
DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

DIGITAL NOTES

ON

FULL STACK DEVELOPMENT

[R20A0516]

B.TECH III YEAR – II SEM(R20)

(2023-24)

Prepared by faculty name

 Dr. S. RAHAMAT BASHA

DEPARTMENT OF

COMPUTER SCIENCE AND ENGINEERING

MALLA REDDY COLLEGE OF ENGINEERING &

TECHNOLOGY
(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

MALLA REDDY COLLEGE OF ENGINEERING &TECHNOLOGY

DEPARTMENT OF CSE

[R20A0516] FULL STACK DEVELOPMENT

INDEX

SNO UNIT TOPIC PAGE

NO

1 I Web development Basics - HTML 1

2 I HTML, CSS 24

3 I Web servers 27

4 I UNIX CLI Version control - Git & Github 28

5 II Javascript basics OOPS Aspects of JavaScript Memory

usage and Functions in JS

31

6 II jQuery, AJAX for data exchange with server jQuery

Framework jQuery events

35

7 II JSON data format. 44

8 III Introduction to React 47

9 III React Router and Single Page Applications React

Forms

61

10 III Flow Architecture 66

11 III Introduction to Redux More Redux 69

12 III Client-Server Communication 75

13 IV Java Web Development 78

14 IV Model View Controller (MVC) Pattern 78

15 IV MVC Architecture using Spring RESTful API 83

16 IV Spring Framework Building an application using

Maven

87

17 V Relational schemas 98

18 V Normalization Structured Query Language (SQL) 102

19 V Data persistence using Spring JDBC Agile

development principles

105

20 V Deploying application in Cloud 120

(R20A0516) FULL STACK DEVELOPMENT

COURSE OBJECTIVES:
1. To become knowledgeable about the most recent web development technologies.

2. Idea for creating two tier and three tier architectural web applications.

3. Design and Analyse real time web applications.

4. Constructing suitable client and server side applications.

5. To learn core concept of both front end and back end programming.

UNIT - I

Web Development Basics: Web development Basics - HTML & Web servers Shell - UNIX CLI Version

control - Git & Github HTML, CSS

UNIT - II

Frontend Development: Javascript basics OOPS Aspects of JavaScript Memory usage and Functions in JS

AJAX for data exchange with server jQuery Framework jQuery events, UI components etc. JSON data

format.

UNIT - III

REACT JS: Introduction to React React Router and Single Page Applications React Forms, Flow

Architecture and Introduction to Redux More Redux and Client-Server Communication

UNIT - IV

Java Web Development: JAVA PROGRAMMING BASICS, Model View Controller (MVC) Pattern MVC

Architecture using Spring RESTful API using Spring Framework Building an application using Maven

UNIT - V

Databases & Deployment: Relational schemas and normalization Structured Query Language (SQL) Data

persistence using Spring JDBC Agile development principles and deploying application in Cloud

TEXT BOOKS:

1. Web Design with HTML, CSS, JavaScript and JQuery Set Book by Jon Duckett Professional JavaScript

for Web Developers Book by Nicholas C. Zakas

2. Learning PHP, MySQL, JavaScript, CSS & HTML5: A Step-by-Step Guide to Creating Dynamic Websites

by Robin Nixon

3. Full Stack JavaScript: Learn Backbone.js, Node.js and MongoDB. Copyright © 2015 BY AZAT
MARDAN

REFERENCE BOOKS:

1. Full-Stack JavaScript Development by Eric Bush.

2. Mastering Full Stack React Web Development Paperback – April 28, 2017 by Tomasz

Dyl , Kamil Przeorski , Maciej Czarnecki

COURSE OUTCOMES:

1. Develop a fully functioning website and deploy on a web server.
2. Gain Knowledge about the front end and back end Tools

3. Find and use code packages based on their documentation to produce working results in a project.

4. Create web pages that function using external data.

5. Implementation of web application employing efficient database access.

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 1 | P a g e

UNIT - I
Web Development Basics: Web development Basics - HTML & Web servers Shell -
UNIX CLI Version control - Git & Github HTML, CSS

HTML is an acronym which stands for Hyper Text Markup Language which is used

for creating web pages and web applications. Let's see what is meant by Hypertext

Markup Language, and Web page.

Hyper Text: HyperText simply means "Text within Text." A text has a link within it, is

a hypertext. Whenever you click on a link which brings you to a new webpage, you

have clicked on a hypertext. HyperText is a way to link two or more web pages

(HTML documents) with each other.

Markup language: A markup language is a computer language that is used to apply

layout and formatting conventions to a text document. Markup language makes text

more interactive and dynamic. It can turn text into images, tables, links, etc.

Web Page: A web page is a document which is commonly written in HTML and

translated by a web browser. A web page can be identified by entering an URL. A

Web page can be of the static or dynamic type. With the help of HTML only, we

can create static web pages.

Hence, HTML is a markup language which is used for creating attractive web pages

with the help of styling, and which looks in a nice format on a web browser. An HTML

document is made of many HTML tags and each HTML tag contains different

content.

Let's see a simple example of HTML.

<!DOCTYPE>

<html>

<head>

<title>Web page title</title>

</head>

<body>

<h1>Write Your First Heading</h1>

<p>Write Your First Paragraph.</p>

</body>

</html>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 2 | P a g e

Description of HTML Example

<!DOCTYPE>: It defines the document type or it instruct the browser about the

version of HTML.

<html > :This tag informs the browser that it is an HTML document. Text between

html tag describes the web document. It is a container for all other elements of

HTML except <!DOCTYPE>

<head>: It should be the first element inside the <html> element, which contains

the metadata(information about the document). It must be closed before the body

tag opens.

<title>: As its name suggested, it is used to add title of that HTML page which

appears at the top of the browser window. It must be placed inside the head tag and

should close immediately. (Optional)

<body> : Text between body tag describes the body content of the page that is

visible to the end user. This tag contains the main content of the HTML document.

<h1> : Text between <h1> tag describes the first level heading of the webpage.

<p> : Text between <p> tag describes the paragraph of the webpage.

HTML Tags

HTML tags are like keywords which defines that how web browser will format and

display the content. With the help of tags, a web browser can distinguish between an

HTML content and a simple content. HTML tags contain three main parts: opening

tag, content and closing tag. But some HTML tags are unclosed tags.

