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(R15A0524) DISTRIBUTED SYSTEMS 

 

Objectives:  

 To learn the principles, architectures, algorithms and programming models used in 

distributed systems.  

 To examine state-of-the-art distributed systems, such as Google File System. 

 To design and implement sample distributed systems. 

 

UNIT I 
Characterization of Distributed Systems: Introduction, Examples of Distributed systems, 

Resource sharing and web, challenges.  

System Models: Introduction, Architectural and Fundamental models. 

 

UNIT II 

Time and Global States: Introduction, Clocks, Events and Process states, Synchronizing 

physical clocks, Logical time and Logical clocks, Global states, Distributed Debugging. 

Coordination and Agreement: Introduction, Distributed mutual exclusion, Elections, Multicast 

Communication, Consensus and Related problems. 

 

UNIT III 

Inter Process Communication: Introduction, The API for the internet protocols, External Data 

Representation and Marshalling, Client-Server Communication, Group Communication, Case 

Study: IPC in UNIX. 

Distributed Objects and Remote Invocation: Introduction, Communication between 

Distributed Objects, Remote Procedure Call, Events and Notifications, Case study-Java RMI. 

 

UNIT IV 

Distributed File Systems: Introduction, File service Architecture, Case Study1: Sun Network 

File System, Case Study 2: The Andrew File System. 

Name Services: Introduction, Name Services and the Domain Name System, Directory 

Services, Case study of the Global Name Service. 

Distributed Shared Memory: Introduction Design and Implementation issues, Sequential 

consistency and Ivy case study, Release consistency and Munin case study, other consistency 

models. 

 

UNIT V 

Transactions and Concurrency Control: Introduction, Transactions, Nested Transactions, 

Locks, Optimistic concurrency control, Timestamp ordering, Comparison of methods for 

concurrency control. 

Distributed Transactions: Introduction, Flat and Nested Distributed Transactions, Atomic 

commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, 

Transaction recovery 

 

 

 



TEXT BOOK: 

Distributed Systems, Concepts and Design, George Coulouris, J Dollimore and Tim Kindberg, 

Pearson Education, 4th Edition,2009. 
 

REFERENCES:  

1. Distributed  Systems,  Principles  and  paradigms,  Andrew  S.Tanenbaum,  Maarten  Van  

Steen, Second Edition, PHI. 

2. Distributed  Systems,  An Algorithm  Approach, Sikumar  Ghosh,  Chapman &  Hall/CRC,  

Taylor & Fransis Group, 2007. 

 

Outcomes: 

 Students  will  identify  the  core  concepts  of  distributed  systems:  the  way  in  which 

several machines orchestrate to correctly solve problems in an efficient, reliable and 

scalable way.  

 Students will examine how existing systems have applied the concepts of distributed 

systems  in  designing  large  systems,  and  will  additionally  apply  these  concepts  to 

develop sample systems. 
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DISTRIBUTED SYSTEMS 
 

UNIT I 

 

 

     Characterization of Distributed Systems: Introduction, Examples of Distributed systems, Resource  sharing             

and web, challenges.  

      System Models: Introduction, Architectural and Fundamental models. 

 

Examples of Distributed Systems–Trends in Distributed Systems – Focus on resource sharing – 

Challenges. Case study: World Wide Web. 

 

Introduction 

A distributed system is a software system in which components located on networked 

computers communicate and coordinate their actions by passing messages. The components 

interact with each other in order to achieve a common goal. 

 
Distributed systems Principles 

 

A distributed system consists of a collection of autonomous computers, connected 

through a network and distribution middleware, which enables computers to coordinate their 

activities and to share the resources of the system, so that users perceive the system as a single, 

integrated computing facility. 

 
Centralised System Characteristics 

 

 One component with non-autonomous parts 

 Component shared by users all the time 

 All resources accessible 

 Software runs in a single process 

 Single Point of control 

 Single Point of failure 

 

Distributed System Characteristics 

 

 Multiple autonomous components 

 Components are not shared by all users 

 Resources may not be accessible 

 Software runs in concurrent processes on different processors 

 Multiple Points of control 

 Multiple Points of failure 

 

Examples of distributed systems and applications of distributed computing include the following:  

 telecommunication networks: 

 telephone networks and cellular networks, 

 computer networks such as the Internet, 

 wireless sensor networks, 

 routing algorithms; 

https://en.wikipedia.org/wiki/Telecommunication
https://en.wikipedia.org/wiki/Telephone_network
https://en.wikipedia.org/wiki/Cellular_network
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Wireless_sensor_networks
https://en.wikipedia.org/wiki/Routing_algorithm
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 network applications: 

 World wide web and peer-to-peer networks, 

 massively multiplayer online games and virtual reality communities, 

 distributed databases and distributed database management systems, 

 

 network file systems, 

 distributed information processing systems such as banking systems and airline reservation 

systems; 

 real-time process control: 

 aircraft control systems, 

 industrial control systems; 

 parallel computation: 

 scientific computing, including cluster computing and grid computing and various volunteer 

computing projects (see the list of distributed computing projects), 

 distributed rendering in computer graphics. 

Common Characteristics 

 

Certain common characteristics can be used to assess distributed systems 

 

 Resource Sharing 

 Openness 

 Concurrency 

 Scalability 

 Fault Tolerance 

 Transparency 

 

Resource Sharing 

 

 Ability to use any hardware, software or data anywhere in the system. 

 Resource manager controls access, provides naming scheme and controls concurrency. 

 Resource sharing model (e.g. client/server or object-based) describing how 

 

 resources are provided, 

 they are used and 

 provider and user interact with each other. 

 

Openness 

 Openness is concerned with extensions and improvements of distributed systems. 

 Detailed interfaces of components need to be published. 

 New components have to be integrated with existing components. 

 Differences in data representation of interface types on different processors (of 

different vendors) have to be resolved. 

https://en.wikipedia.org/wiki/World_wide_web
https://en.wikipedia.org/wiki/Peer-to-peer_network
https://en.wikipedia.org/wiki/Massively_multiplayer_online_game
https://en.wikipedia.org/wiki/Virtual_reality
https://en.wikipedia.org/wiki/Distributed_database
https://en.wikipedia.org/wiki/Distributed_database_management_system
https://en.wikipedia.org/wiki/Distributed_file_system
https://en.wikipedia.org/wiki/Aircraft
https://en.wikipedia.org/wiki/Industrial_control_systems
https://en.wikipedia.org/wiki/Parallel_computation
https://en.wikipedia.org/wiki/Scientific_computing
https://en.wikipedia.org/wiki/Cluster_computing
https://en.wikipedia.org/wiki/Grid_computing
https://en.wikipedia.org/wiki/Volunteer_computing
https://en.wikipedia.org/wiki/List_of_distributed_computing_projects
https://en.wikipedia.org/wiki/Distributed_rendering
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Concurrency 

 

Components in distributed systems are executed in concurrent processes. 

 

 Components access and update shared resources (e.g. variables, databases, device 
drivers). 

 Integrity of the system may be violated if concurrent updates are not coordinated. 

o Lost updates 
 

o Inconsistent analysis 
 

Scalability 

 
 Adaption of distributed systems to 

• accomodate more users 

• respond faster (this is the hard one) 

 Usually done by adding more and/or faster processors. 

 Components should not need to be changed when scale of a system increases. 

 Design components to be scalable 

 

Fault Tolerance 

 

Hardware, software and networks fail! 

 

 Distributed systems must maintain availability even at low levels of 

hardware/software/network reliability. 

 Fault tolerance is achieved by 

 

• recovery 

• redundancy 

 

Transparency 

 

Distributed systems should be perceived by users and application programmers as a whole rather 

than as a collection of cooperating components. 

 

• Transparency has different dimensions that were identified by ANSA. 

• These represent various properties that distributed systems should have. 
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Access Transparency 

 

Enables local and remote information objects to be accessed using identical operations. 

 

• Example: File system operations in NFS. 

• Example: Navigation in the Web. 

• Example: SQL Queries 

 
Location Transparency 

Enables information objects to be accessed without knowledge of their location. 

 

• Example: File system operations in NFS 

• Example: Pages in the Web 

• Example: Tables in distributed databases 

 

Concurrency Transparency 

 

Enables several processes to operate concurrently using shared information objects without 

interference between them. 

 

• Example: NFS 

• Example: Automatic teller machine network 

• Example: Database management system 

 
 

Replication Transparency 

 

Enables multiple instances of information objects to be used to increase reliability and 

performance without knowledge of the replicas by users or application programs 

 

• Example: Distributed DBMS 

• Example: Mirroring Web Pages. 

 
Failure Transparency 

 

• Enables the concealment of faults 

• Allows users and applications to complete their tasks despite the failure of other 

components. 

• Example: Database Management System 

 

Migration Transparency 

 

Allows the movement of information objects within a system without affecting the operations of 

users or application programs 

 

• Example: NFS 

• Example: Web Pages 

 

Performance Transparency 

Allows the system to be reconfigured to improve performance as loads vary. 
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• Example: Distributed make. 

 

Scaling Transparency 

 
Allows the system and applications to expand in scale without change to the system structure or 
the application algortithms. 

 

• Example: World-Wide-Web 

• Example: Distributed Database 

 

Distributed Systems: Hardware Concepts 

 
 

• Multiprocessors 

• Multicomputers 

Networks of Computers 

 

Multiprocessors and Multicomputers 
Distinguishing features: 

 

• Private versus shared memory 

• Bus versus switched interconnection 
 
 

 

 

Networks of Computers 
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High degree of node heterogeneity: 

• High-performance parallel systems (multiprocessors as well as multicomputers) 

• High-end PCs and workstations (servers) 

• Simple network computers (offer users only network access) 

• Mobile computers (palmtops, laptops) 

• Multimedia workstations 

 
High degree of network heterogeneity: 

• Local-area gigabit networks 

• Wireless connections 

• Long-haul, high-latency connections 

• Wide-area switched megabit connections 

 
 

Distributed Systems: Software Concepts 

Distributed operating system 
_ Network operating system 

_ Middleware 

 

Distributed Operating System 

Some characteristics: 

_ OS on each computer knows about the other computers 
_ OS on different computers generally the same 

_ Services are generally (transparently) distributed across computers 
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Network Operating System 

Some characteristics: 

_ Each computer has its own operating system with networking facilities 
_ Computers work independently (i.e., they may even have different operating systems) 

_ Services are tied to individual nodes (ftp, telnet, WWW) 
_ Highly file oriented (basically, processors share only files) 

Distributed System (Middleware) 

Some characteristics: 

_ OS on each computer need not know about the other computers 
_ OS on different computers need not generally be the same 

_ Services are generally (transparently) distributed across computers 
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Need for Middleware 

Motivation: Too many networked applications were 
hard or difficult to integrate: 

_ Departments are running different NOSs 
_ Integration and interoperability only at level of primitive NOS services 

_ Need for federated information systems: 
– Combining different databases, but providing a single view to applications 

– Setting up enterprise-wide Internet services, making use of existing information systems 

– Allow transactions across different databases 

– Allow extensibility for future services (e.g., mobility, teleworking, collaborative applications) 

_ Constraint: use the existing operating systems, and treat them as the underlying environment 

(they provided the basic functionality anyway) 

 

Communication services: Abandon primitive socket based message passing in favor of: 

_ Procedure calls across networks 

_ Remote-object method invocation 

_ Message-queuing systems 

_ Advanced communication streams 

_ Event notification service 

Information system services: Services that help manage data in a distributed system: 

_ Large-scale, system wide naming services 
_ Advanced directory services (search engines) 

_ Location services for tracking mobile objects 

_ Persistent storage facilities 

_ Data caching and replication 

 

Control services: Services giving applications control over when, where, and how they access 

data: 
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_ Distributed transaction processing 

_ Code migration 

Security services: Services for secure processing and communication: 

_ Authentication and authorization services 

_ Simple encryption services 

_ Auditing service 

 

Comparison of DOS, NOS, and Middleware 
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Networks of computers are everywhere. The Internet is one, as are the many networks of 

which it is composed. Mobile phone networks, corporate networks, factory networks, campus 

networks, home networks, in-car networks – all of these, both separately and in combination, 

share the essential characteristics that make them relevant subjects for study under the heading 

distributed systems. 

 

Distributed systems has the following significant consequences: 

 

Concurrency: In a network of computers, concurrent program execution is the norm. I can do 

my work on my computer while you do your work on yours, sharing resources such as web 

pages or files when necessary. The capacity of the system to handle shared resources can be 

increased by adding more resources (for example. computers) to the network. We will describe 

ways in which this extra capacity can be usefully deployed at many points in this book. The 

coordination of concurrently executing programs that share resources is also an important and 

recurring topic. 

 

No global clock: When programs need to cooperate they coordinate their actions by 

exchanging messages. Close coordination often depends on a shared idea of the time at which 

the programs’ actions occur. But it turns out that there are limits to the accuracy with which 

the computers in a network can synchronize their clocks – there is no single global notion of 

the correct time. This is a direct consequence of the fact that the only communication is by 

sending messages through a network. 

 

Independent failures: All computer systems can fail, and it is the responsibility of system 

designers to plan for the consequences of possible failures. Distributed systems can fail in new 

ways. Faults in the network result in the isolation of the computers that are connected to it, but 

that doesn’t mean that they stop running. In fact, the programs 

on them may not be able to detect whether the network has failed or has become unusually slow. 

Similarly, the failure of a computer, or the unexpected termination of a program somewhere in 

the system (a crash), is not immediately made known to the other components with which it 

communicates. Each component of the system can fail independently, leaving the others still 

running. 

 
TRENDS IN DISTRIBUTED SYSTEMS 

 

Distributed systems are undergoing a period of significant change and this can be traced back to 
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a number of influential trends: 

 

 the emergence of pervasive networking technology; 

 the emergence of ubiquitous computing coupled with the desire to support user mobility 

in distributed systems; 

 the increasing demand for multimedia services; 

 the view of distributed systems as a utility. 

Internet 

The modern Internet is a vast interconnected collection of computer networks of many different 

types, with the range of types increasing all the time and now including, for example, a wide 

range of wireless communication technologies such as WiFi, WiMAX, Bluetooth and third- 

generation mobile phone networks. The net result is that networking has become a pervasive 

resource and devices can be connected (if desired) at any time and in any place. 

 

A typical portion of the Internet 

 
 

The Internet is also a very large distributed system. It enables users, wherever they are, to make 

use of services such as the World Wide Web, email and file transfer. (Indeed, the Web is 

sometimes incorrectly equated with the Internet.) The set of services is open-ended – it can be 

extended by the addition of server computers and new types of service. The figure shows a 

collection of intranets – subnetworks operated by companies and other organizations and 

typically protected by firewalls. The role of a firewall is to protect an intranet by preventing 

unauthorized messages from leaving or entering. A firewall is implemented by filtering incoming 

and outgoing messages. Filtering might be done by source or destination, or a firewall might 

allow only those messages related to email and web access to pass into or out of the intranet that 

it protects. Internet Service Providers (ISPs) are companies that provide broadband links and 

other types of connection to individual users and small organizations, enabling them to access 

services anywhere in the Internet as well as providing local services such as email and web 

hosting. The intranets are linked together by backbones. A backbone is a network link with a 

high transmission capacity, employing satellite connections, fibre optic cables and other high- 

bandwidth circuits 
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Computers vs. Web servers in the Internet 

 

 
Intranet 

– A portion of the Internet that is separately administered and has a boundary that 
can be configured to enforce local security policies 

– Composed of several LANs linked by backbone connections 

– Be connected to the Internet via a router 
 

A typical intranet 

email server 
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Main issues in the design of components for the use in intranet 

• File services 

• Firewall 

• The cost of software installation and support 

 
Mobile and ubiquitous computing 

Technological advances in device miniaturization and wireless networking have led increasingly 

to the integration of small and portable computing devices into distributed systems. These 

devices include: 

 Laptop computers. 

 Handheld devices, including mobile phones, smart phones, GPS-enabled devices, pagers, 

personal digital assistants (PDAs), video cameras and digital cameras. 

 Wearable devices, such as smart watches with functionality similar to a PDA. 

 Devices embedded in appliances such as washing machines, hi-fi systems, cars and 

refrigerators. 

 

The portability of many of these devices, together with their ability to connect conveniently to 

networks in different places, makes mobile computing possible. Mobile computing is the 

 

performance of computing tasks while the user is on the move, or visiting places other than their 

usual environment. In mobile computing, users who are away from their ‘home’ intranet (the 

intranet at work, or their residence) are still provided with access to resources via the devices 

they carry with them. They can continue to access the Internet; they can continue to access 

resources in their home intranet; and there is increasing provision for users to utilize resources 

such as printers or even sales points that are conveniently nearby as they move around. The latter 

is also known as location-aware or context-aware computing. Mobility introduces a number of 

challenges for distributed systems, including the need to deal with variable connectivity and 

indeed disconnection, and the need to maintain operation in the face of device mobility. 

Portable and handheld devices in a distributed system 
 

 
 

Internet 

 
 
 
 

Host intranet WAP 
Wireless LAN gateway 

 
Home intranet 

 

 
 

 
Printer 

Mobile 
phone 

Laptop 
Camera Host site 

 
 

     

Ubiquitous computing is the harnessing of many small, cheap computational devices that are 

present in users’ physical environments, including the home, office and even natural settings. 

The term ‘ubiquitous’ is intended to suggest that small computing devices will eventually 
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become so pervasive in everyday objects that they are scarcely noticed. That is, their 

computational behaviour will be transparently and intimately tied up with their physicalfunction. 

 

The presence of computers everywhere only becomes useful when they can communicate with 

one another. For example, it may be convenient for users to control their washing machine or 

their entertainment system from their phone or a ‘universal remote control’ device in the home. 

Equally, the washing machine could notify the user via a smart badge or phone when the 

washing is done. 

 
Ubiquitous and mobile computing overlap, since the mobile user can in principle benefit from 

computers that are everywhere. But they are distinct, in general. Ubiquitous computing could 

benefit users while they remain in a single environment such as the home or a hospital. Similarly, 

mobile computing has advantages even if it involves only conventional, discrete computers and 

devices such as laptops and printers. 

RESOURCE SHARING 

 

• Is the primary motivation of distributed computing 

• Resources types 

– Hardware, e.g. printer, scanner, camera 

– Data, e.g. file, database, web page 

– More specific functionality, e.g. search engine, file 

• Service 

– manage a collection of related resources and present their functionalities to users 

and applications 

• Server 
– a process on networked computer that accepts requests from processes on other 

computers to perform a service and responds appropriately 

• Client 

– the requesting process 
• Remote invocation 

 

A complete interaction between client and server, from the point when the client sends its 

request to when it receives the server’s response 

 

• Motivation of WWW 

– Documents sharing between physicists of CERN 
– Web is an open system: it can be extended and implemented in new ways without 

disturbing its existing functionality. 

– Its operation is based on communication standards and document standards 

– Respect to the types of ‘resource’ that can be published and shared on it. 

• HyperText Markup Language 

– A language for specifying the contents and layout of pages 

• Uniform Resource Locators 
– Identify documents and other resources 

• A client-server architecture with HTTP 
– By with browsers and other clients fetch documents and other resources from web 

servers 

 

HTML 
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HTML text is stored in a file of a web server. 

 A browser retrieves the contents of this file from a web server. 

 

-The browser interprets the HTML text 

 

-The server can infer the content type from the filename extension. 

 

URL 

 

 HTTP URLs are the most widely used 

 An HTTP URL has two main jobs to do: 

- To identify which web server maintains the resource 

- To identify which of the resources at that server 

 

Web servers and web browsers 
 

HTTP URLs 
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HTTP 

 

• Defines the ways in which browsers and any other types of client interact with web 

servers (RFC2616) 

• Main features 

– Request-replay interaction 

– Content types. The strings that denote the type of content are called MIME 

(RFC2045,2046) 

– One resource per request. HTTP version 1.0 

– Simple access control 

 

More features-services and dynamic pages 

 

• Dynamic content 

– Common Gateway Interface: a program that web servers run to generate content 

for their clients 

• Downloaded code 

– JavaScript 

– Applet 

 

Discussion of Web 

 

 Dangling: a resource is deleted or moved, but links to it may still remain 

 Find information easily: e.g. Resource Description Framework which standardize 

the format of metadata about web resources 

 Exchange information easily: e.g. XML – a self describing language 

 Scalability: heavy load on popular web servers 

 More applets or many images in pages increase in the download time 
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THE CHALLENGES IN DISTRIBUTED SYSTEM: 

 

Heterogeneity 

The Internet enables users to access services and run applications over a heterogeneous 

collection of computers and networks. Heterogeneity (that is, variety and difference) applies to 

all of the following: 

 networks; 

 computer hardware; 

 operating systems; 

 programming languages; 

 implementations by different developers 

Although the Internet consists of many different sorts of network, their differences are masked 

by the fact that all of the computers attached to them use the Internet protocols to communicate 

with one another. For example, a computer attached to an Ethernet has an implementation of the 

Internet protocols over the Ethernet, whereas a computer on a different sort of network will need 

an implementation of the Internet protocols for that network. 

Data types such as integers may be represented in different ways on different sorts of hardware – 

for example, there are two alternatives for the byte ordering of integers. These differences in 

representation must be dealt with if messages are to be exchanged between programs running on 

different hardware. Although the operating systems of all computers on the Internet need to 

include an implementation of the Internet protocols, they do not necessarily all provide the same 

application programming interface to these protocols. For example, the calls for exchanging 

messages in UNIX are different from the calls in Windows. 

 
Different programming languages use different representations for characters and data structures 

such as arrays and records. These differences must be addressed if programs written in different 

languages are to be able to communicate with one another. Programs written by different 

developers cannot communicate with one another 

unless they use common standards, for example, for network communication and the 

representation of primitive data items and data structures in messages. For this to happen, 

standards need to be agreed and adopted – as have the Internet protocols. 

 

Middleware • The term middleware applies to a software layer that provides a programming 

abstraction as well as masking the heterogeneity of the underlying networks, hardware, operating 

systems and programming languages. The Common Object Request Broker (CORBA), is an 

example. Some middleware, such as Java Remote Method Invocation (RMI), supports only a 

single programming language. Most middleware is implemented over the Internet protocols, 

which themselves mask the differences of the underlying networks, but all middleware deals  

with the differences in operating systems and hardware. 

 

Heterogeneity and mobile code • The term mobile code is used to refer to program code that 

can be transferred from one computer to another and run at the destination – Java applets are an 

example. Code suitable for running on one computer is not necessarily suitable for running on 

another because executable programs are normally specific both to the instruction set and to the 

host operating system. 

The virtual machine approach provides a way of making code executable on a variety of host 

computers: the compiler for a particular language generates code for a virtual machine instead of 
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a particular hardware order code. For example, the Java compiler produces code for a Java 

virtual machine, which executes it by interpretation. 

The Java virtual machine needs to be implemented once for each type of computer to enable Java 

programs to run. 

Today, the most commonly used form of mobile code is the inclusion Javascript programs in 

some web pages loaded into client browsers. 

 
Openness 

 

The openness of a computer system is the characteristic that determines whether the system can 

be extended and reimplemented in various ways. The openness of distributed systems is 

determined primarily by the degree to which new resource-sharing services can be added and be 

made available for use by a variety of client programs. 

 

Openness cannot be achieved unless the specification and documentation of the key software 

interfaces of the components of a system are made available to software developers. In a word, 

the key interfaces are published. This process is akin to the standardization of interfaces, but it 

often bypasses official standardization procedures, 

which are usually cumbersome and slow-moving. However, the publication of interfaces is only 

the starting point for adding and extending services in a distributed system. The challenge to 

designers is to tackle the complexity of distributed systems consisting of many components 

engineered by different people. The designers of the Internet protocols introduced a series of 

documents called ‘Requests For Comments’, or RFCs, each of which is known by a number. The 

specifications of the Internet communication protocols were published in this series in the early 

1980s, followed by specifications for applications that run over them, such as file transfer, email 

and telnet by the mid-1980s. 

 

Systems that are designed to support resource sharing in this way are termed open distributed 

systems to emphasize the fact that they are extensible. They may be extended at the hardware 

level by the addition of computers to the network and at the software level by the introduction of 

new services and the reimplementation of old ones, enabling 

application programs to share resources. 

 

To summarize: 

• Open systems are characterized by the fact that their key interfaces are published. 

• Open distributed systems are based on the provision of a uniform communication mechanism 

and published interfaces for access to shared resources. 

• Open distributed systems can be constructed from heterogeneous hardware and software, 

possibly from different vendors. But the conformance of each component to the published 

standard must be carefully tested and verified if the system is to work correctly. 

 

Security 

 
Many of the information resources that are made available and maintained in distributed systems 

have a high intrinsic value to their users. Their security is therefore of considerable importance. 

Security for information resources has three components: confidentiality (protection against 

disclosure to unauthorized individuals), integrity 
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(protection against alteration or corruption), and availability (protection against interference with 

the means to access the resources). 

 

In a distributed system, clients send requests to access data managed by servers, which involves 

sending information in messages over a network. For example: 

1. A doctor might request access to hospital patient data or send additions to that data. 

2. In electronic commerce and banking, users send their credit card numbers across the Internet. 

 

In both examples, the challenge is to send sensitive information in a message over a network in a 

secure manner. But security is not just a matter of concealing the contents of messages – it also 

involves knowing for sure the identity of the user or other agent on whose behalf a message was 

sent. 

 
However, the following two security challenges have not yet been fully met: 

 

Denial of service attacks: Another security problem is that a user may wish to disrupt a service 

for some reason. This can be achieved by bombarding the service with such a large number of 

pointless requests that the serious users are unable to use it. This is called a denial of service 

attack. There have been several denial of service attacks on well-known web services. Currently 

such attacks are countered by attempting to catch and punish the perpetrators after the event, but 

that is not a general solution to the problem. 

 
Security of mobile code: Mobile code needs to be handled with care. Consider someone who 

receives an executable program as an electronic mail attachment: the possible effects of running 

the program are unpredictable; for example, it may seem to display an interesting picture but in 

reality it may access local resources, or perhaps be part of a denial of service attack. 

 

Scalability 

 
Distributed systems operate effectively and efficiently at many different scales, ranging from a 

small intranet to the Internet. A system is described as scalable if it will remain effective when 

there is a significant increase in the number of resources and the number of users. The number of 

computers and servers in the Internet has increased dramatically. Figure 1.6 shows the increasing 

number of computers and web servers during the 12-year history of the Web up to 2005 

[zakon.org]. It is interesting to note the significant growth in both computers and web servers in 

this period, but also that the relative percentage is flattening out – a trend that is explained by the 

growth of fixed and mobile personal computing. One web server may also increasingly be hosted 

on multiple computers. 

 

The design of scalable distributed systems presents the following challenges: 

 
Controlling the cost of physical resources: As the demand for a resource grows, it should be 

possible to extend the system, at reasonable cost, to meet it. For example, the frequency with 

which files are accessed in an intranet is likely to grow as the number of users and computers 

increases. It must be possible to add server computers to avoid the performance bottleneck that 

would arise if a single file server had to handle all file access requests. In general, for a system 

with n users to be scalable, the quantity of physical resources required to support them should be 
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at most O(n) – that is, proportional to n. For example, if a single file server can support 20 users, 

then two such servers should be able to support 40 users. 

 

Controlling the performance loss: Consider the management of a set of data whose size is 

proportional to the number of users or resources in the system – for example, the table with the 

correspondence between the domain names of computers and their Internet addresses held by the 

Domain Name System, which is used mainly to look 

up DNS names such as www.amazon.com. Algorithms that use hierarchic structures scale better 

than those that use linear structures. But even with hierarchic structures an increase in size will 

result in some loss in performance: the time taken to access hierarchically structured data is 

O(log n), where n is the size of the set of data. For a 

system to be scalable, the maximum performance loss should be no worse than this. 

 
Preventing software resources running out: An example of lack of scalability is shown by the 

numbers used as Internet (IP) addresses (computer addresses in the Internet). In the late 1970s, it 

was decided to use 32 bits for this purpose, but as will be explained in Chapter 3, the supply of 

available Internet addresses is running out. For this reason, a new version of the protocol with 

128-bit Internet addresses is being adopted, and this will require modifications to many software 

components. 

 

 
Avoiding performance bottlenecks: In general, algorithms should be decentralized to avoid 

having performance bottlenecks. We illustrate this point with reference to the predecessor of the 

Domain Name System, in which the name table was kept in a single master file that could be 

downloaded to any computers that needed it. That was 

fine when there were only a few hundred computers in the Internet, but it soon became a serious 

performance and administrative bottleneck. 

 

Failure handling 

 
Computer systems sometimes fail. When faults occur in hardware or software, programs may 

produce incorrect results or may stop before they have completed the intended computation. 

Failures in a distributed system are partial – that is, some components fail while others continue 

to function. Therefore the handling of failures is particularly difficult. 

 

Detecting failures: Some failures can be detected. For example, checksums can be used to detect 

corrupted data in a message or a file. It is difficult or even impossible to detect some other 

failures, such as a remote crashed server in the Internet. The challenge is to manage in the 

presence of failures that cannot be detected but may be suspected. 

http://www.amazon.com/
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Masking failures: Some failures that have been detected can be hidden or made less severe. Two 

examples of hiding failures: 

1. Messages can be retransmitted when they fail to arrive. 

2. File data can be written to a pair of disks so that if one is corrupted, the other may still be 

correct. 

 

Tolerating failures: Most of the services in the Internet do exhibit failures – it would not be 

practical for them to attempt to detect and hide all of the failures that might occur in such a large 

network with so many components. Their clients can be designed to tolerate failures, which 

generally involves the users tolerating them as well. For example, when a web browser cannot 

contact a web server, it does not make the user wait for ever while it keeps on trying – it informs 

the user about the problem, leaving them free to try again later. Services that tolerate failures are 

discussed in the paragraph on redundancy below. 

Recovery from failures: Recovery involves the design of software so that the state of permanent 

data can be recovered or ‘rolled back’ after a server has crashed. In general, the computations 

performed by some programs will be incomplete when a fault occurs, and the permanent data 

that they update (files and other material stored 

in permanent storage) may not be in a consistent state. 

 

Redundancy: Services can be made to tolerate failures by the use of redundant components. 

Consider the following examples: 

1. There should always be at least two different routes between any two routers in the Internet. 

2. In the Domain Name System, every name table is replicated in at least two different servers. 

3. A database may be replicated in several servers to ensure that the data remains accessible after 

the failure of any single server; the servers can be designed to detect faults in their peers; when a 

fault is detected in one server, clients are redirected to the remaining servers. 

 

Concurrency 

Both services and applications provide resources that can be shared by clients in a distributed 

system. There is therefore a possibility that several clients will attempt to access a shared 

resource at the same time. For example, a data structure that records bids for an auction may be 

accessed very frequently when it gets close to the deadline time. The process that manages a 

shared resource could take one client request at a time. But that approach limits throughput. 

Therefore services and applications generally allow multiple client requests to be processed 

concurrently. To make this more concrete, suppose that each resource is encapsulated as an 

object and that invocations are executed in concurrent threads. In this case it is possible that 

several threads may be executing concurrently within an object, in which case their operations on 

the object may conflict with one another and produce inconsistent results. 

 

Transparency 

Transparency is defined as the concealment from the user and the application programmer of the 

separation of components in a distributed system, so that the system is perceived as a whole 

rather than as a collection of independent components. The implications of transparency are a 

major influence on the design of the system software. 
 

Access transparency enables local and remote resources to be accessed using identical 

operations. 

Location transparency enables resources to be accessed without knowledge of their physical or 

network location (for example, which building or IP address). 
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Concurrency transparency enables several processes to operate concurrently using shared 

resources without interference between them. 

Replication transparency enables multiple instances of resources to be used to increase reliability 

and performance without knowledge of the replicas by users or application programmers. 

Failure transparency enables the concealment of faults, allowing users and application programs 

to complete their tasks despite the failure of hardware or software components. 

Mobility transparency allows the movement of resources and clients within a system without 

affecting the operation of users or programs. 

Performance transparency allows the system to be reconfigured to improve performance as 

loads vary. 

Scaling transparency allows the system and applications to expand in scale without change to the 

system structure or the application algorithms. 

 

Quality of service 

 
Once users are provided with the functionality that they require of a service, such as the file 

service in a distributed system, we can go on to ask about the quality of the service provided. The 

main nonfunctional properties of systems that affect the quality of the service experienced by 

clients and users are reliability, security and performance. 

Adaptability to meet changing system configurations and resource availability has been 

recognized as a further important aspect of service quality. 

