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UNIT-I 

INTRODUCTIONTOLANGUAGEPROCESSING: 

AsComputersbecameinevitableandindigenouspartofhumanlife,andseverallanguageswithdif

ferentandmoreadvancedfeaturesareevolvedintothisstreamtosatisfyorcomforttheuserin 

communicating with the machine , the development of the translators or mediator Software‘shave 

become essential to fill the huge gap between the human and machine understanding. Thisprocess 

is called Language Processing to reflect the goal and intent of the process. On the way tothis 

process to understand it in a better way, we have to be familiar with some key terms 

andconceptsexplainedinfollowing lines. 

LANGUAGETRANSLATORS: 

 

Is a computer program which translates a program written in one (Source) language to 

itsequivalentprograminother[Target]language.TheSourceprogramisahighlevellanguagewhereasthe 

Target language can be any thing from the machine language of a target machine 

(betweenMicroprocessortoSupercomputer)toanotherhighlevellanguageprogram. 

TwocommonlyUsed TranslatorsareCompiler and Interpreter 

1. Compiler: Compilerisaprogram,readsprograminonelanguagecalledSourceLanguageand 

translates in to its equivalent program in another Language called Target Language, 

inadditiontothisits presentstheerrorinformationtotheUser. 

 

 

 

Ifthetargetprogramisanexecutablemachine-languageprogram,itcanthenbecalledbythe users 

toprocessinputs andproduceoutputs. 

 

 

Input Output 

 

Figure1.1:RunningthetargetProgram 
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2. Interpreter: An interpreteris another commonly usedlanguage processor.Instead of producinga target 

program as a single translation unit, an interpreter appears to directly execute 

theoperationsspecifiedinthe sourceprogramoninputssuppliedbytheuser. 

 

SourceProgram 

Input 

 

 

Output 

 
Figure1.2:RunningthetargetProgram 

 

LANGUAGEPROCESSINGSYSTEM: 

Basedontheinputthetranslatortakesandtheoutput 

itproduces,alanguagetranslatorcanbecalledasfollowing. 

Preprocessor:Apreprocessortakestheskeletalsourceprogramasinputandproducesanextendedversion 

of it, which is the resultant of expanding the Macros, manifest constants if any, andincluding 

header files etc in the source file. For example, the C preprocessor is a macro 

processorthatisusedautomaticallybytheCcompilertotransformoursourcebeforeactualcompilation.O

verandabove apreprocessorperforms the followingactivities: 

 Collectsallthemodules,filesincaseifthesourceprogramisdividedintodifferentmodulesstoredatdif

ferentfiles. 

 Expandsshorthands/macrosintosourcelanguagestatements. 

Compiler:Is a translator that takes as input a source program written in high level language 

andconvertsitintoitsequivalenttarget 

programinmachinelanguage.Inadditiontoabovethecompileralso 

 Reportstoitsuserthepresenceoferrorsinthesourceprogram. 

 Facilitatestheuserinrectifyingtheerrors,andexecutethecode. 

Assembler:Isaprogramthattakesasinputanassemblylanguageprogramandconvertsitintoitsequivalentma

chinelanguagecode. 

Loader/Linker:Thisisaprogramthattakesasinputarelocatablecodeandcollectsthelibraryfunctions,reloc

atableobjectfiles,and producesitsequivalentabsolutemachinecode. 

Specifically, 

 Loadingconsistsoftakingtherelocatablemachinecode,alteringtherelocatableaddresses,andplacin

gthealteredinstructionsanddatainmemoryattheproperlocations. 

 Linking allows us to make a single program from several files of relocatable machinecode. 

Thesefilesmay havebeen resultof several differentcompilations, one or moremay 

belibraryroutinesprovidedbythesystemavailableto anyprogramthatneedsthem. 

 

Interpreter 
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In addition to these translators, programs like interpreters, text formatters etc., may be used 

inlanguage processing system.  

To translate a program in a high-level language to 

anexecutableone,thecompilerperformsbydefaultthe compileandlinkingfunctions. 

Normally the steps in a language processing system include: Preprocessing the skeletal 

Sourceprogram which produces an extended or expanded source or a ready to compile unit ofthe 

source program, followed by compiling the resultant code, then linking/loading, and finally 

itsequivalent executable code is produced. As I said earlier, not all these steps are mandatory. 

Insomecases,theCompiler onlyperformsthislinking andloadingfunctionsimplicitly. 

The steps involved in a typical language processing system can be understood with 

followingdiagram. 

SourceProgram [Example:filename.C] 

 

 

Preprocessor 

 
ModifiedSourceProgram [Example:filename.C] 

 
 

TargetAssemblyProgram 

 

RelocatableMachineCode[Example:filename.obj] 

 

LibraryfilesRelocatable

Objectfiles 

 

TargetMachineCode [Example: filename.exe] 

Figure1.3:ContextofaCompilerinLanguageProcessingSystem 

 

TYPESOFCOMPILERS: 

Basedonthespecificinputittakesandtheoutputitproduces,theCompilerscanbeclassifiedintothefol

lowingtypes; 

Loader/Linker 

Compiler 

Assembler 
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 TraditionalCompilers(C,C++, 

Pascal):TheseCompilersconvertasourceprograminaHLLintoitsequivalentinnativemachine

codeorobjectcode. 

 Interpreters(LISP,SNOBOL,Java1.0):TheseCompilersfirstconvertSourcecodeintointermediate

code,andtheninterprets(emulates)ittoitsequivalentmachine code. 

 Cross-Compilers:These are the compilers thatrun on one machine and produce code 

foranothermachine. 

 IncrementalCompilers:Thesecompilersseparatethesourceintouserdefined–

steps;Compiling/recompilingstep-by-step;interpretingstepsinagivenorder 

 

 Converters (e.g. COBOL to C++): These Programs will be compiling from one high 

levellanguage toanother. 

 Just-In-Time (JIT) Compilers (Java, Micosoft.NET): These are the runtime compilers 

fromintermediate language (byte code, MSIL) to executable code or native machine code. 

Theseperformtype–basedverificationwhichmakestheexecutable codemoretrustworthy 

 

 Ahead-of-Time (AOT) Compilers (e.g., .NET ngen): These are the pre-compilers to the 

nativecode forJavaand.NET 

 

 Binary Compilation: These compilers will be compiling object code of one platform into 

object codeofanotherplatform. 

 

PHASESOFACOMPILER: 

 

Due to the high complexity in the compilation process, a Compiler typically proceeds in a 

Sequence ofcompilation phases. The phases communicate with each other via clearly defined 

interfaces.Generally aninterface contains a Data structure (e.g., tree), Set of exported 

functions.Eachphase works on an abstract intermediate representation of the source program, 

not the sourceprogramtextitself(exceptthefirstphase) 

 

Compiler Phases are the individual modules which are chronologically executed to perform 

theirrespectiveSub-activities,andfinallyintegratethesolutionstogive targetcode. 

 

It is desirable to have relatively few phases, since it takes time to read and write immediate 

files.Following diagram (Figure1.4) depicts the phases of a compiler through which it goes 

during thecompilation.Therefore atypicalCompilerishavingthefollowingPhases: 

 

1.  LexicalAnalyzer(Scanner),2.SyntaxAnalyzer(Parser),3.SemanticAnalyzer,4.Intermediate

CodeGenerator(ICG),5.CodeOptimizer(CO),and6.CodeGenerator(CG) 
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In addition to these, it also has Symbol table management, and Error handler phases. Not 

allthephasesaremandatoryineveryCompiler.e.g,CodeOptimizerphaseisoptional in 

somecases.Thedescriptionisgiveninnextsection. 

The Phases of compiler are dividedin to twoparts,first three phases are called 

asAnalysispartremainingthreecalledasSynthesis part. 
 

Figure1.4:PhasesofaCompiler 

 

PHASE,PASSESOFACOMPILER: 

In some application we can have a compiler that is organized into what is called 

passes.Where a pass is a collection of phases thatconvert theinputfrom one representation 

toacompletely deferent representation. Each pass makes a complete scan of the input and 

producesitsoutputto beprocessedbythesubsequentpass.Forexample atwopassAssembler. 

 

THEFRONT-END& BACK-ENDOFACOMPILER 

 

All of these phases of a general Compiler are conceptually divided into The Front-

end,andThe Back-end. This divisionis due to theirdependence on eitherthe Source Language 
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ortheTargetmachine.ThismodeliscalledanAnalysis&Synthesismodelofacompiler. 

The Front-end of the compiler consists of phases that depend primarily on the 

Sourcelanguage and are largely independent on the target machine. For example,front-end of 

thecompilerincludesScanner,Parser,CreationofSymboltable,SemanticAnalyzer,andtheIntermediat

e CodeGenerator. 

The Back-end of the compiler consists of phases that depend on the target machine, 

andthose portions don‘t dependent on the Source language, just the Intermediate language. In this 

wehave different aspects of Code Optimization phase, code generation along with the 

necessaryErrorhandling,andSymboltableoperations. 

 

LEXICALANALYZER(SCANNER):TheScanneristhefirstphasethatworksasinterfacebet

weenthecompiler andtheSourcelanguageprogramandperformsthefollowingfunctions: 

 

o Reads the characters in the Source program and groups them into a stream of tokens 

inwhicheachtokenspecifiesalogicallycohesivesequenceof characters,suchasanidentifier,a 

Keyword,a punctuation mark,a multicharacteroperatorlike:= . 

 

o Thecharactersequenceforming atokeniscalled alexeme ofthetoken. 

o The Scanner generates a token-id, and also enters that identifiers name in the 

Symboltableifitdoesn‘texist. 

 

o AlsoremovestheComments,andunnecessaryspaces. 

Theformat ofthetokenis<Tokenname,Attributevalue> 

 

SYNTAXANALYZER(PARSER):TheParserinteractswiththeScanner, 

anditssubsequentphase SemanticAnalyzerandperformsthe followingfunctions: 

o Groups the above received, and recorded token stream into syntactic structures, 

usuallyintoa structurecalledParse Treewhoseleavesaretokens. 

 

o Theinteriornodeofthistreerepresentsthe streamoftokensthatlogicallybelongstogether. 

 

o It meansitchecksthesyntaxofprogramelements. 

SEMANTICANALYZER: This phase receives the syntax tree as input, and checks 

thesemanticallycorrectnessoftheprogram.Thoughthetokensarevalidandsyntacticallycorrect,itmay

happenthattheyarenotcorrectsemantically.  

Thereforethesemanticanalyzerchecksthesemantics(meaning)ofthe statements formed. 

 TheSyntacticallyand Semanticallycorrect structuresareproduced 

hereintheformofaSyntaxtreeorDAG orsome othersequentialrepresentationlike matrix. 
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INTERMEDIATECODEGENERATOR(ICG):Thisphasetakesthesyntacticallyandsem

antically correct structure as input, and produces its equivalent intermediate notation of 

thesourceprogram. TheIntermediateCodeshouldhavetwoimportantpropertiesspecifiedbelow: 

 

o Itshouldbeeasytoproduce,andEasytotranslateintothetargetprogram.Exampleintermediat

e codeformsare: 

o Threeaddresscodes, 

o Polishnotations,etc. 

 

CODE OPTIMIZER: This phase is optional in some Compilers, but so useful and 

beneficial interms of saving development time, effort, and cost. This phase performs the 

following specificfunctions: 

 

o Attempts to improve the IC so as to have a faster machinecode.Typicalfunctionsinclude –

Loop Optimization, Removal of redundant computations, Strength 

reduction,Frequencyreductionsetc. 

 

o Sometimesthedatastructuresusedinrepresentingtheintermediateforms 

mayalsobechanged. 

 

CODE GENERATOR: This is the final phase of the compiler and generates the target 

code,normally consisting of the relocatablemachinecode or Assembly code or 

absolutemachinecode. 

 

o Memorylocationsareselectedfor 

eachvariableused,andassignmentofvariablestoregistersisdone. 

 

o Intermediateinstructionsaretranslatedintoasequenceofmachineinstructions. 

 

TheCompileralsoperformstheSymboltablemanagementandErrorhandlingthroughoutthecompil

ation process. Symbol table is nothing but a data structure that stores different sourcelanguage 

constructs, and tokens generated during the compilation. These two modules interact with 

allphasesoftheCompiler. 

 

 

 

Forexample,thesourceprogramisanassignmentstatement;thefollowingfigureshowshowthephasesof

compilerconverts it gradually into thetarget program. 

TheinputsourceprogramisPosition=initial+rate*60 
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Figure1.5:TranslationofanassignmentStatement 
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LEXICALANALYSIS 

As the first phase of a compiler, the main task of the lexical analyzer isto read theinput 

characters of the source program, group them into lexemes, and produce tokensfor each correct 

lexeme in the source program. This stream of tokens is sent to the parser for 

syntaxanalysis.Itiscommon forthelexicalanalyzertointeractwiththesymboltableaswell. 

When the lexical analyzer discovers a lexeme constituting an a valid token, it 

storesthethatlexemeinto thesymboltable along with the generated token and its attributes.Apart 

from token generation, the scanners also performs the following 

1. Escapes/removes the comments and spaces that are no interest in logic 

2. Creates Symbol table 

3. Reports lexical errors when a lexeme does not form a valid token   

Thisprocessisshowninthefollowingfigure. 

 
 

 

Figure1.6 :LexicalAnalyzer 

 

. When lexical analyzer identifies the first token it will send it to the parser, the 

parserreceivesthetokenandcallsthelexicalanalyzertosendnexttokenbyissuingthegetNextToken() 

command. This Process continues until the lexical analyzer identifies all thetokens. During this 

process the lexical analyzer will neglect or discard the white spaces andcommentlines. 

TOKENS,PATTERNSANDLEXEMES: 

A token is a pair consistingofatokennameand   an optional attribute value.   The tokenname is an 

abstract symbol representing a kind of lexical unit, e.g., a particular keyword, or asequence of 

input characters denoting an identifier. The token names are the input symbols thatthe parser 

processes. In what follows, we shall generally write the name of a token in boldface.We 
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willoftenrefertoatokenbyits tokenname. 

A pattern is a description of the form that the lexemes of a token may take [ or match]. In 

thecaseof akeywordas a token, thepattern isjustthesequenceof characters thatform thekeyword. 

For identifiers and some other tokens, the pattern is a more complex structure that 

ismatchedbymanystrings. 

 

Alexemeisasequence ofcharactersinthesourceprogramthatmatchesthepatternforatokenandis 

identifiedbythelexicalanalyzerasaninstanceofthattoken. 

Example:InthefollowingC 

languagestatement,printf("Total=%d\n‖,sc

ore); 

both printfand score are lexemes matching the pattern fortokenid, and 

"Total=%d\n‖isalexemematchingliteral[orstring]. 

 

Figure1.7:ExamplesofTokens 

 

LEXICALANALYSISVsPARSING:Thereareanumber 

ofreasonswhytheanalysisportionofacompilerisnormallyseparatedintolexicalanalysis 

andparsing(syntaxanalysis)phases. 

1. Simplicity of design is the most important consideration. The separation of 

LexicalandSyntacticanalysisoftenallowsustosimplifyatleastoneofthesetasks.Forexample,a 

parser thathad to deal with comments and whitespace as syntactic 

unitswouldbeconsiderablymorecomplexthanonethatcanassumecommentsandwhitespaceha

ve alreadybeenremovedbythelexicalanalyzer. 

2.Compiler efficiencyisimproved.A separatelexical analyzerallows us toapplyspecialized 

techniques that serve only the lexical task, not the job of parsing. In addition,specialized 

buffering techniques for reading input characters can speed up the compilersignificantly. 

3. Compiler portability is enhanced: Input-device-specific peculiarities can 

berestrictedtothelexicalanalyzer. 
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INPUTBUFFERING: 

Before discussing the problem of recognizinglexemes in the input, let us 

examinesomewaysthatthesimplebutimportanttaskofreadingthesourceprogramcanbespeeded 

up.This task is made difficult by the fact that we often have to look one or more characters 

beyondthe nextlexeme before we can be sure we have the rightlexeme.  

There aremany situationswhere we need to look at least one additional character ahead. 

For instance, we cannot be surewe've seen the end of an identifier until we see a character that is 

not a letter or digit, andtherefore is not part of the lexeme for id.   

 In C,single-characteroperators like-,=,or<could alsobe the beginning of a two-character 

operator like ->, ==, or <=. Thus, we shallintroduce a two-bufferscheme thathandleslargelook 

aheadssafely.We then consideranimprovementinvolving 

"sentinels"thatsavestimecheckingfortheendsofbuffers. 

BufferPairs 

Becauseoftheamountoftimetakentoprocesscharactersandthelargenumberofcharactersthat must be 

processed during the compilation of a large source program, specialized bufferingtechniques 

have been developed to reduce the amount of overhead required to process a 

singleinputcharacter.Animportantschemeinvolvestwo buffersthatarealternatelyreloaded. 

 

 

Figure1.8:UsingaPairofInput Buffers 

Each buffer is of the same size N, and N is usually the size of a disk block, e.g., 

4096bytes.Using one system read command we can read N characters in toa buffer,rather 

thanusing one system call per character. If fewer than N characters remain in the input file, then 

aspecial character, represented by eof, marks the end of the source file and is different from 

anypossible characterofthesourceprogram. 

 Following Twopointerstotheinputaremaintained: 

1. ThePointerlexemeBegin,marksthebeginningofthecurrentlexeme,whoseextentweare

attemptingtodetermine. 

2. Pointer forward scans ahead until a pattern match is found; the exact 

strategywherebythis determinationismadewillbe coveredinthe balance 

ofthischapter. 
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Once the next lexeme is determined, forward is set to the character at its right end. 

Then,after the lexeme is recorded as an attribute value of a token returned to the parser, 

1exemeBeginis set to the character immediately after the lexeme just found. In Fig, we see 

forward has passedthe end of the next lexeme, ** (the FORTRAN exponentiation operator), and 

must be retractedone positiontoits left. 

Advancing forward requires that we first test whether we have reached   the endofoneof 

the buffers, andif so, we mustreload the other bufferfromthe input, and move forward tothe 

beginning of the newly loaded buffer.  

As long as we never need to look so far ahead of theactual lexeme that the sum of the 

lexeme's length plus thedistance welook ahead is   greaterthanN,weshallneveroverwrite 

thelexemein itsbufferbeforedeterminingit. 

SentinelsToImproveScannersPerformance: 

If we use the above scheme as described, we must check, each time we advance 

forward,thatwe havenotmoved off one of thebuffers; if we do, then wemustalsoreload the 

otherbuffer.Thus,foreachcharacterread,wemaketwotests:onefortheendofthebuffer,andoneto 

determine what character is read (the latter may be a multi way branch).  

We can combine thebuffer-end test with the test for the current character if we extend 

each buffer to hold a sentinelcharacter at the end. The sentinel is a special character that cannot 

be part of the source program,and a natural choice is the character eof.  

Figure 1.8 shows the same arrangement as Figure 1.7,but with the sentinels added. Note 

that eof retains its use as a marker for the end of the entireinput. 

 
 

 

Figure1.8 :Sententialattheend ofeachbuffer 

 

Anyeofthatappearsotherthanattheends ofabuffermeansthat 

theinputisatanend.Figure1.9summarizesthealgorithmfor advancingforward. 

Noticehowthefirsttest,whichcanbepartofamultiwaybranchbasedonthecharacterpointedtobyforward,isthe

onlytestwemake,exceptinthe casewhere we actuallyareattheendofa bufferorthe endoftheinput. 
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switch(*forward++) 

{ 

caseeof:if(forwardisat endoffirstbuffer) 

{ 
 

reloadsecondbuffer; 

forward=beginningofsecondbuffer; 

} 
 

elseif(forward isatend ofsecondbuffer) 

{ 
 

 

 

 

 

 

 

 

 
break; 

} 

reloadfirstbuffer; 

forward=beginningoffirstbuffer; 

} 

else

 /*eofwithinabuffermarkstheendofinput*/termi

nate lexicalanalysis; 

 

 

 
Figure1.9:useofswitch-case forthe sentential 

 

SPECIFICATIONOFTOKENS: 

Regular expressions are an important notation for specifying lexeme patterns. While they cannot 

expressallpossiblepatterns,theyarevery effectiveinspecifyingthosetypesofpatterns thatweactuallyneed 

fortokens. 

LEXtheLexicalAnalyzergenerator 

Lex is a tool used to generate lexical analyzer, the input notation for the Lex tool 

isreferred to as the Lex language and the tool itself is the Lex compiler. Behind the scenes, 

theLexcompiler transformstheinputpatternsinto atransitiondiagramandgeneratescode,ina 

filecalledlex.yy.c,itisacprogramgivenforCCompiler,givestheObjectcode.Hereweneedto know 

howtowritetheLexlanguage.The structureofthe Lexprogramisgivenbelow. 
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StructureofLEXProgram:ALexprogramhasthefollowingform: 

 

 

 

 

 

 

 

 

 

The declarations section : includes declarations of variables, manifest constants 

(identifiersdeclared to stand for a constant, e.g., the name of a token), and regular 

definitions. It appearsbetween%{...%} 

In the Translation rules section, We place Pattern Action pairs where each pair have the 

formPattern{Action} 

The auxiliary function definitions section includes the definitions of functions used to 

installidentifiersandnumbersintheSymboltale. 

LEXProgramExample: 

%{ 

/*definitionsofmanifestconstantsLT,LE,EQ,NE,GT,GE,IF,THEN,ELSE,ID,NUMBER,RELO

P*/ 

%} 

/*regulardefinitions*/ 
 

delim  [\t\n] 

ws { delim}+ 

letter 

digit 

 
[A-Za-z] 

[o-91 

id 
 

{letter}({letter}|{digit})* 

number 
 

{digit}+(\.{digit}+)?(E[+-I]?{digit}+)? 

%% 
  

{ws} 
 

{/*noactionandnoreturn*/} 

if 
 

{return(1F) ;} 

Declarations 

%% 

Translationrules 

%% 

Auxiliaryfunctionsdefinitions 
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then {return(THEN);} 

else {return(ELSE); } 

(id) {yylval=(int)installID();return(1D);} 

(number) {yylval=(int) installNum() ;return(NUMBER);} 

‖ <‖ {yylval=LT; return(REL0P) ;)} 

— <=‖ {yylval= LE;return(REL0P);} 

―=‖ {yylval= EQ ;return(REL0P);} 

―<>‖ {yylval=NE;return(REL0P);} 

―<‖ {yylval=GT;return(REL0P);)} 

―<=‖ {yylval=GE;return(REL0P);} 

%% 

intinstallID0(){/*functiontoinstallthelexeme,whosefirstcharacterispointedtobyyytext,andwhosel

engthisyyleng,into thesymboltableandreturnapointerthereto*/ 

intinstallNum(){/*similartoinstallID,butputsnumericalconstants intoaseparatetable*/} 

 

Figure1.10 :LexProgramfortokens commontokens 
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SYNTAXANALYSIS(PARSER) 

THEROLEOFTHEPARSER: 

Inourcompilermodel,theparserobtainsastringoftokensfromthelexicalanalyzer,as shown in 

the below Figure, and verifiesthatthestringof   token names can    be generatedby the grammar   

forthesource language.   We expect the parser to report any syntax errors inan intelligible fashion 

and to recover from commonly occurring errors to continue processing theremainder of the 

program. Conceptually, for well-formed programs, the parser constructs a 

parsetreeandpassesittothe rest ofthecompilerforfurtherprocessing. 

 

 

 

Figure2.1:ParserintheCompiler 

Duringtheprocessofparsingitmayencountersomeerrorandpresenttheerrorinformationbacktotheuser 
 

Syntacticerrorsincludemisplacedsemicolonsorextraormissingbraces;thatis, 

―{"or"}."Asanotherexample,inC  or Java,  theappearanceof a  case  statement  without an 

enclosing switch is a syntactic error (however, this situationisusually allowedby   theparserand 

caughtlaterintheprocessing,asthe compilerattemptsto generatecode). 

Based on the way/order the Parse Tree is constructed, Parsing is basically classified in 

tofollowingtwotypes: 

1. TopDownParsing:Parsetreeconstructionstartattheroot 

nodeandmovestothechildrennodes (i.e.,topdownorder). 

2. BottomupParsing:Parsetreeconstructionbegins 

fromtheleafnodesandproceedstowardstherootnode(calledthebottomuporder). 
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IMPORTANT(OR)EXPECTEDQUESTIONS 
 

 

1. WhatisaCompiler?ExplaintheworkingofaCompilerwithyour ownexample? 

2. WhatistheLexicalanalyzer?DiscusstheFunctionsofLexicalAnalyzer. 

3. Writeshortnotesontokens,patternandlexemes? 

4. WriteshortnotesonInputbufferingscheme?Howdoyouchangethebasicinputbufferi

ngalgorithmtoachievebetterperformance? 

5. WhatdoyoumeanbyaLexicalanalyzer generator?ExplainLEXtool. 

 

ASSIGNMENTQUESTIONS: 

1. Writethedifferencesbetweencompilersandinterpreters? 

 

2. Writeshortnotesontokenreorganization? 

3. WritetheApplicationsoftheFiniteAutomata? 

 

4. ExplainHowFinite automata areusefulinthelexicalanalysis? 

 

5. ExplainDFAandNFAwithanExample? 
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TOPDOWNPARSING: 

UNIT-II 

 Top-down parsing can be viewed as the problem of constructing a parse tree for the 

giveninput string, starting from the root and creating the nodes of the parse tree in 

preorder(depth-firstlefttoright). 

 Equivalently, top-down parsing can beviewedas finding aleftmostderivation 

foraninputstring. 

Itisclassifiedintotwodifferentvariantsnamely;onewhichusesBackTrackingandtheotherisNonBackT

rackinginnature. 

NonBackTrackingParsing:Therearetwovariantsofthisparserasgiven below. 

1. TableDrivenPredictiveParsing: 

i. LL(1)Parsing 

2. RecursiveDescentparsing 

BackTracking 

1.BruteForcemethod 

NONBACKTRACKING: 

LL(1) ParsingorPredictiveParsing 

LL(1)standsfor, lefttorightscanofinput,usesaLeftmostderivation,andtheparsertakes1 

symbolasthelook ahead symbolfromtheinputintaking parsing actiondecision. 

A non recursive predictive parser can be built by maintaining a stack explicitly, 

ratherthan implicitly via recursive calls. The parser mimics a leftmost derivation. If w is   the   

inputthat has been matchedso far, thenthestack   holds   a sequence ofgrammar symbols a 

suchthat 

 

Thetable-drivenparserinthefigurehas 

An input buffer that contains the string to be parsed followed by a $ Symbol, used 

toindicate endofinput. 

A stack, containing a sequence of grammar symbols with a $ at the bottom of the 

stack,whichinitiallycontains thestartsymbolofthegrammarontopof$. 

Aparsingtablecontainingtheproductionrulestobeapplied.ThisisatwodimensionalarrayM 
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[Nonterminal,Terminal]. 

A parsing Algorithm that takes input String and determines if it is conformant 

toGrammaranditusestheparsingtable and stackto take suchdecision. 
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Figure2.2:Model fortabledrivenparsing 

 

TheStepsInvolvedInconstructing anLL(1)Parser are: 

1. WritetheContextFreegrammarforgiveninputString 

2. CheckforAmbiguity.Ifambiguousremoveambiguityfromthegrammar 

3. CheckforLeftRecursion.Removeleftrecursionifitexists. 

4. CheckForLeft Factoring.Performleftfactoringifit containscommonprefixesinmore 

thanonealternates. 

5. ComputeFIRSTandFOLLOWsets 

6. Construct LL(1)Table 

7. Using LL(1)Algorithmgenerate Parsetree astheOutput 

Context Free Grammar (CFG): CFG used to describe or denote the syntax of 

theprogramming language constructs. The CFG is denoted as G, and defined using a four 

tuplenotation. 

Let G be CFG, then G is written as, G= (V, T, P, 

S)Where 

V is a finite set of Non terminal; Non terminals are syntactic variables that denote sets 

ofstrings. The sets of strings denoted by non terminals help define the language 

generatedbythe grammar.Nonterminalsimpose a hierarchicalstructureonthelanguagethat 

iskeytosyntaxanalysisandtranslation. 

 T is a Finite set of Terminal; Terminals are the basic symbols from which strings 

areformed. The term "token name" is a synonym for '"terminal" and frequently we will 

usethe word "token" for terminal when it is clear that we are talking about just the 

tokenname. We assume that the terminals are the first components of the tokens output by 

thelexicalanalyzer. 

 S is the Starting Symbol of the grammar, one non terminal is distinguished as the 
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startsymbol, and the set of strings it denotes isthe   language generated   by   the grammar. 

PisfinitesetofProductions;theproductionsofagrammar specifythemannerinwhichthe 
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terminalsand nonterminalscanbecombined toformstrings,eachproduction isinα-

>βform,whereαisa singlenonterminal,βis(VUT)*.Eachproductionconsistsof: 

(a) A non terminal called theheadorleftsideoftheproduction;   thisproductiondefines 

someofthe strings denotedbythehead. 

(b) Thesymbol->.Sometimes: =hasbeenusedinplaceofthearrow. 

(c) Abody orrightsideconsistingofzeroormoreterminalsandnon-terminals. The 

components of the body describe one way in which strings of the 

nonterminalattheheadcanbeconstructed. 

Conventionally, theproductionsforthestartsymbolarelistedfirst. 

Example:Context FreeGrammartoacceptArithmeticexpressions. 

Theterminals are+,*,-,(,),id. 

TheNonterminalsymbolsareexpression, term, factorandexpressionisthestartingsymbol. 

expression expression+term 

expression expression–term 

expression term 

term term*factor 

term term/factor 

term factor 

factor (expression ) 

factor id 

Figure2.3:GrammarforSimpleArithmeticExpressions 

 

NotationalConventionsUsedInWritingCFGs: 

To avoidalwayshaving  to state that ―these are the terminals,""these are the non 

terminals,"andsoon,thefollowingnotationalconventionsforgrammarswillbeusedthroughoutourdisc

ussions. 

1. Thesesymbolsareterminals: 

(a) Lowercaselettersearlyinthealphabet,such asa,b,e. 

(b) Operatorsymbolssuchas+,*,andsoon. 

(c) Punctuationsymbolssuchasparentheses, comma,andsoon. 

(d) Thedigits0,1... 9. 
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(e) Boldface strings such as id or if, each of which represents a 

singleterminalsymbol. 



COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET 

28|Pa ge 

 

 

 

2. Thesesymbolsarenonterminals: 

(a) Uppercaselettersearlyinthealphabet,suchasA,B,C. 

(b) The letterS,which,whenitappears,isusuallythestartsymbol. 

(c) Lowercase, italicnamessuchasexprorstmt. 

(d) Whendiscussingprogrammingconstructs,uppercaselettersmaybeusedtorepresentNon 

terminals for the constructs. For example, non terminal for expressions, 

terms,andfactorsareoftenrepresentedbyE,T,andF,respectively. 

Usingtheseconventionsthegrammar forthearithmeticexpressionscanbewrittenas 

EE +T |E–T |T 

T T * F | T / F | 

FF(E)|id 

 

DERIVATIONS: 

The construction of a parse tree can be made precise by taking a derivational view, 

inwhich productions are treated as rewriting rules. Beginning with the start symbol, each 

rewritingstep replaces a Non terminal by the body of oneof its productions. This derivational 

viewcorresponds to the top-down construction of a parse tree as well as the bottom construction 

of theparse tree. 