When a web browser reads an HTML document, browser reads it from top to bottom

and left to right. HTML tags are used to create HTML documents and render their

properties. Each HTML tags have different properties.

o All HTML tags must enclosed within < > these brackets.

o Every tag in HTML perform different tasks.

o If you have used an open tag <tag>, then you must use a close tag </tag>

(except some tags)

Syntax

<tag> content </tag>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 3 | P a g e

HTML Tag Examples

<p> Paragraph Tag </p>

<h2> Heading Tag </h2>

 Bold Tag

<i> Italic Tag </i>

<u> Underline Tag</u>

HTML Elements

An HTML file is made of elements. These elements are responsible for creating web

pages and define content in that webpage. An element in HTML usually consist of a

start tag <tag name>, close tag </tag name> and content inserted between

them. Technically, an element is a collection of start tag, attributes, end tag,

content between them.

Example

<!DOCTYPE html>

<html>

<head>

 <title>WebPage</title>

</head>

<body>

 <h1>This is my first web page</h1>

 <h2> How it looks?</h2>

 <p>It looks Nice!!!!!</p>

</body>

</html>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 4 | P a g e

Test it

Now

HTML Heading

A HTML heading or HTML h tag can be defined as a title or a subtitle which you want

to display on the webpage. When you place the text within the heading tags

<h1>.........</h1>, it is displayed on the browser in the bold format and size of the

text depends on the number of heading.

There are six different HTML headings which are defined with the <h1> to <h6>

tags, from highest level h1 (main heading) to the least level h6 (least important

heading).

h1 is the largest heading tag and h6 is the smallest one. So h1 is used for most

important heading and h6 is used for least important.

Headings in HTML helps the search engine to understand and index the

structure of web page.

Note: The main keyword of the whole content of a webpage should be display by
h1 heading tag.

See this example:

1. <h1>Heading no. 1</h1>

2. <h2>Heading no. 2</h2>

3. <h3>Heading no. 3</h3>

4. <h4>Heading no. 4</h4>

https://www.javatpoint.com/oprweb/test.jsp?filename=htmlelements
https://www.javatpoint.com/oprweb/test.jsp?filename=htmlelements

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 5 | P a g e

5. <h5>Heading no. 5</h5>

6. <h6>Heading no. 6</h6>

Output:

Heading no. 1
Heading no. 2
Heading no. 3
Heading no. 4
Heading no. 5
Heading no. 6

Example:

<!DOCTYPE html>

<html>

 <head>

 <title>Heading elements</title>

 </head>

 <body>

 <h1>This is main heading of page. </h1>

 <p>h1 is the most important heading, which is used to display the keyword o

f page </p>

 <h2>This is first sub-heading</h2>

 <p>h2 describes the first sub heading of page. </p>

 <h3>This is Second sub-heading</h3>

 <p>h3 describes the second sub heading of page.</p>

 <p>We can use h1 to h6 tag to use the different sub-

heading with their paragraphs if

 required.

 </p>

 </body>

</html>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 6 | P a g e

Output:

HTML Anchor

The HTML anchor tag defines a hyperlink that links one page to another page. It can

create hyperlink to other web page as well as files, location, or any URL. The "href"

attribute is the most important attribute of the HTML a tag. and which links to

destination page or URL.

href attribute of HTML anchor tag

The href attribute is used to define the address of the file to be linked. In other

words, it points out the destination page.

The syntax of HTML anchor tag is given below.

 Link Text

Let's see an example of HTML anchor tag.

Click for Second Page

Specify a location for Link using target attribute

If we want to open that link to another page then we can use target attribute of <a>

tag. With the help of this link will be open in next page.

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 7 | P a g e

Example:

<!DOCTYPE html>

<html>

<head>

 <title></title>

</head>

<body>

<p>Click on this-

link to go on home page of mrcet.</p>

</body>

</html>

Output:

HTML Image

HTML img tag is used to display image on the web page. HTML img tag is an empty

tag that contains attributes only, closing tags are not used in HTML image element.

Let's see an example of HTML image.

1. <h2>HTML Image Example</h2>

2.

Output:

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 8 | P a g e

Attributes of HTML img tag

The src and alt are important attributes of HTML img tag. All attributes of HTML

image tag are given below.

1) src

It is a necessary attribute that describes the source or path of the image. It instructs

the browser where to look for the image on the server.

The location of image may be on the same directory or another server.

2) alt

The alt attribute defines an alternate text for the image, if it can't be displayed. The

value of the alt attribute describe the image in words. The alt attribute is considered

good for SEO prospective.

3) width

It is an optional attribute which is used to specify the width to display the image. It is

not recommended now. You should apply CSS in place of width attribute.

4) height

It h3 the height of the image. The HTML height attribute also supports iframe, image

and object elements. It is not recommended now. You should apply CSS in place of

height attribute.

Use of height and width attribute with img tag

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 9 | P a g e

You have learnt about how to insert an image in your web page, now if we want to

give some height and width to display image according to our requirement, then we

can set it with height and width attributes of image.

Example:

Output:

Note: Always try to insert the image with height and width, else it may flicker while
displaying on webpage.

Use of alt attribute

We can use alt attribute with tag. It will display an alternative text in case if

image cannot be displayed on browser. Following is the example for alt attribute:

1.

Output:

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 10 | P a g e

HTML Table

HTML table tag is used to display data in tabular form (row * column). There can be

many columns in a row.

We can create a table to display data in tabular form, using <table> element, with

the help of <tr> , <td>, and <th> elements.

In Each table, table row is defined by <tr> tag, table header is defined by <th>, and

table data is defined by <td> tags.

HTML tables are used to manage the layout of the page e.g. header section,

navigation bar, body content, footer section etc. But it is recommended to use div

tag over table to manage the layout of the page .

<html>

<head>

 <title></title>

</head>

<body>

<table border="5">

<tr><th>First_Name</th><th>Last_Name</th><th>Marks</th></tr>

<tr><td>Sonoo</td><td>Jaiswal</td><td>60</td></tr>

<tr><td>James</td><td>William</td><td>80</td></tr>

<tr><td>Swati</td><td>Sironi</td><td>82</td></tr>

<tr><td>Chetna</td><td>Singh</td><td>72</td></tr>

</table>

</body>

</html>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 11 | P a g e

Output:

HTML Lists

HTML Lists are used to specify lists of information. All lists may contain one or more

list elements. There are three different types of HTML lists:

1. Ordered List or Numbered List (ol)

2. Unordered List or Bulleted List (ul)

HTML Ordered List or Numbered List

In the ordered HTML lists, all the list items are marked with numbers by default. It is

known as numbered list also. The ordered list starts with tag and the list items

start with tag.

<!DOCTYPE>
<html>
<body>

 Aries

 Bingo

 Leo

 Oracle

</body>
</html>

Output:

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 12 | P a g e

HTML Unordered List or Bulleted List

In HTML Unordered list, all the list items are marked with bullets. It is also known as

bulleted list also. The Unordered list starts with tag and list items start with the

 tag.

o disc

o circle

o square

o none

HTML Unordered List Example

1.