 

Some applications, including multimedia applications, handle time-critical data – streams of data 

that are required to be processed or transferred from one process to another at a fixed rate. For 

example, a movie service might consist of a client program that is retrieving a film from a video 

server and presenting it on the user’s screen. For a satisfactory result the successive frames of 

video need to be displayed to the user within some specified time limits. 

In fact, the abbreviation QoS has effectively been commandeered to refer to the ability of 

systems to meet such deadlines. Its achievement depends upon the availability of the necessary 

computing and network resources at the appropriate times. This implies a requirement for the 

system to provide guaranteed computing and communication resources that are sufficient to 

enable applications to complete each task on time (for example, the task of displaying a frame of 

video). 

 

           

          INTRODUCTION TO SYSTEM MODELS 

 

Systems that are intended for use in real-world environments should be designed to function 

correctly in the widest possible range of circumstances and in the face of many possible 

difficulties and threats . 

 

Each type of model is intended to provide an abstract, simplified but consistent description of a 

relevant aspect of distributed system design: 

Physical models are the most explicit way in which to describe a system; they capture the 

hardware composition of a system in terms of the computers (and other devices, such as mobile 

phones) and their interconnecting networks. 

 

Architectural models describe a system in terms of the computational and communication tasks 

performed by its computational elements; the computational elements being individual 

computers or aggregates of them supported by appropriate network interconnections. 
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Fundamental models take an abstract perspective in order to examine individual aspects of a 

distributed system. The fundamental models that examine three important aspects of distributed 

systems: interaction models, which consider the structure and sequencing of the communication 

between the elements of the system; failure models, which consider the ways in which a system 

may fail to operate correctly and; security models, which consider how the system is protected 

against attempts to interfere with its correct operation or to steal its data. 

 

Architectural models 

 

The architecture of a system is its structure in terms of separately specified components and their 

interrelationships. The overall goal is to ensure that the structure will meet present and likely 

future demands on it. Major concerns are to make the system reliable, manageable, adaptable and 

cost-effective. The architectural design of a building has similar aspects – it determines not only 

its appearance but also its general structure and architectural style (gothic, neo-classical, modern) 

and provides a consistent frame of reference for the design. 

 

Software layers 

The concept of layering is a familiar one and is closely related to abstraction. In a layered 

approach, a complex system is partitioned into a number of layers, with a given layer making use 

of the services offered by the layer below. A given layer therefore offers a software abstraction, 

with higher layers being unaware of implementation details, or indeed of any other layers beneath 

them. 
 

In terms of distributed systems, this equates to a vertical organization of services into service 

layers. A distributed service can be provided by one or more server processes, interacting with 

each other and with client processes in order to maintain a consistent system-wide view of the 

service’s resources. For example, a network time service is implemented on the Internet based on 

the Network Time Protocol (NTP) by server processes running on hosts throughout the Internet 

that supply the current time to any client that requests it and adjust their version of the current 

time as a result of interactions with each other. Given the complexity of distributed systems, it is 

often helpful to organize such services into layers. the important terms platform and middleware, 

which define as follows: 

 

The important terms platform and middleware, which is defined as follows: 

 

A platform for distributed systems and applications consists of the lowest-level hardware and 

software layers. These low-level layers provide services to the layers above them, which are 

implemented independently in each  computer, bringing the system’s programming interface up  

to a level that facilitates communication and coordination between processes. Intel x86/Windows, 

Intel x86/Solaris, Intel x86/Mac OS X, Intel x86/Linux and ARM/Symbian are major examples. 

 
 

– Remote Procedure Calls – Client programs call procedures in server programs 

– Remote Method Invocation – Objects invoke methods of objects on distributed hosts 

– Event-based Programming Model – Objects receive notice of events in other objects in which 
they have interest 

 
Middleware 

• Middleware: software that allows a level of programming beyond processes and message 
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passing 

– Uses protocols based on messages between processes to provide its higher-level abstractions 
such as remote invocation and events 

– Supports location transparency 

– Usually uses an interface definition language (IDL) to define interfaces 
 

Applications, services 

Middleware 

Operating system 

Computer and networkhardware 
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Interfaces in Programming Languages 

– Current PL allow programs to be developed as a set of modules that communicate with each 

other. Permitted interact ions between modules are defined by interfaces 

– A specified interface can be implemented by different modules without the need to modify 
other modules using the interface 

 

• Interfaces in Distributed Systems 

 

– When modules are in different processes or on different hosts there are limitations 

on the interactions that can occur. Only actions with parameters that are fully specified and 

understood can communicate effectively to request or provide services to modules in another 

process 

– A service interface allows a client to request and a server to provide particular services 

– A remote interface allows objects to be passed as arguments to and results from distributed 

modules 

• Object Interfaces 

– An interface defines the signatures of a set of methods, including arguments, argument types, 

return values and exceptions. Implementation details are not included in an interface. 

A class may implement an interface by specifying behavior for each method in the interface. 

Interfaces do not have constructors. 

System architectures 

 

Client-server: This is the architecture that is most often cited when distributed systems are 

discussed. It is historically the most important and remains the most widely employed. Figure 2.3 

illustrates the simple structure in which processes take on the roles of being clients or servers. In 

particular, client processes interact with individual server processes in potentially separate host 

computers in order to access the shared resources that they manage. 

Servers may in turn be clients of other servers, as the figure indicates. For example, a web server 

is often a client of a local file server that manages the files in which the web pages are stored. 

Web servers and most other Internet services are clients of the DNS service, which translates 

Internet domain names to network addresses. 
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Clients invoke individual servers 
 

 

Another web-related example concerns search engines, which enable users to look up summaries 

of information available on web pages at sites throughout the Internet. These summaries are 

made by programs called web crawlers, which run in the background at a search engine site 

using HTTP requests to access web servers throughout the Internet. Thus a search engine is both 

a server and a client: it responds to queries from browser clients and it runs web crawlers that act 

as clients of other web servers. In this example, the server tasks (responding to user queries) and 

the crawler tasks (making requests to other web servers) are entirely independent; there is little 

need to synchronize them and they may run concurrently. In fact, a typical search engine would 

normally include many 

concurrent threads of execution, some serving its clients and others running web crawlers. In 

Exercise 2.5, the reader is invited to consider the only synchronization issue that does arise for a 

concurrent search engine of the type outlined here. 

 

Peer-to-peer: In this architecture all of the processes involved in a task or activity play similar 

roles, interacting cooperatively as peers without any distinction between client and server 

processes or the computers on which they run. In practical terms, all participating processes run 

the same program and offer the same set of interfaces to each 

other. While the client-server model offers a direct and relatively simple approach to the sharing 

of data and other resources, it scales poorly. 
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A number of placement strategies have evolved in response to this problem, but none of them 

addresses the fundamental issue – the need to distribute shared resources much more widely in 

order to share the computing and communication loads incurred in accessing them amongst a 

much larger number of computers and network links. The key insight that led to the development 

of peer-to-peer systems is that the network and computing resources owned by the users of a 

service could also be put to use to support that service. This has the useful consequence that the 

resources available to run the service grow with the number of users. 

Models of systems share some fundamental properties. In particular, all of them are composed of 

processes that communicate with one another by sending messages over a computer network. All 

of the models share the design requirements of achieving the performance and reliability 

characteristics of processes and networks and ensuring the security of the resources in the 

system. 

 

About their characteristics and the failures and security risks they might exhibit. In general, such 

a fundamental model should contain only the essential ingredients that need to consider in order 

to understand and reason about some aspects of a system’s behaviour. The purpose of such a 

model is: 

 
• To make explicit all the relevant assumptions about the systems we are modelling. 

• To make generalizations concerning what is possible or impossible, given those assumptions. 

The generalizations may take the form of general-purpose algorithms or desirable properties that 

are guaranteed. The guarantees are 

dependent on logical analysis and, where appropriate, mathematical proof. 

 
 

The aspects of distributed systems that we wish to capture in our fundamental models are 

intended to help us to discuss and reason about: 

 
Interaction: Computation occurs within processes; the processes interact by passing messages, 

resulting in communication (information flow) and coordination (synchronization and ordering 

of activities) between processes. In the analysis and design of distributed systems we are 

concerned especially with these interactions. The interaction model must reflect the facts that 

communication takes place with delays that are often of considerable duration, and that the 

accuracy with which independent processes can be coordinated is limited by these delays and by 

the difficulty of maintaining the same notion of time across all the computers in a distributed 

system. 

 

Failure: The correct operation of a distributed system is threatened whenever a fault occurs in 

any of the computers on which it runs (including software faults) or in the network that connects 

them. Our model defines and classifies the faults. This provides a basis for the analysis of their 

potential effects and for the design of systems that are able to tolerate faults of each type while 

continuing to run correctly. 

 

Security: The modular nature of distributed systems and their openness exposes them to attack by 

both external and internal agents. Our security model defines and classifies the forms that such 
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attacks may take, providing a basis for the analysis of threats to a system and for the design of 

systems that are able to resist them. 

 

Interaction model 

 

Fundamentally distributed systems are composed of many processes, interacting in complex 

ways. For example: 

 

 Multiple server processes may cooperate with one another to provide a service; the 

examples mentioned above were the Domain Name System, which partitions and 

replicates its data at servers throughout the Internet, and Sun’s Network Information 

Service, which keeps replicated copies of password files at several servers in a local area 

network. 

 A set of peer processes may cooperate with one another to achieve a common goal: for 

example, a voice conferencing system that distributes streams of audio data in a similar 

manner, but with strict real-time constraints. 

 

Most programmers will be familiar with the concept of an algorithm – a sequence of 
steps to be taken in order to perform a desired computation. Simple programs are controlled by 

algorithms in which the steps are strictly sequential. The behaviour of the program and the state 

of the program’s variables is determined by them. Such a program is executed as a single 

process. Distributed systems composed of multiple processes such as those outlined above are 

more complex. Their behaviour and state can be described by a distributed algorithm – a 

definition of the steps to be taken by each of the processes of which the system is composed, 

including the transmission of messages between them. Messages are transmitted between 

processes to transfer information between them and to coordinate their activity. 

 

Two significant factors affecting interacting processes in a distributed system: 

• Communication performance is often a limiting characteristic. 

• It is impossible to maintain a single global notion of time. 

 
 

Performance of communication channels • The communication channels in our model are 

realized in a variety of ways in distributed systems – for example, by an implementation of 

streams or by simple message passing over a computer network. Communication over a 

computer network has the following performance characteristics relating to latency, bandwidth 

and jitter: 

 

The delay between the start of a message’s transmission from one process and the beginning of 

its receipt by another is referred to as latency. The latency includes: 

 
– The time taken for the first of a string of bits transmitted through a network to reach its 

destination. For example, the latency for the transmission of a message through a satellite link is 

the time for a radio signal to travel to the satellite and back. 
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– The delay in accessing the network, which increases significantly when the network is heavily 

loaded. For example, for Ethernet transmission the sending station waits for the network to be 

free of traffic. 

 
– The time taken by the operating system communication services at both the sending and the 

receiving processes, which varies according to the current load on the operating systems. 

 

• The bandwidth of a computer network is the total amount of information that can be 

transmitted over it in a given time. When a large number of communication channels are using 

the same network, they have to share the available bandwidth. 

 
• Jitter is the variation in the time taken to deliver a series of messages. Jitter is relevant to 

multimedia data. For example, if consecutive samples of audio data are played with differing 

time intervals, the sound will be badly distorted. 

 

Computer clocks and timing events • Each computer in a distributed system has its own 

internal clock, which can be used by local processes to obtain the value of the current time. 

Therefore two processes running on different computers can each associate timestamps with their 

events. However, even if the two processes read their clocks at the same time, their local clocks 

may supply different time values. This is because computer clocks drift from perfect time and, 

more importantly, their drift rates differ from one another. The term clock drift rate refers to the 

rate at which a computer clock deviates from a perfect reference clock. Even if the clocks on all 

the computers in a distributed system are set to the same time initially, their clocks will 

eventually vary quite significantly unless corrections are applied. 

 

Two variants of the interaction model • In a distributed system it is hard to set limits on the 

time that can be taken for process execution, message delivery or clock drift. Two opposing 

extreme positions provide a pair of simple models – the first has a strong assumption of time and 

the second makes no assumptions about time: 

 
Synchronous distributed systems: Hadzilacos and Toueg define a synchronous distributed system 

to be one in which the following bounds are defined: 

• The time to execute each step of a process has known lower and upper bounds. 

• Each message transmitted over a channel is received within a known bounded time. 

• Each process has a local clock whose drift rate from real time has a known bound. 

 

Asynchronous distributed systems: Many distributed systems, such as the Internet, are very 

useful without being able to qualify as synchronous systems. Therefore we need an alternative 

model. An asynchronous distributed system is one in which there are no bounds on: 

• Process execution speeds – for example, one process step may take only a picosecond and 

another a century; all that can be said is that each step may take an arbitrarily long time. 

• Message transmission delays – for example, one message from process A to process B may be 

delivered in negligible time and another may take several years. In other words, a message may 

be received after an arbitrarily long time. 

• Clock drift rates – again, the drift rate of a clock is arbitrary. 
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Event ordering • In many cases, we are interested in knowing whether an event (sending or 

receiving a message) at one process occurred before, after or concurrently with another event at 

another process. The execution of a system can be described in terms of events and their ordering 

despite the lack of accurate clocks. For example, consider the following set of exchanges 

between a group of email users, X, Y, Z and A, on a mailing list: 

 

1. User X sends a message with the subject Meeting. 

2. Users Y and Z reply by sending a message with the subject Re: Meeting. 

 

In real time, X’s message is sent first, and Y reads it and replies; Z then reads both X’s 

message and Y’s reply and sends another reply, which references both X’s and Y’s 

messages. But due to the independent delays in message delivery, the messages may be delivered 

as shown in the following figure and some users may view these two messages in the wrong 

order. 

send 
X 

receive receive 

 

 

 

Y Physic 

al 

time 

 
Z 

 
 

 

 
 

 

m3 m1 m2 
receive receive receive 

t1 t2 t3 

A 



Page | 32  

 

Failure model 

 

In a distributed system both processes and communication channels may fail – that is, they may 

depart from what is considered to be correct or desirable behaviour. The failure model defines 

the ways in which failure may occur in order to provide an understanding of the effects of 

failures. Hadzilacos and Toueg provide a taxonomy that distinguishes between the failures of 

processes and communication channels. These are presented under the headings omission 

failures, arbitrary failures and timing failures. 

 

Omission failures • The faults classified as omission failures refer to cases when a process or 

communication channel fails to perform actions that it is supposed to do. 

 

Process omission failures: The chief omission failure of a process is to crash. When, say that a 

process has crashed we mean that it has halted and will not execute any further steps of its 

program ever. The design of services that can survive in the presence of faults can be simplified 

if it can be assumed that the services on which they depend crash cleanly – that is,  their 

processes either function correctly or else stop. Other processes may be able to detect such a 

 
crash by the fact that the process repeatedly fails to respond to invocation messages. However, 

this method of crash detection relies on the use of timeouts – that is, a method in which one 

process allows a fixed period of time for 

something to occur. In an asynchronous system a timeout can indicate only that a process is not 

responding – it may have crashed or may be slow, or the messages may not have arrived. 

 

Communication omission failures: Consider the communication primitives send and receive. A 

process p performs a send by inserting the message m in its outgoing message buffer. The 

communication channel transports m to q’s incoming message buffer. Process q performs a 

receive by taking m from its incoming message buffer and delivering it. The outgoing and 

incoming message buffers are typically provided by the operating system. 
 

 
 

process p process q 

 
Outgoing messagebuffer Incomingmessagebuffer 

 

Arbitrary failures • The term arbitrary or Byzantine failure is used to describe the worst 

possible failure semantics, in which any type of error may occur. For example, a process may set 

wrong values in its data items, or it may return a wrong value in response to an invocation. 

An arbitrary failure of a process is one in which it arbitrarily omits intended processing steps or 

 

 

Communication channel 

 

send m 
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takes unintended processing steps. Arbitrary failures in processes cannot be detected by seeing 

whether the process responds to invocations, because it might arbitrarily omit to reply. 

 

Communication channels can suffer from arbitrary failures; for example, message contents may 

be corrupted, nonexistent messages may be delivered or real messages may be delivered more 

than once. Arbitrary failures of communication channels are rare because the communication 

software is able to recognize them and reject the faulty 

messages. For example, checksums are used to detect corrupted messages, and message 

sequence numbers can be used to detect nonexistent and duplicated messages. 
 

 

 

 

 
Timing failures • Timing failures are applicable in synchronous distributed systems where time 

limits are set on process execution time, message delivery time and clock drift rate. Timing 

failures are listed in the following figure. Any one of these failures may result in responses being 

unavailable to clients within a specified time interval. 

In an asynchronous distributed system, an overloaded server may respond too slowly, but we 

cannot say that it has a timing failure since no guarantee has been offered. Real-time operating 

systems are designed with a view to providing timing guarantees, but they are more complex to 

design and may require redundant hardware. 

Most general-purpose operating systems such as UNIX do not have to meet real-time constraints. 

 

Masking failures • Each component in a distributed system is generally constructed from a 

collection of other components. It is possible to construct reliable services from components that 

exhibit failures. For example, multiple servers that hold replicas of data can continue to provide a 

service when one of them crashes. A knowledge of the failure characteristics of a component can 

enable a new service to be designed to mask the failure of the components on which it depends. 

A service masks a failure either by hiding it altogether or by converting it into a more acceptable 

type of failure. For an example of the latter, checksums are used to mask corrupted messages, 

effectively converting an arbitrary failure into an omission failure. The omission failures can be 

hidden by using a protocol that retransmits messages that do not arrive at their destination. Even 

process crashes may be masked, by replacing the process and restoring its memory from 

information stored on disk by its predecessor. 
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Reliability of one-to-one communication • Although a basic communication channel can 

exhibit the omission failures described above, it is possible to use it to build a communication 

service that masks some of those failures. 

 

 

 
The term reliable communication is defined in terms of validity and integrity as follows: 

 

Validity: Any message in the outgoing message buffer is eventually delivered to the incoming 

message buffer. 

Integrity: The message received is identical to one sent, and no messages are delivered twice. 

 

The threats to integrity come from two independent sources: 

• Any protocol that retransmits messages but does not reject a message that arrives twice. 

Protocols can attach sequence numbers to messages so as to detect those that are delivered twice. 

 

• Malicious users that may inject spurious messages, replay old messages or tamper with 

messages. Security measures can be taken to maintain the integrity property in the face of such 

attacks. 

 

Security model 
The sharing of resources as a motivating factor for distributed systems, and in Section 2.3 we 

described their architecture in terms of processes, potentially encapsulating higher-level 

abstractions such as objects, components or services, and providing access to them through 

interactions with other processes. That architectural model provides the basis for our security 

model: 

the security of a distributed system can be achieved by securing the processes and the channels 

used for their interactions and by protecting the objects that they encapsulate against 

unauthorized access. 

 

Protection is described in terms of objects, although the concepts apply equally well to resources 

of all types 

 
Protecting objects : 

Server that manages a collection of objects on behalf of some users. The users can run client 

programs that send invocations to the server to perform operations on the objects. The server 

carries out the operation specified in each invocation and sends the result to the client. 

Objects are intended to be used in different ways by different users. For example, some objects 

may hold a user’s private data, such as their mailbox, and other objects may hold shared data 

such as web pages. To support this, access rights specify who is allowed to perform the 

operations of an object – for example, who is allowed to read or to write its state. 
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Principal (user) Network Principal (server) 

 
 

Securing processes and their interactions • Processes interact by sending messages. The 

messages are exposed to attack because the network and the communication service that they use 

are open, to enable any pair of processes to interact. Servers and peer processes expose their 

interfaces, enabling invocations to be sent to them by any other process. 

 

The enemy • To model security threats, we postulate an enemy (sometimes also known as the 

adversary) that is capable of sending any message to any process and reading or copying any 

message sent between a pair of processes, as shown in the following figure. Such attacks can be 

made simply by using a computer connected to a network to run a program that reads network 

messages addressed to other computers on the network, or a program that generates messages 

that make false requests to services, purporting to come from authorized users. The attack may 

come from a computer that is legitimately connected to the network or from one that is  

connected in an unauthorized manner. The threats from a potential enemy include threats to 

processes and threats to communication channels. 

 

Defeating security threats 

Cryptography and shared secrets: Suppose that a pair of processes (for example, a particular 

client and a particular server) share a secret; that is, they both know the secret but no other 

process in the distributed system knows it. Then if a message exchanged by that pair of processes 

includes information that proves the sender’s knowledge of the 

shared secret, the recipient knows for sure that the sender was the other process in the pair. Of 

course, care must be taken to ensure that the shared secret is not revealed to an enemy. 

 
Cryptography is the science of keeping messages secure, and encryption is the process of 

scrambling a message in such a way as to hide its contents. Modern cryptography is based on 

encryption algorithms that use secret keys – large numbers that are difficult to guess – to 

transform data in a manner that can only be reversed with knowledge of the corresponding 

decryption key. 

 

Authentication: The use of shared secrets and encryption provides the basis for the 

authentication of messages – proving the identities supplied by their senders. The basic 

authentication technique is to include in a message an encrypted portion that contains enough of 

the contents of the message to guarantee its authenticity. The authentication portion of a request 

to a file server to read part of a file, for example, might include a representation of the requesting 

principal’s identity, the identity of the file and the date and time of the request, all encrypted with 

Access rights Object 

invocation 

Client 

result Server 
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a secret key shared between the file server and the requesting process. The server would decrypt 

this and check that it corresponds to the unencrypted details specified in the request. 

 

Secure channels: Encryption and authentication are used to build secure channels as a service 

layer on top of existing communication services. A secure channel is a communication channel 

connecting a pair of processes, each of which acts on behalf of a principal, as shown in the 

following figure. A secure channel has the following properties: 

• Each of the processes knows reliably the identity of the principal on whose behalf the other 

process is executing. Therefore if a client and server communicate via a secure channel, the 

server knows the identity of the principal behind the invocations and can check their access 

rights before performing an operation. This enables the server to protect its objects correctly and 

allows the client to be sure that it is receiving results from a bona fide server. 

 

• A secure channel ensures the privacy and integrity (protection against tampering) of the data 

transmitted across it. 

• Each message includes a physical or logical timestamp to prevent messages from being 

replayed or reordered. 
 

 

 

 
Communication aspects of middleware, although the principles discussed are more widely 

applicable. This one is concerned with the design of the components shown in the darker layer in 

the following figure. 
 

 

 

 

 

 
 

 
Thi 

s 

Middle 

ware 

layers 

chap 
ter 

 
Applications,services 

RMI and RPC 

UDP and TCP 

 
request-replyprotocol 

marshalling and external data representation 



Page | 37  

 

 

 

 

                          UNIT II 

 

Time and Global States: Introduction, Clocks, Events and Process states, Synchronizing physical clocks, Logical 

time and Logical clocks, Global states, Distributed Debugging.  

Coordination and Agreement: Introduction, Distributed mutual exclusion, Elections, Multicast Communication, 

Consensus and Related problems. 

 

CLOCKS, EVENTS AND PROCESS STATES 

 

Each process executes on a single processor, and the processors do not share memory (Chapter 6 

briefly considered the case of processes that share memory). Each process pi in has a state si that, in 

general, it transforms as it executes. The process’s state includes the values of all the variables within 

it. Its state may also include the values of any objects in its local operating system environment that it 

affects, such as files. We assume that processes cannot communicate with one another in any way 

except by sending messages through the network. 

 

So, for example, if the processes operate robot arms connected to their respective nodes in the 

system, then they 

are not allowed to communicate by shaking one another’s robot hands! As each process pi executes it 

takes a series of actions, each of which is either amessage send or receive operation, or an operation 

that transforms pi ’s state – one that 

changes one or more of the values in si. In practice, we may choose to use a high-leveldescription of 

the actions, according to the application. For example, if the processes in are engaged in an 

eCommerce application, then the actions may be ones such as ‘client dispatched order message’ or 

‘merchant server recorded transaction to log’. 

We define an event to be the occurrence of a single action that a process carries out as it executes – a 

communication action or a state-transforming action. The sequence of events within a single process 

pi can be placed in a single, total ordering, which we denote by the relation i between the events. 

That is, if and only if the event e occurs before e at pi . This ordering is well defined, whether or not 

the process is multithreaded, 

since we have assumed that the process executes on a single processor. Now we can define the 

history of process pi to be the series of events that take place within it, ordered as we have described 

by the relation Clocks • We have seen how to order the events at a process, but not how to timestamp 

them – i.e., to assign to them a date and time of day. Computers each contain their own physical 

clocks. These clocks are electronic devices that count oscillations occurring in a crystal at a definite 

frequency, and typically divide this count and store the result in a counter register. Clock devices can 

be programmed to generate interrupts at regular intervals in order that, for example, timeslicing can 

be implemented; however, we shall not concern ourselves with this aspect of clock operation. 

 

The operating system reads the node’s hardware clock value, Hit , scales it and adds an offset so as to 

produce a software clock Cit = Hit + that approximately measures real, physical time t for process pi 

. In other words, when the real time in an absolute frame of reference is t, Cit is the reading on the 

software clock. For example, 

Cit could be the 64-bit value of the number of nanoseconds that have elapsed at time t since a 

convenient reference time. In general, the clock is not completely accurate, so Cit will differ from 

t. Nonetheless, if Ci behaves sufficiently well (we shall examine the notion of clock correctness 

shortly), we can use its value to timestamp any event at pi . Note that successive events will 
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correspond to different timestamps only if the clock resolution – the period between updates of the 

clock value – is smaller than the time interval between successive events. The rate at which events 

occur depends on such factors as the length of the processor instruction cycle. 

Clock skew and clock drift • Computer clocks, like any others, tend not to be in perfect agreement 

 

Coordinated Universal Time • Computer clocks can be synchronized to external sources of highly 

accurate time. The most accurate physical clocks use atomic oscillators, whose 

drift rate is about one part in 1013. The output of these atomic clocks is used as the standard second 

has been defined as 9,192,631,770 periods of transition between the two hyperfine levels of the 

ground state of Caesium-133 (Cs133). 

Seconds and years and other time units that we use are rooted in astronomical time. They were 

originally defined in terms of the rotation of the Earth on its axis and its rotation about the Sun. 

However, the period of the Earth’s rotation about its axis is gradually getting longer, primarily 

because of tidal friction; atmospheric effects and convection currents within the Earth’s core also 

cause short-term increases and decreases in the period. So astronomical time and atomic time have a 

tendency to get out of step. 

 
Coordinated Universal Time – abbreviated as UTC (from the French equivalent) – is an international 

standard for timekeeping. It is based on atomic time, but a so-called ‘leap second’ is inserted – or, 

more rarely, deleted – occasionally to keep it in step with astronomical time. UTC signals are 

synchronized and broadcast regularly from landbased 

radio stations and satellites covering many parts of the world. For example, in the USA, the radio 

station WWV broadcasts time signals on several shortwave frequencies. 

Satellite sources include the Global Positioning System (GPS).Receivers are available commercially. 

Compared with ‘perfect’ UTC, the signals received from land-based stations have an accuracy on the 

order of 0.1–10 milliseconds, 

depending on the station used. Signals received from GPS satellites are accurate to about 1 

microsecond. Computers with receivers attached can synchronize their clocks with these timing 

signals. 

 

Synchronizing physical clocks 

In order to know at what time of day events occur at the processes in our distributed system – for 

example, for accountancy purposes – it is necessary to synchronize the processes’ clocks, Ci , with an 

authoritative, external source of time. This is external synchronization. And if the clocks Ci are 

synchronized with one another to a known degree of accuracy, then we can measure the interval 

between two events occurring at different computers by appealing to their local clocks, even though 

they are not necessarily synchronized to an external source of time. This is internal 

synchronization.We define these two modes of synchronization more closely as follows, over an 

interval 

of real time I: 

 

External synchronization: For a synchronization bound D  0 , and for a source S of UTC time, St – Cit 

< D, for i = 1 2N and for all real times t in I. Another way of saying this is that the clocks Ci are 
accurate to within the bound D. 

Internal synchronization: For a synchronization bound D 0 , Cit – Cjt D for i j = 1 2N , and for all  

real times t in I. Another way of saying this is that he clocks Ci agree within the bound D. Clocks that 

are internally synchronized are not necessarily externally synchronized, since they may drift 

collectively from an external source of time even though they agree with one another. However, it 

follows from the definitions that if the system is externally synchronized with a bound D then the 

same system is internally synchronized with a bound of 2D. Various notions of correctness for clocks 
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have been suggested. It is common to define a hardware clock H to be correct 

if its drift rate falls within a known bound (a value derived from one supplied by the manufacturer, 

such as 10–6 seconds/second). 

This means that the error in measuring the interval between real times t and t ( t t ) is bounded: 

1 – t – t Ht – Ht 1 + t – t 

This condition forbids jumps in the value of hardware clocks (during normal operation). Sometimes 

we also require our software clocks to obey the condition but a weaker condition of monotonicity may 

suffice. Monotonicity is the condition that a clock C only ever advances: t t Ct Ct For example, the 

UNIX make facility is a tool that is used to compile only those source files that have been modified 

since they were last compiled. The modification dates of each corresponding pair of source and object 

files are compared to determine this condition. If a computer whose clock was running fast set its 

clock back after compiling a source file but before the file was changed, the source file might appear 

to have been modified prior to the compilation. Erroneously, make will not recompile the source file. 

We can achieve monotonicity despite the fact that a clock is found to be running fast. We need only 

change the rate at which updates are made to the time as given to applications. This can be achieved 

in software without changing the rate at which the underlying hardware clock ticks – recall that Cit = 

Hit + , where we are free to 
choose the values of and  . A hybrid correctness condition that is sometimes applied is to require that 

a clock 

obeys the monotonicity condition, and that its drift rate is bounded between synchronization points, 

but to allow the clock value to jump ahead at synchronization points. 

A clock that does not keep to whatever correctness conditions apply is defined to be faulty. A clock’s 

crash failure is said to occur when the clock stops ticking altogether; 

any other clock failure is an arbitrary failure. A historical example of an arbitrary failure is that of a 

clock with the ‘Y2K bug’, which broke the monotonicity condition by registering the date after 31 

December 1999 as 1 January 1900 instead of 2000; another example is a clock whose batteries are 

very low and whose drift rate suddenly becomes 

very large. 

Note that clocks do not have to be accurate to be correct, according to the definitions. Since the goal 

may be internal rather than external synchronization, the criteria for correctness are only concerned 

with the proper functioning of the clock’s ‘mechanism’, not its absolute setting. We now describe 

algorithms for external synchronization and for internal 

synchronization. 

Logical time and logical clocks 

From the point of view of any single process, events are ordered uniquely by times shown on the 

local clock. However, as Lamport [1978] pointed out, since we cannot synchronize clocks perfectly 

across a distributed system, we cannot in general use physical time to find out the order of any 

arbitrary pair of events occurring within it. In general, we can use a scheme that is similar to physical 

causality but that applies in distributed systems to order some of the events that occur at different 

processes. This ordering is based on two simple and intuitively obvious points: • If two events 

occurred at the same process pi i = 1 2 N , then they occurred in the order in which pi observes them 

– this is the order i that we defined above.• Whenever a message is sent between processes, the event 

of sending the message occurred before the event of receiving the message. 

Lamport called the partial ordering obtained by generalizing these two relationships the 

happened-before relation. It is also sometimes known as the relation of causal ordering or potential 

causal ordering. 

We can define the happened-before relation, denoted by , as follows: HB1: If processpi : e i e', then e 

e . 

HB2: For any message m, send(m) receive(m) – where send(m) is the event of sending the message, 

and receive(m) 
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e’ 

is the event of receiving it. HB3: If e, e and e are events such that e e and e e , then e 

e . 

 

Totally ordered logical clocks • Some pairs of distinct events, generated by different processes, have 

numerically identical Lamport timestamps. However, we can create a total order on the set of events 

– that is, one for which all pairs of distinct events are ordered – by taking into account the identifiers 

of the processes at which events occur. If e is an event occurring at pi with local timestamp Ti , and e 

is an event occurring at pj with local timestamp Tj , we define the global logical timestamps for these 

events to be Ti i and Tj j , respectively. And we define Ti i Tj j if and only if either Ti Tj , or Ti = Tj 

and i j . This ordering has no general physical significance 

(because process identiiers are arbitrary), but it is sometimes useful. Lamport used it, for example, to 

order the entry of processes to a critical section. 

 

Vector clocks • Mattern [1989] and Fidge [1991] developed vector clocks to overcome the 

shortcoming of Lamport’s clocks: the fact that from Le Le we cannot conclude that e e. 

