
F

Figure2.7:Parsetreefortheinputid+id*id

ERRORHANDLING(RECOVERY)INPREDICTIVEPARSING:

Intabledrivenpredictiveparsing, it isclear astowhichterminaland Nonterminalsthe parser
expects fromthe rest of input. An error can be detected in the following situations:

1. Whentheterminalontopofthe stackdoesnotmatchthe currentinputsymbol.
2. whenNonterminalA isontopofthe stack,aisthe current inputsymbol, and M[A, a] is
empty or error
Theparser recoversfromtheerror andcontinues itsprocess. Thefollowingerrorrecovery

schemes are use in predictive parsing:

PanicmodeErrorRecovery:

It is based on the idea that when an error is detected, the parser will skips the
remaininginput untilasynchronizingtokenisencounteredinthe input.Someexamplesare listed
below:

1. For a Non Terminal A, place all symbols in FOLLOW (A) are adde into the
synchronizingsetofnonterminal A. ForExample, consider theassignmentstatement
—c=;| Here, the expression on the right hand side is missing. So the Follow of this is
considered. It is —;l and is taken as synchronizing token. On encountering it, parser
emits an error message —Missing Expressionl.
ForaNonTerminalA,placeallsymbolsinFIRST (A)areaddeintothesynchronizing set
ofnon terminal A. For Example, consider the assignmentstatement
—22c=a+ b;lHere,FIRST(expr) is22.1t is —;|I and istakenas synchronizingtoken and
then the reports the error as —extraneous tokenl.

DEPARTMENT OF CSE

COMPILER DESIGN AY 2024-25

PhraseLevelRecovery:

Itcanbeimplementedinthepredictiveparsingbyfillinguptheblankentries inthe
predictiveparsingtablewithpointerstoerrorHandlingroutines. Theseroutinescan insert,
modify or delete symbols in the input.

RECURSIVEDESCENTPARSING:

A recursive-descent parsing program consists of a set of recursive procedures, one for each non
terminal. Each procedure is responsible for parsing the constructs defined by its non terminal,
Executionbeginswiththeprocedureforthestartsymbol, whichhaltsandannouncessuccess if its
procedure body scans the entire input string.

Ifthegivengrammaris

E—TE'

E'—-»+TE'|€

T—>FT'

T'—»*FT'|€

F—(E)|id
Reccursiveproceduresfortherecursivedescentparserforthegivengrammararegivenbelow.

procedureE()

{
TO;
E'();
}

procedureT()

{
FO;
T'();
}
ProcedureE’()
{
ifinput=_+°

{

advance();
T();
E'();
returntrue;

}

elseerror;

}
procedureT’()

{

ifinput=_**

{

advance();

F(O)

DEPARTMENT OF CSE

COMPILER DESIGN AY 2024-25

T'();
returntrue;

¥

elsereturnerror;

}
procedurer()
{
ifinput=_(_
{
advance();
E():
ifinput=_)*
advance();
return true;
}
elseifinput=—idl

{

advance();
returntrue;

¥

elsereturnerror;

¥

advance()

{

¥

BACK TRACKING: This parsing method uses the technique called Brute Force method
during the parsetree construction process. This allowsthe processto go back (back track)and
redo the steps byundoing the work done so far in the point of processing.

input=next token;

Bruteforcemethod: It isaTopdownParsing technigque,occurswhenthereismore than
one alternative in the productions to be tried while parsing the input string. It selects
alternativesintheordertheyappearandwhenit realizesthat somethinggonewrongittrieswith next
alternative.

Forexample,considerthegrammarbellow.

S—»cAd
A—abla

To generatethe input string —cadl, initiallythe first parse tree given below is generated.
Asthestringgeneratedisnot—cadl,inputpointerisbacktrackedtoposition—Al,toexaminethe
nextalternate of —Al. Now a match to the input string occurs as shown in the 2" parse trees
given below.

DEPARTMENT OF CSE

COMPILER DESIGN AY 2024-25

s s s
A RN 1N A RN
A d c A d c A d
/ \
Q b a
W @
IMPORTANTANDEXPECTEDOUESTIONS

ExplainthecomponentsofworkingofaPredictiveParserwithanexample?
WhatdotheFIRSTandFOLLOWVvaluesrepresent?Givethealgorithmforcomputing
FIRST n FOLLOW of grammar symbols with an example?
ConstructtheLL(1)Parsingtableforthefollowinggrammar? E—

E+T|T

T»T*F
F—(E)|id
Fortheabovegrammarconstruct,andexplaintheRecursiveDescentParser?
WhathappensifmultipleentriesoccurringinyourLL(1)Parsingtable?Justifyyour

answer? How does the Parser

ASSIGNMENTOQUESTIONS

EliminatetheLeftrecursionfromthebelow grammar?
A->Aab|AcB|b
B->Ba|d

Explaintheprocedureto removetheambiguityfromthegivengrammar with yourown
example?

Writethegrammarfortheif-elsestatement intheCprogrammingandcheckfortheleft
factoring?

WillthePredictiveparseraccepttheambiguousGrammarjustifyyouranswer?
IsthegrammarG={S->L=R,S->R,R->L,L->*R|id}anLL(1)grammar?
Construct an LR parsing table for the given context-free grammar —

S—>AA
A—>aA|b

DEPARTMENT OF CSE 34|Pa ge

COMPILER DESIGN AY 2024-25

BOTTOM-UPPARSING

Bottom-up parsing corresponds to the construction of a parse tree for an input string
beginning at the leaves (the bottom nodes) and working up towards the root (the top node). It
involves —reducing an input string _w* to the Start Symbol of the grammar. in each reduction
step, aperticular substring matching the right side ofthe production is replaced by symbolonthe
left of that production and it is the Right most derivation. For example consider the following
Grammar:

E—>E+T|T

T>T*F
F—(E)|id
Bottomupparsing oftheinputstring“id *id“isas follows:

INPUTSTRING SUB STRING REDUCINGPRODUCTION
id*id F->id

F*id F->T

T*id F->id

T->T*F

T E->T

Startsymbol.Hence,theinput String
is accepted

E

ParseTreerepresentationisasfollows:

Figure3.1:ABottom-upParsetreeforthe inputString“id*id”

DEPARTMENT OF CSE 35[Pa ge

COMPILER DESIGN A.Y 2024-25
Bottomupparsing isclassified into 1.Shift-ReduceParsing, 2. OperatorPrecedenceparsing , and
3. [Table Driven] L R Parsing

i. SLR(1)

ii. CALR(1)

iii. LALR(1)
SHIFT-REDUCEPARSING:

Shift-reduce parsing is a form of bottom-up parsing in which a stack holds grammar
symbolsandaninput bufferholdstherestofthestringto beparsed, Weuse$to ~ markthebottom
ofthestackandalsotheright endofthe input. And it makesuseoftheprocessofshift andreduce

actionstoaccepttheinput string. Here,theparsetreeisConstructedbottomupfromthe leafnodes
towards the root node.