2. HTML

3. Java

4. JavaScript

5. SQL

6.
Test it Now

Output:

o HTML

o Java

o JavaScript

o SQL

ul type="circle"

1. <ul type="circle">

2. HTML

3. Java

4. JavaScript

https://www.javatpoint.com/oprweb/test.jsp?filename=htmlunorderedlist1

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 13 | P a g e

5. SQL

6.
Test it Now

Output:

o HTML

o Java

o JavaScript

o SQL

ul type="square"

<ul type="square">

 HTML

 Java

 JavaScript

 SQL

Output:

o HTML

o Java

o JavaScript

o SQL

HTML Form

An HTML form is a section of a document which contains controls such as text fields,

password fields, checkboxes, radio buttons, submit button, menus etc.

An HTML form facilitates the user to enter data that is to be sent to the server for

processing such as name, email address, password, phone number, etc. .

https://www.javatpoint.com/oprweb/test.jsp?filename=htmlunorderedlist2

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 14 | P a g e

Why use HTML Form

HTML forms are required if you want to collect some data from of the site visitor.

For example: If a user want to purchase some items on internet, he/she must fill the

form such as shipping address and credit/debit card details so that item can be sent

to the given address.

HTML Form Syntax

<form action="server url" method="get|post">

 //input controls e.g. textfield, textarea, radiobutton, button

</form>

HTML TextField Control

The type="text" attribute of input tag creates textfield control also known as single

line textfield control. The name attribute is optional, but it is required for the server

side component such as JSP, ASP, PHP etc.

<form>

 First Name: <input type="text" name="firstname"/>

 Last Name: <input type="text" name="lastname"/>

 </form>

HTML <textarea> tag in form

The <textarea> tag in HTML is used to insert multiple-line text in a form. The size of

<textarea> can be specify either using "rows" or "cols" attribute or by CSS.

Example:

<!DOCTYPE html>

<html>

<head>

 <title>Form in HTML</title>

</head>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 15 | P a g e

<body>

 <form>

 Enter your address:

 <textarea rows="2" cols="20"></textarea>

 </form>

</body>

</html>

Output:

Label Tag in Form

It is considered better to have label in form. As it makes the code

parser/browser/user friendly.

If you click on the label tag, it will focus on the text control. To do so, you need to

have for attribute in label tag that must be same as id attribute of input tag.

NOTE: It is good to use <label> tag with form, although it is optional but if you will
use it, then it will provide a focus when you tap or click on label tag. It is more
worthy with touchscreens.

<form>

 <label for="firstname">First Name: </label>

 <input type="text" id="firstname" name="firstname"/>

 <label for="lastname">Last Name: </label>

 <input type="text" id="lastname" name="lastname"/>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 16 | P a g e

 </form>

Output:

HTML Password Field Control

The password is not visible to the user in password field control.

1. <form>

2. <label for="password">Password: </label>

3. <input type="password" id="password" name="password"/>

4. </form>

Output:

HTML 5 Email Field Control

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 17 | P a g e

The email field in new in HTML 5. It validates the text for correct email address. You

must use @ and . in this field.

<form>

 <label for="email">Email: </label>

 <input type="email" id="email" name="email"/>

</form>

It will display in browser like below:

Radio Button Control

ADVERTISEMENT

The radio button is used to select one option from multiple options. It is used for

selection of gender, quiz questions etc.

If you use one name for all the radio buttons, only one radio button can be selected

at a time.

Using radio buttons for multiple options, you can only choose a single option at a

time.

<form>

 <label for="gender">Gender: </label>

 <input type="radio" id="gender" name="gender" value="male"/>Male

 <input type="radio" id="gender" name="gender" value="female"/>Femal

e

</form>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 18 | P a g e

Checkbox Control

The checkbox control is used to check multiple options from given checkboxes.

<form>

Hobby:

 <input type="checkbox" id="cricket" name="cricket" value="cricket"/>

 <label for="cricket">Cricket</label>

 <input type="checkbox" id="football" name="football" value="football"/>

 <label for="football">Football</label>

 <input type="checkbox" id="hockey" name="hockey" value="hockey"/>

 <label for="hockey">Hockey</label>

</form>

Note: These are similar to radio button except it can choose multiple options at a
time and radio button can select one button at a time, and its display.

Output:

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 19 | P a g e

Submit button control

HTML <input type="submit"> are used to add a submit button on web page.

When user clicks on submit button, then form get submit to the server.

Syntax:

1. <input type="submit" value="submit">

The type = submit , specifying that it is a submit button

The value attribute can be anything which we write on button on web page.

The name attribute can be omit here.

Example:

<form>

 <label for="name">Enter name</label>

 <input type="text" id="name" name="name">

 <label for="pass">Enter Password</label>

 <input type="Password" id="pass" name="pass">

 <input type="submit" value="submit">

</form>

Output:

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 20 | P a g e

HTML <fieldset> element:

The <fieldset> element in HTML is used to group the related information of a form.

This element is used with <legend> element which provide caption for the grouped

elements.

Example:

 <form>

 <fieldset>

 <legend>User Information:</legend>

 <label for="name">Enter name</label>

<input type="text" id="name" name="name">

<label for="pass">Enter Password</label>

<input type="Password" id="pass" name="pass">

<input type="submit" value="submit">

</fieldset>

 </form>

Output:

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 21 | P a g e

HTML Form Example

Following is the example for a simple form of registration.

<!DOCTYPE html>

 <html>

 <head>

 <title>Form in HTML</title>

</head>

 <body>

 <h2>Registration form</h2>

 <form>

 <fieldset>

 <legend>User personal information</legend>

 <label>Enter your full name</label>

 <input type="text" name="name">

 <label>Enter your email</label>

 <input type="email" name="email">

 <label>Enter your password</label>

 <input type="password" name="pass">

 <label>confirm your password</label>

 <input type="password" name="pass">

<label>Enter your gender</label>

 <input type="radio" id="gender" name="gender" value="male"/>Male

 <input type="radio" id="gender" name="gender" value="female"/>Female

 <input type="radio" id="gender" name="gender" value="others"/>others

Enter your Address:

 <textarea></textarea>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 22 | P a g e

 <input type="submit" value="sign-up">

 </fieldset>

 </form>

 </body>

</html>

Output:

HTML Form Example

Let's see a simple example of creating HTML form.