. A vector clock for a system of N processes is an array of N 
integers. Each process keeps its own vector clock, Vi , which it uses to timestamp local events. Like 

Lamport timestamps, processes piggyback vector timestamps on the messages they send to one 

another, and there are simple rules for updating the clocks: 

 

VC1: Initially, Vij = 0 , for i j = 1 2 N . 

VC2: Just before pi timestamps an event, it sets Vii :=Vii + 1. VC3: 

pi includes the value t = Vi in every message it sends. 
VC4: When pi receives a timestamp t in a message, it sets Vij := maxVij tj , for j = 1 2 N . Taking the 

componentwise maximum of two vector timestamps in this way is known as a merge operation.For a 

vector clock Vi , Vii is the number of events that pi has timestamped, and Vij j i is the number of 

events that have occurred at pj that have potentially affected pi . (Process pj may have timestamped 

more events by this point, but no information has flowed to pi about them in messages as yet.) 

 
 

Clocks, Events and Process States 

 

• A distributed system consists of a collection P of N processes pi, i = 1,2,… NEach process pi 

has a state si consisting of its variables (which it transforms as it executes) 
Processes communicate only by messages (via a network) 

• Actions of processes: Send, Receive, change own state 

• Event: the occurrence of a single action that a process carries out as it executes 

– Events at a single process pi, can be placed in a total ordering denoted by the relation →i 

between the events. i.e.e →i if and only if event e occurs before event e’ at process pi 

• A history of process pi: is a series of events ordered by →i 

– history(pi) = hi =<ei0, ei1, ei2, …> 

Clocks 

To timestamp events, use the computer‘s clock • At real time, t, the OS reads the time on the 

computer‘s hardware clock Hi(t) 

• It calculates the time on its software clock Ci(t)=αHi(t) + β 

 

– e.g. a 64 bit value giving nanoseconds since some base time 
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– Clock resolution: period between updates of the clock value 
 

• In general, the clock is not completely accurate – but if Ci behaves well enough, it can be used 

to timestamp events at pi 

 

Skew between computer clocks in a distributed system 
 
 

 

Computer clocks are not generally in perfect agreement 

• Clock skew: the difference between the times on two clocks (at any instant) 

• Computer clocks use crystal-based clocks that are subject to physical variations 

– Clock drift: they count time at different rates and so diverge (frequencies of oscillation differ) 

– Clock drift rate: the difference per unit of time from some ideal reference clock 

– Ordinary quartz clocks drift by about 1 sec in 11-12 days. (10-6 secs/sec). 

– High precision quartz clocks drift rate is about 10-7 or 10-8 secs/sec 

Coordinated Universal Time (UTC) 

• UTC is an international standard for time keeping 

– It is based on atomic time, but occasionally adjusted to astronomical time 

– International Atomic Time is based on very accurate physical clocks (drift rate 10-13) 
• It is broadcast from radio stations on land and satellite (e.g.GPS) 

 

• Computers with receivers can synchronize their clocks with these timing signals (by requesting 

time from GPS/UTC source) 

– Signals from land-based stations are accurate to about 0.1-10 millisecond 

– Signals from GPS are accurate to about 1 microsecond 

 

Synchronizing physical clocks 

 

Two models of synchronization 

• External synchronization: a computer‘s clock Ci is synchronized with an external authoritative 

time source S, so that: 

– |S(t) - Ci(t)| < D for i = 1, 2, …N over an interval, I of real time 

– The clocks Ci are accurate to within the bound D. 

• Internal synchronization: the clocks of a pair of computers are synchronized with one another 

so that: 

– | Ci(t) - Cj(t)| < D for i = 1, 2, … N over an interval, I of real time 

– The clocks Ci and Cj agree within the bound D. 

Internally synchronized clocks are not necessarily externally synchronized, as they may drift 

collectively 
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– if the set of processes P is synchronized externally within a bound D, it is also internally 

synchronized within bound 2D (worst case polarity) 

 

Clock correctness 

• Correct clock: a hardware clock H is said to be correct if its drift rate is within a bound ρ > 0 

(e.g. 10-6 secs/ sec) 

This means that the error in measuring the interval between real times t and 

t’ is bounded: 

– (1 - ρ ) (t’ - t) ≤ H(t’) - H(t) ≤ (1 + ρ ) (t’ - t) (where t’>t) Which forbids jumps in time 

readings of hardware clocks 

 

– Clock monotonicity: weaker condition of correctness – t' > t ⇒ C(t’) > C(t) e.g. required by Unix 
make 

– A hardware clock that runs fast can achieve monotonicity by adjusting the values of α and β 

such that Ci(t)= αHi(t) + β 

– Faulty clock: a clock not keeping its correctness condition crash failure - a clock stops ticking 

• arbitrary failure - any other failure e.g. jumps in time; Y2K bug 

Synchronization in a synchronous system 

A synchronous distributed system is one in which the following bounds are defined 
 

The time to execute each step of a process has known lower and upper bounds each message 

transmitted over a channel is received within a knownbounded time (min and max) each process has a 

local clock whose drift rate from real time has a known bound 

Internal synchronization in a synchronous system 

 One process p1 sends its local time t to process p2 in a message m 

 p2 could set its clock to t + Ttrans where Ttrans is the time to transmit m 
 Ttrans is unknown but min ≤ Ttrans ≤ max 

 uncertainty u = max-min. Set clock to t + (max - min)/2 then skew ≤ u/2 

Cristian‘s method for an asynchronous system 

 A time server S receives signals from a UTC source 

 Process p requests time in mr and receives t in mt from S 
 p sets its clock to t + Tround/2 

 Accuracy ± (Tround/2 - min) : 

 because the earliest time S puts t in message mt is min after p sent mr 

 the latest time was min before mt arrived at p 

 the time by S‘s clock when mt arrives is in the range [t+min, t + Tround - min] 

 the width of the range is Tround + 2min 
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The Berkeley algorithm 

 

 Problem with Cristian‘s algorithm 

 a single time server might fail, so they suggest the use of a 

group of synchronized servers 

 it does not deal with faulty servers 

 Berkeley algorithm (also 1989) 

 An algorithm for internal synchronization of a group of computers 

 A master polls to collect clock values from the others (slaves) 
 The master uses round trip times to estimate the slaves‘ clock values 

 It takes an average (eliminating any above some average round trip 

time or with faulty clocks) 

 It sends the required adjustment to the slaves (better than sending 

the time which depends on the round trip time) 

 Measurements 

 15 computers, clock synchronization 20-25 millisecs drift rate < 2x10-5 

 If master fails, can elect a new master to take over (not in bounded time) 

 

Network Time Protocol (NTP) 

 A time service for the Internet - synchronizes clients to UTC Reliability from redundant paths, 

scalable, authenticates time sources Architecture 

 Primary servers are connected to UTC sources 

 Secondary servers are synchronized to primary servers 

 Synchronization subnet - lowest level servers in users‘ computers 

 strata: the hierarchy level 

 
 

NTP - synchronization of servers 

 

 The synchronization subnet can reconfigure if failures occur 

 a primary that loses its UTC source can become a secondary 

 a secondary that loses its primary can use another primary 

 Modes of synchronization for NTP servers: 

 Multicast 

 A server within a high speed LAN multicasts time to others which 

set clocks assuming some delay (not very accurate) 

 Procedure call 

 A server accepts requests from other computers (like 

Cristian‘s algorithm) 
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 Higher accuracy. Useful if no hardware multicast. 
 

Messages exchanged between a pair of NTP peers 

 
 All modes use UDP 

 Each message bears timestamps of recent events: 
 Local times of Send and Receive of previous message 

 Local times of Send of current message 

 Recipient notes the time of receipt Ti ( we have Ti-3, Ti-2, Ti-1, Ti) 

 Estimations of clock offset and message delay 
 For each pair of messages between two servers, NTP estimates an offset oi (between the 

two clocks) and a delay di (total time for the two messages, which take t and t‘) 

 Ti-2 = Ti-3 + t + o and Ti = Ti-1 + t‘ - o 

 This gives us (by adding the equations) : di = t + t‘ = Ti-2 - Ti-3 + Ti - Ti-1 

 Also (by subtracting the equations) 

= oi + (t‘ - t )/2 where oi = (Ti-2 - Ti-3 + Ti-1 - Ti )/2 

 Using the fact that t, t‘>0 it can be shown that 

 oi - di /2 ≤ o ≤ oi + di /2 . 
 Thus oi is an estimate of the offset and di is a measure of the accuracy 

 Data filtering 

 NTP servers filter pairs <oi, di>, estimating reliability from variation (dispersions), 

allowing them to select peers; and synchronization based on the lowest dispersion or min 

di ok 

 A relatively high filter dispersion represents relatively unreliable data 

 Accuracy of tens of milliseconds over Internet paths (1 ms on LANs) 

 
Logical time and logical clocks 

 

 Instead of synchronizing clocks, event ordering can be used 

 If two events occurred at the same process pi (i = 1, 2, … N) then theyoccurred in the 

order observed by pi, that is order →i 

 when a message, m is sent between two processes, send(m) happened before receive(m) 

 
 Lamport[1978] generalized these two relationships into the happened-before relation: 

e →i e' 

 HB1: if e →i e' in process pi, then e → e' 

 HB2: for any message m, send(m) → receive(m) 

 HB3: if e → e' and e' → e'', then e → e'' 
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Lamport‘s logical clocks 

 

 Each process pi has a logical clock Li 

o a monotonically increasing software counter 

o not related to a physical clock 
 Apply Lamport timestamps to events with happened-before relation 

o LC1: Li is incremented by 1 before each event at process pi 

o LC2: 
o when process pi sends message m, it piggybacks t = Li 
o when pj receives (m,t), it sets Lj := max(Lj, t) and applies LC1 before 

timestamping the event receive (m) 
 e →e‘ implies L(e)<L(e‘), but L(e)<L(e') does not imply e→e‘ 

 

 

Totally ordered logical clocks 

 Some pairs of distinct events, generated by different processes, may have numerically 

identical Lamport timestamps 

 Different processes may have same Lamport time 

 Totally ordered logical clocks 

 If e is an event occurring at pi with local timestamp Ti, and if e‘ is an event occurring at pj 

with local timestamp Tj 
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 Define global logical timestamps for the events to be (Ti, i ) and (Tj, j) 

 Define (Ti, i ) < (Tj, j ) iff 
 Ti < Tj or 

 Ti = Tj and i < j 

 No general physical significance since process identifiers are arbitrary 

 
Vector clocks 

 Shortcoming of Lamport clocks: 

 L(e) < L(e') doesn't imply e → e' 

 Vector clock: an array of N integers for a system of N processes 

 Each process keeps its own vector clock Vi to timestamp local events 

 Piggyback vector timestamps on messages 

 Rules for updating vector clocks: 

 Vi[i]] is the number of events that pi has timestamped 

 Viji] ( j≠ i) is the number of events at pj that pi has been affected 

by VC1: Initially, Vi[ j ] := 0 for pi, j=1.. N (N processes) 

 VC2: before pi timestamps an event, Vi[ i ] := Vi[ 

i ]+1 VC3: pi piggybacks t = Vi on every message 

it sends 

 VC4: when pi receives a timestamp t, it sets Vi[ j ] := max(Vi[ j ] , t[ j ]) for 

 j=1..N (merge operation) 
 

 

 Compare vector timestamps 

 V=V‘ iff V[j] = V‘[j] for j=1..N 

 V>=V‘ iff V[j] <= V‘[j] for j=1..N 
 V<V‘ iff V<= V‘ ^ V!=V‘ 

 Figure 11.7 shows 

 a→f since V(a) < V(f) 

 c || e since neither V(c) <= V(e) nor V(e) <= V(c) 

 

Global states 

 

 How do we find out if a particular property is true in a distributed system? For examples, 

we will look at: 

 Distributed Garbage Collection 

 Deadlock Detection 

 Termination Detection 

 Debugging 
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Distributed Garbage Collection 
 Objects are identified as garbage when there are no longer any references to them in the 

system 

 Garbage collection reclaims memory used by those objects 

 In figure 11.8a, process p2 has two objects that do not have any references to other objects, 

but one object does have a reference to a message in transit. It is not garbage, but the other 

p2 object is 

 Thus we must consider communication channels as well as object references to 

determine unreferenced objects 
 

 

Deadlock Detection 

 A distributed deadlock occurs when each of a collection of processes waits for another 

process to send it a message, and there is a cycle in the graph of the waits-for relationship 

 In figure 11.8b, both p1 and p2 wait for a message from the other, so both are blocked and 

the system cannot continue 
 

 

 
 



Page | 48  

 

 

www.Vidyarthiplus.com 
 

 

 

 
 

 

Termination Detection 

 It is difficult to tell whether a distributed algorithm has terminated. It is not enough to 

detect whether each process has halted 

 In figure 11.8c, both processes are in passive mode, but there is an activation request 

in the network 

 Termination detection examines multiple states like deadlock detection, except that a 

deadlock may affect only a portion of the processes involved, while termination detection 

must ensure that all of the processes have completed 
 

 

Distributed Debugging 

 Distributed processes are complex to debug. One of many possible problems is that 

consistency restraints must be evaluated for simultaneous attribute values in multiple 

processes at different instants of time. 

 All four of the distributed problems discussed in this section have particular solutions, but 

all of them also illustrate the need to observe global states. We will now look at a general 

approach to observing global states. 

 Without global time identified by perfectly synchronized clocks, the ability to identify 

successive states in an individual process does not translate into the ability to identify 

successive states in distributed processes 

 We can assemble meaningful global states from local states recorded at different local times 

in many circumstances, but must do so carefully and recognize limits to our capabilities 

 A general system P of N processes pi (i=1..N) 

 pi‘s history: history(pi)=hi=<ei0, ei1, ei2, …> 

 finite prefix of pi‘s history: 

hi k= <ei0, ei1, ei2, …, eik> 

 state of pi immediately before the kth event occurs: sik 

 global history H=h1 U h2 U…U hN 
 A cut of the system‘s execution is a subset of its global history that is a union of prefix of 

process histories C=h1c1 U h2c2 U…U hNcN 

 

 The following figure gives an example of an inconsistent cutic and a consistent cutcc. The 

distinguishing characteristic is that 

 cutic includes the receipt of message m1 but not the sending of it, while 

 cutcc includes the sending and receiving of m1 and cuts between the 

http://www.vidyarthiplus.com/
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sending and receipt of the message m2. 

 A consistent cut cannot violate temporal causality by implying that a result occurred before 

its cause, as in message m1 being received before the cut and being sent after the cut. 

 
 

 

 

 

 

 

 

Global state predicates 

 A Global State Predicate is a function that maps from the set of global process states to True 

or False. 

 Detecting a condition like deadlock or termination requires evaluating a Global State 

Predicate. 

 A Global State Predicate is stable: once a system enters a state where it is true, such as 

deadlock or termination, it remains true in all future states reachable from that state. 

 However, when we monitor or debug an application, we are interested in non stable 

predicates. 

 

The Snapshot Algorithm 

 
 Chandy and Lamport defined a snapshot algorithm to determine global states of distributed 

systems 

 The goal of a snapshot is to record a set of process and channel states (a snapshot) for a set 

of processes so that, even if the combination of recorded states may not have occurred at the 

same time, the recorded global state is consistent 

 The algorithm records states locally; it does not gather global states at one site. 

 The snapshot algorithm has some assumptions 

 Neither channels nor processes fail 

 Reliable communications ensure every message sent is received exactly once 

 Channels are unidirectional 

 Messages are received in FIFO order 

 There is a path between any two processes 

 Any process may initiate a global snapshot at any time 

 Processes may continue to function normally during a snapshot 

Snapshot Algorithm 

 For each process, incoming channels are those which other processes can use to send it 
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messages. Outgoing channels are those it uses to send messages. Each process records its 

state and for each incoming channel a set of messages sent to it. The process records 

foreach channel, any messages sent after it recorded its state and before the sender recorded its 
own state. This approach can differentiate between states in terms of messages transmitted 

but not yet received 

 

 The algorithm uses special marker messages, separate from other messages, which prompt 

the receiver to save its own state if it has not done so and which can be used to determine 

which messages to include in the channel state. 

 The algorithm is determined by two rules 

 
Example 

•Figure 11.11 shows an initial state for two processes. 
 •Figure 11.12 shows four successive states reached and identified after state transitions 

by the two processes. 

 •Termination: it is assumed that all processes will have recorded their states and channel 

states a finite time after some process initially records its state. 
 

 

Characterizing a state 

 A snapshot selects a consistent cut from the history of the execution. Therefore the state 

recorded is consistent. This can be used in an ordering to include or exclude states that 

have or have not recorded their state before the cut. This allows us to distinguish events as 

pre-snap or post-snap events. 

 The reachability of a state (figure 11.13) can be used to determine stable predicates. 
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     Coordination  And Agreement  

Introduction 

 

 Fundamental issue: for a set of processes, how to coordinate their actions or to agree on 

one or more values? 

 even no fixed master-slave relationship between the components 

 Further issue: how to consider and deal with failures when designing algorithms 

 Topics covered 

 mutual exclusion 

 how to elect one of a collection of processes to perform a special role 

 multicast communication 

 agreement problem: consensus and byzantine agreement 

Failure Assumptions and Failure Detectors 

 Failure assumptions of this chapter 

 Reliable communication channels 

 Processes only fail by crashing unless state otherwise 

 Failure detector: object/code in a process that detects failures of other processes 

 unreliable failure detector 

 One of two values: unsuspected or suspected 

 Evidence of possible failures 

 Example: most practical systems 

 Each process sends ―alive/I‘m here‖ message to everyone else 

 If not receiving ―alive‖ message after timeout, it‘s suspected 

 maybe function correctly, but network partitioned 

 reliable failure detector 

 One of two accurate values: unsuspected or failure – few practical systems 
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12.2 Distributed Mutual Exclusion 

 Process coordination in a multitasking OS 
 Race condition: several processes access and manipulate the same data concurrently 

and the outcome of the execution depends on the particular order in which the access 

take place 

 critical section: when one process is executing in a critical section, no other process is 
to be allowed to execute in its critical section 

 Mutual exclusion: If a process is executing in its critical section, then no other processes 

can be executing in their critical sections 

 Distributed mutual exclusion 

 Provide critical region in a distributed environment 

 message passing 

 for example, locking files, locked daemon in UNIX (NFS is stateless, no file-locking at 

the NFS level) 

Algorithms for mutual exclusion 

 Problem: an asynchronous system of N processes 

 processes don't fail 

 message delivery is reliable; not share variables 

 only one critical region 

 application-level protocol: enter(), resourceAccesses(), exit() 
 Requirements for mutual exclusion 
 Essential 

 [ME1] safety: only one process at a time 

 [ME2] liveness: eventually enter or exit 

 Additional 

 [ME3] happened-before ordering: ordering of enter() is the same as HB ordering 

 Performance evaluation 

 overhead and bandwidth consumption: # of messages sent 

 client delay incurred by a process at entry and exit 

 throughput measured by synchronization delay: delay between one's exit and next's 

entry 

A central server algorithm 

 

 server keeps track of a token---permission to enter critical region 

 a process requests the server for the token 

 the server grants the token if it has the token 

 a process can enter if it gets the token, otherwise waits 

 when done, a process sends release and exits 
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A central server algorithm: discussion 

 Properties 

 safety, why? 

 liveness, why? 

 HB ordering not guaranteed, why? 

 Performance 

 enter overhead: two messages (request and grant) 

 enter delay: time between request and grant 

 exit overhead: one message (release) 

 exit delay: none 

 synchronization delay: between release and grant 

 centralized server is the bottleneck 

 

A ring-based algorithm 

 Arrange processes in a logical ring to rotate a token 

 Wait for the token if it requires to enter the critical section 

 The ring could be unrelated to the physical configuration 

 pi sends messages to p(i+1) mod N 

 when a process requires to enter the critical section, waits for the token 

 when a process holds the token 

 If it requires to enter the critical section, it can enter 

 when a process releases a token (exit), it sends to its neighbor 

 If it doesn‘t, just immediately forwards the token to its neighbor 
 

 

An algorithm using multicast and logical clocks 

 Multicast a request message for the token (Ricart and Agrawala [1981]) 

 enter only if all the other processes reply 

 totally-ordered timestamps: <T, pi > 

 Each process keeps a state: RELEASED, HELD, WANTED 

 if all have state = RELEASED, all reply, a process can hold the token and enter 

 if a process has state = HELD, doesn't reply until it exits 

 if more than one process has state = WANTED, process with the lowest timestamp will get 

all 

 N-1 replies first 
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An algorithm using multicast: discussion 

 •Properties 

 safety, why? 
 liveness, why? 

 HB ordering, why? 

 Performance 

 bandwidth consumption: no token keeps circulating 

 entry overhead: 2(N-1), why? [with multicast support: 1 + (N -1) = N] 

 entry delay: delay between request and getting all replies 

 exit overhead: 0 to N-1 messages 

 exit delay: none 

 synchronization delay: delay for 1 message (one last reply from the previous holder) 
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Maekawa‘s voting algorithm 

 •Observation: not all peers to grant it access 

 Only obtain permission from subsets, overlapped by any two processes 
 •Maekawa‘s approach 

 subsets Vi,Vj for process Pi, Pj 

 Pi ∈ Vi, Pj ∈ Vj 

 Vi ∩ Vj ≠ ∅ , there is at least one common member 

 subset |Vi|=K, to be fair, each process should have the same size 

 Pi cannot enter the critical section until it has received all K reply messages 

 Choose a subset 
 Simple way (2√N): place processes in a √N by √N matrix and let Vi be the union of the 

row and column containing Pi 

 If P1, P2 and P3 concurrently request entry to the critical section, then its possible that 

each process has received one (itself) out of two replies, and none can proceed 

 adapted and solved by [Saunders 1987] 
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Elections 

 

Election: choosing a unique process for a particular role 

 All the processes agree on the unique choice 
 For example, server in dist. Mutex assumptions 

 Each process can call only one election at a time multiple concurrent elections can be called 

by different processes 

 Participant: engages in an election each process pi has variable electedi = ? (don't know) 

initially process with the largest identifier wins. 

 The (unique) identifier could be any useful value Properties 

 [E1]  electedi  of  a  ―participant‖  process  must  be  P  (elected  process=largestid)  or  ⊥ 
(undefined) 

 [E2]   liveness:   all   processes  participate  and   eventually  set   electedi !=  ⊥ (or crash) 

Performance 

 overhead (bandwidth consumption): # of messages 
 turnaround time: # of messages to complete an election 

 

A ring-based election algorithm 

 Arrange processes in a logical ring 

o pi sends messages to p(i+1) mod N 

o It could be unrelated to the physical configuration 

o Elect the coordinator with the largest id 

o Assume no failures 
 Initially, every process is a non-participant. Any process can call an election 

o Marks itself as participant 

o Places its id in an election message 

o Sends the message to its neighbor 
o Receiving an election message 

 if id > myid, forward the msg, mark participant 
 if id < myid 

o non-participant: replace id with myid: forward the msg, mark participant 

o participant: stop forwarding (why? Later, multiple elections) 
 if id = myid, coordinator found, mark non-participant, electedi := id, send elected 

o message with myid 

o Receiving an elected message 
 id != myid, mark non-participant, electedi := id forward the msg 
 if id = myid, stop forwarding 
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Figure 12.7 A ring-based election in progress 

 
 

 Receiving an election message: 

 if id > myid, forward the msg, mark participant 

 if id < myid 

 non-participant: replace id with myid: forward the msg, mark participant 

 participant: stop forwarding (why? Later, multiple elections) 

 if id = myid, coordinator found, mark non-participant, electedi := id, send elected message 

with 

 myid 

 Receiving an elected message: – id != myid, mark non-participant, 

 electedi := id forward the msg 

 if id = myid, stop forwarding 

 

A ring-based election algorithm: discussion 

 
 •Properties 

 safety: only the process with the largest id can send an elected message 

 liveness: every process in the ring eventually participates in the election; extra 

elections are stopped 

 Performance 

 one election, best case, when? 

 N election messages 

 N elected messages 

 turnaround: 2N messages 

 one election, worst case, when? 
 2N - 1 election messages 

 N elected messages 

 turnaround: 3N - 1 messages 

 can't tolerate failures, not very practical 
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The bully election algorithm 

•Assumption 

– Each process knows which processes have higher identifiers, and that it can communicate with 
all such processes 

•Compare with ring-based election 

– Processes can crash and be detected by timeouts 

• synchronous 

• timeout T = 2Ttransmitting (max transmission delay) + Tprocessing (max processing delay) 

•Three types of messages 

– Election: announce an election 

– Answer: in response to Election 

– Coordinator: announce the identity of the elected process 

 
The bully election algorithm: howto 

• Start an election when detect the coordinator has failed or begin to replace the coordinator, 

which has lower identifier 

– Send an election message to all processes with higher id's and waits for answers (except the 

failed coordinator/process) 

• If no answers in time T 

– Considers it is the coordinator 

– sends coordinator message (with its id) to all processes with lower id's 

• else 

– waits for a coordinator message and starts an election if T‘ timeout 

– To be a coordinator, it has to start an election 

• A higher id process can replace the current coordinator (hence ―bully‖) 

– The highest one directly sends a coordinator message to all process with lower identifiers 

• Receiving an election message 

– sends an answer message back 

– starts an election if it hasn't started one—send election messages to all higher-id processes 

(including the ―failed‖ coordinator—the coordinator might be up by now) 

• Receiving a coordinator message 

– set electedi to the new coordinator 
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The bully election algorithm: discussion 

 Properties 
 safety: 

 a lower-id process always yields to a higher-id process 

 However, it‘s guaranteed 

 if processes that have crashed are replaced by processes with the same identifier since 

message delivery order might not be guaranteed and 

 failure detection might be unreliable 

 liveness: all processes participate and know the coordinator at the end 

 Performance 

 best case: when? 

 overhead: N-2 coordinator messages 

 turnaround delay: no election/answer messages 

 
 

Multicast Communication 

 Group (multicast) communication: for each of a group of processes to receive copies 

of the messages sent to the group, often with delivery guarantees 

 The set of messages that every process of the group should receive 

 On the delivery ordering across the group members 
 Challenges 

 Efficiency concerns include minimizing overhead activities and increasing throughput 

and bandwidth utilization 

 Delivery guarantees ensure that operations are completed 

 Types of group 

 Static or dynamic: whether joining or leaving is considered Closed or open 
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 A group is said to be closed if only members of the group can multicast to it. Reliable 

Multicast 
 Simple basic multicasting (B-multicast) is sending a message to every process that is a 

member of a defined group 

 B-multicast (g, m) for each process p ∈ group g, send (p, message m) 

 On receive (m) at p: B-deliver (m) at p 

 Reliable multicasting (R-multicast) requires these properties 

 Integrity: a correct process sends a message to only a member of the group 
 Validity: if a correct process sends a message, it will eventually bedelivered 

 Agreement: if a message is delivered to a correct process, all other correct processes 

in the group will deliver it 
 

 

 

Types of message ordering 

Three types of message ordering 

– FIFO (First-in, first-out) ordering: if a correct process delivers a message before another, 

every correct process will deliver the first message before the other 

– Casual ordering: any correct process that delivers the second message will deliver the previous 

message first 

– Total ordering: if a correct process delivers a message before another, any other correct 

process that delivers the second message will deliver the first message first 

•Note that 

– FIFO ordering and casual ordering are only partial orders 

– Not all messages are sent by the same sending process 

– Some multicasts are concurrent, not able to be ordered by happened before 

– Total order demands consistency, but not a particular order 

 
Figure 12.12 Total, FIFO and causal ordering of multicast messages 



Page | 61  

 

 
 

Notice 

 the consistent ordering of totally ordered messages T1 and T2, 

 the FIFO-related messages F1 and F2 and 
 the causally related messages C1 and C3 and 

 the otherwise arbitrary delivery ordering of messages 

 
Note that T1 and T2 are delivered in opposite order to the physical time of message creation 

Bulletin board example (FIFO ordering) 

• A bulletin board such as Web Board at NJIT illustrates the desirability of consistency and FIFO 
ordering. A user can best refer to preceding messages if they are delivered in order. Message 25 

in Figure 12.13 refers to message 24, and message 27 refers to message 23. 

 

• Note the further advantage that Web Board allows by permitting messages to begin threads by 

replying to a particular message. Thus messages do not have to be displayed in the same order 

they are delivered 
 

 

Implementing total ordering 
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• The normal approach to total ordering is to assign totally ordered identifiers to multicast 

messages, using the identifiers to make ordering decisions. 

• One possible implementation is to use a sequencer process to assign identifiers. See Figure 

12.14. A drawback of this is that the sequencer can become a bottleneck. 

• An alternative is to have the processes collectively agree on identifiers. A simple algorithm is 

shown in Figure 12.15. 
 

 

Figure 12.15 The ISIS algorithm for total ordering 
 

Each process q in group g keeps 
• Aq g: the largest agreed sequence number it has observed so far for the group g 

• Pq g: its own largest proposed sequence number 

 

Algorithm for process p to multicast a message m to group g 

1. B-multicasts <m, i> to g, where i is a unique identifier for m 
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2. Each process q replies to the sender p with a proposal for the message‘s agreed sequence 

number of Pq g :=Max(Aq g, Pq g)+1 

3. Collects all the proposed sequence numbers and selects the largest one a as the next agreed 

sequence number. It then B-multicasts <i, a> to g. 

4. Each process q in g sets Aq g := Max(Aq g, a) and attaches a to the message identified by i 

 

Implementing casual ordering 

• Causal ordering using vector timestamps (Figure 12.16) 

– Only orders multicasts, and ignores one-to-one messages between processes 

– Each process updates its vector timestamp before delivering a message to maintain the count of 

precedent messages 
 

 
Consensus and related problems 

• Problems of agreement 
– For processes to agree on a value (consensus) after one or more of the processes has proposed 

what that value should be 

– Covered topics: byzantine generals, interactive consistency, totally ordered multicast 
• The byzantine generals problem: a decision whether multiple armies should attack or retreat, 

assuming that united action will be more successful than some attacking and some retreating 

• Another example might be space ship controllers deciding whether to proceed or abort. Failure 

handling during consensus is a key concern 

• Assumptions 

– communication (by message passing) is reliable 

– processes may fail 

• Sometimes up to f of the N processes are faulty 

 

Consensus Process 

1. Each process pi begins in an undecided state and proposes a single value vi, drawn from a set 

D (i=1…N) 

2. Processes communicate with each other, exchanging values 

3. Each process then sets the value of a decision variable di and enters the decided state 
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Requirements for Consensus 

 

• Three requirements of a consensus algorithm 

– Termination: Eventually every correct process sets its decision variable 
– Agreement: The decision value of all correct processes is the same: if pi and pj are correct and 

have entered the decided state, then di=dj 

(i,j=1,2, …, N) 

– Integrity: If the correct processes all proposed the same value, then any correct process in the 

decided state has chosen that value 

The byzantine generals problem 

• Problem description 

– Three or more generals must agree to attack or to retreat 

– One general, the commander, issues the order 

– Other generals, the lieutenants, must decide to attack or retreat 

– One or more generals may be treacherous 

• A treacherous general tells one general to attack and another to retreat 

• Difference from consensus is that a single process supplies the value to agree on 

• Requirements 

– Termination: eventually each correct process sets its decision variable 

– Agreement: the decision variable of all correct processes is the same 

– Integrity: if the commander is correct, then all correct processes agree on the value that the 

commander has proposed (but the commander need not be correct) 

 
The interactive consistency problem 

 

• Interactive consistency: all correct processes agree on a vector of values, one for each process. 

This is called the decision vector 

– Another variant of consensus 

• Requirements 

– Termination: eventually each correct process sets its decision variable 

– Agreement: the decision vector of all correct processes is the same 

– Integrity: if any process is correct, then all correct processes decide the correct value for that 
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process 
 

Relating consensus to other problems 

• Consensus (C), Byzantine Generals (BG), and Interactive Consensus (IC) are all problems 

concerned with making decisions in the context of arbitrary or crash failures 

• We can sometimes generate solutions for one problem in terms of another. For example 

– We can derive IC from BG by running BG N times, once for each process with that process 

acting as commander 

– We can derive C from IC by running IC to produce a vector of values at each process, then 

applying a function to the vector‘s values to derive a single value. 

– We can derive BG from C by 

• Commander sends proposed value to itself and each remaining process 

• All processes run C with received values 

• They derive BG from the vector of C values 

 

Consensus in a Synchronous System 

• Up to f processes may have crash failures, all failures occurring during f+1 rounds. 