 

DerivationsareclassifiedintoLet mostDerivationandRightMostDerivations. 

 

LeftMostDerivation(LMD): 

It is the process of constructing the parse tree or accepting the given inputstring,inwhich 

at every time we need to rewrite the production rule it is done with left most non terminalonly. 

Ex: -IftheGrammarisE->E+E| E*E|-E| (E)|id and theinputstringisid +id*id 

The production E -> - E signifies that if E denotes an expression, then – E must also denote 

anexpression.The replacementofa single Eby-Ewillbe describedbywriting 

E=>-Ewhich isread as“Ederives_E” 

For a general definition of derivation, consider a non terminal A in the middle of 

asequenceof grammarsymbols,asin αAβ,whereαandβ arearbitrary strings of grammarsymbol. 

Suppose A ->γ is a production. Then, we write αAβ => αγβ. The symbol => 

means"derivesinonestep".Often,wewishtosay,"Derivesinzeroormoresteps."Forthispurpose,we can 

use the symbol , If we wish to say, "Derives in   one or more steps." We cn usethe 

symbol   . If S   a, where S is the start symbol of a grammar G, we say that α is 

asententialformofG. 

TheLeftmostDerivationforthegiveninputstringid+id*id is 

E=>E+E 
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=>id+ E 

=>id+E*E 

=>id+id*E 

=>id+id*id 

 
NOTE: Everytimeweneedtostartfromtherootproductiononly,theunderlineusingatNonterminal 

indicating that, it is the non terminal (left most one) we are choosing to rewrite 

theproductionstoacceptthestring. 

 

RightMostDerivation(RMD): 

Itistheprocessofconstructingtheparsetreeoracceptingthegiveninputstring, 

everytimeweneedtorewritetheproductionrule withRightmostNonterminalonly. 

TheRightmostderivationforthegiveninputstringid+id*idis 

 

E=>E+E 

=>E+E*E 

=>E+ E*id 

=>E+id*id 

=>id+id*id 

 

NOTE: Every time we need to start from the root production only, the under line using at 

Nonterminal indicating that, it is the non terminal (Right most one) we are choosing to rewrite 

theproductionstoacceptthestring. 

WhatisaParseTree? 

Aparse tree isa graphicalrepresentationofa derivationthatfiltersoutthe 

orderinwhichproductionsareappliedtoreplacenonterminals. 

Each interiornodeofaparsetree representstheapplicationofaproduction. 

AlltheinteriornodesareNonterminalsand alltheleafnodesterminals. 

Alltheleafnodesreadingfromthelefttorightwillbethe outputofthe parsetree. 

Ifanode  nislabeledXand

 haschildrenn1,n2,n3,…nkwithlabelsX1,X2,…Xkres

pectively,thentheremustbe aproduction A->X1X2…Xkinthegrammar. 

 

Example1:-Parsetreefortheinputstring-(id+id)usingtheaboveContextfreeGrammaris 
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Figure2.4:ParseTreefortheinputstring-(id+id) 

 

TheFollowingfigureshowsstep bystep constructionofparsetreeusing 

CFGfortheparsetreefortheinputstring-(id+id). 
 

Figure2.5 :SequenceoutputsoftheParseTreeconstructionprocessfortheinputstring–(id+id) 

 

Example2:-Parsetreefortheinputstringid+id*id usingtheaboveContextfreeGrammaris 

 
 

Figure2.6: Parsetreefortheinputstring id+id*id 
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AMBIGUITYinCFGs: 

Definition: 

Agrammarthatproducesmorethanoneparsetreeforsomesentence(inputstring)issaidtobeambiguous

. 

Inother words, 

anambiguousgrammarisonethatproducesmorethanoneleftmostderivationormorethanone 

rightmostderivationforthesame sentence. 

Or If the right hand production of the grammar is having two non terminals which 

areexactlysameas 

lefthandsideproductionNonterminalthenitissaidtoanambiguousgrammar.Example: 

IftheGrammarisE->E+E| E*E|-E|(E)| idandtheInputStringisid+id* id 

Twoparsetreesforgiveninputstringare 

 

 

(a) 

 

TwoLeftmostDerivationsforgiveninputStringare: 

E=>E+E E=>E*E 

 
(b) 

=>id+E =>E+E*E 

=>id+E *E =>id+ E*E 

=>id+id*E =>id+id*E 

=>id+id*id =>id+id*id 

(a) (b) 

 

TheaboveGrammarisgivingtwoparsetreesortwoderivations 

forthegiveninputstringso,itisanambiguousGrammar 

Note: LL (1) parser will not accept the ambiguous grammars or We cannot construct 

anLL(1) parser for the ambiguous grammars. Because such grammars may cause the 

TopDown parser to go into infinite loop or make it consume more time for parsing. If 

necessarywemustremove alltypesofambiguityfromitandthenconstruct. 
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ELIMINATING AMBIGUITY:SinceAmbiguous grammars may cause the top down 

Parsergointoinfiniteloop,consumemore time duringparsing. 

Therefore, sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity. 

Thegeneralformofambiguous productionsthatcause ambiguityingrammarsis 
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Thiscanbewrittenas(introduceonenewnonterminalin theplaceofsecondnonterminal) 

Example:LetthegrammarisE E+E|E*E|-

E|(E)|id.Itisshownthatitisambiguousthatcanbewrittenas 

E E+E 

E E-E 

E E*E 

E -E 

E (E) 

E id 

Intheabovegrammarthe1stand2ndproductionsarehaving ambiguity.So,theycanbewrittenas 

E->E+E|E*Ethisproductionagaincanbewrittenas 

E->E+E| β,whereβisE*E 

Theaboveproductionissameasthegeneralform.so,thatcanbewrittenasE-

>E+T|T 

T->β 

 

ThevalueofβisE*Eso,abovegrammar canbewrittenas 

1) E->E+T|T 

2) T->E*E ThefirstproductionisfreefromambiguityandsubstituteE->Tinthe 

2nd productionthenitcanbewrittenas 

T->T*T|-E|(E)|idthis productionagaincanbewrittenas 

T->T*T |βwhereβis -

E|(E)|id,introducenewnonterminalintheRighthandsideproductionthenitbecomes 

T->T*F|F 

F->-E |(E)|id nowtheentiregrammarturned intoitequivalentunambiguous, 

TheUnambiguousgrammarequivalenttothegivenambiguousoneis 

1) E E+T |T 

2) T T*F|F 

3) F -E|(E)|id 

 

LEFTRECURSION: 

Another feature of the CFGs which is not desirable to be used in top down parsers is 

leftrecursion. A grammar is left recursive if it has a non terminal A such that there is a 

derivationA=>Aα for some string α in (TUV)*. LL(1) or Top Down Parsers can not handle the 

A Aα|β 

A 

Aꞌ 

βAꞌ

αAꞌ|ε 
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LeftRecursive grammars, so we need to remove the left recursion from the grammars before 

beingusedinTopDownParsing. 
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TheGeneralformofLeftRecursionis 

 

Theaboveleftrecursiveproductioncanbewrittenasthenonleftrecursiveequivalent: 

 

Example: -

Isthefollowinggrammarleftrecursive?Ifso,findanonleftrecursivegrammarequivalenttoit. 

 

E E+T |T 

T T * F | 

FF-E|(E)|id 

Yes,thegrammarisleftrecursiveduetothefirsttwoproductions whicharesatisfyingthe 

generalformofLeftrecursion,sotheycan berewritten afterremovingleftrecursionfrom 

E→ E+T,and T→T*Fis 

E TE′ 

E′ +TE′ |€ 

T FT′ 

T′

 *FT′|€F

(E)|id 

 

LEFTFACTORING: 

Left factoring is a grammar transformation that is useful for producing a grammar suitable 

forpredictive or top-down parsing. A grammar in which more than one production has 

commonprefixis toberewrittenbyfactoringouttheprefixes. 

Forexample,inthefollowinggrammartherearenAproductions havethecommonprefixα, 

whichshouldberemovedorfactoredoutwithoutchangingthelanguagedefinedforA. 

 

Wecanfactorouttheαfromallnproductionsbyaddinga newAproductionA αA′ 

, andrewritingtheA′productionsgrammaras 

 

A βAꞌ 

Aꞌ αAꞌ|€ 

A Aα|β 

A  αA1 | αA2 | αA3 

|αA4|… |αAn 

A αA′ 

A′ A1|A2|A3|A4…|An 



COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET 

38|Pa ge 

 

 

FIRSTandFOLLOW: 

The construction of both top-down and bottom-up parsers is aided by two functions,FIRST and FOLLOW, 

associated with a grammar G. During top down parsing, FIRST andFOLLOW allow us to choose which production to 

apply, based on the next input (look a head)symbol. 

ComputationofFIRST: 

FIRST function computes the set of terminal symbols with which the right hand side 

ofthe productions begin. To compute FIRST (A) for all grammar symbols, apply the 

followingrulesuntilnomoreterminals or€canbeaddedtoanyFIRSTset. 

1. IfAisaterminal,thenFIRST{A}={A}. 

2. IfA isa NonterminalandA->X1X2…Xi 

FIRST(A)=FIRST(X1) if X1is not null, if X1 is a non terminal and X1->€, 

addFIRST(X2)to FIRST(A),ifX2->€add FIRST(X3)toFIRST(A),…ifXi->€ , 

i.e.,allXi‘sfor i=1..iarenull,add€FIRST(A). 

3. IfA->€isaproduction,thenadd € toFIRST(A). 

 

ComputationOfFOLLOW: 

Follow(A)isnothingbutthesetofterminalsymbolsofthegrammarthatareimmediately 

following the Non terminal A. If a is to the immediate right of non terminal A, thenFollow(A)= 

{a}. To compute FOLLOW (A) for all non terminalsA, apply the following rulesuntilnomore 

symbols canbeaddedtoanyFOLLOWset. 

 

1. Place $ in FOLLOW(S), where S is the start symbol, and $ is the input right 

endmarker. 

2. IfthereisaproductionA->αBβ, 

theneverythinginFIRST(β)except€isinFOLLOW(B). 

3. IfthereisaproductionA->αBor aproductionA->αBβwithFIRST(β) contains 

€,thenFOLLOW(B)=FOLLOW(A). 

 
Example:-ComputetheFIRSTandFOLLOWvaluesoftheexpressiongrammar 

1. E TE′ 

2. E′ +TE′|€ 

3.  T FT′ 

4.  T′ *FT′ |€ 

5. F (E)|id 

 
ComputingFIRSTValues: 

 

FIRST (E) =FIRST(T) =FIRST (F) ={(,id} 

FIRST(E′)={+,€} 
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FIRST(T′)={*,€} 
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ComputingFOLLOWValues: 
 

FOLLOW(E)= {$,),}

 Becauseitisthestartsymbolofthegrammar.FO

LLOW (E′)={FOLLOW (E)} satisfyingthe3rdruleofFOLLOW() 

= { $, )} 

FOLLOW (T)={FIRSTE′} ItisSatisfyingthe2ndrule. 

U{FOLLOW(E′)} 

= {+,FOLLOW(E′)} 

= { +,$, )} 

FOLLOW(T′)={FOLLOW(T)} Satisfyingthe3rdRule 

= {+, $,)} 

FOLLOW(F)={FIRST(T′)} Itis Satisfyingthe2ndrule. 

U{FOLLOW(E′)} 

={*,FOLLOW(T)} 

= { *, +, $, )} 
 

NONTERMINAL FIRST FOLLOW 

E {(,id } {$,)} 

E′ {+,€} {$,)} 

T {(,id} { +,$,)} 

T′ {*,€} { +,$,)} 

F { (,id} {*,+,$,)} 

Table2.1:FIRST andFOLLOWvalues 

 

ConstructingPredictiveOrLL(1)ParseTable: 
 

Itistheprocessofplacing theallproductionsofthegrammarintheparsetablebased 

ontheFIRSTandFOLLOWvaluesoftheProductions. 

TherulestobefollowedtoConstructtheParsingTable(M) are: 

1. ForEachproductionA->αofthegrammar,dothebellowsteps. 

2. Foreachterminalsymbol‗a‘inFIRST(α),addtheproductionA->αtoM[A,a]. 

3. i. If€isinFIRST(α) addproductionA-

>αtoM[A,b],wherebisallterminalsinFOLLOW(A). 

ii.If€isinFIRST(α) and $isinFOLLOW(A)thenaddproductionA->αtoM[A,$]. 

4. Markotherentriesintheparsingtableaserror. 

 

 
INPUTSYMBOLS 
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NON-TERMINALS + * ( ) id $ 
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E 
  E TE′  E id  

E′ 
E′ +TE′   E′ €  E′ € 

T 
  T FT′  T FT′  

T′ 
T′ € T′ *FT′  T′ €  T′ € 

F 
  F (E)  F id  

Table2.2:LL(1)ParsingTablefortheExpressionsGrammar 

Note: 

iftherearenomultipleentriesinthetableforsingleaterminalthengrammarisacceptedbyLL(1)Parser. 

LL(1)ParsingAlgorithm: 

Theparseractsonbasisonthebasisoftwo symbols 

i. A,thesymbolonthetopofthestack 

ii. a,thecurrentinputsymbol 

Therearethreeconditions forAand‗a‘,thatareusedfrotheparsingprogram. 

1. IfA=a=$thenparsingisSuccessful. 

2. IfA=a≠$ thenparserpopsoffthestack andadvancesthecurrentinputpointertothenext. 

3.  If A is a Non terminal the parser consults the entry M [A, a] in the parsing table. 

IfM[A, a] is a Production A-> X1X2..Xn, then the program replaces the A on the top 

oftheStackbyX1X2..XninsuchawaythatX1comes onthetop. 

STRINGACCEPTANCEBYPARSER: 

Iftheinputstringfortheparser isid+id * 

id,thebelowtableshowshowtheparseracceptthestringwiththehelpofStack. 
 

Stack Input Action Comments 

$E id+id*id$ E TE` Eontopofthestackis replacedbyTE` 

$E`T id+ id*id$ T FT` Tontopofthestackis replacedbyFT` 

$E`T`F id+ id*id$ F id Fontopofthestackisreplacedbyid 

$E`T`id id+ id*id$ popandremoveid Condition2issatisfied 

$E`T` +id*id$ T` € T`ontopofthestackisreplacedby€ 

$E` +id*id$ E` +TE` E`ontopofthestackisreplacedby+TE` 

$E`T+ +id*id$ Popandremove+ Condition2 issatisfied 

$E`T id*id$ T FT` Tontopofthestackis replacedbyFT` 

$E`T`F id*id$ F id Fontopofthestackisreplacedbyid 

$E`T`id id*id$ popandremoveid Condition2 issatisfied 
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$E`T` *id$ T` *FT` T`ontopofthestackis replacedby*FT` 

$E`T`F* *id$ popandremove* Condition2 issatisfied 

$E`T`F id$ F id Fontopofthestackisreplacedbyid 

$E`T`id id$ Popandremoveid Condition2 issatisfied 

$E`T` $ T` € T`ontopofthestackisreplacedby€ 

$E` $ E` € E`ontopofthestackisreplacedby€ 

$ $ Parsing issuccessful Condition1satisfied 

Table2.3 :Sequenceofsteps takenbyparserinparsing theinputtokenstreamid+id* id 

 
 

Figure2.7:Parsetreefortheinputid+id*id 

ERRORHANDLING(RECOVERY)INPREDICTIVEPARSING: 

In table driven predictive parsing, it is clear as to which terminal and Non terminals 

theparserexpectsfromthe rest ofinput.Anerrorcanbedetected inthe following situations: 

1. Whentheterminalontopofthestack doesnotmatchthecurrentinputsymbol. 

2. when Non terminal A is   on top of the stack,   a is the current inputsymbol, 

andM[A,a]is emptyorerror 

The parser recovers from the error and continues its process. The following error 

recoveryschemesareuseinpredictiveparsing: 

PanicmodeErrorRecovery: 

It is based on the idea that when an error is detected, the parser will skips 

theremaining input until a synchronizing token is en countered in the input. Some examples 

arelistedbelow: 

1. ForaNonTerminalA,placeallsymbolsinFOLLOW(A)areaddeintothesynchronizingsetof

nonterminalA.ForExample,considertheassignmentstatement 

―c=;‖Here,theexpressionontherighthandsideismissing.SotheFollowofthisis considered. 

It is―;‖and istakenassynchronizingtoken.Onencounteringit,parser 

emitsanerrormessage―MissingExpression‖. 

2. ForaNonTerminalA,placeallsymbolsinFIRST(A)areaddeintothesynchronizingsetofno

nterminalA.ForExample,considertheassignmentstatement 

―22c=a+b;‖Here,FIRST(expr)is22.Itis―;‖andistakenassynchronizingtoken 
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andthenthereportstheerror as―extraneous token‖. 
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PhraseLevelRecovery: 

It can be implemented in the predictive parsing by filling up the blank entries 

inthe predictive parsing table with pointers to error Handling routines. These routines 

caninsert,modifyordeletesymbolsintheinput. 

RECURSIVEDESCENTPARSING: 
 

A recursive-descent parsing program consists of a set of recursive procedures, one for each 

nonterminal. Each procedure is responsible for parsing the constructs defined by its non 

terminal,Execution begins with the procedure for the start symbol, which halts and announces 

success ifitsprocedurebodyscanstheentireinputstring. 

Ifthegivengrammaris 

E TE′ 

E′ +TE′|€ 

T FT′ 

T′ *FT′|€ 

F (E)|id 

Reccursiveproceduresfortherecursivedescentparser forthegivengrammar aregivenbelow. 

procedureE( ) 

{ 

T(); 

E′(); 

} 

procedureT ( ) 

{ 

F(); 

T′(); 

} 

ProcedureE′() 

{ 

ifinput=‗+‘ 

{ 

advance();

T(); 

E′(); 

returntrue; 

} 

elseerror; 

} 

procedureT′() 

{ 
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ifinput=‗*‘ 

{ 

advance();

F(); 
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T′(); 

returntrue; 

} 

else returnerror; 

} 

procedureF() 

{ 

ifinput=‗(‗ 

{ 

advance();

E(); 

if input = 

‗)‘advance()

;returntrue; 

} 

elseifinput= ―id‖ 

{ 
 

advance( 

);returntrue

; 

} 

else returnerror; 

} 

advance() 

{ 

input=nexttoken; 

} 

BACK TRACKING: This parsing method uses the technique called Brute Force 

methodduring the parse tree construction process. This allows the process to go back (back 

track) andredothe steps byundoingthe workdonesofarinthe pointofprocessing. 

Brute force method: It is a Top down Parsing technique, occurs when there is 

morethan one alternative in the productions to be tried while parsing the input string. It 

selectsalternativesintheordertheyappearandwhenitrealizesthatsomethinggonewrongittrieswithnext

alternative. 

Forexample,considerthegrammarbellow. 

S cAd 

A ab|a 

Togeneratetheinputstring―cad‖,initiallythefirstparsetreegivenbelowisgenerated. 
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Asthestringgeneratedisnot―cad‖,inputpointerisbacktrackedtoposition―A‖,toexaminethe next 

alternateof ―A‖. Nowamatch to the input string occursasshown in the 2ndparsetrees givenbelow. 
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(1) (2) 

IMPORTANTANDEXPECTEDQUESTIONS 

1. ExplainthecomponentsofworkingofaPredictiveParserwithanexample? 

2. WhatdotheFIRSTandFOLLOWvaluesrepresent?GivethealgorithmforcomputingFIRST

nFOLLOWofgrammarsymbolswithanexample? 

3. ConstructtheLL(1)Parsingtableforthefollowinggrammar?E

 E+T|T 

T T*F 

F (E)|id 

4. Fortheabovegrammarconstruct, andexplaintheRecursiveDescentParser? 

5. Whathappensif multipleentriesoccurringinyourLL 

(1)Parsingtable?Justifyyouranswer?HowdoestheParser 

ASSIGNMENTQUESTIONS 

 

1. EliminatetheLeftrecursionfromthebelowgrammar? 

A-> Aab| AcB|b 

B->Ba|d 

2. Explaintheproceduretoremovetheambiguityfromthegivengrammarwithyourownexampl

e? 

3. Writethegrammarfortheif-

elsestatementintheCprogrammingandcheckfortheleftfactoring? 

 

4. WillthePredictiveparseraccepttheambiguousGrammarjustifyyour answer? 

 

5. IsthegrammarG={ S->L=R,S->R,R->L,L->*R|id}anLL(1)grammar? 
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BOTTOM-UPPARSING 

Bottom-up parsing corresponds to the construction of a parse tree for an input 

stringbeginning at the leaves (the bottom nodes) and working up towards the root (the top node). 

Itinvolves―reducing an input string ‗w‘ to the Start Symbol ofthe grammar. in eachreduction step, 

a perticular substring matching the right side of the production is replaced by symbol on theleft 

of that production and it is the Right most derivation. For example consider the 

followingGrammar: 

E E+T|T 

T T*F 

F (E)|id 

Bottomupparsingoftheinputstring“id *id“isasfollows: 

 
 

INPUTSTRING SUBSTRING REDUCINGPRODUCTION 

id*id Id F->id 

F*id T F->T 

T*id Id F->id 

T*F * T->T*F 

T T*F E->T 

E 
 Startsymbol.Hence,theinput 

Stringisaccepted 

ParseTreerepresentationisas follows: 
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Figure3.1 :ABottom-up ParsetreefortheinputString“id*id” 

Bottomupparsingisclassifiedinto1. Shift-ReduceParsing, 2. 

OperatorPrecedenceparsing,and3.[TableDriven]LR Parsing 

i. SLR(1) 

ii. CALR ( 1 

)iii.LALR( 1) 

SHIFT-REDUCEPARSING: 

Shift-reduce parsing is a form of bottom-up parsing in which a stack holds 

grammarsymbols and an input buffer holds the rest of the string to be parsed, We use$ to mark 

thebottom of the stack and also the right end of the input. And it makes use of the process of 

shiftand reduce actions to accept the input string. Here, the parse tree is Constructed bottom up 

fromthe leafnodes towardstherootnode. 

When we are parsing the given inputstring, if the match occurs the parser takes 

thereduceactionotherwiseitwillgoforshiftaction.Anditcanacceptambiguousgrammarsalso. 

For example,considerthebelowgrammartoaccepttheinputstring―id*id―,usingS-Rparser 

E E+T|T 

T T*F|F 

F (E)|id 

ActionsoftheShift-reduceparser usingStackimplementation 

 

STACK INPUT ACTION 

$ Id*id$ Shift 

$id *id$ Reduce withF d 

$F *id$ Reduce withT F 

$T *id$ Shift 

$T* id$ Shift 

$T*id $ Reduce withF id 

$T*F $ Reduce withT T*F 

$T $ Reduce withE T 

$E $ Accept 
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Considerthefollowinggrammar: 

S aAcBe 

A Ab|b 

B d 

Lettheinputstringis―abbcde‖.Theseriesofshiftandreductionstothestartsymbolareas follows. 

abbcde aAbcde aAcde aAcBe S 

Note:intheaboveexampletherearetwo actionspossibleinthesecond Step,theseareasfollows: 

1. Shiftactiongoingto3rdStep 

2. Reduceaction,thatisA->b 

Iftheparseristakingthe1staction thenitcansuccessfully 

acceptsthegiveninputstring,ifitisgoingforsecondactionthenitcan‘tacceptgiveninputstring.Thisiscall

edshiftreduceconflict. Where, S-R parser is not able take proper decision, so it not recommended 

for parsing.OPERATORPRECEDENCE PARSING: 

Operatorprecedencegrammariskindsofshiftreduceparsingmethodthatcanbeappliedtoasmallclas

sofoperatorgrammars.Anditcanprocessambiguousgrammarsalso. 

Anoperatorgrammarhastwoimportantcharacteristics: 

1. Thereareno€productions. 

2. Noproductionwouldhavetwo adjacentnonterminals. 

Theoperatorgrammartoacceptexpressions isgivebelow: 

E E+E/E E-E /E E*E /E E/E/E E^E /E -E/E (E)/E 

id 

TwomainChallenges intheoperatorprecedenceparsingare: 

1. IdentificationofCorrecthandles inthereductionstep, suchthatthegiveninputshould 

bereducedtostartingsymbolofthegrammar. 

2. Identificationofwhichproductionto 

useforreducinginthereductionsteps,suchthatweshouldcorrectlyreduce the giveninputtothe 

startingsymbolofthegrammar. 

Operatorprecedenceparserconsistsof: 

1. Aninputbufferthatcontainsstringtobeparsedfollowedbya$, asymbolusedtoindicate 

theendingofinput. 

2. Astackcontaininga sequence ofgrammarsymbolswitha $atthe bottomofthestack. 

3. An operator precedence relation table O, containing the precedence ralations between 

thepair of terminal. There are three kinds of precedence relations will exist between the 

pairofterminalpair‗a‘and‗b‘asfollows: 

4. Therelationa<•bimpliesthat heterminal‗a‘haslowerprecedencethanterminal‗b‘. 

5. Therelationa•>bimpliesthat heterminal‗a‘hashigherprecedencethanterminal‗b‘. 

6. Therelationa=•bimpliesthatheterminal‗a‘haslowerprecedencethanterminal‗b‘. 
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OperatorPrecedenceTable 

Operator 

precedenceParsingAl

gorithm 

 

 
 

 

 

 
$ 

a1a2 a3 ……….. $ 

 

7. An operator precedence parsing program takes an input string and determines whether 

itconforms to the grammar specifications. It uses an operator precedence parse table 

andstacktoarriveatthedecision. 
 

InputBuffer 

 

 

 

Output 

 

 

 

Stack 

 

 

 

 
Figure3.2:Componentsofoperatorprecedenceparser 

 

Example,Ifthegrammaris 

E E+E 

E E-E 

E E*E 

E E/E 

E E^E 

E -E 

E (E) 

E id,Constructoperator precedencetableandacceptinputstring“id+id*id” 

Theprecedencerelationsbetweentheoperatorsare 

(id)>(^)>(*/)>(+-)>$,„^‟operatorisRightAssociativeandreamingalloperatorsare 

LeftAssociative 

 + - * / ^ id ( ) $ 

+ •> •> <• <• <• <• <• •> •> 

- •> •> <• <• <• <• <• •> •> 

* •> •> •> •> <• <• <• •> •> 

/ •> •> •> •> <• <• <• •> •> 

^ •> •> •> •> <• <• <• •> •> 

Id •> •> •> •> •> Err Err •> •> 
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( <• <• <• <• <• <• <• = Err 

) •> •> •> •> •> Err Err •> •> 

$ <• <• <• <• <• <• <• Err Err 
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TheintentionoftheprecedencerelationsistodelimitthehandleofthegiveninputStringwith<•marking 

theleftendofthe Handle and •>marking the rightendofthehandle. 

ParsingAction: 

Tolocatethehandlefollowingstepsarefollowed: 

1. Add $symbolat thebothendsofthegiven inputstring. 

2. Scantheinputstringfromlefttorightuntiltherightmost•>isencountered. 

3. Scantowardsleftoveralltheequalprecedence‘suntilthefirst<•precedenceisencount

ered. 

4. Everything between<•and •>isahandle. 

5. $onSmeansparsingissuccess. 

Example, Explain the parsing Actions of the OPParser for the input string is “id*id” and 

thegrammaris: 

E E+E 

E E*E 

E id 

1.$<•id•>*<•id•>$ 

 
Thefirsthandleis‗id‘andmatchforthe‗id‗inthegrammarisE id 

.So, id is replaced with the Non terminal E. the given input string can 

bewrittenas 

2.$<•E•>*<•id•>$ 

Theparserwillnotconsiderthe Nonterminalasan input.So,theyare 

notconsideredintheinputstring.So,thestringbecomes 

3.$<•*<•id•>$ 

 
Thenext handleis‗id‘andmatchforthe‗id‗inthegrammarisE

 id.

So, id is replaced with the Non terminal E. the given input string can 

bewrittenas 

4.$<•*<•E•>$ 

Theparserwillnotconsiderthe Nonterminalasan input.So,theyare 

notconsideredintheinputstring.So,the stringbecomes 

5.$<• *•>$ 

 

 

 

 
6.$E $ 

Thenexthandleis‗*‘andmatchforthe‗‗inthegrammarisE E * E 

.So, id is replaced with the Non terminal E. the given input string can 

bewrittenas 
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Theparserwillno

tconsiderthe 

Nonterminalasan input.So,theyare notconsideredintheinputstring.So,the 

stringbecomes 
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7.$$ 

$On$meansparsingsuccessful. 

OperatorParsingAlgorithm: 

TheoperatorprecedenceParser parsing programdeterminestheactionoftheparser dependingon 

1. ‗a‘istopmostsymbolonthe Stack 

2. ‗b‘isthecurrentinput symbol 

Thereare3 conditionsfor ‗a‘and‗b‘thatareimportantfortheparsingprogram 

1. a=b=$,theparsingissuccessful 

2. a <• b or a = b, the parser shifts the input symbol on to the stack and advances 

theinputpointertothe nextinputsymbol. 

3. a •>b, parser performs the reduce action. The parser pops out elements one 

byone from the stack until we find the current top of the stack element has 

lowerprecedence thanthemostrecentlypoppedoutterminal. 

Example,thesequenceofactionstakenbytheparserusingthestackfortheinputstring―id*id 

— andcorrespondingParseTreeareasunder. 

 

STACK INPUT OPERATIONS 

$ id*id$ $<• id, shift‗id‘intostack 

$id *id$ id•>*,reduce‗id‘using E->id 

$E *id$ $<•*,shift‗*‘ intostack 

$E* id$ *<•id,shift‗id‘ intoStack 

$E*id $ id•>$,reduce‗id‘usingE->id 

$E*E $ *•>$,reduce‗*‘using E->E*E 

$E $ $=$=$,soparsingissuccessful 

E 

 

E * E 

  

id id 

AdvantagesandDisadvantagesofOperatorPrecedenceParsing: 

Thefollowingaretheadvantagesofoperator precedenceparsing 

1. Itissimpleandeasytoimplementparsingtechnique. 

2. Theoperatorprecedenceparsercanbeconstructedbyhandafterunderstandingthegram

mar.Itis simple todebug. 

Thefollowingarethedisadvantagesofoperatorprecedenceparsing: 

1. Itisdifficulttohandletheoperatorlike‗-‗whichcanbeeither 

unaryorbinaryandhencedifferentprecedence‘sandassociativities. 

2. It canparse onlya smallclassofgrammar. 
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LRPARSINGALGORTHM 

a1 a2 a3 ………. $ 

 

3. Newadditionordeletionoftherulesrequirestheparser to berewritten. 

4. Toomanyerrorentriesintheparsingtables. 

 

 

LRParsing: 

Most prevalent type of bottom up parsing is LR (k) parsing. Where, L is left to right scan of 

thegiven inputstring, R is RightMostderivation in reverse and K is no of inputsymbols as 

theLookahead. 

Itisthemostgeneralnonbacktrackingshiftreduceparsingmethod 

Theclassofgrammarsthatcanbeparsedusing theLRmethodsisaproper supersetofthe 

classofgrammarsthatcanbe parsedwithpredictiveparsers. 