<form action="#">

<table>

<tr>

 <td class="tdLabel"><label for="register_name" class="label">Enter name:</label>

</td>

 <td><input type="text" name="name" value="" id="register_name" style="wi

dth:160px"/></td>

</tr>

<tr>

 <td class="tdLabel"><label for="register_password" class="label">Enter password:</

label></td>

 <td><input type="password" name="password" id="register_password" style

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 23 | P a g e

="width:160px"/></td>

</tr>

<tr>

 <td class="tdLabel"><label for="register_email" class="label">Enter Email:</label><

/td>

 <td

><input type="email" name="email" value="" id="register_email" style="width:160px"/

></td>

</tr>

<tr>

 <td class="tdLabel"><label for="register_gender" class="label">Enter Gender:

</label></td>

 <td>

<input type="radio" name="gender" id="register_gendermale" value="male"/>

<label for="register_gendermale">male</label>

<input type="radio" name="gender" id="register_genderfemale" value="female"

/>

<label for="register_genderfemale">female</label>

 </td>

</tr>

<tr>

 <td class="tdLabel"><label for="register_country" class="label">Select Country:</la

bel></td>

 <td><select name="country" id="register_country" style="width:160px">

 <option value="india">india</option>

 <option value="pakistan">pakistan</option>

 <option value="africa">africa</option>

 <option value="china">china</option>

 <option value="other">other</option>

</select>

</td>

</tr>

<tr>

 <td colspan="2"><div align="right"><input type="submit" id="register_0" va

lue="register"/>

</div></td>

</tr>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 24 | P a g e

</table>

</form>

HTML style using CSS

Our web page with CSS (Cascading Stylesheet) properties.

CSS is used to apply the style in the web page which is made up of HTML elements.

It describes the look of the webpage.

CSS provides various style properties such as background color, padding, margin,

border-color, and many more, to style a webpage.

Each property in CSS has a name-value pair, and each property is separated by a

semicolon (;).

Three ways to apply CSS

To use CSS with HTML document, there are three ways:

o Inline CSS: Define CSS properties using style attribute in the HTML elements.

o Internal or Embedded CSS: Define CSS using <style> tag in <head> section.

o External CSS: Define all CSS property in a separate .css file, and then include the file

with HTML file using tag in section.

Inline CSS:

Inline CSS is used to apply CSS in a single element. It can apply style uniquely in each

element.

To apply inline CSS, you need to use style attribute within HTML element. We can use

as many properties as we want, but each property should be separated by a

semicolon (;).

Example:
<html>
<head>
 <title></title>
</head>
 <body>

<h3 style="color: red;

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 25 | P a g e

 font-style: italic;

 text-align: center;

 font-size: 50px;

 padding-top: 25px;">Learning HTML using Inline CSS</h3>
</body>
</html>

Output:

Learning HTML using Inline CSS

Internal CSS:

An Internal stylesheets contains the CSS properties for a webpage in <head> section

of HTML document. To use Internal CSS, we can use class and id attributes.

We can use internal CSS to apply a style for a single HTML page.

Example:

<!DOCTYPE html>

<html>

<head>

 <style>

 /*Internal CSS using element name*/

 body{background-color:lavender;

 text-align: center;}

 h2{font-style: italic;

 font-size: 30px;

 color: #f08080;}

 p{font-size: 20px;}

 /*Internal CSS using class name*/

 .blue{color: blue;}

 .red{color: red;}

 .green{color: green;}

 </style>

 </head>

 <body>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 26 | P a g e

 <h2>Learning HTML with internal CSS</h2>

 <p class="blue">This is a blue color paragraph</p>

 <p class="red">This is a red color paragraph</p>

 <p class="green">This is a green color paragraph</p>

 </body>

</html>

OUTPUT:

Learning HTML with internal CSS

This is a blue color paragraph

This is a red color paragraph

This is a green color paragraph

External CSS:

An external CSS contains a separate CSS file which only contains style code using the

class name, id name, tag name, etc. We can use this CSS file in any HTML file by

including it in HTML file using <link> tag.

If we have multiple HTML pages for an application and which use similar CSS, then

we can use external CSS.

There are two files need to create to apply external CSS

o First, create the HTML file

o Create a CSS file and save it using the .css extension (This file only will only contain

the styling code.)

o Link the CSS file in your HTML file using tag in header section of HTML document.

Example:

<!DOCTYPE html>

<html>

<head>

 <link rel="stylesheet" type="text/css" href="style.css">

 </head>

 <body>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 27 | P a g e

 <h2>Learning HTML with External CSS</h2>

 <p class="blue">This is a blue color paragraph</p>

 <p class="red">This is a red color paragraph</p>

 <p class="green">This is a green color paragraph</p>

 </body>

</html>

CSS file:

body{

background-color:lavender;

text-align: center;

}

h2{

font-style: italic;

size: 30px;

color: #f08080;

}

p{

font-size: 20px;

}

.blue{

color: blue;

}

.red{

color: red;

}

.green{

color: green;

}

WEB SERVER

A web server is a computer that stores web server software and a website's component files

(for example, HTML documents, images, CSS stylesheets, and JavaScript files). A web

server connects to the Internet and supports physical data interchange with other devices

connected to the web.

A web server includes several parts that control how web users access hosted files. At a

minimum, this is an HTTP server. An HTTP server is software that understands URLs (web

addresses) and HTTP (the protocol your browser uses to view webpages). An HTTP server

can be accessed through the domain names of the websites it stores, and it delivers the

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 28 | P a g e

content of these hosted websites to the end user's device.

At the most basic level, whenever a browser needs a file that is hosted on a web server, the

browser requests the file via HTTP. When the request reaches the correct (hardware) web

server, the (software) HTTP server accepts the request, finds the requested document, and

sends it back to the browser, also through HTTP. (If the server doesn't find the requested

document, it returns a 404 response instead.)

Basic representation of a client/server connection through HTTP

To publish a website, you need either a static or a dynamic web server.

A static web server, or stack, consists of a computer (hardware) with an HTTP server

(software). We call it "static" because the server sends its hosted files as-is to your browser.

A dynamic web server consists of a static web server plus extra software, most commonly an

application server and a database. We call it "dynamic" because the application server

updates the hosted files before sending content to your browser via the HTTP server.

For example, to produce the final webpages you see in the browser, the application server

might fill an HTML template with content from a database. Sites like MDN or Wikipedia

have thousands of webpages. Typically, these kinds of sites are composed of only a few

HTML templates and a giant database, rather than thousands of static HTML documents.

This setup makes it easier to maintain and deliver the content.

Git & Github

What is Git?

Git is a popular version control system. It was created by Linus Torvalds
in 2005, and has been maintained by Junio Hamano since then.

It is used for:

 Tracking code changes

 Tracking who made changes
 Coding collaboration

What does Git do?

