
COMPILER DESIGN

[R18A0512]

LECTURE NOTES

B.TECH III YEAR – I SEM

(R18)(2020-21)

DEPARTMENTOFCOMPUTER SCIENCEANDENGINEERING

MALLA REDDY COLLEGE OF

ENGINEERING&TECHNOLOGY
(AutonomousInstitution– UGC,Govt.ofIndia)

Recognizedunder 2(f)and12 (B) ofUGCACT1956

(AffiliatedtoJNTUH,Hyderabad,Approved byAICTE-Accredited byNBA&NAAC–‘A’Grade-ISO9001:2015Certified)

Maisammaguda,Dhulapally(PostVia.Hakimpet),Secunderabad–500100,TelanganaState,India

MALLAREDDYCOLLEGEOFENGINEERING&TECHNOLOGY
IIIYearB.TechCSE-ISem L T/P/D C

 3 1/0 / - 4

 (R18A0512)CompilerDesign

UNIT–I:

Language Translation: Basics, Necessity, Steps involved in atypical language processing

system,Typesoftranslators,Compilers:OverviewandPhasesofaCompiler,PassandPhasesoftranslation,bootstrappin

g,datastructuresincompilation

Lexical Analysis (Scanning): Functions of Lexical Analyzer, Specification of tokens: Regularexpressionsand

Regulargrammarsforcommon PL constructs.Recognition of Tokens:FiniteAutomata in recognition and

generation of tokens.Scanner generators: LEX-Lexical AnalyzerGenerators. Syntax Analysis (Parsing)

:Functions of a parser, Classification of parsers.

Contextfreegrammarsinsyntaxspecification,benefitsandusageincompilers.

UNIT–II:

Topdownparsing–Definition,typesoftopdownparsers:Backtracking,Recursivedescent,Predictive, LL (1),

Preprocessing the grammars to be used in top down parsing, Error recovery, andLimitations. Bottom up parsing:

Definition, types of bottom up parsing, Handle pruning. ShiftReduce parsing, LR parsers: LR(0), SLR, CALR

and LALR parsing, Error recovery, Handlingambiguous grammar,Parsergenerators:YACC-

yetanothercompilercompiler..

UNIT–III:

Semantic analysis: Attributed grammars, Syntax directed definition and Translation schemes,

Typechecker:functions,typeexpressions,typesystems,typescheckingofvariousconstructs.Intermediate Code

Generation: Functions, different intermediate code forms- syntax tree, DAG,Polish notation, and Three address

codes. Translation of different source language constructs intointermediatecode.

Symbol Tables: Definition, contents, and formats to represent names in a Symbol table. Differentapproaches

used in the symbol table implementation for block structured and non block

structuredlanguages,suchasLinearLists,SelfOrganizedLists,andBinarytrees,HashingbasedSTs.

UNIT–IV:

RuntimeEnvironment:Introduction,ActivationTrees,ActivationRecords,Controlstacks.Runtime storage

organization: Static,Stack and Heapstorage allocation.Storage allocation forarrays,strings,andrecordsetc.

Codeoptimization:goalsandConsiderationsforOptimization,ScopeofOptimization:Localoptimizations, DAGs,

Loop optimization, Global Optimizations. Common optimization

techniques:Folding,Copypropagation,CommonSubexpressioneliminations,Codemotion,Frequencyreduction,Stre

ngthreductionetc.

UNIT–V:

Control flow and Data flow analysis: Flow graphs, Data flow equations, global

optimization:Redundantsubexpressionelimination,Inductionvariableeliminations,LiveVariable

analysis.Objectcodegeneration:Objectcodeforms,machinedependentcodeoptimization,registerallocationandassign

mentgenericcodegenerationalgorithms,DAGforregisterallocation.

TEXTBOOKS:

1. Compilers,Principle,Techniques, andTools.–Alfred.VAho,Monica S.Lam,RaviSethi,Jeffrey

D. Ullman;2ndEdition, PearsonEducation.

2. ModernCompilerimplementationinC,- AndrewN.AppelCambridgeUniversityPress.

REFERENCES:

1. lex&yacc,-JohnRLevine, TonyMason, DougBrown;O’reilly.

2. CompilerConstruction,-LOUDEN,Thomson.

3. Engineeringacompiler–Cooper&Linda,Elsevier

4. ModernCompilerDesign–DickGrune,HenryE.Bal,CarielTHJacobs,WileyDreatech

Outcomes:

Bytheendofthesemester,thestudentwillbeableto:

 Understandthenecessityandtypesofdifferentlanguagetranslators inuse.

 Applythetechniquesanddesigndifferentcomponents(phases)ofacompilerbyhand.

 Solveproblems,WriteAlgorithms,Programsandtest themfortheresults.

 UsethetoolsLex,Yaccincompiler componentsconstruction.

INDEX

UNITNO TOPIC PAGENO

I

LanguageTranslation 01–03

Compilers 03–08

LexicalAnalysis (Scanning) 09–14

SyntaxAnalysis(Parsing) 15–17

II

Topdownparsing 18–33

Bottomup parsing 34–58

III

Semanticanalysis 59–65

IntermediateCodeGeneration 66–90

SymbolTables 91–106

IV

RuntimeEnvironment 107–122

Codeoptimization 122-134

V

ControlflowandDataflowanalysis 135-141

Object codegeneration 142-152

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

5|Page

TargetProgram

COMPILERDESIGNNOTES IIIYEAR/ ISEM MRCET

UNIT-I

INTRODUCTIONTOLANGUAGEPROCESSING:

AsComputersbecameinevitableandindigenouspartofhumanlife,andseverallanguageswithdif

ferentandmoreadvancedfeaturesareevolvedintothisstreamtosatisfyorcomforttheuserin

communicating with the machine , the development of the translators or mediator Software‘shave

become essential to fill the huge gap between the human and machine understanding. Thisprocess

is called Language Processing to reflect the goal and intent of the process. On the way tothis

process to understand it in a better way, we have to be familiar with some key terms

andconceptsexplainedinfollowing lines.

LANGUAGETRANSLATORS:

Is a computer program which translates a program written in one (Source) language to

itsequivalentprograminother[Target]language.TheSourceprogramisahighlevellanguagewhereasthe

Target language can be any thing from the machine language of a target machine

(betweenMicroprocessortoSupercomputer)toanotherhighlevellanguageprogram.

TwocommonlyUsed TranslatorsareCompiler and Interpreter

1. Compiler: Compilerisaprogram,readsprograminonelanguagecalledSourceLanguageand

translates in to its equivalent program in another Language called Target Language,

inadditiontothisits presentstheerrorinformationtotheUser.

Ifthetargetprogramisanexecutablemachine-languageprogram,itcanthenbecalledbythe users

toprocessinputs andproduceoutputs.

Input Output

Figure1.1:RunningthetargetProgram

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

6|Page

2. Interpreter: An interpreteris another commonly usedlanguage processor.Instead of producinga target

program as a single translation unit, an interpreter appears to directly execute

theoperationsspecifiedinthe sourceprogramoninputssuppliedbytheuser.

SourceProgram

Input

Output

Figure1.2:RunningthetargetProgram

LANGUAGEPROCESSINGSYSTEM:

Basedontheinputthetranslatortakesandtheoutput

itproduces,alanguagetranslatorcanbecalledasfollowing.

Preprocessor:Apreprocessortakestheskeletalsourceprogramasinputandproducesanextendedversion

of it, which is the resultant of expanding the Macros, manifest constants if any, andincluding

header files etc in the source file. For example, the C preprocessor is a macro

processorthatisusedautomaticallybytheCcompilertotransformoursourcebeforeactualcompilation.O

verandabove apreprocessorperforms the followingactivities:

 Collectsallthemodules,filesincaseifthesourceprogramisdividedintodifferentmodulesstoredatdif

ferentfiles.

 Expandsshorthands/macrosintosourcelanguagestatements.

Compiler:Is a translator that takes as input a source program written in high level language

andconvertsitintoitsequivalenttarget

programinmachinelanguage.Inadditiontoabovethecompileralso

 Reportstoitsuserthepresenceoferrorsinthesourceprogram.

 Facilitatestheuserinrectifyingtheerrors,andexecutethecode.

Assembler:Isaprogramthattakesasinputanassemblylanguageprogramandconvertsitintoitsequivalentma

chinelanguagecode.

Loader/Linker:Thisisaprogramthattakesasinputarelocatablecodeandcollectsthelibraryfunctions,reloc

atableobjectfiles,and producesitsequivalentabsolutemachinecode.

Specifically,

 Loadingconsistsoftakingtherelocatablemachinecode,alteringtherelocatableaddresses,andplacin

gthealteredinstructionsanddatainmemoryattheproperlocations.

 Linking allows us to make a single program from several files of relocatable machinecode.

Thesefilesmay havebeen resultof several differentcompilations, one or moremay

belibraryroutinesprovidedbythesystemavailableto anyprogramthatneedsthem.

Interpreter

COMPILERDESIGNNOTES III YEAR/ISEM MRCET

7|Page

In addition to these translators, programs like interpreters, text formatters etc., may be used

inlanguage processing system.

To translate a program in a high-level language to

anexecutableone,thecompilerperformsbydefaultthe compileandlinkingfunctions.

Normally the steps in a language processing system include: Preprocessing the skeletal

Sourceprogram which produces an extended or expanded source or a ready to compile unit ofthe

source program, followed by compiling the resultant code, then linking/loading, and finally

itsequivalent executable code is produced. As I said earlier, not all these steps are mandatory.

Insomecases,theCompiler onlyperformsthislinking andloadingfunctionsimplicitly.

The steps involved in a typical language processing system can be understood with

followingdiagram.

SourceProgram [Example:filename.C]

Preprocessor

ModifiedSourceProgram [Example:filename.C]

TargetAssemblyProgram

RelocatableMachineCode[Example:filename.obj]

LibraryfilesRelocatable

Objectfiles

TargetMachineCode [Example: filename.exe]

Figure1.3:ContextofaCompilerinLanguageProcessingSystem

TYPESOFCOMPILERS:

Basedonthespecificinputittakesandtheoutputitproduces,theCompilerscanbeclassifiedintothefol

lowingtypes;

Loader/Linker

Compiler

Assembler

COMPILERDESIGNNOTES III YEAR/ISEM MRCET

8|Page

 TraditionalCompilers(C,C++,

Pascal):TheseCompilersconvertasourceprograminaHLLintoitsequivalentinnativemachine

codeorobjectcode.

 Interpreters(LISP,SNOBOL,Java1.0):TheseCompilersfirstconvertSourcecodeintointermediate

code,andtheninterprets(emulates)ittoitsequivalentmachine code.

 Cross-Compilers:These are the compilers thatrun on one machine and produce code

foranothermachine.

 IncrementalCompilers:Thesecompilersseparatethesourceintouserdefined–

steps;Compiling/recompilingstep-by-step;interpretingstepsinagivenorder

 Converters (e.g. COBOL to C++): These Programs will be compiling from one high

levellanguage toanother.

 Just-In-Time (JIT) Compilers (Java, Micosoft.NET): These are the runtime compilers

fromintermediate language (byte code, MSIL) to executable code or native machine code.

Theseperformtype–basedverificationwhichmakestheexecutable codemoretrustworthy

 Ahead-of-Time (AOT) Compilers (e.g., .NET ngen): These are the pre-compilers to the

nativecode forJavaand.NET

 Binary Compilation: These compilers will be compiling object code of one platform into

object codeofanotherplatform.

PHASESOFACOMPILER:

Due to the high complexity in the compilation process, a Compiler typically proceeds in a

Sequence ofcompilation phases. The phases communicate with each other via clearly defined

interfaces.Generally aninterface contains a Data structure (e.g., tree), Set of exported

functions.Eachphase works on an abstract intermediate representation of the source program,

not the sourceprogramtextitself(exceptthefirstphase)

Compiler Phases are the individual modules which are chronologically executed to perform

theirrespectiveSub-activities,andfinallyintegratethesolutionstogive targetcode.

It is desirable to have relatively few phases, since it takes time to read and write immediate

files.Following diagram (Figure1.4) depicts the phases of a compiler through which it goes

during thecompilation.Therefore atypicalCompilerishavingthefollowingPhases:

1. LexicalAnalyzer(Scanner),2.SyntaxAnalyzer(Parser),3.SemanticAnalyzer,4.Intermediate

CodeGenerator(ICG),5.CodeOptimizer(CO),and6.CodeGenerator(CG)

COMPILERDESIGNNOTES III YEAR/ISEM MRCET

9|Page

In addition to these, it also has Symbol table management, and Error handler phases. Not

allthephasesaremandatoryineveryCompiler.e.g,CodeOptimizerphaseisoptional in

somecases.Thedescriptionisgiveninnextsection.

The Phases of compiler are dividedin to twoparts,first three phases are called

asAnalysispartremainingthreecalledasSynthesis part.

Figure1.4:PhasesofaCompiler

PHASE,PASSESOFACOMPILER:

In some application we can have a compiler that is organized into what is called

passes.Where a pass is a collection of phases thatconvert theinputfrom one representation

toacompletely deferent representation. Each pass makes a complete scan of the input and

producesitsoutputto beprocessedbythesubsequentpass.Forexample atwopassAssembler.

THEFRONT-END& BACK-ENDOFACOMPILER

All of these phases of a general Compiler are conceptually divided into The Front-

end,andThe Back-end. This divisionis due to theirdependence on eitherthe Source Language

COMPILERDESIGNNOTES III YEAR/ISEM MRCET

10|Page

ortheTargetmachine.ThismodeliscalledanAnalysis&Synthesismodelofacompiler.

The Front-end of the compiler consists of phases that depend primarily on the

Sourcelanguage and are largely independent on the target machine. For example,front-end of

thecompilerincludesScanner,Parser,CreationofSymboltable,SemanticAnalyzer,andtheIntermediat

e CodeGenerator.

The Back-end of the compiler consists of phases that depend on the target machine,

andthose portions don‘t dependent on the Source language, just the Intermediate language. In this

wehave different aspects of Code Optimization phase, code generation along with the

necessaryErrorhandling,andSymboltableoperations.

LEXICALANALYZER(SCANNER):TheScanneristhefirstphasethatworksasinterfacebet

weenthecompiler andtheSourcelanguageprogramandperformsthefollowingfunctions:

o Reads the characters in the Source program and groups them into a stream of tokens

inwhicheachtokenspecifiesalogicallycohesivesequenceof characters,suchasanidentifier,a

Keyword,a punctuation mark,a multicharacteroperatorlike:= .

o Thecharactersequenceforming atokeniscalled alexeme ofthetoken.

o The Scanner generates a token-id, and also enters that identifiers name in the

Symboltableifitdoesn‘texist.

o AlsoremovestheComments,andunnecessaryspaces.

Theformat ofthetokenis<Tokenname,Attributevalue>

SYNTAXANALYZER(PARSER):TheParserinteractswiththeScanner,

anditssubsequentphase SemanticAnalyzerandperformsthe followingfunctions:

o Groups the above received, and recorded token stream into syntactic structures,

usuallyintoa structurecalledParse Treewhoseleavesaretokens.

o Theinteriornodeofthistreerepresentsthe streamoftokensthatlogicallybelongstogether.

o It meansitchecksthesyntaxofprogramelements.

SEMANTICANALYZER: This phase receives the syntax tree as input, and checks

thesemanticallycorrectnessoftheprogram.Thoughthetokensarevalidandsyntacticallycorrect,itmay

happenthattheyarenotcorrectsemantically.

Thereforethesemanticanalyzerchecksthesemantics(meaning)ofthe statements formed.

 TheSyntacticallyand Semanticallycorrect structuresareproduced

hereintheformofaSyntaxtreeorDAG orsome othersequentialrepresentationlike matrix.

COMPILERDESIGNNOTES III YEAR/ISEM MRCET

11|Page

INTERMEDIATECODEGENERATOR(ICG):Thisphasetakesthesyntacticallyandsem

antically correct structure as input, and produces its equivalent intermediate notation of

thesourceprogram. TheIntermediateCodeshouldhavetwoimportantpropertiesspecifiedbelow:

o Itshouldbeeasytoproduce,andEasytotranslateintothetargetprogram.Exampleintermediat

e codeformsare:

o Threeaddresscodes,

o Polishnotations,etc.

CODE OPTIMIZER: This phase is optional in some Compilers, but so useful and

beneficial interms of saving development time, effort, and cost. This phase performs the

following specificfunctions:

o Attempts to improve the IC so as to have a faster machinecode.Typicalfunctionsinclude –

Loop Optimization, Removal of redundant computations, Strength

reduction,Frequencyreductionsetc.

o Sometimesthedatastructuresusedinrepresentingtheintermediateforms

mayalsobechanged.

CODE GENERATOR: This is the final phase of the compiler and generates the target

code,normally consisting of the relocatablemachinecode or Assembly code or

absolutemachinecode.

o Memorylocationsareselectedfor

eachvariableused,andassignmentofvariablestoregistersisdone.

o Intermediateinstructionsaretranslatedintoasequenceofmachineinstructions.

TheCompileralsoperformstheSymboltablemanagementandErrorhandlingthroughoutthecompil

ation process. Symbol table is nothing but a data structure that stores different sourcelanguage

constructs, and tokens generated during the compilation. These two modules interact with

allphasesoftheCompiler.

Forexample,thesourceprogramisanassignmentstatement;thefollowingfigureshowshowthephasesof

compilerconverts it gradually into thetarget program.

TheinputsourceprogramisPosition=initial+rate*60

COMPILERDESIGNNOTES III YEAR/ISEM MRCET

12|Page

Figure1.5:TranslationofanassignmentStatement

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

13|Pa ge

LEXICALANALYSIS

As the first phase of a compiler, the main task of the lexical analyzer isto read theinput

characters of the source program, group them into lexemes, and produce tokensfor each correct

lexeme in the source program. This stream of tokens is sent to the parser for

syntaxanalysis.Itiscommon forthelexicalanalyzertointeractwiththesymboltableaswell.

When the lexical analyzer discovers a lexeme constituting an a valid token, it

storesthethatlexemeinto thesymboltable along with the generated token and its attributes.Apart

from token generation, the scanners also performs the following

1. Escapes/removes the comments and spaces that are no interest in logic

2. Creates Symbol table

3. Reports lexical errors when a lexeme does not form a valid token

Thisprocessisshowninthefollowingfigure.

Figure1.6 :LexicalAnalyzer

. When lexical analyzer identifies the first token it will send it to the parser, the

parserreceivesthetokenandcallsthelexicalanalyzertosendnexttokenbyissuingthegetNextToken()

command. This Process continues until the lexical analyzer identifies all thetokens. During this

process the lexical analyzer will neglect or discard the white spaces andcommentlines.

TOKENS,PATTERNSANDLEXEMES:

A token is a pair consistingofatokennameand an optional attribute value. The tokenname is an

abstract symbol representing a kind of lexical unit, e.g., a particular keyword, or asequence of

input characters denoting an identifier. The token names are the input symbols thatthe parser

processes. In what follows, we shall generally write the name of a token in boldface.We

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

14|Pa ge

willoftenrefertoatokenbyits tokenname.

A pattern is a description of the form that the lexemes of a token may take [or match]. In

thecaseof akeywordas a token, thepattern isjustthesequenceof characters thatform thekeyword.

For identifiers and some other tokens, the pattern is a more complex structure that

ismatchedbymanystrings.

Alexemeisasequence ofcharactersinthesourceprogramthatmatchesthepatternforatokenandis

identifiedbythelexicalanalyzerasaninstanceofthattoken.

Example:InthefollowingC

languagestatement,printf("Total=%d\n‖,sc

ore);

both printfand score are lexemes matching the pattern fortokenid, and

"Total=%d\n‖isalexemematchingliteral[orstring].

Figure1.7:ExamplesofTokens

LEXICALANALYSISVsPARSING:Thereareanumber

ofreasonswhytheanalysisportionofacompilerisnormallyseparatedintolexicalanalysis

andparsing(syntaxanalysis)phases.

1. Simplicity of design is the most important consideration. The separation of

LexicalandSyntacticanalysisoftenallowsustosimplifyatleastoneofthesetasks.Forexample,a

parser thathad to deal with comments and whitespace as syntactic

unitswouldbeconsiderablymorecomplexthanonethatcanassumecommentsandwhitespaceha

ve alreadybeenremovedbythelexicalanalyzer.

2.Compiler efficiencyisimproved.A separatelexical analyzerallows us toapplyspecialized

techniques that serve only the lexical task, not the job of parsing. In addition,specialized

buffering techniques for reading input characters can speed up the compilersignificantly.

3. Compiler portability is enhanced: Input-device-specific peculiarities can

berestrictedtothelexicalanalyzer.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

15|Pa ge

INPUTBUFFERING:

Before discussing the problem of recognizinglexemes in the input, let us

examinesomewaysthatthesimplebutimportanttaskofreadingthesourceprogramcanbespeeded

up.This task is made difficult by the fact that we often have to look one or more characters

beyondthe nextlexeme before we can be sure we have the rightlexeme.

There aremany situationswhere we need to look at least one additional character ahead.

For instance, we cannot be surewe've seen the end of an identifier until we see a character that is

not a letter or digit, andtherefore is not part of the lexeme for id.

 In C,single-characteroperators like-,=,or<could alsobe the beginning of a two-character

operator like ->, ==, or <=. Thus, we shallintroduce a two-bufferscheme thathandleslargelook

aheadssafely.We then consideranimprovementinvolving

"sentinels"thatsavestimecheckingfortheendsofbuffers.

BufferPairs

Becauseoftheamountoftimetakentoprocesscharactersandthelargenumberofcharactersthat must be

processed during the compilation of a large source program, specialized bufferingtechniques

have been developed to reduce the amount of overhead required to process a

singleinputcharacter.Animportantschemeinvolvestwo buffersthatarealternatelyreloaded.

Figure1.8:UsingaPairofInput Buffers

Each buffer is of the same size N, and N is usually the size of a disk block, e.g.,

4096bytes.Using one system read command we can read N characters in toa buffer,rather

thanusing one system call per character. If fewer than N characters remain in the input file, then

aspecial character, represented by eof, marks the end of the source file and is different from

anypossible characterofthesourceprogram.

 Following Twopointerstotheinputaremaintained:

1. ThePointerlexemeBegin,marksthebeginningofthecurrentlexeme,whoseextentweare

attemptingtodetermine.

2. Pointer forward scans ahead until a pattern match is found; the exact

strategywherebythis determinationismadewillbe coveredinthe balance

ofthischapter.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

16|Pa ge

Once the next lexeme is determined, forward is set to the character at its right end.

Then,after the lexeme is recorded as an attribute value of a token returned to the parser,

1exemeBeginis set to the character immediately after the lexeme just found. In Fig, we see

forward has passedthe end of the next lexeme, ** (the FORTRAN exponentiation operator), and

must be retractedone positiontoits left.

Advancing forward requires that we first test whether we have reached the endofoneof

the buffers, andif so, we mustreload the other bufferfromthe input, and move forward tothe

beginning of the newly loaded buffer.

As long as we never need to look so far ahead of theactual lexeme that the sum of the

lexeme's length plus thedistance welook ahead is greaterthanN,weshallneveroverwrite

thelexemein itsbufferbeforedeterminingit.

SentinelsToImproveScannersPerformance:

If we use the above scheme as described, we must check, each time we advance

forward,thatwe havenotmoved off one of thebuffers; if we do, then wemustalsoreload the

otherbuffer.Thus,foreachcharacterread,wemaketwotests:onefortheendofthebuffer,andoneto

determine what character is read (the latter may be a multi way branch).

We can combine thebuffer-end test with the test for the current character if we extend

each buffer to hold a sentinelcharacter at the end. The sentinel is a special character that cannot

be part of the source program,and a natural choice is the character eof.

Figure 1.8 shows the same arrangement as Figure 1.7,but with the sentinels added. Note

that eof retains its use as a marker for the end of the entireinput.

Figure1.8 :Sententialattheend ofeachbuffer

Anyeofthatappearsotherthanattheends ofabuffermeansthat

theinputisatanend.Figure1.9summarizesthealgorithmfor advancingforward.

Noticehowthefirsttest,whichcanbepartofamultiwaybranchbasedonthecharacterpointedtobyforward,isthe

onlytestwemake,exceptinthe casewhere we actuallyareattheendofa bufferorthe endoftheinput.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

17|Pa ge

switch(*forward++)

{

caseeof:if(forwardisat endoffirstbuffer)

{

reloadsecondbuffer;

forward=beginningofsecondbuffer;

}

elseif(forward isatend ofsecondbuffer)

{

break;

}

reloadfirstbuffer;

forward=beginningoffirstbuffer;

}

else

 /*eofwithinabuffermarkstheendofinput*/termi

nate lexicalanalysis;

Figure1.9:useofswitch-case forthe sentential

SPECIFICATIONOFTOKENS:

Regular expressions are an important notation for specifying lexeme patterns. While they cannot

expressallpossiblepatterns,theyarevery effectiveinspecifyingthosetypesofpatterns thatweactuallyneed

fortokens.

LEXtheLexicalAnalyzergenerator

Lex is a tool used to generate lexical analyzer, the input notation for the Lex tool

isreferred to as the Lex language and the tool itself is the Lex compiler. Behind the scenes,

theLexcompiler transformstheinputpatternsinto atransitiondiagramandgeneratescode,ina

filecalledlex.yy.c,itisacprogramgivenforCCompiler,givestheObjectcode.Hereweneedto know

howtowritetheLexlanguage.The structureofthe Lexprogramisgivenbelow.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

18|Pa ge

StructureofLEXProgram:ALexprogramhasthefollowingform:

The declarations section : includes declarations of variables, manifest constants

(identifiersdeclared to stand for a constant, e.g., the name of a token), and regular

definitions. It appearsbetween%{...%}

In the Translation rules section, We place Pattern Action pairs where each pair have the

formPattern{Action}

The auxiliary function definitions section includes the definitions of functions used to

installidentifiersandnumbersintheSymboltale.

LEXProgramExample:

%{

/*definitionsofmanifestconstantsLT,LE,EQ,NE,GT,GE,IF,THEN,ELSE,ID,NUMBER,RELO

P*/

%}

/*regulardefinitions*/

delim [\t\n]

ws { delim}+

letter

digit

[A-Za-z]

[o-91

id

{letter}({letter}|{digit})*

number

{digit}+(\.{digit}+)?(E[+-I]?{digit}+)?

%%

{ws}

{/*noactionandnoreturn*/}

if

{return(1F) ;}

Declarations

%%

Translationrules

%%

Auxiliaryfunctionsdefinitions

19|Pa ge

then {return(THEN);}

else {return(ELSE); }

(id) {yylval=(int)installID();return(1D);}

(number) {yylval=(int) installNum() ;return(NUMBER);}

‖ <‖ {yylval=LT; return(REL0P) ;)}

— <=‖ {yylval= LE;return(REL0P);}

―=‖ {yylval= EQ ;return(REL0P);}

―<>‖ {yylval=NE;return(REL0P);}

―<‖ {yylval=GT;return(REL0P);)}

―<=‖ {yylval=GE;return(REL0P);}

%%

intinstallID0(){/*functiontoinstallthelexeme,whosefirstcharacterispointedtobyyytext,andwhosel

engthisyyleng,into thesymboltableandreturnapointerthereto*/

intinstallNum(){/*similartoinstallID,butputsnumericalconstants intoaseparatetable*/}

Figure1.10 :LexProgramfortokens commontokens

20|Pa ge

SYNTAXANALYSIS(PARSER)

THEROLEOFTHEPARSER:

Inourcompilermodel,theparserobtainsastringoftokensfromthelexicalanalyzer,as shown in

the below Figure, and verifiesthatthestringof token names can be generatedby the grammar

forthesource language. We expect the parser to report any syntax errors inan intelligible fashion

and to recover from commonly occurring errors to continue processing theremainder of the

program. Conceptually, for well-formed programs, the parser constructs a

parsetreeandpassesittothe rest ofthecompilerforfurtherprocessing.

Figure2.1:ParserintheCompiler

Duringtheprocessofparsingitmayencountersomeerrorandpresenttheerrorinformationbacktotheuser

Syntacticerrorsincludemisplacedsemicolonsorextraormissingbraces;thatis,

―{"or"}."Asanotherexample,inC or Java, theappearanceof a case statement without an

enclosing switch is a syntactic error (however, this situationisusually allowedby theparserand

caughtlaterintheprocessing,asthe compilerattemptsto generatecode).

Based on the way/order the Parse Tree is constructed, Parsing is basically classified in

tofollowingtwotypes:

1. TopDownParsing:Parsetreeconstructionstartattheroot

nodeandmovestothechildrennodes (i.e.,topdownorder).

2. BottomupParsing:Parsetreeconstructionbegins

fromtheleafnodesandproceedstowardstherootnode(calledthebottomuporder).

21|Pa ge

IMPORTANT(OR)EXPECTEDQUESTIONS

1. WhatisaCompiler?ExplaintheworkingofaCompilerwithyour ownexample?

2. WhatistheLexicalanalyzer?DiscusstheFunctionsofLexicalAnalyzer.

3. Writeshortnotesontokens,patternandlexemes?

4. WriteshortnotesonInputbufferingscheme?Howdoyouchangethebasicinputbufferi

ngalgorithmtoachievebetterperformance?

5. WhatdoyoumeanbyaLexicalanalyzer generator?ExplainLEXtool.

ASSIGNMENTQUESTIONS:

1. Writethedifferencesbetweencompilersandinterpreters?

2. Writeshortnotesontokenreorganization?

3. WritetheApplicationsoftheFiniteAutomata?

4. ExplainHowFinite automata areusefulinthelexicalanalysis?

5. ExplainDFAandNFAwithanExample?

DepartmentofComputerScience&Engineering CourseFile:CompilerDesign

22|Pa ge

TOPDOWNPARSING:

UNIT-II

 Top-down parsing can be viewed as the problem of constructing a parse tree for the

giveninput string, starting from the root and creating the nodes of the parse tree in

preorder(depth-firstlefttoright).

 Equivalently, top-down parsing can beviewedas finding aleftmostderivation

foraninputstring.

Itisclassifiedintotwodifferentvariantsnamely;onewhichusesBackTrackingandtheotherisNonBackT

rackinginnature.

NonBackTrackingParsing:Therearetwovariantsofthisparserasgiven below.

1. TableDrivenPredictiveParsing:

i. LL(1)Parsing

2. RecursiveDescentparsing

BackTracking

1.BruteForcemethod

NONBACKTRACKING:

LL(1) ParsingorPredictiveParsing

LL(1)standsfor, lefttorightscanofinput,usesaLeftmostderivation,andtheparsertakes1

symbolasthelook ahead symbolfromtheinputintaking parsing actiondecision.

A non recursive predictive parser can be built by maintaining a stack explicitly,

ratherthan implicitly via recursive calls. The parser mimics a leftmost derivation. If w is the

inputthat has been matchedso far, thenthestack holds a sequence ofgrammar symbols a

suchthat

Thetable-drivenparserinthefigurehas

An input buffer that contains the string to be parsed followed by a $ Symbol, used

toindicate endofinput.

A stack, containing a sequence of grammar symbols with a $ at the bottom of the

stack,whichinitiallycontains thestartsymbolofthegrammarontopof$.

Aparsingtablecontainingtheproductionrulestobeapplied.ThisisatwodimensionalarrayM

DepartmentofComputerScience&Engineering CourseFile:CompilerDesign

23|Pa ge

[Nonterminal,Terminal].