AnLRparser candetect asyntacticerror 

assoonasitispossibletodoso,onalefttorightscanoftheinput. 

 

 

 

 

 

 

InputBuffer 
 

 
OUTPUT 

 

 

 

 

Stack 

 

 

Figure3.3:ComponentsofLRParsing 

LRParserConsistsof 

Aninputbufferthatcontainsthestringtobeparsedfollowedbya$Symbol,usedtoindicate 

endofinput. 

A stack containing a sequence of grammar symbols with a $ at the bottom of the 

stack,whichinitiallycontains theInitialstateof theparsingtableontopof$. 

Shift GOTO 

LRParsingTable 

 
 

 

 
 

 
$ 
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Aparsingtable(M),itisatwodimensionalarrayM[ state,terminalorNonterminal]anditcontains 

twoparts 
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1. ACTIONPart 

The ACTION part of the table is a two dimensional array indexed by state and 

theinput symbol, i.e. ACTION[state][input], An action table entry can have one 

offollowingfourkinds ofvaluesinit.Theyare: 

1. ShiftX,whereXisaStatenumber. 

2. ReduceX, whereXisaProductionnumber. 

3. Accept,signifyingthecompletionofasuccessfulparse. 

4. Errorentry. 

2. GOTOPart 

The GO TO part of the table is a two dimensional array indexed by state and 

aNonterminal,i.e.GOTO[state][NonTerminal].AGOTOentryhasastatenumberinthe

table. 

 A parsing Algorithm uses the current State X, the next input symbol ‗a‘ to consult 

theentryataction[X][a].itmakesoneofthefourfollowing actionsasgivenbelow: 

1. If the action[X][a]=shift Y, the parser executes a shift of Y on to the top of the 

stackandadvances theinputpointer. 

2. If the action[X][a]= reduce Y (Y is the production number reduced in the State X), 

ifthe production is Y->β, then the parser pops 2*β symbols from the stack and push 

YontotheStack. 

3. If the action[X][a]= accept, then the parsing is successful and the input string 

isaccepted. 

4. If the action[X][a]= error, then the parser has discovered an error and calls the 

errorroutine. 

Theparsingisclassifiedinto 

1.LR(0) 

 

2. Simple LR(1) 

 

3. CanonicalLR(1) 

 

4. LookaheadLR(1) 

 

LR(1)Parsing:Varioussteps involvedintheLR(1)Parsing: 

1. WritetheContextfreeGrammarforthegiveninputstring 

2. CheckfortheAmbiguity 

3. AddAugment production 

4. CreateCanonicalcollectionofLR(0 )items 

5. DrawDFA 

6. Constructthe LR(0)Parsingtable 

7. Based ontheinformation fromthe Table,with helpofStack 

andParsingalgorithmgenerate theoutput. 

AugmentGrammar 
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The Augment Grammar G`, is G with a new starting symbol S` an additional 

productionS` S. this helps the parser to identify when tostop the parsing and announce the 

acceptance ofthe input. The input string is accepted if and only if the parser is about to reduce by 

S` S. Forexampleletus considerthe Grammarbelow: 

 

 

theAugmentgrammarG`isRepresentedby 

 
 

 

 

 

NOTE: Augment Grammar is simply adding one extra production by preserving the 

actualmeaningofthegivenGrammarG. 

CanonicalcollectionofLR (0)items 

 

LR(0) items 

An LR (0) item of a Grammar is a production G with dot at some position on the 

rightsideoftheproduction.Anitemindicateshowmuchoftheinputhasbeenscanneduptoagivenpointi

ntheprocessofparsing.Forexample,iftheProductionisX YZ then, The LR 

(0)items are: 

1. X •AB,indicatesthattheparserexpectsastringderivablefromAB. 

2. X

 A•B,indicatesthattheparserhasscannedthestringderivablefromtheAandexpectin

gthestringfromY. 

3. X AB•,indicates thatheparserhas 

scannedthestringderivablefromAB.IfthegrammarisX €the,theLR(0)itemis 

X •,indicatingthattheproductionisreducedone. 

CanonicalcollectionofLR(0)Items: 

Thisistheprocessofgrouping theLR(0) itemstogether based ontheclosureand Gotooperations 

Closureoperation 

IfIisaninitialState,thentheClosure(I)isconstructedasfollows: 

1. Initially,addAugmentProductiontothestateandcheckfor the• symbolintheRighthand 

side production, if the • is followed by a Non terminal then Add 

ProductionswhichareStatingwiththatNonTerminalinthe StateI. 

E 

T 

E+T|T 

T*F 

F (E)| id 

E` E 

E E+T|T 

T T*F 

F (E)| id 
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2. If a production X α•Aβ is in I, then add Production which are starting with X in 

theState I. Rule 2 is applied until no more productions added to the State I( meaning 

thatthe •isfollowedbya Terminalsymbol). 

Example: 

0.E` E E` • E 

1. E E+T LR(0) itemsfortheGrammaris E • E+T 

2. T F T •F 

3. T T*F T • T*F 

4. F (E) F • (E) 

5. 

 

Closure(I0)State 

F id F • id 

AddE` •EinI0State 

Since, the‗•‘symbolintheRighthandsideproductionisfollowedbyANonterminal 

E. So, add productions starting with E in to Io state. So, the statebecomes 

E ` •E 

0. E •E+T 

1. T •F 

The1stand2ndproductionsaresatisfiesthe2ndrule.So, 

addproductionswhicharestartingwithEandTinI0 

Note:onceproductionsareaddedinthestatethesameproductionshouldnot 

addedforthe 2ndtimeinthe same state.So,thestate becomes 

0.E` •E 

1. E • E+T 

2.T •F 

3.T • T*F 

4.F • (E) 

5.F • id 

 

GOTOOperation 

Go to (I0, X), where I0 is set of items and X is the grammar Symbol on 

whichwearemovingthe„•‟ 

symbol.ItislikefindingthenextstateoftheNFAforagiveStateI0andtheinputsymbolis 

X.Forexample,iftheproductionisE•E+T 

 

Goto (I0,E)isE` •E,  E E•+T 

 
Note:OncewecompletetheGotooperation,weneedtocomputeclosureoperationfortheoutputprod

uction 
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Goto (I0,E)isE E•+T,E` E.=Closure({E` E•,E E•+T}) 

 
E`->.E E`->E. 

E->.E+T 
E E-> 

E.+TT->.T*F 

 

 

ConstructionofLR(0)parsingTable: 

OncewehaveCreatedthecanonicalcollectionofLR(0) items,needtofollowthestepsmentionedbelow: 

Ifthereisa transactionfromone state (Ii)to anotherstate(Ij)onaterminalvalue 

then,weshouldwritethe shiftentryinthe actionpartasshownbelow: 

 

a 

 

A->α•aβ A->αa•β 

 

Ii Ij 

 

Ifthereisa transactionfromone state (Ii)toanoth j ue 

then, we should write the subscript value of Iiin the GO TO part as shown below: part as 

shownbelow: 

 

 

 
A 

 

A->α•Aβ A->αA•β 

 

Ii Ij 

 

 

 
If there is one state (Ii), where there is one production which has no transitions. Then, 

theproduction is said tobe a reduced production. These productions should have reduced entry 

inthe Action part along with their production numbers. If the Augment production is reducing 

then,write acceptintheActionpart. 

 

 

 

 

1 A->αβ• 

States ACTION 

 

a $ 

GOTO 

 

A 

States ACTION GOTO 

 a $ A 

Ii Sj 
 

Ij   

 

States ACTION GOTO 

a $ A 

Ii 

  
j 

Ij 
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Ii 

Ii 

 

ForExample,Construct theLR(0)parsing Tableforthegiven Grammar(G) 

S aB 

B bB|b 

Sol:1. 

AddAugmentProductionandinsert„•‟symbolatthefirstpositionforeveryproductioninG 

 

 

 

 
I0State: 

0. S′ •S 

1. S •aB 

2. B •bB 

3. B •b 

1. AddAugmentproductiontotheI0StateandComputetheClosure 

 
I0  =Closure(S′ •S) 

Since ‗•‘ is followed by the Non terminal, add all productions starting with S in to I0 State. 

So,the I0Statebecomes 

I0= S′ •S 

S •aBHere,intheSproduction‗.‘Symbolisfollowed byaterminalvalueso closethe 

state. 

I1=Goto(I0,S) 

S` S• 

Closure(S` S•)=S′ S• Here, TheProductionisreducedsoclosetheState. 

 
I1=S′ S• 

 

I2=Goto(I0,a)=closure (S a•B) 

Here,the‗•‘symbolisfollowed byTheNonterminalB.So,addthe productionswhichareStartingB. 

I2= B •bB 

B •bHere,the‗•‘symbolintheBproductionisfollowed bytheterminalvalue.So,Close 

theState. 

 

I2= S a•B 

B •bB 
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B •b 

I3= Goto(I2,B)= Closure(S aB•)= S

 aB•I4= Goto(I2,b) 

=closure({B  b•B,B b•}) 

Addproductionsstarting withBinI4. 
 
 

 B • bB 

 B •b TheDotSymbolisfollowedbytheterminalvalue.So,closetheState. 

I4= 
B

B 

b•B 

• bB 

 B •b 

 B b• 

 
I5= Goto(I2,b)=Closure(B b•)=B b• 

I6=Goto(I4,B)=Closure(B bB• )=B

 bB•I7=Goto(I4 

,b)=I4 

DrawingFiniteStatediagramDFA:FollowingDFAgivesthestatetransitionsoftheparserandis 

usefulinconstructingtheLRparsingtable. 

 

 

S->aB• 

 

 

 

 

S′-

>•SS-

>•aB 

S′->S• 

S I3 

I1 B 

 

 

B->b•B B 

a S->a•B 

I0 B->•bB 

 

B->•b 

b B->•bB 

B->•b 

 

B->b• 
b

 

I4 

 

B->bB• 

 

 

 

I5 

I2 I4 
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Ii: 

 

1A->α• 

2B->β• 

 

 

 

LRParsingTable: 

 

States 
ACTION GOTO 

a B $ S B 

I0 S2   1  

I1   ACC   

I2  S4   3 

I3 R1 R1 R1   

I4 R3 S4/R3 R3  5 

I5 R2 R2 R2   

 

Note: if there are multiple entries in the LR (1) parsing table, then it will not accepted by 

theLR(1) parser. In the above table I3 row is giving two entries for the single terminal value ‗b‘ 

anditis calledasShift-Reduceconflict. 

 

Shift-

ReduceConflictinLR(0)Parsing:ShiftReduceConflictintheLR(0)parsingoccurswhenastateh

as 

1. AReduceditemoftheformA α•and 

2. An incomplete itemoftheformA β•aαasshownbelow: 

 

 

 
Ij 

 

 

 
Ii 

 

 
Reduce-ReduceConflictin LR(0)Parsing: 

Reduce- Reduce Conflict in the LR (1) parsing occurs when a state has two or 

morereduceditems oftheform 

1. A α• 

2. B β•asshownbelow: 

 

 

1A->β•aα 
a 

2B->b• 

States Action GOTO 

a $ A B 

Ii Sj/r2 r2 
  

 

Ij 
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States Action GOTO 

a $ A B 

 

Ii 

 

r1/r2 

 

r1/r2 
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SLRPARSERCONSTRUCTION:WhatisSLR(1)Parsing 

VariousstepsinvolvedintheSLR(1) Parsingare: 

 

1. WritetheContextfreeGrammarforthegiveninputstring 

2. CheckfortheAmbiguity 

3. AddAugment production 

4. CreateCanonicalcollectionofLR(0 )items 

5. DrawDFA 

6. ConstructtheSLR( 1)Parsingtable 

7. Basedontheinformation fromtheTable,withhelpofStack 

andParsingalgorithmgenerate theoutput. 

SLR(1)ParsingTableConstruction 

OncewehaveCreatedthecanonicalcollectionofLR(0) 

items,needtofollowthestepsmentionedbelow: 

Ifthereisa transactionfromone state (Ii)to anotherstate(Ij)onaterminalvalue 

then,weshouldwritethe shiftentryinthe actionpartasshownbelow: 

 

 

Ii Ij 

 

 

If there is a transaction from one state (Ii) to another state (Ij) on a Non terminal 

valuethen, we should write the subscript value of Iiin the GO TO part as shown below: part as 

shownbelow: 

States ACTION GOTO 

 a $ A 

Ii Sj 
 

Ij 
  

 

a 

A->α•aβ A->αa•β 
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States ACTION GOTO 

a $ A 

Ii 
  

j 

Ij 
   

 

A->α•Aβ A->αA•β 
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Ii Ij 

 
1Ifthere is one state (Ii),where there is one production(A->αβ•)which has no 

transitionstothenextState.Then,theproductionissaidtobea 

reducedproduction.ForallterminalsXinFOLLOW(A),writethereduceentryalongwiththeirpr

oductionnumbers.IftheAugmentproductionisreducingthenwriteaccept. 

1 S ->•aAb 

2 A->αβ• 

Follow(S)={$} 

Follow(A)=(b} 

 

 

 

Ii 

 

 

 
SLR( 1)tablefortheGrammar 

 
S aB 

B bB|b 

 

Follow(S) ={$},Follow(B) ={$} 

 
 

States 
ACTION GOTO 

A b $ S B 

I0 S2   1  

I1   ACCEPT   

I2  S4   3 

I3   R1   

I4  S4 R3  5 

I5   R2   

 

Note:WhenMultipleEntriesoccursintheSLRtable. 

Then,thegrammarisnotacceptedbySLR(1)Parser. 

Conflictsin theSLR(1)Parsing: 

2 A->αβ• 

Ii 

States ACTION GOTO 

a b $ S A 

Ii 
 

r2 
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Whenmultipleentriesoccur inthetable.Then,thesituationissaidtobeaConflict. 
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Shift-ReduceConflict inSLR(1)Parsing:ShiftReduceConflictintheLR(1) 

parsingoccurswhenastatehas 

1. AReduceditemoftheformA α•and Follow(A)includestheterminalvalue 

‗a‘. 

2. An incomplete itemoftheformA β•aαasshownbelow: 

 

 

 

 
Ij 

 

 
Ii 

 
Reduce-ReduceConflictinSLR(1)Parsing 

Reduce- ReduceConflictintheLR(1) parsingoccurswhenastatehastwoor 

morereduceditems oftheform 

1. A α• 

2. B β•and Follow(A) ∩ Follow(B) ≠null asshownbelow: 

IfTheGrammaris 

S-

>αAaBaA-

>α 

B->β 

Follow(S)={$} 

Follow(A)={a}andFollow(B)={a} 

 
 

Ii 

CanonicalLR(1) Parsing:VariousstepsinvolvedintheCLR(1) Parsing: 

1. WritetheContextfreeGrammarforthegiveninputstring 

2. CheckfortheAmbiguity 

 

3. AddAugment production 

1A->β•aα 

a 
2B->b• 

States Action GOTO 

a $ A B 
 

Ii 

 

Sj/r2 
   

     

 

States Action GOTO 

a $ A B 
 

Ii 

 

r1/r2 
   

 

 
1A->α• 

 

2B->β• 
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4. CreateCanonicalcollectionofLR(1)items 

 

5. DrawDFA 

 

6. ConstructtheCLR(1)Parsingtable 

 

7. BasedontheinformationfromtheTable,withhelpofStack 

andParsingalgorithmgeneratetheoutput. 
 

LR (1)items: 

TheLR(1) itemisdefinedbyproduction,positionofdataandaterminalsymbol.Theterminalis 

calledasLookaheadsymbol. 

General formofLR(1)itemis 

 

 

 
Rulestocreatecanonicalcollection: 

1. EveryelementofIisadded toclosureofI 

2. If an LR (1) item [X-> A•BC, a] exists in I, and there exists a production B-

>b1b2…..,thenadditem[B->•b1b2,z]wherezisaterminalinFIRST(Ca),ifitisnotalreadyin 

Closure(I).keep applyingthisrule untilthere arenomore elementsadde. 

Forexample,ifthegrammaris 

S-

>CCC

-

>cCC-

>d 

TheCanonicalcollectionofLR(1)itemscanbecreatedasfollows: 

0. S′->•S(AugmentProduction) 

1. S->•CC 

2. C-

>•cC3.C-

>•d 

I0 State :Add Augment production and compute the Closure, the look ahead symbol for the 

AugmentProductionis$. 
 

S′->•S,$=Closure(S′->•S,$) 

ThedotsymbolisfollowedbyaNonterminal S.So,addproductionsstarting withSinI0 

State. 
 

S->α•Aβ,$ 

A->•γ, FIRST(β,$) 
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S->•CC,FIRST($), using2ndrule 

 

S->•CC,$ 
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ThedotsymbolisfollowedbyaNonterminal C.So,addproductionsstarting with CinI0 

State. 
 

C->•cC, FIRST(C, 

$)C->•d,FIRST(C, 

$) 

FIRST(C) ={c,d}so,theitemsare 
 

C->•cC, 

c/dC-

>•d,c/d 

Thedotsymbolisfollowedbyaterminal value.So,closetheI0State.So,theproductionsinthe 

I0are 
 

S′->•S , 

$S-

>•CC,$ 

C->•cC, 

c/dC-

>•d,c/d 

I1=Goto(I0,S)=S′->S•,$ 

I2=Go to (I0,C)=Closure(S->C•C,$) 
 

S->C->•cC,$ 

C->•d,$So,theI2Stateis 

S->C•C,$ 

C->•cC , 

$C->•d,$ 

I3=Goto(I0,c)=Closure(C->c•C,c/d) 

C->•cC,c/d 

C->•d, c/dSo, the I3Stateis 

C->c•C, 

c/dC->•cC, 

c/dC->•d, 

c/d 

I4=Goto(I0,d)=Colsure( C->d•,c/d) =C->d•,c/d 

I5=Goto(I2,C)=closure(S->CC•,$)=S->CC•,$I6= 

Goto(I2, c)= closure(C->c•C ,$)= 
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C->•cC, $ 

C->•d, $S0,theI6Stateis 
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C->c•C , 

$C->•cC , 

$C->•d,$ 

I7 = Go to (I2 , d)= Closure(C->d•,$ ) = C->d•, 

$Goto(I3,c)= closure(C->•cC, c/d)= I3. 

I8= Go to (I3 , C)= Closure(C->cC•, c/d) = C->cC•, 

c/dGoto(I3,c)= Closure(C->c•C, c/d)= I3 

Goto(I3, d)=Closure(C->d•,c/d)=I4 

I9=Goto(I6,C)=Closure(C->cC•, $)=C->cC•,$ 

Goto(I6,c)=Closure(C->c•C , $)=I6 

Goto(I6, d)=Closure(C->d•,$)= I7 

DrawingtheFiniteStateMachineDFAfortheaboveLR(1)items 
 

S′->S•,$ 
S->CC•,$ 

I1 C I5 C->cC•,$ 

0 S′->•S , $ 

1 S->•CC, $ 

2C-

>•cC,c/d3 

C->•d,c/d 

S->C•C,$ 

C->•cC , 

$C->•d,$ 

I9 

c 

C->c•C , 

$C-

>•cC,$ 

C->•d,$ 

c 

I6 

I2 I6 I7 

I0 c 

d 

 
C->d•, 

c/dI4 

C->c•C,c/d 

C->•cC, 

c/dC->•d, 

c/d 

C->d•,$ 

I7 

d I3 c 

I4 I3 
C->cC•,c/d 

I8 
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ConstructionofCLR(1)Table 

Rule1: if there is an item [A->α•Xβ,b] in Iiand goto(Ii,X) is in Ij then action [Ii][X]= 

Shiftj,WhereXisTerminal. 

Rule2: if there is an item [A->α•, b] in Iiand (A≠S`) set action [Ii][b]= reduce along 

withthe productionnumber. 

Rule3:ifthereisan item[S`->S•,$]inIithensetaction[Ii][$]= Accept. 

Rule4:ifthereisanitem[A->α•Xβ,b]inIiand goto(Ii,X) isinIjthengoto[Ii][X]=j,Where Xis 

NonTerminal. 

 

States 
ACTION GOTO 

c d $ S C 

I0 S3 S4  1 2 

I1   ACCEPT   

I2 S6 S7   5 

I3 S3 S4   8 

I4 R3 R3   5 

I5   R1   

I6 S6 S7   9 

I7   R3   

I8 R2 R2    

I9 
  R2   

Table:LR(1)Table 

 

LALR(1)Parsing 

The CLR Parser avoids the conflicts in the parse table. But it produces more number 

ofStates when compared to SLR parser. Hence more space is occupied by the table in the 

memory.So LALR parsing can be used. Here, the tables obtained are smaller than CLR parse 

table. But italso as efficient as CLR parser. Here LR (1) items that have same productions but 

different look-aheadsarecombinedtoformasinglesetofitems. 

For example, consider the grammar in the previous example. Consider the states I4 and 

I7asgivenbelow: 

I4= Goto( I0, d)= Colsure( C->d•, c/d) = C->d•, 

c/dI7= Goto(I2,d)= Closure(C->d•,$)=C->d•,$ 

Thesestatesaredifferingonlyinthelook-aheads. Theyhavethesameproductions. 

HencethesestatesarecombinedtoformasinglestatecalledasI47. 

SimilarlythestatesI3and I6differing onlyintheir look-aheadsasgivenbelow: 

I3=Goto(I0,c)= 
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C->c•C, 

c/dC->•cC, 

c/dC->•d, 

c/d 

I6=Goto(I2,c)= 

C->c•C , 

$C->•cC , 

$C->•d,$ 

Thesestatesaredifferingonlyinthelook-aheads. Theyhavethesameproductions. 

Hencethesestatesarecombinedtoformasingle statecalledasI36. 

Similarly the States I8and I9 differing only in look-aheads. Hence they combined to 

formthestateI89. 

 

States 
ACTION GOTO 

c d $ S C 

I0 S36 S47  1 2 

I1   ACCEPT   

I2 S36 S47   5 

I36 S36 S47   89 

I47 R3 R3 R3 
 5 

I5   R1   

I89 R2 R2 R2   

 

Table:LALRTable 

Conflictsin theCLR(1)Parsing:Whenmultipleentriesoccurinthetable.Then,thesituationis 

saidtobeaConflict. 

Shift-ReduceConflictinCLR(1)Parsing 

ShiftReduceConflictintheCLR(1)parsingoccurswhenastatehas 

3. AReduceditemoftheformA α•,aand 

4. An incomplete itemoftheformA β•aαasshownbelow: 

 

 

 

 
Ij 

 

 
Ii 

1A->β•aα,$ 

a 
2B->b•,a 

States Action GOTO 

a $ A B 
 

Ii 

 

Sj/r2 
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Reduce/ReduceConflictinCLR(1)Parsing 

Reduce-

ReduceConflictintheCLR(1)parsingoccurswhenastatehastwoormorereduceditems oftheform 

3. A α• 

4. B β•Iftwoproductionsinastate(I) reducing onsamelookahead 

symbolasshownbelow: 

 

 

Ii 

StringAcceptanceusingLRParsing: 

Considertheaboveexample,iftheinputStringiscdd 
 

States 
ACTION GOTO 

c D $ S C 

I0 S3 S4  1 2 

I1   ACCEPT   

I2 S6 S7   5 

I3 S3 S4   8 

I4 R3 R3   5 

I5   R1   

I6 S6 S7   9 

I7   R3   

I8 R2 R2    

I9   R2   

 

0 S′->•S(AugmentProduction) 

1 S->•CC 

2 C->•cC 

3C->•d 

 

STACK 

 

INPUT 

 

ACTION 

$0 cdd$ ShiftS3 

$0c3 dd$ ShiftS4 

$0c3d4 d$ ReducewithR3,C->d,pop2*βsymbolsfromthestack 

$0c3C d$ Goto(I3,C)=8ShiftS6 

States Action GOTO 

a $ A B 
 

Ii 

 

r1/r2 
   

 

 
1A->α•,a 

 

2B->β•,a 
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$0c3C8 d$ ReducewithR2,C->cC,pop2*βsymbolsfromthestack 

$0C d$ Goto(I0,C)=2 

$0C2 d$ ShiftS7 

$0C2d7 $ ReducewithR3,C->d,pop2*βsymbolsfromthestack 

$0C2C $ Goto(I2,C)=5 

$0C2C5 $ ReducewithR1,S->CC,pop2*βsymbolsfromthestack 

$0S $ Goto(I0,S)=1 

$0S1 $ Accept 

 

HandingAmbiguousgrammar 

 

Ambiguity:AGrammar canhavemorethanoneparsetreefor astring.Forexample,considergrammar. 

 

stringstring+string 

|string-string 

|0|1|.|9 

 

String9-5+2 hastwoparsetrees 

 

A grammar is said to be an ambiguous grammar if there is some string that it can generate 

inmore than one way (i.e., the string has more than one parse tree or more than one 

leftmostderivation).A languageisinherently ambiguousif itcan only be generated by 

ambiguousgrammars. 

 

Forexample,considerthefollowinggrammar: 

 

stringstring+string 

|string-string 

|0|1|.|9 

 

Inthisgrammar,thestring9-5+2hastwopossibleparsetreesasshowninthenextslide. 

 

 

 

 

Consider the parse trees for string 9-5+2, expression like this has more than one parse tree. 

Thetwo trees for 9-5+2 correspond to the two ways of parenthesizing the expression: (9-5)+2 and 
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9-(5+2).The secondparenthesizationgivesthe expressionthe value 2insteadof6. 
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Ambiguityisproblematicbecausemeaning oftheprogramscanbeincorrect 

 Ambiguitycanbehandledinseveralways 

- Enforceassociativityandprecedence 

 

- Rewritethegrammar(cleanestway) 

 

Therearenogeneraltechniques forhandlingambiguity, but 

 

. Itisimpossibletoconvertautomaticallyanambiguousgrammar toanunambiguousone 

 

Ambiguity is harmful to the intent of the program. The input might be deciphered in a way 

whichwas not really the intention of the programmer, as shown above in the 9-5+2 example. 

Thoughthere is no general technique to handle ambiguity i.e., it is not possible to develop some 

featurewhich automatically identifies and removes ambiguity from any grammar. However, it 

can beremoved,broadlyspeaking,inthefollowingpossibleways:- 

1) Rewritingthewholegrammarunambiguously. 

 

2) Implementingprecedenceandassociativelyrules inthegrammar. 

Weshalldiscussthistechniqueinthelater slides. 

 

Ifanoperandhas operatoronboththesides,thesideonwhichoperatortakesthis 

operandistheassociativityofthatoperator 

 

.Ina+b+cb istakenby left+ 

. +,-, *, /areleftassociative 

.^,=arerightassociative 

 

Grammartogeneratestringswithrightassociativeoperatorsrightàletter=right|letterlettera|b|.|z 

 

A binary operation * on a set S that does not satisfy the associative law is called non-

associative. A left-associative operation is a non-associative operation that is 

conventionallyevaluatedfromlefttorighti.e.,operandistakenbytheoperatorontheleftside. 

Forexample, 

6*5*4=(6*5)*4 and not6*(5*4) 

6/5/4=(6/5)/4andnot6/(5/4) 

 

Aright-associativeoperationisanon-

associativeoperationthatisconventionallyevaluatedfromrighttolefti.e.,operandis 

takenbytheoperatoronthe rightside. 
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Forexample, 
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6^5^4 => 6^(5^4) and not 

(6^5)^4)x=y=z=5=> x=(y=(z=5)) 

 

Following is the grammar to generate strings with left associative operators. (Note that this is 

leftrecursive and may go into infinite loop. But we will handle this problem later on by making 

itrightrecursive) 

 

left

 left+letter|letterle

tter  a |b| ....... |z 

 

IMPORTANTQUESTIONS 

1. DiscussthetheworkingofBottomupparsingandspecificallytheOperatorPrecedenceParsin

gwithanexaple? 

2. WhatdoyoumeanbyanLRparser?ExplaintheLR(1)Parsingtechnique? 

3. WritethedifferencesbetweencanonicalcollectionofLR(0)itemsand LR(1)items? 

4. WritetheDifferencebetweenCLR(1) andLALR(1)parsing? 

5. WhatisYACC?Explainhowdoyouuseitinconstructingtheparserusingit. 

 
ASSIGNMENTQUESTIONS 

 

1. ExplaintheconflictsintheShiftreduceParsingwithanexample? 

2. E E+T|T 

T T*F 

F (E)|id,constructtheLR(1) Parsingtable?AndexplaintheConflicts? 

3. E E+T|T 

T T*F 

F (E)|id, constructtheSLR(1)Parsingtable?AndexplaintheConflicts? 

4. E E+T|T 

T T*F 

F (E)|id, constructtheCLR(1) Parsingtable?AndexplaintheConflicts? 

 
 

5. E E+T|T 

T T*F 

F (E)|id, constructtheLALR(1)Parsingtable?AndexplaintheConflicts? 
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UNIT-III 

INTERMEDIATECODEGENERATION 

In Intermediate code generation we use syntax directed methods to translate the 

sourceprogramintoanintermediateformprogramminglanguageconstructssuchasdeclarations,assign

mentsandflow-of-controlstatements. 

 

 
 

 

 

Figure4.1:IntermediateCodeGenerator 

Intermediatecodeis: 
 

 TheoutputoftheParser and theinputto theCodeGenerator. 

 Relativelymachine-independentandallowsthecompilertoberetargeted. 

 Relativelyeasytomanipulate(optimize). 

 

WhataretheAdvantagesofanintermediatelanguage? 

AdvantagesofUsinganIntermediateLanguageincludes: 

 

1. Retargetingisfacilitated-Buildacompilerfor 

anewmachinebyattachinganewcodegeneratortoanexistingfront-end. 

2. Optimization-

reuseintermediatecodeoptimizersincompilersfordifferentlanguagesanddifferentmachines. 

Note:theterms―intermediatecode‖,―intermediatelanguage‖,and―intermediate 

representation‖areallusedinterchangeably. 

Types of Intermediate representations / forms: There are three types of 

intermediaterepresentation:- 

 

1. SyntaxTrees 

 

2. Postfixnotation 

 

3. ThreeAddressCode 

 

Semanticrulesforgeneratingthree-

addresscodefromcommonprogramminglanguageconstructsaresimilar tothosefor 



 

 

constructingsyntaxtreesoffor generatingpostfixnotation. 
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GraphicalRepresentations 

 

A syntax tree depicts the natural hierarchical structure of a source program. A 

DAG(Directed Acyclic Graph)gives the sameinformation butin amore compactway 

becausecommon sub-expressions are identified. A syntax tree for the assignment statement 

a:=b*-c+b*-cappearinthefollowingfigure. 

 

. assign 

a + 

 

* * 

 

b uniminus b uniminus 

 

 

c c 

 

Figure4.2 :AbstractSyntaxTreeforthestatementa:=b*-c+b*-c 

 

Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of the 

inwhich a node appears immediately after its children. The postfix notation for the syntax tree 

inthe figis 

 

abcuminus+ bcuminus*+assign 

 

The edges in a syntax tree do not appear explicitly in postfix notation. They can 

berecovered in the order in which the nodes appear and the no. of operands that the operator at 

anode expects. The recovery of edges is similar to the evaluation, using a staff, of an expression 

inpostfixnotation. 