Whenweareparsingthegiveninput string, ifthe matchoccurstheparsertakesthe reduce
actionotherwise it willgo for shift action. And it can accept ambiguous grammarsalso.

Forexample,considerthebelowgrammartoacceptthe inputstring—id*id—,usingS-Rparser
E—>E+T|T
T>T*F|F
F—=>(E)|id

ActionsoftheShift-reduceparserusing Stackimplementation

STACK INPUT ACTION

$ Id*id$ Shift

$id *id$ ReducewithF>d
$F *id$ ReducewithT>F
$T *id$ Shift

$T* id$ Shift

$T*id $ ReducewithF—»id
$T*F $ ReducewithT—»T*F
$T $ ReducewithE—»T
$E $ Accept

DEPARTMENT OF CSE 36/Pa ge

COMPILER DESIGN AY 2024-25

Considerthefollowinggrammar:

S—»aAcBe
A—Ab|b
B—d

Lettheinputstringis—abbcdel. Theseriesofshiftandreductionstothestartsymbolareas follows.
abbcder— >aAbcdel— >aAcder— »aAcBel—>S
Note:intheaboveexampletherearetwoactionspossible inthesecondStep,theseareas follows :
1. Shiftactiongoingto3Step
2. Reduceaction,thatisA->b
Iftheparser istakingthel®actionthenit cansuccessfullyacceptsthegiveninput string,
ifitisgoing for second actionthen it can‘t accept given input string. This iscalled shift reduce
conflict. Where, S-Rparser is notabletakeproperdecision, so it notrecommended for parsing.
OPERATOR PRECEDENCE PARSING:
Operatorprecedencegrammar iskindsofshift reduceparsing methodthatcanbeappliedtoa small
class ofoperator grammars. And it can process ambiguous grammars also.
2. Anoperatorgrammarhastwo importantcharacteristics:
1. Thereareno€productions.
2. Noproductionwouldhavetwoadjacentnonterminals.

2 Theoperatorgrammartoacceptexpressionsisgivebelow:

E=®E+E/E—~E-E /E+»E*E/E*>E/E/E*»E"E/E—+»-E/E—>(E)/E™>
id
TwomainChallengesintheoperatorprecedenceparsingare:

1. IdentificationofCorrecthandlesinthereductionstep,suchthatthegiveninput shouldbe
reduced to starting symbol of the grammar.

2. Identificationofwhichproductionto useforreducing inthereductionsteps, suchthat we
should correctlyreduce the given input to the starting symbol of the grammar.

Operatorprecedenceparserconsistsof:

1. Aninputbufferthatcontainsstringto beparsedfollowed bya$,asymbolusedto
indicate the ending of input.

2. Astackcontaininga sequenceofgrammarsymbols witha $atthebottomofthestack.

3. Anoperator precedence relation table O, containing the precedence ralations between the
pair ofterminal. There are three kinds of precedence relations will exist between the pair
of terminal pair _a‘ and _b* as follows:
Therelationa<ebimpliesthatheterminal_a‘haslowerprecedencethanterminal_b°.
Therelationa*>bimpliesthatheterminal_a‘hashigherprecedencethanterminal_b°.

Therelationa=+bimpliesthatheterminal_a‘haslowerprecedencethanterminal_b°.

DEPARTMENT OF CSE 37|Pa ge

COMPILER DESIGN

AY 2024-25

7. An operator precedence parsing program takes an input string and determines whether it
conforms to the grammar specifications. It uses an operator precedence parse table and

stack to arrive at the decision.

ala2

Operatorprecedence
ParsingAlgorithm

OperatorPrecedence Table

InputBuffer

Figure3.2:Componentsofoperatorprecedenceparser

Example,Ifthegrammaris

E—~E+E
E—+E-E
E*E*E
E—>E/E
E*>ENE
E—*-E
E—(E)

E—id,Constructoperatorprecedencetableandacceptinputstring“id+id*id”

Theprecedencerelationsbetweentheoperatorsare

@id)>(")>(*N>(+-)>$,,,“operatorisRight Associativeand reaming alloperators are Left

Associative

id

<e

<e

<e

<e

<e

DEPARTMENT OF CSE

38|Pa ge

COMPILER DESIGN AY 2024-25

Theintentionoftheprecedencerelationsistodelimit thehandleofthegiveninput Stringwith<e marking
the left end ofthe Handle and > marking the right end ofthe handle.

ParsingAction:
Tolocatethehandlefollowingstepsarefollowed:
1. Add$ symbolat the bothendsofthegiveninputstring.
2. Scantheinputstringfromlefttorightuntiltherightmoste>isencountered.
3. Scantowardsleftoveralltheequalprecedence ‘suntilthe first <eprecedenceis
encountered.
4. Everything between<eand<>isahandle.
5. $onSmeansparsingissuccess.
Example,Explaintheparsing ActionsoftheOPParserforthe input string is“id*id”andthe
grammar is:
E—*E+E
E—~+E*E
E~*id
1. $<eide>*<eid>$

The first handle is _id‘ and match for the _id _in the grammar is E» id.
So, id is replaced with the Non terminalE. the given input string can be
written as

2. $<eEe>*<sid*>$
Theparserwillnot considertheNonterminalasaninput. So,theyarenot
considered in the input string. So , the string becomes

3. $<er<eide>$

Thenexthandleis_id‘andmatchforthe_id_inthegrammarisE—id. So, id is
replaced with the NonterminalE. the given input string can be written as
4, $<e*<eEe>$
Theparserwillnot considertheNonterminalasaninput. So,theyarenot
considered in the input string. So, the string becomes
5. $<e*e>$ T
The next handle is _** and match for the _ _in the grammar is E» E*E.
So, id is replaced with the Non terminal E. the given input string can be
written as

Theparserwillnot considertheNonterminalasaninput. So,theyarenot considered in
the input string. So, the string becomes

DEPARTMENT OF CSE 39|Pa ge

COMPILER DESIGN AY 2024-25

7. $$
Onmeansparsing successful.