 Manage projects with Repositories

 Clone a project to work on a local copy
 Control and track changes with Staging and Committing
 Branch and Merge to allow for work on different parts and versions of

a project

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 29 | P a g e

 Pull the latest version of the project to a local copy
 Push local updates to the main project

Working with Git

 Initialize Git on a folder, making it a Repository

 Git now creates a hidden folder to keep track of changes in that folder
 When a file is changed, added or deleted, it is considered modified

 You select the modified files you want to Stage
 The Staged files are Committed, which prompts Git to store

a permanent snapshot of the files
 Git allows you to see the full history of every commit.
 You can revert back to any previous commit.

 Git does not store a separate copy of every file in every commit, but
keeps track of changes made in each commit!

Github
GitHub is a code hosting platform for version control and collaboration. It

lets you and others work together on projects from anywhere.

This tutorial teaches you GitHub essentials like repositories, branches,

commits, and pull requests. You'll create your own Hello World repository

and learn GitHub's pull request workflow, a popular way to create and

review code.

In this quickstart guide, you will:

• Create and use a repository

• Start and manage a new branch

• Make changes to a file and push them to GitHub as commits

• Open and merge a pull request

To complete this tutorial, you need a GitHub account and Internet access.

You don't need to know how to code, use the command line, or install Git

(the version control software that GitHub is built on). If you have a

question about any of the expressions used in this guide, head on over to

the glossary to find out more about our terminology.

Creating a repository

A repository is usually used to organize a single project. Repositories can

contain folders and files, images, videos, spreadsheets, and data sets --

anything your project needs. Often, repositories include a README file, a

file with information about your project. README files are written in the

plain text Markdown language. You can use this cheat sheet to get started

with Markdown syntax. GitHub lets you add a README file at the same

time you create your new repository. GitHub also offers other common

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 30 | P a g e

options such as a license file, but you do not have to select any of them

now.

Your hello-world repository can be a place where you store ideas,

resources, or even share and discuss things with others.

1. In the upper-right corner of any page, use the drop-down menu,

and select

2. New repository.

3. In the Repository name box, enter hello-world.

4. In the Description box, write a short description.

5. Select Add a README file.

6. Select whether your repository will be Public or Private.

7. Click Create repository.

UNIT - II

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 31 | P a g e

Frontend Development: Javascript basics OOPS Aspects of JavaScript Memory usage and
Functions in JS AJAX for data exchange with server jQuery Framework jQuery events, UI
components etc. JSON data format.

HTML JavaScript
A Script is a small program which is used with HTML to make web pages more attractive,
dynamic and interactive, such as an alert popup window on mouse click. Currently, the most
popular scripting language is JavaScript used for websites.
Example:

<!DOCTYPE html>
<html>
<body>
<h1>JavaScript Date and Time example</h1>
<button type="button"
onclick="document.getElementById('demo').innerHTML = Date()">
Click me to display Date and Time.</button>
<p id="demo"></p>
</body>
</html>

HTML events with JavaScript

An event is something which user does, or browser does such as mouse click or page loading
are examples of events, and JavaScript comes in the role if we want something to happen on
these events.
HTML provides event handler attributes which work with JavaScript code and can perform
some action on an event.
Syntax:
<element event = "JS code">
Example:

<!DOCTYPE html>
<html>
<body>
 <h2>Click Event Example</h2>
 <p>Click on the button and you csn see a pop-up window with a
message</p>
 <input type="button" value="Click" onclick="alert('Hi,how are you')">
</body>
</html>

HTML can have following events such as:

o Form events: reset, submit, etc.
o Select events: text field, text area, etc.
o Focus event: focus, blur, etc.
o Mouse events: select, mouseup, mousemove, mousedown, click, dblclick, etc.

Following are the list for Window event attributes:

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 32 | P a g e

Event Event Name Handler Name Occurs when

onBlur blur When form input loses focus

onClick click When the user clicks on a form element or a link

onSubmit submit When user submits a form to the server.

onLoad load When page loads in a browser.

onFocus focus When user focuses on an input field.

onSelect select When user selects the form input filed.

Note: You will learn more about JavaScript Events in our JavaScript tutorial.

Let's see what JavaScript can do:
1) JavaScript can change HTML content.
Example:

<!DOCTYPE html>
<html>
<body>
<p>JavaScript can change the content of an HTML element:</p>
<button type="button" onclick="myFunction()">Click Me!</button>
<p id="demo"></p>
<script>
function myFunction() {
document.getElementById("demo").innerHTML = "Hello MRCET!";
}
</script>
</body>
</html>

1) JavaScript can change HTML content.

Example:
<!DOCTYPE html>
<html>
<body>
<p>JavaScript can change the content of an HTML element:</p>
<button type="button" onclick="myFunction()">Click Me!</button>
<p id="demo"></p>
<script>
function myFunction() {
 document.getElementById("demo").innerHTML = "Hello MRCET!";
}
</script>
</body>
</html>

2) JavaScript can change HTML style

Example:
<!DOCTYPE html>
<html>
<body>
<p id="demo">JavaScript can change the style of an HTML element.</p>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 33 | P a g e

<script>
function myFunction() {
 document.getElementById("demo").style.fontSize = "25px";
 document.getElementById("demo").style.color = "brown";
 document.getElementById("demo").style.backgroundColor = "lightgreen";
}
</script>
<button type="button" onclick="myFunction()">Click Me!</button>
</body>
</html>

3) JavaScript can change HTML attributes.

Example:
<!DOCTYPE html>
<html>
<body>
<script>
function light(sw) {
 var pic;
 if (sw == 0) {
 pic = "pic_lightoff.png"
 } else {
 pic = "pic_lighton.png"
 }
 document.getElementById('myImage').src = pic;
}
</script>

<p>
<button type="button" onclick="light(1)">Light On</button>
<button type="button" onclick="light(0)">Light Off</button>
</p>
</body>
</html>

Use of External javaScript

Suppose, you have various HTML files which should have same script, then we can put our
JavaScript code in separate file and can call in HTML file. Save JavaScript external files
using .js extension.
Note: Do not add <script> tag in the external file, and provide the complete path where you have

put the JS file.