 

WhatisThreeAddressCode? 

 

Three-addresscodeis asequenceofstatementsofthegeneralform:X:=Y OpZ 

 

where x, y, and z are names, constants, or compiler-generated temporaries; op stands 

forany operator, such as a fixed- or floating-point arithmetic operator, or a logical operator 

onBoolean-valued data. Note that no built-up arithmetic expressions are permitted, as there is 

onlyone operator on the rightside of a statement. Thus asource language expression 

likex+y*zmightbetranslatedintoa sequence 
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t1 := y * 

zt2:=x+ t1 

Wheret1andt2arecompiler-generatedtemporarynames.Thisunravelingofcomplicated 

arithmetic expressions and of nested flow-of-control statements makes three-addresscode 

desirable for target code generation and optimization. The use of names for the 

intermediatevalues computed by a program allow- three-address code to be easily rearranged – 

unlike postfixnotation. Three - address code is a linearzed representation of a syntax tree or a dag 

in whichexplicitnames correspondtotheinteriornodesofthegraph. 

Intermediate code using Syntax for the above arithmetic 

expressiont1:=-c 

t2:=b*t1 

t3:=-c 

t4 := b * 

t3t5:=t2+t4

a:=t5 

The reason for the term‖three-address code‖ is that each statement usually contains 

threeaddresses, two for the operands and one for the result. In the implementations of three-

addresscode given later in this section, a programmer-defined name is replaced by a pointer tc a 

symbol-table entryforthatname. 

 

TypesofThree-AddressStatements 

 

Three-address statements are akin to assembly code. Statements can have symbolic 

labelsand there are statements for flow of control. A symbolic label represents the index of a 

three-address statement in the array holding inter- mediate code. Actual indices can be 

substituted forthelabelseitherbymaking aseparate pass,orbyusing ‖back patching,‖ 

discussedinSection 

8.6.Herearethecommonthree-addressstatementsusedintheremainderofthisbook: 

 

1. Assignment statements of the form x: = y op z, where op is a binary arithmetic or 

logicaloperation. 

 

2. Assignment instructions of the form x:= op y, where op is a unary operation. Essential 

unaryoperations include unary minus, logical negation, shift operators, and conversion operators 

that,forexample,converta fixed-pointnumbertoafloating-pointnumber. 

 

3. Copy statementsoftheformx: =ywherethe valueofyisassignedtox. 

 

4. TheunconditionaljumpgotoL.Thethree-

addressstatementwithlabelListhenexttobeexecuted. 
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5. Conditional jumps such as if x relop y goto L. This instruction applies a relational 

operator(<, =, >=, etc.) to x andy, and executes the statement with label L nextif x stands in 

relationrelop to y. If not, the three-address statement following if x relop y goto L is executed 

next, as inthe usualsequence. 

 

6. param x and call p, n for procedure calls and return y, where y representing a returned 

valueisoptional.Theirtypicaluseis asthe sequenceofthree-addressstatements 

 

param 

x1param 

x2param 

xncallp,n 

Generatedaspartofacalloftheprocedurep(x,,x~,...,x‖).Theintegernindicatingthenumberofactualpara

metersin‖callp,n‖isnotredundantbecausecallscanbenested.Theimplementationofprocedurecallsisou

tlinedinSection8.7. 

 

7. Indexed assignments of the form x: = y[i ] and x [ i ]: = y. The first of these sets x to thevalue 

in the location i memory units beyond location y. The statement x[i]:=y sets the contents ofthe 

location i units beyond x to the value of y. In both these instructions, x, y, and i refer to 

dataobjects. 

 

8. Address and pointer assignments of the form x:=&y, x:= *y and *x: = y. The first of 

thesesets the value of x to be the location of y. Presumably y is a name, perhaps a temporary, 

thatdenotes an expression with an I-value such as A[i, j], and x is a pointer name or temporary. 

Thatis,ther-valueofxisthel-value(location)ofsomeobject!.Inthestatementx:=~y,presumablyy is a 

pointer or a temporary whose r- value is a location. The r-value of x is made equal to thecontents 

of that location. Finally, +x: = y sets the r-value of the object pointed to by x to the r-value ofy. 

 

The choice of allowable operators is an important issue in the design of an 

intermediateform. The operator set must clearly be rich enough to implement the operations in 

the sourcelanguage. A small operator set is easier to implement on a new target machine. 

However, arestricted instruction set may force the front end to generate long sequences of 

statements forsome source, language operations. The optimizer and code generator may then 

have to workharderifgoodcodeistobegenerated. 

 

SYNTAXDIRECTEDTRANSLATIONOFTHREEADDRESSCODE 

 

When three-address code is generated, temporary names are made up for the 

interiornodes ofasyntaxtree.Thevalueofnon- 
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computed into a new temporary t. In general, the three- address code for id: = E consists of 

codetoevaluateEintosometemporaryt,followedbytheassignmentid.place:=t.Ifanexpressionisa 

single identifier, say y, then y itself holds the value of the expression. For the moment, wecreate 

a new name every time a temporary is needed; techniquesforreusing temporaries aregiven in 

Section S.3. The S-attributed definition in Fig. 8.6 generates three-address code forassignment 

statements. Given input a: = b+ – c + b+ – c, it produces the code in Fig. 8.5(a). Thesynthesized 

attribute S.code represents the three- address code for the assignment S. The non-terminalEhas 

twoattributes: 

 

1. E.place, thenamethatwill holdthevalueofE,and 

 

2. E.code,the sequence ofthree-addressstatementsevaluating E. 

 

Thefunction newtempreturns a sequence of distinctnames t1, t2,... in response 

tosuccessive calls. For convenience, we use the notation gen(x ‘: =‘ y ‘+‘ z) in Fig. 8.6 to 

representthe three-address statement x: = y + z. Expressions appearing instead of variables like x, 

y, and zare evaluated when passed to gen, and quoted operators or operands, like ‘+‘, are taken 

literally.In practice, three- address statements might be sent to an output file, rather than built up 

into thecodeattributes.Flow-of-controlstatementscanbeadded tothelanguageofassignmentsinFig. 

8.6 by productions and semantic rules )like the ones for while statements in Fig. 8.7.In thefigure, 

the code for S - while E do S, is generated using‘ new attributes S.begin and S.after 

tomarkthefirststatementinthecodeforEandthestatementfollowingthecodeforS,respectively. 

 

 

These attributes represent labels created by a function new label that returns a new 

labeleverytimeitis called. 
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IMPLEMENTATIONSOFTHREE-ADDRESSSTATEMENTS: 

 

A three-address statement is an abstract form of intermediate code. In a compiler, 

thesestatements can be implemented as records with fields for the operator and the operands. 

Threesuchrepresentationsare quadruples,triples,andindirecttriples. 

 

QUADRUPLES: 

 

A quadrupleis a record structure with four fields, which we call op, arg l, arg 2, andresult. 

The op field contains an internal code for the operator. The three-address statement x:= yop z is 

represented by placing y in arg 1. z in arg 2. and x in result. Statements with 

unaryoperatorslikex:=–yorx:=ydonotusearg2.Operatorslikeparamuseneitherarg2norresult. 

Conditional and unconditional jumps put the target label in result. The quadruples in 

Fig.H.S(a)are forthe assignmenta:= b+ –c + bi–c.Theyare obtainedfromthethree-addresscode 

.The contents of fields arg 1, arg 2, and resultare normally pointers tothe symbol-table entriesfor 

the names represented by thesefields. If so, temporary names mustbe entered into thesymboltable 

as theyare created. 

 

TRIPLES: 

 

To avoid entering temporary names into the symbol table. We might refer to a 

temporaryvalue bi the position of the statement that computes it. If we do so, three-address 

statements canbe represented by records with only three fields: op, arg 1 and arg2, as Shown 

below. The fieldsarg l and arg2, for the arguments of op, are either pointers to the symbol table 

(for programmer-defined names or constants) or pointers into the triple structure (for temporary 

values). Sincethree fields are used, this intermediate code format is known as triples.‘ Except for 

the treatmentof programmer-defined names, triples correspond to the representation of a syntax 

tree or dag byanarrayofnodes,asin 

 

Table8.8 (a):Qudraples Table8.8(b):Triples:Triples 

 

Parenthesized numbers represent pointers into the triple structure, while symbol-

tablepointers are represented by the names themselves. In practice, the information needed to 

interpretthe different kinds of entries in the arg 1 and arg2 fields can be encoded into the op field 

or someadditionalfields.ThetriplesinFig.8.8(b) correspondtothequadruplesinFig.8.8(a).Notethat 

 op Arg1 Arg2 Result 

(0) uminus c  t1 

(1) * b t1 t2 

(2) uminus c  t3 

(3) * b t3 t4 

(4) + t2 t4 t5 

(5) := t5  A 

 

 op Arg1 Arg2 

(0) uminus C  

(1) * B (0) 

(2) uminus C  

(3) * B (2) 

(4) + (1) (3) 

(5) := A (4) 
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the copy statementa:= t5 is encoded in the triple representation by placing a in the arg 1 fieldand 

using the operator assign. A ternary operation like x[i ]: = y requires two entries in the 

triplestructure, as shown in Fig. 8.9(a), while x: = y[i]is naturally represented as two operations 

inFig.8.9(b). 

 

 

IndirectTriples 

 

Another implementation of three-address code that has been considered is that of 

listingpointers to triples, rather than listing the triples themselves. This implementation is 

naturallycalled indirect triples. For example, let us use an array statement to list pointers to 

triples in thedesired order.Thenthe triplesinFig.8.8(b)might be representedasinFig.8.10. 

 
 

 

 
Figure 

8.10:IndirectTriplesSEMANTICANALYSIS:Thisphasefoc

uses mainlyonthe 

. Checkingthesemantics, 

.Errorreporting 

.Disambiguateoverloadedoperators 

.Typecoercion, 

.Staticchecking 
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- Typechecking 

-Controlflowchecking 

- Uniquenesschecking 

- Namechecking aspectsoftranslation 

 

Assume that the program has been verified to be syntactically correct and converted 

intosome kind of intermediate representation (a parse tree). One now has parse tree available. 

Thenext phase will be semantic analysis of the generated parse tree. Semantic analysis also 

includeserrorreportingincaseanysemanticerrorisfoundout. 

 

Semantic analysis is a pass by a compiler that adds semantic information to the parse 

treeand performs certain checks based on this information. It logically follows the parsing phase, 

inwhich the parse tree is generated, and logically precedes the code generation phase, in 

which(intermediate/target) code is generated. (In a compiler implementation, it may be possible 

to folddifferent phases into one pass.) Typical examples of semantic information that is added 

andchecked is typing information ( type checking ) and the binding of variables and function 

namestotheirdefinitions(objectbinding).Sometimesalsosomeearlycodeoptimizationisdoneinthis 

phase. For this phase the compiler usually maintains symbol tables in which it stores 

whateachsymbol(variablenames,functionnames,etc.)refersto. 

 

FOLLOWINGTHINGSAREDONEINSEMANTICANALYSIS: 

 

Disambiguate Overloaded operators: If an operator is overloaded, one would like to 

specifythemeaningofthatparticularoperatorbecausefromonewillgointocodegenerationphasenext. 

 

TYPE CHECKING: The process of verifying and enforcing the constraints of types is 

calledtype checking. This may occur either at compile-time (a static check) or run-time(a 

dynamiccheck). Static type checking is a primary task of the semantic analysis carried out by a 

compiler.Iftyperulesareenforcedstrongly(thatis,generallyallowingonlythoseautomatictypeconversi

ons which do not lose information), the process is called strongly typed, if not, weaklytyped. 

 

UNIQUENESSCHECKING:Whether avariablenameisuniqueor not,intheitsscope. 

 

Typecoersion:Ifsomekindofmixingoftypesisallowed.Doneinlanguageswhicharenotstronglyty

ped.Thiscanbe donedynamicallyas wellas statically. 

 

NAMECHECKS:Checkwhetheranyvariablehasanamewhichisnotallowed.Ex. Nameissame 

asanidentifier(Ex.intinjava). 

 

 Parsercannotcatchalltheprogramerrors 

 Thereisalevelofcorrectnessthatisdeeperthansyntaxanalysis 

 Somelanguage featurescannot bemodeledusingcontextfreegrammarformalism 

http://en.wikipedia.org/wiki/Type_checking
http://en.wikipedia.org/wiki/Object_binding
http://en.wikipedia.org/wiki/Compile-time
http://en.wikipedia.org/wiki/Run-time
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- Whetheranidentifierhasbeendeclaredbeforeuse,thisproblemisofidentifyingalanguage 

{wαw|wεΣ*} 

 

- Thislanguage isnotcontext free 

 

Aparserhasitsownlimitationsincatchingprogramerrorsrelatedtosemantics,somethingthatis deeper 

than syntax analysis. Typical features of semantic analysis cannot be modeled usingcontext free 

grammar formalism. If one tries to incorporate those features in the definition of alanguage 

thenthatlanguage doesn'tremaincontextfreeanymore. 

Example:instr

ingx;inty; 

y=x+3

 theuseofxisatypeerrorinta,

b; 

a=b+ccisnot declared 

 

An identifier may refer to differentvariables in differentparts of the program . An identifiermay 

be usable in one part of the program but not another These are a couple of examples whichtell us 

that typically what a compiler has to do beyond syntax analysis. The third point can 

beexplainedlike this:An identifier x can be declaredin twoseparate functions in the program,once 

of the type int and then of the type char. Hence the same identifier will have to be bound tothese 

two different properties in the two different contexts. The fourth point can be explained inthis 

manner: A variable declared within one function cannot be used within the scope of 

thedefinitionoftheotherfunctionunlessdeclaredthereseparately.Thisisjustanexample.Probably you 

can think of many more examples in which a variable declared in one scope cannotbe 

usedinanotherscope. 

 

ABSTRACTSYNTAXTREE:Isnothingbutthecondensedformofaparsetree,Itis 

Usefulforrepresentinglanguageconstructssonaturally. 

TheproductionS ifBthens1else s2mayappearas 

 
 

 

In the next few slides we will see how abstract syntax trees can be constructed from 

syntaxdirected definitions. Abstract syntax trees are condensed form of parse trees. Normally 

operatorsand keywords appear as leaves but in an abstract syntax tree they are associated with 

the interiornodes that would be the parent of those leaves in the parse tree. This is clearly 

indicated by theexamplesintheseslides. 
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Chainofsingleproductionsmaybecollapsed,and operatorsmovetotheparentnodes 

 

 

Chainofsingleproductionsarecollapsedintoonenodewiththeoperatorsmovingupto becomethe 

node. 

 

CONSTRUCTINGABSTRACTSYNTAXTREEFOREXPRESSIONS: 

 

Inconstructing theSyntaxTree,wefollowtheconventionthat: 

 

.Eachnodeofthetreecanberepresented asarecordconsisting 

ofatleasttwofieldstostoreoperatorsandoperands. 

.operators: onefieldforoperator,remainingfieldsptrstooperands mknode(op,left,right) 

.identifier:onefieldwithlabelidandanotherptrtosymboltablemkleaf(id,id.entry) 

.number:onefieldwithlabelnumandanothertokeepthevalueofthenumbermkleaf(num,val) 

 

Each node in an abstract syntax tree can be implemented as a record with several fields. In 

thenode for an operator one field identifies the operator (called the label of the node) and 

theremaining contain pointers to the nodes for operands. Nodes of an abstract syntax tree may 

haveadditional fields to hold values (or pointers to values) of attributes attached to the node. 

Thefunctions given in the slide are used to create the nodes of abstract syntax trees for 

expressions.Eachfunctionreturns apointertoanewlycreatednote. 

ForExample:thefollowings

equence offunction 

callscreatesaparsetr

eeforw=a-4+c 

 

P 1 = mkleaf(id, 

entry.a)P2=mkleaf(num

,4) 

P 3 = mknode(-, P 1 , P 2 

)P4 =mkleaf(id,entry.c) 
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P5=mknode(+,P3,P4 ) 

 

An example showing the formation of an abstract syntax tree by the given function calls for 

theexpression a-4+c.The call sequence can be defined based on its postfix form, which is 

explainedblow. 

 

A- Write the postfix equivalent of the expression for which we want to construct a syntax 

treeForabovestringw=a-4+c,itisa4-c+ 

B-Callthefunctionsinthesequence,asdefinedbythesequenceinthepostfixexpressionwhichresults 

inthedesiredtree.Inthecaseabove, callmkleaf()fora, mkleaf()for 4,mknode()for 

-,mkleaf()forc,andmknode()for+atlast. 

 

1. P1=mkleaf(id, a.entry):Aleafnodemadefortheidentifiera, andanentryforais madeinthe 

symboltable. 

 

2. P2=mkleaf(num,4) :Aleafnodemadeforthenumber 4, andentryfor itsvalue. 

 

3. P3=mknode(-,P1,P2):Aninternalnodeforthe-,takesthepointertopreviouslymadenodesP1,P2as 

argumentsandrepresents the expressiona-4. 

 

4. P4=mkleaf(id, c.entry) :Aleaf 

nodemadefortheidentifierc,andanentryforc.entrymadeinthesymboltable. 

 

5. P5 = mknode(+,P3,P4) : An internal node for the + , takes the pointer to previously 

madenodesP3,P4as arguments andrepresentstheexpressiona-4+c. 

 

Followingisthesyntaxdirecteddefinitionforconstructingsyntaxtreeabove 

 

E E 1+T E.ptr= mknode(+,E1.ptr,T.ptr) 

E T E.ptr=T.ptr 

T T 1*F T.ptr:=mknode(*,T1.ptr,F.ptr) 

T F T.ptr:=F.ptr 

F (E) F.ptr :=E.ptr 

F id F.ptr:=mkleaf(id,id.entry) 

F num F.ptr:=mkleaf(num,val) 

 
Nowwehavethesyntaxdirected definitionstoconstruct 

theparsetreeforagivengrammar.Alltherulesmentionedinslide 29 aretakencareofandanabstract 

syntaxtree isformed. 

 

ATTRIBUTEGRAMMARS:ACFGG=(V,T,P,S), iscalledanAttributedGrammariff,where in 

G, each grammar symbol XƐ VUT, has an associated set of attributes, and eachproduction,pƐP, 
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isassociatedwithasetofattributeevaluationrulescalledSemanticActions. 
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InanAG,thevaluesofattributesataparsetreenodearecomputed bysemanticrules.Therearetwo 

different specifications of AGs used by the Semantic Analyzer in evaluating the 

semanticsoftheprogramconstructs.Theyare, 

 

- Syntaxdirected definition(SDD)s 

o Highlevelspecifications 

o Hidesimplementationdetails 

o Explicitorderofevaluationisnotspecified 

- SyntaxdirectedTranslationschemes(SDT)s 

Nothing but an SDD, which indicates order in which semantic rules are to 

beevaluatedand 

Allowsomeimplementationdetailstobeshown. 

An attribute grammar is the formal expression of the syntax-derived semantic 

checksassociated with a grammar. It represents the rules of a language not explicitly imparted by 

thesyntax. In a practical way, it defines the information that is needed in the abstract syntax tree 

inorder to successfully perform semantic analysis. This information is stored as attributes of 

thenodesofthe abstractsyntaxtree.The valuesofthose attributesarecalculatedbysemantic rule. 

 

Therearetwowaysforwritingattributes: 

 

1) SyntaxDirectedDefinition(SDD):Isacontextfreegrammarinwhichasetofsemanticactionsa

reembedded(associated)witheachproductionofG. 

 

It is a high level specification in which implementation details are hidden, e.g., S.sys 

=A.sys+B.sys; 

 

/*doesnotgiveany implementation details.Itjusttellsus.Thiskindof attributeequation we 

will be using, Details like at what point of time is it evaluated and in what mannerare 

hiddenfromtheprogrammer.*/ 

 

E E1+T {E.val=E1.val+ E2.val} 

E T {E.val=T.val} 

T T 1*F {T.val=T1.val+F.val) 

T F {T.val= F.val} 

F (E) {F.val= E.val} 

F id {F.val=id.lexval} 

F num { F.val= num.lexval} 

 

2) Syntax directed Translation(SDT) scheme: Sometimes we want to control the way 

theattributes are evaluated, the order and place where they are evaluated. This is of a slightly 

lowerlevel. 
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AnSDT isanSDDinwhichsemantic actions canbe placedatanypositioninthe bodyoftheproduction. 
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Forexample, followingSDTprintstheprefixequivalentofanarithmeticexpressionconsistinga 

+and * operators. 

 

L En{printf(„E.val‟)} 

E {printf(„+‟)}E1+TE

 T 

T {printf(„*‟)}T1*FT

 F 

F (E) 

F {printf(„id.lexval‟)}id 

F {printf(„num.lexval‟)}num 

 

Thisaction inanSDT,isexecuted 

assoonasitsnodeintheparsetreeisvisitedinapreordertraversalofthetree. 

 

ConceptuallyboththeSDD and SDTschemeswill: 

Parseinputtokenstream 

Buildparsetree 

Traverse the parse tree to evaluate the semantic rules at the parse tree 

nodesEvaluationmay: 

Generatecode 

Saveinformation inthesymboltable 

Issueerrormessages 

Performanyotheractivity 

 

To avoidrepeatedtraversalofthe parse tree,actionsare takensimultaneouslywhena 

tokenisfound.Socalculationofattributesgoesalongwiththe constructionofthe parse tree. 

 

Along with the evaluation of the semantic rules the compiler may simultaneously generate 

code,save the information in the symbol table, and/or issue error messages etc. at the same time 

whilebuildingtheparsetree. 

 

Thissavesmultiplepassesoftheparsetree.Exa

mple 

Number  sign 

listsign +|- 

list list bit |bit 

bit 0|1 

 

BuildattributegrammarthatannotatesNumberwiththevalueitrepresents 

 

.Associateattributeswithgrammarsymbols 
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symbol attributes 

Number value 

sign negative 

list position,value 

bit position,value 

productionAttributerulenumber sign 

listlist.position 0 

 

ifsign.negative 

 

thennumber.value  - 

list.valueelsenumber.value

 list.value 

sign +sign.negative false sign -sign.negative truelist

 bitbit.position list.position 

list.value

 bit.valuelist0

 list1bit 

list1.position 

 list0.position+1bit.

position list0.position 

list0.value list1.value+bit.value 

bit 0bit.value 0bit 1bit.value 2bit.position 

 

Explanationofattributerules 

Num->signlist /*since lististherightmostsoitisassignedposition0 

*Signdetermineswhether thevalueofthenumber wouldbe 

*sameorthe negative ofthevalue oflist*/ 

Sign->+|- /*SettheBooleanattribute(negative)forsign*/ 

List->bit /*bit positionisthesameaslistpositionbecausethisbitistherightmost 

*value of the list is same as 

bit.*/List0->List1 bit

 /*positionandvaluecalculations*/B

it ->0|1 /*setthecorrespondingvalue*/ 

 

 

 
AttributesofRHScanbe computed fromattributesofLHSandvice versa. 

 

TheParseTreeandtheDependencegraphareasunder 
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. 
 

Dependence graph shows the dependence of attributes on other attributes, along with 

thesyntax tree. Top down traversal is followed by a bottom up traversal to resolve the 

dependencies.Number,valandnegare synthesizedattributes.Posisan inheritedattribute. 

 

Attributes:.Attributesfallintotwoclassesnamelysynthesizedattributesandinheritedattributes. 

Value of a synthesized attribute is computed from the values of its children nodes.Value 

ofaninheritedattributeis computedfromthe siblingandparentnodes. 

 

The attributes are divided into two groups, called synthesized attributes and 

inheritedattributes. The synthesized attributes are the result of the attribute evaluation rules also 

using thevalues of the inherited attributes. The values of the inherited attributes are inherited 

from parentnodesandsiblings. 

 

EachgrammarproductionA ahasassociatedwithitasetofsemanticrulesoftheformb=f(c1, 

c2, ..., ck) ,Wheref isafunction,andeither,bisasynthesizedattributeofAOr 

- b isaninherited attributeofoneofthegrammarsymbolsontheright 

 

.attribute bdepends onattributesc1,c2,...,ck 

 

Dependence relation tells us what attributes we need to know before hand to calculate 

aparticularattribute. 

 

Here the value of the attribute b depends on the values of the attributes c1 to ck . If c1 to 

ckbelong to the children nodes and b to A then b will be called a synthesized attribute. And if 

bbelongs to one among a (child nodes) then it is an inherited attribute of one of the 

grammarsymbolsontheright. 
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SynthesizedAttributes:Asyntaxdirecteddefinitionthatusesonlysynthesizedattributesissaidt

obeanS-attributeddefinition 

 

.Aparsetreefor anS-attributeddefinitioncanbeannotatedbyevaluatingsemanticrulesforattributes 

 

S-attributed grammars are a class of attribute grammars, comparable with L-attributed 

grammarsbut characterized by having no inherited attributes at all. Inherited attributes, which 

must bepassed down from parent nodes to children nodes of the abstract syntax tree during the 

semanticanalysis,poseaproblemforbottom-upparsingbecauseinbottom-

upparsing,theparentnodesof the abstract syntax tree are createdafter creation of all of their 

children.Attribute evaluationin S-attributed grammars can be incorporated conveniently in both 

top-down parsing and bottom-upparsing. 

 

SyntaxDirectedDefinitions foradeskcalculatorprogram 

L En Print(E.val) 

E E+T E.val=E.val+T.val 

E      T E.val=T.val 

T T*F T.val=T.val*F.val 

T      F T.val=F.val 

F (E) F.val=E.val 

F digit F.val=digit.lexval 

 

.terminalsareassumedtohaveonlysynthesized attributevaluesofwhicharesuppliedbylexicalanalyzer 

 

. startsymboldoesnothaveanyinheritedattribute 

 

Thisisagrammarwhichusesonlysynthesizedattributes. Startsymbolhasnoparents, 

hencenoinheritedattributes. 

 

Parse tree for3*4+ 5n 
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Usingthepreviousattributegrammar calculationshavebeenworkedoutherefor 

3*4+5n.Bottomupparsinghasbeendone. 

 

InheritedAttributes:Aninheritedattributeisonewhosevalueisdefinedintermsofattributesatt

heparentand/orsiblings 

 

. Usedforfindingoutthecontextinwhichitappears 

. possibletouseonlyS-attributesbutmorenaturaltouseinheritedattributesD

 TL L.in=T.type 

T real T.type=real 

T int T.type=int 

L L1,id L1.in=L.in;addtype(id.entry,L.in) 

L id addtype(id.entry,L.in) 

 

Inheritedattributeshelptofindthecontext(type,scopeetc.)ofatokene.g.,thetypeofatokenor scope 

when the same variable name is used multiple times in a program in different functions.An 

inherited attribute system may be replaced by an S -attribute system but it is more natural 

touseinheritedattributesinsome caseslike the example givenabove. 

 

Hereaddtype(a,b)functionsaddsasymboltableentryfortheid aand attachesto it thetypeofb 

. 

 

Parsetreefor realx,y,z 



COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET 
 

 

 

 

 

 

 

 

 

Dependence of attributes in an inherited attribute system. The value of in (an inherited 

attribute)at the three L nodes gives the type of the three identifiers x , y and z . These are 

determined bycomputing the value of the attribute T.type at the left child of the root and then 

valuating L.in 

topdownatthethreeLnodesintherightsubtreeoftheroot.AteachLnodetheprocedureaddtypeis called 

which inserts the type of the identifier to its entry in the symbol table. The figure 

alsoshowsthedependencegraphwhichisintroducedlater. 

 

Dependence Graph:.Ifanattribute bdependsonanattributecthenthe semantic 

ruleforbmustbeevaluatedafterthe semanticruleforc 

 

.Thedependenciesamongthenodescanbedepicted byadirected graphcalleddependencygraph 

 

DependencyGraph :Directedgraphindicating 

interdependenciesamongthesynthesizedandinheritedattributes ofvariousnodesinaparse tree. 

 

Algorithmtoconstructdependencygraphfo

reachnodeninthe parsetree do 

foreachattributeaofthegrammarsymboldocons

tructanode inthe dependencygraph 

fora 

 

for each nodenintheparsetreedo 

 

foreachsemantic ruleb=f(c1,c2,...,ck)do 

 

{ associatedwithproductionatn} 
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fori= 1tokdo 

 

Constructanedgefromcitob 

 

Analgorithm toconstructthedependency graph.Aftermakingonenodeforeveryattribute of 

all the nodes of the parse tree, make one edge from each of the other attributes 

onwhichitdepends. 

 

Forexample, 

 

 

 

The semantic rule A.a = f(X.x , Y.y) for the production A -> XY defines the 

synthesizedattribute a of A to be dependent on the attribute x of X and the attribute y of Y . Thus 

thedependency graph will contain an edge from X.x to A.a and Y.y to A.a accounting for the 

twodependencies. Similarly for the semantic rule X.x = g(A.a , Y.y) for the same production 

therewillbeanedgefromA.atoX.xandanedgefromY.ytoX.x. 

 

Example 

 

.Wheneverfollowingproductionisused inaparsetreeE

 E1+E2 E.val=E1.val+E2.val 

wecreate adependencygraph 
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The synthesized attribute E.val depends on E1.val and E2.val hence the two edges 

oneeachfromE1.val&E2.val 

 

Forexample,thedependencygraphforthestingrealid1,id2,id3 

 

.Putadummysynthesized attributeb for asemanticrulethatconsistsofaprocedurecall 

 

 
The figure shows the dependency graph for the statement real id1, id2, id3 along with 

theparse tree. Procedure calls can be thought of as rules defining the values of dummy 

synthesizedattributes of the nonterminal on the left side of the associated production. Blue arrows 

constitutethedependency graphandblacklines,theparsetree.Eachof 

thesemanticrulesaddtype(id.entry,L.in)associated withtheLproductionsleadsto 

thecreationofthedummyattribute. 

 

Evaluation Order: 
 

Anytopologicalsortofdependencygraphgivesavalidorderinwhichsemanticrulesmustbeevaluate

d 

 

a4 = 

reala5=a

4 
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addtype(id3.entry, 

a5)a7=a5addtype(id2.

entry,a7) 
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a9:=a7addtype(id1.entry,a9) 

 

A topological sort of a directed acyclic graph is any ordering m1, m2, m3 .......mk of 

thenodes of the graph such that edges go from nodes earlierin the ordering to later nodes. Thus 

ifmi ->mj is an edge from mi to mj then mi appears before mj in the ordering. The order of 

thestatements shown in the slideis obtainedfrom the topological sort of the dependency graph 

inthe previous slide.'an' stands for the attribute associated with the node numbered n in 

thedependencygraph.Thenumberingis asshowninthepreviousslide. 

 

AbstractSyntaxTreeisthe condensedformoftheparsetree,whichis 

 

.Usefulforrepresenting languageconstructs. 

.Theproduction:S ifBthens1elses2mayappearas 
 

 

In the next few slides we will see how abstract syntax trees can be constructed 

fromsyntax directed definitions. Abstract syntax trees are condensed form of parse trees. 

Normallyoperators and keywords appear as leaves but in an abstract syntax tree they are 

associated withthe interior nodes that would be the parent of those leaves in the parse tree. This is 

clearlyindicatedbytheexamplesintheseslides. 