OperatorParsingAlgorithm:

TheoperatorprecedenceParser parsingprogramdeterminestheactionoftheparser depending on
1. _a‘istopmostsymbolonthe Stack
2. _b‘isthecurrentinputsymbol

Thereare3conditionsfor _a‘and_b‘thatareimportant fortheparsingprogram

1. a=b=$,theparsingissuccessful

2. a<ebor a=Db,theparser shiftsthe input symbolontothestackand advancesthe input
pointer to the next input symbol.

3. a *>b, parser performs the reduce action. The parser popsout elementsone by
one fromthe stackuntilwe find the current topofthe stack element has lower
precedence than the most recently popped out terminal.

Example,thesequenceofactionstakenbytheparserusingthestackfortheinputstring—id*id
—andcorrespondingParseTreeareasunder.

STACK INPUT OPERATIONS

$ id*id$ $<+id,shift_id* intostack

$id *id$ ide>* reduce_id‘using E->id
$E *id$ $<e* shift_** intostack

$E* id$ *<eid,shift_id‘intoStack
$E*id id*>$,reduce_id‘using E->id
$E*E *e>$ reduce_*‘usingE->E*E
$E $=$=$,soparsingissuccessful

; T\;

AdvantagesandDisadvantagesofOperatorPrecedenceParsing:
Thefollowing aretheadvantagesofoperatorprecedenceparsing

1. Itissimpleandeasytoimplementparsingtechnique.
2. Theoperatorprecedenceparsercanbeconstructedbyhandafterunderstandingthe
grammar. It is simple to debug.

Thefollowingarethedisadvantagesofoperatorprecedenceparsing:
1 Ttisdifficulttohandletheoperatorlike_-_whichcanbeeitherunaryorbinaryandhence
different precedence‘s and associativities.
2. Itcanparseonlyasmallclass ofgrammar.

DEPARTMENT OF CSE 40[Pa ge

COMPILER DESIGN AY 2024-25

3. Newadditionordeletionoftherulesrequirestheparsertoberewritten.
4 Toomanyerrorentriesintheparsingtables.

LRParsing:

Most prevalent type of bottom up parsing is LR (k) parsing. Where, L is left to right scan of the
giveninput string,RisRight Mostderivationinreverseand Kisno ofinputsymbolsastheLook ahead.

2 Itisthemostgeneralnonbacktrackingshiftreduceparsingmethod

2. Theclassofgrammarsthat canbeparsed usingtheLRmethodsisapropersupersetof the class
of grammars that can be parsed with predictive parsers.

2 AnLRparser candetect asyntacticerrorassoonas it ispossibletodo so,onaleft to right scan
of the input.

InputBuffer

LRPARSINGALGORTHM

Shift GOTO

LRParsingTable
Figure3.3:ComponentsofLRParsing

LRParserConsistsof

2. Aninput bufferthat containsthestringtobeparsedfollowed bya$Symbol,usedto indicate
end of input.

2 Astackcontaining asequenceofgrammar symbolswitha$atthebottomofthestack, which
initially contains the Initial state of the parsing table on top of$.

2 Aparsingtable(M), it isatwodimensionalarrayM|state,terminalorNonterminal]and it
contains two parts

DEPARTMENT OF CSE 41|Pa ge

COMPILER DESIGN AY 2024-25

1. ACTIONPart

The ACTION part ofthe table is a two dimensionalarrayindexed bystateand the
input symbol, i.e. ACTION][state][input], An action table entry can have one of
following four kinds of values in it. They are:

1. ShiftX,whereXisaStatenumber.

2. ReduceX,whereXisaProductionnumber.

3. Accept,signifyingthecompletionofasuccessfulparse.

4. Errorentry.
GOTOPart
TheGOTOpartofthetable isatwodimensionalarrayindexed bystateandaNon
terminal, i.e. GOTO[state][NonTerminal]. A GO TO entry has astate number in
the table.

2. A parsing Algorithmuses the current State X, the next input symbol_a‘ to consult the

entryat action[X][a]. it makes one ofthe four following actions as given below:

1. If the action[X][a]=shift Y, the parser executes a shift of Y on to the top of the stack
and advances the input pointer.
Ifthe action[X][a]= reduce Y (Y is the production number reduced in the State X), if
the production is Y->p, then the parser pops 2*p symbols from the stack and push Y
on to the Stack.
If the action[X][a]= accept, then the parsing is successful and the input string is
accepted.
If the action[X][a]= error, then the parser has discovered an error and calls the error

routine.

Theparsingisclassified into
1. LR(0)

2. SimpleLR(1)
3. CanonicalLR(1)

4. Lookahead LR(1)

LR(1)Parsing:VariousstepsinvolvedintheLR(1)Parsing:
WritetheContextfreeGrammarforthegiveninputstring
CheckfortheAmbiguity
AddAugmentproduction
Create CanonicalcollectionofLR(0)items
DrawDFA
ConstructtheLR(0)Parsingtable
BasedontheinformationfromtheTable,withhelpofStackandParsingalgorithm
generate the output.

AugmentGrammar

DEPARTMENT OF CSE 42|Pa ge

COMPILER DESIGN AY 2024-25

The Augment Grammar G-, is G with a new starting symbol S™ an additional production
S S#hishelpstheparserto identifywhentostoptheparsing andannouncetheacceptanceofthe
input. Theinput string isaccepted ifandonlyifthe parser isabouttoreducebyS’'S.Forexample let us
consider the Grammar below:

E— E+T|T
T T*F
F— (E)|id theAugmentgrammarG isRepresented by

E™> E
E™> E+T|T
T T*F
F— (E)|id
NOTE:Augment Grammar issimplyaddingoneextraproductionbypreservingtheactual

meaning of the given Grammar G.
CanonicalcollectionofLR(0)items

LR(0) items

AnLR (0) itemofa Grammar is a production G with dot at some position on the right
sideoftheproduction. Anitemindicateshow muchofthe input has beenscanneduptoagiven point in
the process ofparsing. For example, ifthe Production is X—YZ then, The LR (0) items are:

1. X—+AB,indicatesthattheparser expectsastring derivablefromAB.

2. X—*A-B, indicatesthattheparserhasscannedthestringderivablefromthe Aand

expecting the string from Y.

3. X—+»AB-, indicatesthatheparserhasscannedthestringderivablefromAB. If the
grammar is X—€ the, the LR (0) item is

X—»+, indicating thattheproduction isreducedone.