During each round, each of the correct processes multicasts the values among themselves 

• The algorithm guarantees all surviving correct processes are in a position to agree 

• Note: any process with f failures will require at least f+1 rounds to agree 

 

 

Limits for solutions to Byzantine Generals 

 

• Some cases of the Byzantine Generals problems have no solutions 

– Lamport et al found that if there are only 3 processes, there is no solution 

– Pease et al found that if the total number of processes is less than three times the number of 

failures plus one, there is no solution 

• Thus there is a solution with 4 processes and 1 failure, if there are two rounds 

– In the first, the commander sends the values 

– while in the second, each lieutenant sends the values it received 
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Figure 12.20 Four Byzantine generals 
 
 

 
Asynchronous Systems 

• All solutions to consistency and Byzantine generals problems are limited to synchronous 

systems 

• Fischer et al found that there are no solutions in an asynchronous system with even one failure 

• This impossibility is circumvented by masking faults or using failure detection 

• There is also a partial solution, assuming an adversary process, based on introducing random 

values in the process to prevent an effective thwarting strategy. This does not always reach 

consensus 



Page | 67  

 

                                                                    UNIT III  

 

Inter Process Communication: Introduction, The API for the internet protocols, External Data 

Representation and Marshalling, Client-Server Communication, Group Communication, Case Study: IPC in 

UNIX. 

Distributed Objects and Remote Invocation: Introduction, Communication between Distributed Objects,     

Remote Procedure Call, Events and Notifications, Case study-Java RMI. 

 

 

      Application program interface 

The application program interface to UDP provides a message passing abstraction– the simplest 

form of interprocess communication. This enables a sending process to transmit a single message 

to a receiving process. The independent packets containing these messages are called datagrams. 

In the Java and UNIX APIs, the sender specifies the destination using a socket – an indirect 

reference to a particular port used by the destination process at a destination computer. 

 

The application program interface to TCP provides the abstraction of a two-way stream between 

pairs of processes. The information communicated consists of a stream of data items with no 

message boundaries. Streams provide a building block for producer-consumer communication. A 

producer and a consumer form a pair of processes in which the role of the first is to produce data 

items and the role of the second is to consume them. The data items sent by the producer to the 

consumer are queued on arrival at the receiving host until the consumer is ready to receive them. 

The consumer must wait when no data items are available. The producer must wait if the storage 

used 

to hold the queued data items is exhausted. 

The API for the Internet protocols 

The general characteristics of interprocess communication and then discuss the Internet protocols 

as an example, explaining how programmers can use them, either by means of UDP messages or 

through TCP streams. 

 

The characteristics of interprocess communication 

Message passing between a pair of processes can be supported by two message communication 

operations, send and receive, defined in terms of destinations and messages. To communicate, 

one process sends a message (a sequence of bytes) to a destination and another process at the 

destination receives the message. This activity involves the communication of data from the 

sending process to the receiving process and may involve the synchronization of the two 

processes. 

 
 

Synchronous and asynchronous communication • A queue is associated with each message 

destination. Sending processes cause messages to be added to remote queues and receiving 

processes remove messages from local queues. Communication between the sending and 

receiving processes may be either synchronous or asynchronous. In the synchronous form of 

communication, the sending and receiving processes synchronize at every message. In this case, 
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both send and receive are blocking operations. Whenever a send is issued the sending process (or 

thread) is blocked until the corresponding receive is issued. Whenever a receive is issued by a 

process (or thread), it blocks until a message arrives. 

 
In the asynchronous form of communication, the use of the send operation is nonblocking in that 

the sending process is allowed to proceed as soon as the message has been copied to a local 

buffer, and the transmission of the message proceeds in parallel with the sending process. The 

receive operation can have blocking and non-blocking variants. In the non-blocking variant, the 

receiving process proceeds with its program after issuing a receive operation, which provides a 

buffer to be filled in the background, but it must separately receive notification that its buffer has 

been filled, by polling or interrupt. 

 
In a system environment such as Java, which supports multiple threads in a single process, the 

blocking receive has no disadvantages, for it can be issued by one thread while other threads in 

the process remain active, and the simplicity of synchronizing the receiving threads with the 

incoming message is a substantial advantage. Non-blocking communication appears to be more 

efficient, but it involves extra complexity in the receiving process associated with the need to 

acquire the incoming message out of its flow of control. For these reasons, today’s systems do 

not generally provide the nonblocking form of receive. 

 

Message destinations • Chapter 3 explains that in the Internet protocols, messages are sent to 

(Internet address, local port) pairs. A local port is a message destination within a computer, 

specified as an integer. A port has exactly one receiver but can have many senders. Processes 

may use multiple ports to receive messages. Any process that knows the number of a port can 

send a message to it. Servers generally publicize their port numbers for use by clients. 

 
Reliability • As far as the validity property is concerned, a point-to-point message service can  

be described as reliable if messages are guaranteed to be delivered despite a ‘reasonable’ number 

of packets being dropped or lost. In contrast, a point-to-point message service can be described 

as unreliable if messages are not guaranteed to be delivered in the face of even a single packet 

dropped or lost. For integrity, messages must arrive uncorrupted and without duplication. 

 

Ordering • Some applications require that messages be delivered in sender order – that is, the 

order in which they were transmitted by the sender. The delivery of messages out of sender order 

is regarded as a failure by such applications. 

 
Sockets 

 

Both forms of communication (UDP and TCP) use the socket abstraction, which provides an 

endpoint for ommunication between processes. Sockets originate from BSD UNIX but are also 

present in most other versions of UNIX, including Linux as well as Windows and the Macintosh 

OS. Interprocess communication consists of transmitting a message between a socket in one 

process and a socket in another process, is shown in the following figure. 
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For a process to receive messages, its socket must be bound to a local port and one of the  

Internet addresses of the computer on which it runs. Messages sent to a particular Internet 

address and port number can be received only by 

a process whose socket is associated with that Internet address and port number. Processes may 

use the same socket for sending and receiving messages. Each computer has a large number 

(216) of possible port numbers for use by local processes for receiving messages. Any process 

may make use of multiple ports to receive messages, but a process cannot share ports with other 

processes on the same computer. However, any number of processes may send messages to the 

same port. Each socket is associated with a particular protocol – either UDP or TCP. 

 

Java API for Internet addresses • As the IP packets underlying UDP and TCP are sent to 

Internet addresses, Java provides a class, InetAddress, that represents Internet addresses. Users of 

this class refer to computers by Domain Name System (DNS) hostnames. For example, instances 

of InetAddress that contain Internet addresses can be created by calling a static method of 

InetAddress, giving a DNS hostname as the argument. The method uses the DNS to get the 

corresponding Internet address. For example, to get an object representing the Internet address of 

the host whose DNS name is bruno.dcs.qmul.ac.uk, use: 

 
InetAddress aComputer = InetAddress.getByName("bruno.dcs.qmul.ac.uk"); 

 

This method can throw an UnknownHostException. Note that the user of the class does not need 

to state the explicit value of an Internet address. In fact, the class encapsulates the details of the 

representation of Internet addresses. Thus the interface for this class is not dependent on the 

number of bytes needed to represent Internet addresses – 4 bytes in IPv4 and 16 bytes in IPv6. 

 

UDP datagram communication 

 

A datagram sent by UDP is transmitted from a sending process to a receiving process without 

acknowledgement or retries. If a failure occurs, the message may not arrive. A datagram is 

transmitted between processes when one process sends it and another receives it. To send or 

receive messages a process must first create a socket bound to an 

Internet address of the local host and a local port. A server will bind its socket to a server port – 

one that it makes known to clients so that they can send messages to it. A client binds its socket 

to any free local port. The receive method returns the Internet address and port of the sender, in 

addition to the message, allowing the recipient to send a reply. 
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The following are some issues relating to datagram communication: 

 

Message size: The receiving process needs to specify an array of bytes of a particular size in 

which to receive a message. If the message is too big for the array, it is truncated on arrival. The 

underlying IP protocol allows packet lengths of up to 216 bytes, which includes the headers as 

well as the message. However, most environments impose a size restriction of 8 kilobytes. Any 

application requiring messages larger than the maximum must fragment them into chunks of that 

size. 

 
Generally, an application, for example DNS, will decide on a size that is not excessively large 

but is adequate for its intended use. 

 
Blocking: Sockets normally provide non-blocking sends and blocking receives for datagram 

communication (a non-blocking receive is an option in some implementations). The send 

operation returns when it has handed the message to the underlying UDP and IP protocols, which 

are responsible for transmitting it to its destination. On arrival, the message is placed in a queue 

for the socket that is bound to the destination port. The message can be collected from the queue 

by an outstanding or future invocation of receive on that socket. Messages are discarded at the 

destination if no process already has a socket bound to the destination port. 

Timeouts: The receive that blocks forever is suitable for use by a server that is waiting to receive 

requests from its clients. But in some programs, it is not appropriate that a process that has 

invoked a receive operation should wait indefinitely in situations where the sending process may 

have crashed or the expected message may have been lost. To allow for such requirements, 

timeouts can be set on sockets. Choosing an appropriate timeout interval is difficult, but it should 

be fairly large in comparison with the time required to transmit a message. 

 

Receive from any: The receive method does not specify an origin for messages. Instead, an 

invocation of receive gets a message addressed to its socket from any origin. The receive method 

returns the Internet address and local port of the sender, allowing the recipient to check where  

the message came from. It is possible to connect a datagram socket to a particular remote port 

and Internet address, in which case the socket is only able to send messages to and receive 

messages from that address. 

 

Failure model for UDP datagrams • A failure model for communication channels and defines 

reliable communication in terms of two properties: integrity and validity. The integrity property 

requires that messages should not be corrupted or duplicated. The use of a checksum ensures that 

there is a negligible probability that any message received is corrupted. UDP datagrams suffer 

from the following failures: 

 
Omission failures: Messages may be dropped occasionally, either because of a checksum error or 

because no buffer space is available at the source or destination. To simplify the discussion, we 

regard send-omission and receive-omission failures as omission failures in the communication 

channel. 

- 

 

Ordering: Messages can sometimes be delivered out of sender order. Applications using UDP 
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datagrams are left to provide their own checks to achieve the quality of reliable communication 

they require. A reliable delivery service may be constructed from one that suffers from omission 

failures by the use of acknowledgements. 

 

Use of UDP • For some applications, it is acceptable to use a service that is liable to occasional 

omission failures. For example, the Domain Name System, which looks up DNS names in the 

Internet, is implemented over UDP. Voice over IP (VOIP) also runs over UDP. UDP datagrams 

are sometimes an attractive choice because they do not 

suffer from the overheads associated with guaranteed message delivery. There are three main 

sources of overhead: 

 

• the need to store state information at the source and destination; 

• the transmission of extra messages; 

• latency for the sender. 

 
Java API for UDP datagrams • The Java API provides datagram communication by means of 

two classes: DatagramPacket and DatagramSocket. DatagramPacket: 

 

This class provides a constructor that makes an instance out of an array of bytes comprising a 

message, the length of the message and the Internet address and local port number of the 

destination socket, as follows: 

 

Datagram packet 

array of bytes containing message length of message Internet address port number 

 

An instance of DatagramPacket may be transmitted between processes when one process sends 

it and another receives it. 

 

UDP server repeatedly receives a request and sends it back to the client
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DatagramSocket: This class supports sockets for sending and receiving UDP datagrams. It 

provides a constructor that takes a port number as its argument, for use by processes that need to 

use a particular port. It also provides a no-argument constructor that allows the system to choose 

a free local port. These constructors can throw a SocketException if the chosen port is already in 

use or if a reserved port (a number below 1024) is specified when running over UNIX. 

 
UDP server repeatedly receives a request and sends it back to the client
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TCP stream communication 

 

The API to the TCP protocol, which originates from BSD 4.x UNIX, provides the abstraction of 

a stream of bytes to which data may be written and from which data may be read. The following 

characteristics of the network are hidden by the stream abstraction: 

 

Message sizes: The application can choose how much data it writes to a stream or reads from it. 

It may deal in very small or very large sets of data. The underlying implementation of a TCP 

stream decides how much data to collect before transmitting it as one or more IP packets. On 

arrival, the data is handed to the application as requested. Applications can, if necessary, force 

data to be sent immediately. 

 

Lost messages: The TCP protocol uses an acknowledgement scheme. As an example of a simple 

scheme (which is not used in TCP), the sending end keeps a record of each IP packet sent and the 

receiving end acknowledges all the arrivals. If the sender does not receive an acknowledgement 

within a timeout, it retransmits the message. The more sophisticated sliding window scheme 

[Comer 2006] cuts down on the number of acknowledgement messages required. 

 

Flow control: The TCP protocol attempts to match the speeds of the processes that read from and 

write to a stream. If the writer is too fast for the reader, then it is blocked until the reader has 

consumed sufficient data. 

 

Message duplication and ordering: Message identifiers are associated with each IP packet,  

which enables the recipient to detect and reject duplicates, or to reorder messages that do not 

arrive in sender order. 
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Message destinations: A pair of communicating processes establish a connection before they can 

communicate over a stream. Once a connection is established, the processes simply read from 

and write to the stream without needing to use Internet addresses and ports. Establishing a 

connection involves a connect request from client to server followed by an accept request from 

server to client before any communication can take place. This could be a considerable overhead 

for a single client-server request and reply. 

 

Java API  for TCP streams  •  The Java interface to  TCP  streams  is provided in the classes 

ServerSocket and Socket: 

 

ServerSocket: This class is intended for use by a server to create a socket at a server port for 

listening for connect requests from clients. Its accept method gets a connect request from the 

queue or, if the queue is empty, blocks until one arrives. The result of executing accept is an 

instance of Socket – a socket to use for communicating with the client. 

 
Socket: This class is for use by a pair of processes with a connection. The client uses a 

constructor to create a socket, specifying the DNS hostname and port of a server. This 

constructor not only creates a socket associated with a local port but also connects it to the 

specified remote computer and port number. It can throw an UnknownHostException if the 

hostname is wrong or an IOException if an IO error occurs. 

 

TCP client makes connection to server, sends request and receives reply 
 

 

TCP server makes a connection for each client and then echoes the client’s request 
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External data representation and marshalling 

 

The information stored in running programs is represented as data structures – for example, by 

sets of interconnected objects – whereas the information in messages consists of sequences of 

bytes. Irrespective of the form of communication used, the data structures must be flattened 

(converted to a sequence of bytes) before transmission and rebuilt on arrival. The individual 

primitive data items transmitted in messages can be data values of many different types, and not 

all computers store primitive values such as integers in the same order. The representation of 

floating-point numbers also differs between architectures. There are two variants for the ordering 

of integers: the so-called big-endian order, in which the most significant byte comes first; and 

little-endian order, in which it comes last. Another issue is the set of codes used to represent 

characters: for example, the majority of applications on systems such as UNIX use ASCII 

character coding, taking one byte per character, whereas the Unicode standard allows for the 

representation of texts in many different languages and takes two bytes per character. 

 
One of the following methods can be used to enable any two computers to exchange binary data 

values: 

 

• The values are converted to an agreed external format before transmission and converted to the 

local form on receipt; if the two computers are known to be the same type, the conversion to 

external format can be omitted. 

 

• The values are transmitted in the sender’s format, together with an indication of the format 

used, and the recipient converts the values if necessary. Note, however, that bytes themselves are 

never altered during transmission. To support RMI or RPC, any data type that can be passed as 

an argument or returned as a result must be able to be flattened and the individual primitive data 

values represented in an agreed format. An agreed standard for the representation of data 

structures and primitive values is called an external data representation. 

 

Marshalling is the process of taking a collection of data items and assembling them into a form 

suitable for transmission in a message. Unmarshalling is the process of disassembling them on 

arrival to produce an equivalent collection of data items at the destination. Thus marshalling 

consists of the translation of structured data items and 

primitive values into an external data representation. Similarly, unmarshalling consists of the 

generation of primitive values from their external data representation and the rebuilding of the 

data structures. 

 
Three alternative approaches to external data representation and marshalling are discussed: 

 

• CORBA’s common data representation, which is concerned with an external representation for 

the structured and primitive types that can be passed as the arguments and results of remote 

method invocations in CORBA. It can be used by a variety of programminglanguages. 
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• Java’s object serialization, which is concerned with the flattening and external data 

representation of any single object or tree of objects that may need to be transmitted in a message 

or stored on a disk. It is for use only by Java. 

 

• XML (Extensible Markup Language), which defines a textual fomat for representing structured 

data. It was originally intended for documents containing textual self-describing structured data – 

for example documents accessible on the Web – but it is now also used to represent the data sent 

in messages exchanged by clients and servers in web services. 

 

In the first two cases, the marshalling and unmarshalling activities are intended to be carried out 

by a middleware layer without any involvement on the part of the application programmer. Even 

in the case of XML, which is textual and therefore more accessible to hand-encoding, software 

for marshalling and unmarshalling is available for all commonly used platforms and 

programming environments. Because marshalling requires the consideration of all the finest 

details of the representation of the primitive components of composite objects, the process is 

likely to be error-prone if carried out by hand. Compactness is another issue that can be 

addressed in the design of automatically generated marshalling procedures. 

 

In the first two approaches, the primitive data types are marshalled into a binary form. In the 

third approach (XML), the primitive data types are represented textually. The textual 

representation of a data value will generally be longer than the equivalent binary representation. 

The HTTP protocol, which is described in Chapter 5, is another example of the textual approach. 

 

Another issue with regard to the design of marshalling methods is whether the marshalled data 

should include information concerning the type of its contents. For example, CORBA’s 

representation includes just the values of the objects transmitted, and nothing about their types. 

On the other hand, both Java serialization and XML do include type information, but in different 

ways. Java puts all of the required type information into the serialized form, but XML documents 

may refer to externally defined sets of names (with types) called namespaces. 

 

Although we are interested in the use of an external data representation for the arguments and 

results of RMIs and RPCs, it does have a more general use for representing data structures, 

objects or structured documents in a form suitable for transmission in messages or storing in 

files. 

 

CORBA CDR for constructed types 
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CORBA’s Common Data Representation (CDR) 

 

CORBA CDR is the external data representation defined with CORBA 2.0. CDR can represent 

all of the data types that can be used as arguments and return values in remote invocations in 

CORBA. These consist of 15 primitive types, which include short (16-bit), long (32-bit), 

unsigned short, unsigned long, float (32-bit), double (64-bit), char, boolean (TRUE, FALSE), 

octet (8-bit), and any (which can represent any basic or constructed type); together with a range 

of composite types, which are described in Figure 4.7. Each argument or result in a remote 

invocation is 

represented by a sequence of bytes in the invocation or result message. 
 

 

Marshalling in CORBA • Marshalling operations can be generated automatically from the 

specification of the types of data items to be transmitted in a message. The types of the data 

structures and the types of the basic data items are described in CORBA IDL (see Section 8.3.1), 

which provides a notation for describing the types of the arguments and results of RMI methods. 

 

Java object serialization 

 

In Java RMI, both objects and primitive data values may be passed as arguments and results of 

method invocations. An object is an instance of a Java class. For example, the Java class 

equivalent to the Person struct defined in CORBA IDL might be: 

 

public class Person implements Serializable { 

private String name; 

private String place; 

private int year; 

public Person(String aName, String aPlace, int aYear) { 
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name = aName; 

place = aPlace; 

year = aYear; 

} 

// followed by methods for accessing the instance variables 

} 

 

Extensible Markup Language (XML) 

 

XML is a markup language that was defined by the World Wide Web Consortium (W3C) for 

general use on the Web. In general, the term markup language refers to a textual encoding that 

represents both a text and details as to its structure or its appearance. Both XML and HTML 

were derived from SGML (Standardized Generalized Markup Language) [ISO 8879], a very 

complex markup language. HTML was designed for defining the appearance of web  pages. 

XML was designed for writing structured documents for the Web. 

 
XML data items are tagged with ‘markup’ strings. The tags are used to describe the logical 

structure of the data and to associate attribute-value pairs with logical structures. That is, in 

XML, the tags relate to the structure of the text that they enclose, in contrast to HTML, in which 

the tags specify how a browser could display the text. For a specification of XML, see the pages 

on XML provided by W3C [www.w3.org VI]. 

 

XML is used to enable clients to communicate with web services and for defining the interfaces 

and other properties of web services. However, XML is also used in many other ways, including 

in archiving and retrieval systems – although an XML archive may be larger than a binary one, it 

has the advantage of being readable on any computer. 

Other examples of uses of XML include for the specification of user interfaces and the encoding 

of configuration files in operating systems. 

 

XML is extensible in the sense that users can define their own tags, in contrast to HTML, which 

uses a fixed set of tags. However, if an XML document is intended to be used by more than one 

application, then the names of the tags must be agreed between them. For example, clients 

usually use SOAP messages to communicate with web 

services. SOAP is an XML format whose tags are published for use by web services and their 

clients. 

 

Some external data representations (such as CORBA CDR) do not need to be self describing, 

because it is assumed that the client and server exchanging a message have prior knowledge of 

the order and the types of the information it contains. However, XML was intended to be used by 

multiple applications for different purposes. The provision of tags, together with the use of 

namespaces to define the meaning of the tags, has made this possible. In addition, the use of tags 

enables applications to select just those parts of a document it needs to process: it will not be 

affected by the addition of information relevant to other applications. 

http://www.w3.org/
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XML definition of the Person structure 
 

 

 

 

Remote object references 

 

Java and CORBA that support the distributed object model. It is not relevant to XML. When a 

client invokes a method in a remote object, an invocation message is sent to the server process 

that hosts the remote object. This message needs to specify which particular object is to have its 

method invoked. A remote object reference is an identifier for a remote object that is valid 

throughout a distributed system. A remote object reference is  passed in the invocation message 

to specify which object is to be invoked. Chapter 5 explains that remote object references are 

also passed as arguments and returned as results of remote method invocations, that each remote 

object has a single remote object reference and that remote object references can be compared to 

see whether they refer to the same remote object. Here, we discuss the external representation of 

remote object references. 

 
Client-server communication 

 

public byte[] doOperation (RemoteObjectRef o, int methodId, byte[] arguments) sends a request 

message to the remote object and returns the reply. 

 

The arguments specify the remote object, the method to be invoked and the arguments of that 

method. 

 

public byte[] getRequest (); acquires a client request via the server port. 

 

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort); sends the reply 

message reply to the client at its Internet address and port. 
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RPC exchange protocols 

HTTP request message 

HTTP reply message 

 

 

 

Request-reply communication 
 

Group communication 

 

A multicast operation is more appropriate – this is an operation that sends a single message from 

one process to 

each of the members of a group of processes, usually in such a way that the membership of the 

group is transparent to the sender. There is a range of possibilities in the desired behaviour of a 

multicast. The simplest multicast rotocol provides no guarantees about message delivery or 

ordering. 

 

Multicast messages provide a useful infrastructure for constructing distributed systems with the 

following characteristics: 

1. Fault tolerance based on replicated services: A replicated service consists of a group of 

servers. Client requests are multicast to all the members of the group, each of which performs an 

identical operation. Even when some of the members fail, clients can still be served. 

 

2. Discovering services in spontaneous networking: Section 1.3.2 defines service discovery in 

the context of spontaneous networking. Multicast messages can be used by servers and clients to 

locate available discovery services in order to register their interfaces or to look up the interfaces 

of other services in the distributed system. 

 
3. Better performance through replicated data: Data are replicated to increase the performance 

of a service – in some cases replicas of the data are placed in users’ computers. Each time the 

data changes, the new value is multicast to the processes managing the replicas. 

 

4. Propagation of event notifications: Multicast to a group may be used to notify processes when 
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something happens. For example, in Facebook, when someone changes their status, all their 

friends receive notifications. Similarly, publishsubscribe protocols may make use of group 

multicast to disseminate events to subscribers (see Chapter 6). 

 

IP multicast – An implementation of multicast communication 

 
IP multicast • IP multicast is built on top of the Internet Protocol (IP). Note that IP packets are 

addressed to computers – ports belong to the TCP and UDP levels. IP multicast allows the sender 

to transmit a single IP packet to a set of computers that form a multicast group. The sender is 

unaware of the identities of the individual recipients and of the size of the group. A multicast 

group is specified by a Class D Internet address – that is, an address whose first 4 bits are 1110 

in IPv4. 

 

At the application programming level, IP multicast is available only via UDP. An application 

program performs multicasts by sending UDP datagrams with multicast addresses and ordinary 

port numbers. It can join a multicast group by making its socket join the group, enabling it to 

receive messages to the group. At the IP level, a computer 

belongs to a multicast group when one or more of its processes has sockets that belong to that 

group. When a multicast message arrives at a computer, copies are forwarded to all of the local 

sockets that have joined the specified multicast address and are bound to the specified port 

number. The following details are specific to IPv4: 

Multicast routers: IP packets can be multicast both on a local network and on the wider Internet. 

Local multicasts use the multicast capability of the local network, for example, of an Ethernet. 

Internet multicasts make use of multicast routers, which forward single datagrams to routers on 

other networks, where they are again multicast to local members. To limit the distance of 

propagation of a multicast datagram, the sender can specify the number of routers it is allowed to 

pass – called the time to live, or TTL for short. To understand how routers know which other 

routers have members of a multicast group. 

 

Multicast address allocation: As discussed in Chapter 3, Class D addresses (that is, addresses in 

the range 224.0.0.0 to 239.255.255.255) are reserved for multicast traffic and managed globally 

by the Internet Assigned Numbers Authority (IANA). The management of this address space is 

reviewed annually, with current practice documented in RPC 3171. This document defines a 

partitioning of this address space into a number of blocks, including: 

 
• Local Network Control Block (224.0.0.0 to 224.0.0.225), for multicast traffic within a given 

local network. 

• Internet Control Block (224.0.1.0 to 224.0.1.225). 

• Ad Hoc Control Block (224.0.2.0 to 224.0.255.0), for traffic that does not fit any other block. 

• Administratively Scoped Block (239.0.0.0 to 239.255.255.255), which is used to implement a 

scoping mechanism for multicast traffic (to constrain propagation). 

 
 

Failure model for multicast datagrams • Datagrams multicast over IP multicast have the same 

failure characteristics as UDP datagrams – that is, they suffer from omission failures. The effect 

on a multicast is that messages are not guaranteed to be delivered to any particular  group 

member in the face of even a single omission failure. That is, some but not all of the members of 

the group may receive it. This can be called unreliable multicast, because it does not guarantee 

that a message will be delivered to any member of a group. 
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Java API to IP multicast • The Java API provides a datagram interface to IP multicast through 

the class MulticastSocket, which is a subclass of DatagramSocket with the additional capability 

of being able to join multicast groups. The class MulticastSocket provides two alternative 

constructors, allowing sockets to be created to use either a or any free local port. A process can 

join a multicast group with a given multicast address by invoking the joinGroup method of its 

multicast socket. Effectively, the socket joins a multicast group at a given port and it will 

receive datagrams sent by processes on other computers to that group at that port. A process can 

leave a specified group by invoking the leaveGroup method of its multicast socket. 

Multicast peer joins a group and sends and receives datagrams 

 

Reliability and ordering of multicast 

The effect of the failure semantics of IP multicast on the four examples of the use of replication 
1. Fault tolerance based on replicated services: Consider a replicated service that consists of the 

members of a group of servers that start in the same initial state and always perform the same 

operations in the same order, so as to remain consistent with one another. This application of 

multicast requires that either all of the replicas or none of them should receive each request to 

perform an operation – if one of them misses a request, it will become inconsistent with the 

others. In most cases, this service would require that all members receive request messages in the 

same order as one another. 

2. Discovering services in spontaneous networking: One way for a process to discover services 

in spontaneous networking is to multicast requests at periodic intervals, and for the available 

services to listen for those multicasts and respond. An occasional lost request is not an issue 

when discovering services. 

 

3. Better performance through replicated data: Consider the case where the replicated data itself, 

rather than operations on the data, are distributed by means of multicast messages. The effect of 

lost messages and inconsistent ordering would depend on the method of replication and the 

importance of all replicas being totally up-to-date. 

 

4. Propagation of event notifications: The particular application determines the qualities required 

of multicast. For example, the Jini lookup services use IP multicast to announce their existence 
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Communication between Distributed Objects 

 
The Object Model 

Five Parts of the Object Model 

– An object-oriented program consists of a collection of interacting objects 

• Objects consist of a set of data and a set of methods 

• In DS, object’s data should be accessible only via methods 

 

Object References 

– Objects are accessed by object references 
– Object references can be assigned to variables, passed as arguments, and returned as the result 

of a method 

– Can also specify a method to be invoked on that object 

Interfaces 

– Provide a definition of the signatures of a set of methods without specifying their 

implementation 

– Define types that can be used to declare the type of variables or of the parameters and return 

values of methods 

 

Actions 

– Objects invoke methods in other objects 
– An invocation can include additional information as arguments to perform the behavior 

specified by the method 

– Effects of invoking a method 

1. The state of the receiving object may be changed 

2. A new object may be instantiated 

3. Further invocations on methods in other objects may occur 

4. An exception may be generated if there is a problem encountered 

 

Exceptions 

– Provide a clean way to deal with unexpected events or errors 
– A block of code can be defined to throw an exception when errors or unexpected conditions 

occur. Then control passes to code that catches the exception 

 

Garbage Collection 

– Provide a means of freeing the space that is no longer needed 

– Java (automatic), C++ (user supplied) 

 

Distributed Objects 

• Physical distribution of objects into different processes or computers in a distributed system 
– Object state consists of the values of its instance variables 

– Object methods invoked by remote method invocation (RMI) 
– Object encapsulation: object state accessed only by the object methods 

 
Usually adopt the client-server architecture 

 

– Basic model 

• Objects are managed by servers and 
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• Their clients invoke their methods using RMI 

– Steps 

1. The client sends the RMI request in a message to the server 

2. The server executes the invoked method of the object 

3. The server returns the result to the client in another message 

 

– Other models 

• Chains of related invocations: objects in servers may become clients of objects in other servers 

• Object replication: objects can be replicated for fault tolerance and performance 

• Object migration: objects can be migrated to enhancing performance and availability 

 
The Distributed Object Model 

Two fundamental concepts: Remote Object Reference and Remote Interface 

– Each process contains objects, some of which can receive remote invocations are called remote 

objects (B, F), others only local invocations 

– Objects need to know the remote object reference of an object in another process in order to 

invoke its methods, called remote method invocations 

– Every remote object has a remote interface that specifies which of its methods can be invoked 

remotely 

 

Remote and local method invocations 
 

 

Five Parts of Distributed Object Model 

 

• Remote Object References 

– accessing the remote object 

– identifier throughout a distributed system 

– can be passed as arguments 

• Remote Interfaces 

– specifying which methods can be invoked remotely 

– name, arguments, return type 

– Interface Definition Language (IDL) used for defining remote interface 

 
 

Remote Object and Its remote Interface 

• Actions 
– An action initiated by a method invocation may result in further invocations on methods in 

other objects located indifference processes or computers 

– Remote invocations could lead to the instantiation of new objects, ie. objects M and N of 

following figure. 
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• Exceptions 

– More kinds of exceptions: i.e. timeout exception 
- RMI should be able to raise exceptions such as timeouts that are due to distribution as well as 

those raised during the execution of the method invoked 

• Garbage Collection 

- Distributed garbage collections is generally achieved by cooperation between the existing local 

garbage collector and an added module that carries out a form of distributed garbage collection, 

usually based on reference counting 

 
Design Issues for RMI 

• Two design issues that arise in extension of local method invocation for RMI 
– The choice of invocation semantics 

• Although local invocations are executed exactly once, this cannot always be the case for RMI 

due to transmission error 

– Either request or reply message may be lost 

– Either server or client may be crashed 

– The level of transparency 

• Make remote invocation as much like local invocation as possible 

 

RMI Design Issues: Invocation Semantics 

• Error handling for delivery guarantees 
– Retry request message: whether to retransmit the request message until either a reply is 

received or the server is assumed to have failed 

– Duplicate filtering: when retransmissions are used, whether to filter out duplicate 

requests at the server 

– Retransmission of results: whether to keep a history of result messages to enable lost 

results to be retransmitted without re-executing the operations 

• Choices of invocation semantics 

– Maybe: the method executed once or not at all (no retry nor retransmit) 

– At-least-once: the method executed at least once 

– At-most-once: the method executed exactly once 
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Invocation semantics: choices of interest 

 
 

RMI Design Issues: Transparency 

 

• Transparent remote invocation: like a local call 

– marshalling/unmarshalling 

– locating remote objects 

– accessing/syntax 

• Differences between local and remote invocations 

– latency: a remote invocation is usually several order of magnitude greater than that of a 

local one 

– availability: remote invocation is more likely to fail 

– errors/exceptions: failure of the network? server? hard to tell 

• syntax might need to be different to handle different local vs remote errors/exceptions (e.g. 