 

.Chainofsingleproductionsmaybecollapsed,andoperatorsmovetotheparentnodes 

 

 

Chainofsingleproductionarecollapsedintoonenodewiththeoperatorsmovingupto becomethe node. 
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ForConstructingtheAbstractSyntaxtreeforexpressions, 

 

.Eachnode canbe representedasa record 

 

.operators:onefieldforoperator,remainingfieldsptrstooperandsmknode(op,left,right) 

 

.identifier:onefieldwith labelidandanother ptrtosymboltablemkleaf(id,entry) 

 

.number:onefield with labelnumand anothertokeep the 

valueofthenumbermkleaf(num,val) 

 

Each node in an abstractsyntax tree can be implemented as a record with several fields.In 

the node for an operator one field identifies the operator (called the label of the node) and 

theremaining contain pointers to the nodes for operands. Nodes of an abstract syntax tree may 

haveadditional fields to hold values (or pointers to values) of attributes attached to the node. 

Thefunctions given in the slide are used to create the nodes of abstract syntax trees for 

expressions.Eachfunctionreturns apointertoanewlycreated note. 

 

Example:Thefollowings

equence of 

functioncallscreatesapa

rsetree fora-4+ c 

 

P 1 = mkleaf(id, 

entry.a)P2=mkleaf(num

,4) 

P 3 = mknode(-, P 1 , P 2 

)P4 =mkleaf(id,entry.c) 

P5=mknode(+,P3,P4) 

 

Anexampleshowing theformationofanabstract syntaxtreebythegiven functioncallsfortheexpressiona-

4+c.Thecallsequence canbeexplainedas: 

 

1. P1=mkleaf(id,entry.a):AleafnodemadefortheidentifierQaRand anentryfor 

QaRismadeinthesymboltable. 

2. P2=mkleaf(num,4):AleafnodemadeforthenumberQ4R. 

3. P3 =mknode(-,P1,P2):AninternalnodefortheQ-

Q.ItakesthepreviouslymadenodesasargumentsandrepresentstheexpressionQa-4R. 

4. P4=mkleaf(id,entry.c):AleafnodemadefortheidentifierQcRandanentryfor 

QcRismadeinthesymboltable. 

5. P5=mknode(+,P3,P4):An 

internalnodefortheQ+Q.Itakesthepreviouslymadenodesasargumentsandrepresentstheexpression

Qa-4+cR. 
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Asyntaxdirecteddefinitionforconstructingsyntaxtree 

E E 1+T E.ptr=mknode(+,E1.ptr,T.ptr) 

E T E.ptr=T.ptr 

T T 1*F T.ptr:= mknode(*,T1.ptr,F.ptr) 

T F T.ptr:=F.ptr 

F (E) F.ptr :=E.ptr 

F id F.ptr:=mkleaf(id,entry.id) 

F num F.ptr:=mkleaf(num,val) 

 

 
Nowwehavethesyntaxdirected definitionstoconstruct 

theparsetreeforagivengrammar.Alltherulesmentionedinslide 29 aretakencareofandanabstract 

syntaxtree isformed. 

 

Translationschemes: ACFGwheresemanticactionsoccur 

withintherighthandsideofproduction,Atranslationschemetomapinfixtopostfix. 

E TR 

addop T { print(addop)} R | 

eT num{print(num)} 

Parse tree for9-5+2 

 
 

 
We assume that the actions are terminal symbols and Perform depth first order traversal to 

obtain95-2+. 

Whendesigningtranslationscheme,ensureattributevalueisavailablewhenreferredto 

Incaseofsynthesizedattributeitistrivial(why?) 

In a translation scheme, as we are dealing with implementation, we have to 

explicitlyworry about the order of traversal. We can now put in between the rules some actions 

as part ofthe RHS. We put this rules in order to control the order of traversals. In the given 



COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET 
 

 

example, wehave twoterminals(numandaddop).Itcangenerallybe seenasa 

numberfollowedbyR(which 
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necessarily has to begin with an addop). The given grammar is in infix notation and we need 

toconvert it into postfix notation. If we ignore all the actions, the parse tree is in black, without 

thered edges. If we include the red edges we get a parse tree with actions. The actions are so 

fartreated as a terminal. Now, if we do a depth first traversal, and whenever we encounter a 

actionwe execute it, we get a post-fix notation. In translation scheme, we have to take care of 

theevaluation order; otherwise some of the parts may beleftundefined.For 

differentactions,differentresultwill be obtained.Actions aresomething we write and wehave to 

control it.Please note that translation scheme is different from a syntax driven definition.In the 

latter, wedo not have any evaluation order; in this case we have an explicit evaluation order. By 

explicitevaluation order we have to set correct action at correct places, in order to get the desired 

output.Place of each action is very important. We have to find appropriate places, and that is 

thattranslation scheme is all about. If we talk of only synthesized attribute, the translation scheme 

isvery trivial. This is because, when we reach we know that all the children must have 

beenevaluated and all their attributes must have also been dealt with. This is because finding the 

placeforevaluationis verysimple,itistherightmostplace. 

 

Incaseofbothinheritedand synthesizedattributes 

 

. An inherited attribute for a symbol on rhs of a production must be computed in an action 

beforethatsymbol 

 

SA1A 2{A1.in=1,A2.in=2} 

A a {print(A.in)} 

 

 

Depthfirstordertraversalgiveserrorundefined 

 

. Asynthesizedattributefor nonterminalonthelhscanbecomputedafter 

allattributesitreferences,havebeencomputed.Theactionnormallyshouldbeplaced at theend ofrhs 

 

We have a problem when we have both synthesized as well as inherited attributes. For the 

givenexample, if we place the actions as shown, we cannot evaluate it. This is because, when 

doing adepth first traversal, we cannot print anything for A1. This is because A1 has not yet 

beeninitialized. We, therefore have to find the correct places for the actions. This can be that 

theinherited attribute of A mustbe calculated on its left. This can beseen logically from 

thedefinition of L-attribute definition, which says that when we reach a node, then everything on 
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itsleftmusthavebeencomputed.Ifwedo this,wewillalwayshavetheattributeevaluatedat the 
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correctplace. 

Forsuchspecificcases(likethegivenexample)calculatinganywhereontheleftwillwork,butgenerallyit

mustbe calculatedimmediatelyattheleft. 

 

Example:TranslationschemeforEQN 

 

S B

 B.pts=

10S.ht=B.

ht 

B B1B2 B1.pts = 

B.ptsB2.pts=B.

pts 

B.ht=max(B1.ht,B2.ht) 

B B1subB2 B1.pts=B.pts; 

B 2.pts = 

shrink(B.pts)B.ht 

=disp(B1.ht,B2.ht) 

B text B.ht=text.h*B.pts 

 

We now look at another example. This is the grammar for finding out how do I compose 

text.EQN was equation setting system which was used as an early type setting system for UNIX. 

Itwas earlier used as an latex equivalent for equations. We say that start symbol is a block: S - 

>BWecanalsohaveasubscriptandsuperscript.Here,welookatsubscript.ABlockiscomposedof several 

blocks: B -> B1B2 and B2 is a subscript of B1. We have to determine what is the pointsize 

(inherited) and height Size (synthesized). We have the relevant function for height and pointsize 

givenalongside.Afterputtingactionsinthe rightplace 

 
 

 

We have put all the actions at the correct places as per the rules stated. Read it from left to 

right,and top to bottom. We note that all inherited attribute are calculated on the left of B 

symbols andsynthesizedattributes areontheright. 
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TopdownTranslation:UsepredictiveparsingtoimplementL-attributeddefinitions 

EE 1+TE.val:= E1.val+T.val 
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EE 1-T E.val:= E1.val-T.val 

E T E.val:= T.val 

T (E) T.val:= E.val 

T num T.val:=num.lexval 

 

We now come to implementation. We decide how we use parse tree and L-

attributedefinitions to construct the parse tree with a one-to-one correspondence. We first look at 

the top-downtranslationscheme.Thefirstmajorproblemisleftrecursion.Ifweremoveleftrecursionby 

our standard mechanism, we introduce new symbols, and new symbols will not work with 

theexistingactions.Also,we have todothe parsingina singlepass. 

 

TYPESYSTEM ANDTYPECHECKING: 

 

.Ifboththe operandsofarithmeticoperators+,-,xareintegers thenthe resultis oftypeinteger 

.Theresultofunary&operatorisapointertotheobjectreferred tobytheoperand. 

- Ifthe type ofoperandisXthentype ofresultispointertoX 

 

InPascal, typesareclassifiedunder: 

 

1. Basictypes:Theseareatomictypeswithnointernalstructure.Theyincludethetypesboolean,characte

r,integerandreal. 

 

2. Sub-rangetypes:Asub-rangetypedefinesarangeofvalueswithin 

therangeofanothertype.Forexample,typeA=1..10;B=100..1000;U ='A'..'Z'; 

 

3. Enumerated types: An enumerated type is defined by listing all of the possible values for 

thetype. For example: type Colour = (Red, Yellow, Green); Country = (NZ, Aus, SL, WI, Pak, 

Ind,SA,Ken,Zim,Eng);Boththe sub-rangeandenumeratedtypescanbetreated asbasictypes. 

 

4. Constructed types: A constructed type is constructed from basic types and other basic 

types.Examples of constructed types are arrays, records and sets. Additionally, pointers and 

functionscanalsobetreatedas constructedtypes. 

 

TYPEEXPRESSION: 

Itisanexpressionthatdenotesthetypeofanexpression.Thetypeofalanguageconstruct 

isdenotedbyatypeexpression 

 

It is either a basic type or it is formed by applying operators called type constructor 

toothertypeexpressions 

Atypeconstructorapplied toatypeexpression isatypeexpression 

Abasictypeistypeexpression 
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- typeerror:errorduringtypechecking 

- void:notypevalue 
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The type of a language construct is denoted by a type expression. A type expression is either 

abasictypeorisformedbyapplyinganoperatorcalledatypeconstructortoothertypeexpressions.Formal

ly,a type expressionisrecursivelydefinedas: 

 

1. Abasictypeisatypeexpression.Amongthebasictypesareboolean,char,integer,and real 

.A special basic type, type_error, is used to signal an error during type checking. 

Anotherspecialbasictypeisvoidwhichdenotes"theabsenceofavalue"andisusedtocheckstatements. 

2. Sincetypeexpressionsmaybenamed, atypenameisatypeexpression. 

3. Theresultofapplyingatypeconstructortoatypeexpressionisatypeexpression. 

4. Typeexpressions maycontainvariableswhosevaluesaretypeexpressionsthemselves. 

 
TYPECONSTRUCTORS:areusedtodefineorconstructthetypeofuser defined 

typesbasedontheirdependenttypes. 

Arrays:IfTisatypeexpressionand Iisarangeofintegers,thenarray 

(I,T)isthetypeexpressiondenotingthetype ofarraywithelementsoftypeTandindexsetI. 

 

Forexample,thePascaldeclaration, 

varA:array[1..10]ofinteger;associatesthetypeexpressionarray(1..10,integer )withA. 

 

Products:IfT1 andT2 aretypeexpressions,thentheir CartesianproductT1 XT2isalsoatypeexpression. 

 

Records:Arecordtypeconstructorisappliedtoatupleformedfromfieldnamesandfieldtypes.Forex

ample,the declaration 

Consider the 

declarationtyperow=rec

ord 

addr : integer; 

lexeme:array[1..15]ofcharend; 

vartable:array[1..10]ofrow; 

 

Thetyperowhastypeexpression:record ((addrxinteger)x(lexemexarray(1 ..15,char))) 

and typeexpressionoftableisarray(1 ..10,row) 

 

Note:Includingthefieldnames 

inthetypeexpressionallowsustodefineanotherrecordtypewiththesamefieldsbutwithdifferentnam

eswithoutbeingforced to equatethetwo. 

 

Pointers:IfTisatypeexpression,then pointer(T)isatypeexpressiondenoting 

thetype"pointertoanobjectoftypeT". 

Forexample,inPascal,thedeclaration 

varp:row declaresvariableptohavetypepointer(row). 
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Functions : Analogous to mathematical functions, functions in programming languages may 

bedefined as mapping a domain type D to a range type R. The type of such a function is denoted 

bythe type expression D R. For example, the built-in function mod of Pascal has domain type int 

Xint,andrangetypeint.Thuswe saymodhasthetype:intxint->int 

As another example, according to the Pascal 

declarationfunctionf(a,b:char):integer; 

Here thetype offisdenotedbythetype expressionischarxcharpointer(integer) 

 

SPECIFICATIONSOFATYPECHECKER:Consideralanguagewhichconsistsofasequence 

ofdeclarationsfollowedbya singleexpression 

 

P D ;E 

 

D D;D|id:T 

 

T char|integer|array[num]ofT| ^TE

 literal|num|EmodE|E[E]|E^ 

A type checker is a translation scheme that synthesizes the type of each expression from 

thetypesofitssub-

expressions.Considertheabovegivengrammarthatgeneratesprogramsconsistingofasequence 

ofdeclarationsDfollowedbyasingle expressionE. 

 

Specificationsofa typecheckerforthelanguageoftheabovegrammar:Aprogramgeneratedbythis 

grammaris 

 

key : 

integer;keymo

d1999 

 

Assumptions: 

 

1. Thelanguagehasthreebasictypes:char,intandtype-error 

 

2. Forsimplicity, allarraysstartat1.Forexample, thedeclarationarray[256]ofcharleadstothetype 

expressionarray(1..256,char). 

 

RulesforSymbolTableentry 

D id:T addtype(id.entry,T.type) 

T char T.type=char 

T integer T.type=int 

T ^T1 T.type=pointer(T1.type) 

T array[num ]ofT1 T.type=array(1..num, T1.type) 
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TYPECHECKINGOFFUNCTIONS: 

 

ConsidertheSyntaxDirectedDefinition, 

 

E E1(E2)

 E.type=ifE2.t

ype==sandE1.type==s t 

thent 

 

elsetype-error 

 

Therulesforthesymboltableentryarespecified above.These arebasicallythewayin whichthe 

symboltable entriescorrespondingtotheproductionsaredone. 

 

Typecheckingoffunctions 

 

The production E -> E ( E ) where an expression is the application of one expression to 

anothercan be used to represent the application of a function to an argument. The rule for 

checking thetype ofafunctionapplicationis 

 

E->E1(E2){E.type:= ifE2.type== sandE1.type==s->tthentelsetype_error} 

 

This rule says that in an expression formed by applying E1 to E2, the type of E1 must be 

afunction s -> t from the type sof E2 to some range type t ; the type of E1 ( E2 ) is t . The 

aboverule can be generalized to functions with more than one argument byconstructing a product 

typeconsistingofthearguments.Thus narguments oftypeT1,T2 

 

...Tncanbeviewed asasingleargumentofthetypeT1 XT2...XTn.For 

example,root:(realreal)Xrealreal 

declaresafunctionrootthat takesafunction fromrealsto realsand arealasargumentsandreturnsa 

real.The Pascal-like syntaxforthisdeclarationis 

 

functionroot (functionf(real): real;x: real):real 

 

TYPECHECKINGFOREXPRESSIONS:considerthefollowingSDD forexpressions 

 

E literal E.type=char 

E num E.type=integer 

E id E.type=lookup(id.entry) 

E E1modE2 E.type=ifE1.type==integerand 

E2.type==integer

theninteger 
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elsetype_error 

E E1[E2] E.type= 

ifE2.type==integerandE1.type==

array(s,t) 

thent 

elsetype_error 

E E1^

 E.type=ifE1.type==pointer(t)th

ent 

elsetype_error 

 
Toperform type checkingof expressions,followingrules are used.Where the synthesizedattribute 

type for E gives the type expression assigned by the type system to the expressiongeneratedbyE. 

 

Thefollowingsemanticrulessaythatconstantsrepresentedbythetokensliteralandnumhavetypechar 

andinteger ,respectively: 

 

E -> literal { E.type:= char 

}E->num{E.type:= integer } 

.The functionlookup (e)isused to fetchthetypesavedinthesymbol-tableentrypointedtoby 

e.Whenanidentifierappears inanexpression,itsdeclaredtypeis 

fetchedandassignedtotheattributetype: 

 

E->id {E.type:=lookup(id.entry )} 

 

. According to the following rule, the expression formed by applying the mod operator to 

twosub-expressionsoftypeintegerhastypeinteger;otherwise,itstypeistype_error. 

 

E->E1modE2{E.type:= ifE1.type== integerandE2.type == integerthenintegerelse 

type_error} 

 

InanarrayreferenceE1 [E2],theindexexpressionE2 musthavetypeinteger,inwhichcasethe 

resultisthe elementtypetobtainedfromthe typearray (s,t)ofE1. 

 

E->E1[E2]{E.type:= ifE2.type== integerandE1.type == array (s,t)thentelse 

type_error} 

 

Withinexpressions,thepostfixoperator 

yieldstheobjectpointedtobyitsoperand.ThetypeofEisthetypetoftheobjectpointedtobythepointerE: 

 

EE1{E.type:=ifE1.type == pointer(t)thentelsetype_error} 
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TYPE CHECKING OF STATEMENTS: Statements typically do not have values. 

Specialbasic type void can be assigned to them. Consider the SDD for the grammar below 

whichgeneratesAssignmentstatementsconditional,andloopingstatements. 

 

S id:=E

 S.Type=ifid.type==E.typeth

envoid 

elsetype_error 

S ifEthenS1 S.Type=ifE.type==boolean 

then 

S1.typeelsetyp

e_error 

S while EdoS1 S.Type=ifE.type==boolean 

thenS1.type 

elsetype_error 

S S1;S2 S.Type= 

ifS1.type==voidand 

S2.type ==void 

thenvoid 

elsetype_error 

 

Since statements do not have values, the special basic type void is assigned to them, but if 

anerrorisdetectedwithinastatement,thetypeassigned tothe statementistype_error. 

 

The statements considered below are assignment, conditional, and whilestatements. Sequencesof 

statements are separated by semi-colons. The productions given below can be combined 

withthose given before if we change the production for a complete program to P-> D; S. 

Theprogramnowconsistsofdeclarationsfollowedbystatements. 

 

Rules fortypecheckingthestatementsaregivenbelow. 

 

1. Sid:=E{S.type:=if id.type==E.typethenvoidelsetype_error} 

 

Thisrulechecksthattheleftandrightsidesofanassignmentstatementhavethesametype. 

 

2. S ifEthenS1 {S.type:= ifE.type== booleanthenS1.type else type_error} 

 

Thisrulespecifiesthattheexpressionsinanif-thenstatementmusthavethetypeboolean. 

 

3. S while EdoS1{S.type:=ifE.type== booleanthenS1.type elsetype_error} 
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Thisrulespecifiesthattheexpressioninawhilestatementmusthavethetypeboolean. 

 

4. SS1;S2{S.type:=ifS1.type==voidandS2.type==voidthenvoidelsetype_error} 
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Errors are propagated by this last rule because a sequence of statements has type void only 

ifeachsub-statementhas typevoid. 

 

 

 

IMPORTANT&EXPECTEDQUESTIONS 
 

1. What do you mean by THREE ADDRESS CODE? Generate the three-address code 

forthe followingcode. 

begin 

 

 

dobe

gin 

 

 

End 

PROD: =0; 

I:=1; 

 

 

PROD:=PROD + A[I] 

B[I];I:=I+1; 



 

 

whileI<=20e

nd 

 

2. Writeashort noteonAttributed grammar& Annotated parsetree. 

3. Defineanintermediatecodeform.Explainvariousintermediatecodeforms? 

4. WhatisSyntaxDirectedTranslation?ConstructSyntaxDirectedTranslationschemetoconve

rta givenarithmetic expressionintothreeaddresscode. 

5. WhatareSynthesizedandInheritedattributes?Explainwithexamples? 

6. ExplainSDTforSimpleTypechecker? 

7. Defineandconstructtriples, quadruplesandindirecttriplenotationsofanexpression:a* 

-(b+ c). 

 

ASSIGNMENTQUESTIONS: 
 

1. WriteThreeaddresscodeforthebelowexample 

 

While( i<10) 

{ 

a= b+c*-

d;i++; 

} 

 

2. What is a Syntax Directed Definition? Write Syntax Directed definition to convert 

binaryvalueintodecimal? 
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SYMBOLTABLE 

SymbolTable(ST):Isadatastructure usedbythecompilerto 

keeptrackofscopeandbindinginformationaboutnames 

- Symboltableischanged everytimeanameisencountered inthesource; 

Changes to table occur when ever a new name is discovered; new information about an 

existingnameis discovered 

As we know the compiler uses a symbol table to keep track of scope and binding 

informationabout names. It is filled after the AST is made by walking through the tree, 

discovering andassimilating information about the names. There should be two basic operations - 

to insert a newname or information into the symbol table as and when discovered and to 

efficiently lookup anameinthe symboltable toretrieveitsinformation. 

Two commondata structuresusedforthe symboltable organizationare- 

1. Linear lists:-Simpletoimplement,Poorperformance. 

2. Hash tables:- Greater programming / space overhead, but, Good 

performance.Ideallyacompilershouldbeabletogrowthesymboltabledynamically,i.e.,insertnewen

triesorinformationas andwhenneeded. 

Butifthesizeofthetableisfixedinadvancethen(anarrayimplementationfor 

example),thenthesizemustbebig enough inadvanceto accommodatethelargestpossibleprogram. 

Foreachentryindeclarationofa name 

- Theformatneednotbeuniformbecauseinformationdependsupontheusageofthename 

- Eachentryis a recordconsistingofconsecutivewords 

- TokeeprecordsuniformsomeentriesmaybeoutsidethesymboltableInfor

mationisenteredintosymboltableatvarioustimes.Forexample, 

- keywordsareenteredinitially, 

- identifierlexemesareenteredbythelexicalanalyzer. 

. Symboltableentrymaybesetupwhenroleofnamebecomesclear 

,attributevaluesarefilledinasinformationis available duringthetranslationprocess. 

For each declaration of a name, there is an entry in the symbol table. Different 

entriesneed to store different information because of the different contexts in which a name can 

occur.An entry corresponding to a particular name can be inserted into the symbol table at 

differentstages depending on when the role of the namebecomes clear.The various attributes 

thatanentry in the symbol table can have are lexeme, type of name, size of storage and in case 

offunctions -theparameterlistetc. 

Anamemaydenote severalobjectsinthesame block 

- intx;structx{floaty,z;} 

The lexical analyzer returns the name itself and not pointer to symbol table entry. A record in 

thesymbol table is created when role of the name becomes clear. In this case two symbol 

tableentriesarecreated. 

Aattributesofa nameareentered inresponse to declarations 
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Labelsareoften identifiedbycolon 

The syntax of procedure / function specifies that certain identifiers are formals, characters in 

aname.Thereisa distinctionbetweentoken id,lexemeandattributesofthenames. 

Itisdifficulttoworkwithlexemes 

ifthereismodestupperboundonlengththen lexemescan be storedinsymboltable 

iflimitis largestorelexemesseparately 

 

There might be multiple entries in the symbol table for the same name, all of them 

havingdifferent roles. It is quite intuitive that the symbol table entries have to be made only when 

therole of a particular name becomes clear. The lexical analyzer therefore just returns the name 

andnotthesymboltableentryasitcannotdeterminethecontextofthatname.Attributescorresponding to 

the symbol table are entered for a name in response to the correspondingdeclaration. There has to 

be an upper limit for the length of the lexemes for them to be stored inthe symboltable. 

 

STORAGEALLOCATIONINFORMATION:Informationaboutstoragelocationsiskeptinthe 

symboltable. 

 

Iftargetcodeisassemblycode,thenassemblercantakecareofstorage 

forvariousnamesandthecompilerneedstogeneratedata definitionstobe appended 

toassemblycode 

 

If target code is machine code, then compiler does the allocation. No storage allocation is 

donefornames whose storageis allocatedatruntime 

Information about the storage locations that will be bound to names at run time is kept 

inthesymbol table.If thetargetis assembly code, theassemblercan takecare of storageforvarious 

names. All the compiler has to do is to scan the symbol table, after generating assemblycode, and 

generate assembly language data definitions to be appended to the assembly languageprogram 

for each name. If machine code is to be generated by the compiler, then the position ofeach data 

object relative to a fixed origin must be ascertained. The compiler has to do theallocation in this 

case. In the case of names whose storage is allocated on a stack or heap, thecompiler 

doesnotallocatestorageat all,itplansouttheactivationrecord for eachprocedure. 

 

STORAGEORGANIZATION:

 Theruntimestoragemightbesu

bdividedinto: 

Targetcode, 

Dataobjects, 

Stackto keeptrackofprocedure activation,and 

Heapto keep allotherinformation 

 

This kind of organization of run-time storage is used for languages such 

asFortran, Pascal and C. The size of the generated target code, as well as that 
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ofsomeofthedataobjects,isknownatcompiletime.Thus,these canbe stored 
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instaticallydeterminedareas inthememory. 

STORAGEALLOCATIONPROCEDURECALLS:PascalandCusethe 

stack for procedure activations. Whenever a procedure is called, execution 

ofactivationgetsinterrupted,andinformationaboutthemachinestate(likeregisterva

lues)is storedonthestack. 

 

When the called procedure returns, the interrupted activation can be restarted after restoring 

thesaved machine state. The heap may be used to store dynamically allocated data objects, and 

alsoother stuff such as activation information (in the case of languages where an activation 

treecannot be used to represent lifetimes). Both the stack and the heap change in size during 

programexecution,sothey cannotbe allocated a fixedamountof space.Generally they 

startfromopposite ends of the memory and can grow as required, towards each other, until the 

spaceavailablehasfilledup. 

 

ACTIVATION RECORD: An Activation Record is a data structure that is activated/ 

createdwhen a procedure / function are invoked and it contains the following information about 

thefunction. 

 

Temporaries:usedinexpressionevaluation 

Localdata:fieldforlocaldata 

Saved machinestatus:holdsinfo aboutmachinestatus 

beforeprocedurecall 

Accesslink : to accessnon localdata 

Controllink :pointsto activationrecordofcaller 

Actualparameters: field toholdactualparameters 

Returnedvalue:fieldforholdingvaluetobereturned 

The activation record is used to store the information required by 

asingle procedure call. Not all the fields shown in the figure may 

beneeded for all languages. The record structure can be modified as 

perthe language/compilerrequirements. 

 

For Pascal and C, the activation record is generally stored on the run-

timestack during theperiodwhentheprocedureisexecuting. 

 

Of the fields shown in the figure, access link and control link are optional (e.g. 

FORTRANdoesn't need access links). Also, actual parameters and return values are often stored 

in registersinsteadoftheactivationrecord,forgreaterefficiency. 

 

 The activation record for a procedure call is generated by the compiler. Generally, 

allfieldsizescanbe determinedatcompiletime. 
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However, this is not possible in the case of a procedure which has a local array whose 

sizedepends on a parameter. The strategies used for storage allocation in such cases will be 

discussedinforthcominglines. 

 

STORAGEALLOCATIONSTRATEGIES:ThestorageisallocatedbasicallyinthefollowingTHR

EEways, 

 

Staticallocation:laysoutstorageatcompiletimeforalldataobjects 

Stackallocation:managestheruntimestorageasastack 

Heapallocation:allocatesand de-allocatesstorageasneededat runtimefromheap 

 

These represent the different storage-allocation strategies used in the distinct parts of 

therun-time memory organization (as shown in slide 8). We will now look at the possibility of 

usingthese strategies to allocate memory foractivation records. Differentlanguages use 

differentstrategiesforthispurpose.Forexample,oldFORTRANusedstaticallocation,Algol 

typelanguagesuse stack allocation,and LISPtypelanguagesuse heap allocation. 

 

STATIC ALLOCATION: In this approach memory is allocated statically. So,Names are 

boundtostorageastheprogramis compiled 

 

Noruntimesupportisrequired 

Bindingsdonot changeatruntime 

Oneveryinvocationofprocedure namesareboundtothe samestorage 

Valuesoflocalnamesare retained acrossactivationsofaprocedure 

 

These are the fundamental characteristics of static allocation. Since name binding occurs 

duringcompilation, there is no need for a run-time support package. The retention of local name 

valuesacross procedure activations means that when control returns to a procedure, the values of 

thelocals are the same as they were when control lastleft. For example, suppose we had 

thefollowingcode,writteninalanguageusingstaticallocation: 

 

functionF() 

{ 

inta;pri

nt(a);a=

10; 

} 

After calling F( ) once,if itwas called a second time,the value of a wouldinitially be 10,andthisis 

whatwouldgetprinted. 

The type of a name determines its storage requirement. The address for this storage is an 

offsetfrom the procedure's activation record, and the compilerpositions the records relative to 

thetargetcodeandtooneanother(onsomecomputers,itmaybepossibletoleavethisrelative 
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position unspecified, and let the link editor link the activation records to the executable 

code).After this position has been decided, the addresses of the activation records, and hence of 

thestorage for each name in the records, are fixed. Thus, at compile time, the addresses at which 

thetarget code can find the data it operates upon can be filled in. The addresses at which 

informationis to be saved when a procedure call takes place are also known at compile time. 

Static allocationdoeshavesomelimitations. 

- Sizeofdataobjects,aswellasanyconstraintsontheir 

positionsinmemory,mustbeavailable atcompiletime. 

- Norecursion, becauseallactivationsofagivenprocedureusethesamebindingsforlocalnames. 

- Nodynamicdatastructures,sincenomechanismisprovidedforruntimestorageallocation. 

 
STACK ALLOCATION: Figure shows the activation records that are pushed onto and 

poppedfortheruntime stackas the controlflowsthroughthe givenactivationtree. 

 

 

First the procedure is activated. Procedure readarray 's activation is pushed onto the stack, 

whenthe control reaches thefirstlinein the procedure sort.After the control returnsfrom 

theactivation of the readarray , its activation is popped. In the activation of sort , the control 

thenreaches a call of qsort with actuals 1 and 9 and an activation of qsort is pushed onto the top 

of thestack. In the last stage the activations for partition (1,3) and qsort (1,0) have begun and 

endedduring the life time of qsort (1,3), so their activation records have come and gone from the 

stack,leavingtheactivationrecordforqsort(1,3)ontop. 

 

CALLINGSEQUENCES:Acallsequenceallocatesanactivationrecordandentersinformation into 

its field. A return sequence restores the state of the machine so that 

callingprocedurecancontinueexecution. 

 

Calling sequence and activation records differ, even for the same language. The code in 

thecallingsequenceisoftendividedbetweenthe callingprocedureandtheprocedureitcalls. 
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Thereisnoexactdivisionofruntimetasksbetweenthecallerandth

ecolleen. 

Asshownin thefigure,theregisterstack 

toppointstotheendofthemachine status fieldinthe 

activationrecord. 

 

 

 

Thispositionisknowntothecaller,soitcanbemaderesponsible for 

setting up stack top before control flows to 

thecalledprocedure. 

 

 

The code for the Callee can access its temporaries and 

thelocaldatausingoffsetsfromstacktop. 

 

 

 

 

 

 

 

 

CallSequence:Inacallsequence,followingsequenceofoperationsisperformed. 