CanonicalcollectionofLR(0) Items:
ThisistheprocessofgroupingtheLR(0)itemstogether basedontheclosureandGoto operations

Closureoperation
IflisaninitialState,thentheClosure (1)isconstructedasfollows:

1. Initially,addAugment Productiontothestateandcheck fortheesymbolintheRight hand
side production, if the is followed by a Non terminal then Add Productions which

are Stating with that Non Terminal in the State I.

If a production X-e A is in I, then add Production which are starting with X in the
Statel.Rule2 isapplieduntilno moreproductionsaddedtotheStatel(meaningthat

theeisfollowedbyaTerminalsymbol).

DEPARTMENT OF CSE 43|Pa ge

COMPILER DESIGN AY 2024-25

Exam plle:

0.EE—» E E—»E

1. B> E+T LR(0)itemsfortheGrammaris E +».E+T
. T>F T—> ¢F

. T T*F T T*F
. > (E) F> ¢ (E)
5 F— id F—> «id

Closure (lo)State

AddE —+<EinloState
Since,the_e‘symbolintheRight handsideproductionisfollowed byANon
terminal E. So, add productions starting with E in to lo state. So, the state
becomes

E- <E —-»>
0. E—><E+T
1. T—>F

Thel%and2"productionsaresatisfiesthe2"rule.So,addproductions which
are starting with Eand T in lo
Note:onceproductionsareadded inthestatethesameproductionshould not
added for the 2" time in the same state. So, the state becomes

0.E —» <E

1. E—» E+T

2T — oF

3T 5 -T*F

4F —» «(E)

5F » «id

GO TOOperation
Go to (lo, X), where lo is set of items and X is the grammar Symbolonwhichwe

aremovingthe,,»* symbol. It islike findingthe next stateoftheNFAfor agiveStateloandthe input
symbol is X. For example, if the production is E<E+T —*

Goto (lo,E)isE’»*E,E—>E+T

Note:OncewecompletetheGotooperation,weneedtocomputeclosureoperationforthe output
production

DEPARTMENT OF CSE 44|Pa ge

COMPILER DESIGN AY 2024-25

Goto(lo, E)iSE#»E«+T,E'—»E.=Closure({E"—»Ees,E—»E*+T})

ConstructionofLR(0)parsingTable:

Oncewe haveCreatedthecanonicalcollectionofLR(0)items,needtofollowthesteps
mentioned below:

Ifthereisatransactionfromonestate(l;)to another state(l;)onaterminalvaluethen, we
should write the shift entry in the action part as shown below:

States ACTION
':> S

I
Ifthereisa transactionfromone state(l;)toanoth NRUISUSMRENS . K- ue
then, weshouldwritethesubscript valueofliintheGOTOpart asshownbelow:part asshown below:

States ACTION

$

Ifthere is one state (li, where there is one production which has no transitions. Then, the
productionissaidtobeareducedproduction. Theseproductionsshouldhavereducedentryinthe
Actionpartalongwiththeirproductionnumbers.lfthe Augmentproductionisreducingthen,write
accept in the Action part.

States ACTION GOTO

S A

COMPILER DESIGN AY 2024-25

ForExample,ConstructtheLR(0)parsing TableforthegivenGrammar(G)
S—+»aB
B—+bB|b
Sol:1.AddAugmentProductionandinsert,,*“symbolatthefirstpositionforevery
production in G
S'—»eS
S—+eaB
B—><bB
B —®b
loState:

1. AddAugmentproductiontotheloStateandComputethe Closure

lo=Closure(S'—*-S)
Since_+‘isfollowed bytheNonterminal,addallproductionsstartingwithSintoloState.So, the loState
becomes
lo= S-S

S—»eaBHere,intheSproduction_.‘Symbolisfollowedbyaterminalvalueso close the state.
1:=Go to(lo,S)

S —+»Se

Closure(S’ —Se)=S'"—»Se Here, TheProductionisreducedsoclosetheState.

11=S"—>Se

I=Goto(lo,a)=closure(S—*a*B)

Here,the_+‘symbolis followed byTheNonterminalB. So,addtheproductionswhichare Starting
B.

I= B—><bB
B—*<bHere,the_+‘symbolintheBproductionis followedbytheterminalvalue. So, Close the
State.

|2:

DEPARTMENT OF CSE

COMPILER DESIGN A.Y 2024-25
B—><b
I3= Go to (12,B) = Closure(S —*»aBe)= S—>aBe

I.= Go to (I, b) =closure ({B —>b*B, B—>be})
AddproductionsstartingwithBinla.

B—+» -bB
B—> b TheDotSymbolis followedbytheterminalvalue.So,closetheState.

B - beB
B—» -bB

B—+ b
B_’ be

Is=Goto(l,,b)=Closure(B—*be)=B—>be
le=Go to(l4,B) =Closure(B ~>bB¢)=B —*bB- I; =

Goto(ls,b)=14

DrawingFiniteStatediagramDFEA:Following DFAgivesthestatetransitionsoftheparser and is
useful in constructing the LR parsing table.

DEPARTMENT OF CSE

COMPILER DESIGN AY 2024-25

LRParsingTable:

ACTION
B

States

Sy
R1 R1 R1
Rs Rs
Ro Ro Ro

Note:iftherearemultipleentriesintheLR(1)parsingtable,thenitwillnotacceptedbythe LR(1) parser.
In the above table Isrow is giving two entries for the single terminal value _b‘ and it is called as

Shift- Reduce conflict.

Shift-ReduceConflictinLR(0)Parsing:Shift ReduceConflict intheLR(0)parsing
occurs when a state has

1. AReduceditemoftheformA—asand

2. AnincompleteitemoftheformA—»feacasshownbelow:

States | Action

a S

r

Reduce-ReduceConflictinLR(0)Parsing:
Reduce-ReduceConflict intheLR(1)parsingoccurswhenastatehastwoormore reduced

items of the form
1. A>ae
2. B—»peasshownbelow:

States| Action

a S

DEPARTMENT OF CSE

AY 2024-25
COMPILERDESIGN

SLRPARSERCONSTRUCTION:WhatisSLR(1)Parsing
VariousstepsinvolvedintheSLR(1)Parsingare:

1. WritetheContextfreeGrammarforthegiveninputstring
CheckfortheAmbiguity
AddAugment production
Create CanonicalcollectionofLR(0)items
DrawDFA
Construct theSLR(1)Parsing table

BasedontheinformationfromtheTable,withhelpofStackandParsingalgorithm
generate the output.