A parsing Algorithm that takes input String and determines if it is conformant

toGrammaranditusestheparsingtable and stackto take suchdecision.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

24|Pa ge

Figure2.2:Model fortabledrivenparsing

TheStepsInvolvedInconstructing anLL(1)Parser are:

1. WritetheContextFreegrammarforgiveninputString

2. CheckforAmbiguity.Ifambiguousremoveambiguityfromthegrammar

3. CheckforLeftRecursion.Removeleftrecursionifitexists.

4. CheckForLeft Factoring.Performleftfactoringifit containscommonprefixesinmore

thanonealternates.

5. ComputeFIRSTandFOLLOWsets

6. Construct LL(1)Table

7. Using LL(1)Algorithmgenerate Parsetree astheOutput

Context Free Grammar (CFG): CFG used to describe or denote the syntax of

theprogramming language constructs. The CFG is denoted as G, and defined using a four

tuplenotation.

Let G be CFG, then G is written as, G= (V, T, P,

S)Where

V is a finite set of Non terminal; Non terminals are syntactic variables that denote sets

ofstrings. The sets of strings denoted by non terminals help define the language

generatedbythe grammar.Nonterminalsimpose a hierarchicalstructureonthelanguagethat

iskeytosyntaxanalysisandtranslation.

 T is a Finite set of Terminal; Terminals are the basic symbols from which strings

areformed. The term "token name" is a synonym for '"terminal" and frequently we will

usethe word "token" for terminal when it is clear that we are talking about just the

tokenname. We assume that the terminals are the first components of the tokens output by

thelexicalanalyzer.

 S is the Starting Symbol of the grammar, one non terminal is distinguished as the

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

25|Pa ge

startsymbol, and the set of strings it denotes isthe language generated by the grammar.

PisfinitesetofProductions;theproductionsofagrammar specifythemannerinwhichthe

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

26|Pa ge

terminalsand nonterminalscanbecombined toformstrings,eachproduction isinα-

>βform,whereαisa singlenonterminal,βis(VUT)*.Eachproductionconsistsof:

(a) A non terminal called theheadorleftsideoftheproduction; thisproductiondefines

someofthe strings denotedbythehead.

(b) Thesymbol->.Sometimes: =hasbeenusedinplaceofthearrow.

(c) Abody orrightsideconsistingofzeroormoreterminalsandnon-terminals. The

components of the body describe one way in which strings of the

nonterminalattheheadcanbeconstructed.

Conventionally, theproductionsforthestartsymbolarelistedfirst.

Example:Context FreeGrammartoacceptArithmeticexpressions.

Theterminals are+,*,-,(,),id.

TheNonterminalsymbolsareexpression, term, factorandexpressionisthestartingsymbol.

expression expression+term

expression expression–term

expression term

term term*factor

term term/factor

term factor

factor (expression)

factor id

Figure2.3:GrammarforSimpleArithmeticExpressions

NotationalConventionsUsedInWritingCFGs:

To avoidalwayshaving to state that ―these are the terminals,""these are the non

terminals,"andsoon,thefollowingnotationalconventionsforgrammarswillbeusedthroughoutourdisc

ussions.

1. Thesesymbolsareterminals:

(a) Lowercaselettersearlyinthealphabet,such asa,b,e.

(b) Operatorsymbolssuchas+,*,andsoon.

(c) Punctuationsymbolssuchasparentheses, comma,andsoon.

(d) Thedigits0,1... 9.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

27|Pa ge

(e) Boldface strings such as id or if, each of which represents a

singleterminalsymbol.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

28|Pa ge

2. Thesesymbolsarenonterminals:

(a) Uppercaselettersearlyinthealphabet,suchasA,B,C.

(b) The letterS,which,whenitappears,isusuallythestartsymbol.

(c) Lowercase, italicnamessuchasexprorstmt.

(d) Whendiscussingprogrammingconstructs,uppercaselettersmaybeusedtorepresentNon

terminals for the constructs. For example, non terminal for expressions,

terms,andfactorsareoftenrepresentedbyE,T,andF,respectively.

Usingtheseconventionsthegrammar forthearithmeticexpressionscanbewrittenas

EE +T |E–T |T

T T * F | T / F |

FF(E)|id

DERIVATIONS:

The construction of a parse tree can be made precise by taking a derivational view,

inwhich productions are treated as rewriting rules. Beginning with the start symbol, each

rewritingstep replaces a Non terminal by the body of oneof its productions. This derivational

viewcorresponds to the top-down construction of a parse tree as well as the bottom construction

of theparse tree.

DerivationsareclassifiedintoLet mostDerivationandRightMostDerivations.

LeftMostDerivation(LMD):

It is the process of constructing the parse tree or accepting the given inputstring,inwhich

at every time we need to rewrite the production rule it is done with left most non terminalonly.

Ex: -IftheGrammarisE->E+E| E*E|-E| (E)|id and theinputstringisid +id*id

The production E -> - E signifies that if E denotes an expression, then – E must also denote

anexpression.The replacementofa single Eby-Ewillbe describedbywriting

E=>-Ewhich isread as“Ederives_E”

For a general definition of derivation, consider a non terminal A in the middle of

asequenceof grammarsymbols,asin αAβ,whereαandβ arearbitrary strings of grammarsymbol.

Suppose A ->γ is a production. Then, we write αAβ => αγβ. The symbol =>

means"derivesinonestep".Often,wewishtosay,"Derivesinzeroormoresteps."Forthispurpose,we can

use the symbol , If we wish to say, "Derives in one or more steps." We cn usethe

symbol . If S a, where S is the start symbol of a grammar G, we say that α is

asententialformofG.

TheLeftmostDerivationforthegiveninputstringid+id*id is

E=>E+E

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

29|Pa ge

=>id+ E

=>id+E*E

=>id+id*E

=>id+id*id

NOTE: Everytimeweneedtostartfromtherootproductiononly,theunderlineusingatNonterminal

indicating that, it is the non terminal (left most one) we are choosing to rewrite

theproductionstoacceptthestring.

RightMostDerivation(RMD):

Itistheprocessofconstructingtheparsetreeoracceptingthegiveninputstring,

everytimeweneedtorewritetheproductionrule withRightmostNonterminalonly.

TheRightmostderivationforthegiveninputstringid+id*idis

E=>E+E

=>E+E*E

=>E+ E*id

=>E+id*id

=>id+id*id

NOTE: Every time we need to start from the root production only, the under line using at

Nonterminal indicating that, it is the non terminal (Right most one) we are choosing to rewrite

theproductionstoacceptthestring.

WhatisaParseTree?

Aparse tree isa graphicalrepresentationofa derivationthatfiltersoutthe

orderinwhichproductionsareappliedtoreplacenonterminals.

Each interiornodeofaparsetree representstheapplicationofaproduction.

AlltheinteriornodesareNonterminalsand alltheleafnodesterminals.

Alltheleafnodesreadingfromthelefttorightwillbethe outputofthe parsetree.

Ifanode nislabeledXand

 haschildrenn1,n2,n3,…nkwithlabelsX1,X2,…Xkres

pectively,thentheremustbe aproduction A->X1X2…Xkinthegrammar.

Example1:-Parsetreefortheinputstring-(id+id)usingtheaboveContextfreeGrammaris

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

30|Pa ge

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

31|Pa ge

Figure2.4:ParseTreefortheinputstring-(id+id)

TheFollowingfigureshowsstep bystep constructionofparsetreeusing

CFGfortheparsetreefortheinputstring-(id+id).

Figure2.5 :SequenceoutputsoftheParseTreeconstructionprocessfortheinputstring–(id+id)

Example2:-Parsetreefortheinputstringid+id*id usingtheaboveContextfreeGrammaris

Figure2.6: Parsetreefortheinputstring id+id*id

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

32|Pa ge

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

33|Pa ge

AMBIGUITYinCFGs:

Definition:

Agrammarthatproducesmorethanoneparsetreeforsomesentence(inputstring)issaidtobeambiguous

.

Inother words,

anambiguousgrammarisonethatproducesmorethanoneleftmostderivationormorethanone

rightmostderivationforthesame sentence.

Or If the right hand production of the grammar is having two non terminals which

areexactlysameas

lefthandsideproductionNonterminalthenitissaidtoanambiguousgrammar.Example:

IftheGrammarisE->E+E| E*E|-E|(E)| idandtheInputStringisid+id* id

Twoparsetreesforgiveninputstringare

(a)

TwoLeftmostDerivationsforgiveninputStringare:

E=>E+E E=>E*E

(b)

=>id+E =>E+E*E

=>id+E *E =>id+ E*E

=>id+id*E =>id+id*E

=>id+id*id =>id+id*id

(a) (b)

TheaboveGrammarisgivingtwoparsetreesortwoderivations

forthegiveninputstringso,itisanambiguousGrammar

Note: LL (1) parser will not accept the ambiguous grammars or We cannot construct

anLL(1) parser for the ambiguous grammars. Because such grammars may cause the

TopDown parser to go into infinite loop or make it consume more time for parsing. If

necessarywemustremove alltypesofambiguityfromitandthenconstruct.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

34|Pa ge

ELIMINATING AMBIGUITY:SinceAmbiguous grammars may cause the top down

Parsergointoinfiniteloop,consumemore time duringparsing.

Therefore, sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity.

Thegeneralformofambiguous productionsthatcause ambiguityingrammarsis

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

35|Pa ge

Thiscanbewrittenas(introduceonenewnonterminalin theplaceofsecondnonterminal)

Example:LetthegrammarisE E+E|E*E|-

E|(E)|id.Itisshownthatitisambiguousthatcanbewrittenas

E E+E

E E-E

E E*E

E -E

E (E)

E id

Intheabovegrammarthe1stand2ndproductionsarehaving ambiguity.So,theycanbewrittenas

E->E+E|E*Ethisproductionagaincanbewrittenas

E->E+E| β,whereβisE*E

Theaboveproductionissameasthegeneralform.so,thatcanbewrittenasE-

>E+T|T

T->β

ThevalueofβisE*Eso,abovegrammar canbewrittenas

1) E->E+T|T

2) T->E*E ThefirstproductionisfreefromambiguityandsubstituteE->Tinthe

2nd productionthenitcanbewrittenas

T->T*T|-E|(E)|idthis productionagaincanbewrittenas

T->T*T |βwhereβis -

E|(E)|id,introducenewnonterminalintheRighthandsideproductionthenitbecomes

T->T*F|F

F->-E |(E)|id nowtheentiregrammarturned intoitequivalentunambiguous,

TheUnambiguousgrammarequivalenttothegivenambiguousoneis

1) E E+T |T

2) T T*F|F

3) F -E|(E)|id

LEFTRECURSION:

Another feature of the CFGs which is not desirable to be used in top down parsers is

leftrecursion. A grammar is left recursive if it has a non terminal A such that there is a

derivationA=>Aα for some string α in (TUV)*. LL(1) or Top Down Parsers can not handle the

A Aα|β

A

Aꞌ

βAꞌ

αAꞌ|ε

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

36|Pa ge

LeftRecursive grammars, so we need to remove the left recursion from the grammars before

beingusedinTopDownParsing.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

37|Pa ge

TheGeneralformofLeftRecursionis

Theaboveleftrecursiveproductioncanbewrittenasthenonleftrecursiveequivalent:

Example: -

Isthefollowinggrammarleftrecursive?Ifso,findanonleftrecursivegrammarequivalenttoit.

E E+T |T

T T * F |

FF-E|(E)|id

Yes,thegrammarisleftrecursiveduetothefirsttwoproductions whicharesatisfyingthe

generalformofLeftrecursion,sotheycan berewritten afterremovingleftrecursionfrom

E→ E+T,and T→T*Fis

E TE′

E′ +TE′ |€

T FT′

T′

 *FT′|€F

(E)|id

LEFTFACTORING:

Left factoring is a grammar transformation that is useful for producing a grammar suitable

forpredictive or top-down parsing. A grammar in which more than one production has

commonprefixis toberewrittenbyfactoringouttheprefixes.

Forexample,inthefollowinggrammartherearenAproductions havethecommonprefixα,

whichshouldberemovedorfactoredoutwithoutchangingthelanguagedefinedforA.

Wecanfactorouttheαfromallnproductionsbyaddinga newAproductionA αA′

, andrewritingtheA′productionsgrammaras

A βAꞌ

Aꞌ αAꞌ|€

A Aα|β

A αA1 | αA2 | αA3

|αA4|… |αAn

A αA′

A′ A1|A2|A3|A4…|An

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

38|Pa ge

FIRSTandFOLLOW:

The construction of both top-down and bottom-up parsers is aided by two functions,FIRST and FOLLOW,

associated with a grammar G. During top down parsing, FIRST andFOLLOW allow us to choose which production to

apply, based on the next input (look a head)symbol.

ComputationofFIRST:

FIRST function computes the set of terminal symbols with which the right hand side

ofthe productions begin. To compute FIRST (A) for all grammar symbols, apply the

followingrulesuntilnomoreterminals or€canbeaddedtoanyFIRSTset.

1. IfAisaterminal,thenFIRST{A}={A}.

2. IfA isa NonterminalandA->X1X2…Xi

FIRST(A)=FIRST(X1) if X1is not null, if X1 is a non terminal and X1->€,

addFIRST(X2)to FIRST(A),ifX2->€add FIRST(X3)toFIRST(A),…ifXi->€ ,

i.e.,allXi‘sfor i=1..iarenull,add€FIRST(A).

3. IfA->€isaproduction,thenadd € toFIRST(A).

ComputationOfFOLLOW:

Follow(A)isnothingbutthesetofterminalsymbolsofthegrammarthatareimmediately

following the Non terminal A. If a is to the immediate right of non terminal A, thenFollow(A)=

{a}. To compute FOLLOW (A) for all non terminalsA, apply the following rulesuntilnomore

symbols canbeaddedtoanyFOLLOWset.

1. Place $ in FOLLOW(S), where S is the start symbol, and $ is the input right

endmarker.

2. IfthereisaproductionA->αBβ,

theneverythinginFIRST(β)except€isinFOLLOW(B).

3. IfthereisaproductionA->αBor aproductionA->αBβwithFIRST(β) contains

€,thenFOLLOW(B)=FOLLOW(A).

Example:-ComputetheFIRSTandFOLLOWvaluesoftheexpressiongrammar

1. E TE′

2. E′ +TE′|€

3. T FT′

4. T′ *FT′ |€

5. F (E)|id

ComputingFIRSTValues:

FIRST (E) =FIRST(T) =FIRST (F) ={(,id}

FIRST(E′)={+,€}

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

39|Pa ge

FIRST(T′)={*,€}

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

40|Pa ge

ComputingFOLLOWValues:

FOLLOW(E)= {$,),}

 Becauseitisthestartsymbolofthegrammar.FO

LLOW (E′)={FOLLOW (E)} satisfyingthe3rdruleofFOLLOW()

= { $,)}

FOLLOW (T)={FIRSTE′} ItisSatisfyingthe2ndrule.

U{FOLLOW(E′)}

= {+,FOLLOW(E′)}

= { +,$,)}

FOLLOW(T′)={FOLLOW(T)} Satisfyingthe3rdRule

= {+, $,)}

FOLLOW(F)={FIRST(T′)} Itis Satisfyingthe2ndrule.

U{FOLLOW(E′)}

={*,FOLLOW(T)}

= { *, +, $,)}

NONTERMINAL FIRST FOLLOW

E {(,id } {$,)}

E′ {+,€} {$,)}

T {(,id} { +,$,)}

T′ {*,€} { +,$,)}

F { (,id} {*,+,$,)}

Table2.1:FIRST andFOLLOWvalues

ConstructingPredictiveOrLL(1)ParseTable:

Itistheprocessofplacing theallproductionsofthegrammarintheparsetablebased

ontheFIRSTandFOLLOWvaluesoftheProductions.

TherulestobefollowedtoConstructtheParsingTable(M) are:

1. ForEachproductionA->αofthegrammar,dothebellowsteps.

2. Foreachterminalsymbol‗a‘inFIRST(α),addtheproductionA->αtoM[A,a].

3. i. If€isinFIRST(α) addproductionA-

>αtoM[A,b],wherebisallterminalsinFOLLOW(A).

ii.If€isinFIRST(α) and $isinFOLLOW(A)thenaddproductionA->αtoM[A,$].

4. Markotherentriesintheparsingtableaserror.

INPUTSYMBOLS

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

41|Pa ge

NON-TERMINALS + * () id $

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

42|Pa ge

E
 E TE′ E id

E′
E′ +TE′ E′ € E′ €

T
 T FT′ T FT′

T′
T′ € T′ *FT′ T′ € T′ €

F
 F (E) F id

Table2.2:LL(1)ParsingTablefortheExpressionsGrammar

Note:

iftherearenomultipleentriesinthetableforsingleaterminalthengrammarisacceptedbyLL(1)Parser.

LL(1)ParsingAlgorithm:

Theparseractsonbasisonthebasisoftwo symbols

i. A,thesymbolonthetopofthestack

ii. a,thecurrentinputsymbol

Therearethreeconditions forAand‗a‘,thatareusedfrotheparsingprogram.

1. IfA=a=$thenparsingisSuccessful.

2. IfA=a≠$ thenparserpopsoffthestack andadvancesthecurrentinputpointertothenext.

3. If A is a Non terminal the parser consults the entry M [A, a] in the parsing table.

IfM[A, a] is a Production A-> X1X2..Xn, then the program replaces the A on the top

oftheStackbyX1X2..XninsuchawaythatX1comes onthetop.

STRINGACCEPTANCEBYPARSER:

Iftheinputstringfortheparser isid+id *

id,thebelowtableshowshowtheparseracceptthestringwiththehelpofStack.

Stack Input Action Comments

$E id+id*id$ E TE` Eontopofthestackis replacedbyTE`

$E`T id+ id*id$ T FT` Tontopofthestackis replacedbyFT`

$E`T`F id+ id*id$ F id Fontopofthestackisreplacedbyid

$E`T`id id+ id*id$ popandremoveid Condition2issatisfied

$E`T` +id*id$ T` € T`ontopofthestackisreplacedby€

$E` +id*id$ E` +TE` E`ontopofthestackisreplacedby+TE`

$E`T+ +id*id$ Popandremove+ Condition2 issatisfied

$E`T id*id$ T FT` Tontopofthestackis replacedbyFT`

$E`T`F id*id$ F id Fontopofthestackisreplacedbyid

$E`T`id id*id$ popandremoveid Condition2 issatisfied

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

43|Pa ge

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

44|Pa ge

$E`T` *id$ T` *FT` T`ontopofthestackis replacedby*FT`

$E`T`F* *id$ popandremove* Condition2 issatisfied

$E`T`F id$ F id Fontopofthestackisreplacedbyid

$E`T`id id$ Popandremoveid Condition2 issatisfied

$E`T` $ T` € T`ontopofthestackisreplacedby€

$E` $ E` € E`ontopofthestackisreplacedby€

$ $ Parsing issuccessful Condition1satisfied

Table2.3 :Sequenceofsteps takenbyparserinparsing theinputtokenstreamid+id* id

Figure2.7:Parsetreefortheinputid+id*id

ERRORHANDLING(RECOVERY)INPREDICTIVEPARSING:

In table driven predictive parsing, it is clear as to which terminal and Non terminals

theparserexpectsfromthe rest ofinput.Anerrorcanbedetected inthe following situations:

1. Whentheterminalontopofthestack doesnotmatchthecurrentinputsymbol.

2. when Non terminal A is on top of the stack, a is the current inputsymbol,

andM[A,a]is emptyorerror

The parser recovers from the error and continues its process. The following error

recoveryschemesareuseinpredictiveparsing:

PanicmodeErrorRecovery:

It is based on the idea that when an error is detected, the parser will skips

theremaining input until a synchronizing token is en countered in the input. Some examples

arelistedbelow:

1. ForaNonTerminalA,placeallsymbolsinFOLLOW(A)areaddeintothesynchronizingsetof

nonterminalA.ForExample,considertheassignmentstatement

―c=;‖Here,theexpressionontherighthandsideismissing.SotheFollowofthisis considered.

It is―;‖and istakenassynchronizingtoken.Onencounteringit,parser

emitsanerrormessage―MissingExpression‖.

2. ForaNonTerminalA,placeallsymbolsinFIRST(A)areaddeintothesynchronizingsetofno

nterminalA.ForExample,considertheassignmentstatement

―22c=a+b;‖Here,FIRST(expr)is22.Itis―;‖andistakenassynchronizingtoken

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

45|Pa ge

andthenthereportstheerror as―extraneous token‖.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

46|Pa ge

PhraseLevelRecovery:

It can be implemented in the predictive parsing by filling up the blank entries

inthe predictive parsing table with pointers to error Handling routines. These routines

caninsert,modifyordeletesymbolsintheinput.

RECURSIVEDESCENTPARSING:

A recursive-descent parsing program consists of a set of recursive procedures, one for each

nonterminal. Each procedure is responsible for parsing the constructs defined by its non

terminal,Execution begins with the procedure for the start symbol, which halts and announces

success ifitsprocedurebodyscanstheentireinputstring.

Ifthegivengrammaris

E TE′

E′ +TE′|€

T FT′

T′ *FT′|€

F (E)|id

Reccursiveproceduresfortherecursivedescentparser forthegivengrammar aregivenbelow.

procedureE()

{

T();

E′();

}

procedureT ()

{

F();

T′();

}

ProcedureE′()

{

ifinput=‗+‘

{

advance();

T();

E′();

returntrue;

}

elseerror;

}

procedureT′()

{

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

47|Pa ge

ifinput=‗*‘

{

advance();

F();

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

48|Pa ge

T′();

returntrue;

}

else returnerror;

}

procedureF()

{

ifinput=‗(‗

{

advance();

E();

if input =

‗)‘advance()

;returntrue;

}

elseifinput= ―id‖

{

advance(

);returntrue

;

}

else returnerror;

}

advance()

{

input=nexttoken;

}

BACK TRACKING: This parsing method uses the technique called Brute Force

methodduring the parse tree construction process. This allows the process to go back (back

track) andredothe steps byundoingthe workdonesofarinthe pointofprocessing.

Brute force method: It is a Top down Parsing technique, occurs when there is

morethan one alternative in the productions to be tried while parsing the input string. It

selectsalternativesintheordertheyappearandwhenitrealizesthatsomethinggonewrongittrieswithnext

alternative.

Forexample,considerthegrammarbellow.

S cAd

A ab|a

Togeneratetheinputstring―cad‖,initiallythefirstparsetreegivenbelowisgenerated.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

49|Pa ge

Asthestringgeneratedisnot―cad‖,inputpointerisbacktrackedtoposition―A‖,toexaminethe next

alternateof ―A‖. Nowamatch to the input string occursasshown in the 2ndparsetrees givenbelow.

50|Pa ge

COMPILERDESIGNNOTES IIIYEAR/ ISEM MRCET

(1) (2)

IMPORTANTANDEXPECTEDQUESTIONS

1. ExplainthecomponentsofworkingofaPredictiveParserwithanexample?

2. WhatdotheFIRSTandFOLLOWvaluesrepresent?GivethealgorithmforcomputingFIRST

nFOLLOWofgrammarsymbolswithanexample?

3. ConstructtheLL(1)Parsingtableforthefollowinggrammar?E

 E+T|T

T T*F

F (E)|id

4. Fortheabovegrammarconstruct, andexplaintheRecursiveDescentParser?

5. Whathappensif multipleentriesoccurringinyourLL

(1)Parsingtable?Justifyyouranswer?HowdoestheParser

ASSIGNMENTQUESTIONS

1. EliminatetheLeftrecursionfromthebelowgrammar?

A-> Aab| AcB|b

B->Ba|d

2. Explaintheproceduretoremovetheambiguityfromthegivengrammarwithyourownexampl

e?

3. Writethegrammarfortheif-

elsestatementintheCprogrammingandcheckfortheleftfactoring?

4. WillthePredictiveparseraccepttheambiguousGrammarjustifyyour answer?

5. IsthegrammarG={ S->L=R,S->R,R->L,L->*R|id}anLL(1)grammar?

51|Pa ge

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

52|Pa ge

BOTTOM-UPPARSING

Bottom-up parsing corresponds to the construction of a parse tree for an input

stringbeginning at the leaves (the bottom nodes) and working up towards the root (the top node).

Itinvolves―reducing an input string ‗w‘ to the Start Symbol ofthe grammar. in eachreduction step,

a perticular substring matching the right side of the production is replaced by symbol on theleft

of that production and it is the Right most derivation. For example consider the

followingGrammar:

E E+T|T

T T*F

F (E)|id

Bottomupparsingoftheinputstring“id *id“isasfollows:

INPUTSTRING SUBSTRING REDUCINGPRODUCTION

id*id Id F->id

F*id T F->T

T*id Id F->id

T*F * T->T*F

T T*F E->T

E
 Startsymbol.Hence,theinput

Stringisaccepted

ParseTreerepresentationisas follows:

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

53|Pa ge

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

54|Pa ge

Figure3.1 :ABottom-up ParsetreefortheinputString“id*id”

Bottomupparsingisclassifiedinto1. Shift-ReduceParsing, 2.

OperatorPrecedenceparsing,and3.[TableDriven]LR Parsing

i. SLR(1)

ii. CALR (1

)iii.LALR(1)

SHIFT-REDUCEPARSING:

Shift-reduce parsing is a form of bottom-up parsing in which a stack holds

grammarsymbols and an input buffer holds the rest of the string to be parsed, We use$ to mark

thebottom of the stack and also the right end of the input. And it makes use of the process of

shiftand reduce actions to accept the input string. Here, the parse tree is Constructed bottom up

fromthe leafnodes towardstherootnode.

When we are parsing the given inputstring, if the match occurs the parser takes

thereduceactionotherwiseitwillgoforshiftaction.Anditcanacceptambiguousgrammarsalso.

For example,considerthebelowgrammartoaccepttheinputstring―id*id―,usingS-Rparser

E E+T|T

T T*F|F

F (E)|id

ActionsoftheShift-reduceparser usingStackimplementation

STACK INPUT ACTION

$ Id*id$ Shift

$id *id$ Reduce withF d

$F *id$ Reduce withT F

$T *id$ Shift

$T* id$ Shift

$T*id $ Reduce withF id

$T*F $ Reduce withT T*F

$T $ Reduce withE T

$E $ Accept

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

55|Pa ge

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

56|Pa ge

Considerthefollowinggrammar:

S aAcBe

A Ab|b

B d

Lettheinputstringis―abbcde‖.Theseriesofshiftandreductionstothestartsymbolareas follows.

abbcde aAbcde aAcde aAcBe S

Note:intheaboveexampletherearetwo actionspossibleinthesecond Step,theseareasfollows:

1. Shiftactiongoingto3rdStep

2. Reduceaction,thatisA->b

Iftheparseristakingthe1staction thenitcansuccessfully

acceptsthegiveninputstring,ifitisgoingforsecondactionthenitcan‘tacceptgiveninputstring.Thisiscall

edshiftreduceconflict. Where, S-R parser is not able take proper decision, so it not recommended

for parsing.OPERATORPRECEDENCE PARSING:

Operatorprecedencegrammariskindsofshiftreduceparsingmethodthatcanbeappliedtoasmallclas

sofoperatorgrammars.Anditcanprocessambiguousgrammarsalso.

Anoperatorgrammarhastwoimportantcharacteristics:

1. Thereareno€productions.

2. Noproductionwouldhavetwo adjacentnonterminals.

Theoperatorgrammartoacceptexpressions isgivebelow:

E E+E/E E-E /E E*E /E E/E/E E^E /E -E/E (E)/E

id

TwomainChallenges intheoperatorprecedenceparsingare:

1. IdentificationofCorrecthandles inthereductionstep, suchthatthegiveninputshould

bereducedtostartingsymbolofthegrammar.

2. Identificationofwhichproductionto

useforreducinginthereductionsteps,suchthatweshouldcorrectlyreduce the giveninputtothe

startingsymbolofthegrammar.

Operatorprecedenceparserconsistsof:

1. Aninputbufferthatcontainsstringtobeparsedfollowedbya$, asymbolusedtoindicate

theendingofinput.

2. Astackcontaininga sequence ofgrammarsymbolswitha $atthe bottomofthestack.

3. An operator precedence relation table O, containing the precedence ralations between

thepair of terminal. There are three kinds of precedence relations will exist between the

pairofterminalpair‗a‘and‗b‘asfollows:

4. Therelationa<•bimpliesthat heterminal‗a‘haslowerprecedencethanterminal‗b‘.

5. Therelationa•>bimpliesthat heterminal‗a‘hashigherprecedencethanterminal‗b‘.

6. Therelationa=•bimpliesthatheterminal‗a‘haslowerprecedencethanterminal‗b‘.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

57|Pa ge

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

58|Pa ge

OperatorPrecedenceTable

Operator

precedenceParsingAl

gorithm

$

a1a2 a3 ……….. $

7. An operator precedence parsing program takes an input string and determines whether

itconforms to the grammar specifications. It uses an operator precedence parse table

andstacktoarriveatthedecision.

InputBuffer

Output

Stack

Figure3.2:Componentsofoperatorprecedenceparser

Example,Ifthegrammaris

E E+E

E E-E

E E*E

E E/E

E E^E

E -E

E (E)

E id,Constructoperator precedencetableandacceptinputstring“id+id*id”

Theprecedencerelationsbetweentheoperatorsare

(id)>(^)>(*/)>(+-)>$,„^‟operatorisRightAssociativeandreamingalloperatorsare

LeftAssociative

 + - * / ^ id () $

+ •> •> <• <• <• <• <• •> •>

- •> •> <• <• <• <• <• •> •>

* •> •> •> •> <• <• <• •> •>

/ •> •> •> •> <• <• <• •> •>

^ •> •> •> •> <• <• <• •> •>

Id •> •> •> •> •> Err Err •> •>

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

59|Pa ge

(<• <• <• <• <• <• <• = Err

) •> •> •> •> •> Err Err •> •>

$ <• <• <• <• <• <• <• Err Err

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

60|Pa ge

TheintentionoftheprecedencerelationsistodelimitthehandleofthegiveninputStringwith<•marking

theleftendofthe Handle and •>marking the rightendofthehandle.

ParsingAction:

Tolocatethehandlefollowingstepsarefollowed:

1. Add $symbolat thebothendsofthegiven inputstring.

2. Scantheinputstringfromlefttorightuntiltherightmost•>isencountered.

3. Scantowardsleftoveralltheequalprecedence‘suntilthefirst<•precedenceisencount

ered.

4. Everything between<•and •>isahandle.

5. $onSmeansparsingissuccess.

Example, Explain the parsing Actions of the OPParser for the input string is “id*id” and

thegrammaris:

E E+E

E E*E

E id

1.$<•id•>*<•id•>$

Thefirsthandleis‗id‘andmatchforthe‗id‗inthegrammarisE id

.So, id is replaced with the Non terminal E. the given input string can

bewrittenas

2.$<•E•>*<•id•>$

Theparserwillnotconsiderthe Nonterminalasan input.So,theyare

notconsideredintheinputstring.So,thestringbecomes

3.$<•*<•id•>$

Thenext handleis‗id‘andmatchforthe‗id‗inthegrammarisE

 id.