 

Callerevaluatesthe actualparameters 

Callerstoresreturnaddressandother values(controllink)intocallee‘sactivationrecord 

Calleesavesregister valuesandother statusinformation 

Calleeinitializes its localdataandbeginsexecution 

 

Thefieldswhosesizesarefixedearlyareplacedinthemiddle.Thedecisionofwhetheror not to 

use the control and access links is part of the design of the compiler, so these fields canbe fixed 

at compiler construction time. If exactly the same amount of machine-status 

informationissavedforeachactivation,thenthesamecodecandothesavingandrestoringforallactivatio

ns. The size of temporaries may not be known to the front end. Temporaries needed bythe 

procedure may be reduced by careful code generation or optimization. This field is 

shownafterthatforthelocaldata.Thecallerusuallyevaluatestheparametersandcommunicatesthemto 

the activation record of the callee. In the runtime stack, the activation record of the callerisjust 

below that for the callee. The fields for parameters and a potential return value are placednext to 

the activation record of the caller. The caller can then access these fields using offsetsfrom the 

end of its own activation record. In particular, there is no reason for the caller to 

knowaboutthelocaldataortemporariesofthecallee. 

 

ReturnSequence:Inareturnsequence,followingsequenceofoperationsareperformed. 
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Calleeplacesareturnvaluenext toactivationrecordofcaller 

Restoresregistersusinginformation instatusfield 

Branchtoreturnaddress 

Callercopiesreturnvalueintoitsownactivationrecord 

 

As described earlier, in the runtime stack, the activation record of the caller is just 

belowthat for the callee. The fields for parameters and a potential return value are placed next to 

theactivationrecordofthecaller.Thecallercanthenaccessthesefieldsusingoffsetsfromtheendof its 

own activation record. The caller copies the return value into its own activation record. 

Inparticular, there is no reason for the caller to know about the local data or temporaries of 

thecallee. The given calling sequence allows the number of arguments of the called procedure 

todepend on the call. At compile time, the target code of the caller knows the number of 

argumentsit is supplying to the callee. The caller knows the size of the parameter field. The target 

code ofthe called must be prepared to handle other calls as well, so it waits until it is called, 

thenexamines the parameter field. Information describing the parameters must be placed next to 

thestatusfieldsothe calleecanfindit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LongLengthData: 
 

The procedure P has three local arrays. The storage for these arrays is not part of 

theactivation record for P; only a pointer to the beginning of each array appears in the 

activationrecord. The relative addresses of these pointers are known at the compile time, so the 

target codecan access array elements through the pointers. Also shown is the procedure Q called 

by P . Theactivation record for Q begins after the arrays of P. Access to data on the stack is 

through twopointers,topandstacktop.Thefirstofthesemarkstheactualtopofthe stack;itpointstothe 
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position at which the next activation record begins. The second is used to find the local data. 

Forconsistency with the organization of the figure in slide 16, suppose the stack top points to the 

endof the machine status field. In this figure the stack top points to the end of this field in 

theactivation record for Q. Within the field is a control link to the previous value of stack top 

whencontrol wasin callingactivation of P. Thecodethatrepositions top andstack topcan 

begenerated at compile time, using the sizes of the fields in the activation record. When q 

returns,the new value of top is stack top minus the length of the machine status and the parameter 

fieldsin Q's activation record. This length is known at the compile time, at least to the caller. 

Afteradjustingtop,thenew value ofstacktopcanbe copiedfromthe controllinkofQ. 

Dangling References: Referring to locations which have been de-

allocated.voidmain() 

{ 

int*p; 

p=dangle();/* danglingreference*/ 

} 
 

int*dangle(); 

{ 

inti=23;re

turn&i; 

} 

Theproblemofdanglingreferencesarises,wheneverstorageisde-allocated.Adanglingreference 

occurs when there is a reference to storage that has been de-allocated. It is a logicalerror to use 

dangling references, since the value of de-allocated storage is undefined according tothe 

semantics of most languages. Since that storage may later be allocated to another 

datum,mysteriousbugscanappearinthe programs withdanglingreferences. 

 

HEAP ALLOCATION: If a procedure wants to put a value that is to be used after its 

activationis over then we cannot use stack for that purpose. That is language like Pascal allows 

data to beallocated under program control. Also in certain language a called activation may 

outlive thecaller procedure. In such a case last-in-first-out queue will not work and we will 

require a datastructure like heap to store the activation. The last case is not true for those 

languages whoseactivationtrees correctlydepicttheflowofcontrolbetweenprocedures. 

 

LimitationsofStackallocation:Itcannotbeusedif, 

 

o Thevaluesofthelocalvariablesmustberetainedwhenanactivationends 

o Acalled activationoutlivesthecaller 

Insucha case de-allocationofactivationrecordcannotoccurin last-infirst-outfashion 

Heap allocationgivesoutpiecesofcontiguousstorageforactivationrecords 
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There aretwoaspectsofdynamicallocation-: 

- Runtimeallocationand de-allocationofdatastructures. 

- Languages like Algol have dynamic data structures and it reserves some part of 

memoryforit. 

Initializing data-structures may require allocating memory butwhere toallocate 

thismemory. After doing type inference we have to do storage allocation. It will allocate some 

chunkof bytes. But in language like LISP, it will try to give continuous chunk. The allocation 

incontinuous bytes may lead to problem of fragmentation i.e. you may develop hole in process 

ofallocation and de-allocation. Thus storage allocation of heap may lead us with many holes 

andfragmentedmemorywhichwillmakeithardtoallocatecontinuouschunkofmemorytorequesting 

program. So,we have heap mangers which manage the free space and allocation andde-allocation 

of memory. It would be efficient to handle small activations and activations ofpredictable size as 

a special case as described in the next slide. The various allocation and de-allocationtechniques 

usedwillbediscussedlater. 

Filla requestofsize swithblockofsize s'wheres'isthe smallestsize greaterthanorequaltos 

 

- Forlargeblocksofstorageuseheapmanager 

- For largeamountofstoragecomputation 

maytakesometimetouseupmemorysothattimetakenbythemanagermaybe 

negligiblecomparedto the computationtime 

 

As mentioned earlier, for efficiency reasons we can handle small activations and activations 

ofpredictablesizeasaspecialcase asfollows: 

 

1. Foreachsizeofinterest,keepalinkedlistiffreeblocksofthatsize 

 

2. If possible, fill a request for size s with a block of size s', where s' is the smallest size 

greaterthan or equal to s. When the block is eventually de-allocated, it is returned to the linked 

list itcamefrom. 

 

3. For largeblocksofstorageusetheheapmanger. 

 

Heapmangerwilldynamicallyallocatememory.Thiswillcomewitharuntimeoverhead.As 

heapmanager will have to take care of defragmentation and garbage collection.But since heap 

manger saves space otherwise we will have to fix size of activation at 

compiletime,runtimeoverheadisthepriceworthit. 

 

ACCESS TO NON-LOCALNAMES: 

Thescoperulesofalanguagedecidehowtoreferencethenon-localvariables. 

Therearetwomethodsthatarecommonlyused: 

1. StaticorLexicalscoping:Itdeterminesthedeclarationthatappliestoanamebyexaminingthe 

programtextalone.E.g.,Pascal,C andADA. 

2. DynamicScoping:Itdeterminesthedeclarationapplicabletoanameatruntime,byconside
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ringthe currentactivations.E.g.,Lisp 
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ORGANIZATIONFORBLOCKSTRUCTURES: 

 

Ablockisaanysequenceofoperationsorinstructionsthatareusedto 

performa[sub]task.Inanyprogramminglanguage, 

Blockscontainitsownlocaldata structure. 

Blockscanbenestedandtheirstartingandendsaremarkedbyadelimiter. 

Theyensurethateitherblockisindependentofotherornestedinanotherblock.Thatis,it is not 

possible for two blocks B1 and B2 to overlap in such a way that first block 

B1begins,thenB2,butB1endbeforeB2. 

This nesting property is called block structure. The scope of a declaration in a block-

structuredlanguageisgivenbythemostcloselynestedrule: 

1. ThescopeofadeclarationinablockBincludesB. 

 

2. IfanameXisnotdeclaredinablockB,thenanoccurrenceofXinBisinthescopeof a declaration 

of X in an enclosing block B ' such that. B ' has a declaration of X, and. B'ismore 

closelynestedaroundBthenanyotherblockwitha declarationofX. 

 

Forexample,considerthefollowingcodefragment. 

 

For the example, in the above figure, the scope of declaration of b in B0 does not include 

B1becausebisre-

declaredinB1.Weassumethatvariablesaredeclaredbeforethefirststatementinwhichtheyare 

accessed.The scopeofthevariableswillbe asfollows: 
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DECLARATION SCOPE 

inta=0 B0notincludingB2 

intb=0 B0notincludingB1 

intb=1 B1notincludingB3 

inta=2 B2only 

intb=3 B3only 

 
Theoutcomeoftheprintstatementwillbe, therefore: 

21 

03 

01 

00 

 

Blocks:.Blocksaresimpler tohandlethanprocedures 

 
.Blockscanbetreatedasparameterlessprocedures 

. Usestackfor memoryallocation 

. Allocatespaceforcompleteprocedurebodyatonetime 

 

 

 

 

 

Therearetwomethodsofimplementingblockstructureincompilerconstruction: 

 

1. STACK ALLOCATION: This is based on the observation that scope of a declaration 

doesnot extend outside the block in which it appears, the space for declared name can be 

allocatedwhentheblockisenteredandde-allocatedwhencontrolsleavetheblock.Theviewtreatblockas 

a "parameter less procedure" called only from the point just before the block and 

returningonlytothepointjustbeforetheblock. 

 

2. COMPLETE ALLOCATION: Here you allocate the complete memory at one time. If 

thereare blocks within the procedure, then allowance is made for the storage needed for 

declarationswithin the books. If two variables are never alive at the same time and are at same 

depth they canbe assignedsamestorage. 
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DYNAMICSTORAGEALLOCATION: 

 

Generally languages like Lisp and ML which do not allow for explicit de-allocation of 

memorydo garbage collection. A reference to a pointer that is no longer valid is called a 

'danglingreference'.Forexample,considerthis Ccode: 

 

intmain(void) 

{ 

int*a=fun(); 

} 

int* fun() 

{ 

inta=3;int* 

b=&a;retu

rnb; 

} 

Here, the pointer returned by fun() no longer points to a valid address in memory as 

theactivation of fun() has ended. This kind of situation is called a 'dangling reference'. In case 

ofexplicitallocation itis morelikely tohappen as the user can de-allocate any part of 

memory,evensomethingthathastoapointerpointingtoavalidpiece ofmemory. 

In Explicit Allocation of Fixed Sized Blocks , Link the blocks in a list , and Allocation and de-

allocationcanbedone withverylittleoverhead. 
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The simplest form of dynamic allocation involves blocks of a fixed size. By linking the blocks 

ina list, as shown in the figure, allocation and de-allocation can be done quickly with little or 

nostorageoverhead. 

 

ExplicitAllocationof FixedSizedBlocks:Inthisapproach, 

blocksaredrawnfromcontiguousarea ofstorage,andanarea 

ofeachblockisusedaspointertothenextblock 

Thepointer availablepointstothefirstblock 

Allocationmeansremovingablockfromtheavailablelist 

De-allocationmeansputtingtheblockintheavailablelist 

Compiler routinesneednot knowthetypeofobjectstobeheldintheblocks 

Eachblockistreatedasa variantrecord 

Suppose thatblocks are tobe drawn from a contiguous area of storage.Initialization ofthe 

area is done by using a portion of each block for a link to the next block. A pointer 

availablepoints to the first block. Generally a list of free nodes and a list of allocated nodes is 

maintained,and whenever a new block has to be allocated, the block at the head of the free list is 

taken offand allocated (added to the list of allocated nodes). When a node has to be de-allocated, 

it isremoved from the list of allocated nodes by changing the pointer to it in the list to point to 

theblock previously pointed to by it, and then the removed block is added to the head of the list 

offree blocks. The compiler routines thatmanage blocks do not need to know the type of 

objectthat will beheldin the block by the user program. These blocks can contain any type of 

data(i.e., they are used as generic memory locations by the compiler). We can treat each block as 

avariant record, with the compiler routines viewing the block as consisting of some other 

type.Thus, there is no space overhead because the user program can use the entire block for its 

ownpurposes. When the block is returned, then the compiler routines use some of the space from 

theblockitselftolinkitintothelistofavailableblocks,asshowninthefigureinthelastslide. 

 

ExplicitAllocationofVariableSizeBlocks: 
 

Limitations of Fixed sized block allocation: In explicit allocation of fixed size blocks, 

internalfragmentation can occur, that is, the heap may consist of alternate blocks that are free and 

in use,asshowninthefigure. 

 

Thesituation shown can occur if aprogram allocates fiveblocks andthen de-allocates 

thesecondandthefourth,forexample. 

 

Fragmentation is of no consequence if blocks are of fixed size, but if they are of variable size, 

asituation like this is a problem, because we could not allocate a block larger than any one of 

thefree blocks,eventhoughthespaceis availableinprinciple. 

 

So, if variable- sized blocks are allocated, then internal fragmentation can be avoided, as we 

onlyallocateasmuchspaceasweneedinablock.Butthiscreatestheproblemofexternalfragmentation,w

hereenoughspaceisavailablein totalforourrequirements,butnot enough 
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space is available in continuous memory locations, as needed for a block of allocated 

memory.For example, consider another case where we need to allocate 400 bytes of data for the 

nextrequest, and the available continuous regions of memory that we have are of sizes 300, 200 

and100 bytes. So we have a total of 600 bytes, which is more than what we need. But still we 

areunable toallocate thememoryaswedonothaveenoughcontiguousstorage. 

 

The amount of external fragmentation while allocating variable-sized blocks can become 

veryhighonusingcertainstrategiesformemoryallocation. 

 

So we try to use certain strategies for memory allocation, so that we can minimize 

memorywastageduetoexternalfragmentation.Thesestrategiesarediscussedinthenextfewlines. 

 

.Storagecanbecomefragmented,Situationmayarise,Ifprogramallocatesfiveblocks 

.thende-allocatessecond andfourthblock 

 

 

IMPORTANTQUESTIONS: 

1. Whatarecallingsequence,andReturnsequences?Explainbriefly. 

2. WhatisthemaindifferencebetweenStatic&Dynamicstorageallocation?Explaintheproble

msassociatedwithdynamic storage allocationschemes. 

3. Whatistheneed 

ofadisplayassociatedwithaprocedure?Discusstheproceduresformaintainingthe 

displaywhenthe proceduresarenotpassedasparameters. 

4. Writenotesonthestaticstorageallocationstrategywithexampleanddiscussitslimitati

ons? 

5. Discussabout thestackallocationstrategyofruntimeenvironmentwithanexample? 

6. Explaintheconceptofimplicitdeallocationofmemory. 

7. Giveanexampleofcreatingdanglingreferencesandexplainhowgarbageiscreated. 

 

ASSIGNMENTQUESTIONS: 
 

1. Whatisacallingsequence?Explainbriefly. 

2. Explaintheproblemsassociatedwithdynamicstorageallocationschemes.  

3. Listand explaintheentriesofActivationRecord. 

4. Explainaboutparameterpassingmechanisms. 
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UNIT-IV 

 

RUNTIMESTORAGEMANAGEMENT: 
 

To study the run-time storage management system it is sufficient to focus on the 

statements:action,call,return and halt,because they by themselves give us sufficientinsightinto 

thebehaviorshownbyfunctionsincallingeachotherandreturning. 

 

And the run-time allocation and de-allocation of activations occur on the call of functions 

andwhentheyreturn. 

 

Therearemainlytwokindsofrun-timeallocationsystems:StaticallocationandStackAllocation. 

While static allocation is used by the FORTRAN class of languages, stack 

allocationisusedbytheAdaclass oflanguages. 
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STATICALLOCATION: In this, A call statement is implemented by a sequence of 

twoinstructions. 

 

Amoveinstructionsavesthereturn address 

Agototransfers controltothe targetcode. 

 

TheinstructionsequenceisMOV#

here+20,callee.static-areaGOTO 

callee.code-area 

callee.static-areaandcallee.code-

areaareconstantsreferringtoaddressoftheactivationrecordandthefirstaddressofcalledprocedurerespe

ctively. 

 

. #here+20inthemoveinstructionisthereturnaddress;theaddressoftheinstructionfollowingthe 

gotoinstruction 

 

. A return from procedure callee is implemented 

byGOTO *callee.static-area 

For the call statement, we need tosave the return address somewhere andthenjumptothe 

location of the callee function. And to return from a function, we have to access the returnaddress 

as stored by its caller, and then jump to it. So for call, we first say: MOV #here+20,callee.static-

area.Here,#herereferstothelocationofthecurrentMOVinstruction,andcallee.static-

areaisafixedlocationinmemory.20isaddedto#herehere,asthecodecorresponding to the call 

instruction takes 20 bytes (at 4 bytes for each parameter: 4*3 for 

thisinstruction,and8forthenext).ThenwesayGOTOcallee.code-area,totakeustothecodeofthe callee, 

as callee.codearea is merely the address where the code of the callee starts. Then areturn from the 

callee is implemented by: GOTO *callee.static area. Note that this works onlybecause 

callee.static-areais aconstant. 

 

Example: 

 

.Assumeeach 100:ACTION-l 

action 120:MOV140,364 

blocktakes20 132:GOTO200 

bytes ofspace 140:ACTION-2 

.Startaddress 160:HALT 

ofcodeforc : 

andpis 200: ACTION-3 

100 and200 220:GOTO*364 



 

 

 

DepartmentofComputerScience&Engineering 

 

 

.Theactivation 

 

CourseFile:CompilerDesign 

 

 

: 

Records 300: 

arestatically 304: 

allocatedstarting : 

at addresses 364: 

300 and 364. 368: 

 

This example corresponds to the code shown in slide 57. Statically we say that the 

codefor c starts at 100 and that for p starts at 200. At some point, c calls p. Using the 

strategydiscussed earlier, and assuming that callee.staticarea is at the memory location 364, we 

get thecode as given. Here we assume that a call to 'action' corresponds to a single machine 

instructionwhichtakes 20bytes. 

 

STACKALLOCATION :.Positionoftheactivationrecordisnotknownuntilruntime 

 

.Position isstored inaregister atruntime,and wordsintherecord areaccessed 

withanoffsetfromtheregister 

. The code for the first procedure initializes the stack by setting up SP to the start of 

thestackarea 

 

MOV #Stackstart,SP 

 

code for the first 

procedureHALT 

In stack allocation we do not need to know the position of the activation record until run-

time. This gives us an advantage over static allocation, as we can have recursion. So this is 

usedin many modern programming languages like C, Ada, etc. The positions of the activations 

arestored in the stack area, and the position for the most recent activation is pointed to by the 

stackpointer. Words in a record are accessed with an offset from the register. The code for the 

firstprocedure initializes the stack by setting up SP to the stack area by the following 

command:MOV#Stackstart,SP.Here,#Stackstartisthelocation in memorywherethestack starts. 

 

AprocedurecallsequenceincrementsSP,savesthereturnaddressand transferscontrolto 

thecalledprocedure 

 

ADD #caller.recordsize, 

SPMOVE#here+ 

16,*SPGOTOcallee.code_a

rea 
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Consider the situation when a function (caller) calls the another function(callee), 

thenprocedure call sequence increments SP by the caller record size, saves the return address 

andtransfers control to the callee by jumping to its code area. In the MOV instruction here, we 

onlyneed to add 16, as SP is a register, and so no space is needed to store *SP. The activations 

keepgetting pushed on the stack, so #caller.recordsize needs to be added to SP, to update the 

value ofSP to its new value.This works as#caller.recordsizeis a constant for a function,regardless 

ofthe particularactivationbeingreferredto. 

 

 

DATASTRUCTURES:Followingdatastructuresareusedtoimplementsymboltables 

 

 

LISTDATASTRUCTURE :Couldbeanarraybasedorpointerbasedlist.Butthisimplementationis 

 

- Simplesttoimplement 

- Useasinglearraytostorenamesandinformation 

- Searchforanameislinear 

- Entryandlookupareindependentoperations 

- Costofentryandsearchoperationsareveryhighandlotoftimegoesintobookkeeping 

 

Hashtable:HashtableisadatastructurewhichgivesO(1)performanceinaccessinganyelementofit.

Itusesthe featuresofbotharrayandpointerbasedlists. 

 

- Theadvantagesareobvious 

 

REPRESENTINGSCOPEINFORMATION 
 

The entriesin thesymbol table are fordeclaration of names.When an occurrence of a nameinthe 

source textislooked up in the symbol table,the entry for the appropriate declaration,according to 

the scoping rules of thelanguage,mustbe returned. A simple approach is 

tomaintainaseparatesymboltableforeachscope. 

 

Mostcloselynestedscoperulescanbeimplementedbyadaptingthedatastructuresdiscussed in the 

previous section. Each procedure is assigned a unique number. If the language isblock-structured, 

the blocks must also be assigned unique numbers. The name is represented as apair of a number 

and a name. This new name is added to the symbol table. Most scope rules 

canbeimplementedinterms offollowingoperations: 

 

a) Lookup-findthemostrecentlycreatedentry. 

b) Insert-makeanewentry. 

c) Delete- removethemostrecentlycreatedentry. 

d) Symboltable structure 

e) .Assignvariablesto storageclassesthatprescribescope,visibility,andlifetime 
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f) -scoperulesprescribe the symboltablestructure 

g) -scope:unitofstaticprogramstructurewithoneor morevariabledeclarations 

h) -scopemaybenested 

i) .Pascal:proceduresarescopingunits 

j) .C:blocks,functions,filesarescopingunits 

k) .Visibility, lifetimes,globalvariables 

l) .Common(inFortran) 

m) .Automaticor stackstorage 

n) .Staticvariables 

o) storage class :A storage class is an extra keyword at the beginning of a declarationwhich 

modifies the declaration in some way. Generally, the storage class (if any) is 

thefirstwordinthe declaration,precedingthetype name.Ex.static,externetc. 

p) Scope: The scope of a variableis simply the part of the program whereitmay 

beaccessedorwritten.Itisthepartoftheprogramwherethevariable'snamemaybeused.If a 

variable is declared within a function, itis local to thatfunction. Variables of thesame 

name may be declared and used within other functions without any conflicts. Forinstance, 

q) intfun1() 

{ 

int 

a;int

b; 

.... 

} 
 

intfun2() 

{ 

inta;

intc; 

.... 

} 

Visibility: The visibility of a variable determines how much of the rest of the 

programcanaccessthatvariable.You 

canarrangethatavariableisvisibleonlywithinonepartofonefunction,orinonefunction,orinon

esourcefile,oranywhereintheprogram. 

r) Local and Global variables: A variable declared within the braces {} of a function 

isvisible only within that function; variables declared within functions are called 

localvariables. On the other hand, a variable declared outside of any function is a 

globalvariable,anditispotentiallyvisible anywhere withintheprogram. 

 

 

s) Automatic Vs Static duration: How long do variables last? By default, local 

variables(those declared within a function) have automatic duration: they spring into 
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existencewhenthefunctioniscalled,andthey(andtheirvalues)disappearwhenthefunction 
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returns. Global variables, on the other hand, have static duration: they last, and the 

valuesstored in them persist, for as long as the program does. (Of course, the values can 

ingeneral still be overwritten, so they don't necessarily persist forever.) By default, 

localvariableshaveautomaticduration.Togivethemstaticduration (sothat,insteadofcoming 

and going as the function is called, they persist for as long as the function 

does),youprecedetheirdeclarationwiththestatickeyword:staticinti;Bydefault,adeclaration of 

a global variable (especially if it specifies an initial value) is the defininginstance. To 

make it an external declaration, of a variable which is defined somewhereelse, you 

precede it with the keyword extern: extern int j; Finally, to arrange that a globalvariable is 

visible only within its containing source file, you precede it with the statickeyword: static 

int k; Notice that the static keyword can do two different things: it adjuststhe duration of a 

local variable from automatic to static, or it adjusts the visibility of 

aglobalvariablefromtrulyglobaltoprivate-to-the-file. 

t) Symbolattributesand symboltableentries 

u) Symbolshaveassociated attributes 

v) Typicalattributesarename, type,scope,size,addressingmodeetc. 

w) Asymboltable entrycollectstogetherattributes suchthattheycanbe 

easilysetandretrieved 

x) Exampleoftypical namesinsymboltable 

 
Name Type 

name characterstring 

class enumeration 

size integer 

type enumeration 

 

 

LOCALSYMBOLTABLEMANAGEMENT: 

 

Followingareprototypesoftypicalfunctiondeclarationsusedformanaginglocalsymboltable.Theright

handsideofthearrowsistheoutputoftheprocedureandtheleftsidehastheinput. 

 

NewSymTab:SymTab

 SymTabDestSy

mTab:SymTab

 SymTabInsertS

ym:SymTabXSymbol

 booleanLocateS

ym:SymTabXSymbol  boolean 

GetSymAttr:SymTabXSymbolXAttr

 booleanSetSymAttr 

:SymTabXSymbolXAttrXvalue
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 booleanNextSym:SymTa

bXSymbol Symbol 

MoreSyms:SymTabXSymbol boolean 
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Amajorconsiderationindesigningasymboltableisthatinsertionandretrievalshouldbeas 

fastaspossible 

. Onedimensionaltable:searchisveryslow 

 

.Balancedbinarytree:quickinsertion, 

searchingandretrieval;extraworkrequiredtokeepthetreebalanced 

 

. Hashtables:quickinsertion,searchingandretrieval;extraworktocomputehashkeys 

 

.Hashingwitha chainofentriesisgenerallya goodapproach 

 

A major consideration in designing a symbol table is that insertion and retrieval should 

beas fast as possible. We talked about the one dimensional and hash tables a few slides back. 

Apartfromthesebalanced binarytreescanbeused too.Hashingisthemostcommonapproach. 

 

HASHEDLOCALSYMBOLTABLE 

 

 

 

 

 

Hash tables can clearly implement 'lookup' and 'insert' operations. For implementing 

the'delete', we do not want to scan the entire hash table looking for lists containing entries to 

bedeleted.Eachentryshouldhavetwolinks: 

 

a) A hash link that chains the entry to other entries whose names hash to the same value - 

theusuallinkinthehash table. 
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b) A scope link that chains all entries in the same scope - an extra link. If the scope link is 

leftundisturbed when an entry is deleted from the hash table, then the chain formed by the 

scopelinkswillconstitute aninactive symboltableforthescope inquestion. 

 

NestingstructureofanexamplePascalprogram 

 
 

 

Look at the nesting structure of this program.Variables a,b and c appearin global aswell 

as local scopes. Local scope of a variable overrides the global scope of the other variablewith the 

same name within its own scope. The next slide will show the global as well as the localsymbol 

tables for this structure. Here procedure I and h lie within the scope of g ( are nestedwithing). 

 

GLOBALSYMBOLTABLESTRUCTURETheglobalsymboltablewillbeacollectionofsymboltab

les connectedwithpointers. 

 

.Scopeandvisibilityrulesdeter

minethestructureofglobalsym

boltable 

 

.ForALGOLclassoflanguages

scopingrulesstructure the 

symbol table 

astreeoflocaltables 

 

- Globalscopeasroot 

 

- Tables for nested scope 

aschildren of the 

tableforthescopetheyare 

nestedin 
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Theexactstructurewillbedeterminedbythescopeandvisibilityrulesofthelanguage.The global 

symbol table will be a collection of symbol tables connected with 

pointers.Theexactstructurewillbedeterminedbythescopeandvisibilityrulesofthelanguage.Wheneve

r a new scope is encountered a new symbol table is created. This new table contains 

apointerbacktotheenclosingscope'ssymboltableandtheenclosingonealsocontainsapointerto this 

new symbol table. Any variable used inside the new scope should either be present in itsown 

symbol table or inside the enclosing scope's symbol table and all the way up to the 

rootsymboltable.Asample globalsymboltableisshown inthebelowfigure. 

 

 

 

 

 

 

 

 

 

BLOCKSTRUCTURESANDNONBLOCKSTRUCTURESTORAGEALLOCATION 

Storagebindingandsymbolicregisters: Translatesvariablenamesintoaddressesand 

theprocessmustoccurbeforeorduringcodegeneration 

 

- . Eachvariableisassignedanaddressor addressing method 

- . Each variable is assigned an offset with respect to base which changes with 

everyinvocation 

- .Variables fallinfourclasses:global,globalstatic, stack, local(non-stack)static 

- Thevariablenameshavetobetranslatedintoaddressesbeforeorduringcodegeneration. 



COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET 
 

 

 

There is a base address and every name is given an offset with respect to this base which 

changeswitheveryinvocation.The variables canbe dividedintofourcategories: 

 

a) GlobalVariables:fixedrelocatableaddressoroffsetwithrespecttobaseasglobalpointer 

 

b) Global Static Variables :.Global variables, on the other hand, have static duration (hencealso 

called static variables): they last, and the values stored in them persist, for as long as theprogram 

does. (Of course, the values can in general still be overwritten, so they don't necessarilypersist 

forever.) Therefore they have fixed relocatable address or offset with respect to base 

asglobalpointer. 

 

c) Stack Variables :allocate stack/global in registers and registers are not indexable, 

therefore,arrayscannotbein registers 

 

.Assignsymbolicregisterstoscalarvariables 

 

.Usedforgraphcoloringforglobalregisterallocation 

 

 

 

d) Stack Static Variables :By default, local variables (stack variables) (those declared within 

afunction) have automatic duration: they spring into existence when the function is called, 

andthey (and their values) disappear when the function returns. This is why they are stored in 

stacksandhaveoffsetfromstack/framepointer. 

 

 
 

Registerallocationisusuallydoneforglobalvariables.Sinceregistersarenotindexable,therefore, 

arrays cannot be in registers as they are indexed data structures. Graph coloring is asimple 

technique for allocating register and minimizing register spills that works well in 

practice.Register spills occur when a register is needed for a computation but all available 

registers are inuse. The contents of one of the registers mustbe stored in memory to free itup for 

immediateuse.Weassignsymbolicregisterstoscalarvariableswhichareusedinthegraphcoloring. 
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LocalVariables inFrame 

 

Assigntoconsecutivelocations;allowenoughspaceforeach 

Mayputword sizeobjectinhalfwordboundaries 

Requirestwohalfwordloads 

Requiresshift,or, and 

Alignondouble wordboundaries 

Wastesspace 

AndMachinemayallowsmalloffsets 

 

wordboundaries-

themostsignificantbyteoftheobjectmustbelocatedatanaddresswhosetwoleastsignificantbitsare 

zerorelative tothe frame pointer 

 

half-wordboundaries-

themostsignificantbyteoftheobjectbeinglocatedatanaddresswhoseleastsignificantbitiszerorelati

ve totheframe pointer. 