Syntax:
<script type="text/javascript" src="URL "></script>

Example:
<!DOCTYPE html>
<html>

 <head>
 <script type="text/javascript" src="external.js"></script>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 34 | P a g e

 </head>
 <body>

 <h2>External JavaScript Example</h2>
 <form onsubmit="fun()">

 <label>Enter your name:</label>

 <input type="text" name="uname" id="frm1">

 <label>Enter your Email-address:</label>

 <input type="email" name="email">

 <input type="submit">
 </form>

 </body>
 </html>

JavaScript code:external.js
function fun() {
 var x = document.getElementById("frm1").value;
 alert("Hi"+" "+x+ "you have successfully submitted the details");
 }

JavaScript Objects
A javaScript object is an entity having state and behavior (properties and method). For
example: car, pen, bike, chair, glass, keyboard, monitor etc.
JavaScript is an object-based language. Everything is an object in JavaScript.
JavaScript is template based not class based. Here, we don't create class to get the object. But,
we direct create objects.

Creating Objects in JavaScript
There are 3 ways to create objects. Video

1. By object literal
2. By creating instance of Object directly (using new keyword)
3. By using an object constructor (using new keyword)

1) JavaScript Object by object literal
The syntax of creating object using object literal is given below:

object={property1:value1,property2:value2.....propertyN:valueN}
As you can see, property and value is separated by : (colon).
Let’s see the simple example of creating object in JavaScript.
<html>
<body>
<script>
emp={id:102,name:"Shyam Kumar",salary:40000}
document.write(emp.id+" "+emp.name+" "+emp.salary);
</script>
</body>
</html>

Output

102 Shyam Kumar 40000

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 35 | P a g e

2) By creating instance of Object

The syntax of creating object directly is given below:
var objectname=new Object();

Here, new keyword is used to create object.
Let’s see the example of creating object directly.
<html>
<body>
<script>
var emp=new Object();
emp.id=101;
emp.name="Ravi Malik";
emp.salary=50000;
document.write(emp.id+" "+emp.name+" "+emp.salary);
</script>
</body>
</html>
Out put:

101 Ravi Malik 50000

3) By using an Object constructor

Here, you need to create function with arguments. Each argument value can be assigned in
the current object by using this keyword.
The this keyword refers to the current object.
The example of creating object by object constructor is given below.
<html>
<body>
<script>
functionemp(id,name,salary){
this.id=id;
this.name=name;
this.salary=salary;
}
e=new emp(103,"Vimal Jaiswal",30000);
document.write(e.id+" "+e.name+" "+e.salary);
</script>
</body>
</html>
Out put:

103 Vimal Jaiswal 30000

Class Declarations
A class can be defined by using a class declaration. A class keyword is used to declare a class
with any particular name. According to JavaScript naming conventions, the name of the class
always starts with an uppercase letter.

Class Declarations Example
Let's see a simple example of declaring the class.

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 36 | P a g e

<!DOCTYPE html>
<html>
<body>
<script>
//Declaring class
class Employee
 {
//Initializing an object
constructor(id,name)
 {
 this.id=id;
 this.name=name;
 }
//Declaring method
detail()
 {
document.writeln(this.id+" "+this.name+"
")
 }
 }
//passing object to a variable
var e1=new Employee(101,"Martin Roy");
var e2=new Employee(102,"Duke William");
e1.detail(); //calling method
e2.detail();
</script>
</body>
</html>

OUTPUT:
101 Martin Roy
102 Duke William

JQuery

jQuery is a fast, small, cross-platform and feature-rich JavaScript library. It is designed to
simplify the client-side scripting of HTML. It makes things like HTML document traversal
and manipulation, animation, event handling, and AJAX very simple with an easy-to-use API
that works on a lot of different type of browsers.
The main purpose of jQuery is to provide an easy way to use JavaScript on your website to
make it more interactive and attractive. It is also used to add animation.

jQuery is a small, light-weight and fast JavaScript library. It is also referred as ?write less do
more? because it takes a lot of common tasks that requires many lines of JavaScript code to
accomplish, and binds them into methods that can be called with a single line of code
whenever needed. It is also very useful to simplify a lot of the complicated things from
JavaScript, like AJAX calls and DOM manipulation.

o jQuery is a small, fast and lightweight JavaScript library.
o jQuery is platform-independent.
o jQuery means "write less do more".

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 37 | P a g e

o jQuery simplifies AJAX call and DOM manipulation.
It is always advised to a fresher to learn the basics of web designing before starting to learn
jQuery. We should learn HTML, CSS and JavaScript first.

jQuery Example

File: firstjquery.html
<!DOCTYPE html>
<html>
<head>
 <title>First jQuery Example</title>
<script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquer
y.min.js">
 </script>
 <script type="text/javascript" language="javascript">
 $(document).ready(function() {
 $("p").css("background-color", "pink");
 });
 </script>
 </head>
<body>
<p>This is first paragraph.</p>
<p>This is second paragraph.</p>
<p>This is third paragraph.</p>
</body>
</html>

jQuery is a JavaScript framework. It facilitates the readability and the manipulation of HTML DOM
elements, event handling, animations, and AJAX calls. It’s also free, open-source software that
adheres to the MIT License. As a result, it is one of the most popular JavaScript libraries.

jQuery Events
jQuery events are the actions that can be detected by your web application. They are used to
create dynamic web pages. An event shows the exact moment when something happens.
These are some examples of events.

o A mouse click
o An HTML form submission
o A web page loading
o A keystroke on the keyboard
o Scrolling of the web page etc.

jQuery click() event
When you click on an element, the click event occurs and once the click event occurs it
execute the click () method or attaches a function to run.
It is generally used together with other events of jQuery.
Syntax:

$(selector).click()

https://codeinstitute.net/global/blog/javascript-framework/
https://codeinstitute.net/global/blog/what-is-open-source-software/

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 38 | P a g e

example to demonstrate jQuery click() event.

<!DOCTYPE html>
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js">

</script>
<script>
$(document).ready(function(){
 $("p").click(function(){
 alert("This paragraph was clicked.");
 });
});
</script>
</head>
<body>
<p>Click on the statement.</p>
</body>
</html>

example to demonstrate the jquery click() event. In this example, when you click on the
heading element, it will hide the current heading.

<!DOCTYPE html>
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js"></script>

<script>
$(document).ready(function(){
 $("h1,h2,h3").click(function(){
 $(this).hide();
 });
});
</script>
</head>
<body>
<h1>This heading will disappear if you click on this.</h1>
<h2>I will also disappear.</h2>
<h3>Me too.</h3>
</body>
</html>

jQuery focus()
The jQuery focus event occurs when an element gains focus. It is generated by a

mouse click or by navigating to it.

This event is implicitly used to limited sets of elements such as form elements like

<input>, <select> etc. and links <a href>. The focused elements are usually

highlighted in some way by the browsers.

The focus method is often used together with blur () method.

Syntax:

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 39 | P a g e

 $(selector).focus()

It triggers the focus event for selected elements.

$(selector).focus(function)

It adds a function to the focus event.