So, id is replaced with the Non terminal E. the given input string can

bewrittenas

4.$<•*<•E•>$

Theparserwillnotconsiderthe Nonterminalasan input.So,theyare

notconsideredintheinputstring.So,the stringbecomes

5.$<• *•>$

6.$E $

Thenexthandleis‗*‘andmatchforthe‗‗inthegrammarisE E * E

.So, id is replaced with the Non terminal E. the given input string can

bewrittenas

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

61|Pa ge

Theparserwillno

tconsiderthe

Nonterminalasan input.So,theyare notconsideredintheinputstring.So,the

stringbecomes

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

62|Pa ge

7.$$

Onmeansparsingsuccessful.

OperatorParsingAlgorithm:

TheoperatorprecedenceParser parsing programdeterminestheactionoftheparser dependingon

1. ‗a‘istopmostsymbolonthe Stack

2. ‗b‘isthecurrentinput symbol

Thereare3 conditionsfor ‗a‘and‗b‘thatareimportantfortheparsingprogram

1. a=b=$,theparsingissuccessful

2. a <• b or a = b, the parser shifts the input symbol on to the stack and advances

theinputpointertothe nextinputsymbol.

3. a •>b, parser performs the reduce action. The parser pops out elements one

byone from the stack until we find the current top of the stack element has

lowerprecedence thanthemostrecentlypoppedoutterminal.

Example,thesequenceofactionstakenbytheparserusingthestackfortheinputstring―id*id

— andcorrespondingParseTreeareasunder.

STACK INPUT OPERATIONS

$ id*id$ $<• id, shift‗id‘intostack

$id *id$ id•>*,reduce‗id‘using E->id

$E *id$ $<•*,shift‗*‘ intostack

$E* id$ *<•id,shift‗id‘ intoStack

$E*id $ id•>$,reduce‗id‘usingE->id

$E*E $ *•>$,reduce‗*‘using E->E*E

$E $ $=$=$,soparsingissuccessful

E

E * E

id id

AdvantagesandDisadvantagesofOperatorPrecedenceParsing:

Thefollowingaretheadvantagesofoperator precedenceparsing

1. Itissimpleandeasytoimplementparsingtechnique.

2. Theoperatorprecedenceparsercanbeconstructedbyhandafterunderstandingthegram

mar.Itis simple todebug.

Thefollowingarethedisadvantagesofoperatorprecedenceparsing:

1. Itisdifficulttohandletheoperatorlike‗-‗whichcanbeeither

unaryorbinaryandhencedifferentprecedence‘sandassociativities.

2. It canparse onlya smallclassofgrammar.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

63|Pa ge

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

64|Pa ge

LRPARSINGALGORTHM

a1 a2 a3 ………. $

3. Newadditionordeletionoftherulesrequirestheparser to berewritten.

4. Toomanyerrorentriesintheparsingtables.

LRParsing:

Most prevalent type of bottom up parsing is LR (k) parsing. Where, L is left to right scan of

thegiven inputstring, R is RightMostderivation in reverse and K is no of inputsymbols as

theLookahead.

Itisthemostgeneralnonbacktrackingshiftreduceparsingmethod

Theclassofgrammarsthatcanbeparsedusing theLRmethodsisaproper supersetofthe

classofgrammarsthatcanbe parsedwithpredictiveparsers.

AnLRparser candetect asyntacticerror

assoonasitispossibletodoso,onalefttorightscanoftheinput.

InputBuffer

OUTPUT

Stack

Figure3.3:ComponentsofLRParsing

LRParserConsistsof

Aninputbufferthatcontainsthestringtobeparsedfollowedbya$Symbol,usedtoindicate

endofinput.

A stack containing a sequence of grammar symbols with a $ at the bottom of the

stack,whichinitiallycontains theInitialstateof theparsingtableontopof$.

Shift GOTO

LRParsingTable

$

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

65|Pa ge

Aparsingtable(M),itisatwodimensionalarrayM[state,terminalorNonterminal]anditcontains

twoparts

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

66|Pa ge

1. ACTIONPart

The ACTION part of the table is a two dimensional array indexed by state and

theinput symbol, i.e. ACTION[state][input], An action table entry can have one

offollowingfourkinds ofvaluesinit.Theyare:

1. ShiftX,whereXisaStatenumber.

2. ReduceX, whereXisaProductionnumber.

3. Accept,signifyingthecompletionofasuccessfulparse.

4. Errorentry.

2. GOTOPart

The GO TO part of the table is a two dimensional array indexed by state and

aNonterminal,i.e.GOTO[state][NonTerminal].AGOTOentryhasastatenumberinthe

table.

 A parsing Algorithm uses the current State X, the next input symbol ‗a‘ to consult

theentryataction[X][a].itmakesoneofthefourfollowing actionsasgivenbelow:

1. If the action[X][a]=shift Y, the parser executes a shift of Y on to the top of the

stackandadvances theinputpointer.

2. If the action[X][a]= reduce Y (Y is the production number reduced in the State X),

ifthe production is Y->β, then the parser pops 2*β symbols from the stack and push

YontotheStack.

3. If the action[X][a]= accept, then the parsing is successful and the input string

isaccepted.

4. If the action[X][a]= error, then the parser has discovered an error and calls the

errorroutine.

Theparsingisclassifiedinto

1.LR(0)

2. Simple LR(1)

3. CanonicalLR(1)

4. LookaheadLR(1)

LR(1)Parsing:Varioussteps involvedintheLR(1)Parsing:

1. WritetheContextfreeGrammarforthegiveninputstring

2. CheckfortheAmbiguity

3. AddAugment production

4. CreateCanonicalcollectionofLR(0)items

5. DrawDFA

6. Constructthe LR(0)Parsingtable

7. Based ontheinformation fromthe Table,with helpofStack

andParsingalgorithmgenerate theoutput.

AugmentGrammar

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

67|Pa ge

The Augment Grammar G`, is G with a new starting symbol S` an additional

productionS` S. this helps the parser to identify when tostop the parsing and announce the

acceptance ofthe input. The input string is accepted if and only if the parser is about to reduce by

S` S. Forexampleletus considerthe Grammarbelow:

theAugmentgrammarG`isRepresentedby

NOTE: Augment Grammar is simply adding one extra production by preserving the

actualmeaningofthegivenGrammarG.

CanonicalcollectionofLR (0)items

LR(0) items

An LR (0) item of a Grammar is a production G with dot at some position on the

rightsideoftheproduction.Anitemindicateshowmuchoftheinputhasbeenscanneduptoagivenpointi

ntheprocessofparsing.Forexample,iftheProductionisX YZ then, The LR

(0)items are:

1. X •AB,indicatesthattheparserexpectsastringderivablefromAB.

2. X

 A•B,indicatesthattheparserhasscannedthestringderivablefromtheAandexpectin

gthestringfromY.

3. X AB•,indicates thatheparserhas

scannedthestringderivablefromAB.IfthegrammarisX €the,theLR(0)itemis

X •,indicatingthattheproductionisreducedone.

CanonicalcollectionofLR(0)Items:

Thisistheprocessofgrouping theLR(0) itemstogether based ontheclosureand Gotooperations

Closureoperation

IfIisaninitialState,thentheClosure(I)isconstructedasfollows:

1. Initially,addAugmentProductiontothestateandcheckfor the• symbolintheRighthand

side production, if the • is followed by a Non terminal then Add

ProductionswhichareStatingwiththatNonTerminalinthe StateI.

E

T

E+T|T

T*F

F (E)| id

E` E

E E+T|T

T T*F

F (E)| id

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

68|Pa ge

2. If a production X α•Aβ is in I, then add Production which are starting with X in

theState I. Rule 2 is applied until no more productions added to the State I(meaning

thatthe •isfollowedbya Terminalsymbol).

Example:

0.E` E E` • E

1. E E+T LR(0) itemsfortheGrammaris E • E+T

2. T F T •F

3. T T*F T • T*F

4. F (E) F • (E)

5.

Closure(I0)State

F id F • id

AddE` •EinI0State

Since, the‗•‘symbolintheRighthandsideproductionisfollowedbyANonterminal

E. So, add productions starting with E in to Io state. So, the statebecomes

E ` •E

0. E •E+T

1. T •F

The1stand2ndproductionsaresatisfiesthe2ndrule.So,

addproductionswhicharestartingwithEandTinI0

Note:onceproductionsareaddedinthestatethesameproductionshouldnot

addedforthe 2ndtimeinthe same state.So,thestate becomes

0.E` •E

1. E • E+T

2.T •F

3.T • T*F

4.F • (E)

5.F • id

GOTOOperation

Go to (I0, X), where I0 is set of items and X is the grammar Symbol on

whichwearemovingthe„•‟

symbol.ItislikefindingthenextstateoftheNFAforagiveStateI0andtheinputsymbolis

X.Forexample,iftheproductionisE•E+T

Goto (I0,E)isE` •E, E E•+T

Note:OncewecompletetheGotooperation,weneedtocomputeclosureoperationfortheoutputprod

uction

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

 ngineering&Technology/Hyderabad/In

erstate(I)onaNonterminalval

Goto (I0,E)isE E•+T,E` E.=Closure({E` E•,E E•+T})

E`->.E E`->E.

E->.E+T
E E->

E.+TT->.T*F

ConstructionofLR(0)parsingTable:

OncewehaveCreatedthecanonicalcollectionofLR(0) items,needtofollowthestepsmentionedbelow:

Ifthereisa transactionfromone state (Ii)to anotherstate(Ij)onaterminalvalue

then,weshouldwritethe shiftentryinthe actionpartasshownbelow:

a

A->α•aβ A->αa•β

Ii Ij

Ifthereisa transactionfromone state (Ii)toanoth j ue

then, we should write the subscript value of Iiin the GO TO part as shown below: part as

shownbelow:

A

A->α•Aβ A->αA•β

Ii Ij

If there is one state (Ii), where there is one production which has no transitions. Then,

theproduction is said tobe a reduced production. These productions should have reduced entry

inthe Action part along with their production numbers. If the Augment production is reducing

then,write acceptintheActionpart.

1 A->αβ•

States ACTION

a $

GOTO

A

States ACTION GOTO

 a $ A

Ii Sj

Ij

States ACTION GOTO

a $ A

Ii

j

Ij

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Ii r1 r1

44|Pa ge

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

45|Pa ge

Ii

Ii

ForExample,Construct theLR(0)parsing Tableforthegiven Grammar(G)

S aB

B bB|b

Sol:1.

AddAugmentProductionandinsert„•‟symbolatthefirstpositionforeveryproductioninG

I0State:

0. S′ •S

1. S •aB

2. B •bB

3. B •b

1. AddAugmentproductiontotheI0StateandComputetheClosure

I0 =Closure(S′ •S)

Since ‗•‘ is followed by the Non terminal, add all productions starting with S in to I0 State.

So,the I0Statebecomes

I0= S′ •S

S •aBHere,intheSproduction‗.‘Symbolisfollowed byaterminalvalueso closethe

state.

I1=Goto(I0,S)

S` S•

Closure(S` S•)=S′ S• Here, TheProductionisreducedsoclosetheState.

I1=S′ S•

I2=Goto(I0,a)=closure (S a•B)

Here,the‗•‘symbolisfollowed byTheNonterminalB.So,addthe productionswhichareStartingB.

I2= B •bB

B •bHere,the‗•‘symbolintheBproductionisfollowed bytheterminalvalue.So,Close

theState.

I2= S a•B

B •bB

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

46|Pa ge

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

47|Pa ge

B •b

I3= Goto(I2,B)= Closure(S aB•)= S

 aB•I4= Goto(I2,b)

=closure({B b•B,B b•})

Addproductionsstarting withBinI4.

 B • bB

 B •b TheDotSymbolisfollowedbytheterminalvalue.So,closetheState.

I4=
B

B

b•B

• bB

 B •b

 B b•

I5= Goto(I2,b)=Closure(B b•)=B b•

I6=Goto(I4,B)=Closure(B bB•)=B

 bB•I7=Goto(I4

,b)=I4

DrawingFiniteStatediagramDFA:FollowingDFAgivesthestatetransitionsoftheparserandis

usefulinconstructingtheLRparsingtable.

S->aB•

S′-

>•SS-

>•aB

S′->S•

S I3

I1 B

B->b•B B

a S->a•B

I0 B->•bB

B->•b

b B->•bB

B->•b

B->b•
b

I4

B->bB•

I5

I2 I4

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

48|Pa ge

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

49|Pa ge

Ii:

1A->α•

2B->β•

LRParsingTable:

States
ACTION GOTO

a B $ S B

I0 S2 1

I1 ACC

I2 S4 3

I3 R1 R1 R1

I4 R3 S4/R3 R3 5

I5 R2 R2 R2

Note: if there are multiple entries in the LR (1) parsing table, then it will not accepted by

theLR(1) parser. In the above table I3 row is giving two entries for the single terminal value ‗b‘

anditis calledasShift-Reduceconflict.

Shift-

ReduceConflictinLR(0)Parsing:ShiftReduceConflictintheLR(0)parsingoccurswhenastateh

as

1. AReduceditemoftheformA α•and

2. An incomplete itemoftheformA β•aαasshownbelow:

Ij

Ii

Reduce-ReduceConflictin LR(0)Parsing:

Reduce- Reduce Conflict in the LR (1) parsing occurs when a state has two or

morereduceditems oftheform

1. A α•

2. B β•asshownbelow:

1A->β•aα
a

2B->b•

States Action GOTO

a $ A B

Ii Sj/r2 r2

Ij

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

50|Pa ge

States Action GOTO

a $ A B

Ii

r1/r2

r1/r2

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

SLRPARSERCONSTRUCTION:WhatisSLR(1)Parsing

VariousstepsinvolvedintheSLR(1) Parsingare:

1. WritetheContextfreeGrammarforthegiveninputstring

2. CheckfortheAmbiguity

3. AddAugment production

4. CreateCanonicalcollectionofLR(0)items

5. DrawDFA

6. ConstructtheSLR(1)Parsingtable

7. Basedontheinformation fromtheTable,withhelpofStack

andParsingalgorithmgenerate theoutput.

SLR(1)ParsingTableConstruction

OncewehaveCreatedthecanonicalcollectionofLR(0)

items,needtofollowthestepsmentionedbelow:

Ifthereisa transactionfromone state (Ii)to anotherstate(Ij)onaterminalvalue

then,weshouldwritethe shiftentryinthe actionpartasshownbelow:

Ii Ij

If there is a transaction from one state (Ii) to another state (Ij) on a Non terminal

valuethen, we should write the subscript value of Iiin the GO TO part as shown below: part as

shownbelow:

States ACTION GOTO

 a $ A

Ii Sj

Ij

a

A->α•aβ A->αa•β

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

States ACTION GOTO

a $ A

Ii

j

Ij

A->α•Aβ A->αA•β

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Ii Ij

1Ifthere is one state (Ii),where there is one production(A->αβ•)which has no

transitionstothenextState.Then,theproductionissaidtobea

reducedproduction.ForallterminalsXinFOLLOW(A),writethereduceentryalongwiththeirpr

oductionnumbers.IftheAugmentproductionisreducingthenwriteaccept.

1 S ->•aAb

2 A->αβ•

Follow(S)={$}

Follow(A)=(b}

Ii

SLR(1)tablefortheGrammar

S aB

B bB|b

Follow(S) ={$},Follow(B) ={$}

States
ACTION GOTO

A b $ S B

I0 S2 1

I1 ACCEPT

I2 S4 3

I3 R1

I4 S4 R3 5

I5 R2

Note:WhenMultipleEntriesoccursintheSLRtable.

Then,thegrammarisnotacceptedbySLR(1)Parser.

Conflictsin theSLR(1)Parsing:

2 A->αβ•

Ii

States ACTION GOTO

a b $ S A

Ii

r2

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Whenmultipleentriesoccur inthetable.Then,thesituationissaidtobeaConflict.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Shift-ReduceConflict inSLR(1)Parsing:ShiftReduceConflictintheLR(1)

parsingoccurswhenastatehas

1. AReduceditemoftheformA α•and Follow(A)includestheterminalvalue

‗a‘.

2. An incomplete itemoftheformA β•aαasshownbelow:

Ij

Ii

Reduce-ReduceConflictinSLR(1)Parsing

Reduce- ReduceConflictintheLR(1) parsingoccurswhenastatehastwoor

morereduceditems oftheform

1. A α•

2. B β•and Follow(A) ∩ Follow(B) ≠null asshownbelow:

IfTheGrammaris

S-

>αAaBaA-

>α

B->β

Follow(S)={$}

Follow(A)={a}andFollow(B)={a}

Ii

CanonicalLR(1) Parsing:VariousstepsinvolvedintheCLR(1) Parsing:

1. WritetheContextfreeGrammarforthegiveninputstring

2. CheckfortheAmbiguity

3. AddAugment production

1A->β•aα

a
2B->b•

States Action GOTO

a $ A B

Ii

Sj/r2

States Action GOTO

a $ A B

Ii

r1/r2

1A->α•

2B->β•

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

4. CreateCanonicalcollectionofLR(1)items

5. DrawDFA

6. ConstructtheCLR(1)Parsingtable

7. BasedontheinformationfromtheTable,withhelpofStack

andParsingalgorithmgeneratetheoutput.

LR (1)items:

TheLR(1) itemisdefinedbyproduction,positionofdataandaterminalsymbol.Theterminalis

calledasLookaheadsymbol.

General formofLR(1)itemis

Rulestocreatecanonicalcollection:

1. EveryelementofIisadded toclosureofI

2. If an LR (1) item [X-> A•BC, a] exists in I, and there exists a production B-

>b1b2…..,thenadditem[B->•b1b2,z]wherezisaterminalinFIRST(Ca),ifitisnotalreadyin

Closure(I).keep applyingthisrule untilthere arenomore elementsadde.

Forexample,ifthegrammaris

S-

>CCC

-

>cCC-

>d

TheCanonicalcollectionofLR(1)itemscanbecreatedasfollows:

0. S′->•S(AugmentProduction)

1. S->•CC

2. C-

>•cC3.C-

>•d

I0 State :Add Augment production and compute the Closure, the look ahead symbol for the

AugmentProductionis$.

S′->•S,$=Closure(S′->•S,$)

ThedotsymbolisfollowedbyaNonterminal S.So,addproductionsstarting withSinI0

State.

S->α•Aβ,$

A->•γ, FIRST(β,$)

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

S->•CC,FIRST($), using2ndrule

S->•CC,$

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

ThedotsymbolisfollowedbyaNonterminal C.So,addproductionsstarting with CinI0

State.

C->•cC, FIRST(C,

$)C->•d,FIRST(C,

$)

FIRST(C) ={c,d}so,theitemsare

C->•cC,

c/dC-

>•d,c/d

Thedotsymbolisfollowedbyaterminal value.So,closetheI0State.So,theproductionsinthe

I0are

S′->•S ,

$S-

>•CC,$

C->•cC,

c/dC-

>•d,c/d

I1=Goto(I0,S)=S′->S•,$

I2=Go to (I0,C)=Closure(S->C•C,$)

S->C->•cC,$

C->•d,$So,theI2Stateis

S->C•C,$

C->•cC ,

$C->•d,$

I3=Goto(I0,c)=Closure(C->c•C,c/d)

C->•cC,c/d

C->•d, c/dSo, the I3Stateis

C->c•C,

c/dC->•cC,

c/dC->•d,

c/d

I4=Goto(I0,d)=Colsure(C->d•,c/d) =C->d•,c/d

I5=Goto(I2,C)=closure(S->CC•,$)=S->CC•,$I6=

Goto(I2, c)= closure(C->c•C ,$)=

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

C->•cC, $

C->•d, $S0,theI6Stateis

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

C->c•C ,

$C->•cC ,

$C->•d,$

I7 = Go to (I2 , d)= Closure(C->d•,$) = C->d•,

$Goto(I3,c)= closure(C->•cC, c/d)= I3.

I8= Go to (I3 , C)= Closure(C->cC•, c/d) = C->cC•,

c/dGoto(I3,c)= Closure(C->c•C, c/d)= I3

Goto(I3, d)=Closure(C->d•,c/d)=I4

I9=Goto(I6,C)=Closure(C->cC•, $)=C->cC•,$

Goto(I6,c)=Closure(C->c•C , $)=I6

Goto(I6, d)=Closure(C->d•,$)= I7

DrawingtheFiniteStateMachineDFAfortheaboveLR(1)items

S′->S•,$
S->CC•,$

I1 C I5 C->cC•,$

0 S′->•S , $

1 S->•CC, $

2C-

>•cC,c/d3

C->•d,c/d

S->C•C,$

C->•cC ,

$C->•d,$

I9

c

C->c•C ,

$C-

>•cC,$

C->•d,$

c

I6

I2 I6 I7

I0 c

d

C->d•,

c/dI4

C->c•C,c/d

C->•cC,

c/dC->•d,

c/d

C->d•,$

I7

d I3 c

I4 I3
C->cC•,c/d

I8

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

ConstructionofCLR(1)Table

Rule1: if there is an item [A->α•Xβ,b] in Iiand goto(Ii,X) is in Ij then action [Ii][X]=

Shiftj,WhereXisTerminal.

Rule2: if there is an item [A->α•, b] in Iiand (A≠S`) set action [Ii][b]= reduce along

withthe productionnumber.

Rule3:ifthereisan item[S`->S•,$]inIithensetaction[Ii][$]= Accept.

Rule4:ifthereisanitem[A->α•Xβ,b]inIiand goto(Ii,X) isinIjthengoto[Ii][X]=j,Where Xis

NonTerminal.

States
ACTION GOTO

c d $ S C

I0 S3 S4 1 2

I1 ACCEPT

I2 S6 S7 5

I3 S3 S4 8

I4 R3 R3 5

I5 R1

I6 S6 S7 9

I7 R3

I8 R2 R2

I9
 R2

Table:LR(1)Table

LALR(1)Parsing

The CLR Parser avoids the conflicts in the parse table. But it produces more number

ofStates when compared to SLR parser. Hence more space is occupied by the table in the

memory.So LALR parsing can be used. Here, the tables obtained are smaller than CLR parse

table. But italso as efficient as CLR parser. Here LR (1) items that have same productions but

different look-aheadsarecombinedtoformasinglesetofitems.

For example, consider the grammar in the previous example. Consider the states I4 and

I7asgivenbelow:

I4= Goto(I0, d)= Colsure(C->d•, c/d) = C->d•,

c/dI7= Goto(I2,d)= Closure(C->d•,$)=C->d•,$

Thesestatesaredifferingonlyinthelook-aheads. Theyhavethesameproductions.

HencethesestatesarecombinedtoformasinglestatecalledasI47.

SimilarlythestatesI3and I6differing onlyintheir look-aheadsasgivenbelow:

I3=Goto(I0,c)=

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

C->c•C,

c/dC->•cC,

c/dC->•d,

c/d

I6=Goto(I2,c)=

C->c•C ,

$C->•cC ,

$C->•d,$

Thesestatesaredifferingonlyinthelook-aheads. Theyhavethesameproductions.

Hencethesestatesarecombinedtoformasingle statecalledasI36.

Similarly the States I8and I9 differing only in look-aheads. Hence they combined to

formthestateI89.

States
ACTION GOTO

c d $ S C

I0 S36 S47 1 2

I1 ACCEPT

I2 S36 S47 5

I36 S36 S47 89

I47 R3 R3 R3
 5

I5 R1

I89 R2 R2 R2

Table:LALRTable

Conflictsin theCLR(1)Parsing:Whenmultipleentriesoccurinthetable.Then,thesituationis

saidtobeaConflict.

Shift-ReduceConflictinCLR(1)Parsing

ShiftReduceConflictintheCLR(1)parsingoccurswhenastatehas

3. AReduceditemoftheformA α•,aand

4. An incomplete itemoftheformA β•aαasshownbelow:

Ij

Ii

1A->β•aα,$

a
2B->b•,a

States Action GOTO

a $ A B

Ii

Sj/r2

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Reduce/ReduceConflictinCLR(1)Parsing

Reduce-

ReduceConflictintheCLR(1)parsingoccurswhenastatehastwoormorereduceditems oftheform

3. A α•

4. B β•Iftwoproductionsinastate(I) reducing onsamelookahead

symbolasshownbelow:

Ii

StringAcceptanceusingLRParsing:

Considertheaboveexample,iftheinputStringiscdd

States
ACTION GOTO

c D $ S C

I0 S3 S4 1 2

I1 ACCEPT

I2 S6 S7 5

I3 S3 S4 8

I4 R3 R3 5

I5 R1

I6 S6 S7 9

I7 R3

I8 R2 R2

I9 R2

0 S′->•S(AugmentProduction)

1 S->•CC

2 C->•cC

3C->•d

STACK

INPUT

ACTION

$0 cdd$ ShiftS3

$0c3 dd$ ShiftS4

$0c3d4 d$ ReducewithR3,C->d,pop2*βsymbolsfromthestack

$0c3C d$ Goto(I3,C)=8ShiftS6

States Action GOTO

a $ A B

Ii

r1/r2

1A->α•,a

2B->β•,a

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

$0c3C8 d$ ReducewithR2,C->cC,pop2*βsymbolsfromthestack

$0C d$ Goto(I0,C)=2

$0C2 d$ ShiftS7

$0C2d7 $ ReducewithR3,C->d,pop2*βsymbolsfromthestack

$0C2C $ Goto(I2,C)=5

$0C2C5 $ ReducewithR1,S->CC,pop2*βsymbolsfromthestack

$0S $ Goto(I0,S)=1

$0S1 $ Accept

HandingAmbiguousgrammar

Ambiguity:AGrammar canhavemorethanoneparsetreefor astring.Forexample,considergrammar.

stringstring+string

|string-string

|0|1|.|9

String9-5+2 hastwoparsetrees

A grammar is said to be an ambiguous grammar if there is some string that it can generate

inmore than one way (i.e., the string has more than one parse tree or more than one

leftmostderivation).A languageisinherently ambiguousif itcan only be generated by

ambiguousgrammars.

Forexample,considerthefollowinggrammar:

stringstring+string

|string-string

|0|1|.|9

Inthisgrammar,thestring9-5+2hastwopossibleparsetreesasshowninthenextslide.

Consider the parse trees for string 9-5+2, expression like this has more than one parse tree.

Thetwo trees for 9-5+2 correspond to the two ways of parenthesizing the expression: (9-5)+2 and

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

9-(5+2).The secondparenthesizationgivesthe expressionthe value 2insteadof6.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Ambiguityisproblematicbecausemeaning oftheprogramscanbeincorrect

 Ambiguitycanbehandledinseveralways

- Enforceassociativityandprecedence

- Rewritethegrammar(cleanestway)

Therearenogeneraltechniques forhandlingambiguity, but

. Itisimpossibletoconvertautomaticallyanambiguousgrammar toanunambiguousone

Ambiguity is harmful to the intent of the program. The input might be deciphered in a way

whichwas not really the intention of the programmer, as shown above in the 9-5+2 example.

Thoughthere is no general technique to handle ambiguity i.e., it is not possible to develop some

featurewhich automatically identifies and removes ambiguity from any grammar. However, it

can beremoved,broadlyspeaking,inthefollowingpossibleways:-

1) Rewritingthewholegrammarunambiguously.

2) Implementingprecedenceandassociativelyrules inthegrammar.

Weshalldiscussthistechniqueinthelater slides.

Ifanoperandhas operatoronboththesides,thesideonwhichoperatortakesthis

operandistheassociativityofthatoperator

.Ina+b+cb istakenby left+

. +,-, *, /areleftassociative

.^,=arerightassociative

Grammartogeneratestringswithrightassociativeoperatorsrightàletter=right|letterlettera|b|.|z

A binary operation * on a set S that does not satisfy the associative law is called non-

associative. A left-associative operation is a non-associative operation that is

conventionallyevaluatedfromlefttorighti.e.,operandistakenbytheoperatorontheleftside.

Forexample,

6*5*4=(6*5)*4 and not6*(5*4)

6/5/4=(6/5)/4andnot6/(5/4)

Aright-associativeoperationisanon-

associativeoperationthatisconventionallyevaluatedfromrighttolefti.e.,operandis

takenbytheoperatoronthe rightside.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Forexample,

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

6^5^4 => 6^(5^4) and not

(6^5)^4)x=y=z=5=> x=(y=(z=5))

Following is the grammar to generate strings with left associative operators. (Note that this is

leftrecursive and may go into infinite loop. But we will handle this problem later on by making

itrightrecursive)

left

 left+letter|letterle

tter a |b| |z

IMPORTANTQUESTIONS

1. DiscussthetheworkingofBottomupparsingandspecificallytheOperatorPrecedenceParsin

gwithanexaple?

2. WhatdoyoumeanbyanLRparser?ExplaintheLR(1)Parsingtechnique?

3. WritethedifferencesbetweencanonicalcollectionofLR(0)itemsand LR(1)items?

4. WritetheDifferencebetweenCLR(1) andLALR(1)parsing?

5. WhatisYACC?Explainhowdoyouuseitinconstructingtheparserusingit.

ASSIGNMENTQUESTIONS

1. ExplaintheconflictsintheShiftreduceParsingwithanexample?

2. E E+T|T

T T*F

F (E)|id,constructtheLR(1) Parsingtable?AndexplaintheConflicts?

3. E E+T|T

T T*F

F (E)|id, constructtheSLR(1)Parsingtable?AndexplaintheConflicts?

4. E E+T|T

T T*F

F (E)|id, constructtheCLR(1) Parsingtable?AndexplaintheConflicts?

5. E E+T|T

T T*F

F (E)|id, constructtheLALR(1)Parsingtable?AndexplaintheConflicts?

COMPILERDESIGNNOTES IIIYEAR/ ISEM MRCET

UNIT-III

INTERMEDIATECODEGENERATION

In Intermediate code generation we use syntax directed methods to translate the

sourceprogramintoanintermediateformprogramminglanguageconstructssuchasdeclarations,assign

mentsandflow-of-controlstatements.

Figure4.1:IntermediateCodeGenerator

Intermediatecodeis:

 TheoutputoftheParser and theinputto theCodeGenerator.

 Relativelymachine-independentandallowsthecompilertoberetargeted.

 Relativelyeasytomanipulate(optimize).

WhataretheAdvantagesofanintermediatelanguage?

AdvantagesofUsinganIntermediateLanguageincludes:

1. Retargetingisfacilitated-Buildacompilerfor

anewmachinebyattachinganewcodegeneratortoanexistingfront-end.

2. Optimization-

reuseintermediatecodeoptimizersincompilersfordifferentlanguagesanddifferentmachines.

Note:theterms―intermediatecode‖,―intermediatelanguage‖,and―intermediate

representation‖areallusedinterchangeably.

Types of Intermediate representations / forms: There are three types of

intermediaterepresentation:-

1. SyntaxTrees

2. Postfixnotation

3. ThreeAddressCode

Semanticrulesforgeneratingthree-

addresscodefromcommonprogramminglanguageconstructsaresimilar tothosefor

constructingsyntaxtreesoffor generatingpostfixnotation.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

GraphicalRepresentations

A syntax tree depicts the natural hierarchical structure of a source program. A

DAG(Directed Acyclic Graph)gives the sameinformation butin amore compactway

becausecommon sub-expressions are identified. A syntax tree for the assignment statement

a:=b*-c+b*-cappearinthefollowingfigure.

. assign

a +

* *

b uniminus b uniminus

c c

Figure4.2 :AbstractSyntaxTreeforthestatementa:=b*-c+b*-c

Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of the

inwhich a node appears immediately after its children. The postfix notation for the syntax tree

inthe figis

abcuminus+ bcuminus*+assign

The edges in a syntax tree do not appear explicitly in postfix notation. They can

berecovered in the order in which the nodes appear and the no. of operands that the operator at

anode expects. The recovery of edges is similar to the evaluation, using a staff, of an expression

inpostfixnotation.