 

Sortvariablesbythealignment theyneed 

 

- Storelargestvariablesfirst 

- Utomaticallyalignsallthevariables 

- Doesnotrequirepadding 

- Storesmallestvariablesfirst 

- Requiresmorespace(padding) 

- Forlargestackframemakesmorevariablesaccessiblewithsmalloffsets 

 

Whileallocatingmemorytothevariables,sortvariablesbythealignmenttheyneed.Youmay: 
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Storelargestvariablesfirst:Itautomaticallyalignsallthevariablesanddoesnotrequirepaddingsincethen

extvariable'smemoryallocationstartsatthe end ofthatoftheearliervariable 
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. Store smallest variables first: It requires more space (padding) since you have to 

accommodatefor the biggest possible length of any variable data structure. The advantage is that 

for large stackframe,more variablesbecome accessible withinsmalloffsets 

 

How to store large local data structures? Because they Requires large space in local 

framesandthereforelargeoffsets 

 

- Iflargeobjectisputneartheboundaryotherobjectsrequirelargeoffseteitherfromfp(ifputnearbe

ginning)orsp(ifputnearend) 

- Allocateanother baseregistertoaccesslargeobjects 

- Allocatespaceinthemiddleorelsewhere;storepointertotheselocations 

fromatasmalloffsetfromfp 

- Requiresextraloads 

 

Large local data structures require large space in local frames and therefore large 

offsets.As told in the previous slide's notes, if large objects are put near the boundary then the 

otherobjectsrequirelargeoffset.Youcaneitherallocateanotherbaseregistertoaccesslargeobjectsor 

you can allocate space in the middle or elsewhere and then store pointers to these 

locationsstartingfromatasmalloffsetfromtheframe pointer,fp. 

 

 

Intheunsortedallocation 

youcanseethewasteofspaceingreen.Insortedframethereisnowasteofspace. 

 

STORAGEALLOCATIONFORARRAYS 
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Elements of an array are stored in a block of consecutive locations. For a single 

dimensionalarray, if low is the lower bound of the index and base is the relative address of the 

storageallocated to the array i.e., the relative address of A[low], then the ith Elements of an array 

arestoredinablockofconsecutivelocations 

 

For a single dimensional array, if low is the lower bound of the index and base is 

therelative address of the storage allocated to the array i.e., the relative address of A[low], then 

the ith elements begins atthe location:base + (I - low)*w . This expression can be reorganized 

asi*w + (base -low*w) . The sub-expression base-low*w is calculated and stored in the 

symboltable at compile time when the array declaration is processed, so that the relative address 

of A[i]canbeobtainedbyjustaddingi*wtoit. 

 

- AddressingArrayElements 

- Arraysarestoredinablockofconsecutivelocations 

- Assumewidthofeachelementisw 

- ithelementofarrayAbeginsinlocation base+(i-low) 

xwwherebaseisrelativeaddressofA[low] 

- Theexpressionisequivalentto 

- ixw+(base-

lowxw)ixw+const 

2-DIMENSIONAL ARRAY:For a row majortwodimensional array the address of 

A[i][j]canbecalculatedbytheformula : 

 

base + ((i-lowi)*n2 +j - lowj)*w where low iand lowjare lower values of I and j and n2 

isnumberofvaluesjcantakei.e.n2=high2-low2+ 1. 

 

Thiscanagainbe written as: 

 

((i * n2) + j) *w + (base - ((lowi*n2) + lowj) * w) and the second term can be calculated 

atcompile time. 

 

Inthesamemanner,theexpressionforthelocationof anelementincolumnmajortwo-dimensional array 

can be obtained.This addressing can be generalized to multidimensionalarrays.Storage canbe 

eitherrowmajororcolumnmajorapproach. 

 

Example: Let A be a 10x20 array therefore, n 1 = 10 and n 2 = 20 and assume w = 

4The Three addresscodetoaccessA[y,z]is 

t 1 = y * 

20t 1 = t 1 + 

zt2=4*t1 

t3=A-84{((low1Xn2)+low2)Xw)=(1*20+1)*4=84} 

t4=t2+t3 
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x=t4 

Let A be a 10x20 

arrayn1= 10andn2= 20 

 

Assumewidthofthetypestoredinthearrayis4.ThethreeaddresscodetoaccessA[y,z]ist1=y*20 

t1 = t1 + 

zt2=4*t1 

t3=baseA -

84{((low1*n2)+low2)*w)=(1*20+1)*4=84}t4=t2+t3 

x=t4 

 

Thefollowingoperationsaredesigned:1. mktable(previous):createsanewsymboltableandreturnsa 

pointertothistable.Previousispointertothe symboltableofparentprocedure. 

 

2. entire(table,name,type,offset):createsanewentryfornameinthesymboltablepointedtoby 

table. 

 

3. addwidth(table,width):recordscumulativewidthofentriesofatablein its header. 

 

4. enterproc(table,name,newtable):createsanentryforprocedurename inthe 

symboltablepointedtobytable.newtableisapointer tosymboltableforname. 

 

P

 {t=mktable

(nil);push(t,tblp

tr);push(0,offset

)} 

D 

{addwidth(top(tblptr),top(offset));pop(t

blptr); 

pop(offset)} 

D D ; D 

 

 
The symbol tables are created using two stacks: tblptrto hold pointers to symbol tables 

ofthe enclosing procedures and offset whose top element is the next available relative address for 

alocal of the current procedure. Declarations in nested procedures can be processed by the 

syntaxdirected definitions given below. Note that they are basically same as those given above 

but wehaveseparatelydealtwiththe epsilonproductions.Gotothe nextpage fortheexplanation. 
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D procid; 

{t= 

mktable(top(tblptr));push(t,tbl

ptr);push(0,offset)} 

D 1;S 

 

 

 

 
Did:T 

 

{ t = 

top(tblptr);addwidth(t, 

top(offset));pop(tblptr);

pop(offset);; 

enterproc(top(tblptr),id.name,t)} 

 
{enter(top(tblptr),id.name,T.type,top(offset));to

p(offset)=top(offset)+T.width} 

 

The action for M creates a symbol table for the outermost scope and hence a nil pointer is 

passedinplaceof previous.When thedeclaration,Dprocid; ND1; Sis 

processed,theactioncorresponding to N causes the creation of a symbol table for the procedure; 

the pointer to symboltable of enclosing procedure is given by top(tblptr). The pointer to the new 

table is pushed on tothe stack tblptrand0 is pushedas the initial offseton the offsetstack. When the 

actionscorresponding to the subtrees of N, D1 and S have been executed, the offset 

corresponding to thecurrent procedure i.e., top(offset) contains the total width of entries in it. 

Hence top(offset) isadded to the header of symbol table of the current procedure. The top entries 

of tblptrand offsetare popped so that the pointer and offset of the enclosing procedure are now on 

top of thesestacks. The entry for id is added to the symbol table of the enclosing procedure. 

When thedeclarationD->id:Tisprocessedentryforidiscreatedinthesymbol tableof 

currentprocedure.Pointertothesymboltableofcurrentprocedureisagainobtainedfromtop(tblptr). 
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Offsetcorrespondingtothecurrentprocedurei.e.top(offset)is 

incrementedbythewidthrequiredbytype Ttopointtothe nextavailablelocation. 

 

STORAGEALLOCATIONFORRECORDS 

 

FieldnamesinrecordsT

 record 

{t=mktable(nil); 

 

push(t,tblptr);push(0,offset)}D 

end 

{T.type = 

record(top(tblptr));T.width = 

top(offset);pop(tblptr);pop(of

fset)} 

T->recordLD end {t=mktable(nil); 

push(t,tblptr);push(0,offset) 

} 

L->

 {T.type=record(top(tbl

ptr));T.width = 

top(offset);pop(tblptr);pop(of

fset) 

} 

Theprocessingdonecorrespondingtorecordsissimilartothatdoneforprocedures.After the 

keyword record is seen the marker L creates a new symbol table. Pointer to this tableand offset0 

are pushed on the respective stacks. The action for the declaration D->id :T pushthe information 

about the field names on the table created. At the end the top of the offset stackcontains the total 

width of the data objects within the record. This is stored in the 

attributeT.width.TheconstructorrecordisappliedtothepointertothesymboltabletoobtainT.type. 

NamesintheSymboltable: 

S id := E 

{p=lookup(id.place); 

ifp <>nilthenemit(p 

:=E.place)else error} 

E id 

{p=lookup(id.name); 

ifp<> nilthenE.place =p 
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elseerror} 

The operation lookup in the translation scheme above checks if there is an entry for 

thisoccurrence of the name in the symbol table. If an entry is found, pointer to the entry is 

returnedelse nil is returned. Look up first checks whether the name appears in the current symbol 

table. Ifnot then it looks for the name in the symbol table of the enclosing procedure and so on. 

Thepointer to the symbol table of the enclosing procedure is obtained from the header of the 

symboltable. 

 

CODEOPTIMIZATION 

Considerations for optimization :The code produced by the straight forward 

compilingalgorithms can often be made to run faster or take less space,or both. This 

improvement 

isachievedbyprogramtransformationsthataretraditionallycalledoptimizations.Machineindependent 

optimizations are program transformations that improve the target code withouttaking into 

consideration any properties of the target machine. Machine dependant optimizationsare 

basedonregisterallocationandutilizationofspecialmachine-instructionsequences. 

 

Criteriaforcodeimprovementtransformations 

- Simply stated, the best program transformations are those that yield the most benefit 

forthe leasteffort. 

- First,thetransformationmustpreservethemeaningofprograms.Thatis,theoptimization must 

not change the output produced by a program for a given input, orcauseanerror. 

- Second, a transformation must, on the average, speed up programs by a 

measurableamount. 

- Third, thetransformationmustbeworththeeffort. 

 

Some transformations can only be applied after detailed, often time-consuming analysis of 

thesource program, so there is little point in applying them to programs that will be run only a 

fewtimes. 
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OBJECTIVESOFOPTIMIZATION:Themainobjectivesoftheoptimizationtechniquesareasfollo

ws 

1. Exploitthefastpathincaseof multiplepaths froagivensituation. 

 

2. Reduceredundant instructions. 

 

3. Produceminimumcodeformaximumwork. 

 

4. Tradeoffbetweenthe sizeofthecode and the speed withwhich itgetsexecuted. 

 

5. Placecodeanddatatogetherwheneveritisrequiredtoavoidunnecessarysearchingofdata/co

de 

Duringcodetransformationintheprocessofoptimization, thebasicrequirementsareasfollows: 

 

1. Retainthe semanticsofthe source code. 

 

2. Reducetimeand/orspace. 

 

3. Reducetheoverheadinvolvedintheoptimizationprocess. 

 

ScopeofOptimization:Control-FlowAnalysis 

 

Consider all that has happened up to this point in the compiling process—

lexicalanalysis,syntactic analysis,semantic analysis andfinally intermediate-code 

generation.Thecompiler has done an enormous amount of analysis, but it still doesn‘t really know 

how theprogramdoeswhatitdoes.Incontrol-

flowanalysis,thecompilerfiguresoutevenmoreinformation about how the program does its work, 

only now it can assume that there are nosyntactic orsemanticerrors inthecode. 

 

Control-flowanalysisbeginsbyconstructingacontrol-flowgraph,whichisagraphofthe 

different possible paths program flow could take through a function. To build the graph, 

wefirstdivide the code into basic blocks. Abasic block is a segmentof the code that a 

programmust enter at the beginning and exit only at the end. This means that only the first 

statement canbe reached from outside the block (there are no branches into the middle of the 

block) and allstatements are executed consecutively after the first one is (no branches or halts 

until the exit).Thus a basic block has exactly one entry point and one exit point. If a program 

executes the 

firstinstructioninabasicblock,itmustexecuteeveryinstructionintheblocksequentiallyafterit. 

 

Abasicblockbeginsinoneofseveralways: 

• Theentrypointintothefunction 
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• Thetarget ofabranch(inour example,anylabel) 

• Theinstructionimmediatelyfollowingabranchorareturn 

 

 

Abasicblockendsinanyofthefollowingways: 

• Ajumpstatement 

• Aconditionalorunconditional branch 

• Areturnstatement 

 

Now we can construct the control-flow graph between the blocks. Each basic block is 

anode in the graph, and the possible different routes a program might take are the connections, 

i.e.if a block ends with a branch, there will be a path leading from that block to the branch 

target.The blocks that can follow a block are called its successors. There may be multiple 

successors orjust one. Similarly the block may have many, one, or no predecessors. Connect up 

the flow graphfor Fibonacci basic blocks given above. Whatdoes an if then-elselook likein a flow 

graph?Whataboutaloop?Youprobablyhaveallseenthegccwarningorjavacerrorabout:"Unreachablec

ode atline XXX."How canthe compilertellwhencode isunreachable? 

 

LOCALOPTIMIZATIONS 

 

Optimizationsperformedexclusivelywithinabasicblockarecalled"localoptimizations". 

These are typically the easiest to perform since we do not consider any 

controlflowinformation;wejustworkwiththestatementswithintheblock.Manyofthelocaloptimizatio

ns we will discuss have corresponding global optimizations that operate on the sameprinciple, 

but require additional analysis to perform. We'll consider some of the more 

commonlocaloptimizations as examples. 

 

FUNCTIONPRESERVINGTRANSFORMATIONS 

 

Commonsubexpressionelimination 

Constantfolding 

Variablepropagation 

Dead CodeElimination 

Code motion 

StrengthReduction 

 
1. CommonSubExpressionElimination: 

 

Two operations are common if they produce the same result. In such a case, it is likely 

moreefficienttocomputetheresultonceandreferenceitthesecondtimeratherthanre-evaluateit. An 
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expressionisaliveiftheoperandsusedtocomputetheexpressionhavenotbeenchanged.Anexpressio

nthatisnolongeraliveis dead. 

Example: 

a=b*c;d=b

*c+x-y; 

Wecaneliminatethesecondevaluationofb*cfromthiscodeifnoneoftheinterveningstatementshas 

changeditsvalue.We canthusrewritethe codeas 

 

t1=b*c;a

=t1;d=t1+

x-y; 

Letusconsiderthefollowingcodea=

b*c; 

b=x;d=b*c

+ x-y; 

inthiscode,wecannoteliminatethesecondevaluationofb*cbecausethevalueofbischangeddue tothe 

assignmentb=xbeforeitisusedincalculatingd. 

Wecansaythetwoexpressionsarecommonif 

Theylexicallyequivalenti.e.,theyconsistofidenticaloperands 

connectedtoeachotherbyidenticaloperator. 

Theyevaluatetheidenticalvalues i.e.,noassignmentstatements for 

anyoftheiroperandsexistbetweenthe evaluations oftheseexpressions. 

Thevalueofanyoftheoperandsuseintheexpressionshouldnot be changed evenduetothe 

procedurecall. 

Example: 

c=a*b;

x=a;d=

x*b; 

Wemaynotethat eventhoughexpressionsa*band x*barecommoninthe 

abovecode,theycannotbetreatedas commonsubexpressions. 

 

2. VariablePropagation: 

 

Letusconsider theabovecodeonceagain 

 
c=a*b;x=

a;d=x*b+

4; 
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if we replace x by a in the last statement, we can identify a*b and x*b as common 

subexpressions. This technique is calledvariable propagation where the use of one variable 

isreplacedbyanothervariableifithasbeenassignedthe value ofsame 

CompileTimeevaluation 

The execution efficiency of the program can be improved by shifting execution 

timeactions to compile time so that they are not performed repeatedly during the program 

execution.Wecanevaluateanexpressionwithconstantsoperandsatcompiletimeandreplacethatexpres

sionbyasinglevalue.Thisiscalledfolding.Considerthefollowing statement: 

 

a=2*(22.0/7.0)*r; 

Here, wecanperformthecomputation2*(22.0/7.0)atcompiletimeitself. 

 

3. DeadCodeElimination: 

If the value contained in the variable at a point is not used anywhere in the 

programsubsequently, the variable is said to be dead at that place. If an assignment is made to a 

deadvariable, then that assignment is a dead assignment and itcan be safely removed from 

theprogram. 

Similarly, 

apieceofcodeissaidtobedead,whichcomputesvaluethatareneverusedanywhereintheprogram. 

c=a*b;x=

a;d=x*b+

4; 

Usingvariablepropagation,thecodecanbewrittenas 

follows:c=a*b; 

x=a;d=a*

b+4; 

UsingCommonSubexpressionelimination,thecodecanbewrittenasfollows: 

t1= 

a*b;c=t

1;x=a;d

=t1+4; 

Here,x=awillconsideredasdeadcode.Henceitiseliminated.t1=a*

b; 

c=t1;d=

t1+4; 

 

4. CodeMovement: 
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The motivation for performing code movement in a program is to improve the execution time 

ofthe program by reducing the evaluation frequency of expressions. This can be done by 

movingtheevaluationofanexpressionto otherpartsofthe program.Letusconsiderthebellow code: 

If(a<10) 

{ 

b=x^2-y^2; 

} 

else 

{b=

5; 

a=(x^2-y^2)*10; 

} 

 
At thetimeofexecutionoftheconditiona<10,x^2-y^2isevaluatedtwice.So,wecanoptimizethe 

codebymovingtheoutside totheblockas follows: 

t=x^2-

y^2;If(a<1

0) 

{ 

b=t; 

} 

else 

{b=

5; 

a=t*10; 

} 

5. StrengthReduction: 

In the frequency reduction transformation we tried to reduce the execution frequency 

ofthe expressions by moving the code. There is other class of transformations which 

performequivalent actions indicated in the source program by reducing the strength of operators. 

Bystrength reduction, we mean replacing the high strength operator with low strength operator 

withoutaffectingthe programmeaning.Letusconsiderthe bellow example: 

i=1; 

while(i<10) 

{ 

y=i*4; 

} 

 
Theabovecanwrittenasfollows:i=

1; 

t=4; 
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while(i<10) 

{ 

y=t;t=

t+4; 

} 

Herethehighstrengthoperator*isreplaced with +. 

 
GLOBALOPTIMIZATIONS,DATA-FLOWANALYSIS: 

So far we were only considering making changes within one basic block. With 

someAdditional analysis, we can apply similar optimizations across basic blocks, making them 

globaloptimizations. It‘s worth pointing out that global in this case does not mean across the 

entireprogram. We usually optimize only one function at a time. Inter procedural analysis is an 

evenlargertask,one notevenattemptedbysomecompilers. 

The additional analysis the optimizer does to perform optimizations across basic blocks 

iscalleddata-flowanalysis.Data-flowanalysisismuchmorecomplicated than control-

flowanalysis,andwe canonlyscratchthesurface here. 

Let‘s consider a global common sub expression elimination optimization as our 

example.Careful analysis across blocks can determine whether an expression is alive on entry to 

a block.Such an expression is said to be available at that point. Once the set of available 

expressions isknown, common sub-expressions can be eliminated on a global basis. Each blockis 

anodeinthe flow graph of a program. The successor set (succ(x)) for a node x is the set of all 

nodes that xdirectly flows into. The predecessor set (pred(x)) for a node x is the set of all nodes 

that flowdirectly into x. An expression is defined at the point where it is assigned a value and 

killed whenone of its operands is subsequently assigned a new value. An expression is available 

at somepoint p in a flow graph if every path leading to p contains a prior definition of that 

expressionwhich is not subsequently killed. Lets define such useful functions in DF analysis in 

followinglines. 

avail[B]=setofexpressionsavailableonentryto block B 

exit[B]=setofexpressionsavailableonexitfromB 

avail[B] =∩exit[x]: x∈pred[B](i.e.Bhasavailabletheintersectionoftheexitofitspredecessors) 

killed[B] = set of the expressions killed in 

Bdefined[B] = set of expressions defined in 

Bexit[B] =avail[B]-killed[B]+defined[B] 
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avail[B]=∩(avail[x]-killed[x] +defined[x]):x∈pred[B] 

HereisanAlgorithmforGlobalCommon Sub-expression Elimination: 

1) First, computedefinedandkilledsetsfor 

eachbasicblock(thisdoesnotinvolveanyofitspredecessorsorsuccessors). 

2) Iterativelycomputetheavailandexitsetsfor 

eachblockbyrunningthefollowingalgorithmuntilyouhitastablefixedpoint: 

a) Identifyeachstatementsofthe forma =bopcinsome block 

BsuchthatbopcisavailableattheentrytoBand neitherbnorcisredefinedinBpriortos. 

b) Followflowofcontrolbackwardinthegraphpassingback tobut 

notthrougheachblockthatdefinesbopc. 

Thelastcomputationofbopcinsuchablockreachess. 

c) After each computation d = b op c identified in step 2a, add statement t = d to 

thatblockwheretisanewtemp. 

d) Replace sbya=t. 

Tryanexampletomakethingsclearer:mai

n: 

BeginFunc28; 

b = a + 2 

;c=4*b; 

tmp1 = b< c; 

ifNZ tmp1 goto L1 

;b=1; 

L1: 

d = a + 2 

;EndFunc ; 

 

First, divide the code above into basic blocks. Now calculate the available expressions for 

eachblock. Then find an expression available in a block and perform step 2c above. What 

commonsub-expressioncanyousharebetweenthe twoblocks? Whatiftheabove code were: 

main: 

BeginFunc28; 

b = a + 2 

;c=4*b; 

tmp1= b<c; 

IfNZ tmp1 Goto L1 

;b=1; 

z= a+ 2;<========= anadditionallinehere 

L1: 

d=a+2; 

EndFunc; 
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MACHINEOPTIMIZATIONS 

Infinalcodegeneration,thereisalotofopportunityforclevernessingeneratingefficient target 

code. In this pass, specific machines features (specialized instructions, hardwarepipeline abilities, 

register details) are taken into account to produce code optimized for thisparticulararchitecture. 

REGISTERALLOCATION: 

Onemachineoptimizationofparticularimportanceisregisterallocation,whichisperhaps the 

single most effective optimization for all architectures. Registers are the fastest 

kindofmemoryavailable,butas aresource,theycanbescarce. 

The problem is how to minimize traffic between the registers and what lies beyond 

themin the memory hierarchy to eliminate time wasted sending data back and forth across the 

bus andthe different levels of caches. Your Decaf back-end uses a very naïve and inefficient 

means 

ofassigningregisters,itjustfillsthembeforeperforminganoperationandspillsthemrightafterwards. 

A much more effective strategy wouldbe to considerwhich variables are more heavilyin 

demand and keep thosein registers andspill those thatare nolongerneeded 

orwon'tbeneededuntilmuchlater. 

One common register allocation technique is called "register coloring", after the 

centralidea to view register allocation as a graph coloring problem. If we have 8 registers, then 

we try tocolor a graph with eight different colors. The graph‘s nodes are made of "webs" and the 

arcs 

aredeterminedbycalculatinginterferencebetweenthewebs.Awebrepresentsavariable‘sdefinitions, 

places where it is assigned a value (as in x = …), and the possible different uses 

ofthosedefinitions(asiny=x+2).Thisproblem,infact,canbeapproachedasanothergraph.The 

definition and uses of a variable are nodes, and if a definition reaches a use, there is an 

arcbetween the two nodes. If two portions of a variable‘s definition-use graph are unconnected, 

thenwe have two separate webs for a variable. In the interference graph for the routine, each node 

is aweb. We seek to determine which webs don't interfere with one another, so we know we can 

usethesame registerforthosetwovariables.Forexample,considerthe followingcode: 

i=10; 

j=20; 

x = i + 

j;y=j+k; 

We say that iinterferes with j because at least one pair of i‘s definitions and uses 

isseparated by a definition or use of j, thus, iand j are "alive" at the same time. A variable is 

alivebetween the time it has been defined and that definition‘s last use, after which the variable 

isdead. If two variables interfere, then we cannot use the same register for each. But two 

variablesthat don't interfere can since there is no overlap in the liveness and can occupy the same 

register.Once we have the interference graph constructed, we r-color it so that no two adjacent 

nodesshare the same color (r is the number of registers we have, each color represents a 

differentregister). 

We may recall that graph-coloring is NP-complete, so we employ a heuristic rather 

thananoptimalalgorithm.Hereisasimplifiedversionofsomething thatmightbeused: 
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1. Findthenodewiththeleastneighbors.(Breaktiesarbitrarily.) 

2. Removeitfromtheinterferencegraphandpushitontoastack 

3. Repeatsteps1and 2untilthegraphisempty. 

4. Now,rebuildthegraphasfollows: 

a. Takethetopnodeoffthestack and reinsertitintothegraph 

b. Chooseacolorfor itbased onthecolorofanyofitsneighborspresentlyin 

thegraph,rotatingcolorsincase thereismorethanonechoice. 

c. Repeata,and buntilthegraphiseithercompletelyrebuilt,orthereisnocoloravailable 

tocolorthenode. 

If we get stuck, then the graph may not be r-colorable, we could try again with a 

differentheuristic, say reusing colors as often as possible. If no other choice, we have to spill a 

variable tomemory. 

INSTRUCTIONSCHEDULING: 

Anotherextremelyimportantoptimizationof thefinalcodegeneratorisinstructionscheduling. 

Because many machines, including most RISC architectures, have some sort 

ofpipeliningcapability,effectivelyharnessingthatcapabilityrequiresjudiciousorderingofinstructions

. 

In MIPS,each instructionisissuedin onecycle,butsometakemultiplecyclestocomplete. It 

takes an additional cycle before the value of a load is available and two cycles for abranch to 

reach its destination, but an instruction can be placed in the "delay slot" after a branchand 

executed in that slack time. On the left is one arrangement of a set of instructions thatrequires 7 

cycles. It assumes no hardware interlock and thus explicitly stalls between the secondand third 

slots while the load completes and has a Dead cycle after the branch because the delayslot holds 

a noop. On the right, a more favorable rearrangement of the same instructions willexecute 

in5cycleswithnodeadCycles. 

lw $t2, 

4($fp)lw $t3, 

8($fp)noop 

add $t4, $t2, 

$t3subi$t5,$t5,1

gotoL1 

noop 

lw $t2, 

4($fp)lw $t3, 

8($fp)subi $t5, 

$t5, 1gotoL1 

add $t4,$t2,$t3 

 

PEEPHOLEOPTIMIZATIONS: 

Peephole optimization is a pass that operates on the target assembly and only considers 

afewinstructionsatatime(througha"peephole")andattemptstodosimple,machinedependent 
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codeimprovements.Forexample,peepholeoptimizationsmightincludeeliminationofmultiplication 

by 1, elimination of load of a value into a register when the previous instructionstored that value 

from the register to a memory location, or replacing a sequence of instructionsby a single 

instruction with the same effect. Because of its myopic view, a peephole optimizerdoes not have 

the potential payoff of a full-scale optimizer, but it can significantly improve codeat a very local 

level and can be useful for cleaning up the final code that resulted from morecomplex 

optimizations. Much of the work done in peephole optimization can be though of asfind-replace 

activity, looking for certain idiomatic patterns in a single or sequence of two to 

threeInstructionsthancanbereplacedbymoreefficientalternatives. 

For example, MIPS has instructions that can add a small integer constant to the value in 

aregister without loading the constant into a register first, so the sequence on the left can 

bereplacedwiththatontheright: 

li$t0,10 

lw $t1, -

8($fp)add$t2,$t

1,$t0sw$t1,-

8($fp) 

lw $t1, -

8($fp)addi$t2,$

t1,10sw$t1,-

8($fp) 

Whatwouldyoureplacethefollowingsequencewith?lw 

$t0, -8($fp) 

sw$t0,-8($fp) 

Whataboutthisone?

mul$t1,$t0,2 

 

Abstract SyntaxTree/DAG:Isnothingbutthecondensedformofaparsetreeandis 

. Usefulforrepresentinglanguageconstructs 

.Depicts the naturalhierarchicalstructureofthesourceprogram 

 

- Eachinternalnoderepresentsanoperator 

- Childrenofthe nodesrepresentoperands 

- Leafnodesrepresentoperands 

 

.DAG is more compact than abstract syntax tree because common sub expressions are 

eliminatedA syntax tree depicts the natural hierarchical structure of a source program. Its 

structure hasalreadybeendiscussedinearlierlectures.DAGsaregeneratedasacombinationof 

trees:operands that are being reused are linked together, and nodes may be annotated with 

variablenames (to denote assignments). This way, DAGs are highly compact, since they 

eliminate localcommon sub-expressions. On the other hand, they are not soeasy to optimize, 

since they aremorespecifictreeforms.However,itcanbeseenthatproperbuilding ofDAGforagiven 



COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET 
 

 

 

sequenceofinstructionscancompactlyrepresenttheoutcomeofthecalculation.Anexam

ple ofa syntaxtree andDAG hasbeengiven inthenextslide . 

a:=b*-c+b*-c 

 

 

 

You canseethatthe node"* "comesonlyonceintheDAG aswellastheleaf"b",but 

themeaningconveyedbyboththerepresentations(ASTaswellastheDAG)remainsthesame. 

 

 

IMPORTANTQUESTIONS: 

1. WhatisCodeoptimization?Explaintheobjectivesofit.AlsodiscussFunctionpreservingtransfo

rmationswithyourownexamples? 

2. Explainthefollowingoptimizationtechniques 

(a) CopyPropagation 

(b) Dead-CodeElimination 

(c) CodeMotion 

(d) ReductioninStrength. 

4. Explaintheprinciplesourcesofcode-improvingtransformations. 

5. Whatdoyoumeanbymachinedependentandmachineindependentcodeoptimization?Explai

naboutmachine dependentcodeoptimizationwithexamples. 

 

ASSIGNMENTQUESTIONS: 

 

1. ExplainLocalOptimizationtechniqueswith yourownExamples? 

2. Explain indetailtheprocedurethat eliminating globalcommonsubexpression? 

3. Whatistheneedofcodeoptimization?Justifyyouranswer? 
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UNIT-V 

 

CONTROL/DATAFLOWANALYSIS: 

 

FLOWGRAPHS: 

 

Wecanaddflowcontrol information tothesetof basicblocksmakingupa program byconstructing a 

directed graph called a flow graph. The nodes of a flow graph are the basic nodes.One node is 

distinguished as initial; it is the block whose leader is the first statement. There is adirected edge 

from block B1to block B2if B2can immediately follow B1in some executionsequence;thatis,if 

 

- There is conditional or unconditional jump from the last statement of B1 to the 

firststatementofB2, or 

- B2immediately follows B1in the order of the program, and B1does not end in 

anunconditionaljump.We saythatB1is the predecessorofB2,andB 2isa successorofB1. 

 

Forregister andtemporaryallocation 

 

- Removevariables fromregistersif notused 

- StatementX=Yop ZdefinesXand usesYand Z 

- Scaneachbasicblocksbackwards 

- Assumealltemporariesaredeadonexitand alluser variablesareliveon exit 

 

The use of a name in a three-address statement is defined as follows. Suppose three-

address statement i assigns a value to x. If statement j has x as an operand, and control can 

flowfrom statement i to j along a path that has no intervening assignments to x, then we say 

statementjuses thevalueofxcomputedati. 

 

We wish to determine for each three-address statement x := y op z, what the next uses 

ofx, y and z are. We collect next-use information about names in basic blocks. If the name in 

aregister is no longer needed, then the register can be assigned to some other name. This idea 

ofkeeping a name in storage only if it will be used subsequently can be applied in a number 

ofcontexts.Itis usedtoassignspaceforattribute values. 

 

The simple code generator applies it to register assignment. Our algorithm is to 

determinenext uses makes a backward pass over each basic block, recording (in the symbol 

table) for eachname x whether x has a next use in the block and if not, whether it is live on exit 

from that block.We can assume that all non-temporary variables are live on exit and all 

temporary variables aredeadonexit. 