Example of jQuery focus() event

Let's take an example to demonstrate jQuery focus() event.
<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>focus demo</title>

 <style>

 span {

 display: none;

 }

 </style>

 <script src="https://code.jquery.com/jquery-1.10.2.js"></script>

</head>

<body>

 <p><input type="text"> Focus starts.. Write your name.</p>

<p><input type="password"> Focus starts.. Write your password.</p

>

 <script>

$("input").focus(function() {

 $(this).next("span").css("display", "inline").fadeOut(2000);

});

</script>

 </body>

</html>

jQuery submit()
jQuery submit event is sent to the element when the user attempts to submit a form.

This event is only attached to the <form> element. Forms can be submitted either by

clicking on the submit button or by pressing the enter button on the keyboard when

that certain form elements have focus. When the submit event occurs, the submit()

method attaches a function with it to run.

Syntax:

$(selector).submit()

Example of jQuery submit() event

Let's take an example to demonstrate jQuery submit() event.

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 40 | P a g e

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>submit demo</title>

 <style>

 p {

 margin: 0;

 color: blue;

 }

 div,p {

 margin-left: 10px;

 }

 span {

 color: red;

 }

 </style>

 <script src="https://code.jquery.com/jquery-1.10.2.js"></script>

</head>

<body>

<p>Type 'MRCET' to submit this form finally.</p>

<form action="javascript:alert('success!');">

 <div>

 <input type="text">

 <input type="submit">

 </div>

</form>

<script>

$("form").submit(function(event) {

 if ($("input:first").val() === "MRCET") {

 $("span").text("Submitted Successfully.").show();

 return;

 }

 $("span").text("Not valid!").show().fadeOut(2000);

 event.preventDefault();

});

</script>

</body>

</html>

jQuerymouseover()
The mouseover event is occurred when you put your mouse cursor over the selected

element .Once the mouseover event is occurred, it executes the mouseover ()

method or attach a function to run.

This event is generally used with mouseout() event.

Note: Most of the people are confused between mouseenter and mouseover.

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 41 | P a g e

Difference between mouseenter() and mouseover()
The mouseenter event is only triggered if the mouse pointer enters the selected

element whereas the mouseover event triggers if the mouse cursor enters any child

elements as well as the selected element.

Syntax:

$(selector).mouseover()

It triggers the mouseover event for selected elements.

$(selector).mouseover(function)

Example of jQuery mouseover() event

Let's take an example to demonstrate jQuery mouseover() event.
<!DOCTYPE html>

<html>

<head>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></scri

pt>

<script>

$(document).ready(function(){

 $("p").mouseover(function(){

 $("p").css("background-color", "lightgreen");

 });

 $("p").mouseout(function(){

 $("p").css("background-color", "orange");

 });

});

</script>

</head>

<body>

<p>Move your cursor over this paragraph.</p>

</body>

</html>

jQuerymouseover() event example 2

Let's see another example of jQuery mouseover() event.
<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>mouseover demo</title>

 <style>

 div.out {

 width: 40%;

 height: 120px;

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 42 | P a g e

 margin: 0 15px;

 background-color: lightgreen;

 }

 div.in {

 width: 60%;

 height: 60%;

 background-color: red;

 margin: 10px auto;

 }

 </style>

 <script src="https://code.jquery.com/jquery-1.10.2.js"></script>

</head>

<body>

 <div class="out">

 move your mouse

 <div class="in"></div>

</div>

<script>

$("div.out")

 .mouseover(function() {

 $(this).find("span").text("mouse over ");

 })

 .mouseout(function() {

 $(this).find("span").text("mouse out ");

 });

</script>

</body>

</html>

jQuery UI Categorization

We can categorize the jQuery UI into four groups.
1. Interactions

2. Widgets

3. Effects

4. Utilities

1) Interactions: Interactions are the set of plug-ins which facilitates users to interact

with DOM elements. These are the mostly used interactions:
o Draggable

o Droppable

o Resizable

o Selectable

o Sortable

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 43 | P a g e

2) Widgets: Widgets are the jQuery plug-ins which makes you able to create user

interface elements like date picker, progress bar etc. These are the mostly used

widgets:
o Accordion

o Autocomplete

o Dialog

o Button

o Date Picker

o Menu

o Progress Bar

o Tabs

o Tooltip

o Slider

o Spinner

3) Effects: The internal jQuery effects contain a full suite of custom animation and

transition for DOM elements.
o Hide
o Show

o Add Class

o Remove Class

o Switch Class

o Toggle Class

o Color Animation

o Effect

o Toggle

4) Utilities: Utilities are the modular tools, used by jQuery library internally.
o Position: It is used to set the position of the element according to the other

element's alignment (position).

Ajax programming

AJAX stands for Asynchronous JavaScript and XML. It describes a concept of

asynchronous data transfer (here: data encapsulated in XML) between the client

(usually a web browser) and a server to only exchange/ alter a part of the webpage

without the need of a full pagereload. That means the browser will issue an XML Http

Request in the background and receive only a part of the page - usually tied to one

or more html-tags holding uids.

<!DOCTYPE html>

<html>

 <head>

 </head>

 <body>

 <p id="demo"></p>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 44 | P a g e

 <hi> ajax demo</hi>

 <button onclick="fun1()">click here</button>

 <script>

 function fun1()

 {

 var xhr=new XMLHttpRequest();

 xhr.onload=function()

 {

 document.getElementById("demo").innerHTML=xhr.responseText;

 }

 xhr.open("GET","ajaxinfo.txt",true);

 xhr.send();

 }

 </script>

 </body>

</html>

Output:

ajaxinfo.txt

hello ajax wants to interact with you

JSON Example

JSON example can be created by object and array. Each object can have different

data such as text, number, boolean etc. Let's see different JSON examples using

object and array.

JSON Object Example

A JSON object contains data in the form of key/value pair. The keys are strings and

the values are the JSON types. Keys and values are separated by colon. Each entry

(key/value pair) is separated by comma.

The { (curly brace) represents the JSON object.

{

 "employee": {

 "name": "sonoo",

 "salary": 56000,

 "married": true

 }

}

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 45 | P a g e

JavaScript Memory usage

JavaScript automatically allocates memory when objects are created and frees
it when they are not used anymore (garbage collection). This automaticity is a
potential source of confusion: it can give developers the false impression that they
don't need to worry about memory management.

Memory life cycle

Regardless of the programming language, the memory life cycle is pretty much always the
same:

1. Allocate the memory you need

2. Use the allocated memory (read, write)

3. Release the allocated memory when it is not needed anymore

The second part is explicit in all languages. The first and last parts are explicit in low-level
languages but are mostly implicit in high-level languages like JavaScript.