WhatisThreeAddressCode?

Three-addresscodeis asequenceofstatementsofthegeneralform:X:=Y OpZ

where x, y, and z are names, constants, or compiler-generated temporaries; op stands

forany operator, such as a fixed- or floating-point arithmetic operator, or a logical operator

onBoolean-valued data. Note that no built-up arithmetic expressions are permitted, as there is

onlyone operator on the rightside of a statement. Thus asource language expression

likex+y*zmightbetranslatedintoa sequence

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

t1 := y *

zt2:=x+ t1

Wheret1andt2arecompiler-generatedtemporarynames.Thisunravelingofcomplicated

arithmetic expressions and of nested flow-of-control statements makes three-addresscode

desirable for target code generation and optimization. The use of names for the

intermediatevalues computed by a program allow- three-address code to be easily rearranged –

unlike postfixnotation. Three - address code is a linearzed representation of a syntax tree or a dag

in whichexplicitnames correspondtotheinteriornodesofthegraph.

Intermediate code using Syntax for the above arithmetic

expressiont1:=-c

t2:=b*t1

t3:=-c

t4 := b *

t3t5:=t2+t4

a:=t5

The reason for the term‖three-address code‖ is that each statement usually contains

threeaddresses, two for the operands and one for the result. In the implementations of three-

addresscode given later in this section, a programmer-defined name is replaced by a pointer tc a

symbol-table entryforthatname.

TypesofThree-AddressStatements

Three-address statements are akin to assembly code. Statements can have symbolic

labelsand there are statements for flow of control. A symbolic label represents the index of a

three-address statement in the array holding inter- mediate code. Actual indices can be

substituted forthelabelseitherbymaking aseparate pass,orbyusing ‖back patching,‖

discussedinSection

8.6.Herearethecommonthree-addressstatementsusedintheremainderofthisbook:

1. Assignment statements of the form x: = y op z, where op is a binary arithmetic or

logicaloperation.

2. Assignment instructions of the form x:= op y, where op is a unary operation. Essential

unaryoperations include unary minus, logical negation, shift operators, and conversion operators

that,forexample,converta fixed-pointnumbertoafloating-pointnumber.

3. Copy statementsoftheformx: =ywherethe valueofyisassignedtox.

4. TheunconditionaljumpgotoL.Thethree-

addressstatementwithlabelListhenexttobeexecuted.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

5. Conditional jumps such as if x relop y goto L. This instruction applies a relational

operator(<, =, >=, etc.) to x andy, and executes the statement with label L nextif x stands in

relationrelop to y. If not, the three-address statement following if x relop y goto L is executed

next, as inthe usualsequence.

6. param x and call p, n for procedure calls and return y, where y representing a returned

valueisoptional.Theirtypicaluseis asthe sequenceofthree-addressstatements

param

x1param

x2param

xncallp,n

Generatedaspartofacalloftheprocedurep(x,,x~,...,x‖).Theintegernindicatingthenumberofactualpara

metersin‖callp,n‖isnotredundantbecausecallscanbenested.Theimplementationofprocedurecallsisou

tlinedinSection8.7.

7. Indexed assignments of the form x: = y[i] and x [i]: = y. The first of these sets x to thevalue

in the location i memory units beyond location y. The statement x[i]:=y sets the contents ofthe

location i units beyond x to the value of y. In both these instructions, x, y, and i refer to

dataobjects.

8. Address and pointer assignments of the form x:=&y, x:= *y and *x: = y. The first of

thesesets the value of x to be the location of y. Presumably y is a name, perhaps a temporary,

thatdenotes an expression with an I-value such as A[i, j], and x is a pointer name or temporary.

Thatis,ther-valueofxisthel-value(location)ofsomeobject!.Inthestatementx:=~y,presumablyy is a

pointer or a temporary whose r- value is a location. The r-value of x is made equal to thecontents

of that location. Finally, +x: = y sets the r-value of the object pointed to by x to the r-value ofy.

The choice of allowable operators is an important issue in the design of an

intermediateform. The operator set must clearly be rich enough to implement the operations in

the sourcelanguage. A small operator set is easier to implement on a new target machine.

However, arestricted instruction set may force the front end to generate long sequences of

statements forsome source, language operations. The optimizer and code generator may then

have to workharderifgoodcodeistobegenerated.

SYNTAXDIRECTEDTRANSLATIONOFTHREEADDRESSCODE

When three-address code is generated, temporary names are made up for the

interiornodes ofasyntaxtree.Thevalueofnon-

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

computed into a new temporary t. In general, the three- address code for id: = E consists of

codetoevaluateEintosometemporaryt,followedbytheassignmentid.place:=t.Ifanexpressionisa

single identifier, say y, then y itself holds the value of the expression. For the moment, wecreate

a new name every time a temporary is needed; techniquesforreusing temporaries aregiven in

Section S.3. The S-attributed definition in Fig. 8.6 generates three-address code forassignment

statements. Given input a: = b+ – c + b+ – c, it produces the code in Fig. 8.5(a). Thesynthesized

attribute S.code represents the three- address code for the assignment S. The non-terminalEhas

twoattributes:

1. E.place, thenamethatwill holdthevalueofE,and

2. E.code,the sequence ofthree-addressstatementsevaluating E.

Thefunction newtempreturns a sequence of distinctnames t1, t2,... in response

tosuccessive calls. For convenience, we use the notation gen(x ‘: =‘ y ‘+‘ z) in Fig. 8.6 to

representthe three-address statement x: = y + z. Expressions appearing instead of variables like x,

y, and zare evaluated when passed to gen, and quoted operators or operands, like ‘+‘, are taken

literally.In practice, three- address statements might be sent to an output file, rather than built up

into thecodeattributes.Flow-of-controlstatementscanbeadded tothelanguageofassignmentsinFig.

8.6 by productions and semantic rules)like the ones for while statements in Fig. 8.7.In thefigure,

the code for S - while E do S, is generated using‘ new attributes S.begin and S.after

tomarkthefirststatementinthecodeforEandthestatementfollowingthecodeforS,respectively.

These attributes represent labels created by a function new label that returns a new

labeleverytimeitis called.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

IMPLEMENTATIONSOFTHREE-ADDRESSSTATEMENTS:

A three-address statement is an abstract form of intermediate code. In a compiler,

thesestatements can be implemented as records with fields for the operator and the operands.

Threesuchrepresentationsare quadruples,triples,andindirecttriples.

QUADRUPLES:

A quadrupleis a record structure with four fields, which we call op, arg l, arg 2, andresult.

The op field contains an internal code for the operator. The three-address statement x:= yop z is

represented by placing y in arg 1. z in arg 2. and x in result. Statements with

unaryoperatorslikex:=–yorx:=ydonotusearg2.Operatorslikeparamuseneitherarg2norresult.

Conditional and unconditional jumps put the target label in result. The quadruples in

Fig.H.S(a)are forthe assignmenta:= b+ –c + bi–c.Theyare obtainedfromthethree-addresscode

.The contents of fields arg 1, arg 2, and resultare normally pointers tothe symbol-table entriesfor

the names represented by thesefields. If so, temporary names mustbe entered into thesymboltable

as theyare created.

TRIPLES:

To avoid entering temporary names into the symbol table. We might refer to a

temporaryvalue bi the position of the statement that computes it. If we do so, three-address

statements canbe represented by records with only three fields: op, arg 1 and arg2, as Shown

below. The fieldsarg l and arg2, for the arguments of op, are either pointers to the symbol table

(for programmer-defined names or constants) or pointers into the triple structure (for temporary

values). Sincethree fields are used, this intermediate code format is known as triples.‘ Except for

the treatmentof programmer-defined names, triples correspond to the representation of a syntax

tree or dag byanarrayofnodes,asin

Table8.8 (a):Qudraples Table8.8(b):Triples:Triples

Parenthesized numbers represent pointers into the triple structure, while symbol-

tablepointers are represented by the names themselves. In practice, the information needed to

interpretthe different kinds of entries in the arg 1 and arg2 fields can be encoded into the op field

or someadditionalfields.ThetriplesinFig.8.8(b) correspondtothequadruplesinFig.8.8(a).Notethat

 op Arg1 Arg2 Result

(0) uminus c t1

(1) * b t1 t2

(2) uminus c t3

(3) * b t3 t4

(4) + t2 t4 t5

(5) := t5 A

 op Arg1 Arg2

(0) uminus C

(1) * B (0)

(2) uminus C

(3) * B (2)

(4) + (1) (3)

(5) := A (4)

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

the copy statementa:= t5 is encoded in the triple representation by placing a in the arg 1 fieldand

using the operator assign. A ternary operation like x[i]: = y requires two entries in the

triplestructure, as shown in Fig. 8.9(a), while x: = y[i]is naturally represented as two operations

inFig.8.9(b).

IndirectTriples

Another implementation of three-address code that has been considered is that of

listingpointers to triples, rather than listing the triples themselves. This implementation is

naturallycalled indirect triples. For example, let us use an array statement to list pointers to

triples in thedesired order.Thenthe triplesinFig.8.8(b)might be representedasinFig.8.10.

Figure

8.10:IndirectTriplesSEMANTICANALYSIS:Thisphasefoc

uses mainlyonthe

. Checkingthesemantics,

.Errorreporting

.Disambiguateoverloadedoperators

.Typecoercion,

.Staticchecking

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

- Typechecking

-Controlflowchecking

- Uniquenesschecking

- Namechecking aspectsoftranslation

Assume that the program has been verified to be syntactically correct and converted

intosome kind of intermediate representation (a parse tree). One now has parse tree available.

Thenext phase will be semantic analysis of the generated parse tree. Semantic analysis also

includeserrorreportingincaseanysemanticerrorisfoundout.

Semantic analysis is a pass by a compiler that adds semantic information to the parse

treeand performs certain checks based on this information. It logically follows the parsing phase,

inwhich the parse tree is generated, and logically precedes the code generation phase, in

which(intermediate/target) code is generated. (In a compiler implementation, it may be possible

to folddifferent phases into one pass.) Typical examples of semantic information that is added

andchecked is typing information (type checking) and the binding of variables and function

namestotheirdefinitions(objectbinding).Sometimesalsosomeearlycodeoptimizationisdoneinthis

phase. For this phase the compiler usually maintains symbol tables in which it stores

whateachsymbol(variablenames,functionnames,etc.)refersto.

FOLLOWINGTHINGSAREDONEINSEMANTICANALYSIS:

Disambiguate Overloaded operators: If an operator is overloaded, one would like to

specifythemeaningofthatparticularoperatorbecausefromonewillgointocodegenerationphasenext.

TYPE CHECKING: The process of verifying and enforcing the constraints of types is

calledtype checking. This may occur either at compile-time (a static check) or run-time(a

dynamiccheck). Static type checking is a primary task of the semantic analysis carried out by a

compiler.Iftyperulesareenforcedstrongly(thatis,generallyallowingonlythoseautomatictypeconversi

ons which do not lose information), the process is called strongly typed, if not, weaklytyped.

UNIQUENESSCHECKING:Whether avariablenameisuniqueor not,intheitsscope.

Typecoersion:Ifsomekindofmixingoftypesisallowed.Doneinlanguageswhicharenotstronglyty

ped.Thiscanbe donedynamicallyas wellas statically.

NAMECHECKS:Checkwhetheranyvariablehasanamewhichisnotallowed.Ex. Nameissame

asanidentifier(Ex.intinjava).

 Parsercannotcatchalltheprogramerrors

 Thereisalevelofcorrectnessthatisdeeperthansyntaxanalysis

 Somelanguage featurescannot bemodeledusingcontextfreegrammarformalism

http://en.wikipedia.org/wiki/Type_checking
http://en.wikipedia.org/wiki/Object_binding
http://en.wikipedia.org/wiki/Compile-time
http://en.wikipedia.org/wiki/Run-time

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

- Whetheranidentifierhasbeendeclaredbeforeuse,thisproblemisofidentifyingalanguage

{wαw|wεΣ*}

- Thislanguage isnotcontext free

Aparserhasitsownlimitationsincatchingprogramerrorsrelatedtosemantics,somethingthatis deeper

than syntax analysis. Typical features of semantic analysis cannot be modeled usingcontext free

grammar formalism. If one tries to incorporate those features in the definition of alanguage

thenthatlanguage doesn'tremaincontextfreeanymore.

Example:instr

ingx;inty;

y=x+3

 theuseofxisatypeerrorinta,

b;

a=b+ccisnot declared

An identifier may refer to differentvariables in differentparts of the program . An identifiermay

be usable in one part of the program but not another These are a couple of examples whichtell us

that typically what a compiler has to do beyond syntax analysis. The third point can

beexplainedlike this:An identifier x can be declaredin twoseparate functions in the program,once

of the type int and then of the type char. Hence the same identifier will have to be bound tothese

two different properties in the two different contexts. The fourth point can be explained inthis

manner: A variable declared within one function cannot be used within the scope of

thedefinitionoftheotherfunctionunlessdeclaredthereseparately.Thisisjustanexample.Probably you

can think of many more examples in which a variable declared in one scope cannotbe

usedinanotherscope.

ABSTRACTSYNTAXTREE:Isnothingbutthecondensedformofaparsetree,Itis

Usefulforrepresentinglanguageconstructssonaturally.

TheproductionS ifBthens1else s2mayappearas

In the next few slides we will see how abstract syntax trees can be constructed from

syntaxdirected definitions. Abstract syntax trees are condensed form of parse trees. Normally

operatorsand keywords appear as leaves but in an abstract syntax tree they are associated with

the interiornodes that would be the parent of those leaves in the parse tree. This is clearly

indicated by theexamplesintheseslides.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Chainofsingleproductionsmaybecollapsed,and operatorsmovetotheparentnodes

Chainofsingleproductionsarecollapsedintoonenodewiththeoperatorsmovingupto becomethe

node.

CONSTRUCTINGABSTRACTSYNTAXTREEFOREXPRESSIONS:

Inconstructing theSyntaxTree,wefollowtheconventionthat:

.Eachnodeofthetreecanberepresented asarecordconsisting

ofatleasttwofieldstostoreoperatorsandoperands.

.operators: onefieldforoperator,remainingfieldsptrstooperands mknode(op,left,right)

.identifier:onefieldwithlabelidandanotherptrtosymboltablemkleaf(id,id.entry)

.number:onefieldwithlabelnumandanothertokeepthevalueofthenumbermkleaf(num,val)

Each node in an abstract syntax tree can be implemented as a record with several fields. In

thenode for an operator one field identifies the operator (called the label of the node) and

theremaining contain pointers to the nodes for operands. Nodes of an abstract syntax tree may

haveadditional fields to hold values (or pointers to values) of attributes attached to the node.

Thefunctions given in the slide are used to create the nodes of abstract syntax trees for

expressions.Eachfunctionreturns apointertoanewlycreatednote.

ForExample:thefollowings

equence offunction

callscreatesaparsetr

eeforw=a-4+c

P 1 = mkleaf(id,

entry.a)P2=mkleaf(num

,4)

P 3 = mknode(-, P 1 , P 2

)P4 =mkleaf(id,entry.c)

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

P5=mknode(+,P3,P4)

An example showing the formation of an abstract syntax tree by the given function calls for

theexpression a-4+c.The call sequence can be defined based on its postfix form, which is

explainedblow.

A- Write the postfix equivalent of the expression for which we want to construct a syntax

treeForabovestringw=a-4+c,itisa4-c+

B-Callthefunctionsinthesequence,asdefinedbythesequenceinthepostfixexpressionwhichresults

inthedesiredtree.Inthecaseabove, callmkleaf()fora, mkleaf()for 4,mknode()for

-,mkleaf()forc,andmknode()for+atlast.

1. P1=mkleaf(id, a.entry):Aleafnodemadefortheidentifiera, andanentryforais madeinthe

symboltable.

2. P2=mkleaf(num,4) :Aleafnodemadeforthenumber 4, andentryfor itsvalue.

3. P3=mknode(-,P1,P2):Aninternalnodeforthe-,takesthepointertopreviouslymadenodesP1,P2as

argumentsandrepresents the expressiona-4.

4. P4=mkleaf(id, c.entry) :Aleaf

nodemadefortheidentifierc,andanentryforc.entrymadeinthesymboltable.

5. P5 = mknode(+,P3,P4) : An internal node for the + , takes the pointer to previously

madenodesP3,P4as arguments andrepresentstheexpressiona-4+c.

Followingisthesyntaxdirecteddefinitionforconstructingsyntaxtreeabove

E E 1+T E.ptr= mknode(+,E1.ptr,T.ptr)

E T E.ptr=T.ptr

T T 1*F T.ptr:=mknode(*,T1.ptr,F.ptr)

T F T.ptr:=F.ptr

F (E) F.ptr :=E.ptr

F id F.ptr:=mkleaf(id,id.entry)

F num F.ptr:=mkleaf(num,val)

Nowwehavethesyntaxdirected definitionstoconstruct

theparsetreeforagivengrammar.Alltherulesmentionedinslide 29 aretakencareofandanabstract

syntaxtree isformed.

ATTRIBUTEGRAMMARS:ACFGG=(V,T,P,S), iscalledanAttributedGrammariff,where in

G, each grammar symbol XƐ VUT, has an associated set of attributes, and eachproduction,pƐP,

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

isassociatedwithasetofattributeevaluationrulescalledSemanticActions.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

InanAG,thevaluesofattributesataparsetreenodearecomputed bysemanticrules.Therearetwo

different specifications of AGs used by the Semantic Analyzer in evaluating the

semanticsoftheprogramconstructs.Theyare,

- Syntaxdirected definition(SDD)s

o Highlevelspecifications

o Hidesimplementationdetails

o Explicitorderofevaluationisnotspecified

- SyntaxdirectedTranslationschemes(SDT)s

Nothing but an SDD, which indicates order in which semantic rules are to

beevaluatedand

Allowsomeimplementationdetailstobeshown.

An attribute grammar is the formal expression of the syntax-derived semantic

checksassociated with a grammar. It represents the rules of a language not explicitly imparted by

thesyntax. In a practical way, it defines the information that is needed in the abstract syntax tree

inorder to successfully perform semantic analysis. This information is stored as attributes of

thenodesofthe abstractsyntaxtree.The valuesofthose attributesarecalculatedbysemantic rule.

Therearetwowaysforwritingattributes:

1) SyntaxDirectedDefinition(SDD):Isacontextfreegrammarinwhichasetofsemanticactionsa

reembedded(associated)witheachproductionofG.

It is a high level specification in which implementation details are hidden, e.g., S.sys

=A.sys+B.sys;

/*doesnotgiveany implementation details.Itjusttellsus.Thiskindof attributeequation we

will be using, Details like at what point of time is it evaluated and in what mannerare

hiddenfromtheprogrammer.*/

E E1+T {E.val=E1.val+ E2.val}

E T {E.val=T.val}

T T 1*F {T.val=T1.val+F.val)

T F {T.val= F.val}

F (E) {F.val= E.val}

F id {F.val=id.lexval}

F num { F.val= num.lexval}

2) Syntax directed Translation(SDT) scheme: Sometimes we want to control the way

theattributes are evaluated, the order and place where they are evaluated. This is of a slightly

lowerlevel.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

AnSDT isanSDDinwhichsemantic actions canbe placedatanypositioninthe bodyoftheproduction.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Forexample, followingSDTprintstheprefixequivalentofanarithmeticexpressionconsistinga

+and * operators.

L En{printf(„E.val‟)}

E {printf(„+‟)}E1+TE

 T

T {printf(„*‟)}T1*FT

 F

F (E)

F {printf(„id.lexval‟)}id

F {printf(„num.lexval‟)}num

Thisaction inanSDT,isexecuted

assoonasitsnodeintheparsetreeisvisitedinapreordertraversalofthetree.

ConceptuallyboththeSDD and SDTschemeswill:

Parseinputtokenstream

Buildparsetree

Traverse the parse tree to evaluate the semantic rules at the parse tree

nodesEvaluationmay:

Generatecode

Saveinformation inthesymboltable

Issueerrormessages

Performanyotheractivity

To avoidrepeatedtraversalofthe parse tree,actionsare takensimultaneouslywhena

tokenisfound.Socalculationofattributesgoesalongwiththe constructionofthe parse tree.

Along with the evaluation of the semantic rules the compiler may simultaneously generate

code,save the information in the symbol table, and/or issue error messages etc. at the same time

whilebuildingtheparsetree.

Thissavesmultiplepassesoftheparsetree.Exa

mple

Number sign

listsign +|-

list list bit |bit

bit 0|1

BuildattributegrammarthatannotatesNumberwiththevalueitrepresents

.Associateattributeswithgrammarsymbols

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

symbol attributes

Number value

sign negative

list position,value

bit position,value

productionAttributerulenumber sign

listlist.position 0

ifsign.negative

thennumber.value -

list.valueelsenumber.value

 list.value

sign +sign.negative false sign -sign.negative truelist

 bitbit.position list.position

list.value

 bit.valuelist0

 list1bit

list1.position

 list0.position+1bit.

position list0.position

list0.value list1.value+bit.value

bit 0bit.value 0bit 1bit.value 2bit.position

Explanationofattributerules

Num->signlist /*since lististherightmostsoitisassignedposition0

*Signdetermineswhether thevalueofthenumber wouldbe

sameorthe negative ofthevalue oflist/

Sign->+|- /*SettheBooleanattribute(negative)forsign*/

List->bit /*bit positionisthesameaslistpositionbecausethisbitistherightmost

*value of the list is same as

bit.*/List0->List1 bit

 /*positionandvaluecalculations*/B

it ->0|1 /*setthecorrespondingvalue*/

AttributesofRHScanbe computed fromattributesofLHSandvice versa.

TheParseTreeandtheDependencegraphareasunder

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

.

Dependence graph shows the dependence of attributes on other attributes, along with

thesyntax tree. Top down traversal is followed by a bottom up traversal to resolve the

dependencies.Number,valandnegare synthesizedattributes.Posisan inheritedattribute.

Attributes:.Attributesfallintotwoclassesnamelysynthesizedattributesandinheritedattributes.

Value of a synthesized attribute is computed from the values of its children nodes.Value

ofaninheritedattributeis computedfromthe siblingandparentnodes.

The attributes are divided into two groups, called synthesized attributes and

inheritedattributes. The synthesized attributes are the result of the attribute evaluation rules also

using thevalues of the inherited attributes. The values of the inherited attributes are inherited

from parentnodesandsiblings.

EachgrammarproductionA ahasassociatedwithitasetofsemanticrulesoftheformb=f(c1,

c2, ..., ck) ,Wheref isafunction,andeither,bisasynthesizedattributeofAOr

- b isaninherited attributeofoneofthegrammarsymbolsontheright

.attribute bdepends onattributesc1,c2,...,ck

Dependence relation tells us what attributes we need to know before hand to calculate

aparticularattribute.

Here the value of the attribute b depends on the values of the attributes c1 to ck . If c1 to

ckbelong to the children nodes and b to A then b will be called a synthesized attribute. And if

bbelongs to one among a (child nodes) then it is an inherited attribute of one of the

grammarsymbolsontheright.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

SynthesizedAttributes:Asyntaxdirecteddefinitionthatusesonlysynthesizedattributesissaidt

obeanS-attributeddefinition

.Aparsetreefor anS-attributeddefinitioncanbeannotatedbyevaluatingsemanticrulesforattributes

S-attributed grammars are a class of attribute grammars, comparable with L-attributed

grammarsbut characterized by having no inherited attributes at all. Inherited attributes, which

must bepassed down from parent nodes to children nodes of the abstract syntax tree during the

semanticanalysis,poseaproblemforbottom-upparsingbecauseinbottom-

upparsing,theparentnodesof the abstract syntax tree are createdafter creation of all of their

children.Attribute evaluationin S-attributed grammars can be incorporated conveniently in both

top-down parsing and bottom-upparsing.

SyntaxDirectedDefinitions foradeskcalculatorprogram

L En Print(E.val)

E E+T E.val=E.val+T.val

E T E.val=T.val

T T*F T.val=T.val*F.val

T F T.val=F.val

F (E) F.val=E.val

F digit F.val=digit.lexval

.terminalsareassumedtohaveonlysynthesized attributevaluesofwhicharesuppliedbylexicalanalyzer

. startsymboldoesnothaveanyinheritedattribute

Thisisagrammarwhichusesonlysynthesizedattributes. Startsymbolhasnoparents,

hencenoinheritedattributes.

Parse tree for3*4+ 5n

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Usingthepreviousattributegrammar calculationshavebeenworkedoutherefor

3*4+5n.Bottomupparsinghasbeendone.

InheritedAttributes:Aninheritedattributeisonewhosevalueisdefinedintermsofattributesatt

heparentand/orsiblings

. Usedforfindingoutthecontextinwhichitappears

. possibletouseonlyS-attributesbutmorenaturaltouseinheritedattributesD

 TL L.in=T.type

T real T.type=real

T int T.type=int

L L1,id L1.in=L.in;addtype(id.entry,L.in)

L id addtype(id.entry,L.in)

Inheritedattributeshelptofindthecontext(type,scopeetc.)ofatokene.g.,thetypeofatokenor scope

when the same variable name is used multiple times in a program in different functions.An

inherited attribute system may be replaced by an S -attribute system but it is more natural

touseinheritedattributesinsome caseslike the example givenabove.

Hereaddtype(a,b)functionsaddsasymboltableentryfortheid aand attachesto it thetypeofb

.

Parsetreefor realx,y,z

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Dependence of attributes in an inherited attribute system. The value of in (an inherited

attribute)at the three L nodes gives the type of the three identifiers x , y and z . These are

determined bycomputing the value of the attribute T.type at the left child of the root and then

valuating L.in

topdownatthethreeLnodesintherightsubtreeoftheroot.AteachLnodetheprocedureaddtypeis called

which inserts the type of the identifier to its entry in the symbol table. The figure

alsoshowsthedependencegraphwhichisintroducedlater.

Dependence Graph:.Ifanattribute bdependsonanattributecthenthe semantic

ruleforbmustbeevaluatedafterthe semanticruleforc

.Thedependenciesamongthenodescanbedepicted byadirected graphcalleddependencygraph

DependencyGraph :Directedgraphindicating

interdependenciesamongthesynthesizedandinheritedattributes ofvariousnodesinaparse tree.

Algorithmtoconstructdependencygraphfo

reachnodeninthe parsetree do

foreachattributeaofthegrammarsymboldocons

tructanode inthe dependencygraph

fora

for each nodenintheparsetreedo

foreachsemantic ruleb=f(c1,c2,...,ck)do

{ associatedwithproductionatn}

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

fori= 1tokdo

Constructanedgefromcitob

Analgorithm toconstructthedependency graph.Aftermakingonenodeforeveryattribute of

all the nodes of the parse tree, make one edge from each of the other attributes

onwhichitdepends.

Forexample,

The semantic rule A.a = f(X.x , Y.y) for the production A -> XY defines the

synthesizedattribute a of A to be dependent on the attribute x of X and the attribute y of Y . Thus

thedependency graph will contain an edge from X.x to A.a and Y.y to A.a accounting for the

twodependencies. Similarly for the semantic rule X.x = g(A.a , Y.y) for the same production

therewillbeanedgefromA.atoX.xandanedgefromY.ytoX.x.

Example

.Wheneverfollowingproductionisused inaparsetreeE

 E1+E2 E.val=E1.val+E2.val

wecreate adependencygraph

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

The synthesized attribute E.val depends on E1.val and E2.val hence the two edges

oneeachfromE1.val&E2.val

Forexample,thedependencygraphforthestingrealid1,id2,id3

.Putadummysynthesized attributeb for asemanticrulethatconsistsofaprocedurecall

The figure shows the dependency graph for the statement real id1, id2, id3 along with

theparse tree. Procedure calls can be thought of as rules defining the values of dummy

synthesizedattributes of the nonterminal on the left side of the associated production. Blue arrows

constitutethedependency graphandblacklines,theparsetree.Eachof

thesemanticrulesaddtype(id.entry,L.in)associated withtheLproductionsleadsto

thecreationofthedummyattribute.

Evaluation Order:

Anytopologicalsortofdependencygraphgivesavalidorderinwhichsemanticrulesmustbeevaluate

d

a4 =

reala5=a

4

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

addtype(id3.entry,

a5)a7=a5addtype(id2.

entry,a7)

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

a9:=a7addtype(id1.entry,a9)

A topological sort of a directed acyclic graph is any ordering m1, m2, m3mk of

thenodes of the graph such that edges go from nodes earlierin the ordering to later nodes. Thus

ifmi ->mj is an edge from mi to mj then mi appears before mj in the ordering. The order of

thestatements shown in the slideis obtainedfrom the topological sort of the dependency graph

inthe previous slide.'an' stands for the attribute associated with the node numbered n in

thedependencygraph.Thenumberingis asshowninthepreviousslide.

AbstractSyntaxTreeisthe condensedformoftheparsetree,whichis

.Usefulforrepresenting languageconstructs.

.Theproduction:S ifBthens1elses2mayappearas

In the next few slides we will see how abstract syntax trees can be constructed

fromsyntax directed definitions. Abstract syntax trees are condensed form of parse trees.

Normallyoperators and keywords appear as leaves but in an abstract syntax tree they are

associated withthe interior nodes that would be the parent of those leaves in the parse tree. This is

clearlyindicatedbytheexamplesintheseslides.

.Chainofsingleproductionsmaybecollapsed,andoperatorsmovetotheparentnodes

Chainofsingleproductionarecollapsedintoonenodewiththeoperatorsmovingupto becomethe node.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

ForConstructingtheAbstractSyntaxtreeforexpressions,

.Eachnode canbe representedasa record

.operators:onefieldforoperator,remainingfieldsptrstooperandsmknode(op,left,right)

.identifier:onefieldwith labelidandanother ptrtosymboltablemkleaf(id,entry)

.number:onefield with labelnumand anothertokeep the

valueofthenumbermkleaf(num,val)

Each node in an abstractsyntax tree can be implemented as a record with several fields.In

the node for an operator one field identifies the operator (called the label of the node) and

theremaining contain pointers to the nodes for operands. Nodes of an abstract syntax tree may

haveadditional fields to hold values (or pointers to values) of attributes attached to the node.

Thefunctions given in the slide are used to create the nodes of abstract syntax trees for

expressions.Eachfunctionreturns apointertoanewlycreated note.

Example:Thefollowings

equence of

functioncallscreatesapa

rsetree fora-4+ c

P 1 = mkleaf(id,

entry.a)P2=mkleaf(num

,4)

P 3 = mknode(-, P 1 , P 2

)P4 =mkleaf(id,entry.c)

P5=mknode(+,P3,P4)

Anexampleshowing theformationofanabstract syntaxtreebythegiven functioncallsfortheexpressiona-

4+c.Thecallsequence canbeexplainedas:

1. P1=mkleaf(id,entry.a):AleafnodemadefortheidentifierQaRand anentryfor

QaRismadeinthesymboltable.

2. P2=mkleaf(num,4):AleafnodemadeforthenumberQ4R.

3. P3 =mknode(-,P1,P2):AninternalnodefortheQ-

Q.ItakesthepreviouslymadenodesasargumentsandrepresentstheexpressionQa-4R.

4. P4=mkleaf(id,entry.c):AleafnodemadefortheidentifierQcRandanentryfor

QcRismadeinthesymboltable.