SLR(1)ParsingTableConstruction

Oncewe haveCreatedthecanonicalcollectionofLR(0)items,needto followthesteps
mentioned below:

Ifthereisatransactionfromonestate(l;)to another state(l;)onaterminalvaluethen, we
should write the shift entry in the action part as shown below:

States ACTION

$

Ifthere is a transaction fromone state (1i) to another state (I;) on a Non terminal value
then, weshouldwritethesubscript valueofliintheGOTOpart asshownbelow:part asshown below:

States ACTION

— $

a

DEPARTMENTOFCSE 48|Page

COMPILER DESIGN A.Y 2024-25
lj

1lfthere isonestate(l;,wherethere isoneproduction(A->ape)which has no transitions to the next
State. Then, the production is said to be a reduced production. Forallterminals X in
FOLLOW (A), write the reduce entry along with theirproduction numbers. If the
Augment production is reducing then write accept.

1 S->eaAb

2 A->afe
Follow(S)={$}
Follow(A)=(b}

States ACTION

al b

r2

SLR(2)tableforthe Grammar

S—+»aB
B—>bB|b

Follow(S)={$},Follow(B)={$}

ACTION
b $

States

ACCEPT

R1
Rs3
Ro

Note:WhenMultipleEntriesoccursintheSLRtable. Then,thegrammar isnot acceptedby SLR(1)
Parser.

ConflictsintheSLR(1)Parsing :
Whenmultipleentriesoccurinthetable. Then,thesituation issaidtobeaConflict.

DEPARTMENT OF CSE 49|Page

COMPILER DESIGN AY 2024-25

Shift-ReduceConflictinSLR(1)Parsing:Shift ReduceConflict intheLR(1)parsingoccurs when a
state has
1. AReduceditemoftheformA—asandFollow(A)includestheterminalvalue

3

_a.
2. AnincompleteitemoftheformA—»peacasshownbelow:

States | Action

a S

Reduce-ReduceConflictinSLR(1)Parsing

Reduce-ReduceConflict intheLR(1) parsingoccurswhenastatehastwoormore reduced
items of the form
1. A—>ae
2. B—peandFollow (A) NFollow(B)#nullasshownbelow:
IfTheGrammaris
S->aAaBa
A->a
B->f
Follow(S)={$}
Follow(A)={a}andFollow(B)={a}

States

li
CanonicalLR(1)Parsing:Variousstepsinvolved intheCLR(1)Parsing:
1. WritetheContextfreeGrammarforthegiveninputstring

2. CheckfortheAmbiguity

3. AddAugmentproduction

DEPARTMENT OF CSE 50|Page

COMPILER DESIGN AY 2024-25

4. Create CanonicalcollectionofLR(1)items
5. DrawDFA
6. ConstructtheCLR(1)Parsing table

7. BasedontheinformationfromtheTable,withhelpofStackandParsing
algorithm generate the output.

LR(1)items:
TheLR(1) itemisdefined byproduction,positionofdataandaterminalsymbol.The terminal is
called as Look ahead symbol.

GeneralformofLR(1)itemis S->aeAB, $

A->¢y,FIRST(B,S)

Rulestocreatecanonicalcollection:
1. Everyelementoflisaddedtoclosureofl
2. Ifan LR (1) item [X-> AeBC, a] exists in |, and there exists a production B->bib,..
then additem[B->e¢ b1bz, z] where z is a terminal in FIRST(Ca),if itis not already in
Closure(l).keep applying this rule until there are no more elements adde.

Forexample,ifthegrammaris

S->CC

C->cC

C->d
TheCanonicalcollectionofLR(1)itemscanbecreatedasfollows:

0. S'->+S(AugmentProduction)
1.S->CC

2.C->ecC

3.C->ed

loState: AddAugmentproductionandcomputetheClosure, thelookaheadsymbolfor theAugment
Production is $.

S’->¢§,$=Closure(S’->+S,9$)

ThedotsymbolisfollowedbyaNonterminalS.So,addproductionsstarting withSinlo
State.

S->eCC,FIRST($),using2"rule

S->¢CC, $

DEPARTMENT OF CSE 51|Page

COMPILER DESIGN AY 2024-25

ThedotsymbolisfollowedbyaNonterminalC.So,add productionsstartingwithCinlo
State.

C->¢cC,FIRST(C,$)
C->ed, FIRST(C, $)

FIRST(C) ={c,d}so,theitemsare

C->ecC,c/d
C->ed, c/d

Thedotsymbolisfollowedbyaterminal value.So,closetheloState.So,theproductionsinthe
loare

S'->S,$
S->¢CC,$
C->ecC,c/d
C->ed,c/d

l:=Goto(Io,S)=S'->S,$
l2=Goto(lo,C)=Closure(S->CeC,S)

s->C->ecC,$
C->¢d,$So,thel;Stateis

S->CeC,$
C->¢cC,$
C->¢d,$

13-Goto(lo,c)=Closure(C->cC,c/d)
C->ecC,c/d
C->ed,c/dSo,thelzStateis

C->ceC,c/d
C->ecC,c/d
C->ed, c/d

1,=Goto(lo,d)=Colsure(C->de,c/d)=C->de,c/d
Is=Goto(Iz,C)=closure(S->CCe,$)=S->CCe,$ Is=

Goto (Iz, c)= closure(C->ceC, $)=
C->e¢cC,$
C->¢d,$S0,thelsStateis

DEPARTMENT OF CSE 52|Page

COMPILER DESIGN AY 2024-25

C->ceC,$
C->¢cC,$
C->d,$

I7 =Goto(I;, d)=Closure(C->de,$)=C->de, $

Goto(I3, c)= closure(C->+cC, c/d)=I3.

Is=Goto(I3, C)=Closure(C->cCe,c/d)=C->cCe,c/d Go
to (I3, c)= Closure(C->ceC, c/d) =13
Goto(I3,d)=Closure(C->de,c/d)= l4

Io=Goto(Is, C)=Closure(C->cCe, $)= C->cCe,$
Goto(ls, ¢)=Closure(C->ceC,$)= ls

Goto(l¢,d)= Closure(C->de,$)=I,

DrawingtheFiniteStateMachineDFAfortheaboveLR(1)items

0S'->+5,$ S->CeC,$
1S-><CC,$ C->ecC,$
2C->ecC,c/d C->ed,$
3C->ed,c/d

.
I6,_/
d
C->ceC,c/d
C->ecC,c/d

C->ed,c/d
d s

DEPARTMENT OF CSE 53|Page

COMPILER DESIGN AY 2024-25

Construction of CLR(1)Table

Rulel:ifthere isanitem[A->0+Xf,b] inliandgoto(li X)isinljthenaction[li][X]=Shift j,
Where X is Terminal.