 

Algorithmtocomputenextuseinformation 

 



 

 

- Supposewe arescanningi:X:=YopZ inbackwardscan 
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- Attachtoi,informationinsymboltableaboutX,Y,Z 

- SetXtonotliveandnonextuseinsymboltable 

- SetYandZtobeliveandnextuseiniinsymboltable 

 

As an application, we consider the assignment of storage for temporary names. Suppose 

wereachthree-addressstatementi:x:=yop zinourbackward scan.Wethendo thefollowing: 

 

1. Attachtostatementitheinformationcurrentlyfoundinthesymboltableregardingthenextuse

andlivenessofx,yandz. 

 

2. Inthesymboltable,setxto "notlive"and "nonextuse". 

 

3. Inthesymboltable,setyandzto"live"and thenextusesofyand zto 

i.Notethattheorderofsteps(2)and(3)maynotbe interchangedbecausexmaybeyorz. 

 

Ifthree-addressstatementiisofthe formx:=yorx:=opy,the stepsarethe same 

asabove,ignoringz.considerthebelow example: 

 

1: t1= a * a2: 

t 2= a * b3: 

t3= 2 * t24: t4 

= t 1+ t35: 

t5= b * b6: t6 

= t 4+ 

t57:X=t6 

 

Example: 

 
 

 

Wecanallocatestoragelocationsfortemporariesbyexaminingeachinturnandassigning a 

temporary to the first location in the field for temporaries that does not contain a livetemporary. 

If a temporary cannot be assigned to any previously created location, add a newlocation to the 

data area for the current procedure. In many cases, temporaries can be packed 

intoregistersratherthanmemorylocations,asinthe nextsection. 
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Example. 

 

 

Thesixtemporariesinthebasicblockcanbepackedintotwolocations.Theselocationscorrespondtot

1andt2in: 

 

1:t1=a*a,2:t2=a*b,3:t2=2*t2,4:t1=t1+t2,5:t2=b*b 

 

6:t1=t1+t2,7:X=t1 

 

DATAFLOWEQUATIONS: 

 

Dataanalysis is neededforglobalcodeoptimization, e.g.:Isavariableliveonexitfromablock?Does a 

definition reach a certain point in the code? Data flow equations are used to 

collectdataflowinformationAtypicaldataflowequationhastheform 

 

Out[s]=Gen[s]U(in[s]-kill[s]) 

The notion of generation and killing depends on the dataflow analysis problem to 

besolvedLet'sfirstconsiderReachingDefinitionsanalysisforstructuredprogramsAdefinitionofa 

variable x is a statement that assigns or may assign a value to x An assignment to x is 

anunambiguous definition of x An ambiguous assignment to x can be an assignment to a pointer 

ora function call where x is passed by reference When x is defined, we say the definition 

isgeneratedAnunambiguousdefinitionofxkillsallotherdefinitionsofxWhenalldefinitionsofx are the 

same at a certain point, we can use this information to do some optimizations Example:all 

definitions of x define x to be 1. Now, by performing constant folding, we can do 

strengthreductionifxis usedinz=x*y. 

 

GLOBALOPTIMIZATIONS,DATA-FLOWANALYSIS 



COMPILERDESIGNNOTES IIIYEAR/ISEM MRCET 
 

 

 

So far we were only considering making changes within one basic block. With 

someadditional analysis, we can apply similar optimizations across basic blocks, making them 

globaloptimizations. It‘s worth pointing out that global in this case does not mean across the 

entireprogram. We usually only optimize one function at a time. Interprocedural analysis is an 

evenlarger task, one not even attempted by some compilers. The additional analysis the 

optimizermust do to perform optimizations across basic blocks is called data-flow analysis. Data-

flowanalysisismuchmorecomplicatedthancontrol-flow analysis. 

Let‘s consider a global common sub-expression elimination optimization as our 

example.Careful analysis across blocks can determine whether an expression is alive on entry to 

a block.Suchanexpressionis saidtobe availableatthatpoint. 

Oncethesetofavailableexpressionsisknown,commonsub-expressionscanbeeliminated on a 

global basis. Each block is a node in the flow graph of a program. The successorset (succ(x)) for 

a node x is the set of all nodes that x directly flows into. The predecessor set(pred(x)) for a node 

x is the set of all nodes that flow directly into x. An expression is defined atthe point where it is 

assigned a value and killed when one of its operands is subsequentlyassigned a new value. An 

expression is available at some point p in a flow graph if every pathleadingtopcontains a 

priordefinitionofthatexpressionwhichisnot 

subsequentlykilled. 

 

avail[B]=setofexpressionsavailableonentryto block B 

exit[B]=set ofexpressionsavailableonexitfromB 

avail[B]=∩exit[x]: x∈pred[B](i.e.Bhasavailabletheintersectionoftheexitofits 

predecessors) 

killed[B] = set of the expressions killed in 

Bdefined[B] = set of expressions defined in 

Bexit[B]=avail[B]- killed[B]+defined[B] 

avail[B]=∩(avail[x]-killed[x] +defined[x]):x∈pred[B] 

 

Hereisanalgorithmfor globalcommonsub-expressionelimination: 

1) First, computedefinedandkilledsetsfor 

eachbasicblock(thisdoesnotinvolveanyofitsredecessorsorsuccessors). 

2) Iterativelycomputetheavailandexitsetsfor 

eachblockbyrunningthefollowingalgorithmuntilyouhitastablefixedpoint: 

a) Identifyeachstatementsofthe forma =bopc insome block 

Bsuchthatbopcisavailableatthe entrytoBandneitherbnorc isredefinedinBpriortos. 

b) Followflowofcontrolbackwardinthegraphpassingback tobut 

notthrougheachblockthatdefines bop c.Thelastcomputationofb opcinsuchablock 

reachess. 

c) After each computation d = b op c identified in step 2a, add statement t = d to 

thatblockwheretisanewtemp. 

d) Replacesbya=t. 

Letstryanexample tomake 

thingsclearer:main: 
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BeginFunc 

28;b=a+2; 

c = 4 * b 

;tmp1=b<c; 

ifNZ tmp1 goto L1 

;b=1; 

L1: 

d = a + 2 

;EndFunc; 

 

First,dividethecodeaboveintobasic 

blocks.Nowcalculatetheavailableexpressionsforeach block.Then find 

anexpressionavailableinablock andperformstep2cabove. 

Whatcommonsubexpressioncanyousharebetweenthetwoblocks?Whatiftheabovecodewere: 

main: 

BeginFunc 

28;b=a+2; 

c = 4 * b 

;tmp1=b<c; 

IfNZ tmp1 Goto L1 

;b=1; 

z=a +2;<========= anadditionallinehereL1: 

d = a + 2 

;EndFunc; 

 

CommonSubexpressionElimination 

Two operations are common if they produce the same result. In such a case, it is likely 

moreefficient to compute the result once and reference it the second time rather than re-evaluate 

it. Anexpression is alive if the operands used to compute the expression have not been changed. 

Anexpressionthatisnolongeraliveisdead. 

 

main() 

{ 

int x,y,z; 

x=(1+20)*-x; 

y= x*x+(x/y); 

y= z =(x/y)/(x*x); 

} 

straighttranslation:

tmp1=1+20;tmp2=

-x; 

x=tmp1*tmp2;tm

p3 = x * x 

;tmp4=x/y; 
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y=tmp3+tmp4; 
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tmp5 = x / y 

;tmp6=x*x; 

z=tmp5/tmp6;y=

z; 

 

What sub-expressions can be eliminated? How can valid common sub-expressions (live ones) 

bedetermined? Here is an optimized version, after constant folding and propagation and 

eliminationofcommonsub-expressions: 

tmp2=-x; 

x=21*tmp2;tm

p3 = x * x 

;tmp4= x/y; 

y=tmp3+tmp4;tm

p5=x/y; 

z=tmp5/tmp3;y=

z; 

 

InductionVariableElimination 

Constantfoldingreferstotheevaluationatcompile-timeofexpressionswhoseoperands are 

known to be constant. In its simplest form, it involves determining that all of theoperands in an 

expression are constant-valued, performing the evaluation of the expression atcompile-time, and 

then replacing the expression by its value. If an expression such as 10 + 2 * 3is encountered, the 

compiler can compute the result at compile-time (16) and emit code as if theinput contained the 

result rather than the original expression. Similarly, constant conditions, suchas a conditional 

branch if a < b goto L1 else goto L2 where a and b are constant can be replacedby a Goto L1 or 

Goto L2 depending on the truth of the expression evaluated at compile-time.The 

constantexpression has to be evaluated at least once, but if the compiler does it, it meansyou 

don‘t have to do it again as needed during runtime. One thing to be careful about is that 

thecompiler must obey the grammar and semantic rules from the source language that apply 

toexpressionevaluation,whichmaynotnecessarilymatchthelanguageyouarewritingthecompilerin. 

(For example,if you were writing an APL compiler,you would need to take carethat you were 

respecting its Iversonian precedence rules). It should also respect the expectedtreatment of any 

exceptional conditions (divide by zero, over/underflow). Consider the 

DecafcodeonthefarleftanditsunoptimizedTACtranslationinthemiddle,whichisthentransformedbyc

onstant-foldingonthe farright: 

a = 10*5+ 6-b;_tmp0= 10; 

_tmp1 = 5; 

_tmp2=_tmp0* _tmp1 ; 

_tmp3 = 6; 

_tmp4=_tmp2+_tmp3 ; 

_tmp5 = _tmp4 – 

b;a = _tmp5; 

_tmp0 = 56 ;_tmp1=_tmp0– b;a= _tmp1 ; 
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Constant-foldingiswhat allowsa languagetoacceptconstantexpressionswhereaconstantisrequired 

(suchasa caselabelorarraysize)asinthese Clanguage examples: 

 

int arr[20 * 4 + 

3];switch(i){ 

case10*5:... 

} 

In both snippets shown above, the expression can be resolved to an integer constant at 

compiletime and thus, we have the information needed to generate code. If either expression 

involved avariable, though, there would be an error. How could you rewrite the grammar to 

allow thegrammar to do constant folding in case statements? This situation is a classic example 

of the grayarea betweensyntactic andsemanticanalysis. 

 

LiveVariableAnalysis 

Avariableis liveatacertainpointinthecodeifitholdsavaluethatmaybeneededinthefuture. 

Solvebackwards: 

FinduseofavariableThisvariableis 

livebetweenstatementsthathavefounduseasnextstatementRecursive untilyoufinda 

definitionofthevariable 

Using the sets use[B]and def[B] 

 

de f[B] is the set of variables assigned values in B prior to any use of that variable in B use 

[B]istheset ofvariableswhosevaluesmay beusedin [B]priortoanydefinitionofthevariable. 

 

A variable comes live into a block (in in[B]), if it is either used before redefinition of it 

islive coming out of the block and is not redefined in the block .A variable comes live out of 

ablock(inout[B])ifandonlyifitislive comingintoone ofitssuccessors 

In[B]=use[B] U (out[B]-de 

f[B])Out[B]=Uin[s] 

Ssucc[B] 

 

Notetherelationbetweenreaching-definitionsequations:therolesofin and outareinterchanged 

 

CopyPropagation 

This optimization is similar to constant propagation, but generalized to non-

constantvalues. If we have an assignment a = b in our instruction stream, we can replace 

lateroccurrencesofawithb (assumingtherearenochangestoeithervariablein-between). 

GiventhewaywegenerateTACcode,thisisaparticularlyvaluableoptimizationsinceitisable to 
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eliminate a large number of instructions that only serve to copy values from one variable 

toanother. The code on the left makes a copy of tmp1 in tmp2 and a copy of tmp3 in tmp4. In 

theoptimized version on the right, we eliminated those unnecessary copies and propagated 

theoriginalvariableintothe lateruses: 

tmp2=tmp1 ; 

tmp3=tmp2*tmp1;t

mp4= tmp3; 

tmp5=tmp3*tmp2;c = 

tmp5 + tmp4 

;tmp3=tmp1*tmp1;t

mp5=tmp3*tmp1;c 

=tmp5+ tmp3; 

We can also drive this optimization "backwards", where we can recognize that the 

originalassignment made to a temporary can be eliminated in favor of direct assignment to the 

final goal:tmp1=LCall_Binky; 

a =tmp1; 

tmp2 = LCall _Winky 

;b=tmp2; 

tmp3 = a * b 

;c =tmp3; 

a = LCall 

_Binky;b=LCall_

Winky;c=a*b; 

 

IMPORTANTQUESTIONS: 
 

1. WhatisDAG?ExplaintheapplicationsofDAG. 

2. Explainbrieflyaboutcodeoptimizationanditsscopeinimprovingthecode. 

3. ConstructtheDAGforthefollowingbasicblock:D 

:=B*C 

E:=A+B

B := 

B+CA:=

E-D. 

3. ExplainDetectionofLoop InvariantComputation 

4. ExplainCodeMotion. 

 

ASSIGNMENTQUESTIONS: 

 

1. Whatisloops?Explainaboutthefollowingtermsin 

loops:(a)Dominators 

(b) Naturalloops 

(c) Innerloops 
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(d) pre-headers. 

2. WriteshortnotesonGlobaloptimization? 
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OBJECTCODEGENERATION 
 

Machinedependentcodeoptimization: 

 

In final code generation, there is a lot of opportunity for cleverness in generating 

efficienttarget code. In this pass, specific machines features (specialized instructions, hardware 

pipelineabilities, register details) are taken into account to produce code optimized for this 

particulararchitecture. 

 

RegisterAllocation 

 

Onemachine optimization of particularimportanceis register allocation, which isperhaps 

the single most effective optimization for all architectures. Registers are the fastest kindof 

memory available, but as a resource, they can be scarce. The problem is how to minimizetraffic 

between the registers and whatlies beyond them in the memory hierarchy to eliminatetime wasted 

sending data back and forth across the bus and the different levels of caches. YourDecaf back-

end uses a very naïve and inefficient means of assigning registers, it just fills thembefore 

performing an operation and spills them right afterwards. A much more effective strategywould 

be to consider which variables are more heavily in demand and keep those in registers andspill 

those that are no longer needed or won't be needed until much later. One common 

registerallocation technique is called "register coloring", after the central idea to view register 

allocationas a graph coloring problem. If we have 8 registers, then we try to color a graph with 

eightdifferentcolors.Thegraph‘snodesaremadeof"webs"andthearcsaredeterminedbycalculatinginte

rference between the webs.A web represents a variable‘s definitions,placeswhere it is assigned a 

value (as in x = …), and the possible different uses of those definitions (asin y = x + 2). This 

problem, in fact, can be approached as another graph. The definition and usesof a variable are 

nodes, and if a definition reaches a use, there is an arc between the two nodes. Iftwo portions of a 

variable‘s definition-use graph are unconnected, then we have two separatewebs for a variable. In 

the interference graph for the routine, each node is a web. We seek todetermine which webs don't 

interfere with one another, so we know we can use the same 

registerforthosetwovariables.Forexample,considerthefollowingcode: 

 

i=10; 

j=20; 

x = i + 

j;y=j+k; 

We say that iinterferes with j because at least one pair of i‘s definitions and uses 

isseparated by a definition or use of j, thus, iand j are "alive" at the same time. A variable is 

alivebetween the time it has been defined and that definition‘s last use, after which the variable 

isdead. If two variables interfere, then we cannot use the same register for each. But two 

variablesthatdon'tinterferecansincethereisnooverlapinthelivenessandcanoccupythesameregister. 
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Once we have the interference graph constructed, we r-color it so that no two adjacent 

nodesshare the same color (r is the number of registers we have, each color represents a 

differentregister). You may recall that graph-coloring is NP-complete, so we employ a heuristic 

ratherthananoptimalalgorithm.Hereisasimplified versionofsomethingthatmightbeused: 

1. Findthenodewiththeleastneighbors.(Breaktiesarbitrarily.) 

2. Removeitfromtheinterferencegraphandpushitontoastack 

3. Repeatsteps1and2untilthegraph is empty. 

4. Now,rebuildthegraphasfollows: 

a. Takethetopnodeoffthestack and reinsertitintothegraph 

b. Chooseacolor foritbased 

onthecolorofanyofitsneighborspresentlyinthegraph,rotatingcolorsincase 

thereismorethanonechoice. 

c. Repeataandbuntilthegraphiseither completelyrebuilt,orthereis no 

coloravailable tocolorthenode. 

If we get stuck, then the graph may not be r-colorable, we could try again with a 

differentheuristic, say reusing colors as often as possible. If no other choice, we have to spill a 

variable tomemory. 

 

InstructionScheduling: 

Anotherextremelyimportantoptimizationofthefinalcodegeneratorisinstructionscheduling. 

Because many machines,including most RISC architectures,have some sort 

ofpipeliningcapability,effectivelyharnessingthatcapabilityrequiresjudiciousorderingofinstructions. 

In MIPS, each instruction is issued in one cycle, but some take multiple cycles tocomplete. It 

takes an additional cycle before the value of a load is available and two cycles for abranch to 

reach its destination, but an instruction can be placed in the "delay slot" after a branchand 

executed in that slack time. On the leftis one arrangement of a set of instructions thatrequires 7 

cycles. It assumes no hardware interlock and thus explicitly stalls between the secondand third 

slots while the load completes and has a Dead cycle after the branch because the delayslot holds 

a noop. On the right, a more Favorable rearrangement of the same instructions willexecute 

in5cycleswithnodeadCycles. 

 

lw$t2, 

4($fp)lw $t3, 

8($fp)noop 

add $t4, $t2, 

$t3subi$t5,$t5,1

gotoL1 

noop 

lw $t2, 

4($fp)lw $t3, 

8($fp)subi $t5, 

$t5, 1gotoL1 

add $t4,$t2,$t3 
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RegisterAllocation 

 

Onemachine optimization of particularimportanceis register allocation, which isperhaps 

the single most effective optimization for all architectures. Registers are the fastest kindof 

memory available, but as a resource, they can be scarce. The problem is how to minimizetraffic 

between the registers and whatlies beyond them in the memory hierarchy to eliminatetime wasted 

sending data back and forth across the bus and the different levels of caches. YourDecaf back-

end uses a very naïve and inefficient means of assigning registers, it just fills thembefore 

performing an operation and spills them right afterwards. A much more effective strategywould 

be to consider which variables are more heavily in demand and keep those in registers andspill 

those that are no longer needed or won't be needed until much later. One common 

registerallocation technique is called "register coloring", after the central idea to view register 

allocationas a graph coloring problem. If we have 8 registers, then we try to color a graph with 

eightdifferentcolors.Thegraph‘snodesaremadeof"webs"andthearcsaredeterminedbycalculatinginte

rference between the webs.A web represents a variable‘s definitions,placeswhere it is assigned a 

value (as in x = …), and the possible different uses of those definitions (asin y = x + 2). This 

problem, in fact, can be approached as another graph. The definition and usesof a variable are 

nodes, and if a definition reaches a use, there is an arc between the two nodes. Iftwo portions of a 

variable‘s definition-use graph are unconnected, then we have two separatewebs for a variable. In 

the interference graph for the routine, each node is a web. We seek todetermine which webs don't 

interfere with one another, so we know we can use the same 

registerforthosetwovariables.Forexample,considerthefollowingcode: 

 

i=10; 

j=20; 

x = i + 

j;y=j+k; 

We say that iinterferes with j because at least one pair of i‘s definitions and uses 

isseparated by a definition or use of j, thus, iand j are "alive" at the same time. A variable is 

alivebetween the time it has been defined and that definition‘s last use, after which the variable 

isdead. If two variables interfere, then we cannot use the same register for each. But two 

variablesthatdon'tinterferecansincethereis 

nooverlapinthelivenessandcanoccupythesameregister.Once we have the interference graph 

constructed, we r-color it so that no two adjacent nodesshare the same color (r is the number of 

registers we have, each color represents a differentregister). You may recall that graph-coloring 

is NP-complete, so we employ a heuristic ratherthananoptimalalgorithm.Hereisasimplified 

versionofsomething thatmightbeused: 

 

1. Findthenodewiththeleastneighbors.(Breaktiesarbitrarily.) 

2. Removeitfromtheinterferencegraphandpushitontoastack 

3. Repeatsteps1and 2untilthegraphisempty. 

4. Now,rebuildthegraphasfollows: 

a. Takethetopnodeoffthestack and reinsertitintothegraph 
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b. Chooseacolorfor itbased 

onthecolorofanyofitsneighborspresentlyinthegraph,rotatingcolorsincase 

thereismorethanonechoice. 

c. Repeataandbuntilthegraphiseithercompletelyrebuilt,orthereis 

nocoloravailabletocolorthenode. 

If we get stuck, then the graph may not be r-colorable, we could try again with a 

differentheuristic, say reusing colors as often as possible. If no other choice, we have to spill a 

variable tomemory. 

 
 

CODEGENERATION: 

 

The code generator generates target code for a sequence of three-address statement. 

Itconsiders each statementin turn, rememberingif any of theoperands ofthestatementarecurrently 

in registers, and taking advantage of that fact, if possible. The code-generation 

usesdescriptorstokeeptrackofregistercontents andaddressesfornames. 

 

1. A register descriptor keeps track of what is currently in each register. It is consulted 

whenevera new register is needed. We assume that initially the register descriptor shows that all 

registersare empty. (If registers are assigned across blocks, this would not be the case). As the 

codegeneration for the block progresses, each register will hold the value of zero or more names 

atanygiventime. 

 

2. An address descriptor keeps track of the location (or locations) where the current value of 

thename can be found at run time. The location might be a register, a stack location, a 

memoryaddress,orsomesetofthese,sincewhencopied,avaluealsostayswhereitwas.Thisinformationc

anbestoredinthesymboltableandisusedtodeterminetheaccessingmethodfora name. 

 

CODEGENERATIONALGORITHM: 
 

foreachX=YopZdo 

 

- InvokeafunctiongetregtodeterminelocationL whereXmustbestored.UsuallyLisaregister. 

- ConsultaddressdescriptorofYtodetermineY'.Prefer aregister for 

Y'.IfvalueofYnotalreadyinLgenerate 

 

MovY',L 

 

- Generate

opZ',L 
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Again prefer a register for Z. Update address descriptor of X to indicate X is in L. If L is 

aregister update its descriptor to indicate that it contains X and remove X from all other 

registerdescriptors. 

 

. IfcurrentvalueofYand/or 

Zhasnonextuseandaredeadonexitfromblockandareinregisters,changeregisterdescriptortoindicat

ethattheynolongercontainYand/or Z. 

 

The code generation algorithm takes as input a sequence of three-address statements 

constitutinga basic block. For each three-address statement of the form x := y op z we perform 

the followingactions: 

 

1. InvokeafunctiongetregtodeterminethelocationLwheretheresultofthecomputation y op z 

should be stored. L will usually be a register, but it could also be amemorylocation.We 

shalldescribe getregshortly. 

 

2. Consulttheaddressdescriptorforutodeterminey',(oneof)thecurrentlocation(s)of 

y. Prefer the register for y' if the value of y is currently both in memory and a register. 

Ifthe value of u is not already in L, generate the instruction MOV y', L to place a copy of 

yinL. 

 

3. Generate the instruction OP z', L where z' is a current location of z. Again, prefer 

aregister to a memory location if z is in both. Update the address descriptor to indicate 

thatx is in location L. If L is a register, update its descriptor to indicate that it contains 

thevalue ofx,andremovexfromallotherregisterdescriptors. 

 

4. If the current values of y and/or y have no next uses, are not live on exitfrom 

theblock,andareinregisters,altertheregisterdescriptortoindicatethat,afterexecutionofx:=yop

z,those registersnolongerwillcontain yand/orz,respectively. 

 

FUNCTIONgetreg: 

 

1. IfYisinregister(thatholdsnoothervalues)andYisnotliveandhasnonextuseafterX=YopZ 

thenreturnregisterofYforL. 

2. Failing (1)returnanemptyregister 

3. Failing(2) ifXhasanextuseintheblockoroprequiresregisterthengetaregister 

R,storeitscontentintoM(byMovR,M)anduseit. 

4. ElseselectmemorylocationXasL 

 

ThefunctiongetregreturnsthelocationLtoholdthevalueofxfortheassignmentx:=yopz. 

 

1. If the name y is in a register that holds the value of no other names (recall that 

copyinstructionssuchasx:=ycouldcausearegistertoholdthevalueoftwoormorevariables 
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simultaneously),andyisnotliveandhasnonextuseafter 

executionofx:=yopz,thenreturntheregisterofyforL.Updatetheaddressdescriptorofytoindicatethat 

yisnolongerinL. 

 

2. Failing (1),returnanemptyregisterforLifthereisone. 

 

3. Failing(2),ifxhasanextuseintheblock,oropisanoperatorsuchasindexing,thatrequiresa register, 

find an occupied register R. Store the value of R into memory location (by 

MOVR,M)ifitisnotalreadyinthepropermemorylocationM,updatetheaddressdescriptorM,andreturn

R. IfRholds 

thevalueofseveralvariables,aMOVinstructionmustbegeneratedforeachvariablethatneedstobestored

.Asuitableoccupiedregistermightbeonewhosedatumisreferencedfurthestinthefuture,orone whose 

valueisalsoinmemory. 

 

4. Ifxisnotusedintheblock,ornosuitableoccupiedregistercanbefound,selectthememorylocationofxa

sL. 

 

Example: 

Stmt 

 

code 

 

reg desc 

 

addr desc 

t1=a-b mova,R0 

subb,R0 

R0containst1 t1inR0 

t2=a-c mova,R1 

subc,R1 

R0containst1 

R1containst2 

t1inR0 

t2inR1 

t3=t1+t2 addR1,R0 R0containst3 

R1containst2 

t3inR0 

t2inR1 

d=t3+t2 addR 1,R0 

movR0,d 

R0containsd dinR0 

dinR0and 
   memory 

 
Forexample,theassignmentd:=(a-b) +(a-c)+(a-c)mightbetranslatedintothefollowingthree-

address codesequence: 

t1= a - 

bt2=a-c 

t 

3=t1+t2d=t3

+t2 

The code generation algorithm that we discussed would produce the code sequence as 

shown.Shownalongsideare thevaluesof 

theregisterandaddressdescriptorsascodegenerationprogresses. 

 

DAGforRegisterallocation: 
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DAG(DirectedAcyclicGraphs)areusefuldatastructuresforimplementingtransformations on 

basic blocks.A DAGgivesa picture of how the value computedby astatement in a basic block is 

used in subsequent statements of the block. Constructing a DAGfromthree-

addressstatementsisagoodwayofdeterminingcommonsub-expressions(expressions computed more 

than once) within a block, determining which names are used insidethe block but evaluated 

outside the block, and determining which statements of the block couldhave 

theircomputedvalueusedoutsidetheblock. 

 

ADAGforabasicblockisadirectedcyclicgraphwiththefollowinglabelsonnodes: 

 

1. Leaves are labeled by unique identifiers, either variable names or constants. From 

theoperator applied to a name we determine whether the l-value or r-value of a nameis 

needed;most leaves represent r- values. The leaves represent initial values of names, and we 

subscriptthemwith0 toavoidconfusionwith labelsdenoting"current"valuesofnamesasin(3)below. 

 

2. Interiornodesarelabeledbyanoperatorsymbol. 

 

3. Nodes are also optionally given a sequence of identifiers for labels. The intention 

isthat interior nodes represent computed values, and the identifiers labeling a node are deemed 

tohave thatvalue. 

 

DAGrepresentationExample: 

 
 

 

For example, the slide shows a three-address code. The corresponding DAG is shown.Weobserve 

that each node of the DAG represents a formula in terms of the leaves, that is, the 

valuespossessed by variables and constants upon entering the block. For example, the node 

labeled t 4representstheformula 

 

b[4*i] 
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thatis,thevalueofthewordwhoseaddressis4*ibytesoffsetfromaddressb,which 

istheintendedvalueoft4. 

 

CodeGenerationfromDAG 

 

S1=4*i S1=4*i 

S2=addr(A)-4 S2=addr(A)-4 

S3=S2[S1] S3=S2[S1] 

S4=4*i 

S5=addr(B)-4 S5=addr(B)-4 

S6=S5[S4] S6=S5[S4] 

S7=S3*S6 S7=S3*S6 

S8=prod+S7 

prod=S8 prod=prod+S 7 

S9=I+1 

I=S9 I=I+1 

IfI<=20goto(1) IfI<= 20goto(1) 

 

Weseehowtogeneratecodefora basicblockfromitsDAGrepresentation.Theadvantage of 

doing so is that from a DAG we can more easily see how to rearrange the order ofthe final 

computation sequence than we can starting from a linear sequence of three-addressstatements or 

quadruples. If the DAG is a tree, we can generate code that we can prove is optimalunder such 

criteria as program length or the fewest number of temporaries used. The 

algorithmforoptimalcodegeneration froma treeisalsousefulwhentheintermediatecodeisa parsetree. 

 

Rearrangingorderofthe code 

 

Considerfollowingbasic

block: 

 
t 1 = a + 

bt 2 = c + 

dt3=e-t2 

X=t1-t3 

 

 

anditsDAGgivenhere. 
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Here, we briefly consider how the order in which computations are done can affect 

thecost of resulting object code. Consider the basic block and its corresponding DAG 

representationasshownintheslide. 

 

Rearranging order. 

 

 
Threeadresscodefor

theDAG(assumingo

nlytworegisters

 are

available) 

Rearrangingthecodeast2

=c+d 

t3=e-t2 

 

t1=a+b 

MOVa, R0 X=t1-t3 

ADDb,R0 gives 

MOVc, R1 MOV c,R0 

ADD d,R1 ADDd,R0 

MOVR0,t1 Registerspilling MOV e,R1 

MOVe,R0 SUBR0,R1 

SUBR1,R0 MOV a,R 0 

MOVt1,R1 Registerreloading ADDb,R0 

SUBR0,R1 SUBR 1,R0 

MOVR1,X MOV R1,X 

 

 
Ifwegeneratecodeforthethree-addressstatementsusingthecodegenerationalgorithmdescribed 

before, we get the code sequence as shown (assuming two registers R0 and R1 areavailable, and 

only X is live on exit). On the other hand suppose we rearranged the order of 

thestatementssothatthecomputationoft1occurs immediatelybeforethatofX as: 

 

t2 = c + 

dt3 = e -t 

2t1 = a + 

bX =t1-t3 

 

Then, using the code generation algorithm, we get the new code sequence as shown (again 

onlyR0 and R1 are available).By performing the computation in this order, we have been able 

tosave two instructions; MOV R0, t 1 (which stores the value of R0 in memory location t 1 ) 

andMOV t1,R1(whichreloads the valueoft1intheregisterR1). 
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IMPORTANT&EXPECTEDQUESTIONS: 
 

ConstructtheDAGforthefollowingbasicblock:D 

:=B*C 

E:=A+B

B := 

B+CA:=

E-D. 

 

1. WhatisObjectcode?Explainaboutthefollowingobjectcodeforms: 

(a) Absolutemachine-language 

(b) Relocatablemachine-language 

(c) Assembly-language. 

2. ExplainaboutGenericcodegenerationalgorithm? 

3. Writeandexplainaboutobjectcodeforms? 

4. ExplainPeepholeOptimization 

 

ASSIGNMENTQUESTIONS: 
 

1. ExplainaboutGenericcodegenerationalgorithm? 

2. ExplainaboutData-Flowanalysisofstructuredflowgraphs. 

3. WhatisDAG?ExplaintheapplicationsofDAG. 
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