5. P5=mknode(+,P3,P4):An

internalnodefortheQ+Q.Itakesthepreviouslymadenodesasargumentsandrepresentstheexpression

Qa-4+cR.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Asyntaxdirecteddefinitionforconstructingsyntaxtree

E E 1+T E.ptr=mknode(+,E1.ptr,T.ptr)

E T E.ptr=T.ptr

T T 1*F T.ptr:= mknode(*,T1.ptr,F.ptr)

T F T.ptr:=F.ptr

F (E) F.ptr :=E.ptr

F id F.ptr:=mkleaf(id,entry.id)

F num F.ptr:=mkleaf(num,val)

Nowwehavethesyntaxdirected definitionstoconstruct

theparsetreeforagivengrammar.Alltherulesmentionedinslide 29 aretakencareofandanabstract

syntaxtree isformed.

Translationschemes: ACFGwheresemanticactionsoccur

withintherighthandsideofproduction,Atranslationschemetomapinfixtopostfix.

E TR

addop T { print(addop)} R |

eT num{print(num)}

Parse tree for9-5+2

We assume that the actions are terminal symbols and Perform depth first order traversal to

obtain95-2+.

Whendesigningtranslationscheme,ensureattributevalueisavailablewhenreferredto

Incaseofsynthesizedattributeitistrivial(why?)

In a translation scheme, as we are dealing with implementation, we have to

explicitlyworry about the order of traversal. We can now put in between the rules some actions

as part ofthe RHS. We put this rules in order to control the order of traversals. In the given

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

example, wehave twoterminals(numandaddop).Itcangenerallybe seenasa

numberfollowedbyR(which

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

necessarily has to begin with an addop). The given grammar is in infix notation and we need

toconvert it into postfix notation. If we ignore all the actions, the parse tree is in black, without

thered edges. If we include the red edges we get a parse tree with actions. The actions are so

fartreated as a terminal. Now, if we do a depth first traversal, and whenever we encounter a

actionwe execute it, we get a post-fix notation. In translation scheme, we have to take care of

theevaluation order; otherwise some of the parts may beleftundefined.For

differentactions,differentresultwill be obtained.Actions aresomething we write and wehave to

control it.Please note that translation scheme is different from a syntax driven definition.In the

latter, wedo not have any evaluation order; in this case we have an explicit evaluation order. By

explicitevaluation order we have to set correct action at correct places, in order to get the desired

output.Place of each action is very important. We have to find appropriate places, and that is

thattranslation scheme is all about. If we talk of only synthesized attribute, the translation scheme

isvery trivial. This is because, when we reach we know that all the children must have

beenevaluated and all their attributes must have also been dealt with. This is because finding the

placeforevaluationis verysimple,itistherightmostplace.

Incaseofbothinheritedand synthesizedattributes

. An inherited attribute for a symbol on rhs of a production must be computed in an action

beforethatsymbol

SA1A 2{A1.in=1,A2.in=2}

A a {print(A.in)}

Depthfirstordertraversalgiveserrorundefined

. Asynthesizedattributefor nonterminalonthelhscanbecomputedafter

allattributesitreferences,havebeencomputed.Theactionnormallyshouldbeplaced at theend ofrhs

We have a problem when we have both synthesized as well as inherited attributes. For the

givenexample, if we place the actions as shown, we cannot evaluate it. This is because, when

doing adepth first traversal, we cannot print anything for A1. This is because A1 has not yet

beeninitialized. We, therefore have to find the correct places for the actions. This can be that

theinherited attribute of A mustbe calculated on its left. This can beseen logically from

thedefinition of L-attribute definition, which says that when we reach a node, then everything on

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

itsleftmusthavebeencomputed.Ifwedo this,wewillalwayshavetheattributeevaluatedat the

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

correctplace.

Forsuchspecificcases(likethegivenexample)calculatinganywhereontheleftwillwork,butgenerallyit

mustbe calculatedimmediatelyattheleft.

Example:TranslationschemeforEQN

S B

 B.pts=

10S.ht=B.

ht

B B1B2 B1.pts =

B.ptsB2.pts=B.

pts

B.ht=max(B1.ht,B2.ht)

B B1subB2 B1.pts=B.pts;

B 2.pts =

shrink(B.pts)B.ht

=disp(B1.ht,B2.ht)

B text B.ht=text.h*B.pts

We now look at another example. This is the grammar for finding out how do I compose

text.EQN was equation setting system which was used as an early type setting system for UNIX.

Itwas earlier used as an latex equivalent for equations. We say that start symbol is a block: S -

>BWecanalsohaveasubscriptandsuperscript.Here,welookatsubscript.ABlockiscomposedof several

blocks: B -> B1B2 and B2 is a subscript of B1. We have to determine what is the pointsize

(inherited) and height Size (synthesized). We have the relevant function for height and pointsize

givenalongside.Afterputtingactionsinthe rightplace

We have put all the actions at the correct places as per the rules stated. Read it from left to

right,and top to bottom. We note that all inherited attribute are calculated on the left of B

symbols andsynthesizedattributes areontheright.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

TopdownTranslation:UsepredictiveparsingtoimplementL-attributeddefinitions

EE 1+TE.val:= E1.val+T.val

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

EE 1-T E.val:= E1.val-T.val

E T E.val:= T.val

T (E) T.val:= E.val

T num T.val:=num.lexval

We now come to implementation. We decide how we use parse tree and L-

attributedefinitions to construct the parse tree with a one-to-one correspondence. We first look at

the top-downtranslationscheme.Thefirstmajorproblemisleftrecursion.Ifweremoveleftrecursionby

our standard mechanism, we introduce new symbols, and new symbols will not work with

theexistingactions.Also,we have todothe parsingina singlepass.

TYPESYSTEM ANDTYPECHECKING:

.Ifboththe operandsofarithmeticoperators+,-,xareintegers thenthe resultis oftypeinteger

.Theresultofunary&operatorisapointertotheobjectreferred tobytheoperand.

- Ifthe type ofoperandisXthentype ofresultispointertoX

InPascal, typesareclassifiedunder:

1. Basictypes:Theseareatomictypeswithnointernalstructure.Theyincludethetypesboolean,characte

r,integerandreal.

2. Sub-rangetypes:Asub-rangetypedefinesarangeofvalueswithin

therangeofanothertype.Forexample,typeA=1..10;B=100..1000;U ='A'..'Z';

3. Enumerated types: An enumerated type is defined by listing all of the possible values for

thetype. For example: type Colour = (Red, Yellow, Green); Country = (NZ, Aus, SL, WI, Pak,

Ind,SA,Ken,Zim,Eng);Boththe sub-rangeandenumeratedtypescanbetreated asbasictypes.

4. Constructed types: A constructed type is constructed from basic types and other basic

types.Examples of constructed types are arrays, records and sets. Additionally, pointers and

functionscanalsobetreatedas constructedtypes.

TYPEEXPRESSION:

Itisanexpressionthatdenotesthetypeofanexpression.Thetypeofalanguageconstruct

isdenotedbyatypeexpression

It is either a basic type or it is formed by applying operators called type constructor

toothertypeexpressions

Atypeconstructorapplied toatypeexpression isatypeexpression

Abasictypeistypeexpression

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

- typeerror:errorduringtypechecking

- void:notypevalue

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

The type of a language construct is denoted by a type expression. A type expression is either

abasictypeorisformedbyapplyinganoperatorcalledatypeconstructortoothertypeexpressions.Formal

ly,a type expressionisrecursivelydefinedas:

1. Abasictypeisatypeexpression.Amongthebasictypesareboolean,char,integer,and real

.A special basic type, type_error, is used to signal an error during type checking.

Anotherspecialbasictypeisvoidwhichdenotes"theabsenceofavalue"andisusedtocheckstatements.

2. Sincetypeexpressionsmaybenamed, atypenameisatypeexpression.

3. Theresultofapplyingatypeconstructortoatypeexpressionisatypeexpression.

4. Typeexpressions maycontainvariableswhosevaluesaretypeexpressionsthemselves.

TYPECONSTRUCTORS:areusedtodefineorconstructthetypeofuser defined

typesbasedontheirdependenttypes.

Arrays:IfTisatypeexpressionand Iisarangeofintegers,thenarray

(I,T)isthetypeexpressiondenotingthetype ofarraywithelementsoftypeTandindexsetI.

Forexample,thePascaldeclaration,

varA:array[1..10]ofinteger;associatesthetypeexpressionarray(1..10,integer)withA.

Products:IfT1 andT2 aretypeexpressions,thentheir CartesianproductT1 XT2isalsoatypeexpression.

Records:Arecordtypeconstructorisappliedtoatupleformedfromfieldnamesandfieldtypes.Forex

ample,the declaration

Consider the

declarationtyperow=rec

ord

addr : integer;

lexeme:array[1..15]ofcharend;

vartable:array[1..10]ofrow;

Thetyperowhastypeexpression:record ((addrxinteger)x(lexemexarray(1 ..15,char)))

and typeexpressionoftableisarray(1 ..10,row)

Note:Includingthefieldnames

inthetypeexpressionallowsustodefineanotherrecordtypewiththesamefieldsbutwithdifferentnam

eswithoutbeingforced to equatethetwo.

Pointers:IfTisatypeexpression,then pointer(T)isatypeexpressiondenoting

thetype"pointertoanobjectoftypeT".

Forexample,inPascal,thedeclaration

varp:row declaresvariableptohavetypepointer(row).

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Functions : Analogous to mathematical functions, functions in programming languages may

bedefined as mapping a domain type D to a range type R. The type of such a function is denoted

bythe type expression D R. For example, the built-in function mod of Pascal has domain type int

Xint,andrangetypeint.Thuswe saymodhasthetype:intxint->int

As another example, according to the Pascal

declarationfunctionf(a,b:char):integer;

Here thetype offisdenotedbythetype expressionischarxcharpointer(integer)

SPECIFICATIONSOFATYPECHECKER:Consideralanguagewhichconsistsofasequence

ofdeclarationsfollowedbya singleexpression

P D ;E

D D;D|id:T

T char|integer|array[num]ofT| ^TE

 literal|num|EmodE|E[E]|E^

A type checker is a translation scheme that synthesizes the type of each expression from

thetypesofitssub-

expressions.Considertheabovegivengrammarthatgeneratesprogramsconsistingofasequence

ofdeclarationsDfollowedbyasingle expressionE.

Specificationsofa typecheckerforthelanguageoftheabovegrammar:Aprogramgeneratedbythis

grammaris

key :

integer;keymo

d1999

Assumptions:

1. Thelanguagehasthreebasictypes:char,intandtype-error

2. Forsimplicity, allarraysstartat1.Forexample, thedeclarationarray[256]ofcharleadstothetype

expressionarray(1..256,char).

RulesforSymbolTableentry

D id:T addtype(id.entry,T.type)

T char T.type=char

T integer T.type=int

T ^T1 T.type=pointer(T1.type)

T array[num]ofT1 T.type=array(1..num, T1.type)

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

TYPECHECKINGOFFUNCTIONS:

ConsidertheSyntaxDirectedDefinition,

E E1(E2)

 E.type=ifE2.t

ype==sandE1.type==s t

thent

elsetype-error

Therulesforthesymboltableentryarespecified above.These arebasicallythewayin whichthe

symboltable entriescorrespondingtotheproductionsaredone.

Typecheckingoffunctions

The production E -> E (E) where an expression is the application of one expression to

anothercan be used to represent the application of a function to an argument. The rule for

checking thetype ofafunctionapplicationis

E->E1(E2){E.type:= ifE2.type== sandE1.type==s->tthentelsetype_error}

This rule says that in an expression formed by applying E1 to E2, the type of E1 must be

afunction s -> t from the type sof E2 to some range type t ; the type of E1 (E2) is t . The

aboverule can be generalized to functions with more than one argument byconstructing a product

typeconsistingofthearguments.Thus narguments oftypeT1,T2

...Tncanbeviewed asasingleargumentofthetypeT1 XT2...XTn.For

example,root:(realreal)Xrealreal

declaresafunctionrootthat takesafunction fromrealsto realsand arealasargumentsandreturnsa

real.The Pascal-like syntaxforthisdeclarationis

functionroot (functionf(real): real;x: real):real

TYPECHECKINGFOREXPRESSIONS:considerthefollowingSDD forexpressions

E literal E.type=char

E num E.type=integer

E id E.type=lookup(id.entry)

E E1modE2 E.type=ifE1.type==integerand

E2.type==integer

theninteger

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

elsetype_error

E E1[E2] E.type=

ifE2.type==integerandE1.type==

array(s,t)

thent

elsetype_error

E E1^

 E.type=ifE1.type==pointer(t)th

ent

elsetype_error

Toperform type checkingof expressions,followingrules are used.Where the synthesizedattribute

type for E gives the type expression assigned by the type system to the expressiongeneratedbyE.

Thefollowingsemanticrulessaythatconstantsrepresentedbythetokensliteralandnumhavetypechar

andinteger ,respectively:

E -> literal { E.type:= char

}E->num{E.type:= integer }

.The functionlookup (e)isused to fetchthetypesavedinthesymbol-tableentrypointedtoby

e.Whenanidentifierappears inanexpression,itsdeclaredtypeis

fetchedandassignedtotheattributetype:

E->id {E.type:=lookup(id.entry)}

. According to the following rule, the expression formed by applying the mod operator to

twosub-expressionsoftypeintegerhastypeinteger;otherwise,itstypeistype_error.

E->E1modE2{E.type:= ifE1.type== integerandE2.type == integerthenintegerelse

type_error}

InanarrayreferenceE1 [E2],theindexexpressionE2 musthavetypeinteger,inwhichcasethe

resultisthe elementtypetobtainedfromthe typearray (s,t)ofE1.

E->E1[E2]{E.type:= ifE2.type== integerandE1.type == array (s,t)thentelse

type_error}

Withinexpressions,thepostfixoperator

yieldstheobjectpointedtobyitsoperand.ThetypeofEisthetypetoftheobjectpointedtobythepointerE:

EE1{E.type:=ifE1.type == pointer(t)thentelsetype_error}

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

TYPE CHECKING OF STATEMENTS: Statements typically do not have values.

Specialbasic type void can be assigned to them. Consider the SDD for the grammar below

whichgeneratesAssignmentstatementsconditional,andloopingstatements.

S id:=E

 S.Type=ifid.type==E.typeth

envoid

elsetype_error

S ifEthenS1 S.Type=ifE.type==boolean

then

S1.typeelsetyp

e_error

S while EdoS1 S.Type=ifE.type==boolean

thenS1.type

elsetype_error

S S1;S2 S.Type=

ifS1.type==voidand

S2.type ==void

thenvoid

elsetype_error

Since statements do not have values, the special basic type void is assigned to them, but if

anerrorisdetectedwithinastatement,thetypeassigned tothe statementistype_error.

The statements considered below are assignment, conditional, and whilestatements. Sequencesof

statements are separated by semi-colons. The productions given below can be combined

withthose given before if we change the production for a complete program to P-> D; S.

Theprogramnowconsistsofdeclarationsfollowedbystatements.

Rules fortypecheckingthestatementsaregivenbelow.

1. Sid:=E{S.type:=if id.type==E.typethenvoidelsetype_error}

Thisrulechecksthattheleftandrightsidesofanassignmentstatementhavethesametype.

2. S ifEthenS1 {S.type:= ifE.type== booleanthenS1.type else type_error}

Thisrulespecifiesthattheexpressionsinanif-thenstatementmusthavethetypeboolean.

3. S while EdoS1{S.type:=ifE.type== booleanthenS1.type elsetype_error}

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Thisrulespecifiesthattheexpressioninawhilestatementmusthavethetypeboolean.

4. SS1;S2{S.type:=ifS1.type==voidandS2.type==voidthenvoidelsetype_error}

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Errors are propagated by this last rule because a sequence of statements has type void only

ifeachsub-statementhas typevoid.

IMPORTANT&EXPECTEDQUESTIONS

1. What do you mean by THREE ADDRESS CODE? Generate the three-address code

forthe followingcode.

begin

dobe

gin

End

PROD: =0;

I:=1;

PROD:=PROD + A[I]

B[I];I:=I+1;

whileI<=20e

nd

2. Writeashort noteonAttributed grammar& Annotated parsetree.

3. Defineanintermediatecodeform.Explainvariousintermediatecodeforms?

4. WhatisSyntaxDirectedTranslation?ConstructSyntaxDirectedTranslationschemetoconve

rta givenarithmetic expressionintothreeaddresscode.

5. WhatareSynthesizedandInheritedattributes?Explainwithexamples?

6. ExplainSDTforSimpleTypechecker?

7. Defineandconstructtriples, quadruplesandindirecttriplenotationsofanexpression:a*

-(b+ c).

ASSIGNMENTQUESTIONS:

1. WriteThreeaddresscodeforthebelowexample

While(i<10)

{

a= b+c*-

d;i++;

}

2. What is a Syntax Directed Definition? Write Syntax Directed definition to convert

binaryvalueintodecimal?

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

SYMBOLTABLE

SymbolTable(ST):Isadatastructure usedbythecompilerto

keeptrackofscopeandbindinginformationaboutnames

- Symboltableischanged everytimeanameisencountered inthesource;

Changes to table occur when ever a new name is discovered; new information about an

existingnameis discovered

As we know the compiler uses a symbol table to keep track of scope and binding

informationabout names. It is filled after the AST is made by walking through the tree,

discovering andassimilating information about the names. There should be two basic operations -

to insert a newname or information into the symbol table as and when discovered and to

efficiently lookup anameinthe symboltable toretrieveitsinformation.

Two commondata structuresusedforthe symboltable organizationare-

1. Linear lists:-Simpletoimplement,Poorperformance.

2. Hash tables:- Greater programming / space overhead, but, Good

performance.Ideallyacompilershouldbeabletogrowthesymboltabledynamically,i.e.,insertnewen

triesorinformationas andwhenneeded.

Butifthesizeofthetableisfixedinadvancethen(anarrayimplementationfor

example),thenthesizemustbebig enough inadvanceto accommodatethelargestpossibleprogram.

Foreachentryindeclarationofa name

- Theformatneednotbeuniformbecauseinformationdependsupontheusageofthename

- Eachentryis a recordconsistingofconsecutivewords

- TokeeprecordsuniformsomeentriesmaybeoutsidethesymboltableInfor

mationisenteredintosymboltableatvarioustimes.Forexample,

- keywordsareenteredinitially,

- identifierlexemesareenteredbythelexicalanalyzer.

. Symboltableentrymaybesetupwhenroleofnamebecomesclear

,attributevaluesarefilledinasinformationis available duringthetranslationprocess.

For each declaration of a name, there is an entry in the symbol table. Different

entriesneed to store different information because of the different contexts in which a name can

occur.An entry corresponding to a particular name can be inserted into the symbol table at

differentstages depending on when the role of the namebecomes clear.The various attributes

thatanentry in the symbol table can have are lexeme, type of name, size of storage and in case

offunctions -theparameterlistetc.

Anamemaydenote severalobjectsinthesame block

- intx;structx{floaty,z;}

The lexical analyzer returns the name itself and not pointer to symbol table entry. A record in

thesymbol table is created when role of the name becomes clear. In this case two symbol

tableentriesarecreated.

Aattributesofa nameareentered inresponse to declarations

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Labelsareoften identifiedbycolon

The syntax of procedure / function specifies that certain identifiers are formals, characters in

aname.Thereisa distinctionbetweentoken id,lexemeandattributesofthenames.

Itisdifficulttoworkwithlexemes

ifthereismodestupperboundonlengththen lexemescan be storedinsymboltable

iflimitis largestorelexemesseparately

There might be multiple entries in the symbol table for the same name, all of them

havingdifferent roles. It is quite intuitive that the symbol table entries have to be made only when

therole of a particular name becomes clear. The lexical analyzer therefore just returns the name

andnotthesymboltableentryasitcannotdeterminethecontextofthatname.Attributescorresponding to

the symbol table are entered for a name in response to the correspondingdeclaration. There has to

be an upper limit for the length of the lexemes for them to be stored inthe symboltable.

STORAGEALLOCATIONINFORMATION:Informationaboutstoragelocationsiskeptinthe

symboltable.

Iftargetcodeisassemblycode,thenassemblercantakecareofstorage

forvariousnamesandthecompilerneedstogeneratedata definitionstobe appended

toassemblycode

If target code is machine code, then compiler does the allocation. No storage allocation is

donefornames whose storageis allocatedatruntime

Information about the storage locations that will be bound to names at run time is kept

inthesymbol table.If thetargetis assembly code, theassemblercan takecare of storageforvarious

names. All the compiler has to do is to scan the symbol table, after generating assemblycode, and

generate assembly language data definitions to be appended to the assembly languageprogram

for each name. If machine code is to be generated by the compiler, then the position ofeach data

object relative to a fixed origin must be ascertained. The compiler has to do theallocation in this

case. In the case of names whose storage is allocated on a stack or heap, thecompiler

doesnotallocatestorageat all,itplansouttheactivationrecord for eachprocedure.

STORAGEORGANIZATION:

 Theruntimestoragemightbesu

bdividedinto:

Targetcode,

Dataobjects,

Stackto keeptrackofprocedure activation,and

Heapto keep allotherinformation

This kind of organization of run-time storage is used for languages such

asFortran, Pascal and C. The size of the generated target code, as well as that

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

ofsomeofthedataobjects,isknownatcompiletime.Thus,these canbe stored

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

instaticallydeterminedareas inthememory.

STORAGEALLOCATIONPROCEDURECALLS:PascalandCusethe

stack for procedure activations. Whenever a procedure is called, execution

ofactivationgetsinterrupted,andinformationaboutthemachinestate(likeregisterva

lues)is storedonthestack.

When the called procedure returns, the interrupted activation can be restarted after restoring

thesaved machine state. The heap may be used to store dynamically allocated data objects, and

alsoother stuff such as activation information (in the case of languages where an activation

treecannot be used to represent lifetimes). Both the stack and the heap change in size during

programexecution,sothey cannotbe allocated a fixedamountof space.Generally they

startfromopposite ends of the memory and can grow as required, towards each other, until the

spaceavailablehasfilledup.

ACTIVATION RECORD: An Activation Record is a data structure that is activated/

createdwhen a procedure / function are invoked and it contains the following information about

thefunction.

Temporaries:usedinexpressionevaluation

Localdata:fieldforlocaldata

Saved machinestatus:holdsinfo aboutmachinestatus

beforeprocedurecall

Accesslink : to accessnon localdata

Controllink :pointsto activationrecordofcaller

Actualparameters: field toholdactualparameters

Returnedvalue:fieldforholdingvaluetobereturned

The activation record is used to store the information required by

asingle procedure call. Not all the fields shown in the figure may

beneeded for all languages. The record structure can be modified as

perthe language/compilerrequirements.

For Pascal and C, the activation record is generally stored on the run-

timestack during theperiodwhentheprocedureisexecuting.

Of the fields shown in the figure, access link and control link are optional (e.g.

FORTRANdoesn't need access links). Also, actual parameters and return values are often stored

in registersinsteadoftheactivationrecord,forgreaterefficiency.

 The activation record for a procedure call is generated by the compiler. Generally,

allfieldsizescanbe determinedatcompiletime.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

However, this is not possible in the case of a procedure which has a local array whose

sizedepends on a parameter. The strategies used for storage allocation in such cases will be

discussedinforthcominglines.

STORAGEALLOCATIONSTRATEGIES:ThestorageisallocatedbasicallyinthefollowingTHR

EEways,

Staticallocation:laysoutstorageatcompiletimeforalldataobjects

Stackallocation:managestheruntimestorageasastack

Heapallocation:allocatesand de-allocatesstorageasneededat runtimefromheap

These represent the different storage-allocation strategies used in the distinct parts of

therun-time memory organization (as shown in slide 8). We will now look at the possibility of

usingthese strategies to allocate memory foractivation records. Differentlanguages use

differentstrategiesforthispurpose.Forexample,oldFORTRANusedstaticallocation,Algol

typelanguagesuse stack allocation,and LISPtypelanguagesuse heap allocation.

STATIC ALLOCATION: In this approach memory is allocated statically. So,Names are

boundtostorageastheprogramis compiled

Noruntimesupportisrequired

Bindingsdonot changeatruntime

Oneveryinvocationofprocedure namesareboundtothe samestorage

Valuesoflocalnamesare retained acrossactivationsofaprocedure

These are the fundamental characteristics of static allocation. Since name binding occurs

duringcompilation, there is no need for a run-time support package. The retention of local name

valuesacross procedure activations means that when control returns to a procedure, the values of

thelocals are the same as they were when control lastleft. For example, suppose we had

thefollowingcode,writteninalanguageusingstaticallocation:

functionF()

{

inta;pri

nt(a);a=

10;

}

After calling F() once,if itwas called a second time,the value of a wouldinitially be 10,andthisis

whatwouldgetprinted.

The type of a name determines its storage requirement. The address for this storage is an

offsetfrom the procedure's activation record, and the compilerpositions the records relative to

thetargetcodeandtooneanother(onsomecomputers,itmaybepossibletoleavethisrelative

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

position unspecified, and let the link editor link the activation records to the executable

code).After this position has been decided, the addresses of the activation records, and hence of

thestorage for each name in the records, are fixed. Thus, at compile time, the addresses at which

thetarget code can find the data it operates upon can be filled in. The addresses at which

informationis to be saved when a procedure call takes place are also known at compile time.

Static allocationdoeshavesomelimitations.

- Sizeofdataobjects,aswellasanyconstraintsontheir

positionsinmemory,mustbeavailable atcompiletime.

- Norecursion, becauseallactivationsofagivenprocedureusethesamebindingsforlocalnames.

- Nodynamicdatastructures,sincenomechanismisprovidedforruntimestorageallocation.

STACK ALLOCATION: Figure shows the activation records that are pushed onto and

poppedfortheruntime stackas the controlflowsthroughthe givenactivationtree.

First the procedure is activated. Procedure readarray 's activation is pushed onto the stack,

whenthe control reaches thefirstlinein the procedure sort.After the control returnsfrom

theactivation of the readarray , its activation is popped. In the activation of sort , the control

thenreaches a call of qsort with actuals 1 and 9 and an activation of qsort is pushed onto the top

of thestack. In the last stage the activations for partition (1,3) and qsort (1,0) have begun and

endedduring the life time of qsort (1,3), so their activation records have come and gone from the

stack,leavingtheactivationrecordforqsort(1,3)ontop.

CALLINGSEQUENCES:Acallsequenceallocatesanactivationrecordandentersinformation into

its field. A return sequence restores the state of the machine so that

callingprocedurecancontinueexecution.

Calling sequence and activation records differ, even for the same language. The code in

thecallingsequenceisoftendividedbetweenthe callingprocedureandtheprocedureitcalls.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Thereisnoexactdivisionofruntimetasksbetweenthecallerandth

ecolleen.

Asshownin thefigure,theregisterstack

toppointstotheendofthemachine status fieldinthe

activationrecord.

Thispositionisknowntothecaller,soitcanbemaderesponsible for

setting up stack top before control flows to

thecalledprocedure.

The code for the Callee can access its temporaries and

thelocaldatausingoffsetsfromstacktop.

CallSequence:Inacallsequence,followingsequenceofoperationsisperformed.

Callerevaluatesthe actualparameters

Callerstoresreturnaddressandother values(controllink)intocallee‘sactivationrecord

Calleesavesregister valuesandother statusinformation

Calleeinitializes its localdataandbeginsexecution

Thefieldswhosesizesarefixedearlyareplacedinthemiddle.Thedecisionofwhetheror not to

use the control and access links is part of the design of the compiler, so these fields canbe fixed

at compiler construction time. If exactly the same amount of machine-status

informationissavedforeachactivation,thenthesamecodecandothesavingandrestoringforallactivatio

ns. The size of temporaries may not be known to the front end. Temporaries needed bythe

procedure may be reduced by careful code generation or optimization. This field is

shownafterthatforthelocaldata.Thecallerusuallyevaluatestheparametersandcommunicatesthemto

the activation record of the callee. In the runtime stack, the activation record of the callerisjust

below that for the callee. The fields for parameters and a potential return value are placednext to

the activation record of the caller. The caller can then access these fields using offsetsfrom the

end of its own activation record. In particular, there is no reason for the caller to

knowaboutthelocaldataortemporariesofthecallee.

ReturnSequence:Inareturnsequence,followingsequenceofoperationsareperformed.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Calleeplacesareturnvaluenext toactivationrecordofcaller

Restoresregistersusinginformation instatusfield

Branchtoreturnaddress

Callercopiesreturnvalueintoitsownactivationrecord

As described earlier, in the runtime stack, the activation record of the caller is just

belowthat for the callee. The fields for parameters and a potential return value are placed next to

theactivationrecordofthecaller.Thecallercanthenaccessthesefieldsusingoffsetsfromtheendof its

own activation record. The caller copies the return value into its own activation record.

Inparticular, there is no reason for the caller to know about the local data or temporaries of

thecallee. The given calling sequence allows the number of arguments of the called procedure

todepend on the call. At compile time, the target code of the caller knows the number of

argumentsit is supplying to the callee. The caller knows the size of the parameter field. The target

code ofthe called must be prepared to handle other calls as well, so it waits until it is called,

thenexamines the parameter field. Information describing the parameters must be placed next to

thestatusfieldsothe calleecanfindit.

LongLengthData:

The procedure P has three local arrays. The storage for these arrays is not part of

theactivation record for P; only a pointer to the beginning of each array appears in the

activationrecord. The relative addresses of these pointers are known at the compile time, so the

target codecan access array elements through the pointers. Also shown is the procedure Q called

by P . Theactivation record for Q begins after the arrays of P. Access to data on the stack is

through twopointers,topandstacktop.Thefirstofthesemarkstheactualtopofthe stack;itpointstothe

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

position at which the next activation record begins. The second is used to find the local data.

Forconsistency with the organization of the figure in slide 16, suppose the stack top points to the

endof the machine status field. In this figure the stack top points to the end of this field in

theactivation record for Q. Within the field is a control link to the previous value of stack top

whencontrol wasin callingactivation of P. Thecodethatrepositions top andstack topcan

begenerated at compile time, using the sizes of the fields in the activation record. When q

returns,the new value of top is stack top minus the length of the machine status and the parameter

fieldsin Q's activation record. This length is known at the compile time, at least to the caller.

Afteradjustingtop,thenew value ofstacktopcanbe copiedfromthe controllinkofQ.

Dangling References: Referring to locations which have been de-

allocated.voidmain()

{

int*p;

p=dangle();/* danglingreference*/

}

int*dangle();

{

inti=23;re

turn&i;

}

Theproblemofdanglingreferencesarises,wheneverstorageisde-allocated.Adanglingreference

occurs when there is a reference to storage that has been de-allocated. It is a logicalerror to use

dangling references, since the value of de-allocated storage is undefined according tothe

semantics of most languages. Since that storage may later be allocated to another

datum,mysteriousbugscanappearinthe programs withdanglingreferences.

HEAP ALLOCATION: If a procedure wants to put a value that is to be used after its

activationis over then we cannot use stack for that purpose. That is language like Pascal allows

data to beallocated under program control. Also in certain language a called activation may

outlive thecaller procedure. In such a case last-in-first-out queue will not work and we will

require a datastructure like heap to store the activation. The last case is not true for those

languages whoseactivationtrees correctlydepicttheflowofcontrolbetweenprocedures.

LimitationsofStackallocation:Itcannotbeusedif,

o Thevaluesofthelocalvariablesmustberetainedwhenanactivationends

o Acalled activationoutlivesthecaller

Insucha case de-allocationofactivationrecordcannotoccurin last-infirst-outfashion

Heap allocationgivesoutpiecesofcontiguousstorageforactivationrecords

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

There aretwoaspectsofdynamicallocation-:

- Runtimeallocationand de-allocationofdatastructures.