Rule2:ifthere isanitem[A->ae,b] inliand(A#£S") set action[li][b]=reducealongwith the
production number.

Rule3:ifthereisanitem[S™->Se,$]inlithensetaction[1;][$]=Accept.

Rule4:ifthere isanitem[A->a+Xp,b] inliandgoto(l;i X)isinljthengoto[li][X]=j, Where X
is Non Terminal.

States AC'I('jI ON A GOTO

Io Ss
I1 ACCEPT
I2 S7
I3 Ss
I4 R3
I5 R1
le S;
I R3
Is R>

lo R>

Table:LR(1)Table

LALR(1)Parsing

The CLR Parser avoids the conflicts in the parse table. But it produces more number of
States when compared to SLR parser. Hence more space is occupied by the table in the memory.
So LALR parsing can be used. Here, the tables obtained are smaller than CLR parse table. But it
also as efficient as CLRparser. Here LR(1)items that have same productions but different look-
aheads are combined to form a single set of items.

For example, consider thegrammar inthepreviousexample. Consider thestateslsand I-as
given below:
1.=Goto(lo,d)=Colsure(C->ds, ¢/d)=C->de,c/d I7=

Go to (Iz, d)= Closure(C->de,$) = C->de, $

These statesarediffering onlyinthe look-aheads. Theyhave thesameproductions. Hencethese

states are combined to form a single state called as 147.

Similarlythestateslzandlediffering onlyintheirlook-aheadsasgivenbelow:
13=-Goto(lo,c)=

DEPARTMENT OF CSE 54|Page

COMPILER DESIGN AY 2024-25

C->ceC,c/d
C->ecC,c/d
C->ed, c/d

Ie=Goto(Iz,c)=
C->ceC,$
C->¢cC,$
C->ed,$

Thesestatesaredifferingonlyinthe look-aheads. Theyhavethesameproductions. Hencethese states
are combined to form a single state called as Izs.

SimilarlytheStateslsandlqodifferingonlyinlook-aheads. Hencetheycombinedtoform the
state lgo.

States AC-I(;I ON - GOTO

Io Sa7
l1 ACCEPT
I Sa7
I36 S36 Sq7
47 Rs3 R3 Rs3
I5 R1
Iso Ro Ro R2

Table:LALRTable
ConflictsintheCLR(1)Parsing:Whenmultiple entriesoccurinthetable. Then,the
situation is said to be a Conflict.

Shift-ReduceConflictinCLR(1)Parsing

ShiftReduceConflictintheCLR(1)parsing occurswhenastatehas
3. AReduceditemoftheformA—»ae,aand
4. AnincompleteitemoftheformA—» Beacasshownbelow:

States | Action

a

DEPARTMENT OF CSE 55|Page

COMPILER DESIGN AY 2024-25

Reduce/ReduceConflictinCLR(1)Parsing

Reduce-ReduceConflict intheCLR(1)parsingoccurswhenastatehastwoormore reduced
items of the form
3. A—>qe
4. B—pelftwoproductionsinastate(I)reducingonsamelookaheadsymbol as
shown below:

li
StringAcceptanceusingLRParsing:
Considertheaboveexample,iftheinputStringiscdd

ACTION
States D 3

lo Sy
1 ACCEPT
I St
I3 Sy
I4 Rs3
5
Is S7
I7
Is R
lo

0 S’->+S(AugmentProduction)
1 S->«CC

2 C->ecC

3 C->ed

STACK ACTION

$0 ShiftS;
$0c3 ShiftSs

$0c3d4 ReducewithR3,C->d,pop 2*Bsymbolsfromthestack
$0c3C Goto(I3, C)=8ShiftSs

DEPARTMENT OF CSE 56|Page

COMPILER DESIGN AY 2024-25

$0c3C8 d$ ReducewithR,,C->cC,pop2*p symbolsfromthestack
$0C Goto(lo,C)=2

$0C2 ds ShiftSy

$0C2d7 ReducewithR3,C->d,pop 2*Bsymbolsfromthestack

$0C2C Goto(12,C)=5
$0C2C5 ReducewithR1,S->CC,pop2*Bsymbolsfromthestack

$0S Goto(l0.5)=1
$0S1 Accept

HandingAmbiguousgrammar

Ambiguity: AGrammar canhave morethanoneparsetreeforastring.Forexample,consider grammar.

stringstring+string
|string- string
10[1].[9

String9-5+2hastwoparsetrees

Agrammar issaidtobeanambiguousgrammar ifthereissomestringthat it cangeneratein more
thanone way(i.e., the string has more thanone parse tree or morethanone leftmostderivation). A
language is inherently ambiguous if it can only be generated by ambiguous grammars.

Forexample,considerthefollowinggrammar:

stringstring+string
string- string
0[1].19

Inthisgrammar,thestring9-5+2 hastwo possibleparsetreesasshowninthenextslide.

string string
/ \\ / ’ \\

string + string string - string

[P] N

string - string 2 9 string + string

9 5 Z 2

Consider the parse trees for string 9-5+2, expression like this has more than one parse tree. The
two trees for 9-5+2 correspond to the two ways of parenthesizing the expression: (9-5)+2 and 9-
(5+2). The second parenthesization gives the expression the value 2 instead of 6.

DEPARTMENT OF CSE 57|Page

COMPILER DESIGN AY 2024-25

2 Ambiguityisproblematicbecausemeaningoftheprogramscanbeincorrect

2. Ambiguitycanbehandledinseveralways

- Enforceassociativityandprecedence

- Rewritethegrammar(cleanestway)
Therearenogeneraltechniquesforhandlingambiguity, but
tisimpossibletoconvertautomaticallyanambiguousgrammartoanunambiguousone

Ambiguityisharmfultothe intent ofthe program. The input might be deciphered ina waywhich was
not really the intention of the programmer, as shown above in the 9-5+2 example. Though there
is no general technique to handle ambiguity i.e., it is not possible to develop some feature which
automatically identifies and removes ambiguity from any grammar. However, it can be removed,
broadly speaking, in the following possible ways:-

1) Rewritingthewholegrammarunambiguously.