Argus) 

– consistency on the remote machine: 

• Argus: incomplete transactions, abort, restore states [as if the call was never made] 

 

Implementation of RMI 

 

•Communication module 

– Two cooperating communication modules carry out the request-reply protocols: 

message type, request ID, remote object reference 

• Transmit request and reply messages between client and server 

• Implement specific invocation semantics 

– The communication module in the server 

• selects the dispatcher for the class of the object to be invoked, 

• passes on local reference from remote reference module, 

• returns request 
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The role of proxy and skeleton in remote method invocation

 

 

• Remote reference module 

– Responsible for translating between local and remote object references and for creating remote 

object references 

– remote object table: records the correspondence between local and remote object references 

• remote objects held by the process (B on server) 

• local proxy (B on client) 
– When a remote object is to be passed for the first time, the module is asked to create a remote 

object reference, which it adds to its table 

 
• Servant 

– An instance of a class which provides the body of a remote object 

– handles the remote requests 

•RMI software 

– Proxy: behaves like a local object, but represents the remote object 

– Dispatcher: look at the methodID and call the corresponding method in the skeleton 

– Skeleton: implements the method 

Generated automatically by an interface compiler 

 

 
 

Implementation Alternatives of RMI 

 

• Dynamic invocation 

– Proxies are static—interface complied into client code 
– Dynamic—interface available during run time 

• Generic invocation; more info in ―Interface Repository‖ (COBRA) 

• Dynamic loading of classes (Java RMI) 

•Binder 
– A separate service to locate service/object by name through table mapping for names and 

remote object references 
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• Activation of remote objects 

– Motivation: many server objects not necessarily in use all of the time 
• Servers can be started whenever they are needed by clients, similar to inetd 

– Object status: active or passive 

• active: available for invocation in a running process 

• passive: not running, state is stored and methods are pending 

– Activation of objects: 

• creating an active object from the corresponding passive object by creating a 

new instance of its class 

• initializing its instance variables from the stored state 

– Responsibilities of activator 

• Register passive objects that are available for activation 

• Start named server processes and activate remote objects in them 

• Keep track of the locations of the servers for remote objects that it has already 

activated 

 

• Persistent object stores 

– An object that is guaranteed to live between activations of processes is called a 

persistent object 

– Persistent object store: managing the persistent objects 

• stored in marshaled from on disk for retrieval 

• saved those that were modified 

– Deciding whether an object is persistent or not: 

• persistent root: any descendent objects are persistent (persistent Java, PerDiS) 

• some classes are declared persistent (Arjuna system) 

• Object location 

– specifying a location: ip address, port #, ... 

– location service for migratable objects 

• Map remote object references to their probable current locations 

 

• Cache/broadcast scheme (similar to ARP) 

– Cache locations 

– If not in cache, broadcast to find it 
• Improvement: forwarding (similar to mobile IP) 

 

Distributed Garbage Collection 

• Aim: ensure that an object 
– continues to exist if a local or remote reference to it is still held anywhere 
– be collected as soon as no object any longer holds a reference to it 

• General approach: reference count 

• Java's approach 

– the server of an object (B) keeps track of proxies 

– when a proxy is created for a remote object 

• addRef(B) tells the server to add an entry 

– when the local host's garbage collector removes the proxy 

• removeRef(B) tells the server to remove the entry 

– when no entries for object B, the object on server is deallocated 
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Remote Procedure Call 

• client: "stub" instead of "proxy" (same function, different names) 
– local call, marshal arguments, communicate the request 

•server: 
– dispatcher 

– "stub": unmarshal arguments, communicate the results back 

 

 

Role of client and server stub procedures in RPC in the context of a procedural language 

 
 

Case Study: Sun RPC 

•Sun RPC: client-server in the SUN NFS (network file system) 

– UDP or TCP; in other unix OS as well 
– Also called ONC (Open Network Computing) RPC 

•Interface Definition Language (IDL) 

– initially XDR is for data representation, extended to be IDL 

– less modern than CORBA IDL and Java 

 
• program numbers instead of interface names 

• procedure numbers instead of procedure names 

• single input parameter (structs) 

– rpcgen: compiler for XDR 

• client stub; server main procedure, dispatcher, and server stub 

• XDR marshalling, unmarshaling 

•Binding (registry) via a local binder - portmapper 

– Server registers its program/version/port numbers with portmapper 
– Client contacts the portmapper at a fixed port with program/version numbers to get the 

server port 

– Different instances of the same service can be run on different computers at different ports 

 

•Authentication 

– request and reply have additional fields 

– unix style (uid, gid), shared key for signing, Kerberos 
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Files interface in Sun XDR 

 

Events and Notifications 

 

•Idea behind the use of events 

– One object can react to a change occurring in another object 

•Events 

– Notifications of events: objects that represent events 

• asynchronous and determined by receivers what events are interested 

– event types 

• each type has attributes (information in it) 

• subscription filtering: focus on certain values in the attributes (e.g. "buy" events, but 
only "buy car" events) 

•Publish-subscribe paradigm 
– publish events to send 

– subscribe events to receive 

 
•Main characteristics in distributed event-based systems 

– Heterogeneous: a way to standardize communication in heterogeneous 

systems 

• not designed to communicate directly 

– Asynchronous: notifications are sent asynchronously 
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• no need for a publisher to wait for each subscriber--subscribers come and go 

 

 

 

 

 

 

 

 

 

 

Dealing room system: allow dealers using computers to see the latest information about the 

market prices of the stocks they deal in 
 

Distributed Event Notification 

 

• Distributed event notification 

– decouple publishers from subscribers via an event service (manager) 
• Architecture: roles of participating objects 

– object of interest (usually changes in states are interesting) 

– event 

– notification 

– subscriber 

– observer object (proxy) [reduce work on the object of interest] 

•forwarding 

• filtering of events types and content/attributes 

• patterns of events (occurrence of multiple events, not just one) 

• mailboxes (notifications in batch es, subscriber might not be ready) 

– publisher (object of interest or observer object) 
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• generates event notifications 

 
Example: Distributed Event Notification 

 

•Three cases 

– Inside object without an observer: send notifications directly to the subscribers 

– Inside object with an observer: send notification via the observer to the subscribers 

– Outside object (with an observer) 

1. An observer queries the object of interest in order to discover when events occur 

2. The observer sends notifications to the subscribers 

 

 
•Jini 

Case Study: Jini Distributed Event Specification 

 

–Allow a potential subscriber in one Java Virtual Machine (JVM) to subscribe to and receive 

notifications of events in an objectof interest in another JVM 

– Main objects 

• event generators (publishers) 

• remote event listeners (subscribers) 

• remote events (events) 

• third-party agents (observers) 

– An object subscribes to events by informing the event generator about the type of event and 

specifying a remote event listener as the target for notification 

Case Study: Java RMI 

 

Java Remote interfaces Shape and ShapeList and Java class ShapeListServant implements 

interface ShapeList 
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Java class ShapeListServer with main and Java client of ShapreList 

Naming class of Java RMIregistry 
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Java class ShapeListServer with main method 

Java class ShapeListServant implements interface ShapeList 
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- 
 
 

 

 
 

Java class ShapeListServant implements interface ShapeList 

 

 

Java RMI Callbacks 

•Callbacks 
– server notifying the clients of events 

– why? 

 
 

– how 

• polling from clients increases overhead on server 

• not up-to-date for clients to inform users 

 

• remote object (callback object) on client for server to call 

• client tells the server about the callback object, server put the client on a list 

• server call methods on the callback object when events occur 

– client might forget to remove itself from the list 

• lease--client expire 
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The task of any operating system is to provide problem-oriented abstractions of the underlying 

physical resources – the processors, memory, networks, and storage media. An operating system 

such as UNIX (and its variants, such as Linux and Mac OS X) or Windows (and its variants,  

such as XP, Vista and Windows 7) provides the programmer with, for example, files rather than 

disk blocks, and with sockets rather than raw network access. It takes over the physical resources 

on a single node and manages them to present these resource abstractions through the system-call 

interface. 

 

The operating system’s middleware support role, it is useful to gain some historical perspective 

by examining two operating system concepts that have come about during the development of 

distributed systems: network operating systems and distributed operating systems. 

 
Both UNIX and Windows are examples of network operating systems. They have a networking 

capability built into them and so can be used to access remote resources. Access is network- 

transparent for some – not all – types of resource. For example, through a distributed file system 

such as NFS, users have network-transparent access to files. That is, many of the files that users 

access are stored remotely, on a server, and this is largely transparent to their applications. 
 

 

 
An operating system that produces a single system image like this for all the resources in a 

distributed system is called a distributed operating system 
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Middleware and the Operating System 

 

What is a distributed OS? 

• Presents users (and applications) with an integrated computing platform that hides 

the individual computers. 

• Has control over all of the nodes (computers) in the network and allocates their 

resources to tasks without user involvement. 

• In a distributed OS, the user doesn't know (or care) where his programs 

are running. 

• Examples: 

• Cluster computer systems 

• V system, Sprite 

• In fact, there are no distributed operating systems in general use, only network operating 

systems such as UNIX, Mac OS and Windows. 

• to remain the case, for two main reasons. 
 

The first is that users have much invested in their application software, which often meets their 

current problem-solving needs; they will not adopt a new operating system that will not run their 

applications, whatever efficiency advantages it offers. 

 

The second reason against the adoption of distributed operating systems is that users tend to 

prefer to have a degree of autonomy for their machines, even in a closely knit organization. 

 

Combination of middleware and network OS 

 

• No distributed OS in general use 

– Users have much invested in their application software 

– Users tend to prefer to have a degree of autonomy for their machines 

• Network OS provides autonomy 

• Middleware provides network-transparent access resource 

 

The relationship between OS and Middleware 

• Operating System 

– Tasks: processing, storage and communication 

– Components: kernel, library, user-level services 

• Middleware 

– runs on a variety of OS-hardware combinations 
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– remote invocations 

 
 

Functions that OS should provide for middleware 

 

The following figure shows how the operating system layer at each of two nodes supports a 
common middleware layer in providing a distributed infrastructure for applications and services. 
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Node 1 Node 2 
Encapsulation: They should provide a useful service interface to their resources – that is, a set of 

operations that meet their clients’ needs. Details such as management of memory and devices 

used to implement resources should be hidden from clients. 

Protection: Resources require protection from illegitimate accesses – for example, files are 

protected from being read by users without read permissions, and device registers are protected 

from application processes. 

Concurrent processing: Clients may share resources and access them concurrently. Resource 

managers are responsible for achieving concurrency transparency. 

Communication: Operation parameters and results have to be passed to and from resource 

managers, over a network or within a computer. 

Scheduling: When an operation is invoked, its processing must be scheduled within the kernel or 

server. 

 

The core OS components 
 

 

• Process manager 
– Handles the creation of and operations upon processes. 

 

 

 
• Thread manager 

– Thread creation, synchronization and scheduling 

• Communication manager 

– Communication between threads attached to different processes on the same 

computer 

• Memory manager 

– Management of physical and virtual memory 

• Supervisor 

– Dispatching of interrupts, system call traps and other exceptions 
– control of memory management unit and hardware caches 

processor and floating point unit register manipulations 

 

 

 

 

Process manager 

Communication 

manager 

Thread manager Memorymanager 

Supervisor 
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Software and hardware service layers in distributed systems 

 
Applications, services 

 
 
 

Middleware 

 
 

 
Operating system 
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Platform 

 

 

Middleware and Openness 

• In an open middleware-based distributed system, the protocols used by each middleware 

layer should be the same, as well as the interfaces they offer to applications. 
 
 

Typical Middleware Services 

• Communication 

• Naming 

• Persistence 

• Distributed transactions 

• Security 

Middleware Models 

• Distributed files 

– Examples? 

• Remote procedure call 

– Examples? 

 
• Distributed objects 

– Examples? 

• Distributed documents 

– Examples? 

• Others? 

– Message-oriented middleware (MOM) 

– Service oriented architecture (SOA) 

– Document-oriented 

Middleware and the Operating System 

• Middleware implements abstractions that support network-wide programming. Examples: 
• RPC and RMI (Sun RPC, Corba, Java RMI) 

• event distribution and filtering (Corba Event Notification, Elvin) 
• resource discovery for mobile and ubiquitous computing 

• support for multimedia streaming 

• Traditional OS's (e.g. early Unix, Windows 3.0) 

– simplify, protect and optimize the use of local resources 

• Network OS's (e.g. Mach, modern UNIX, Windows NT) 
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– do the same but they also support a wide range of communication standards and 

enable remote processes to access (some) local resources (e.g. files). 

DOS vs. NOS vs. Middleware Discussion 

• What is good/bad about DOS? 
– Transparency 

– Other issues have reduced success. 
– Problems are often socio-technological. 

• What is good/bad about NOS? 

– Simple. 

– Decoupled, easy to add/remove. 

– Lack of transparency. 

• What is good/bad about middleware? 

– Easy to make multiplatform. 

– Easy to start something new. 

• But this can also be bad. 

Types of Distributed Oss 

System Description Main Goal 

 

DOS 
Tightly-coupled 

multi-processors 

multicomputers 

operating 

and 

system for 

homogeneous 
Hide and 

resources 

manage hardware 

 

NOS 
Loosely-coupled operating system for 

heterogeneous multicomputers (LAN and 

WAN) 

Offer local services to remote 

clients 

 

Middleware Additional layer atop of NOS 

implementing general-purpose services 

 

Provide distribution transparency 

Illegitimate access 

 

• Maliciously contrived code 

• Benign code 

– contains a bug 

– have unanticipated behavior 

• Example: read and write in File System 

– Illegal user vs. access right control 
– Access the file pointer variable directly (setFilePointerRandomly) vs. type-safe 

language 

• Type–safe language, e.g. Java or Modula-3 

• Non-type-safe language, e.g. C or C++ 

Kernel and Protection 

• Kernel 

– always runs 



Page | 105  

 

– complete access privileges for the physical resources 

• Different execution mode 

– An address space: a collection of ranges of virtual memory locations, in each of 

which a specified combination of memory access rights applies, e.g.: read only or 

read-write 

– supervisor mode (kernel process) / user mode (user process) 

– Interface between kernel and user processes: system call trap 

• The price for protection 

– switching between different processes take many processor cycles 

– a system call trap is a more expensive operation than a simple method call 

The System Clock 

 
 

 
 

Process and thread 

 
• Process 

– A program in execution 
– Problem: sharing between related activities are awkward and expensive 

– Nowadays, a process consists of an execution environment together with one or 

more threads 

– an analogy at page 215 

• Thread 

– Abstraction of a single activity 
– Benefits 

• Responsiveness 
• Resource sharing 

• Economy 

• Utilization of MP architectures 
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Execution environment 

 

• the unit of resource management 

• Consist of 

– An address space 
– Thread synchronization and communication resources such as semaphores and 

communication interfaces (e.g. sockets) 

– Higher-level resources such as open files and windows 

• Shared by threads within a process 

Address space 

• Address space 

– a unit of management of a process’s virtual memory 

– Up to 232 bytes and sometimes up to 264 bytes 

– consists of one or more regions 

• Region 

 

– an area of continuous virtual memory that is accessible by the threads of the 

owning process 

• The number of regions is indefinite 

– Support a separate stack for each thread 

 

– access mapped file 

– Share memory between processes 

• Region can be shared 

– Libraries 
– Kernel 

– Shared data and communication 
– Copy-on-write 
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Creation of new process in distributed system 

 

• Creating process by the operation system 

– Fork, exec in UNIX 

• Process creation in distributed system 

– The choice of a target host 

– The creation of an execution environment, an initial thread 
 

Choice of process host 

 

• Choice of process host 

– running new processes at their originator’s computer 

– sharing processing load between a set of computers 

• Load sharing policy 

– Transfer policy: situate a new process locally or remotely? 
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– Location policy: which node should host the new process? 

• Static policy without regard to the current state of the system 
• Adaptive policy applies heuristics to make their allocation decision 

– Migration policy: when&where should migrate the running process? 

 
• Load sharing system 

– Centralized 
– Hierarchical 

– Decentralized 

 

Creation of a new execution environment 

 

• Initializing the address space 

– Statically defined format 

– With respect to an existing execution environment, e.g. fork 

• Copy-on-write scheme 
 

 

 
Threads concept and implementation 
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Client and server with threads 
 

State associated with execution environments and threads 

Alternative server threading architectures 

workers 
per-connectionthreads per-objectthreads 

I/O remote 

objects 

   remote 

objects 

I/O remote 

objects 

a. Thread-per-request b.Thread-per-connection c. Thread-per-object 

Threads versus multiple processes 

 

• Creating a thread is (much) cheaper than a process (~10-20 times) 

• Switching to a different thread in same process is (much) cheaper (5-50 times) 

• Threads within same process can share data and other resources more conveniently and 

efficiently (without copying or messages) 

• Threads within a process are not protected from each other 
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Threads implementation 

 

Threads can be implemented: 

 

– in the OS kernel (Win NT, Solaris, Mach) 

– at user level (e.g. by a thread library: C threads, pthreads), or in the language 

(Ada, Java). 

 

+ lightweight - no system calls 

 

+ modifiable scheduler 

 

+ low cost enables more threads to be employed 

 

- not pre-emptive 

- can exploit multiple processors 

- - page fault blocks all threads 
– hybrid approaches can gain some advantages of both 

- user-level hints to kernel scheduler 

- hierarchic threads (Solaris 2) 

- event-based (SPIN, FastThreads) 
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Implementation of invocation mechanisms 

 

• Communication primitives 

– TCP(UDP) Socket in Unix and Windows 
– DoOperation, getRequest, sendReply in Amoeba 

– Group communication primitives in V system 

• Protocols and openness 

– provide standard protocols that enable internetworking between middleware 
– integrate novel low-level protocols without upgrading their application 

– Static stack 
• new layer to be integrated permanently as a ―driver‖ 

– Dynamic stack 

• protocol stack be composed on the fly 

• E.g. web browser utilize wide-area wireless link on the road and faster 

Ethernet connection in the office 

• Invocation costs 

– Different invocations 
– The factors that matter 

• synchronous/asynchronous, domain transition, communication across a 

network, thread scheduling and switching 

• Invocation over the network 

– Delay: the total RPC call time experienced by a client 
– Latency: the fixed overhead of an RPC, measured by null RPC 

– Throughput: the rate of data transfer between computers in a single RPC 
– An example 

• Threshold: one extra packet to be sent, might be an extra acknowledge 

packet is needed 

Invocations between address spaces 
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Support for communication and invocation 

• The performance of RPC and RMI mechanisms is critical for effective distributed 
systems. 

– Typical times for 'null procedure call': 

– Local procedure call < 1 microseconds 

– Remote procedure call ~ 10 milliseconds 

– 'network time' (involving about 100 bytes transferred, at 100 megabits/sec.) 

accounts for only .01 millisecond; the remaining delays must be in OS and 

middleware - latency, not communication time. 

• Factors affecting RPC/RMI performance 

– marshalling/unmarshalling + operation despatch at the server 

– data copying:- application -> kernel space -> communication buffers 

– thread scheduling and context switching:- including kernel entry 

– protocol processing:- for each protocol layer 

– network access delays:- connection setup, network latency 

 

Improve the performance of RPC 

• Memory sharing 

– rapid communication between processes in the same computer 

• Choice of protocol 
– TCP/UDP 

• E.g. Persistent connections: several invocations during one 

– OS’s buffer collect several small messages and send them together 

• Invocation within a computer 

– Most cross-address-space invocation take place within a computer 

– LRPC (lightweight RPC) 

 

RPC delay against parameter size 
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A client stub marshals the call arguments into a message, sends the request message and 

receives and unmarshals the reply. 

At the server, a worker thread receives the incoming request, or an I/O threadreceives the 

request and passes it to a worker thread; in either case, the worker calls the appropriate 

server stub. 

The server stub unmarshals the request message, calls the designated procedure, and 

marshals and sends the reply. 

The following are the main components accounting for remote invocation delay, besides 

network transmission times: 

Marshalling: Marshalling and unmarshalling, which involve copying and converting data, create 
a significant overhead as the amount of data grows. 

 
Data copying: Potentially, even after marshalling, message data is copied several times in the 

course of an RPC: 

1. across the user–kernel boundary, between the client or server address space and kernel 

buffers; 

2. across each protocol layer (for example, RPC/UDP/IP/Ethernet); 
3. between the network interface and kernel buffers. 

Transfers between the network interface and main memory are usually handled by direct 

memory access (DMA). The processor handles the other copies. 

 

Packet initialization: This involves initializing protocol headers and trailers, including 

checksums. The cost is therefore proportional, in part, to the amount of data sent. 

 
Thread scheduling and context switching: These may occur as follows: 

1. Several system calls (that is, context switches) are made during an RPC, as stubs 

invoke the kernel’s communication operations. 

2. One or more server threads is scheduled. 

3. If the operating system employs a separate network manager process, then each 

 

Send involves a context switch to one of its threads. 

 
Waiting for acknowledgements: The choice of RPC protocol may influence delay, particularly 
when large amounts of data are sent. 
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A lightweight remote procedure call 

 
 

Bershad's LRPC 

 

 Uses shared memory for interprocess communication 

– while maintaining protection of the two processes 

– arguments copied only once (versus four times for convenitional RPC) 

 Client threads can execute server code 

– via protected entry points only (uses capabilities) 

 Up to 3 x faster for local invocations 
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Asynchronous operation 

• Performance characteristics of the Internet 
– High latencies, low bandwidths and high server loads 

– Network disconnection and reconnection. 
– outweigh any benefits that the OS can provide 

• Asynchronous operation 

– Concurrent invocations 

• E.g., the browser fetches multiple images in a home page by concurrent 

GET requests 

– Asynchronous invocation: non-blocking call 

• E.g., CORBA oneway invocation: maybe semantics, or collect result by a 

separate call 

• Persistent asynchronous invocations 

– Designed for disconnected operation 

– Try indefinitely to perform the invocation, until it is known to have succeeded or 

failed, or until the application cancels the invocation 

– QRPC (Queued RPC) 

• Client queues outgoing invocation requests in a stable log 

• Server queues invocation results 

• The issues to programmers 

– How user can continue while the results of invocations are still not known? 

 

The following figure shows the potential benefits of interleaving invocations (such as HTTP 

requests) between a client and a single server on a single-processor machine. In the serialized 

case, the client marshals the arguments, calls the Send operation and then waits until the reply 

from the server arrives – whereupon it Receives, unmarshals and then processes the results. After 

this it can make the second invocation. 
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Times for serialized and concurrent invocations 

 
 

In the concurrent case, the first client thread marshals the arguments and calls the Send  

operation. The second thread then immediately makes the second invocation. Each thread waits 

to receive its results. The total time taken is liable to be lower than in the serialized case, as the 

figure shows. Similar benefits apply if the client threads make concurrent requests to several 

servers, and if the client executes on a multiprocessor even greater throughput is potentially 

possible, since the two threads’ processing can also be overlapped. 

 
Operating System Architecture 

 

 A key principle of distributed systems is openness. 

 The major kernel architectures: 

 Monolithic kernels 

 Micro-kernels 

 
 An open distributed system should make it possible to: 

 Run only that system software at each computer that is necessary for its particular 

role in the system architecture. For example, system software needs for PDA and 

dedicated server are different. Loading redundant modules wastes memory 

resources. 

 Allow the software (and the computer) implementing any particular service to be 

changed independent of other facilities. 

 Allow for alternatives of the same service to be provided, when this is required to 

suit different users or applications. 



Page | 118  

 

ram: 

 Introduce new services without harming the integrity of existing ones. 

 A guiding principle of operating system design: 

 The  separation  of  fixed  resource  management   ―mechanisms―   from   resource 

management ―policies‖, which vary from application to application and service to 

service. 

 For example, an ideal scheduling system would provide mechanisms that enable a 

multimedia application such as videoconferencing to meet its real-time demands 

The kernel would provide only the most basic mechanisms upon which the 

general resource management tasks at a node are carried out. 

 Server modules would be dynamically loaded as required, to implement the 

required resourced management policies for the currently running applications. 

 while coexisting with a non-real-time application such as web browsing. 

 

 Monolithic Kernels 

 A monolithic kernel can contain some server processes that execute within its 

address space, including file servers and some networking. 

 The code that these processes execute is part or the standard kernel configuration. 

Monolithic kernel and microkernel 

 

 

....... 

 
....... 

 

 

 

Key: 
MonolithicKernel Microkernel 

 

Server: 

 Microkernel 

Kernelcodeanddata: Dynamically loaded serverprog 

 The microkernel appears as a layer between hardware layer and a layer consisting 

of major systems. 

If performance is the goal, rather than portability, then middleware may use the 

facilities of the microkernel directly. 

 

The role of the microkernel 
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Microkernel 

Hardware 

The microkernel supports middleware via subsystems 

 Monolithic and Microkernel comparison 

 The advantages of a microkernel 

 Its extensibility 

 Its ability to enforce modularity behind memory protection boundaries. 

 Its small kernel has less complexity. 

 The advantages of a monolithic 

 The relative efficiency with which operations can be invoked because 

even invocation to a separate user-level address space on the same node is 

more costly. 

 

 Hybrid Approaches 

 Pure microkernel operating system such as Chorus & Mach have changed over a 

time to allow servers to be loaded dynamically into the kernel address space or 

into a user-level address space. 

In some operating system such as SPIN, the kernel and all dynamically loaded 

modules grafted onto the kernel execute within a single address space 

Case Study of a Distributed Operating System 

 

Introduction to Amoeba 

 
Originated at a university in Holland, 1981 

Currently used in various EU countries 

Built from the ground up. UNIX emulation added later 

Goal was to build a transparent distributed operating system 

Resources, regardless of their location, are managed by the system, and the user is 

unaware of where processes are actually run 
 

 

 

The Amoeba System Architecture 

 

 Assumes that a large number of CPUsare available and that each CPU ha 10s of Mb of 

memory 

 CPUs are organised into processor pools 
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 CPUs do not need to be of the same architecture (can mix SPARC, Motorola PowerPC, 

680x0, Intel, Pentium, etc.) 

 When a user types a command, system determines which CPU(s) to execute it on. CPUs 

can be timeshared. 

Terminals are X-terminals or PCs running X emulators 

The processor pool doesn't have to be composed of CPU boards enclosed in a cabinet, 

they can be on PCs, etc., in different rooms, countries,... 

 Some servers (e.g., file servers) run on dedicated processors, because they need to be 

available all the time 

The Amoeba Microkernel 

 

 The Amoeba microkernel is used on all terminals (with an on-board processor), 

processors, and servers 

 The microkernel 

 

manages processes and threads 

 

provides low-level memory management support 

 

supports interprocess communication (point-to-point and group) 

handles low-level I/O for the devices attached to the machine 

 

 

 

The Amoeba Servers: Introduction 

 
OS functionality not provided by the microkernel is performed by Amoeba servers 
To use a server, the client calls a stub procedure which marshalls parameters, sends the 

message, and blocks until the result comes back 

 

Server Basics 

 
Amoeba uses capabilities 

Every OS data structure is an object, managed by a server 
To perform an operation on an object, a client performs an RPC with the appropriate 

server, specifying the object, the operation to be performed and any parameters needed. 

 The operation is transparent (client does not know where server is, nor how the operation 

is performed) 

 Capabilites 

 

To create an object the client performs an RPC with the server 

Server creates the object and returns a capability 

To use the object in the future, the client must present the correct capability 
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The check field is used to protect the capability against forgery 

 

 Object protection 

When an object is created, server generates random check field, which it stores both in 

the capability and in its own tables 

 

The rights bits in the capability are set to on 

 
The server sends the owner capability back to the client 

Creating a capability with restricted rights 

 

Client can send this new capability to another process 
 

 

 

Process Management 

 
All processes are objects protected by capabilities 

Processes are managed at 3 levels 

 

by process servers, part of the microkernel 

by library procedures which act as interfaces 

by the run server, which decides where to run the processes 

 

 Process management uses process descriptors 

Contains: 

platform description 

process' owner's capability 

etc 
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Memory Management 

 
Designed with performance, simplicity and economics in mind 

Process occupies contiguous segments in memory 

All of a process is constantly in memory 

Process is never swapped out or paged 
 

 

 

Communication 

 

 Point-to-point (RPC) and Group 
 

 

 

 

The Amoeba Servers 

 

The File System 

 

 Consists of the Bullet (File) Server, the Directory Server, and the Replication Server 

 

The Bullet Server 

 
Designed to run on machines with large amounts of RAM and huge local disks 

Used for file storage 

Client process creates a file using the create call 

Bullet server returns a capability that can be used to read the file with 

Files are immutable, and file size is known at file creation time. Contiguous allocation 

policies used 

 

The Directory Server 

 
Used for file naming 
Maps from ASCII names to capabilities 

Directories also protected by capabilities 

Directory server can be used to name ANY object, not just files and directories 

The Replication Server 

Used for fault tolerence and performance 

Replication server creates copies of files, when it has time 

Other Amoeba Servers 

The Run Server 

 When user types a command, two decisions have to be made 
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On which architecture should the process be run? 

Which processor should be chosen? 

 Run server manages the processor pools 

 

 

Uses processes process descriptor to identify appropriate target architecture 
Checks which of the available processors have sufficient memory to run the process 

Estimates which of the remaining processor has the most available compute power 

 

The Boot Server 

 
Provides a degree of fault tolerance 

Ensures that servers are up and running 

If it discovers that a server has crashed, it attempts to restart it, otherwise selects another 

processor to provide the service 

 Boot server can be replicated to guard against its own failure 
 

 

 
 

 

 

 
 

 

PEER-TO-PEER SYSTEMS 

Peer-to-peer (P2P) computing or networking is a distributed application architecture that partitions 

tasks or work loads between peers. Peers are equally privileged, equipotent participants in the 

application. They are said to form a peer-to-peer network of nodes. 

Peers make a portion of their resources, such as processing power, disk storage or network and 

width, directly available to other network participants, without the need for central coordination by 
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servers or stable hosts.[1] Peers are both suppliers and consumers of resources, in contrast to the 

traditional client-server model in which the consumption and supply of resources is divided. 

Emerging collaborative P2P systems are going beyond the era of peers doing similar things while 

sharing resources, and are looking for diverse peers that can bring in unique resources and 

capabilities to a virtual community thereby empowering it to engage in greater tasks beyond those 

that can be accomplished by individual peers, yet that are beneficial to all the peers.[2] 

While P2P systems had previously been used in many application domains,[3] the architecture was 

popularized by the file sharing system Napster, originally released in 1999. The concept has inspired 

new structures and philosophies in many areas of human interaction. In such social contexts, peer- 

to-peer as a meme refers to theegalitarian social networking that has emerged throughout society, 

enabled by Internettechnologies in general. 

The demand for services in the Internet can be expected to grow to a scale that is limited only by the 

size of the world’s population. The goal of peer-to-peer systems is to enable the sharing of data and 

resources on a very large scale by eliminating any requirement for separately managed servers and 

their associated infrastructure. The scope for expanding popular services by adding to the number of 

the computers hosting them is limited when all the hosts must be owned and managed by the service 

provider. Administration and fault recovery costs tend to dominate. The network bandwidth that can 

be provided to a single server site over available physical links is also a major constraint. System- 

level services such as Sun NFS (Section 12.3), the Andrew File System (Section 12.4) or video 

servers (Section 20.6.1) and application-level services such as Google, Amazon or eBay all exhibit 

this problem to varying degrees. 

 

Peer-to-peer systems aim to support useful distributed services and applications using data and 

computing resources available in the personal computers and workstations that are present in the 

Internet and other networks in ever-increasing numbers. This is increasingly attractive as the 

performance difference between desktop and server machines narrows and broadband network 

connections proliferate. But there is another, broader aim: has defined peer-topeer applications as 

‘applications that exploit resources available at the edges of the Internet – storage, cycles, content, 

human presence’. Each type of resource sharing mentioned in that definition is already represented 

by distributed applications available for most types of personal computer. The purpose of this 

chapter is to describe some general techniques that simplify the construction of peer-to-peer 

applications and enhance their scalability, reliability and security. 