- Languages like Algol have dynamic data structures and it reserves some part of

memoryforit.

Initializing data-structures may require allocating memory butwhere toallocate

thismemory. After doing type inference we have to do storage allocation. It will allocate some

chunkof bytes. But in language like LISP, it will try to give continuous chunk. The allocation

incontinuous bytes may lead to problem of fragmentation i.e. you may develop hole in process

ofallocation and de-allocation. Thus storage allocation of heap may lead us with many holes

andfragmentedmemorywhichwillmakeithardtoallocatecontinuouschunkofmemorytorequesting

program. So,we have heap mangers which manage the free space and allocation andde-allocation

of memory. It would be efficient to handle small activations and activations ofpredictable size as

a special case as described in the next slide. The various allocation and de-allocationtechniques

usedwillbediscussedlater.

Filla requestofsize swithblockofsize s'wheres'isthe smallestsize greaterthanorequaltos

- Forlargeblocksofstorageuseheapmanager

- For largeamountofstoragecomputation

maytakesometimetouseupmemorysothattimetakenbythemanagermaybe

negligiblecomparedto the computationtime

As mentioned earlier, for efficiency reasons we can handle small activations and activations

ofpredictablesizeasaspecialcase asfollows:

1. Foreachsizeofinterest,keepalinkedlistiffreeblocksofthatsize

2. If possible, fill a request for size s with a block of size s', where s' is the smallest size

greaterthan or equal to s. When the block is eventually de-allocated, it is returned to the linked

list itcamefrom.

3. For largeblocksofstorageusetheheapmanger.

Heapmangerwilldynamicallyallocatememory.Thiswillcomewitharuntimeoverhead.As

heapmanager will have to take care of defragmentation and garbage collection.But since heap

manger saves space otherwise we will have to fix size of activation at

compiletime,runtimeoverheadisthepriceworthit.

ACCESS TO NON-LOCALNAMES:

Thescoperulesofalanguagedecidehowtoreferencethenon-localvariables.

Therearetwomethodsthatarecommonlyused:

1. StaticorLexicalscoping:Itdeterminesthedeclarationthatappliestoanamebyexaminingthe

programtextalone.E.g.,Pascal,C andADA.

2. DynamicScoping:Itdeterminesthedeclarationapplicabletoanameatruntime,byconside

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

ringthe currentactivations.E.g.,Lisp

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

ORGANIZATIONFORBLOCKSTRUCTURES:

Ablockisaanysequenceofoperationsorinstructionsthatareusedto

performa[sub]task.Inanyprogramminglanguage,

Blockscontainitsownlocaldata structure.

Blockscanbenestedandtheirstartingandendsaremarkedbyadelimiter.

Theyensurethateitherblockisindependentofotherornestedinanotherblock.Thatis,it is not

possible for two blocks B1 and B2 to overlap in such a way that first block

B1begins,thenB2,butB1endbeforeB2.

This nesting property is called block structure. The scope of a declaration in a block-

structuredlanguageisgivenbythemostcloselynestedrule:

1. ThescopeofadeclarationinablockBincludesB.

2. IfanameXisnotdeclaredinablockB,thenanoccurrenceofXinBisinthescopeof a declaration

of X in an enclosing block B ' such that. B ' has a declaration of X, and. B'ismore

closelynestedaroundBthenanyotherblockwitha declarationofX.

Forexample,considerthefollowingcodefragment.

For the example, in the above figure, the scope of declaration of b in B0 does not include

B1becausebisre-

declaredinB1.Weassumethatvariablesaredeclaredbeforethefirststatementinwhichtheyare

accessed.The scopeofthevariableswillbe asfollows:

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

DECLARATION SCOPE

inta=0 B0notincludingB2

intb=0 B0notincludingB1

intb=1 B1notincludingB3

inta=2 B2only

intb=3 B3only

Theoutcomeoftheprintstatementwillbe, therefore:

21

03

01

00

Blocks:.Blocksaresimpler tohandlethanprocedures

.Blockscanbetreatedasparameterlessprocedures

. Usestackfor memoryallocation

. Allocatespaceforcompleteprocedurebodyatonetime

Therearetwomethodsofimplementingblockstructureincompilerconstruction:

1. STACK ALLOCATION: This is based on the observation that scope of a declaration

doesnot extend outside the block in which it appears, the space for declared name can be

allocatedwhentheblockisenteredandde-allocatedwhencontrolsleavetheblock.Theviewtreatblockas

a "parameter less procedure" called only from the point just before the block and

returningonlytothepointjustbeforetheblock.

2. COMPLETE ALLOCATION: Here you allocate the complete memory at one time. If

thereare blocks within the procedure, then allowance is made for the storage needed for

declarationswithin the books. If two variables are never alive at the same time and are at same

depth they canbe assignedsamestorage.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

DYNAMICSTORAGEALLOCATION:

Generally languages like Lisp and ML which do not allow for explicit de-allocation of

memorydo garbage collection. A reference to a pointer that is no longer valid is called a

'danglingreference'.Forexample,considerthis Ccode:

intmain(void)

{

int*a=fun();

}

int* fun()

{

inta=3;int*

b=&a;retu

rnb;

}

Here, the pointer returned by fun() no longer points to a valid address in memory as

theactivation of fun() has ended. This kind of situation is called a 'dangling reference'. In case

ofexplicitallocation itis morelikely tohappen as the user can de-allocate any part of

memory,evensomethingthathastoapointerpointingtoavalidpiece ofmemory.

In Explicit Allocation of Fixed Sized Blocks , Link the blocks in a list , and Allocation and de-

allocationcanbedone withverylittleoverhead.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

The simplest form of dynamic allocation involves blocks of a fixed size. By linking the blocks

ina list, as shown in the figure, allocation and de-allocation can be done quickly with little or

nostorageoverhead.

ExplicitAllocationof FixedSizedBlocks:Inthisapproach,

blocksaredrawnfromcontiguousarea ofstorage,andanarea

ofeachblockisusedaspointertothenextblock

Thepointer availablepointstothefirstblock

Allocationmeansremovingablockfromtheavailablelist

De-allocationmeansputtingtheblockintheavailablelist

Compiler routinesneednot knowthetypeofobjectstobeheldintheblocks

Eachblockistreatedasa variantrecord

Suppose thatblocks are tobe drawn from a contiguous area of storage.Initialization ofthe

area is done by using a portion of each block for a link to the next block. A pointer

availablepoints to the first block. Generally a list of free nodes and a list of allocated nodes is

maintained,and whenever a new block has to be allocated, the block at the head of the free list is

taken offand allocated (added to the list of allocated nodes). When a node has to be de-allocated,

it isremoved from the list of allocated nodes by changing the pointer to it in the list to point to

theblock previously pointed to by it, and then the removed block is added to the head of the list

offree blocks. The compiler routines thatmanage blocks do not need to know the type of

objectthat will beheldin the block by the user program. These blocks can contain any type of

data(i.e., they are used as generic memory locations by the compiler). We can treat each block as

avariant record, with the compiler routines viewing the block as consisting of some other

type.Thus, there is no space overhead because the user program can use the entire block for its

ownpurposes. When the block is returned, then the compiler routines use some of the space from

theblockitselftolinkitintothelistofavailableblocks,asshowninthefigureinthelastslide.

ExplicitAllocationofVariableSizeBlocks:

Limitations of Fixed sized block allocation: In explicit allocation of fixed size blocks,

internalfragmentation can occur, that is, the heap may consist of alternate blocks that are free and

in use,asshowninthefigure.

Thesituation shown can occur if aprogram allocates fiveblocks andthen de-allocates

thesecondandthefourth,forexample.

Fragmentation is of no consequence if blocks are of fixed size, but if they are of variable size,

asituation like this is a problem, because we could not allocate a block larger than any one of

thefree blocks,eventhoughthespaceis availableinprinciple.

So, if variable- sized blocks are allocated, then internal fragmentation can be avoided, as we

onlyallocateasmuchspaceasweneedinablock.Butthiscreatestheproblemofexternalfragmentation,w

hereenoughspaceisavailablein totalforourrequirements,butnot enough

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

space is available in continuous memory locations, as needed for a block of allocated

memory.For example, consider another case where we need to allocate 400 bytes of data for the

nextrequest, and the available continuous regions of memory that we have are of sizes 300, 200

and100 bytes. So we have a total of 600 bytes, which is more than what we need. But still we

areunable toallocate thememoryaswedonothaveenoughcontiguousstorage.

The amount of external fragmentation while allocating variable-sized blocks can become

veryhighonusingcertainstrategiesformemoryallocation.

So we try to use certain strategies for memory allocation, so that we can minimize

memorywastageduetoexternalfragmentation.Thesestrategiesarediscussedinthenextfewlines.

.Storagecanbecomefragmented,Situationmayarise,Ifprogramallocatesfiveblocks

.thende-allocatessecond andfourthblock

IMPORTANTQUESTIONS:

1. Whatarecallingsequence,andReturnsequences?Explainbriefly.

2. WhatisthemaindifferencebetweenStatic&Dynamicstorageallocation?Explaintheproble

msassociatedwithdynamic storage allocationschemes.

3. Whatistheneed

ofadisplayassociatedwithaprocedure?Discusstheproceduresformaintainingthe

displaywhenthe proceduresarenotpassedasparameters.

4. Writenotesonthestaticstorageallocationstrategywithexampleanddiscussitslimitati

ons?

5. Discussabout thestackallocationstrategyofruntimeenvironmentwithanexample?

6. Explaintheconceptofimplicitdeallocationofmemory.

7. Giveanexampleofcreatingdanglingreferencesandexplainhowgarbageiscreated.

ASSIGNMENTQUESTIONS:

1. Whatisacallingsequence?Explainbriefly.

2. Explaintheproblemsassociatedwithdynamicstorageallocationschemes.

3. Listand explaintheentriesofActivationRecord.

4. Explainaboutparameterpassingmechanisms.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

UNIT-IV

RUNTIMESTORAGEMANAGEMENT:

To study the run-time storage management system it is sufficient to focus on the

statements:action,call,return and halt,because they by themselves give us sufficientinsightinto

thebehaviorshownbyfunctionsincallingeachotherandreturning.

And the run-time allocation and de-allocation of activations occur on the call of functions

andwhentheyreturn.

Therearemainlytwokindsofrun-timeallocationsystems:StaticallocationandStackAllocation.

While static allocation is used by the FORTRAN class of languages, stack

allocationisusedbytheAdaclass oflanguages.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

STATICALLOCATION: In this, A call statement is implemented by a sequence of

twoinstructions.

Amoveinstructionsavesthereturn address

Agototransfers controltothe targetcode.

TheinstructionsequenceisMOV#

here+20,callee.static-areaGOTO

callee.code-area

callee.static-areaandcallee.code-

areaareconstantsreferringtoaddressoftheactivationrecordandthefirstaddressofcalledprocedurerespe

ctively.

. #here+20inthemoveinstructionisthereturnaddress;theaddressoftheinstructionfollowingthe

gotoinstruction

. A return from procedure callee is implemented

byGOTO *callee.static-area

For the call statement, we need tosave the return address somewhere andthenjumptothe

location of the callee function. And to return from a function, we have to access the returnaddress

as stored by its caller, and then jump to it. So for call, we first say: MOV #here+20,callee.static-

area.Here,#herereferstothelocationofthecurrentMOVinstruction,andcallee.static-

areaisafixedlocationinmemory.20isaddedto#herehere,asthecodecorresponding to the call

instruction takes 20 bytes (at 4 bytes for each parameter: 4*3 for

thisinstruction,and8forthenext).ThenwesayGOTOcallee.code-area,totakeustothecodeofthe callee,

as callee.codearea is merely the address where the code of the callee starts. Then areturn from the

callee is implemented by: GOTO *callee.static area. Note that this works onlybecause

callee.static-areais aconstant.

Example:

.Assumeeach 100:ACTION-l

action 120:MOV140,364

blocktakes20 132:GOTO200

bytes ofspace 140:ACTION-2

.Startaddress 160:HALT

ofcodeforc :

andpis 200: ACTION-3

100 and200 220:GOTO*364

DepartmentofComputerScience&Engineering

.Theactivation

CourseFile:CompilerDesign

:

Records 300:

arestatically 304:

allocatedstarting :

at addresses 364:

300 and 364. 368:

This example corresponds to the code shown in slide 57. Statically we say that the

codefor c starts at 100 and that for p starts at 200. At some point, c calls p. Using the

strategydiscussed earlier, and assuming that callee.staticarea is at the memory location 364, we

get thecode as given. Here we assume that a call to 'action' corresponds to a single machine

instructionwhichtakes 20bytes.

STACKALLOCATION :.Positionoftheactivationrecordisnotknownuntilruntime

.Position isstored inaregister atruntime,and wordsintherecord areaccessed

withanoffsetfromtheregister

. The code for the first procedure initializes the stack by setting up SP to the start of

thestackarea

MOV #Stackstart,SP

code for the first

procedureHALT

In stack allocation we do not need to know the position of the activation record until run-

time. This gives us an advantage over static allocation, as we can have recursion. So this is

usedin many modern programming languages like C, Ada, etc. The positions of the activations

arestored in the stack area, and the position for the most recent activation is pointed to by the

stackpointer. Words in a record are accessed with an offset from the register. The code for the

firstprocedure initializes the stack by setting up SP to the stack area by the following

command:MOV#Stackstart,SP.Here,#Stackstartisthelocation in memorywherethestack starts.

AprocedurecallsequenceincrementsSP,savesthereturnaddressand transferscontrolto

thecalledprocedure

ADD #caller.recordsize,

SPMOVE#here+

16,*SPGOTOcallee.code_a

rea

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Consider the situation when a function (caller) calls the another function(callee),

thenprocedure call sequence increments SP by the caller record size, saves the return address

andtransfers control to the callee by jumping to its code area. In the MOV instruction here, we

onlyneed to add 16, as SP is a register, and so no space is needed to store *SP. The activations

keepgetting pushed on the stack, so #caller.recordsize needs to be added to SP, to update the

value ofSP to its new value.This works as#caller.recordsizeis a constant for a function,regardless

ofthe particularactivationbeingreferredto.

DATASTRUCTURES:Followingdatastructuresareusedtoimplementsymboltables

LISTDATASTRUCTURE :Couldbeanarraybasedorpointerbasedlist.Butthisimplementationis

- Simplesttoimplement

- Useasinglearraytostorenamesandinformation

- Searchforanameislinear

- Entryandlookupareindependentoperations

- Costofentryandsearchoperationsareveryhighandlotoftimegoesintobookkeeping

Hashtable:HashtableisadatastructurewhichgivesO(1)performanceinaccessinganyelementofit.

Itusesthe featuresofbotharrayandpointerbasedlists.

- Theadvantagesareobvious

REPRESENTINGSCOPEINFORMATION

The entriesin thesymbol table are fordeclaration of names.When an occurrence of a nameinthe

source textislooked up in the symbol table,the entry for the appropriate declaration,according to

the scoping rules of thelanguage,mustbe returned. A simple approach is

tomaintainaseparatesymboltableforeachscope.

Mostcloselynestedscoperulescanbeimplementedbyadaptingthedatastructuresdiscussed in the

previous section. Each procedure is assigned a unique number. If the language isblock-structured,

the blocks must also be assigned unique numbers. The name is represented as apair of a number

and a name. This new name is added to the symbol table. Most scope rules

canbeimplementedinterms offollowingoperations:

a) Lookup-findthemostrecentlycreatedentry.

b) Insert-makeanewentry.

c) Delete- removethemostrecentlycreatedentry.

d) Symboltable structure

e) .Assignvariablesto storageclassesthatprescribescope,visibility,andlifetime

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

f) -scoperulesprescribe the symboltablestructure

g) -scope:unitofstaticprogramstructurewithoneor morevariabledeclarations

h) -scopemaybenested

i) .Pascal:proceduresarescopingunits

j) .C:blocks,functions,filesarescopingunits

k) .Visibility, lifetimes,globalvariables

l) .Common(inFortran)

m) .Automaticor stackstorage

n) .Staticvariables

o) storage class :A storage class is an extra keyword at the beginning of a declarationwhich

modifies the declaration in some way. Generally, the storage class (if any) is

thefirstwordinthe declaration,precedingthetype name.Ex.static,externetc.

p) Scope: The scope of a variableis simply the part of the program whereitmay

beaccessedorwritten.Itisthepartoftheprogramwherethevariable'snamemaybeused.If a

variable is declared within a function, itis local to thatfunction. Variables of thesame

name may be declared and used within other functions without any conflicts. Forinstance,

q) intfun1()

{

int

a;int

b;

....

}

intfun2()

{

inta;

intc;

....

}

Visibility: The visibility of a variable determines how much of the rest of the

programcanaccessthatvariable.You

canarrangethatavariableisvisibleonlywithinonepartofonefunction,orinonefunction,orinon

esourcefile,oranywhereintheprogram.

r) Local and Global variables: A variable declared within the braces {} of a function

isvisible only within that function; variables declared within functions are called

localvariables. On the other hand, a variable declared outside of any function is a

globalvariable,anditispotentiallyvisible anywhere withintheprogram.

s) Automatic Vs Static duration: How long do variables last? By default, local

variables(those declared within a function) have automatic duration: they spring into

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

existencewhenthefunctioniscalled,andthey(andtheirvalues)disappearwhenthefunction

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

returns. Global variables, on the other hand, have static duration: they last, and the

valuesstored in them persist, for as long as the program does. (Of course, the values can

ingeneral still be overwritten, so they don't necessarily persist forever.) By default,

localvariableshaveautomaticduration.Togivethemstaticduration (sothat,insteadofcoming

and going as the function is called, they persist for as long as the function

does),youprecedetheirdeclarationwiththestatickeyword:staticinti;Bydefault,adeclaration of

a global variable (especially if it specifies an initial value) is the defininginstance. To

make it an external declaration, of a variable which is defined somewhereelse, you

precede it with the keyword extern: extern int j; Finally, to arrange that a globalvariable is

visible only within its containing source file, you precede it with the statickeyword: static

int k; Notice that the static keyword can do two different things: it adjuststhe duration of a

local variable from automatic to static, or it adjusts the visibility of

aglobalvariablefromtrulyglobaltoprivate-to-the-file.

t) Symbolattributesand symboltableentries

u) Symbolshaveassociated attributes

v) Typicalattributesarename, type,scope,size,addressingmodeetc.

w) Asymboltable entrycollectstogetherattributes suchthattheycanbe

easilysetandretrieved

x) Exampleoftypical namesinsymboltable

Name Type

name characterstring

class enumeration

size integer

type enumeration

LOCALSYMBOLTABLEMANAGEMENT:

Followingareprototypesoftypicalfunctiondeclarationsusedformanaginglocalsymboltable.Theright

handsideofthearrowsistheoutputoftheprocedureandtheleftsidehastheinput.

NewSymTab:SymTab

 SymTabDestSy

mTab:SymTab

 SymTabInsertS

ym:SymTabXSymbol

 booleanLocateS

ym:SymTabXSymbol boolean

GetSymAttr:SymTabXSymbolXAttr

 booleanSetSymAttr

:SymTabXSymbolXAttrXvalue

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

 booleanNextSym:SymTa

bXSymbol Symbol

MoreSyms:SymTabXSymbol boolean

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Amajorconsiderationindesigningasymboltableisthatinsertionandretrievalshouldbeas

fastaspossible

. Onedimensionaltable:searchisveryslow

.Balancedbinarytree:quickinsertion,

searchingandretrieval;extraworkrequiredtokeepthetreebalanced

. Hashtables:quickinsertion,searchingandretrieval;extraworktocomputehashkeys

.Hashingwitha chainofentriesisgenerallya goodapproach

A major consideration in designing a symbol table is that insertion and retrieval should

beas fast as possible. We talked about the one dimensional and hash tables a few slides back.

Apartfromthesebalanced binarytreescanbeused too.Hashingisthemostcommonapproach.

HASHEDLOCALSYMBOLTABLE

Hash tables can clearly implement 'lookup' and 'insert' operations. For implementing

the'delete', we do not want to scan the entire hash table looking for lists containing entries to

bedeleted.Eachentryshouldhavetwolinks:

a) A hash link that chains the entry to other entries whose names hash to the same value -

theusuallinkinthehash table.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

b) A scope link that chains all entries in the same scope - an extra link. If the scope link is

leftundisturbed when an entry is deleted from the hash table, then the chain formed by the

scopelinkswillconstitute aninactive symboltableforthescope inquestion.

NestingstructureofanexamplePascalprogram

Look at the nesting structure of this program.Variables a,b and c appearin global aswell

as local scopes. Local scope of a variable overrides the global scope of the other variablewith the

same name within its own scope. The next slide will show the global as well as the localsymbol

tables for this structure. Here procedure I and h lie within the scope of g (are nestedwithing).

GLOBALSYMBOLTABLESTRUCTURETheglobalsymboltablewillbeacollectionofsymboltab

les connectedwithpointers.

.Scopeandvisibilityrulesdeter

minethestructureofglobalsym

boltable

.ForALGOLclassoflanguages

scopingrulesstructure the

symbol table

astreeoflocaltables

- Globalscopeasroot

- Tables for nested scope

aschildren of the

tableforthescopetheyare

nestedin

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Theexactstructurewillbedeterminedbythescopeandvisibilityrulesofthelanguage.The global

symbol table will be a collection of symbol tables connected with

pointers.Theexactstructurewillbedeterminedbythescopeandvisibilityrulesofthelanguage.Wheneve

r a new scope is encountered a new symbol table is created. This new table contains

apointerbacktotheenclosingscope'ssymboltableandtheenclosingonealsocontainsapointerto this

new symbol table. Any variable used inside the new scope should either be present in itsown

symbol table or inside the enclosing scope's symbol table and all the way up to the

rootsymboltable.Asample globalsymboltableisshown inthebelowfigure.

BLOCKSTRUCTURESANDNONBLOCKSTRUCTURESTORAGEALLOCATION

Storagebindingandsymbolicregisters: Translatesvariablenamesintoaddressesand

theprocessmustoccurbeforeorduringcodegeneration

- . Eachvariableisassignedanaddressor addressing method

- . Each variable is assigned an offset with respect to base which changes with

everyinvocation

- .Variables fallinfourclasses:global,globalstatic, stack, local(non-stack)static

- Thevariablenameshavetobetranslatedintoaddressesbeforeorduringcodegeneration.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

There is a base address and every name is given an offset with respect to this base which

changeswitheveryinvocation.The variables canbe dividedintofourcategories:

a) GlobalVariables:fixedrelocatableaddressoroffsetwithrespecttobaseasglobalpointer

b) Global Static Variables :.Global variables, on the other hand, have static duration (hencealso

called static variables): they last, and the values stored in them persist, for as long as theprogram

does. (Of course, the values can in general still be overwritten, so they don't necessarilypersist

forever.) Therefore they have fixed relocatable address or offset with respect to base

asglobalpointer.

c) Stack Variables :allocate stack/global in registers and registers are not indexable,

therefore,arrayscannotbein registers

.Assignsymbolicregisterstoscalarvariables

.Usedforgraphcoloringforglobalregisterallocation

d) Stack Static Variables :By default, local variables (stack variables) (those declared within

afunction) have automatic duration: they spring into existence when the function is called,

andthey (and their values) disappear when the function returns. This is why they are stored in

stacksandhaveoffsetfromstack/framepointer.

Registerallocationisusuallydoneforglobalvariables.Sinceregistersarenotindexable,therefore,

arrays cannot be in registers as they are indexed data structures. Graph coloring is asimple

technique for allocating register and minimizing register spills that works well in

practice.Register spills occur when a register is needed for a computation but all available

registers are inuse. The contents of one of the registers mustbe stored in memory to free itup for

immediateuse.Weassignsymbolicregisterstoscalarvariableswhichareusedinthegraphcoloring.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

LocalVariables inFrame

Assigntoconsecutivelocations;allowenoughspaceforeach

Mayputword sizeobjectinhalfwordboundaries

Requirestwohalfwordloads

Requiresshift,or, and

Alignondouble wordboundaries

Wastesspace

AndMachinemayallowsmalloffsets

wordboundaries-

themostsignificantbyteoftheobjectmustbelocatedatanaddresswhosetwoleastsignificantbitsare

zerorelative tothe frame pointer

half-wordboundaries-

themostsignificantbyteoftheobjectbeinglocatedatanaddresswhoseleastsignificantbitiszerorelati

ve totheframe pointer.

Sortvariablesbythealignment theyneed

- Storelargestvariablesfirst

- Utomaticallyalignsallthevariables

- Doesnotrequirepadding

- Storesmallestvariablesfirst

- Requiresmorespace(padding)

- Forlargestackframemakesmorevariablesaccessiblewithsmalloffsets

Whileallocatingmemorytothevariables,sortvariablesbythealignmenttheyneed.Youmay:

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Storelargestvariablesfirst:Itautomaticallyalignsallthevariablesanddoesnotrequirepaddingsincethen

extvariable'smemoryallocationstartsatthe end ofthatoftheearliervariable

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

. Store smallest variables first: It requires more space (padding) since you have to

accommodatefor the biggest possible length of any variable data structure. The advantage is that

for large stackframe,more variablesbecome accessible withinsmalloffsets

How to store large local data structures? Because they Requires large space in local

framesandthereforelargeoffsets

- Iflargeobjectisputneartheboundaryotherobjectsrequirelargeoffseteitherfromfp(ifputnearbe

ginning)orsp(ifputnearend)

- Allocateanother baseregistertoaccesslargeobjects

- Allocatespaceinthemiddleorelsewhere;storepointertotheselocations

fromatasmalloffsetfromfp

- Requiresextraloads

Large local data structures require large space in local frames and therefore large

offsets.As told in the previous slide's notes, if large objects are put near the boundary then the

otherobjectsrequirelargeoffset.Youcaneitherallocateanotherbaseregistertoaccesslargeobjectsor

you can allocate space in the middle or elsewhere and then store pointers to these

locationsstartingfromatasmalloffsetfromtheframe pointer,fp.

Intheunsortedallocation

youcanseethewasteofspaceingreen.Insortedframethereisnowasteofspace.

STORAGEALLOCATIONFORARRAYS

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Elements of an array are stored in a block of consecutive locations. For a single

dimensionalarray, if low is the lower bound of the index and base is the relative address of the

storageallocated to the array i.e., the relative address of A[low], then the ith Elements of an array

arestoredinablockofconsecutivelocations

For a single dimensional array, if low is the lower bound of the index and base is

therelative address of the storage allocated to the array i.e., the relative address of A[low], then

the ith elements begins atthe location:base + (I - low)*w . This expression can be reorganized

asi*w + (base -low*w) . The sub-expression base-low*w is calculated and stored in the

symboltable at compile time when the array declaration is processed, so that the relative address

of A[i]canbeobtainedbyjustaddingi*wtoit.

- AddressingArrayElements

- Arraysarestoredinablockofconsecutivelocations

- Assumewidthofeachelementisw

- ithelementofarrayAbeginsinlocation base+(i-low)

xwwherebaseisrelativeaddressofA[low]

- Theexpressionisequivalentto

- ixw+(base-

lowxw)ixw+const

2-DIMENSIONAL ARRAY:For a row majortwodimensional array the address of

A[i][j]canbecalculatedbytheformula :

base + ((i-lowi)*n2 +j - lowj)*w where low iand lowjare lower values of I and j and n2

isnumberofvaluesjcantakei.e.n2=high2-low2+ 1.

Thiscanagainbe written as:

((i * n2) + j) *w + (base - ((lowi*n2) + lowj) * w) and the second term can be calculated

atcompile time.

Inthesamemanner,theexpressionforthelocationof anelementincolumnmajortwo-dimensional array

can be obtained.This addressing can be generalized to multidimensionalarrays.Storage canbe

eitherrowmajororcolumnmajorapproach.

Example: Let A be a 10x20 array therefore, n 1 = 10 and n 2 = 20 and assume w =

4The Three addresscodetoaccessA[y,z]is

t 1 = y *

20t 1 = t 1 +

zt2=4*t1

t3=A-84{((low1Xn2)+low2)Xw)=(1*20+1)*4=84}

t4=t2+t3

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

x=t4

Let A be a 10x20

arrayn1= 10andn2= 20

Assumewidthofthetypestoredinthearrayis4.ThethreeaddresscodetoaccessA[y,z]ist1=y*20

t1 = t1 +

zt2=4*t1

t3=baseA -

84{((low1*n2)+low2)*w)=(1*20+1)*4=84}t4=t2+t3

x=t4

Thefollowingoperationsaredesigned:1. mktable(previous):createsanewsymboltableandreturnsa

pointertothistable.Previousispointertothe symboltableofparentprocedure.

2. entire(table,name,type,offset):createsanewentryfornameinthesymboltablepointedtoby

table.

3. addwidth(table,width):recordscumulativewidthofentriesofatablein its header.

4. enterproc(table,name,newtable):createsanentryforprocedurename inthe

symboltablepointedtobytable.newtableisapointer tosymboltableforname.

P

 {t=mktable

(nil);push(t,tblp

tr);push(0,offset

)}

D

{addwidth(top(tblptr),top(offset));pop(t

blptr);

pop(offset)}

D D ; D

The symbol tables are created using two stacks: tblptrto hold pointers to symbol tables

ofthe enclosing procedures and offset whose top element is the next available relative address for

alocal of the current procedure. Declarations in nested procedures can be processed by the

syntaxdirected definitions given below. Note that they are basically same as those given above

but wehaveseparatelydealtwiththe epsilonproductions.Gotothe nextpage fortheexplanation.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

D procid;

{t=

mktable(top(tblptr));push(t,tbl

ptr);push(0,offset)}

D 1;S

Did:T

{ t =

top(tblptr);addwidth(t,

top(offset));pop(tblptr);

pop(offset);;

enterproc(top(tblptr),id.name,t)}

{enter(top(tblptr),id.name,T.type,top(offset));to

p(offset)=top(offset)+T.width}

The action for M creates a symbol table for the outermost scope and hence a nil pointer is

passedinplaceof previous.When thedeclaration,Dprocid; ND1; Sis

processed,theactioncorresponding to N causes the creation of a symbol table for the procedure;

the pointer to symboltable of enclosing procedure is given by top(tblptr). The pointer to the new

table is pushed on tothe stack tblptrand0 is pushedas the initial offseton the offsetstack. When the

actionscorresponding to the subtrees of N, D1 and S have been executed, the offset

corresponding to thecurrent procedure i.e., top(offset) contains the total width of entries in it.

Hence top(offset) isadded to the header of symbol table of the current procedure. The top entries

of tblptrand offsetare popped so that the pointer and offset of the enclosing procedure are now on

top of thesestacks. The entry for id is added to the symbol table of the enclosing procedure.

When thedeclarationD->id:Tisprocessedentryforidiscreatedinthesymbol tableof

currentprocedure.Pointertothesymboltableofcurrentprocedureisagainobtainedfromtop(tblptr).

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Offsetcorrespondingtothecurrentprocedurei.e.top(offset)is

incrementedbythewidthrequiredbytype Ttopointtothe nextavailablelocation.