2) Implementingprecedenceandassociativelyrulesinthegrammar. Weshalldiscussthis
technique in the later slides.

Ifanoperand has operatoronboththe sides, the sideonwhichoperatortakesthis operand is the
associativity of that operator

.Ina+b+c bistakenbyleft+
+,-,* /areleftassociative
A =arerightassociative

Grammartogeneratestringswithright associativeoperatorsright aletter=right |letterletter . a|
bl|z

A binary operation * on a set S that does not satisfy the associative law is called non-
associative. A left-associative operation is a non-associative operation that is conventionally
evaluated from left to right i.e., operand is taken bythe operator onthe left side.

Forexample,
6*5*4 =(6*5)*4andnot6*(5*4)
6/5/4 =(6/5)/4andnot6/(5/4)

Aright-associative operation isa non-associative operationthat isconventionallyevaluated from right
to lefti.e., operand is taken by the operator on the right side.

Forexample,

DEPARTMENT OF CSE 58|Page

COMPILER DESIGN AY 2024-25

6"5"4=>6"(5"4)andnot(6"5)"4)
x=y=z=5 => x=(y=(z=5))

Following isthegrammar to generatestringswithleft associativeoperators.(Notethatthis is left
recursiveandmaygointoinfiniteloop.Butwewillhandlethisproblemlateronbymakingit right
recursive)

left__left+letter|letter
letter —a|b|
IMPORTANT ESTION

DiscussthetheworkingofBottomupparsingandspecificallytheOperatorPrecedence
Parsing with an exaple?
WhatdoyoumeanbyanL Rparser?ExplaintheLR(1)Parsingtechnique?
WritethedifferencesbetweencanonicalcollectionofLR(0)itemsandLR(1) items?
WritetheDifferencebetweenCLR(1) andLALR(1)parsing?

WhatisY ACC?Explainhowdoyouuseitinconstructingtheparserusingit.

ASSIGNMENTOQUESTIONS

ExplaintheconflictsintheShiftreduceParsing withanexample?
E—»E+T|T

T»T*F

F—(E)|id,constructtheLR(1)Parsing table?AndexplaintheConflicts?
E—-+E+T|T

T»T*F

F—(E)|id, constructtheSLR(1)Parsingtable? AndexplaintheConflicts?
E—»E+T|T

T»T*F

F—(E)|id,constructtheCLR(1)Parsingtable? AndexplaintheConflicts?

E—>E+T|T
T>T*F
F—(E)|id,constructtheLALR(1)Parsingtable? Andexplainthe Conflicts?

DEPARTMENT OF CSE 59|Page

COMPILER DESIGN A.Y 2024-25

UNIT-I1I

INTERMEDIATECODEGENERATION

In Intermediate code generation we use syntax directed methods to translate the source
program into an intermediate form programming language constructs such as declarations,
assignments and flow-of-control statements.

intermed ate
‘ de
generabion

Figure4.1:IntermediateCodeGenerator
Intermediatecodeis:

> TheoutputoftheParserandtheinputtotheCodeGenerator.
> Relativelymachine-independentandallowsthecompilertoberetargeted.
> Relativelyeasytomanipulate(optimize).

WhataretheAdvantagesofanintermediatelanguage?
AdvantagesofUsinganintermediateLanguageincludes:

1. Retargetingisfacilitated-Buildacompiler foranew machine byattachinganewcode
generator to an existing front-end.

2. Optimization-reuseintermediatecodeoptimizersincompilersfordifferentlanguages and
different machines.

Note: the terms —intermediate codel, —intermediate languagel, and —intermediate
representationl are all used interchangeably.

Typesofintermediaterepresentations/forms: Therearethreetypesofintermediate
representation:-

1. SyntaxTrees
2. Postfixnotation
3. ThreeAddressCode

Semanticrulesforgeneratingthree-addresscodefromcommonprogramminglanguage
constructs are similar to those for constructing syntaxtrees of for generating postfix notation.

DEPARTMENT OF CSE

COMPILER DESIGN AY 2024-25

GraphicalRepresentations

A syntax tree depicts the natural hierarchical structure of a source program. A DAG
(DirectedAcyclicGraph)givesthesameinformationbutinamorecompact waybecausecommon sub-
expressions are identified. Asyntaxtree forthe assignment statement a:=b*-c+b*-cappear in the
following figure.

assign

*

Figure4.2: AbstractSyntaxTreeforthestatementa:=b*-c+b*-c

Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of the in
whichanodeappears immediatelyafter itschildren. Thepostfixnotationforthesyntaxtreeinthe fig is

a bcuminus+bc uminus *+assign

The edges in a syntax tree do not appear explicitly in postfix notation. They can be
recoveredintheorderinwhichthenodesappearandtheno.ofoperandsthattheoperatoratanode
expects. Therecoveryofedgesissimilartotheevaluation, usingastaff, ofanexpressioninpostfix
notation.

WhatisThreeAddressCode?

Three-addresscodeisasequenceofstatementsofthe generalform: X:=YOpZ

where X, y, and z are names, constants, or compiler-generated temporaries; op stands for
any operator, such as a fixed- or floating-point arithmetic operator, or a logical operator on
Boolean-valued data. Note that no built-up arithmetic expressions are permitted, as there is only
oneoperatorontheright sideofastatement. Thusasourcelanguageexpression likex+y*z might be
translated into a sequence

DEPARTMENT OF CSE 61|Page

COMPILER DESIGN AY 2024-25

tl=y*z
t2:=x+tl

Wheretlandt2arecompiler-generatedtemporarynames. Thisunravelingofcomplicated
arithmeticexpressionsandofnestedflow-of-controlstatementsmakesthree-addresscodedesirable
fortargetcodegenerationandoptimization. Theuseofnamesfortheintermediatevaluescomputed bya
programallow- three-address codeto be easily rearranged — unlike postfix notation. Three -
address code is a linearzed representation of a syntax tree or a dag in which explicit names
correspond to the interior nodes of the graph.

IntermediatecodeusingSyntaxfortheabovearithmeticexpression t1

=-C
t2:=b*t1
t3:=-c
t4:=b*t3
to:=t2 +t4 a
=15

The reason for the termlthree-address codel is that each statement usually contains three
addresses, two for the operands and one for the result. In the implementations of three-address
codegiven later inthis section, a programmer-defined name is replaced bya pointertcasymbol-
table entry for that name.