 

Traditional client-server systems manage and provide access to resources such as files, web pages or 

other information objects located on a single server computer or a small cluster of tightly coupled 

https://en.wikipedia.org/wiki/Peer-to-peer#cite_note-1
https://en.wikipedia.org/wiki/Client-server
https://en.wikipedia.org/wiki/Peer-to-peer#cite_note-CP2P-2
https://en.wikipedia.org/wiki/Peer-to-peer#cite_note-D._Barkai.2C_2002-3
https://en.wikipedia.org/wiki/Napster
https://en.wikipedia.org/wiki/Peer-to-peer_(meme)
https://en.wikipedia.org/wiki/Peer-to-peer_(meme)
https://en.wikipedia.org/wiki/Egalitarianism
https://en.wikipedia.org/wiki/Egalitarianism
https://en.wikipedia.org/wiki/Internet
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servers. With such centralized designs, few decisions are required about the placement of the 

resources or the management of server hardware resources, but the scale of the service is limited by 

the server hardware capacity and network connectivity. Peer-to-peer systems provide access to 

information resources located on computers throughout a network (whether it be the Internet or a 

corporate network). Algorithms for the placement and subsequent retrieval of information objects 

are a key aspect of the system design. The aim is to deliver a service that is fully decentralized and 

self-organizing, dynamically balancing the storage and processing loads between all the 

participating computers as computers join and leave the service. Peer-to-peer systems share these 

characteristics: 

• Their design ensures that each user contributes resources to the system. 
• Although they may differ in the resources that they contribute, all the nodes in a peer-to-peer 

system have the same functional capabilities and responsibilities. 

• Their correct operation does not depend on the existence of any centrally administered systems. 

• They can be designed to offer a limited degree of anonymity to the providers and users of 

resources. 

• A key issue for their efficient operation is the choice of an algorithm for the placement of data 

across many hosts and subsequent access to it in a manner that balances the workload and ensures 

availability without adding undue overheads. 

Napster and its legacy 
The first application in which a demand for a globally scalable information storage and retrieval 

service emerged was the downloading of digital music files. Both the need for and the feasibility of  

a peer-to-peer solution were first demonstrated by the Napster filesharing system [OpenNap 2001] 

which provided a means for users to share files. Napster became very popular for music exchange 

soon after its launch in 1999. At its peak, several million users were registered and thousands were 

swapping music files simultaneously. Napster’s architecture included centralized indexes, but users 

supplied the files, which were stored and accessed on their personal computers. Napster’s method of 

operation is illustrated by the sequence of steps shown in Figure 10.2. 
 

 
Note that in step 5clients are expected to add their own music files to the pool of shared resources by 

transmitting a link to the Napster indexing service for each available file. Thus the motivation for 

Napster and the key to its success was the making available of a large, widely distributed set of files 

to users throughout the Internet, fulfilling Shirky’s dictum by providing access to ‘shared resources 

at the edges of the Internet’. Napster was shut down as a result of legal proceedings instituted  

against the operators of the Napster service by the owners of the copyright in some of the material 
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(i.e., digitally encoded music) that was made available on it (see the box below). Anonymity for the 

receivers and the providers of shared data and other resources is a concern for the designers of peer- 

to-peer systems. In systems with many nodes, the routing of requests and results can be made 

sufficiently tortuous to conceal their source and the contents of files can be distributed across 

multiple nodes, spreading the responsibility for making them available. Mechanisms for anonymous 

communication that are resistant to most forms of traffic analysis are available If files are also 

encrypted before they are placed on servers, the owners of the servers can plausibly deny any 

knowledge of the contents. But these anonymity techniques add to the cost of resource sharing, and 

recent work has shown that the anonymity available is weak against some attacks The Freenet 

projects are focused on providing Internet-wide file services that offer anonymity for the providers 

and users of the shared files. Ross Anderson has proposed the Eternity Service , a storage service 

that provides long-term guarantees of data 

 

Peer-to-peer systems and copyright ownership issues 

 

The developers of Napster argued that they were not liable for the infringement of the 

copyright owners’ rights because they were not participating in the copying process, which was 

performed entirely between users’ machines. Their argument failed because the index servers were 

deemed an essential part of the process. Since the index servers were located at well-known 

addresses, their operators were unable to remain anonymous and so could be targeted in lawsuits. 

A more fully distributed file-sharing service might have achieved a better separation of legal 

responsibilities, spreading the responsibility across all of the users and thus making the pursuit of 

legal remedies very difficult, if not impossible. 

Whatever view one takes about the legitimacy of file copying for the purpose of sharing copyright- 

protected material, there are legitimate social and political justifications for the anonymity of clients 

and servers in some application contexts. The most persuasive justification arises when anonymity is 

used to overcome censorship and maintain freedom of expression for individuals in oppressive 

societies or organizations. It is known that email and web sites have played a significant role in 

achieving public awareness at times of political crisis in such societies; their role could be 

strengthened if the authors could be protected by anonymity. 

Peer-to-peer middleware systems are designed specifically to meet the need for the automatic 

placement and subsequent location of the distributed objects managed by peer-to-peer systems and 

applications. 

Functional requirements • The function of peer-to-peer middleware is to simplify the construction 

of services that are implemented across many hosts in a widely distributed network. To achieve this 

it must enable clients to locate and communicate with any individual resource made available to a 

service, even though the resources are widely distributed amongst the hosts. Other important 

requirements include the ability to add new resources and to remove them at will and to add hosts to 

the service and remove them. Like other middleware, peer-to-peer middleware should offer a simple 

programming interface to application programmers that is independent of the types of distributed 

resource that the application manipulates. 

Non-functional requirements • To perform effectively, peer-to-peer middleware must also address 

the following non-functional requirements 

Global scalability: One of the aims of peer-to-peer applications is to exploit the hardware resources 

of very large numbers of hosts connected to the Internet. Peer-topeer middleware must therefore be 

designed to support applications that access millions of objects on tens of thousands or hundreds of 

thousands of hosts. 

Load balancing: The performance of any system designed to exploit a large number of computers 

depends upon the balanced distribution of workload across them. For the systems we are 
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considering, this will be achieved by a random placement of resources together with the use of 

replicas of heavily used resources. 

Optimization for local interactions between neighbouring peers: The ‘network distance’ between 

nodes that interact has a substantial impact on the latency of individual interactions, such as client 

requests for access to resources. Network traffic loadings are also impacted by it. The middleware 

should aim to place resources close to the nodes that access them the most. 

Accommodating to highly dynamic host availability: Most peer-to-peer systems are 

constructed from host computers that are free to join or leave the system at any time. The hosts and 

network segments used in peer-to-peer systems are not owned or managed by any single authority; 

neither their reliability nor their continuous participation in the provision of a service is guaranteed. 

A major challenge for peerto- peer systems is to provide a dependable service despite these facts. As 

hosts join the system, they must be integrated into the system and the load must be redistributed 

to exploit their resources. When they leave the system whether voluntarily or involuntarily, the 

system must detect their departure and redistribute their load and resources. 

 

Routing overlays 

 
In peer-to-peer systems a distributed algorithm known as a routing overlay takes responsibility for 

locating nodes and objects. The name denotes the fact that the middleware takes the form of a layer 

that is responsible for routing requests from any client to a host that holds the object to which the 

request is addressed. The objects of interest may be placed at and subsequently relocated to any node 

in the network without client involvement. It is termed an overlay since it implements a routing 

mechanism in the application layer that is quite separate from any other routing mechanisms 

deployed at the network level such as IP routing. The routing overlay ensures that any node can 

access any object by routing each request through a sequence of nodes, exploiting knowledge  at 

each of them to locate the destination object. Peer-to-peer systems usually store multiple replicas of 

objects to ensure availability. In that case, the routing overlay maintains knowledge of the location 

of all the available replicas and delivers requests to the nearest ‘live’ node (i.e. one that has not 

failed) that has a copy of the relevant object. The GUIDs used to identify nodes and objects are an 

example of the ‘pure’ names. These are also known as opaque identifiers, since they reveal nothing 

about the locations of the objects to which they refer. The main task of a routing overlay is the 

following: 

Routing of requests to objects: A client wishing to invoke an operation on an object submits a 

request including the object’s GUID to the routing overlay, which routes the request to a node at 

which a replica of the object resides. 

But the routing overlay must also perform some other tasks: 

Insertion of objects: A node wishing to make a new object available to a peer-to-peer service 

computes a GUID for the object and announces it to the routing overlay,which then ensures that the 

object is reachable by all other clients. 

Deletion of objects: When clients request the removal of objects from the service the routing overlay 

must make them unavailable. 

Node addition and removal: Nodes (i.e., computers) may join and leave the service. When a node 

joins the service, the routing overlay arranges for it to assume some of the responsibilities of other 

nodes. When a node leaves (either voluntarily or as a result of a system or network fault), its 

responsibilities are distributed amongst the other nodes. 

 

Overlay case studies: Pastry, Tapestry 

 

The prefix routing approach is adopted by both Pastry and Tapestry. Pastry is the message 

routing infrastructure deployed in several applications including PAST [Druschel and Rowstron 
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2001], an archival (immutable) file storage system implemented as a distributed hash table with the 
 

API and Squirrel, a peerto- peer web caching service described. Pastry has a straightforward but 

effective design that makes it a good first example for us to study in detail. Tapestry is the basis for 

the OceanStore storage system, which we describe in . It has a more complex architecture than 

Pastry because it aims to support a wider range of locality approaches. 

Pastry 

All the nodes and objects that can be accessed through Pastry are assigned 128-bit GUIDs. 

For nodes, these are computed by applying a secure hash function to the public key with which each 

node is provided. For objects such as files, the GUID is computed by applying a secure hash 

function to the object’s name or to some part of the object’s stored state. The resulting GUIDs have 

the usual properties of secure hash values – that is, they are randomly distributed in the range 0 to 

2128–1. They provide no clues as to the value from which they were computed, and clashes between 

GUIDs for different nodes or objects are extremely unlikely. (If a clash occurs, Pastry detects it and 

takes remedial action.) In a network with N participating nodes, the Pastry routing algorithm will 

correctly route a message addressed to any GUID in O(log N) steps. If the GUID identifies a node 

that is currently active, the message is delivered to that node; otherwise, the message is delivered to 

the active node whose GUID is numerically closest to it. Active nodes take responsibility for 

processing requests addressed to all objects in their numerical neighbourhood. Routing steps involve 

the use of an underlying transport protocol (normally UDP) to transfer the message to a Pastry node 

that is ‘closer’ to its destination. But note that the closeness referred to here is in an entirely artificial 

space – the space of GUIDs. The real transport of a message across the Internet between two Pastry 

nodes may require a substantial number of IP hops. 
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                                                                          UNIT IV  

 

Distributed File Systems: Introduction, File service Architecture, Case Study1: Sun Network File System, 

Case Study 2: The Andrew File System. 

Name Services: Introduction, Name Services and the Domain Name System, Directory Services, Case study     

of the Global Name Service. 

Distributed Shared Memory: Introduction Design and Implementation issues, Sequential consistency and 

Ivy case study, Release consistency and Munin case study, other consistency models. 

 

 

DISTRIBUTED FILE SYSTEMS 

 

A file system is responsible for the organization, storage, retrieval, naming, sharing, and 

protection of files. File systems provide directory services, which convert a file name (possibly a 

hierarchical one) into an internal identifier (e.g. inode, FAT index). They contain a  

representation of the file data itself and methods for accessing it (read/write). The file system is 

responsible for controlling access to the data and for performing low-level operations such as 

buffering frequently used data and issuing disk I/O requests. 

 

A distributed file system is to present certain degrees of transparency to the user and the system: 

Access transparency: Clients are unaware that files are distributed and can access them in the 

same way as local files are accessed. 

Location transparency: A consistent name space exists encompassing local as well as remote 
files. The name of a file does not give it location. 

Concurrency transparency: All clients have the same view of the state of the file system. This 

means that if one process is modifying a file, any other processes on the same system or remote 
systems that are accessing the files will see the modifications in a coherent manner. 

Failure transparency: The client and client programs should operate correctly after a server 
failure. 

Heterogeneity: File service should be provided across different hardware and operating system 
platforms. 

Scalability: The file system should work well in small environments (1 machine, a dozen 

machines) and also scale gracefully to huge ones (hundreds through tens of thousands of 

systems). 

Replication transparency: To support scalability, we may wish to replicate files across  
multiple servers. Clients should be unaware of this. 

Migration transparency: Files should be able to move around without the client's knowledge. 
Support fine-grained distribution of data: To optimize performance, we may wish to locate 
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individual objects near the processes that use them. 

Tolerance for network partitioning: The entire network or certain segments of it may be 
unavailable to a client during certain periods (e.g. disconnected operation of a laptop). The file 
system should be tolerant of this. 

 
File service types 

 
To provide a remote system with file service, we will have to select one of two models of 

operation. One of these is the upload/download model. In this model, there are two fundamental 

operations: read file transfers an entire file from the server to the requesting client, and write file 

copies the file back to the server. It is a simple model and efficient in that it provides local access 

to the file when it is being used. Three problems are evident. It can be wasteful if the client needs 

access to only a small amount of the file data. It can be problematic if the client doesn't have 

enough space to cache the entire file. Finally, what happens if others need to modify the same 

file? 

 

The second model is a remote access model. The file service provides remote operations such as 

open, close, read bytes, write bytes, get attributes, etc. The file system itself runs on servers. The 

drawback in this approach is the servers are accessed for the duration of file access rather than 

once to download the file and again to upload it. 

 

Another important distinction in providing file service is that of understanding the difference 

between directory service and file service. A directory service, in the context of file systems, 

maps human-friendly textual names for files to their internal locations, which can be used by the 

file service. The file service itself provides the file interface (this is mentioned above). Another 

component of file distributed file systems is the client module. This is the client-side interface for 

file and directory service. It provides a local file system interface to client software (for example, 

the vnode file system layer of a UNIX kernel). 

 

Introduction 

 File system were originally developed for centralized computer systems and desktop 

computers. 

 File system was as an operating system facility providing a convenient programming 

interface to disk storage. 

 Distributed file systems support the sharing of information in the form of files and 

hardware resources. 

 With the advent of distributed object systems (CORBA, Java) and the web, the picture 

has become more complex. 

 Figure 1 provides an overview of types of storage system. 
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Figure 1. Storage systems and their properties 

 
 

 

 

 

 Figure 2 shows a typical layered module structure for the implementation of a non- 

distributed file system in a conventional operating system. 

 

Figure 2. File system modules 
 

 

 
 File systems are responsible for the organization, storage, retrieval, naming, sharing and 

protection of files. 

 Files contain both data and attributes. 

 A typical attribute record structure is illustrated in Figure 3. 

 

Figure 3. File attribute record structure 
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 Figure 4 summarizes the main operations on files that are available to applications in 

UNIX systems. 
 

 
 Distributed File system requirements 

 Related requirements in distributed file systems are: 

 Transparency 

 Concurrency 

 Replication 

 Heterogeneity 

 Fault tolerance 

 Consistency 

 Security 

 Efficiency 

Case studies 
File service architecture • This is an abstract architectural model that underpins both 

NFS and AFS. It is based upon a division of responsibilities between three modules – a 

client module that emulates a conventional file system interface for application 

programs, and server modules, that perform operations for clients on directories and on 

files. The architecture is designed to enable a stateless implementation of the server 

module. 

 

SUN NFS • Sun Microsystems’s Network File System (NFS) has been widely adopted 

in industry and in academic environments since its introduction in 1985. The design 

and development of NFS were undertaken by staff at Sun Microsystems in 1984. 

Although several distributed file services had already been developed and used in 

universities and research laboratories, NFS was the first file service that was designed 

as a product. The design and implementation of NFS have achieved success both 

technically and commercially. 

 

Andrew File System • Andrew is a distributed computing environment developed at 

Carnegie Mellon University (CMU) for use as a campus computing and information 

system. The design of the Andrew File System (henceforth abbreviated AFS) reflects 
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an intention to support information sharing on a large scale by minimizing client-server 

communication. This is achieved by transferring whole files between server and client 

computers and caching them at clients until the server receives a more up-to-date 

version. 

 

File Service Architecture 

 
 An architecture that offers a clear separation of the main concerns in providing access 

to files is obtained by structuring the file service as three components: 
 A flat file service 

 A directory service 

 A client module. 

 The relevant modules and their relationship is shown in Figure 5. 

 

Figure 5. File service architecture 
 

 

 The Client module implements exported interfaces by flat file and directory services 

on server side. 

 Responsibilities of various modules can be defined as follows: 
 Flat file service: 

 Concerned with the implementation of operations on the contents of file. 
Unique File Identifiers (UFIDs) are used to refer to files in all requests 
for 

flat file service operations. UFIDs are long sequences of bits chosen 

so that each file has a unique among all of the files in a distributed 

system. 

 Directory service: 

 Provides mapping between text names for the files and their UFIDs. 

Clients may obtain the UFID of a file by quoting its text name to 

directory service. Directory service supports functions needed generate 

directories, to add new files to directories. 

 Client module: 

 It runs on each computer and provides integrated service (flat file and 

directory) as a single API to application programs. For example, in 

UNIX hosts, a client module emulates the full set of Unix file 

operations. 
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 It holds information about the network locations of flat-file and 

directory server processes; and achieve better performance through 

implementation of a cache of recently used file blocks at the client. 

 Flat file service interface: 

 Figure 6 contains a definition of the interface to a flat file service. 

 

 
 

Figure 6. Flat file service operations 
 

 

 Access control 
 In distributed implementations, access rights checks have to be 

performed at the server because the server RPC interface is an 

otherwise unprotected point of access to files. 

 Directory service interface 

 Figure 7 contains a definition of the RPC interface to a directory service. 

 

Figure 7. Directory service operations 
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 Hierarchic file system 
 A hierarchic file system such as the one that UNIX provides consists of a 

number of directories arranged in a tree structure. 

 File Group 

 A file group is a collection of files that can be located on any server or 

moved between servers while maintaining the same names. 

– A similar construct is used in a UNIX file system. 

– It helps with distributing the load of file serving between several 

servers. 

– File groups have identifiers which are unique throughout the 

system (and hence for an open system, they must be globally 

unique). 

 

To construct globally unique ID we use some unique attribute of the machine on which it 

is created. E.g: IP number, even though the file group may move subsequently. 
 

 
DFS: Case Studies 

 

 NFS (Network File System) 

 Developed by Sun Microsystems (in 1985) 

 Most popular, open, and widely used. 

 NFS protocol standardized through IETF (RFC 1813) 

 AFS (Andrew File System) 

 Developed by Carnegie Mellon University as part of Andrew distributed 

computing environments (in 1986) 

 A research project to create campus wide file system. 

 Public domain implementation is available on Linux (LinuxAFS) 

 It was adopted as a basis for the DCE/DFS file system in the Open Software 

Foundation (OSF, www.opengroup.org) DEC (Distributed Computing 

Environment 

 

NFS architecture 

 

Figure 8 shows the architecture of Sun NFS 
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 The file identifiers used in NFS are called file handles. 
 

 

 

 
 

 

 A simplified representation of the RPC interface provided by NFS version 3 servers is 

shown in Figure 9. 

 

Figure 9. NFS server operations (NFS Version 3 protocol, simplified) 
 

 

 NFS access control and authentication 

 The NFS server is stateless server, so the user's identity and access rights must be 

checked by the server on each request. 

 In the local file system they are checked only on the file’s access 

permission attribute. 

 Every client request is accompanied by the userID and groupID 

 It is not shown in the Figure 8.9 because they are inserted by the RPC 

system. 

 Kerberos has been integrated with NFS to provide a stronger and more 

comprehensive security solution. 

 
 Mount service 

 Mount operation: 
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Remote 

 
 
 
 
 
 
 
 

Remote 

mount(remotehost, remotedirectory, localdirectory) 

 

 

 
 Server maintains a table of clients who have mounted filesystems at that server. 

 Each client maintains a table of mounted file systems holding: 
< IP address, port number, file handle> 

 Remote file systems may be hard-mounted or soft-mounted in a client computer. 

 Figure 10 illustrates a Client with two remotely mounted file stores. 

 

 

 

 

 

 

 
Figure 10. Local and remote file systems accessible on an NFS client 
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 Automounter 

 The automounter was added to the UNIX implementation of NFS in order to 

mount a remote directory dynamically whenever an ‘empty’ mount point is 

referenced by a client. 

 Automounter has a table of mount points with a reference to one or more 

NFS servers listed against each. 

 it sends a probe message to each candidate server and then uses the mount 

service to mount the file system at the first server to respond. 

 Automounter keeps the mount table small. 
 Automounter Provides a simple form of replication for read-only file systems. 

 E.g. if there are several servers with identical copies of /usr/lib then each 

server will have a chance of being mounted at some clients. 

 Server caching 
 Similar to UNIX file caching for local files: 

 pages (blocks) from disk are held in a main memory buffer cache until the 

space is required for newer pages. Read-ahead and delayed-write 

optimizations. 

 For local files, writes are deferred to next sync event (30 second intervals). 

 Works well in local context, where files are always accessed through the 

local cache, but in the remote case it doesn't offer necessary 

synchronization guarantees to clients. 

 

 

 
 NFS v3 servers offers two strategies for updating the disk: 

 Write-through - altered pages are written to disk as soon as they are 

received at the server. When a write() RPC returns, the NFS client knows 

that the page is on the disk. 

 Delayed commit - pages are held only in the cache until a commit() call is 

received for the relevant file. This is the default mode used by NFS v3 

clients. A commit() is issued by the client whenever a file is closed. 

 Client caching 

 Server caching does nothing to reduce RPC traffic between client and server 
 further optimization is essential to reduce server load in large networks. 

 NFS client module caches the results of read, write, getattr, lookup and 

readdir operations 

 synchronization of file contents (one-copy semantics) is not guaranteed 

when two or more clients are sharing the same file. 

 Timestamp-based validity check 

 It reduces inconsistency, but doesn't eliminate it. 

 It is used for validity condition for cache entries at the client: 

 

(T - Tc < t) v (Tmclient = Tmserver) 
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 it is configurable (per file) but is typically set to 3 seconds for files and 30 

secs. for directories. 

 it remains difficult to write distributed 

applications that share files with NFS. 

 Other NFS optimizations 

 Sun RPC runs over UDP by default (can use TCP if required). 

 Uses UNIX BSD Fast File System with 8-kbyte blocks. 

 reads() and writes() can be of any size (negotiated between client and server). 
 The guaranteed freshness interval t is set adaptively for individual files to reduce 

getattr() calls needed to update Tm. 

 File attribute information (including Tm) is piggybacked in replies to all file 

requests. 

 NFS performance 

 Early measurements (1987) established that: 

 Write() operations are responsible for only 5% of server calls in typical 

UNIX environments. 

 hence write-through at server is acceptable. 

 

 

 
 Lookup() accounts for 50% of operations -due to step-by-step pathname 

resolution necessitated by the naming and mounting semantics. 

 More recent measurements (1993) show high performance. 

 see www.spec.org for more recent measurements. 

 NFS summary 

 NFS is an excellent example of a simple, robust, high-performance distributed 

service. 

 Achievement of transparencies are other goals of NFS: 

 Access transparency: 

 The API is the UNIX system call interface for both local and 

remote files. 

 Location transparency: 

 Naming of filesystems is controlled by client mount operations, but 

transparency can be ensured by an appropriate system 

configuration. 

 Mobility transparency: 

 Hardly achieved; relocation of files is not possible, relocation of 

filesystems is possible, but requires updates to client 

configurations. 

 Scalability transparency: 

 File systems (file groups) may be subdivided and allocated to 

http://www.spec.org/
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separate servers. 

 Replication transparency: 

– Limited to read-only file systems; for writable files, the SUN 

Network Information Service (NIS) runs over NFS and is used to 

replicate essential system files. 

 Hardware and software operating system heterogeneity: 

– NFS has been implemented for almost every known operating 

system and hardware platform and is supported by a variety of 

filling systems. 

 Fault tolerance: 

– Limited but effective; service is suspended if a server fails. 

Recovery from failures is aided by the simple stateless design. 

 Consistency: 

– It provides a close approximation to one-copy semantics and meets 
the needs of the vast majority of applications. 

– But the use of file sharing via NFS for communication or close 

coordination between processes on different computers cannot be 

recommended. 

 Security: 

– Recent developments include the option to use a secure RPC 

implementation for authentication and the privacy and security of 

the data transmitted with read and write operations. 

– Efficiency: 
 NFS protocols can be implemented for use in situations that 

generate very heavy loads. 

 

 

 

 
Case Study: The Andrew File System (AFS) 

 

AFS differs markedly from NFS in its design and implementation. The differences are primarily 

attributable to the identification of scalability as the most important design goal. AFS is designed 

to perform well with larger numbers of active users than other distributed file systems. The key 

strategy for achieving scalability is the caching of whole files in client nodes. AFS has two 

unusual design characteristics: 

 

Whole-file serving: The entire contents of directories and files are transmitted to client computers 

by AFS servers (in AFS-3, files larger than 64 kbytes are transferred in 64-kbyte chunks). 

 

Whole file caching: Once a copy of a file or a chunk has been transferred to a client computer it 

is stored in a cache on the local disk. The cache contains several hundred of the files most 

recently used on that computer. The cache is permanent, surviving reboots of the client 

computer. Local copies of files are used to satisfy clients’ open requests in preference to remote 

copies whenever possible. 

 
 Like NFS, AFS provides transparent access to remote shared files for UNIX programs 

running on workstations. 
 AFS is implemented as two software components that exist at UNIX processes called 

Vice and Venus. 
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Scenario • Here is a simple scenario illustrating the operation of AFS: 

 

1. When a user process in a client computer issues an open system call for a file in the shared 

-file space and there is not a current copy of the file in the local cache, the server holding the 
file is located and is sent a request for a copy of the file. 

 

2. The copy is stored in the local UNIX file system in the client computer. The copy is then 

opened and the resulting UNIX file descriptor is returned to the client. 

 

 

 
3. Subsequent read, write and other operations on the file by processes in the client computer 

are applied to the local copy. 

 

4. When the process in the client issues a close system call, if the local copy has been 

updated its contents are sent back to the server. The server updates the file contents and the 

timestamps on the file. The copy on the client’s local disk is retained in case it is needed 

again by a user-level process on the same workstation. 

 

 

 

 

 

 

 
Figure 11. Distribution of processes in the Andrew File System 
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 The files available to user processes running on workstations are either local or shared. 

 Local files are handled as normal UNIX files. 
 They are stored on the workstation’s disk and are available only to local user processes. 

 Shared files are stored on servers, and copies of them are cached on the local disks of 

workstations. 

 The name space seen by user processes is illustrated in Figure 12. 

Figure 12. File name space seen by clients of AFS 
 

 

 

 

 
 

Local Shared 

 

 The UNIX kernel in each workstation and server is a modified version of BSD UNIX. 
 The modifications are designed to intercept open, close and some other file system calls when 

they refer to files in the shared name space and pass them to the Venus process in the client 

computer. (Figure 13) 

 

 
 

Figure 13. System call interception in AFS 
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 Figure 14 describes the actions taken by Vice, Venus and the UNIX kernel when a user process 

issues system calls. 

 
Figure 14. implementation of file system calls in AFS 
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 Figure 15 shows the RPC calls provided by AFS servers for operations on files. 

 

 

 

 

 

 

 
Figure 15. The main components of the Vice service interface 

 

 

Other aspects 

AFS introduces several other interesting design developments and refinements that we 

outline here, together with a summary of performance evaluation results: 

 
1. UNIX kernel modifications 

2. Location database 

3. Threads 

4. Read-only replicas 

5. Bulk transfers 

6. Partial file caching 

7. Performance 

8. Wide area support 
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Naming Services 
 

Which one is easy for humans and machines? and why? 

74.125.237.83 or google.com 

 128.250.1.22 or distributed systems website 

128.250.1.25 or Prof. Buyya 

 Disk 4, Sector 2, block 5 OR /usr/raj/hello.c 

 
Introduction 

 In a distributed system, names are used to refer to a wide variety of resources such as: 

 Computers, services, remote objects, and files, as well as users. 
 Naming is fundamental issue in DS design as it facilitates communication and resource 

sharing. 

 A name in the form of URL is needed to access a specific web page. 

 Processes cannot share particular resources managed by a computer system unless 

they can name them consistently 

 Users cannot communicate within one another via a DS unless they can name one 

another, with email address. 

 Names are not the only useful means of identification: descriptive attributes are another. 

 

What are Naming Services? 

 How do Naming Services facilitate communication and resource sharing? 

– An URL facilitates the localization of a resource exposed on the Web. 

 e.g., abc.net.au means it is likely to be an Australian entity? 
– A consistent and uniform naming helps processes in a distributed system to 

interoperate and manage resources. 

 e.g., commercials use .com; non-profit organizations use .org 

– Users refers to each other by means of their names (i.e. email) rather than their 

system ids 

– Naming Services are not only useful to locate resources but also to gather 

additional information about them such as attributes 

 
What are Naming Services? 

In a Distributed System, a Naming Service is a specific service whose aim is to provide a 

consistent and uniform naming of resources, thus allowing other programs or services to localize 

them and obtain the required metadata for interacting with them. 

Key benefits 

– Resource localization 
– Uniform naming 

– Device independent address (e.g., you can move domain name/web site from one 

server to another server seamlessly). 

 

The role of names and name services 

 Resources are accessed using identifier or reference 
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– An identifier can be stored in variables and retrieved from tables quickly 

– Identifier includes or can be transformed to an address for an object 

 E.g. NFS file handle, Corba remote object reference 
– A name is human-readable value (usually a string) that can be resolved to an 

identifier or address 

 Internet domain name, file pathname, process number 

 E.g ./etc/passwd, http://www.cdk3.net/ 

 For many purposes, names are preferable to identifiers 

– because the binding of the named resource to a physical location is deferred and 

can be changed 

– because they are more meaningful to users 

 Resource names are resolved by name services 

– to give identifiers and other useful attributes 

 

Requirements for name spaces 

 

 Allow simple but meaningful names to be used 

 Potentially infinite number of names 

 Structured 

– to allow similar subnames without clashes 

– to group related names 

 Allow re-structuring of name trees 

– for some types of change, old programs should continue to work 

 Management of trust 

 
Composed naming domains used to access a resource from a URL 

 

 

 

 
A key attribute of an entity that is usually relevant in a distributed system is its address. For 
example: 

http://www.cdk3.net/
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• The DNS maps domain names to the attributes of a host computer: its IP address, the type of 

entry (for example, a reference to a mail server or another host) and, for example, the length of 

time the host’s entry will remain valid. 

• The X500 directory service can be used to map a person’s name onto attributes including their 

email address and telephone number. 

• The CORBA Naming Service maps the name of a remote object onto its remote object 

reference, whereas the Trading Service maps the name of a remote object onto its remote object 

reference, together with an arbitrary number of attributes describing the object in terms 

understandable by human users. 

 

Name Services and the Domain Name System 

 A name service stores a collection of one or more naming contexts, sets of bindings 

between textual names and attributes for objects such as computers, services, and users. 

 The major operation that a name service supports is to resolve names. 

 

Uniform Resource Identifiers 

 

Uniform Resource Identifiers (URIs) came about from the need to identify resources on the Web, 

and other Internet resources such as electronic mailboxes. An important goal was to identify 

resources in a coherent way, so that they could all be processed by common software such as 

browsers. URIs are ‘uniform’ in that their syntax incorporates that of indefinitely many 

individual types of resource identifiers (that is, URI schemes), and there are procedures for 

managing the global namespace of schemes. The advantage of uniformity is that it eases the 

process of introducing new types of identifier, as well as using existing types of identifier in new 

contexts, without disrupting existing usage. 

 

Uniform Resource Locators: Some URIs contain information that can be used to locate and 

access a resource; others are pure resource names. The familiar term Uniform Resource Locator 

(URL) is often used for URIs that provide location information and specify the method for 

accessing the resource. 

 
Uniform Resource Names: Uniform Resource Names (URNs) are URIs that are used as pure 

resource names rather than locators. For example, the URI: 

 

mid:0E4FC272-5C02-11D9-B115-000A95B55BC8@hpl.hp.com 

 
Navigation 

Navigation is the act of chaining multiple Naming Services in order to resolve a single name to 

the corresponding resource. 

 Namespaces allows for structure in names. 