STORAGEALLOCATIONFORRECORDS

FieldnamesinrecordsT

 record

{t=mktable(nil);

push(t,tblptr);push(0,offset)}D

end

{T.type =

record(top(tblptr));T.width =

top(offset);pop(tblptr);pop(of

fset)}

T->recordLD end {t=mktable(nil);

push(t,tblptr);push(0,offset)

}

L->

 {T.type=record(top(tbl

ptr));T.width =

top(offset);pop(tblptr);pop(of

fset)

}

Theprocessingdonecorrespondingtorecordsissimilartothatdoneforprocedures.After the

keyword record is seen the marker L creates a new symbol table. Pointer to this tableand offset0

are pushed on the respective stacks. The action for the declaration D->id :T pushthe information

about the field names on the table created. At the end the top of the offset stackcontains the total

width of the data objects within the record. This is stored in the

attributeT.width.TheconstructorrecordisappliedtothepointertothesymboltabletoobtainT.type.

NamesintheSymboltable:

S id := E

{p=lookup(id.place);

ifp <>nilthenemit(p

:=E.place)else error}

E id

{p=lookup(id.name);

ifp<> nilthenE.place =p

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

elseerror}

The operation lookup in the translation scheme above checks if there is an entry for

thisoccurrence of the name in the symbol table. If an entry is found, pointer to the entry is

returnedelse nil is returned. Look up first checks whether the name appears in the current symbol

table. Ifnot then it looks for the name in the symbol table of the enclosing procedure and so on.

Thepointer to the symbol table of the enclosing procedure is obtained from the header of the

symboltable.

CODEOPTIMIZATION

Considerations for optimization :The code produced by the straight forward

compilingalgorithms can often be made to run faster or take less space,or both. This

improvement

isachievedbyprogramtransformationsthataretraditionallycalledoptimizations.Machineindependent

optimizations are program transformations that improve the target code withouttaking into

consideration any properties of the target machine. Machine dependant optimizationsare

basedonregisterallocationandutilizationofspecialmachine-instructionsequences.

Criteriaforcodeimprovementtransformations

- Simply stated, the best program transformations are those that yield the most benefit

forthe leasteffort.

- First,thetransformationmustpreservethemeaningofprograms.Thatis,theoptimization must

not change the output produced by a program for a given input, orcauseanerror.

- Second, a transformation must, on the average, speed up programs by a

measurableamount.

- Third, thetransformationmustbeworththeeffort.

Some transformations can only be applied after detailed, often time-consuming analysis of

thesource program, so there is little point in applying them to programs that will be run only a

fewtimes.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

OBJECTIVESOFOPTIMIZATION:Themainobjectivesoftheoptimizationtechniquesareasfollo

ws

1. Exploitthefastpathincaseof multiplepaths froagivensituation.

2. Reduceredundant instructions.

3. Produceminimumcodeformaximumwork.

4. Tradeoffbetweenthe sizeofthecode and the speed withwhich itgetsexecuted.

5. Placecodeanddatatogetherwheneveritisrequiredtoavoidunnecessarysearchingofdata/co

de

Duringcodetransformationintheprocessofoptimization, thebasicrequirementsareasfollows:

1. Retainthe semanticsofthe source code.

2. Reducetimeand/orspace.

3. Reducetheoverheadinvolvedintheoptimizationprocess.

ScopeofOptimization:Control-FlowAnalysis

Consider all that has happened up to this point in the compiling process—

lexicalanalysis,syntactic analysis,semantic analysis andfinally intermediate-code

generation.Thecompiler has done an enormous amount of analysis, but it still doesn‘t really know

how theprogramdoeswhatitdoes.Incontrol-

flowanalysis,thecompilerfiguresoutevenmoreinformation about how the program does its work,

only now it can assume that there are nosyntactic orsemanticerrors inthecode.

Control-flowanalysisbeginsbyconstructingacontrol-flowgraph,whichisagraphofthe

different possible paths program flow could take through a function. To build the graph,

wefirstdivide the code into basic blocks. Abasic block is a segmentof the code that a

programmust enter at the beginning and exit only at the end. This means that only the first

statement canbe reached from outside the block (there are no branches into the middle of the

block) and allstatements are executed consecutively after the first one is (no branches or halts

until the exit).Thus a basic block has exactly one entry point and one exit point. If a program

executes the

firstinstructioninabasicblock,itmustexecuteeveryinstructionintheblocksequentiallyafterit.

Abasicblockbeginsinoneofseveralways:

• Theentrypointintothefunction

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

• Thetarget ofabranch(inour example,anylabel)

• Theinstructionimmediatelyfollowingabranchorareturn

Abasicblockendsinanyofthefollowingways:

• Ajumpstatement

• Aconditionalorunconditional branch

• Areturnstatement

Now we can construct the control-flow graph between the blocks. Each basic block is

anode in the graph, and the possible different routes a program might take are the connections,

i.e.if a block ends with a branch, there will be a path leading from that block to the branch

target.The blocks that can follow a block are called its successors. There may be multiple

successors orjust one. Similarly the block may have many, one, or no predecessors. Connect up

the flow graphfor Fibonacci basic blocks given above. Whatdoes an if then-elselook likein a flow

graph?Whataboutaloop?Youprobablyhaveallseenthegccwarningorjavacerrorabout:"Unreachablec

ode atline XXX."How canthe compilertellwhencode isunreachable?

LOCALOPTIMIZATIONS

Optimizationsperformedexclusivelywithinabasicblockarecalled"localoptimizations".

These are typically the easiest to perform since we do not consider any

controlflowinformation;wejustworkwiththestatementswithintheblock.Manyofthelocaloptimizatio

ns we will discuss have corresponding global optimizations that operate on the sameprinciple,

but require additional analysis to perform. We'll consider some of the more

commonlocaloptimizations as examples.

FUNCTIONPRESERVINGTRANSFORMATIONS

Commonsubexpressionelimination

Constantfolding

Variablepropagation

Dead CodeElimination

Code motion

StrengthReduction

1. CommonSubExpressionElimination:

Two operations are common if they produce the same result. In such a case, it is likely

moreefficienttocomputetheresultonceandreferenceitthesecondtimeratherthanre-evaluateit. An

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

expressionisaliveiftheoperandsusedtocomputetheexpressionhavenotbeenchanged.Anexpressio

nthatisnolongeraliveis dead.

Example:

a=b*c;d=b

*c+x-y;

Wecaneliminatethesecondevaluationofb*cfromthiscodeifnoneoftheinterveningstatementshas

changeditsvalue.We canthusrewritethe codeas

t1=b*c;a

=t1;d=t1+

x-y;

Letusconsiderthefollowingcodea=

b*c;

b=x;d=b*c

+ x-y;

inthiscode,wecannoteliminatethesecondevaluationofb*cbecausethevalueofbischangeddue tothe

assignmentb=xbeforeitisusedincalculatingd.

Wecansaythetwoexpressionsarecommonif

Theylexicallyequivalenti.e.,theyconsistofidenticaloperands

connectedtoeachotherbyidenticaloperator.

Theyevaluatetheidenticalvalues i.e.,noassignmentstatements for

anyoftheiroperandsexistbetweenthe evaluations oftheseexpressions.

Thevalueofanyoftheoperandsuseintheexpressionshouldnot be changed evenduetothe

procedurecall.

Example:

c=a*b;

x=a;d=

x*b;

Wemaynotethat eventhoughexpressionsa*band x*barecommoninthe

abovecode,theycannotbetreatedas commonsubexpressions.

2. VariablePropagation:

Letusconsider theabovecodeonceagain

c=a*b;x=

a;d=x*b+

4;

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

if we replace x by a in the last statement, we can identify a*b and x*b as common

subexpressions. This technique is calledvariable propagation where the use of one variable

isreplacedbyanothervariableifithasbeenassignedthe value ofsame

CompileTimeevaluation

The execution efficiency of the program can be improved by shifting execution

timeactions to compile time so that they are not performed repeatedly during the program

execution.Wecanevaluateanexpressionwithconstantsoperandsatcompiletimeandreplacethatexpres

sionbyasinglevalue.Thisiscalledfolding.Considerthefollowing statement:

a=2*(22.0/7.0)*r;

Here, wecanperformthecomputation2*(22.0/7.0)atcompiletimeitself.

3. DeadCodeElimination:

If the value contained in the variable at a point is not used anywhere in the

programsubsequently, the variable is said to be dead at that place. If an assignment is made to a

deadvariable, then that assignment is a dead assignment and itcan be safely removed from

theprogram.

Similarly,

apieceofcodeissaidtobedead,whichcomputesvaluethatareneverusedanywhereintheprogram.

c=a*b;x=

a;d=x*b+

4;

Usingvariablepropagation,thecodecanbewrittenas

follows:c=a*b;

x=a;d=a*

b+4;

UsingCommonSubexpressionelimination,thecodecanbewrittenasfollows:

t1=

a*b;c=t

1;x=a;d

=t1+4;

Here,x=awillconsideredasdeadcode.Henceitiseliminated.t1=a*

b;

c=t1;d=

t1+4;

4. CodeMovement:

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

The motivation for performing code movement in a program is to improve the execution time

ofthe program by reducing the evaluation frequency of expressions. This can be done by

movingtheevaluationofanexpressionto otherpartsofthe program.Letusconsiderthebellow code:

If(a<10)

{

b=x^2-y^2;

}

else

{b=

5;

a=(x^2-y^2)*10;

}

At thetimeofexecutionoftheconditiona<10,x^2-y^2isevaluatedtwice.So,wecanoptimizethe

codebymovingtheoutside totheblockas follows:

t=x^2-

y^2;If(a<1

0)

{

b=t;

}

else

{b=

5;

a=t*10;

}

5. StrengthReduction:

In the frequency reduction transformation we tried to reduce the execution frequency

ofthe expressions by moving the code. There is other class of transformations which

performequivalent actions indicated in the source program by reducing the strength of operators.

Bystrength reduction, we mean replacing the high strength operator with low strength operator

withoutaffectingthe programmeaning.Letusconsiderthe bellow example:

i=1;

while(i<10)

{

y=i*4;

}

Theabovecanwrittenasfollows:i=

1;

t=4;

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

while(i<10)

{

y=t;t=

t+4;

}

Herethehighstrengthoperator*isreplaced with +.

GLOBALOPTIMIZATIONS,DATA-FLOWANALYSIS:

So far we were only considering making changes within one basic block. With

someAdditional analysis, we can apply similar optimizations across basic blocks, making them

globaloptimizations. It‘s worth pointing out that global in this case does not mean across the

entireprogram. We usually optimize only one function at a time. Inter procedural analysis is an

evenlargertask,one notevenattemptedbysomecompilers.

The additional analysis the optimizer does to perform optimizations across basic blocks

iscalleddata-flowanalysis.Data-flowanalysisismuchmorecomplicated than control-

flowanalysis,andwe canonlyscratchthesurface here.

Let‘s consider a global common sub expression elimination optimization as our

example.Careful analysis across blocks can determine whether an expression is alive on entry to

a block.Such an expression is said to be available at that point. Once the set of available

expressions isknown, common sub-expressions can be eliminated on a global basis. Each blockis

anodeinthe flow graph of a program. The successor set (succ(x)) for a node x is the set of all

nodes that xdirectly flows into. The predecessor set (pred(x)) for a node x is the set of all nodes

that flowdirectly into x. An expression is defined at the point where it is assigned a value and

killed whenone of its operands is subsequently assigned a new value. An expression is available

at somepoint p in a flow graph if every path leading to p contains a prior definition of that

expressionwhich is not subsequently killed. Lets define such useful functions in DF analysis in

followinglines.

avail[B]=setofexpressionsavailableonentryto block B

exit[B]=setofexpressionsavailableonexitfromB

avail[B] =∩exit[x]: x∈pred[B](i.e.Bhasavailabletheintersectionoftheexitofitspredecessors)

killed[B] = set of the expressions killed in

Bdefined[B] = set of expressions defined in

Bexit[B] =avail[B]-killed[B]+defined[B]

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

avail[B]=∩(avail[x]-killed[x] +defined[x]):x∈pred[B]

HereisanAlgorithmforGlobalCommon Sub-expression Elimination:

1) First, computedefinedandkilledsetsfor

eachbasicblock(thisdoesnotinvolveanyofitspredecessorsorsuccessors).

2) Iterativelycomputetheavailandexitsetsfor

eachblockbyrunningthefollowingalgorithmuntilyouhitastablefixedpoint:

a) Identifyeachstatementsofthe forma =bopcinsome block

BsuchthatbopcisavailableattheentrytoBand neitherbnorcisredefinedinBpriortos.

b) Followflowofcontrolbackwardinthegraphpassingback tobut

notthrougheachblockthatdefinesbopc.

Thelastcomputationofbopcinsuchablockreachess.

c) After each computation d = b op c identified in step 2a, add statement t = d to

thatblockwheretisanewtemp.

d) Replace sbya=t.

Tryanexampletomakethingsclearer:mai

n:

BeginFunc28;

b = a + 2

;c=4*b;

tmp1 = b< c;

ifNZ tmp1 goto L1

;b=1;

L1:

d = a + 2

;EndFunc ;

First, divide the code above into basic blocks. Now calculate the available expressions for

eachblock. Then find an expression available in a block and perform step 2c above. What

commonsub-expressioncanyousharebetweenthe twoblocks? Whatiftheabove code were:

main:

BeginFunc28;

b = a + 2

;c=4*b;

tmp1= b<c;

IfNZ tmp1 Goto L1

;b=1;

z= a+ 2;<========= anadditionallinehere

L1:

d=a+2;

EndFunc;

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

MACHINEOPTIMIZATIONS

Infinalcodegeneration,thereisalotofopportunityforclevernessingeneratingefficient target

code. In this pass, specific machines features (specialized instructions, hardwarepipeline abilities,

register details) are taken into account to produce code optimized for thisparticulararchitecture.

REGISTERALLOCATION:

Onemachineoptimizationofparticularimportanceisregisterallocation,whichisperhaps the

single most effective optimization for all architectures. Registers are the fastest

kindofmemoryavailable,butas aresource,theycanbescarce.

The problem is how to minimize traffic between the registers and what lies beyond

themin the memory hierarchy to eliminate time wasted sending data back and forth across the

bus andthe different levels of caches. Your Decaf back-end uses a very naïve and inefficient

means

ofassigningregisters,itjustfillsthembeforeperforminganoperationandspillsthemrightafterwards.

A much more effective strategy wouldbe to considerwhich variables are more heavilyin

demand and keep thosein registers andspill those thatare nolongerneeded

orwon'tbeneededuntilmuchlater.

One common register allocation technique is called "register coloring", after the

centralidea to view register allocation as a graph coloring problem. If we have 8 registers, then

we try tocolor a graph with eight different colors. The graph‘s nodes are made of "webs" and the

arcs

aredeterminedbycalculatinginterferencebetweenthewebs.Awebrepresentsavariable‘sdefinitions,

places where it is assigned a value (as in x = …), and the possible different uses

ofthosedefinitions(asiny=x+2).Thisproblem,infact,canbeapproachedasanothergraph.The

definition and uses of a variable are nodes, and if a definition reaches a use, there is an

arcbetween the two nodes. If two portions of a variable‘s definition-use graph are unconnected,

thenwe have two separate webs for a variable. In the interference graph for the routine, each node

is aweb. We seek to determine which webs don't interfere with one another, so we know we can

usethesame registerforthosetwovariables.Forexample,considerthe followingcode:

i=10;

j=20;

x = i +

j;y=j+k;

We say that iinterferes with j because at least one pair of i‘s definitions and uses

isseparated by a definition or use of j, thus, iand j are "alive" at the same time. A variable is

alivebetween the time it has been defined and that definition‘s last use, after which the variable

isdead. If two variables interfere, then we cannot use the same register for each. But two

variablesthat don't interfere can since there is no overlap in the liveness and can occupy the same

register.Once we have the interference graph constructed, we r-color it so that no two adjacent

nodesshare the same color (r is the number of registers we have, each color represents a

differentregister).

We may recall that graph-coloring is NP-complete, so we employ a heuristic rather

thananoptimalalgorithm.Hereisasimplifiedversionofsomething thatmightbeused:

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

1. Findthenodewiththeleastneighbors.(Breaktiesarbitrarily.)

2. Removeitfromtheinterferencegraphandpushitontoastack

3. Repeatsteps1and 2untilthegraphisempty.

4. Now,rebuildthegraphasfollows:

a. Takethetopnodeoffthestack and reinsertitintothegraph

b. Chooseacolorfor itbased onthecolorofanyofitsneighborspresentlyin

thegraph,rotatingcolorsincase thereismorethanonechoice.

c. Repeata,and buntilthegraphiseithercompletelyrebuilt,orthereisnocoloravailable

tocolorthenode.

If we get stuck, then the graph may not be r-colorable, we could try again with a

differentheuristic, say reusing colors as often as possible. If no other choice, we have to spill a

variable tomemory.

INSTRUCTIONSCHEDULING:

Anotherextremelyimportantoptimizationof thefinalcodegeneratorisinstructionscheduling.

Because many machines, including most RISC architectures, have some sort

ofpipeliningcapability,effectivelyharnessingthatcapabilityrequiresjudiciousorderingofinstructions

.

In MIPS,each instructionisissuedin onecycle,butsometakemultiplecyclestocomplete. It

takes an additional cycle before the value of a load is available and two cycles for abranch to

reach its destination, but an instruction can be placed in the "delay slot" after a branchand

executed in that slack time. On the left is one arrangement of a set of instructions thatrequires 7

cycles. It assumes no hardware interlock and thus explicitly stalls between the secondand third

slots while the load completes and has a Dead cycle after the branch because the delayslot holds

a noop. On the right, a more favorable rearrangement of the same instructions willexecute

in5cycleswithnodeadCycles.

lw $t2,

4($fp)lw $t3,

8($fp)noop

add $t4, $t2,

$t3subi$t5,$t5,1

gotoL1

noop

lw $t2,

4($fp)lw $t3,

8($fp)subi $t5,

$t5, 1gotoL1

add $t4,$t2,$t3

PEEPHOLEOPTIMIZATIONS:

Peephole optimization is a pass that operates on the target assembly and only considers

afewinstructionsatatime(througha"peephole")andattemptstodosimple,machinedependent

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

codeimprovements.Forexample,peepholeoptimizationsmightincludeeliminationofmultiplication

by 1, elimination of load of a value into a register when the previous instructionstored that value

from the register to a memory location, or replacing a sequence of instructionsby a single

instruction with the same effect. Because of its myopic view, a peephole optimizerdoes not have

the potential payoff of a full-scale optimizer, but it can significantly improve codeat a very local

level and can be useful for cleaning up the final code that resulted from morecomplex

optimizations. Much of the work done in peephole optimization can be though of asfind-replace

activity, looking for certain idiomatic patterns in a single or sequence of two to

threeInstructionsthancanbereplacedbymoreefficientalternatives.

For example, MIPS has instructions that can add a small integer constant to the value in

aregister without loading the constant into a register first, so the sequence on the left can

bereplacedwiththatontheright:

li$t0,10

lw $t1, -

8($fp)add$t2,$t

1,$t0sw$t1,-

8($fp)

lw $t1, -

8($fp)addi$t2,$

t1,10sw$t1,-

8($fp)

Whatwouldyoureplacethefollowingsequencewith?lw

$t0, -8($fp)

sw$t0,-8($fp)

Whataboutthisone?

mul$t1,$t0,2

Abstract SyntaxTree/DAG:Isnothingbutthecondensedformofaparsetreeandis

. Usefulforrepresentinglanguageconstructs

.Depicts the naturalhierarchicalstructureofthesourceprogram

- Eachinternalnoderepresentsanoperator

- Childrenofthe nodesrepresentoperands

- Leafnodesrepresentoperands

.DAG is more compact than abstract syntax tree because common sub expressions are

eliminatedA syntax tree depicts the natural hierarchical structure of a source program. Its

structure hasalreadybeendiscussedinearlierlectures.DAGsaregeneratedasacombinationof

trees:operands that are being reused are linked together, and nodes may be annotated with

variablenames (to denote assignments). This way, DAGs are highly compact, since they

eliminate localcommon sub-expressions. On the other hand, they are not soeasy to optimize,

since they aremorespecifictreeforms.However,itcanbeseenthatproperbuilding ofDAGforagiven

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

sequenceofinstructionscancompactlyrepresenttheoutcomeofthecalculation.Anexam

ple ofa syntaxtree andDAG hasbeengiven inthenextslide .

a:=b*-c+b*-c

You canseethatthe node"* "comesonlyonceintheDAG aswellastheleaf"b",but

themeaningconveyedbyboththerepresentations(ASTaswellastheDAG)remainsthesame.

IMPORTANTQUESTIONS:

1. WhatisCodeoptimization?Explaintheobjectivesofit.AlsodiscussFunctionpreservingtransfo

rmationswithyourownexamples?

2. Explainthefollowingoptimizationtechniques

(a) CopyPropagation

(b) Dead-CodeElimination

(c) CodeMotion

(d) ReductioninStrength.

4. Explaintheprinciplesourcesofcode-improvingtransformations.

5. Whatdoyoumeanbymachinedependentandmachineindependentcodeoptimization?Explai

naboutmachine dependentcodeoptimizationwithexamples.

ASSIGNMENTQUESTIONS:

1. ExplainLocalOptimizationtechniqueswith yourownExamples?

2. Explain indetailtheprocedurethat eliminating globalcommonsubexpression?

3. Whatistheneedofcodeoptimization?Justifyyouranswer?

COMPILERDESIGNNOTES IIIYEAR/ ISEM MRCET

UNIT-V

CONTROL/DATAFLOWANALYSIS:

FLOWGRAPHS:

Wecanaddflowcontrol information tothesetof basicblocksmakingupa program byconstructing a

directed graph called a flow graph. The nodes of a flow graph are the basic nodes.One node is

distinguished as initial; it is the block whose leader is the first statement. There is adirected edge

from block B1to block B2if B2can immediately follow B1in some executionsequence;thatis,if

- There is conditional or unconditional jump from the last statement of B1 to the

firststatementofB2, or

- B2immediately follows B1in the order of the program, and B1does not end in

anunconditionaljump.We saythatB1is the predecessorofB2,andB 2isa successorofB1.

Forregister andtemporaryallocation

- Removevariables fromregistersif notused

- StatementX=Yop ZdefinesXand usesYand Z

- Scaneachbasicblocksbackwards

- Assumealltemporariesaredeadonexitand alluser variablesareliveon exit

The use of a name in a three-address statement is defined as follows. Suppose three-

address statement i assigns a value to x. If statement j has x as an operand, and control can

flowfrom statement i to j along a path that has no intervening assignments to x, then we say

statementjuses thevalueofxcomputedati.

We wish to determine for each three-address statement x := y op z, what the next uses

ofx, y and z are. We collect next-use information about names in basic blocks. If the name in

aregister is no longer needed, then the register can be assigned to some other name. This idea

ofkeeping a name in storage only if it will be used subsequently can be applied in a number

ofcontexts.Itis usedtoassignspaceforattribute values.

The simple code generator applies it to register assignment. Our algorithm is to

determinenext uses makes a backward pass over each basic block, recording (in the symbol

table) for eachname x whether x has a next use in the block and if not, whether it is live on exit

from that block.We can assume that all non-temporary variables are live on exit and all

temporary variables aredeadonexit.

Algorithmtocomputenextuseinformation

- Supposewe arescanningi:X:=YopZ inbackwardscan

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

- Attachtoi,informationinsymboltableaboutX,Y,Z

- SetXtonotliveandnonextuseinsymboltable

- SetYandZtobeliveandnextuseiniinsymboltable

As an application, we consider the assignment of storage for temporary names. Suppose

wereachthree-addressstatementi:x:=yop zinourbackward scan.Wethendo thefollowing:

1. Attachtostatementitheinformationcurrentlyfoundinthesymboltableregardingthenextuse

andlivenessofx,yandz.

2. Inthesymboltable,setxto "notlive"and "nonextuse".

3. Inthesymboltable,setyandzto"live"and thenextusesofyand zto

i.Notethattheorderofsteps(2)and(3)maynotbe interchangedbecausexmaybeyorz.

Ifthree-addressstatementiisofthe formx:=yorx:=opy,the stepsarethe same

asabove,ignoringz.considerthebelow example:

1: t1= a * a2:

t 2= a * b3:

t3= 2 * t24: t4

= t 1+ t35:

t5= b * b6: t6

= t 4+

t57:X=t6

Example:

Wecanallocatestoragelocationsfortemporariesbyexaminingeachinturnandassigning a

temporary to the first location in the field for temporaries that does not contain a livetemporary.

If a temporary cannot be assigned to any previously created location, add a newlocation to the

data area for the current procedure. In many cases, temporaries can be packed

intoregistersratherthanmemorylocations,asinthe nextsection.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Example.

Thesixtemporariesinthebasicblockcanbepackedintotwolocations.Theselocationscorrespondtot

1andt2in:

1:t1=a*a,2:t2=a*b,3:t2=2*t2,4:t1=t1+t2,5:t2=b*b

6:t1=t1+t2,7:X=t1

DATAFLOWEQUATIONS:

Dataanalysis is neededforglobalcodeoptimization, e.g.:Isavariableliveonexitfromablock?Does a

definition reach a certain point in the code? Data flow equations are used to

collectdataflowinformationAtypicaldataflowequationhastheform

Out[s]=Gen[s]U(in[s]-kill[s])

The notion of generation and killing depends on the dataflow analysis problem to

besolvedLet'sfirstconsiderReachingDefinitionsanalysisforstructuredprogramsAdefinitionofa

variable x is a statement that assigns or may assign a value to x An assignment to x is

anunambiguous definition of x An ambiguous assignment to x can be an assignment to a pointer

ora function call where x is passed by reference When x is defined, we say the definition

isgeneratedAnunambiguousdefinitionofxkillsallotherdefinitionsofxWhenalldefinitionsofx are the

same at a certain point, we can use this information to do some optimizations Example:all

definitions of x define x to be 1. Now, by performing constant folding, we can do

strengthreductionifxis usedinz=x*y.

GLOBALOPTIMIZATIONS,DATA-FLOWANALYSIS

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

So far we were only considering making changes within one basic block. With

someadditional analysis, we can apply similar optimizations across basic blocks, making them

globaloptimizations. It‘s worth pointing out that global in this case does not mean across the

entireprogram. We usually only optimize one function at a time. Interprocedural analysis is an

evenlarger task, one not even attempted by some compilers. The additional analysis the

optimizermust do to perform optimizations across basic blocks is called data-flow analysis. Data-

flowanalysisismuchmorecomplicatedthancontrol-flow analysis.

Let‘s consider a global common sub-expression elimination optimization as our

example.Careful analysis across blocks can determine whether an expression is alive on entry to

a block.Suchanexpressionis saidtobe availableatthatpoint.

Oncethesetofavailableexpressionsisknown,commonsub-expressionscanbeeliminated on a

global basis. Each block is a node in the flow graph of a program. The successorset (succ(x)) for

a node x is the set of all nodes that x directly flows into. The predecessor set(pred(x)) for a node

x is the set of all nodes that flow directly into x. An expression is defined atthe point where it is

assigned a value and killed when one of its operands is subsequentlyassigned a new value. An

expression is available at some point p in a flow graph if every pathleadingtopcontains a

priordefinitionofthatexpressionwhichisnot

subsequentlykilled.

avail[B]=setofexpressionsavailableonentryto block B

exit[B]=set ofexpressionsavailableonexitfromB

avail[B]=∩exit[x]: x∈pred[B](i.e.Bhasavailabletheintersectionoftheexitofits

predecessors)

killed[B] = set of the expressions killed in

Bdefined[B] = set of expressions defined in

Bexit[B]=avail[B]- killed[B]+defined[B]

avail[B]=∩(avail[x]-killed[x] +defined[x]):x∈pred[B]

Hereisanalgorithmfor globalcommonsub-expressionelimination:

1) First, computedefinedandkilledsetsfor

eachbasicblock(thisdoesnotinvolveanyofitsredecessorsorsuccessors).

2) Iterativelycomputetheavailandexitsetsfor

eachblockbyrunningthefollowingalgorithmuntilyouhitastablefixedpoint:

a) Identifyeachstatementsofthe forma =bopc insome block

Bsuchthatbopcisavailableatthe entrytoBandneitherbnorc isredefinedinBpriortos.

b) Followflowofcontrolbackwardinthegraphpassingback tobut

notthrougheachblockthatdefines bop c.Thelastcomputationofb opcinsuchablock

reachess.

c) After each computation d = b op c identified in step 2a, add statement t = d to

thatblockwheretisanewtemp.

d) Replacesbya=t.

Letstryanexample tomake

thingsclearer:main:

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

BeginFunc

28;b=a+2;

c = 4 * b

;tmp1=b<c;

ifNZ tmp1 goto L1

;b=1;

L1:

d = a + 2

;EndFunc;

First,dividethecodeaboveintobasic

blocks.Nowcalculatetheavailableexpressionsforeach block.Then find

anexpressionavailableinablock andperformstep2cabove.

Whatcommonsubexpressioncanyousharebetweenthetwoblocks?Whatiftheabovecodewere:

main:

BeginFunc

28;b=a+2;

c = 4 * b

;tmp1=b<c;

IfNZ tmp1 Goto L1

;b=1;

z=a +2;<========= anadditionallinehereL1:

d = a + 2

;EndFunc;

CommonSubexpressionElimination

Two operations are common if they produce the same result. In such a case, it is likely

moreefficient to compute the result once and reference it the second time rather than re-evaluate

it. Anexpression is alive if the operands used to compute the expression have not been changed.

Anexpressionthatisnolongeraliveisdead.

main()

{

int x,y,z;

x=(1+20)*-x;

y= x*x+(x/y);

y= z =(x/y)/(x*x);

}

straighttranslation:

tmp1=1+20;tmp2=

-x;

x=tmp1*tmp2;tm

p3 = x * x

;tmp4=x/y;

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

y=tmp3+tmp4;

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

tmp5 = x / y

;tmp6=x*x;

z=tmp5/tmp6;y=

z;

What sub-expressions can be eliminated? How can valid common sub-expressions (live ones)

bedetermined? Here is an optimized version, after constant folding and propagation and

eliminationofcommonsub-expressions:

tmp2=-x;

x=21*tmp2;tm

p3 = x * x

;tmp4= x/y;

y=tmp3+tmp4;tm

p5=x/y;

z=tmp5/tmp3;y=

z;

InductionVariableElimination

Constantfoldingreferstotheevaluationatcompile-timeofexpressionswhoseoperands are

known to be constant. In its simplest form, it involves determining that all of theoperands in an

expression are constant-valued, performing the evaluation of the expression atcompile-time, and

then replacing the expression by its value. If an expression such as 10 + 2 * 3is encountered, the

compiler can compute the result at compile-time (16) and emit code as if theinput contained the

result rather than the original expression. Similarly, constant conditions, suchas a conditional

branch if a < b goto L1 else goto L2 where a and b are constant can be replacedby a Goto L1 or

Goto L2 depending on the truth of the expression evaluated at compile-time.The

constantexpression has to be evaluated at least once, but if the compiler does it, it meansyou

don‘t have to do it again as needed during runtime. One thing to be careful about is that

thecompiler must obey the grammar and semantic rules from the source language that apply

toexpressionevaluation,whichmaynotnecessarilymatchthelanguageyouarewritingthecompilerin.