Three Address Code is Used in Compiler Applications

Optimization: Three address code is often used as an intermediate representation of code
during optimization phases of the compilation process. The three address code allows the
compiler to analyze the code and perform optimizations that can improve the performance of the
generated code.

Code generation: Three address code can also be used as an intermediate representation
of code during the code generation phase of the compilation process. The three address code
allows the compiler to generate code that is specific to the target platform, while also ensuring
that the generated code is correct and efficient.

Debugging: Three address code can be helpful in debugging the code generated by the compiler. Since
three address code is a low-level language, it is often easier to read and understand than the final
generated code. Developers can use the three address code to trace the execution of the program and
identify errors or issues that may be present.

Language translation: Three address code can also be used to translate code from one programming
language to another. By translating code to a common intermediate representation, it becomes easier to
translate the code to multiple target languages.
General Representation

a=Dbopc

Where a, b or ¢ represents operands like names, constants or compiler generated temporaries and op

represents the operator

Example-1: Convert the expression a * — (b + c) into three address code.

DEPARTMENT OF CSE 62|Page

COMPILER DESIGN AY 2024-25

t4y=b+c
to> = uminus t4
tz3=a*t

Typesof Three-AddressStatements

Three-address statements are akinto assemblycode. Statements canhave symbolic labels
and there are statements for flow of control. A symbolic label represents the index of a three-
address statement in the array holding inter- mediate code. Actual indices can be substituted for
the labels either by making a separate pass, or byusing Iback patching,| discussed in Section
8.6.Herearethecommonthree-addressstatementsusedintheremainderofthisbook:

1. Assignment statements of the form x: = y op z, where op is a binary arithmetic or logical
operation.

2. Assignment instructions ofthe formx:= op y, where op is a unaryoperation. Essentialunary
operations include unary minus, logical negation, shift operators, and conversion operators that,
for example, convert a fixed-point number to a floating-point number.

3. Copy statementsofthe formx:=ywhere thevalueofyisassignedtox.

4. TheunconditionaljumpgotoL.Thethree-addressstatement withlabelListhenexttobe
executed.

DEPARTMENT OF CSE 63|Page

COMPILER DESIGN AY 2024-25

5. Conditionaljumpssuchasifxrelop ygoto L.Thisinstructionappliesarelationaloperator(<,
=,>=,etc.)toxandy,andexecutesthestatementwithlabelLnextifxstandsinrelationrelopto
y.Ifnot,thethree-addressstatement following ifxrelopygotoLisexecutednext,asintheusual sequence.

6. paramxandcallp,n forprocedurecallsandreturny,where yrepresentingareturnedvalue is
optional. Their typical use is as the sequence of three-address statements

paramx1
paramx2
paramxn
callp, n

Generated as part of a call of the procedure p(x,, x~...., xI). The integern indicating the number
ofactualparametersinlcallp,nlisnotredundantbecausecallscanbenested. Theimplementation of
procedure calls is outline d in Section 8.7.

7. Indexedassignmentsofthe formx:= y[i]Jand X[i]:= y.The firstofthese setsxtothevalue in the
location i memory units beyond location y. The statement X[i]:=y sets the contents ofthe
locationiunitsbeyondxtothevalueofy.Inboththeseinstructions,x,y,andirefertodataobjects.

8. Address and pointer assignments of the form x:= &y, x;= *y and *x: = y. The first of these

setsthevalueofxtobethelocationofy.Presumablyyisaname,perhapsatemporary,thatdenotes
anexpressionwithanl-value suchas A[i, j], and x is a pointer name ortemporary. That is, the r-
value of x is the I-value (location) of some object!. In the statement x: = ~y, presumablyy is a
pointeror atemporarywhose r- value is a location. The r-value ofx is made equaltothe contents
ofthat location. Finally, +x: = ysets the r-value ofthe object pointed to by x to the r- value of y.

The choice of allowable operators is an important issue in the design of an intermediate
form. The operator set must clearly be rich enough to implement the operations in the source
language. A small operator set is easier to implement on a new target machine. However, a
restrictedinstructionsetmayforcethefront endtogeneratelongsequencesofstatementsforsome
source, language operations. The optimizer and code generator may then have to work harder if
good code is to be generated.

SYNTAXDIRECTEDTRANSLATIONOFTHREEADDRESSCODE

Whenthree-addresscodeisgenerated,temporarynamesaremadeup fortheinteriornodes of a
syntax tree. The value of non- terminal E on the left side of E [1 E1 + E will be

DEPARTMENT OF CSE 64|Page

COMPILER DESIGN AY 2024-25

computed into a new temporary t. In general, the three- address code for id: = E consists of code
to evaluate E intosome temporaryt, followedbythe assignmentid.place: = t. Ifanexpression is
asingle identifier, sayy,thenyitselfholdsthevalueoftheexpression. Forthemoment, wecreate a new
name every time a temporary is needed; techniques forreusing temporaries are given in Section
S.3. The S-attributed definition in Fig. 8.6 generates three-address code for assignment
statements. Given input a: = b+ — ¢ + b+ — ¢, it producesthe code inFig. 8.5(a). The synthesized
attribute S.code represents the three- address code for the assignment S. The non- terminalE has
two attributes:

1. E.place,thenamethatwillholdthevalueofE,and
2. E.code,thesequenceofthree-addressstatementsevaluatingE.

The function newtemp returns a sequence of distinct names t1, t2,... in response to
successive calls. For convenience, we use the notation gen(x‘: = y‘+* z) inFig. 8.6to represent
thethree-address statement x: = y+ z. Expressions appearing instead ofvariables like x, y, and z
are evaluated when passed to gen, and quoted operators or operands, like ‘+, are taken literally.
In practice, three- address statements might be sent to an output file, rather than built up into the
code attributes. Flow-of-controlstatements can be added to the language ofassignments in Fig.
8.6byproductionsandsemanticrules)liketheonesfor whilestatementsinFig. 8.7.Inthefigure, the
code for S - while E do S, is generated using‘ new attributes S.begin and S.after to mark the first
statement in the code for E and the statement following the code forS, respectively.

PRODUCTION SEMANTIC RULES
S =~ := E S.code := E.code | gen(M.place ':=" E.place)

E~-E, + E, E. place = newtemp;
E.code := E,.code | E,.code |
gen(E.pluce ':=' E, place '+’ E,. place)

» E, | Eplace := newtemp:
E.code = E)|.code | E,.code |
gen(E.place ':="' E . place '«' E, place)
E. pluce .= newtemp;
E.code