 URLs provide a default structure that decompose the location of a resource in 

– protocol used for retrieval 

– internet end point of the service exposing the resource 

– service specific path 

 This decomposition facilitates the resolution of the name into the corresponding resource 

 Moreover, structured namespaces allows for iterative navigation… 

mailto:0E4FC272-5C02-11D9-B115-000A95B55BC8@hpl.hp.com
mailto:0E4FC272-5C02-11D9-B115-000A95B55BC8@hpl.hp.com
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Iterative navigation 

Reason for NFS iterative name resolution 

This is because the file service may encounter a symbolic link (i.e. an alias) when resolving a 

name. A symbolic link must be interpreted in the client’s file system name space because it may 

point to a file in a directory stored at another server. The client computer must determine which 

server this is, because only the client knows its mount points 
 

 

Server controlled navigation 

 In an alternative model, name server coordinates naming resolution and returns the 

results to the client. It can be: 

– Recursive: 

 it is performed by the naming server 
 the server becomes like a client for the next server 

 this is necessary in case of client connectivity constraints 

– Non recursive: 

 it is performed by the client or the first server 

 the server bounces back the next hop to its client 

 
Non-recursive and recursive server-controlled navigation 

 

DNS offers recursive navigation as an option, but iterative is the standard technique. Recursive 

navigation must be used in domains that limit client access to their DNS information for security 

reasons. 
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7. Lecture Notes: (To be attached) 

 

8. Textbook : 

1. George Coulouris, Jean Dollimore, Tim Kindberg, , "Distributed Systems: Concepts and 

Design", 4th Edition, Pearson Education, 2005. PP. 350-356. 

9. Application 

 
 

The Domain Name System is a name service design whose main naming database is used across 

the Internet. 

 

This original scheme was soon seen to suffer from three major shortcomings: 

• It did not scale to large numbers of computers. 

• Local organizations wished to administer their own naming systems. 

• A general name service was needed – not one that serves only for looking up computer 

addresses. 

 

Domain names • The DNS is designed for use in multiple implementations, each of which may 

have its own name space. In practice, however, only one is in widespread use, and that is the one 

used for naming across the Internet. The Internet DNS name space is partitioned both 

organizationally and according to geography. The names are written with the highest-level 

domain on the right. The original top-level organizational domains (also called generic domains) 

in use across the Internet were: 

 

com – Commercial organizations 

edu – Universities and other educational institutions 

gov – US governmental agencies 

mil – US military organizations 
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net – Major network support centres 

org – Organizations not mentioned above 
int – International organizations 

 
New top-level domains such as biz and mobi have been added since the early 2000s. A full list of 

current generic domain names is available from the Internet Assigned Numbers Authority 

[www.iana.org I]. In addition, every country has its own domains: 

 
us – United States 

uk – United Kingdom 

fr – France 

... – ... 

 

DNS - The Internet Domain Name System 

 

 A distributed naming database (specified in RFC 1034/1305) 

 Name structure reflects administrative structure of the Internet 

 Rapidly resolves domain names to IP addresses 

– exploits caching heavily 

– typical query time ~100 milliseconds 

 Scales to millions of computers 

– partitioned database 

– caching 

 Resilient to failure of a server 

– Replication 

 

 
 

Basic DNS algorithm for name resolution (domain name -> IP number) 

 

• Look for the name in the local cache 

• Try a superior DNS server, which responds with: 

 

– another recommended DNS server 

 

– the IP address (which may not be entirely up to date) 

 

DNS name servers: Hierarchical organisation 

 

Note: Name server names are in italics, and the corresponding domains are in parentheses. 

Arrows denote name server entries 

http://www.iana.org/
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DNS in typical operation 
 

 

DNS server functions and configuration 

 

 Main function is to resolve domain names for computers, i.e. to get their IP addresses 

– caches the results of previous searches until they pass their 'time to live' 

 Other functions: 

– get mail host for a domain 

– reverse resolution - get domain name from IP address 

– Host information - type of hardware and OS 

– Well-known services - a list of well-known services offered by a host 

– Other attributes can be included (optional) 

 
DNS resource records 

 

The DNS architecture allows for recursive navigation as well as iterative navigation. The 
resolver specifies which type of navigation is required when contacting a name server. However, 
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name servers are not bound to implement recursive navigation. As was pointed out above, 

recursive navigation may tie up server threads, meaning that other requests might be delayed. 
 
 

 

 
 

 

The data for a zone starts with an SOA-type record, which contains the zone parameters that 

specify, for example, the version number and how often secondaries should refresh their copies. 

This is followed by a list of records of type NS specifying the name servers for the domain and a 

list of records of type MX giving the domain names of mail hosts, each prefixed by a number 

expressing its preference. For example, part of the database for the domain dcs.qmul.ac.uk at one 

point is shown in the following figure where the time to live 1D means 1 day. 
 
 

 

The majority of the remainder of the records in a lower-level zone like dcs.qmul.ac.uk will be of 

type A and map the domain name of a computer onto its IP address. They may contain some 

aliases for the well-known services, for example: 
 
 

 
If the domain has any subdomains, there will be further records of type NS specifying their name 

servers, which will also have individual A entries. For example, at one point the database for 

qmul.ac.uk contained the following records for the name servers in its subdomain 

dcs.qmul.ac.uk: 
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– 

- 

 

DNS issues 

 

 Name tables change infrequently, but when they do, caching can result in the delivery of 

stale data. 

– Clients are responsible for detecting this and recovering 

 Its design makes changes to the structure of the name space difficult. For example: 

– merging previously separate domain trees under a new root 

– moving subtrees to a different part of the structure (e.g. if Scotland became a 

separate country, its domains should all be moved to a new country-level 

domain.) 
 Directory service: 'yellow pages' for the resources in a network 

Retrieves the set of names that satisfy a given description 
– e.g. X.500, LDAP, MS Active Directory Services 

 (DNS holds some descriptive data, but: 
• the data is very incomplete 
• DNS isn't organised to search it) 

 Discovery service:- a directory service that also: 

is automatically updated as the network configuration changes 
meets the needs of clients in spontaneous networks (Section 2.2.3) 

discovers services required by a client (who may be mobile) within the current 

scope, for example, to find the most suitable printing service for image files after 

arriving at a hotel. 

Examples of discovery services: Jini discovery service, the 'service location 
protocol', the 'simple service discovery protocol' (part of UPnP), the 'secure 
discovery service'. 

 

 

 
– 

– 

– 

 
 

– 
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The name services store collections of <name, attribute> pairs, and how the attributes are  

looked up from a name. It is natural to consider the dual of this arrangement, in which attributes 

are used as values to be looked up. In these services, textual names can be considered to be just 

another attribute. Sometimes users wish to find a particular person or resource, but they do not 

know its name, only some of its other attributes. 

 

For example, a user may ask: ‘What is the name of the user with telephone number 020-555 

9980?’ Likewise, sometimes users require a service, but they are not concerned with what system 

entity supplies that service, as long as the service is conveniently accessible. 

 
For example, a user might ask, ‘Which computers in this building are Macintoshes running the 

Mac OS X operating system?’ or ‘Where can I print a high-resolution colour image?’ 

 

A service that stores collections of bindings between names and attributes and that looks up 

entries that match attribute-based specifications is called a directory service. 

 

Examples are Microsoft’s Active Directory Services, X.500 and its cousin LDAP, Univers and 

Profile. 

 
Directory services are sometimes called yellow pages services, and conventional name services 

are correspondingly called white pages services, in an analogy with the traditional types of 

telephone directory. Directory services are also sometimes known as attribute-based name 

services. 

 

A directory service returns the sets of attributes of any objects found to match some specified 

attributes. So, for example, the request ‘TelephoneNumber = 020 5559980’ might return {‘Name 

= John Smith’, ‘TelephoneNumber = 020 555 9980’, ‘emailAddress = 

john@dcs.gormenghast.ac.uk’, ...}. 

 

The client may specify that only a subset of the attributes is of interest – for example, just the 

email addresses of matching objects. X.500 and some other directory services also allow objects 

to be looked up by conventional hierarchic textual names. The Universal Directory and 

Discovery Service (UDDI), which was presented in Section 9.4, provides both white pages and 

yellow pages services to provide information about organizations and the web services they 

offer. 

 
UDDI aside, the term discovery service normally denotes the special case of a directory service 

for services provided by devices in a spontaneous networking environment. As Section 1.3.2 

described, devices in spontaneous networks are liable to connect and disconnect unpredictably. 

One core difference between a discovery service and other directory services is that the address 

of a directory service is normally well known and preconfigured in clients, whereas a device 

entering a spontaneous networking environment has to resort to multicast navigation, at least the 

first time it accesses the local discovery service. 

 

Attributes are clearly more powerful than names as designators of objects: programs can be 

written to select objects according to precise attribute specifications where names might not be 

known. Another advantage of attributes is that they do not expose the structure of organizations 

mailto:john@dcs.gormenghast.ac.uk
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to the outside world, as do organizationally partitioned names. However, the relative simplicity 

of use of textual names makes them unlikely to be replaced by attribute-based naming in many 

applications. 

 

Discovery service 

• A database of services with lookup based on service 

description or type, location and other criteria, E.g. 

1. Find a printing service in this hotel 

compatible with a Nikon camera 

2. Send the video from my camera to the digital TV in my room. 

• Automatic registration of new services 

• Automatic connection of guest's clients to the discovery service 

 

Global Name Service (GNS) 

 

 Designed and implemented by Lampson and colleagues at the DEC Systems Research 

Center (1986) 

 Provide facilities for resource location, email addressing and authentication 

 When the naming database grows from small to large scale, the structure of name space 

may change 

the service should accommodate it 

 Cache consistency ? 

 

The GNS manages a naming database that is composed of a tree of directories holding names 

and values. Directories are named by multi-part pathnames referred to a root, or relative to a 

working directory, much like file names in a UNIX file system. Each directory is also 

assigned an integer, which serves as a unique directory identifier (DI). A directory contains a 

list of names and references. The values stored at the leaves of the directory tree are 

organized into value trees, so that the attributes associated with names can be structured 

values. 

 

Names in the GNS have two parts: <directory name, value name>. The first part identifies a 

directory; the second refers to a value tree, or some portion of a value tree. 

 

GNS Structure 

 

 Tree of directories holding names and values 

 Muti-part pathnames refer to the root or relative working directory (like Unix file system) 

 Unique Directory Identifier (DI) 

 A directory contains list of names and references 

 Leaves of tree contain value trees (structured values) 
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GNS directory tree and value tree 
 

 
 

Accommodating changes 

 

 How to integrate naming trees of two previously separate GNS services 

 But what is for ‘/UK/AC/QMV, Peter.Smith’ ? 

 

 

Using DI to solve changes 

 

 Using the name ‘#599/UK/AC/QMV, Peter.Smith’ 
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Restructuring of database 

 

 Using symbolic links 
 

 
 

 
 

 

X500 Directory Service 

 

X.500 is a directory service used in the same way as a conventional name service, but it is 

primarily used to satisfy descriptive queries and is designed to discover the names and attributes 

of other users or system resources. Users may have a variety of requirements for searching and 

browsing in a directory of network users, organizations and system resources to obtain 

information about the entities that the directory contains. The uses for such a service are likely to 

be quite diverse. They range from enquiries that are directly analogous to the use of telephone 

directories, such as a simple ‘white pages’ access to obtain a user’s electronic mail address or a 

‘yellow pages’ query aimed, for example, at obtaining the names and telephone numbers of 

garages specializing in the repair of a particular make of car, to the use of the directory to access 

personal details such as job roles, dietary habits or even photographic images of the individuals. 

 

 Standard of ITU and ISO organizations 

 Organized in a tree structure with name nodes as in the case of other name servers 

 A wide range of attributes are stored in each node 
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 Directory Information Tree (DIT) 

 Directory Information Base (DIB) 
 

X.500 service architecture 

 

The data stored in X.500 servers is organized in a tree structure with named nodes, as in the case 

of the other name servers discussed in this chapter, but in X.500 a wide range of attributes are 

stored at each node in the tree, and access is possible not just by name but also by searching for 

entries with any required combination of attributes. The X.500 name tree is called the Directory 

Information Tree (DIT), and the entire directory structure including the data associated with the 

nodes, is called the Directory Information Base (DIB). There is intended to be a single integrated 

DIB containing information provided by organizations throughout the world, with portions of the 

DIB located in individual X.500 servers. Typically, a medium-sized or large organization would 

provide at least one server. Clients access the directory by establishing a connection to a server 

and issuing access requests. Clients can contact any server with an enquiry. If the data required 

are not in the segment of the DIB held by the contacted server, it will either invoke other servers 

to resolve the query or redirect the client to another server. 

 
 Directory Server Agent (DSA) 

 Directory User Agent (DUA) 
 

 

 
 

 

 

 

In the terminology of the X.500 standard, servers are Directory Service Agents (DSAs), and their 

clients are termed Directory User Agents (DUAs). Each entry in the DIB consists of a name and 

a set of attributes. As in other name servers, the full name of an entry corresponds to a path 

through the DIT from the root of the tree to the entry. In addition to full or absolute names, a 

DUA can establish a context, which includes a base node, and then use shorter relative names 

that give the path from the base node to the named entry. 

 

An X.500 DIB Entry 
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Part of the X.500 Directory Information Tree 

 

The data structure for the entries in the DIB and the DIT is very flexible. A DIB entry consists of 

a set of attributes, where an attribute has a type and one or more values. The type of each 

attribute is denoted by a type name (for example, countryName, organizationName, 

commonName, telephoneNumber, mailbox, objectClass). New attribute types can be defined if 

they are required. For each distinct type name there is a corresponding type definition, which 

includes a type description and a syntax definition in the ASN.1 notation (a standard notation for 

syntax definitions) defining representations for all permissible values of the type. 

 

DIB entries are classified in a manner similar to the object class structures found in object- 

oriented programming languages. Each entry includes an objectClass attribute, which determines 

the class (or classes) of the object to which an entry refers. Organization, organizationalPerson 

and document are all examples of objectClass values. Further classes can be defined as they are 

required. The definition of a class determines which attributes are mandatory and which are 

optional for entries of the given class. The definitions of classes are organized in an inheritance 

hierarchy in which all classes except one (called topClass) must contain an objectClass attribute, 

and the value of the objectClass attribute must be the names of one or more classes. If there are 

several objectClass values, the object inherits the mandatory and optional attributes of each of 

the classes. 
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Administration and updating of the DIB • The DSA interface includes operations for adding, 

deleting and modifying entries. Access control is provided for both queries and updating 

operations, so access to parts of the DIT may be restricted to certain users or classes of user 

 
Lightweight Directory Access Protocol • X.500’s assumption that organizations would provide 

information about themselves in public directories within a common system has proved largely 

unfounded. group at the University of Michigan proposed a more lightweight approach called the 

Lightweight Directory Access Protocol (LDAP), in which a DUA accesses X.500 directory 

services directly over TCP/IP instead of the upper layers of the ISO protocol stack. 

 

        DISTRIBUTED SHARED MEMORY 

 
 

Distributed shared memory (DSM) is an abstraction used for sharing data between computers 

that do not share physical memory. Processes access DSM by reads and updates to what appears 

to be ordinary memory within their address space. However, an underlying runtime system 

ensures transparently that processes executing at different computers observe the updates made 

by one another. 

The main point of DSM is that it spares the programmer the concerns of message passing when 

writing applications that might otherwise have to use it. DSM is primarily a tool for parallel 

applications or for any distributed application or group of applications in which individual shared 

data items can be accessed directly. DSM is in general less appropriate in client-server systems, 

where clients normally view server-held resources as abstract data and access them by request 
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(for reasons of modularity and protection). 

 
 
 

Message passing cannot be avoided altogether in a distributed system: in the absence of 

physically shared memory, the DSM runtime support has to send updates in messages between 

computers. DSM systems manage replicated data: each computer has a local copy of recently 

accessed data items stored in DSM, for speed of access. 

 

 
 

In distributed memory multiprocessors and clusters of off-the-shelf computing components (see 

Section 6.3), the processors do not share memory but are connected by a very high-speed 

network. These systems, like general-purpose distributed systems, can scale to much greater 

numbers of processors than a shared-memory multiprocessor’s 64 or so. A central question that 

has been pursued by the DSM and multiprocessor research communities is whether the 

investment in knowledge of shared memory algorithms and the associated software can be 

directly transferred to a more scalable distributed memory architecture. 

Message passing versus DSM 

As a communication mechanism, DSM is comparable with message passing rather than 

with request-reply-based communication, since its application to parallel processing, in 

particular, entails the use of asynchronous communication. The DSM and message 

passing approaches to programming can be contrasted as follows: 

Programming model: 

Under the message passing model, variables have to be marshalled from one process, transmitted 

and unmarshalled into other variables at the receiving process. By contrast, with shared memory 
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the processes involved share variables directly, so no marshalling is necessary – even of pointers 

to shared variables – and thus no separate communication operations are necessary. 

Efficiency : 

Experiments show that certain parallel programs developed for DSM can be made to perform 

about as well as functionally equivalent programs written for message passing platforms on the 

same hardware – at least in the case of relatively small numbers of computers (ten or so). 

However, this result cannot be generalized. The performance of a program based on DSM 

depends upon many factors, as we shall discuss below – particularly the pattern of data sharing. 

Implementation approaches to DSM 

Distributed shared memory is implemented using one or a combination of specialized hardware, 

conventional paged virtual memory or middleware: 

Hardware: 

Shared-memory multiprocessor architectures based on a NUMA architecture rely on specialized 

hardware to provide the processors with a consistent view of shared memory. They handle 

memory LOAD and STORE instructions by communicating with remote memory and cache 

modules as necessary to store and retrieve data. 

Paged virtual memory: 

Many systems, including Ivy and Mether , implement DSM as a region of virtual memory 

occupying the same address range in the address space of every participating process. 

#include "world.h" 

struct shared { int a, b; }; 

Program Writer: 

main() 

{ 

struct shared *p; 

methersetup(); /* Initialize the Mether runtime */ 

p = (struct shared *)METHERBASE; 

/* overlay structure on METHER segment */ 

p->a = p->b = 0; /* initialize fields to zero */ 

while(TRUE){ /* continuously update structure fields */ 

p –>a = p –>a + 1; 

p –>b = p –>b - 1; 

} 
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} 

Program Reader: 

main() 

{ 

struct shared *p; 

methersetup(); 

p = (struct shared *)METHERBASE; 

while(TRUE){ /* read the fields once every second */ 

printf("a = %d, b = %d\n", p –>a, p –>b); 

sleep(1); 

} 

} 

 

Middleware: 

Some languages such as Orca, support forms of DSM without any hardware or paging support,  

in a platform-neutral way. In this type of implementation, sharing is implemented by 

communication between instances of the user-level support layer in clients and servers.  

Processes make calls to this layer when they access data items in DSM. The instances of this 

layer at the different computers access local data items and communicate as necessary to 

maintain consistency. 

Design and implementation issues 

The synchronization model used to access DSM consistently at the application level; the DSM 

consistency model, which governs the consistency of data values accessed from different 

computers; the update options for communicating written values between computers; the 

granularity of sharing in a DSM implementation; and the problem of thrashing. 

Structure 

A DSM system is just such a replication system. Each application process is presented with some 

abstraction of a collection of objects, but in this case the ‘collection’ looks more or less like 

memory. That is, the objects can be addressed in some fashion or other. Different approaches to 

DSM vary in what they consider to be an ‘object’ and in how objects are addressed. We consider 

three approaches, which view DSM as being composed respectively of contiguous bytes, 

language-level objects or immutable data items. 

Byte-oriented 

This type of DSM is accessed as ordinary virtual memory – a contiguous array of bytes. It is the 
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view illustrated above by the Mether system. It is also the view of many other DSM systems, 

including Ivy.It allows applications (and language implementations) to impose whatever data 

structures they want on the shared memory. The shared objects are directly addressible memory 

locations (in practice, the shared locations may be multi-byte words rather than individual bytes). 

The only operations upon those objects are read (or LOAD) and write (or STORE). If x and y are 

two memory locations, then we denote instances of these operations as follows: 

 

 

 

Object-oriented 

The shared memory is structured as a collection of language-level objects with higher-level 

semantics than simple read / write variables, such as stacks and dictionaries. The contents of the 

shared memory are changed only by invocations upon these objects and never by direct access to 

their member variables. An advantage of viewing memory in this way is that object semantics 

can be utilized when enforcing consistency. 

Immutable data 

When reading or taking a tuple from tuple space, a process provides a tuple specification and the 

tuple space returns any tuple that matches that specification – this is a type of associative 

addressing. To enable processes to synchronize their activities, the read and take operations both 

block until there is a matching tuple in the tuple space. 

Synchronization model 

Many applications apply constraints concerning the values stored in shared memory. This is as 

true of applications based on DSM as it is of applications written for sharedmemory 

multiprocessors (or indeed for any concurrent programs that share data, such as operating system 

kernels and multi-threaded servers). For example, if a and b are two variables stored in DSM, 

then a constraint might be that a=b always. If two or moreprocesses execute the following code: 

a:= a + 1; 

b := b + 1; 

then an inconsistency may arise. Suppose a and b are initially zero and that process 1gets as far 

as setting a to 1. Before it can increment b, process 2 sets a to 2 and b to 1. 

Consistency model 

The local replica manager is implemented by a combination of middleware (the DSM runtime 

layer in each process) and the kernel. It is usual for middleware to perform the majority of DSM 

processing. Even in a page-based DSM implementation, the kernel usually provides only basic 

page mapping, page-fault handling and communication mechanisms and middleware is 
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responsible for implementing the page-sharing policies. If DSM segments are persistent, then 

one or more storage servers (for example, file servers) will also act as replica managers. 

 

 

 

 

 
 

Sequential consistency 

 

A DSM system is said to be sequentially consistent if for any execution there is some 

interleaving of the series of operations issued by all the processes that satisfies the following two 

criteria: 

SC1: The interleaved sequence of operations is such that if R(x) a occurs in the  

sequence, then either the last write operation that occurs before it in the interleaved sequence is 

W(x) a, or no write operation occurs before it and a is the initial value of x. 

SC2: The order of operations in the interleaving is consistent with the program order in 

which each individual client executed them. 
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Coherence 

 

Coherence is an example of a weaker form of consistency. Under coherence, every process 

agrees on the order of write operations to the same location, but they do not necessarily agree on 

the ordering of write operations to different locations. We can think of coherence as sequential 

consistency on a locationby- location basis. Coherent DSM can be implemented by taking a 

protocol for implementing sequential consistency and applying it separately to each unit of 

replicated data – for example, each page. 

Weak consistency 

This model exploits knowledge of synchronization operations in order to relax memory 

consistency, while appearing to the programmer to implement sequential consistency (at least, 

under certain conditions that are beyond the scope of this book). For example, if the programmer 

uses a lock to implement a critical section, then a DSM system can assume that no other process 

may access the data items accessed under mutual exclusion within it. It is therefore redundant for 

the DSM system to propagate updates to these items until the process leaves the critical section. 

While items are left with ‘inconsistent’ values some of the time, they are not accessed at those 

points; the execution appears to be sequentially consistent. 

Update options 

Two main implementation choices have been devised for propagating updates made by one 

process to the others: write-update and write-invalidate. These are applicable to a variety of 

DSM consistency models, including sequential consistency. In outline, the options are as 

follows: 

Write-update: The updates made by a process are made locally and multicast to all other replica 

managers possessing a copy of the data item, which immediately modify the data read by local 

processes. Processes read the local copies of data items, without the need for communication. In 

addition to allowing multiple readers, several processes may write the same data item at the same 

time; this is known as multiple-reader/multiple-writer sharing. 
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Write-invalidate: This is commonly implemented in the form of multiple-reader/ single-writer 

sharing. At any time, a data item may either be accessed in read-only mode by one or more 

processes, or it may be read and written by a single process. An item that is currently accessed in 

read-only mode can be copied indefinitely to other processes. When a process attempts to write 

to it, a multicast message is first sent to all other copies to invalidate them and this is 

acknowledged before the write can take place; the other processes are thereby prevented from 

reading stale data (that is, data that are not up to date). Any processes attempting to access the 

data item are blocked if a writer exists. 

Granularity 

An issue that is related to the structure of DSM is the granularity of sharing. Conceptually, all 

processes share the entire contents of a DSM. As programs sharing DSM execute, however, only 

certain parts of the data are actually shared and then only for certain times during the execution. 

It would clearly be very wasteful for the DSM implementation always to transmit the entire 

contents of DSM as processes access and update it. 

Thrashing 

A potential problem with write-invalidate protocols is thrashing. Thrashing is said to occur 

where the DSM runtime spends an inordinate amount of time invalidating and transferring  

shared data compared with the time spent by application processes doing useful work. It occurs 

when several processes compete for the same data item, or for falsely shared data items. 

 

RESOURCE MANAGEMENT 

Resource Management is the efficient and effective development of an organization's resources 

when they are needed. Such resources may include financial resources, inventory, human skills, 
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production resources, or information technology (IT). 

In the realm of project management, processes, techniques and philosophies as to the best approach 

for allocating resources have been developed. These include discussions on functional vs. cross- 

functional resource allocation as well as processes espoused by organizations like the Project 

Management Institute (PMI) through their Project Management Body of Knowledge (PMBOK) 

methodology of project management. Resource management is a key element to activity resource 

estimating and project human resource management. Both are essential components of a 

comprehensive project management plan to execute and monitor a project successfully As is the 

case with the larger discipline of project management, there are resource management softwaretools 

available that automate and assist the process of resource allocation to projects and portfolio 

resource transparency including supply and demand of resources. The goal of these tools typically is 

to ensure that: (i) there are employees within our organization with required specific skill set and 

desired profile required for a project, (ii) decide the number and skill sets of new employees to hire, 

and (iii) allocate the workforce to various projects.[3] 

  

Corporate Resource Management Process  

Large organizations usually have a defined corporate resource management process which mainly 

guarantees that resources are never over-allocated across multiple projects Peter Drucker wrote of 

the need to focus resources, abandoning a less promising initiatives for every new project taken on, 

as fragmentation inhibits results 

 Techniques  

One resource management technique is resource leveling. It aims at smoothing the stock of 

resources on hand, reducing both excess inventories and shortages. 

The required data are: the demands for various resources, forecast by time period into the future as 

far as is reasonable, as well as the resources' configurations required in those demands, and 

the supply of the resources, again forecast by time period into the future as far as is reasonable. 

The goal is to achieve 100% utilization but that is very unlikely, when weighted by important 

metrics and subject to constraints, for example: meeting a minimum service level, but otherwise 

minimizing cost. A Project Resource Allocation Matrix (PRAM) is maintained to visualize the 

resource allocations against various projects. 

The principle is to invest in resources as stored capabilities, then unleash the capabilities as 

demanded. 

A dimension of resource development is included in resource management by which investment in 

resources can be retained by a smaller additional investment to develop a new capability that is 

demanded, at a lower investment than disposing of the current resource and replacing it with another 

that has the demanded capability. 

In conservation, resource management is a set of practices pertaining to maintaining natural systems 
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integrity. Examples of this form of management are air resource management, soil 

conservation, forestry, wildlife management and water resourcemanagement. The broad term for this 

type of resource management is natural resource management (NRM). 

 Load balancing (computing)  

load balancing distributes workloads across multiple computing resources, such as computers, 

a computer cluster, network links, central processing units or disk drives. Load balancing aims to 

optimize resource use, maximizethroughput, minimize response time, and avoid overload of any 

single resource. Using multiple components with load balancing instead of a single component may 

increase reliability and availability through redundancy. Load balancing usually involves dedicated 

software or hardware, such as a multilayer switch or a Domain Name System server process. 

Load balancing differs from channel bonding in that load balancing divides traffic between network 

interfaces on a network socket (OSI model layer 4) basis, while channel bonding implies a division 

of traffic between physical interfaces at a lower level, either per packet (OSI model Layer 3) or on a 

data link (OSI model Layer 2) basis with a protocol like shortest path bridging. 

One of the most commonly used applications of load balancing is to provide a single Internet service 

from multiple servers, sometimes known as a server farm. Commonly load-balanced systems 

include popular web sites, large Internet Relay Chatnetworks, high-bandwidth File Transfer 

Protocol sites, Network News Transfer Protocol (NNTP) servers, Domain Name System (DNS) 

servers, and databases. 

Round-robin DNS 

An alternate method of load balancing, which does not necessarily require a dedicated software or 

hardware node, is calledround robin DNS. In this technique, multiple IP addresses are associated 

with a single domain name; clients are expected to choose which server to connect to. Unlike the use 

of a dedicated load balancer, this technique exposes to clients the existence of multiple backend 

servers. The technique has other advantages and disadvantages, depending on the degree of control 

over the DNS server and the granularity of load balancing desired. 

Another more effective technique for load-balancing using DNS is to delegate www.example.org as 

a sub-domain whose zone is served by each of the same servers that are serving the web site. This 

technique works particularly well where individual servers are spread geographically on the Internet. 

For example, 

However, the zone file for www.example.org on each server is different such that each server 

resolves its own IP Address as the A-record.[1] On server one the zone file 

for www.example.org reports: 

 

one.example.org A 192.0.2.1 

two.example.org A 203.0.113.2 

www.example.org NS one.example.org 

www.example.org NS two.example.org 
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On server two the same zone file contains: 

This way, when a server is down, its DNS will not respond and the web service does not receive any 

traffic. If the line to one server is congested, the unreliability of DNS ensures less HTTP traffic 

reaches that server. Furthermore, the quickest DNS response to the resolver is nearly always the one 

from the network's closest server, ensuring geo-sensitive load-balancing. A short TTL on the A- 

record helps to ensure traffic is quickly diverted when a server goes down. Consideration must be 

given the possibility that this technique may cause individual clients to switch between individual 

servers in mid-session. 

Client-Side Random Load Balancing] 

One more approach to load balancing is to deliver list of server IPs to the client, and then to have 

client randomly select the IP from the list on each connection. This essentially relies on all clients 

causing similar load, and the Law of Large Numbersto achieve reasonably flat load distribution 

across servers. It has been claimed that client-side random load balancing tends to provide better 

load distribution then round-robin DNS; this has been attributed to caching issues with round-robin 

DNS, which in case of large DNS caching servers, tend to skew the distribution for round-robin 

DNS, while client-side random selection remains unaffected regardless of DNS caching. 

With this approach, the method of delivery of list of IPs to the client can vary, and may be 

implemented as a DNS list (delivered to all the clients without any round-robin), or via hardcoding it 

to the list. If "smart client" is used, detecting that randomly selected server is down, and connecting 

randomly again, it also provides fault tolerance. 

Server-side Load Balancers 

For Internet services, server-side load balancer is usually a software program that is listening on 

the port where external clients connect to access services. The load balancer forwards requests to 

one of the "backend" servers, which usually replies to the load balancer. This allows the load 

balancer to reply to the client without the client ever knowing about the internal separation of 

functions. It also prevents clients from contacting back-end servers directly, which may have 

security benefits by hiding the structure of the internal network and preventing attacks on the 

kernel's network stack or unrelated services running on other ports. 

Some load balancers provide a mechanism for doing something special in the event that all backend 

servers are unavailable. This might include forwarding to a backup load balancer, or displaying a 

message regarding the outage. 

It is also important that the load balancer itself does not become a single point of failure. Usually 

load balancers are implemented in high-availability pairs which may also replicate session 

persistence data if required by the specific application. 

Scheduling algorithms 

Numerous scheduling algorithms are used by load balancers to determine which back-end server to 

send a request to. Simple algorithms include random choice or round robin. More sophisticated load 

balancers may take additional factors into account, such as a server's reported load, least response 

 

@ in a 192.0.2.1 

 

@ in a 203.0.113.2 
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times, up/down status (determined by a monitoring poll of some kind), number of active 

connections, geographic location, capabilities, or how much traffic it has recently been assigned. 

Persistence 

An important issue when operating a load-balanced service is how to handle information that must 

be kept across the multiple requests in a user's session. If this information is stored locally on one 

backend server, then subsequent requests going to different backend servers would not be able to 

find it. This might be cached information that can be recomputed, in which case load-balancing a 

request to a different backend server just introduces a performance issue. 

Ideally the cluster of servers behind the load balancer should be session-aware, so that if a client 

connects to any backend server at any time the user experience is unaffected. This is usually 

achieved with a shared database or an in-memory session database, for example Memcached. 

One basic solution to the session data issue is to send all requests in a user session consistently to the 

same backend server. This is known as persistence or stickiness. A significant downside to this 

technique is its lack of automatic failover: if a backend server goes down, its per-session information 

becomes inaccessible, and any sessions depending on it are lost. The same problem is usually 

relevant to central database servers; even if web servers are "stateless" and not "sticky", the central 

database is (see below). 

Assignment to a particular server might be based on a username, client IP address, or be random. 