(For example,if you were writing an APL compiler,you would need to take carethat you were

respecting its Iversonian precedence rules). It should also respect the expectedtreatment of any

exceptional conditions (divide by zero, over/underflow). Consider the

DecafcodeonthefarleftanditsunoptimizedTACtranslationinthemiddle,whichisthentransformedbyc

onstant-foldingonthe farright:

a = 10*5+ 6-b;_tmp0= 10;

_tmp1 = 5;

_tmp2=_tmp0* _tmp1 ;

_tmp3 = 6;

_tmp4=_tmp2+_tmp3 ;

_tmp5 = _tmp4 –

b;a = _tmp5;

_tmp0 = 56 ;_tmp1=_tmp0– b;a= _tmp1 ;

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Constant-foldingiswhat allowsa languagetoacceptconstantexpressionswhereaconstantisrequired

(suchasa caselabelorarraysize)asinthese Clanguage examples:

int arr[20 * 4 +

3];switch(i){

case10*5:...

}

In both snippets shown above, the expression can be resolved to an integer constant at

compiletime and thus, we have the information needed to generate code. If either expression

involved avariable, though, there would be an error. How could you rewrite the grammar to

allow thegrammar to do constant folding in case statements? This situation is a classic example

of the grayarea betweensyntactic andsemanticanalysis.

LiveVariableAnalysis

Avariableis liveatacertainpointinthecodeifitholdsavaluethatmaybeneededinthefuture.

Solvebackwards:

FinduseofavariableThisvariableis

livebetweenstatementsthathavefounduseasnextstatementRecursive untilyoufinda

definitionofthevariable

Using the sets use[B]and def[B]

de f[B] is the set of variables assigned values in B prior to any use of that variable in B use

[B]istheset ofvariableswhosevaluesmay beusedin [B]priortoanydefinitionofthevariable.

A variable comes live into a block (in in[B]), if it is either used before redefinition of it

islive coming out of the block and is not redefined in the block .A variable comes live out of

ablock(inout[B])ifandonlyifitislive comingintoone ofitssuccessors

In[B]=use[B] U (out[B]-de

f[B])Out[B]=Uin[s]

Ssucc[B]

Notetherelationbetweenreaching-definitionsequations:therolesofin and outareinterchanged

CopyPropagation

This optimization is similar to constant propagation, but generalized to non-

constantvalues. If we have an assignment a = b in our instruction stream, we can replace

lateroccurrencesofawithb (assumingtherearenochangestoeithervariablein-between).

GiventhewaywegenerateTACcode,thisisaparticularlyvaluableoptimizationsinceitisable to

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

eliminate a large number of instructions that only serve to copy values from one variable

toanother. The code on the left makes a copy of tmp1 in tmp2 and a copy of tmp3 in tmp4. In

theoptimized version on the right, we eliminated those unnecessary copies and propagated

theoriginalvariableintothe lateruses:

tmp2=tmp1 ;

tmp3=tmp2*tmp1;t

mp4= tmp3;

tmp5=tmp3*tmp2;c =

tmp5 + tmp4

;tmp3=tmp1*tmp1;t

mp5=tmp3*tmp1;c

=tmp5+ tmp3;

We can also drive this optimization "backwards", where we can recognize that the

originalassignment made to a temporary can be eliminated in favor of direct assignment to the

final goal:tmp1=LCall_Binky;

a =tmp1;

tmp2 = LCall _Winky

;b=tmp2;

tmp3 = a * b

;c =tmp3;

a = LCall

Binky;b=LCall

Winky;c=a*b;

IMPORTANTQUESTIONS:

1. WhatisDAG?ExplaintheapplicationsofDAG.

2. Explainbrieflyaboutcodeoptimizationanditsscopeinimprovingthecode.

3. ConstructtheDAGforthefollowingbasicblock:D

:=B*C

E:=A+B

B :=

B+CA:=

E-D.

3. ExplainDetectionofLoop InvariantComputation

4. ExplainCodeMotion.

ASSIGNMENTQUESTIONS:

1. Whatisloops?Explainaboutthefollowingtermsin

loops:(a)Dominators

(b) Naturalloops

(c) Innerloops

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

(d) pre-headers.

2. WriteshortnotesonGlobaloptimization?

COMPILERDESIGNNOTES IIIYEAR/ ISEM MRCET

OBJECTCODEGENERATION

Machinedependentcodeoptimization:

In final code generation, there is a lot of opportunity for cleverness in generating

efficienttarget code. In this pass, specific machines features (specialized instructions, hardware

pipelineabilities, register details) are taken into account to produce code optimized for this

particulararchitecture.

RegisterAllocation

Onemachine optimization of particularimportanceis register allocation, which isperhaps

the single most effective optimization for all architectures. Registers are the fastest kindof

memory available, but as a resource, they can be scarce. The problem is how to minimizetraffic

between the registers and whatlies beyond them in the memory hierarchy to eliminatetime wasted

sending data back and forth across the bus and the different levels of caches. YourDecaf back-

end uses a very naïve and inefficient means of assigning registers, it just fills thembefore

performing an operation and spills them right afterwards. A much more effective strategywould

be to consider which variables are more heavily in demand and keep those in registers andspill

those that are no longer needed or won't be needed until much later. One common

registerallocation technique is called "register coloring", after the central idea to view register

allocationas a graph coloring problem. If we have 8 registers, then we try to color a graph with

eightdifferentcolors.Thegraph‘snodesaremadeof"webs"andthearcsaredeterminedbycalculatinginte

rference between the webs.A web represents a variable‘s definitions,placeswhere it is assigned a

value (as in x = …), and the possible different uses of those definitions (asin y = x + 2). This

problem, in fact, can be approached as another graph. The definition and usesof a variable are

nodes, and if a definition reaches a use, there is an arc between the two nodes. Iftwo portions of a

variable‘s definition-use graph are unconnected, then we have two separatewebs for a variable. In

the interference graph for the routine, each node is a web. We seek todetermine which webs don't

interfere with one another, so we know we can use the same

registerforthosetwovariables.Forexample,considerthefollowingcode:

i=10;

j=20;

x = i +

j;y=j+k;

We say that iinterferes with j because at least one pair of i‘s definitions and uses

isseparated by a definition or use of j, thus, iand j are "alive" at the same time. A variable is

alivebetween the time it has been defined and that definition‘s last use, after which the variable

isdead. If two variables interfere, then we cannot use the same register for each. But two

variablesthatdon'tinterferecansincethereisnooverlapinthelivenessandcanoccupythesameregister.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Once we have the interference graph constructed, we r-color it so that no two adjacent

nodesshare the same color (r is the number of registers we have, each color represents a

differentregister). You may recall that graph-coloring is NP-complete, so we employ a heuristic

ratherthananoptimalalgorithm.Hereisasimplified versionofsomethingthatmightbeused:

1. Findthenodewiththeleastneighbors.(Breaktiesarbitrarily.)

2. Removeitfromtheinterferencegraphandpushitontoastack

3. Repeatsteps1and2untilthegraph is empty.

4. Now,rebuildthegraphasfollows:

a. Takethetopnodeoffthestack and reinsertitintothegraph

b. Chooseacolor foritbased

onthecolorofanyofitsneighborspresentlyinthegraph,rotatingcolorsincase

thereismorethanonechoice.

c. Repeataandbuntilthegraphiseither completelyrebuilt,orthereis no

coloravailable tocolorthenode.

If we get stuck, then the graph may not be r-colorable, we could try again with a

differentheuristic, say reusing colors as often as possible. If no other choice, we have to spill a

variable tomemory.

InstructionScheduling:

Anotherextremelyimportantoptimizationofthefinalcodegeneratorisinstructionscheduling.

Because many machines,including most RISC architectures,have some sort

ofpipeliningcapability,effectivelyharnessingthatcapabilityrequiresjudiciousorderingofinstructions.

In MIPS, each instruction is issued in one cycle, but some take multiple cycles tocomplete. It

takes an additional cycle before the value of a load is available and two cycles for abranch to

reach its destination, but an instruction can be placed in the "delay slot" after a branchand

executed in that slack time. On the leftis one arrangement of a set of instructions thatrequires 7

cycles. It assumes no hardware interlock and thus explicitly stalls between the secondand third

slots while the load completes and has a Dead cycle after the branch because the delayslot holds

a noop. On the right, a more Favorable rearrangement of the same instructions willexecute

in5cycleswithnodeadCycles.

lw$t2,

4($fp)lw $t3,

8($fp)noop

add $t4, $t2,

$t3subi$t5,$t5,1

gotoL1

noop

lw $t2,

4($fp)lw $t3,

8($fp)subi $t5,

$t5, 1gotoL1

add $t4,$t2,$t3

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

RegisterAllocation

Onemachine optimization of particularimportanceis register allocation, which isperhaps

the single most effective optimization for all architectures. Registers are the fastest kindof

memory available, but as a resource, they can be scarce. The problem is how to minimizetraffic

between the registers and whatlies beyond them in the memory hierarchy to eliminatetime wasted

sending data back and forth across the bus and the different levels of caches. YourDecaf back-

end uses a very naïve and inefficient means of assigning registers, it just fills thembefore

performing an operation and spills them right afterwards. A much more effective strategywould

be to consider which variables are more heavily in demand and keep those in registers andspill

those that are no longer needed or won't be needed until much later. One common

registerallocation technique is called "register coloring", after the central idea to view register

allocationas a graph coloring problem. If we have 8 registers, then we try to color a graph with

eightdifferentcolors.Thegraph‘snodesaremadeof"webs"andthearcsaredeterminedbycalculatinginte

rference between the webs.A web represents a variable‘s definitions,placeswhere it is assigned a

value (as in x = …), and the possible different uses of those definitions (asin y = x + 2). This

problem, in fact, can be approached as another graph. The definition and usesof a variable are

nodes, and if a definition reaches a use, there is an arc between the two nodes. Iftwo portions of a

variable‘s definition-use graph are unconnected, then we have two separatewebs for a variable. In

the interference graph for the routine, each node is a web. We seek todetermine which webs don't

interfere with one another, so we know we can use the same

registerforthosetwovariables.Forexample,considerthefollowingcode:

i=10;

j=20;

x = i +

j;y=j+k;

We say that iinterferes with j because at least one pair of i‘s definitions and uses

isseparated by a definition or use of j, thus, iand j are "alive" at the same time. A variable is

alivebetween the time it has been defined and that definition‘s last use, after which the variable

isdead. If two variables interfere, then we cannot use the same register for each. But two

variablesthatdon'tinterferecansincethereis

nooverlapinthelivenessandcanoccupythesameregister.Once we have the interference graph

constructed, we r-color it so that no two adjacent nodesshare the same color (r is the number of

registers we have, each color represents a differentregister). You may recall that graph-coloring

is NP-complete, so we employ a heuristic ratherthananoptimalalgorithm.Hereisasimplified

versionofsomething thatmightbeused:

1. Findthenodewiththeleastneighbors.(Breaktiesarbitrarily.)

2. Removeitfromtheinterferencegraphandpushitontoastack

3. Repeatsteps1and 2untilthegraphisempty.

4. Now,rebuildthegraphasfollows:

a. Takethetopnodeoffthestack and reinsertitintothegraph

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

b. Chooseacolorfor itbased

onthecolorofanyofitsneighborspresentlyinthegraph,rotatingcolorsincase

thereismorethanonechoice.

c. Repeataandbuntilthegraphiseithercompletelyrebuilt,orthereis

nocoloravailabletocolorthenode.

If we get stuck, then the graph may not be r-colorable, we could try again with a

differentheuristic, say reusing colors as often as possible. If no other choice, we have to spill a

variable tomemory.

CODEGENERATION:

The code generator generates target code for a sequence of three-address statement.

Itconsiders each statementin turn, rememberingif any of theoperands ofthestatementarecurrently

in registers, and taking advantage of that fact, if possible. The code-generation

usesdescriptorstokeeptrackofregistercontents andaddressesfornames.

1. A register descriptor keeps track of what is currently in each register. It is consulted

whenevera new register is needed. We assume that initially the register descriptor shows that all

registersare empty. (If registers are assigned across blocks, this would not be the case). As the

codegeneration for the block progresses, each register will hold the value of zero or more names

atanygiventime.

2. An address descriptor keeps track of the location (or locations) where the current value of

thename can be found at run time. The location might be a register, a stack location, a

memoryaddress,orsomesetofthese,sincewhencopied,avaluealsostayswhereitwas.Thisinformationc

anbestoredinthesymboltableandisusedtodeterminetheaccessingmethodfora name.

CODEGENERATIONALGORITHM:

foreachX=YopZdo

- InvokeafunctiongetregtodeterminelocationL whereXmustbestored.UsuallyLisaregister.

- ConsultaddressdescriptorofYtodetermineY'.Prefer aregister for

Y'.IfvalueofYnotalreadyinLgenerate

MovY',L

- Generate

opZ',L

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Again prefer a register for Z. Update address descriptor of X to indicate X is in L. If L is

aregister update its descriptor to indicate that it contains X and remove X from all other

registerdescriptors.

. IfcurrentvalueofYand/or

Zhasnonextuseandaredeadonexitfromblockandareinregisters,changeregisterdescriptortoindicat

ethattheynolongercontainYand/or Z.

The code generation algorithm takes as input a sequence of three-address statements

constitutinga basic block. For each three-address statement of the form x := y op z we perform

the followingactions:

1. InvokeafunctiongetregtodeterminethelocationLwheretheresultofthecomputation y op z

should be stored. L will usually be a register, but it could also be amemorylocation.We

shalldescribe getregshortly.

2. Consulttheaddressdescriptorforutodeterminey',(oneof)thecurrentlocation(s)of

y. Prefer the register for y' if the value of y is currently both in memory and a register.

Ifthe value of u is not already in L, generate the instruction MOV y', L to place a copy of

yinL.

3. Generate the instruction OP z', L where z' is a current location of z. Again, prefer

aregister to a memory location if z is in both. Update the address descriptor to indicate

thatx is in location L. If L is a register, update its descriptor to indicate that it contains

thevalue ofx,andremovexfromallotherregisterdescriptors.

4. If the current values of y and/or y have no next uses, are not live on exitfrom

theblock,andareinregisters,altertheregisterdescriptortoindicatethat,afterexecutionofx:=yop

z,those registersnolongerwillcontain yand/orz,respectively.

FUNCTIONgetreg:

1. IfYisinregister(thatholdsnoothervalues)andYisnotliveandhasnonextuseafterX=YopZ

thenreturnregisterofYforL.

2. Failing (1)returnanemptyregister

3. Failing(2) ifXhasanextuseintheblockoroprequiresregisterthengetaregister

R,storeitscontentintoM(byMovR,M)anduseit.

4. ElseselectmemorylocationXasL

ThefunctiongetregreturnsthelocationLtoholdthevalueofxfortheassignmentx:=yopz.

1. If the name y is in a register that holds the value of no other names (recall that

copyinstructionssuchasx:=ycouldcausearegistertoholdthevalueoftwoormorevariables

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

simultaneously),andyisnotliveandhasnonextuseafter

executionofx:=yopz,thenreturntheregisterofyforL.Updatetheaddressdescriptorofytoindicatethat

yisnolongerinL.

2. Failing (1),returnanemptyregisterforLifthereisone.

3. Failing(2),ifxhasanextuseintheblock,oropisanoperatorsuchasindexing,thatrequiresa register,

find an occupied register R. Store the value of R into memory location (by

MOVR,M)ifitisnotalreadyinthepropermemorylocationM,updatetheaddressdescriptorM,andreturn

R. IfRholds

thevalueofseveralvariables,aMOVinstructionmustbegeneratedforeachvariablethatneedstobestored

.Asuitableoccupiedregistermightbeonewhosedatumisreferencedfurthestinthefuture,orone whose

valueisalsoinmemory.

4. Ifxisnotusedintheblock,ornosuitableoccupiedregistercanbefound,selectthememorylocationofxa

sL.

Example:

Stmt

code

reg desc

addr desc

t1=a-b mova,R0

subb,R0

R0containst1 t1inR0

t2=a-c mova,R1

subc,R1

R0containst1

R1containst2

t1inR0

t2inR1

t3=t1+t2 addR1,R0 R0containst3

R1containst2

t3inR0

t2inR1

d=t3+t2 addR 1,R0

movR0,d

R0containsd dinR0

dinR0and
 memory

Forexample,theassignmentd:=(a-b) +(a-c)+(a-c)mightbetranslatedintothefollowingthree-

address codesequence:

t1= a -

bt2=a-c

t

3=t1+t2d=t3

+t2

The code generation algorithm that we discussed would produce the code sequence as

shown.Shownalongsideare thevaluesof

theregisterandaddressdescriptorsascodegenerationprogresses.

DAGforRegisterallocation:

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

DAG(DirectedAcyclicGraphs)areusefuldatastructuresforimplementingtransformations on

basic blocks.A DAGgivesa picture of how the value computedby astatement in a basic block is

used in subsequent statements of the block. Constructing a DAGfromthree-

addressstatementsisagoodwayofdeterminingcommonsub-expressions(expressions computed more

than once) within a block, determining which names are used insidethe block but evaluated

outside the block, and determining which statements of the block couldhave

theircomputedvalueusedoutsidetheblock.

ADAGforabasicblockisadirectedcyclicgraphwiththefollowinglabelsonnodes:

1. Leaves are labeled by unique identifiers, either variable names or constants. From

theoperator applied to a name we determine whether the l-value or r-value of a nameis

needed;most leaves represent r- values. The leaves represent initial values of names, and we

subscriptthemwith0 toavoidconfusionwith labelsdenoting"current"valuesofnamesasin(3)below.

2. Interiornodesarelabeledbyanoperatorsymbol.

3. Nodes are also optionally given a sequence of identifiers for labels. The intention

isthat interior nodes represent computed values, and the identifiers labeling a node are deemed

tohave thatvalue.

DAGrepresentationExample:

For example, the slide shows a three-address code. The corresponding DAG is shown.Weobserve

that each node of the DAG represents a formula in terms of the leaves, that is, the

valuespossessed by variables and constants upon entering the block. For example, the node

labeled t 4representstheformula

b[4*i]

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

thatis,thevalueofthewordwhoseaddressis4*ibytesoffsetfromaddressb,which

istheintendedvalueoft4.

CodeGenerationfromDAG

S1=4*i S1=4*i

S2=addr(A)-4 S2=addr(A)-4

S3=S2[S1] S3=S2[S1]

S4=4*i

S5=addr(B)-4 S5=addr(B)-4

S6=S5[S4] S6=S5[S4]

S7=S3*S6 S7=S3*S6

S8=prod+S7

prod=S8 prod=prod+S 7

S9=I+1

I=S9 I=I+1

IfI<=20goto(1) IfI<= 20goto(1)

Weseehowtogeneratecodefora basicblockfromitsDAGrepresentation.Theadvantage of

doing so is that from a DAG we can more easily see how to rearrange the order ofthe final

computation sequence than we can starting from a linear sequence of three-addressstatements or

quadruples. If the DAG is a tree, we can generate code that we can prove is optimalunder such

criteria as program length or the fewest number of temporaries used. The

algorithmforoptimalcodegeneration froma treeisalsousefulwhentheintermediatecodeisa parsetree.

Rearrangingorderofthe code

Considerfollowingbasic

block:

t 1 = a +

bt 2 = c +

dt3=e-t2

X=t1-t3

anditsDAGgivenhere.

COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET

Here, we briefly consider how the order in which computations are done can affect

thecost of resulting object code. Consider the basic block and its corresponding DAG

representationasshownintheslide.

Rearranging order.

Threeadresscodefor

theDAG(assumingo

nlytworegisters

 are

available)

Rearrangingthecodeast2

=c+d

t3=e-t2

t1=a+b

MOVa, R0 X=t1-t3

ADDb,R0 gives

MOVc, R1 MOV c,R0

ADD d,R1 ADDd,R0

MOVR0,t1 Registerspilling MOV e,R1

MOVe,R0 SUBR0,R1

SUBR1,R0 MOV a,R 0

MOVt1,R1 Registerreloading ADDb,R0

SUBR0,R1 SUBR 1,R0

MOVR1,X MOV R1,X

Ifwegeneratecodeforthethree-addressstatementsusingthecodegenerationalgorithmdescribed

before, we get the code sequence as shown (assuming two registers R0 and R1 areavailable, and

only X is live on exit). On the other hand suppose we rearranged the order of

thestatementssothatthecomputationoft1occurs immediatelybeforethatofX as:

t2 = c +

dt3 = e -t

2t1 = a +

bX =t1-t3

Then, using the code generation algorithm, we get the new code sequence as shown (again

onlyR0 and R1 are available).By performing the computation in this order, we have been able

tosave two instructions; MOV R0, t 1 (which stores the value of R0 in memory location t 1)

andMOV t1,R1(whichreloads the valueoft1intheregisterR1).

COMPILERDESIGNNOTES IIIYEAR/ ISEM MRCET

IMPORTANT&EXPECTEDQUESTIONS:

ConstructtheDAGforthefollowingbasicblock:D

:=B*C

E:=A+B

B :=

B+CA:=

E-D.

1. WhatisObjectcode?Explainaboutthefollowingobjectcodeforms:

(a) Absolutemachine-language

(b) Relocatablemachine-language

(c) Assembly-language.

2. ExplainaboutGenericcodegenerationalgorithm?

3. Writeandexplainaboutobjectcodeforms?

4. ExplainPeepholeOptimization

ASSIGNMENTQUESTIONS:

1. ExplainaboutGenericcodegenerationalgorithm?

2. ExplainaboutData-Flowanalysisofstructuredflowgraphs.

3. WhatisDAG?ExplaintheapplicationsofDAG.

	(AutonomousInstitution– UGC,Govt.ofIndia)
	(R18A0512)CompilerDesign
	INDEX

	UNIT-I
	INTRODUCTIONTOLANGUAGEPROCESSING:
	LANGUAGETRANSLATORS:
	SourceProgram
	Output

	LANGUAGEPROCESSINGSYSTEM:
	Preprocessor

	TYPESOFCOMPILERS:
	PHASESOFACOMPILER:
	PHASE,PASSESOFACOMPILER:
	THEFRONT-END& BACK-ENDOFACOMPILER

	LEXICALANALYSIS
	TOKENS,PATTERNSANDLEXEMES:
	LEXICALANALYSISVsPARSING:Thereareanumber ofreasonswhytheanalysisportionofacompilerisnormallyseparatedintolexicalanalysis andparsing(syntaxanalysis)phases.

	INPUTBUFFERING:
	BufferPairs
	Figure1.8:UsingaPairofInput Buffers
	SentinelsToImproveScannersPerformance:
	Figure1.8 :Sententialattheend ofeachbuffer
	caseeof:if(forwardisat endoffirstbuffer)
	elseif(forward isatend ofsecondbuffer)
	Figure1.9:useofswitch-case forthe sentential
	LEXtheLexicalAnalyzergenerator
	LEXProgramExample:

	SYNTAXANALYSIS(PARSER)
	THEROLEOFTHEPARSER:
	Figure2.1:ParserintheCompiler

	IMPORTANT(OR)EXPECTEDQUESTIONS
	UNIT-II
	1. TableDrivenPredictiveParsing:

	BackTracking
	NONBACKTRACKING:
	LL(1) ParsingorPredictiveParsing

	NotationalConventionsUsedInWritingCFGs:
	1. Thesesymbolsareterminals:
	2. Thesesymbolsarenonterminals:
	EE +T |E–T |T

	DERIVATIONS:
	LeftMostDerivation(LMD):
	E=>E+E
	=>id+E*E
	=>id+id*id

	RightMostDerivation(RMD):
	E=>E+E
	=>E+ E*id
	=>id+id*id

	WhatisaParseTree?
	AMBIGUITYinCFGs:
	E=>E+E E=>E*E
	=>id+E =>E+E*E
	=>id+id*E =>id+id*E
	1) E->E+T|T
	T->T*F|F
	1) E E+T |T

	LEFTRECURSION:
	E E+T |T
	E TE′
	T FT′

	LEFTFACTORING:
	FIRSTandFOLLOW:
	ComputationofFIRST:
	ComputationOfFOLLOW:
	2. E′ +TE′|€
	4. T′ *FT′ |€
	ComputingFIRSTValues:
	ComputingFOLLOWValues:

	ConstructingPredictiveOrLL(1)ParseTable:

	LL(1)ParsingAlgorithm:
	STRINGACCEPTANCEBYPARSER:
	PanicmodeErrorRecovery:
	PhraseLevelRecovery:
	RECURSIVEDESCENTPARSING:
	E TE′
	T FT′
	F (E)|id
	S cAd

	IMPORTANTANDEXPECTEDQUESTIONS
	ASSIGNMENTQUESTIONS

	BOTTOM-UPPARSING
	E E+T|T
	F (E)|id
	Figure3.1 :ABottom-up ParsetreefortheinputString“id*id”
	E E+T|T (1)
	F (E)|id (1)
	S aAcBe
	B d
	abbcde aAbcde aAcde aAcBe S
	E E+E/E E-E /E E*E /E E/E/E E^E /E -E/E (E)/E
	Operatorprecedenceparserconsistsof:
	InputBuffer
	Stack
	E E+E
	E E*E
	E E^E
	E (E)
	E E+E (1)
	E id
	2.$<•E•>*<•id•>$
	3.$<•*<•id•>$
	OperatorParsingAlgorithm:
	E

	AdvantagesandDisadvantagesofOperatorPrecedenceParsing:
	LRParsing:
	InputBuffer
	Stack
	1. ACTIONPart
	2. GOTOPart
	AugmentGrammar
	theAugmentgrammarG`isRepresentedby
	CanonicalcollectionofLR (0)items
	CanonicalcollectionofLR(0)Items:
	Closureoperation
	Example:
	E ` •E
	1. T •F
	GOTOOperation
	Goto (I0,E)isE E•+T,E` E.=Closure({E` E•,E E•+T})
	ConstructionofLR(0)parsingTable:
	ForExample,Construct theLR(0)parsing Tableforthegiven Grammar(G)
	B bB|b
	0. S′ •S
	2. B •bB
	I0 =Closure(S′ •S)
	I0= S′ •S
	I1=Goto(I0,S)
	I2=Goto(I0,a)=closure (S a•B)
	I2= B •bB
	B •bB
	I3= Goto(I2,B)= Closure(S aB•)= S aB•I4= Goto(I2,b) =closure({B b•B,B b•})
	I5= Goto(I2,b)=Closure(B b•)=B b•
	b B->•bB
	B->b• b

	LRParsingTable:
	Reduce-ReduceConflictin LR(0)Parsing:
	1. A α•

	SLRPARSERCONSTRUCTION:WhatisSLR(1)Parsing
	SLR(1)ParsingTableConstruction
	S aB
	Follow(S) ={$},Follow(B) ={$}
	Conflictsin theSLR(1)Parsing:
	Reduce-ReduceConflictinSLR(1)Parsing
	1. A α•
	IfTheGrammaris
	B->β
	S->CCC->cCC->d
	1. S->•CC
	S′->•S,$=Closure(S′->•S,$)
	S->•CC,$
	C->•cC, FIRST(C, $)C->•d,FIRST(C, $)
	C->•cC, c/dC->•d,c/d
	S′->•S , $S->•CC,$
	I1=Goto(I0,S)=S′->S•,$
	C->•cC , $C->•d,$
	C->•cC,c/d
	C->c•C, c/dC->•cC, c/dC->•d, c/d
	I5=Goto(I2,C)=closure(S->CC•,$)=S->CC•,$I6= Goto(I2, c)= closure(C->c•C ,$)=
	C->c•C , $C->•cC , $C->•d,$
	Goto(I6, d)=Closure(C->d•,$)= I7
	ConstructionofCLR(1)Table

	LALR(1)Parsing
	C->c•C, c/dC->•cC, c/dC->•d, c/d
	C->c•C , $C->•cC , $C->•d,$
	Table:LALRTable
	Shift-ReduceConflictinCLR(1)Parsing
	Reduce/ReduceConflictinCLR(1)Parsing
	3. A α•
	StringAcceptanceusingLRParsing:
	1 S->•CC
	3C->•d

	UNIT-III
	INTERMEDIATECODEGENERATION
	WhataretheAdvantagesofanintermediatelanguage?
	GraphicalRepresentations
	WhatisThreeAddressCode?
	TypesofThree-AddressStatements
	SYNTAXDIRECTEDTRANSLATIONOFTHREEADDRESSCODE
	IMPLEMENTATIONSOFTHREE-ADDRESSSTATEMENTS:
	QUADRUPLES:
	TRIPLES:
	Table8.8 (a):Qudraples Table8.8(b):Triples:Triples
	IndirectTriples
	FOLLOWINGTHINGSAREDONEINSEMANTICANALYSIS:
	CONSTRUCTINGABSTRACTSYNTAXTREEFOREXPRESSIONS:
	P 1 = mkleaf(id, entry.a)P2=mkleaf(num,4)
	P5=mknode(+,P3,P4)
	- Syntaxdirected definition(SDD)s
	- SyntaxdirectedTranslationschemes(SDT)s
	L En{printf(„E.val‟)}
	T {printf(„*‟)}T1*FT F
	F {printf(„id.lexval‟)}id
	Example:Thefollowingsequence of functioncallscreatesaparsetree fora-4+ c
	P 3 = mknode(-, P 1 , P 2)P4 =mkleaf(id,entry.c)

	Asyntaxdirecteddefinitionforconstructingsyntaxtree
	TYPESYSTEM ANDTYPECHECKING:

	TYPEEXPRESSION:
	Assumptions:
	TYPECHECKINGOFFUNCTIONS:

	ASSIGNMENTQUESTIONS:
	SYMBOLTABLE
	LongLengthData:
	ACCESS TO NON-LOCALNAMES:
	ORGANIZATIONFORBLOCKSTRUCTURES:
	Therearetwomethodsofimplementingblockstructureincompilerconstruction:
	DYNAMICSTORAGEALLOCATION:

	ExplicitAllocationofVariableSizeBlocks:
	RUNTIMESTORAGEMANAGEMENT:
	LOCALSYMBOLTABLEMANAGEMENT:
	NestingstructureofanexamplePascalprogram
	STORAGEALLOCATIONFORARRAYS
	D
	D D ; D
	STORAGEALLOCATIONFORRECORDS
	NamesintheSymboltable:

	CODEOPTIMIZATION
	Criteriaforcodeimprovementtransformations
	ScopeofOptimization:Control-FlowAnalysis
	LOCALOPTIMIZATIONS
	FUNCTIONPRESERVINGTRANSFORMATIONS

	1. CommonSubExpressionElimination:
	2. VariablePropagation:
	CompileTimeevaluation

	3. DeadCodeElimination:
	4. CodeMovement:
	5. StrengthReduction:
	GLOBALOPTIMIZATIONS,DATA-FLOWANALYSIS:
	avail[B]=∩(avail[x]-killed[x] +defined[x]):x∈pred[B]
	MACHINEOPTIMIZATIONS
	REGISTERALLOCATION:
	INSTRUCTIONSCHEDULING:

	PEEPHOLEOPTIMIZATIONS:
	UNIT-V
	FLOWGRAPHS:
	DATAFLOWEQUATIONS:
	GLOBALOPTIMIZATIONS,DATA-FLOWANALYSIS
	avail[B]=∩(avail[x]-killed[x] +defined[x]):x∈pred[B]
	CommonSubexpressionElimination
	InductionVariableElimination
	LiveVariableAnalysis
	CopyPropagation
	RegisterAllocation
	InstructionScheduling:
	RegisterAllocation (1)
	CODEGENERATION:
	FUNCTIONgetreg:

	DAGforRegisterallocation:
	S4=4*i
	Considerfollowingbasicblock:
	X=t1-t3
	ThreeadresscodefortheDAG(assumingonlytworegisters areavailable)