Because of changes of the client's perceived address resulting from DHCP, network address 

translation, and web proxies this method may be unreliable. Random assignments must be 

remembered by the load balancer, which creates a burden on storage. If the load balancer is replaced 

or fails, this information may be lost, and assignments may need to be deleted after a timeout period 

or during periods of high load to avoid exceeding the space available for the assignment table. The 

random assignment method also requires that clients maintain some state, which can be a problem, 

for example when a web browser has disabled storage of cookies. Sophisticated load balancers use 

multiple persistence techniques to avoid some of the shortcomings of any one method. 

Another solution is to keep the per-session data in a database. Generally this is bad for performance 

because it increases the load on the database: the database is best used to store information less 

transient than per-session data. To prevent a database from becoming a single point of failure, and to 

improve scalability, the database is often replicated across multiple machines, and load balancing is 

used to spread the query load across those replicas. Microsoft's ASP.net State Server technology is 

an example of a session database. All servers in a web farm store their session data on State Server 

and any server in the farm can retrieve the data. 

In the very common case where the client is a web browser, a simple but efficient approach is to 

store the per-session data in the browser itself. One way to achieve this is to use a browser cookie, 

suitably time-stamped and encrypted. Another isURL rewriting. Storing session data on the client is 

generally the preferred solution: then the load balancer is free to pick any backend server to handle a 

request. However, this method of state-data handling is poorly suited to some complex business 

logic scenarios, where session state payload is big and recomputing it with every request on a server 

is not feasible. URL rewriting has major security issues, because the end-user can easily alter the 

submitted URL and thus change session streams. 

Yet another solution to storing persistent data is to associate a name with each block of data, and use 

a distributed hash table to pseudo-randomly assign that name to one of the available servers, and 

then store that block of data in the assigned server. 
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Load balancer features 

Hardware and software load balancers may have a variety of special features. The fundamental 

feature of a load balancer is to be able to distribute incoming requests over a number of backend 

servers in the cluster according to a scheduling algorithm. Most of the following features are vendor 

specific: 

 

 Asymmetric load: A ratio can be manually assigned to cause some backend servers to get a 

greater share of the workload than others. This is sometimes used as a crude way to account for 

some servers having more capacity than others and may not always work as desired. 

 Priority activation: When the number of available servers drops below a certain number, or load 

gets too high, standby servers can be brought online. 

 SSL Offload and Acceleration: Depending on the workload, processing the encryption and 

authentication requirements of an SSL request can become a major part of the demand on the 

Web Server's CPU; as the demand increases, users will see slower response times, as the SSL 

overhead is distributed among Web servers. To remove this demand on Web servers, a balancer 

can terminate SSL connections, passing HTTPS requests as HTTP requests to the Web servers. 

If the balancer itself is not overloaded, this does not noticeably degrade the performance 

perceived by end users. The downside of this approach is that all of the SSL processing is 

concentrated on a single device (the balancer) which can become a new bottleneck. Some load 

balancer appliances include specialized hardware to process SSL. Instead of upgrading the load 

balancer, which is quite expensive dedicated hardware, it may be cheaper to forgo SSL offload 

and add a few Web servers. Also, some server vendors such as Oracle/Sun now incorporate 

cryptographic acceleration hardware into their CPUs such as the T2000. F5 Networks 

incorporates a dedicated SSL acceleration hardware card in their local traffic manager (LTM) 

which is used for encrypting and decrypting SSL traffic. One clear benefit to SSL offloading in 

the balancer is that it enables it to do balancing or content switching based on data in the HTTPS 

request. 

 Distributed Denial of Service (DDoS) attack protection: load balancers can provide features 

such as SYN cookies and delayed-binding (the back-end servers don't see the client until it 

finishes its TCP handshake) to mitigate SYN floodattacks and generally offload work from the 

servers to a more efficient platform. 

 HTTP compression: reduces amount of data to be transferred for HTTP objects by utilizing gzip 

compression available in all modern web browsers. The larger the response and the further away 

the client is, the more this feature can improve response times. The tradeoff is that this feature 

puts additional CPU demand on the Load Balancer and could be done by Web servers instead. 

 TCP offload: different vendors use different terms for this, but the idea is that normally each 

HTTP request from each client is a different TCP connection. This feature utilizes HTTP/1.1 to 

consolidate multiple HTTP requests from multiple clients into a single TCP socket to the back- 

end servers. 

 TCP buffering: the load balancer can buffer responses from the server and spoon-feed the data 

out to slow clients, allowing the web server to free a thread for other tasks faster than it would if 

it had to send the entire request to the client directly. 

 Direct Server Return: an option for asymmetrical load distribution, where request and reply 

have different network paths. 

 Health checking: the balancer polls servers for application layer health and removes failed 

servers from the pool. 

 HTTP caching: the balancer stores static content so that some requests can be handled without 

contacting the servers. 

 Content filtering: some balancers can arbitrarily modify traffic on the way through. 

https://en.wikipedia.org/wiki/SSL_Acceleration
https://en.wikipedia.org/wiki/Secure_Sockets_Layer
https://en.wikipedia.org/wiki/Distributed_denial_of_service
https://en.wikipedia.org/wiki/SYN_cookies
https://en.wikipedia.org/wiki/SYN_flood
https://en.wikipedia.org/wiki/HTTP_compression
https://en.wikipedia.org/wiki/HTTP_caching


Page | 173  

 

 HTTP security: some balancers can hide HTTP error pages, remove server identification headers 

from HTTP responses, and encrypt cookies so that end users cannot manipulate them. 

 Priority queuing: also known as rate shaping, the ability to give different priority to different 

traffic. 

 Content-aware switching: most load balancers can send requests to different servers based on 

the URL being requested, assuming the request is not encrypted (HTTP) or if it is encrypted (via 

HTTPS) that the HTTPS request is terminated (decrypted) at the load balancer. 

 Client authentication: authenticate users against a variety of authentication sources before 

allowing them access to a website. 

 Programmatic traffic manipulation: at least one balancer allows the use of a scripting language 

to allow custom balancing methods, arbitrary traffic manipulations, and more. 

 Firewall: direct connections to backend servers are prevented, for network security reasons 

Firewall is a set of rules that decide whether the traffic may pass through an interface or not. 

 Intrusion prevention system: offer application layer security in addition to network/transport 

layer offered by firewall security. 

 

 
 

Sharing annotations 

Munin implements a variety of consistency protocols, which are applied at the granularity of 

individual data items. The protocols are parameterized according to the following options: 

• whether to use a write-update or write-invalidate protocol; 

• whether several replicas of a modifiable data item may exist simultaneously; 

• whether or not to delay updates or invalidations (for example, under release consistency); 

• whether the item has a fixed owner, to which all updates must be sent; 

• whether the same data item may be modified concurrently by several writers; 

• whether the data item is shared by a fixed set of processes; 

• whether the data item may be modified. 

 
 

Read-only: No updates may be made after initialization and the item may be freely copied. 

Migratory: Processes typically take turns in making several accesses to the item, at least one of 

which is an update. For example, the item might be accessed within a critical section. Munin 

always gives both read and write access together to such an object, even when a process takes a 

read fault. This saves subsequent write-fault processing. 

Write-shared: Several processes update the same data item (for example, an array) concurrently, 

but this annotation is a declaration from the programmer that the processes do not update the 

same parts of it. This means that Munin can avoid false sharing but must propagate only those 

words in the data item that are actually updated at each process. To do this, Munin makes a copy 

of a page (inside a write-fault handler) just before it is updated locally. Only the differences 
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between the two versions are sent in an update. 

 
Producer-consumer: The data object is shared by a fixed set of processes, only one of which 

updates it. As we explained when discussing thrashing above, a writeupdate protocol is most 

suitable here. Moreover, updates may be delayed under the model of release consistency, 

assuming that the processes use locks to synchronize their accesses. 

Reduction: The data item is always modified by being locked, read, updated and unlocked. An 

example of this is a global minimum in a parallel computation, which must be fetched and 

modified atomically if it is greater than the local minimum. These items are stored at a fixed 

owner. Updates are sent to the owner, which propagates them. 

Result: Several processes update different words within the data item; a single process reads the 

whole item. For example, different ‘worker’ processes might fill in different elements of an 

array, which is then processed by a ‘master’ process. The point here is that the updates need only 

be propagated to the master and not to the workers (as would occur under the ‘write-shared’ 

annotation just described). 

Conventional: The data item is managed under an invalidation protocol similar to that described 

in the previous section. No process may therefore read a stale version of the data item. 

 

OTHER CONSISTENCY MODELS 

Models of memory consistency can be divided into uniform models, which do not distinguish 

between types of memory access, and hybrid models, which do distinguish between ordinary and 

synchronization accesses (as well as other types of access). 

Other uniform consistency models include: 

Causal consistency: Reads and writes may be related by the happened-before relationship . This 

is defined to hold between memory operations when either (a) they are made by the same 

process; (b) a process reads a value written by another process; or (c) there exists a sequence of 

such operations linking the two operations. The model’s constraint is that the value returned by a 

read must be consistent with the happened-before relationship. 

Processor consistency: The memory is both coherent and adheres to the pipelined RAM model 

(see below). The simplest way to think of processor consistency is that the memory is coherent 

and that all processes agree on the ordering of any two write accesses made by the same process 

– that is, they agree with its program order. 
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Pipelined RAM: All processors agree on the order of writes issued by any given processor 

In addition to release consistency, hybrid models include: 

Entry consistency: Entry consistency was proposed for the Midway DSM system. In this model, 

every shared variable is bound to a synchronization object such as a lock, which governs access 

to that variable. Any process that first acquires the lock is guaranteed to read the latest value of 

the variable. A process wishing to write the variable must first obtain the corresponding lock in 

‘exclusive’ mode – making it the only process able to access the variable. 

Several processes may read the variable concurrently by holding the lock in nonexclusive mode. 

Midway avoids the tendency to false sharing in release consistency, but at the expense of 

increased programming complexity. 

Scope consistency: This memory model [Iftode et al. 1996] attempts to simplify the 

programming model of entry consistency. In scope consistency, variables are associated with 

synchronization objects largely automatically instead of relying on the programmer to associate 

locks with variables explicitly. For example, the system can monitor which variables are updated 

in a critical section. 

Weak consistency: Weak consistency [Dubois et al. 1988] does not distinguish between acquire 

and release synchronization accesses. One of its guarantees is that all previous ordinary accesses 

complete before either type of synchronization access completes. 

 

Common Object Request Broker Architecture (CORBA) 

 
 

CORBA is a middeware design that allows application programs to communicate with 

one another irrespective of their programming languages, their hardware and software platforms, 

the networks they communicate over and their implementors. 

Applications are built from CORBA objects, which implement interfaces defined in 

CORBA’s interface definition language, IDL. Clients access the methods in the IDL interfaces of 

CORBA objects by means of RMI. The middleware component that supports RMI is called the 

Object Request Broker or ORB. 

Introduction 

The OMG (Object Management Group) was formed in 1989 with a view to encouraging the 

adoption of distributed object systems in order to gain the benefits of object-oriented 
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programming for software development and to make use of distributed systems, which were 

becoming widespread. To achieve its aims, the OMG advocated the use of open systems based 

on standard object-oriented interfaces. These systems would be built from heterogeneous 

hardware, computer networks, operating systems and programming languages. 

An important motivation was to allow distributed objects to be implemented in any programming 

language and to be able to communicate with one another. They therefore designed an interface 

language that was independent of any specific implementation language. 

They introduced a metaphor, the object request broker(or ORB), whose role is to help a client to 

invoke a method on an object. This role involves locating the object, activating the object if 

necessary and then communicating the client’s request to the object, which carries it out and 

replies. 

In 1991, a specification for an object request broker architecture known as CORBA (Common 

Object Request Broker Architecture) was agreed by a group of companies. This was followed in 

1996 by the CORBA 2.0 specification, which defined standards enabling implementations made 

by different developers to communicate with one another. These standards are called the General 

Inter-ORB protocol or GIOP. It is intended that GIOP can be implemented over any transport 

layer with connections. The implementation of GIOP for the Internet uses the TCP protocol and 

is called the Internet Inter-ORB Protocol or IIOP [OMG 2004a]. CORBA 3 first appeared in late 

1999 and a component model has been added recently. 

The main components of CORBA’s language-independent RMI framework are the following: 

• An interface definition language known as IDL, 

• The GIOP defines an external data representation, called CDR. It also defines specific 

formats for the messages in a request-reply protocol. In addition to request and reply 

messages, it specifies messages for enquiring about the location of an object, for 

cancelling requests and for reporting errors. 

• The IIOP, an implementation of GIOP defines a standard form for remote object 

references, 

CORBA RMI 

 

Programming in a multi-language RMI system such as CORBA RMI requires more of the 

programmer than programming in a single-language RMI system such as Java RMI. 

The following new concepts need to be learned: 
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• the object model offered by CORBA; 

• the interface definition language and its mapping onto the implementation language. 

CORBA's object model 

The CORBA object model is similar to the one described in , but clients are not necessarily 

objects – a client can be any program that sends request messages to remote objects and receives 

replies. The term CORBA object is used to refer to remote objects. Thus, a CORBA object 

implements an IDL interface, has a remote object reference and is able to respond to invocations 

of methods in its IDL interface. A CORBA object can be implemented by a language that is not 

objectoriented, for example without the concept of class. Since implementation languages will 

have different notions of class or even none at all, the class concept does not exist in CORBA. 

Therefore classes cannot be defined in CORBA IDL, which means that instances of classes 

cannot be passed as arguments. 

CORBA IDL 

These are preceded by definitions of two structs, which are used as parameter types in defining 

the methods. Note in particular that GraphicalObject is defined as a struct , whereas it was a 

class in the Java RMI example. A component whose type is a struct has a set of fields containing 

values of various types like the instance variables of an object, but it has no methods. 

Parameters and results in CORBA IDL: 

Each parameter is marked as being for input or output or both, using the keywords in , out or 

inout illustrates a simple example of the use of those keywords 
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The semantics of parameter passing are as follows: 

Passing CORBA objects: 

Any parameter whose type is specified by the name of an IDL interface, such as the return value 

Shape in line 7, is a reference to a CORBA object and the value of a remote object reference is 

passed. 

Passing CORBA primitive and constructed types: 

Arguments of primitive and constructed types are copied and passed by value. On arrival, a new 

value is created in the recipient’s process. For example, the struct GraphicalObject passed as 

argument (in line 7) produces a new copy of this struct at the server. 

Type Object : 

Object is the name of a type whose values are remote object references. It is effectively a 

common supertype of all of IDL interface types such as Shape and ShapeList. 
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Exceptions in CORBA IDL: 

CORBA IDL allows exceptions to be defined in interfaces and thrown by their methods. To 

illustrate this point, we have defined our list of shapes in the server as a sequence of a fixed 

length (line 4) and have defined FullException (line 6), which is thrown by the method 

newShape (line 7) if the client attempts to add a shape when the sequence is full. 

Invocation semantics: 

Remote invocation in CORBA has at-most-once call semantics as the default. However, IDL 

may specify that the invocation of a particular method has maybe semantics by using the oneway 

keyword. The client does not block on oneway requests, which can be used only for methods 

without results. 

The CORBA Naming service 

It is a binder that provides operations including rebind for servers to register the remote object 

references of CORBA objects by name and resolve for clients to look them up by name. The 

names are structured in a hierarchic fashion, and each name in a path is inside a structure called a 

NameComponent . This makes access in a simple example seem rather complex. 

 

CORBA pseudo objects 

Implementations of CORBA provide interfaces to the functionality of the ORB that programmers 

need to use. In particular, they include interfaces to two of the components in the ORB core and 

the Object Adaptor 

CORBA client and server example 

This is followed by a discussion of callbacks in CORBA. We use Java as the client and server 

languages, but the approach is similar for other languages. The interface compiler idlj can be 

applied to the CORBA interfaces to generate the following items: 
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 The equivalent Java interfaces – two per IDL interface. The name of the first Java 

interface ends in Operations – this interface just defines the operations in the IDL 

interface. The Java second interface has the same name as the IDL interface and 

implements the operations in the first interface as well as those in an interface suitable for 

a CORBA object. 

 The server skeletons for each idl interface. The names of skeleton classes end in POA , 

for example ShapeListPOA. 

 The proxy classes or client stubs, one for each IDL interface. The names of these classes 

end in Stub , for example _ShapeListStub\ 

 A Java class to correspond to each of the structs defined with the IDL interfaces. In our 

example, classes Rectangle and GraphicalObject are generated. Each of these classes 

contains a declaration of one instance variable for each field in the corresponding struct 

and a pair of constructors, but no other methods. 

 Classes called helpers and holders, one for each of the types defined in the IDL interface. 

A helper class contains the narrow method, which is used to cast down from a given 

object reference to the class to which it belongs, which is lower down the class hierarchy. 

For example, the narrow method in ShapeHelper casts down to class Shape . The holder 

classes deal with out and inout arguments, which cannot be mapped directly onto Java. 

Server program 

The server program should contain implementations of one or more IDL interfaces. For a server 

written in an object-oriented language such as Java or C++, these implementations are 

implemented as servant classes. CORBA objects are instances of servant classes. 
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When a server creates an instance of a servant class, it must register it with the POA, which 

makes the instance into a CORBA object and gives it a remote object reference. Unless this is 

done, the CORBA object will not be able to receive remote invocations. Readers who studied 

Chapter 5 carefully may realize that registering the object with the POA causes it to be recorded 

in the CORBA equivalent of the remote object table. 
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The client program 

It creates and initializes an ORB (line 1), then contacts the Naming Service to get a reference to 

the remote ShapeList object by using its resolve method (line 2). After that it invokes its method 

allShapes (line 3) to obtain a sequence of remote object references to all the Shapes currently 

held at the server. It then invokes the getAllState method (line 4), giving as argument the first 

remote object reference in the sequence returned; the result is supplied as an instance of the 

GraphicalObject class. 
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Callbacks 

Callbacks can be implemented in CORBA in a manner similar to the one described for Java RMI 

For example, the WhiteboardCallback interface may be defined as follows: 

interface WhiteboardCallback { 

oneway void callback(in int version); 

}; 

This interface is implemented as a CORBA object by the client, enabling the server to send the 

client a version number whenever new objects are added. But before the server can do this, the 

client needs to inform the server of the remote object reference of its object. To make this 

possible, the ShapeList interface requires additional methods such as register and deregister, as 

follows: 

int register(in WhiteboardCallback callback); 

void deregister(in int callbackId); 

After a client has obtained a reference to the ShapeList object and created an instance of 

WhiteboardCallback, it uses the register method of ShapeList to inform the server that it is 

interested in receiving callbacks. The ShapeList object in the server is responsible for keeping a 

list of interested clients and notifying all of them each time its version number increases when a 

new object is added. 
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The architecture of CORBA 

The architecture is designed to support the role of an object request broker that enables clients to 

invoke methods in remote objects, where both clients and servers can be implemented in a 

variety of programming languages. The main components of the CORBA architecture are 

illustrated in Figure 

 

 

 

 

 
CORBA provides for both static and dynamic invocations. Static invocations are used when the 

remote interface of the CORBA object is known at compile time, enabling client stubs and server 

skeletons to be used. If the remote interface is not known at compile time, dynamic invocation 

must be used. Most programmers prefer to use static invocation because it provides a more 

natural programming model. 

ORB core ◊ The role of the ORB core is similar to that of the communication module . In 

addition, an ORB core provides an interface that includes the following: 

• operations enabling it to be started and stopped; 

• operations to convert between remote object references and strings; 

• operations to provide argument lists for requests using dynamic invocation. 

Object adapter 

The role of an object adapter is to bridge the gap between CORBA objects with IDL interfaces 

and the programming language interfaces of the corresponding servant classes. This role also 

includes that of the remote reference and dispatcher modules. An object adapter has the 

following tasks: 
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• it creates remote object references for CORBA objects; 

• it dispatches each RMI via a skeleton to the appropriate servant; 

• it activates and deactivates servants. 

An object adapter gives each CORBA object a unique object name, which forms part of its 

remote object reference. The same name is used each time an object is activated. The object 

name may be specified by the application program or generated by the object adapter. Each 

CORBA object is registered with its object adapter, which may keep a remote object table that 

maps the names of CORBA objects to their servants. 

Portable object adapter 

The CORBA 2.2 standard for object adapters is called the Portable Object Adapter. It is called 

portable because it allows applications and servants to be run on ORBs produced by different 

developers [Vinoski 1998]. This is achieved by means of the standardization of the skeleton 

classes and of the interactions between the POA and the servants. The POA supports CORBA 

objects with two different sorts of lifetimes: 

• those whose lifetimes are restricted to that of the process their servants are instantiated in; 

• those whose lifetimes can span the instantiations of servants in multiple processes. 

Skeletons 

Skeleton classes are generated in the language of the server by an IDL compiler. As before, 

remote method invocations are dispatched via the appropriate skeleton to a particular servant, 

and the skeleton unmarshals the arguments in request messages and marshals exceptions and 

results in reply messages. 

Client stubs/proxies 

These are in the client language. The class of a proxy (for object oriented languages) or a set of 

stub procedures (for procedural languages) is generated from an IDL interface by an IDL 

compiler for the client language. As before, the client stubs/proxies marshal the arguments in 

invocation requests and unmarshal exceptions and results in replies. 

Implementation repository 

• An implementation repository is responsible for activating registered servers on demand 

and for locating servers that are currently running. The object adapter name is used to 

refer to servers when registering and activating them. 

• An implementation repository stores a mapping from the names of object adapters to the 

pathnames of files containing object implementations. 
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• Object implementations and object adapter names are generally registered with the 

implementation repository when server programs are installed. 

• When object implementations are activated in servers, the hostname and port number of 

the server are added to the mapping. 

Interface repository 

The role of the interface repository is to provide information about registered IDL interfaces to 

clients and servers that require it. For an interface of a given type it can supply the names of the 

methods and for each method, the names and types of the arguments and exceptions. Thus, the 

interface repository adds a facility for reflection to CORBA 

Dynamic invocation interface 

The dynamic invocation interface allows clients to make dynamic invocations on remote 

CORBA objects. It is used when it is not practical to employ proxies. The client can obtain from 

the interface repository the necessary information about the methods available for a given 

CORBA object. The client may use this information to construct an invocation with suitable 

arguments and send it to the server. 

Dynamic skeletons 

If a server uses dynamic skeletons, then it can accept invocations on the interface of a CORBA 

object for which it has no skeleton. When a dynamic skeleton receives an invocation, it inspects 

the contents of the request to discover its target object, the method to be invoked and the 

arguments. It then invokes the target. 

Legacy code 

The term legacy code refers to existing code that was not designed with distributed objects in 

mind. A piece of legacy code may be made into a CORBA object by defining an IDL interface 

for it and providing an implementation of an appropriate object adapter and the necessary 

skeletons. 

CORBA Interface Definition Language 

The CORBA Interface Definition Language, IDL, provides facilities for defining modules, 

interfaces, types, attributes and method signatures. IDL has the same lexical rules as C++ but has 

additional keywords to support distribution, for example interface, any, attribute, in, out, inout, 

readonly, raises. It also allows standard C++ preprocessing facilities. 
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IDL Modules 

The module construct allows interfaces and other IDL type definitions to be grouped in logical 

units. A module defines a naming scope, which prevents names defined within a module clashing 

with names defined outside it. 

IDL interface 

An IDL interface describes the methods that are available in CORBA objects that implement that 

interface. Clients of a CORBA object may be developed just from the knowledge of its IDL 

interface. 

IDL methods 

The general form of a method signature is: 

[oneway] <return_type> <method_name> (parameter1,..., parameterL) 

[raises (except1,..., exceptN)] [context (name1,..., nameM)] 

where the expressions in square brackets are optional. For an example of a method signature that 

contains only the required parts, consider: 

void getPerson(in string name, out Person p); 

IDL types 

IDL supports fifteen primitive types, which include short (16-bit), long (32- bit), unsigned short, 

unsigned long, float (32-bit), double (64-bit), char, Boolean (TRUE, FALSE), octet (8-bit), and 

any (which can represent any primitive or constructed type). 
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Attributes 

IDL interfaces can have attributes as well as methods. Attributes are like public class fields in 

Java. Attributes may be defined as readonly where appropriate. The attributes are private to 

CORBA objects, but for each attribute declared, a pair of accessor methods is generated 

automatically by the IDL compiler, one to retrieve the value of the attribute and the other to set 

it. For readonly attributes, only the getter method is provided. For example, the PersonList 

interface defined in Figure 5.2 includes the following definition of an attribute: readonly 

attribute string listname; 

Inheritance 

IDL interfaces may be extended. For example, if interface B extends interface A, this means that 

it may add new types, constants, exceptions, methods and attributes to those of A. An extended 

interface can redefine types, constants and exceptions, but is not allowed to redefine methods. A 

value of an extended type is valid as the value of a parameter or result of the parent type. For 

example, the type B is valid as the value of a parameter or result of the type A. 

interface A { }; 

interface B: A{ }; 

interface C {}; 

interface Z : B, C {}; 
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CORBA SERVICES 

 
 

CORBA includes specifications for services that may be required by distributed objects. In 

particular, the Naming Service is an essential addition to any ORB. The CORBA services 

include the following: 

 Naming Service: 

 Event Service and Notification Service: 

 Security service: 

 Trading service: 

In contrast to the Naming Service which allows CORBA objects to be located by name, the 

Trading Service [OMG 2000a] allows them to be located by attribute – that is, it is a directory 

service. Its database contains a mapping from service types and their associated attributes onto 

remote object references of CORBA objects. The service type is a name, and each attribute is a 

name-value pair. Clients make queries by specifying the type of service required, together with 

other arguments specifying constraints on the values of attributes, and preferences for the order 

in which to receive matching offers. Trading servers can form federations in which they not only 

use their own databases but also perform queries on behalf of one anothers’ clients. 

 Transaction service and concurrency control service: 

The object transaction service [OMG 2003] allows distributed CORBA objects to participate in 

either flat or nested transactions. The client specifies a transaction as a sequence of RMI calls, 

which are introduced by begin and terminated by commit or rollback (abort). The ORB attaches 

a transaction identifier to each remote invocation and deals with begin, commit and rollback 

requests. Clients can also suspend and resume transactions. The transaction service carries out a 

two-phase commit protocol. The concurrency control service [OMG 2000b] uses locks to apply 

concurrency control to the access of CORBA objects. It may be used from within transactions or 

independently. 

 Persistent state service: 

An persistent objects can be implemented by storing them in a passive form in a persistent object 

store while they are not in use and activating them when they are needed. Although ORBs 

activate CORBA objects with persistent object references, getting their implementations from the 
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implementation repository, they are not responsible for saving and restoring the state of CORBA 

objects. 

 Life cycle service 

The life cycle service defines conventions for creating, deleting, copying and moving CORBA 

objects. It specifies how clients can use factories to create objects in particular locations, 

allowing persistent storage to be used if required. It defines an interface that allows clients to 

delete CORBA objects or to move or copy them to a specified location. 

CORBA Naming Service 

The CORBA Naming Service is a sophisticated example of the binder described in Chapter 5. It 

allows names to be bound to the remote object references of CORBA objects within naming 

contexts. 

 

 

 
 

a naming context is the scope within which a set of names applies – each of the names within a 

context must be unique. A name can be associated with either an object reference for a CORBA 

object in an application or with another context in the naming service. 

The names used by the CORBA Naming Service are two-part names, called Name Components, 

each of which consists of two strings, one for the name and the other for the kind of the object. 

The kind field provides a single attribute that is intended for use by applications and may contain 

any useful descriptive information; it is not interpreted by the Naming Service. 

Although CORBA objects are given hierarchic names by the Naming Service, these names 

cannot be expressed as pathnames like those of UNIX files. 
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CORBA Event Service 

The CORBA Event Service specification defines interfaces allowing objects of interest, called 

suppliers, to communicate notifications to subscribers, called consumers. The notifications are 

communicated as arguments or results of ordinary synchronous CORBA remote method 

invocations. Notifications may be propagated either by being pushed by the supplier to the 

consumer or pulled by the consumer from the supplier. In the first case, the consumers 

implement the PushConsumer interface which includes a method push that takes any CORBA 

data type as argument. Consumers register their remote object references with the suppliers. The 

supplier invokes the push method, passing a notification as argument. In the second case, the 

supplier implements the PullSupplier interface, which includes a method pull that receives any 

CORBA data type as its return value. Suppliers register their remote object references with the 

consumers. The consumers invoke the pull method and receive a notification as result. 

The notification itself is transmitted as an argument or result whose type is any, which 

means that the objects exchanging notifications must have an agreement about the contents of 

notifications. Application programmers, however, may define their own IDL interfaces with 

notifications of any desired type. 

Event channels are CORBA objects that may be used to allow multiple suppliers to 

communicate with multiple consumers in an asynchronous manner. An event channel acts as a 
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buffer between suppliers and consumers. It can also multicast the notifications to the consumers. 

Communication via an event channel may use either the push or pull style. The two styles may 

be mixed; for example, suppliers may push notifications to the channel and consumers may pull 

notifications from it. 

 

 
CORBA Notification Service 

The CORBA Notification Service extends the CORBA Event Service, retaining all of its features 

including event channels, event consumers and event suppliers. The event service provides no 

support for filtering events or for specifying delivery requirements. Without the use of filters, all 

the consumers attached to a channel have to receive the same notifications as one another. And 

without the ability to specify delivery requirements, all of the notifications sent via a channel are 

given the delivery guarantees built into the implementation. 

The notification service adds the following new facilities: 

• Notifications may be defined as data structures. This is an enhancement of the limited 

utility provided by notifications in the event service, whose type could only be either any 

or a type specified by the application programmer. 

• Event consumers may use filters that specify exactly which events they are interested in. 

The filters may be attached to the proxies in a channel. The proxies will forward 

notifications to event consumers according to constraints specified in filters in terms of 

the contents of each notification. 

• Event suppliers are provided with a means of discovering the events the consumers are 

interested in. This allows them to generate only those events that are required by the 

consumers. 

• Event consumers can discover the event types offered by the suppliers on a channel, 

which enables them to subscribe to new events as they become available. 
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• It is possible to configure the properties of a channel, a proxy or a particular event. These 

properties include the reliability of event delivery, the priority of events, the ordering 

required (for example, FIFO or by priority) and the policy for discarding stored events. 

• An event type repository is an optional extra. It will provide access to the structure of 

events, making it convenient to define filtering constraints. 

A structured event consists of an event header and an event body. The following example 

illustrates the contents of the header: 

 
The following example illustrates the information in the body of a structured event: 

 

 

 

 

 
Filter objects are used by proxies in making decisions as to whether to forward each notification. 

A filter is designed as a collection of constraints, each of which is a data structure with two 

components: 

• A list of data structures, each of which indicates an event type in terms of its domain 

name and event type, for example, "home", "burglar alarm". The list includes all of the 

event types to which the constraint should apply. 

• A string containing a boolean expression involving the values of the event types listed 

above. For example: 

("domain type" == "home" && "event type" == "burglar alarm") && 

("bell" != "ringing" !! "door" == "open") 

CORBA Security Service 

The CORBA Security Service [Blakley 1999, Baker 1997, OMG 2002b] includes the following: 

• Authentication of principals (users and servers); generating credentials for principals (that 

is, certificates stating their rights); delegation of credentials is supported 
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• Access control can be applied to CORBA objects when they receive remote method 

invocations. Access rights may for example be specified in access control lists 

(ACLs). 

• Security of communication between clients and objects, protecting messages for 

integrity and confidentiality. 

• Auditing by servers of remote method invocations. 

• Facilities for non-repudiation. When an object carries out a remote invocation on 

behalf of a principal, the server creates and stores credentials that prove that the 

invocation was done by that server on behalf of the requesting principal. 

 
CORBA allows a variety of security policies to be specified according to requirements. A 

message-protection policy states whether client or server (or both) must be authenticated, and 

whether messages must be protected against disclosure and/or modification. 

Access control takes into account that many applications have large numbers of users and 

even larger numbers of objects, each with its own set of methods. Users are supplied with a 

special type of credential called a privilege according to their roles. 

Objects are grouped into domains. Each domain has a single access control policy 

specifying the access rights for users with particular privileges to objects within that domain. 

To allow for the unpredictable variety of methods, each method is classified in terms of one 

of four generic methods (get, set, use and manage). Get methods just return parts of the object 

state, set methods alter the object state, use methods cause the object to do some work, and 

manage methods perform special functions that are not intended to be available for general 

use. Since CORBA objects have a variety of different interfaces, the access rights must be 

specified for each new interface in terms of the above generic methods. 

In its simplest form, security may be applied in a manner that is transparent to 

applications. It includes applying the required protection policy to remote method 

invocations, together with auditing. The security service allows users to acquire their 

individual credentials and privileges in return for supplying authentication data such as a 

password. 
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