Allocation in JavaScript

Value initialization

In order to not bother the programmer with allocations, JavaScript will automatically allocate
memory when values are initially declared.

const n = 123; // allocates memory for a number

const s = "azerty"; // allocates memory for a string

const o = {

 a: 1,

 b: null,

}; // allocates memory for an object and contained values

// (like object) allocates memory for the array and

// contained values

const a = [1, null, "abra"];

function f(a) {

 return a + 2;

} // allocates a function (which is a callable object)

// function expressions also allocate an object

someElement.addEventListener(

 "click",

 () => {

 someElement.style.backgroundColor = "blue";

 },

 false,

);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management#memory_life_cycle
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management#allocation_in_javascript

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 46 | P a g e

Allocation via function calls

Some function calls result in object allocation.

const d = new Date(); // allocates a Date object

const e = document.createElement("div"); // allocates a DOM element

Copy to Clipboard

Some methods allocate new values or objects:

const s = "azerty";

const s2 = s.substr(0, 3); // s2 is a new string

// Since strings are immutable values,

// JavaScript may decide to not allocate memory,

// but just store the [0, 3] range.

const a = ["ouais ouais", "nan nan"];

const a2 = ["generation", "nan nan"];

const a3 = a.concat(a2);

// new array with 4 elements being

// the concatenation of a and a2 elements.

Using values

Using values basically means reading and writing in allocated memory. This can be done by
reading or writing the value of a variable or an object property or even passing an argument
to a function.

Release when the memory is not needed anymore

The majority of memory management issues occur at this phase. The most difficult aspect of
this stage is determining when the allocated memory is no longer needed.

Low-level languages require the developer to manually determine at which point in the
program the allocated memory is no longer needed and to release it.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management#using_values
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management#release_when_the_memory_is_not_needed_anymore

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 47 | P a g e

UNIT-3

REACT JS: Introduction to React React Router and Single Page Applications React Forms,
Flow Architecture and Introduction to Redux More Redux and Client-Server Communication

React Introduction
ReactJS is a declarative, efficient, and flexible JavaScript library for building reusable

UI components. It is an open-source, component-based front end library responsible

only for the view layer of the application. It was created by Jordan Walke, who was a

software engineer at Facebook. It was initially developed and maintained by

Facebook and was later used in its products like WhatsApp & Instagram. Facebook

developed ReactJS in 2011 in its newsfeed section, but it was released to the public

in the month of May 2013.

Today, most of the websites are built using MVC (model view controller) architecture.

In MVC architecture, React is the 'V' which stands for view, whereas the architecture

is provided by the Redux or Flux.

A ReactJS application is made up of multiple components, each component

responsible for outputting a small, reusable piece of HTML code. The components

are the heart of all React applications. These Components can be nested with other

components to allow complex applications to be built of simple building blocks.

ReactJS uses virtual DOM based mechanism to fill data in HTML DOM. The virtual

DOM works fast as it only changes individual DOM elements instead of reloading

complete DOM every time.

To create React app, we write React components that correspond to various

elements. We organize these components inside higher level components which

define the application structure. For example, we take a form that consists of many

elements like input fields, labels, or buttons. We can write each element of the form

as React components, and then we combine it into a higher-level component, i.e., the

form component itself. The form components would specify the structure of the form

along with elements inside of it.

React create-react-app
Starting a new React project is very complicated, with so many build tools. It uses

many dependencies, configuration files, and other requirements such as Babel,

Webpack, ESLint before writing a single line of React code. Create React App CLI tool

removes all that complexities and makes React app simple. For this, you need to

install the package using NPM, and then run a few simple commands to get a new

React project.

The create-react-app is an excellent tool for beginners, which allows you to create

and run React project very quickly. It does not take any configuration manually. This

tool is wrapping all of the required dependencies like Webpack, Babel for React

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 48 | P a g e

project itself and then you need to focus on writing React code only. This tool sets up

the development environment, provides an excellent developer experience, and

optimizes the app for production.

Requirements
The Create React App is maintained by Facebook and can works on any platform,

for example, macOS, Windows, Linux, etc. To create a React Project using create-

react-app, you need to have installed the following things in your system.
1. Node version >= 8.10

2. NPM version >= 5.6

Let us check the current version of Node and NPM in the system.

Run the following command to check the Node version in the command prompt.
1. $ node -v

Run the following command to check the NPM version in the command prompt.

1. $ npm -v

Installation
Here, we are going to learn how we can install React using CRA tool. For this, we

need to follow the steps as given below.

Install React
We can install React using npm package manager by using the following command.

There is no need to worry about the complexity of React installation. The create-

react-app npm package manager will manage everything, which needed for React

project.
1. C:\Users\javatpoint> npm install -g create-react-app

Create a new React project
Once the React installation is successful, we can create a new React project using

create-react-app command. Here, I choose "reactproject" name for my project.
1. C:\Users\javatpoint> create-react-app reactproject

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 49 | P a g e

NOTE: We can combine the above two steps in a single command using npx. The
npx is a package runner tool which comes with npm 5.2 and above version.

1. C:\Users\javatpoint> npx create-react-app reactproject

The above command will take some time to install the React and create a new

project with the name "reactproject." Now, we can see the terminal as like below.

The above screen tells that the React project is created successfully on our system.

Now, we need to start the server so that we can access the application on the

browser. Type the following command in the terminal window.
1. $ cd Desktop

2. $ npm start

NPM is a package manager which starts the server and access the application at

default server http://localhost:3000. Now, we will get the following screen.

http://localhost:3000/

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 50 | P a g e

Next, open the project on Code editor. Here, I am using Visual Studio Code. Our

project's default structure looks like as below image.

In React application, there are several files and folders in the root directory. Some of

them are as follows:
1. node_modules: It contains the React library and any other third party libraries

needed.

2. public: It holds the public assets of the application. It contains the index.html where

React will mount the application by default on the <div id="root"></div> element.

3. src: It contains the App.css, App.js, App.test.js, index.css, index.js, and serviceWorker.js

files. Here, the App.js file always responsible for displaying the output screen in React.

4. package-lock.json: It is generated automatically for any operations where npm

package modifies either the node_modules tree or package.json. It cannot be

published. It will be ignored if it finds any other place rather than the top-level

package.

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 51 | P a g e

5. package.json: It holds various metadata required for the project. It gives information

to npm, which allows to identify the project as well as handle the project?s

dependencies.

6. README.md: It provides the documentation to read about React topics.

React Environment Setup
Now, open the src >> App.js file and make changes which you want to display on

the screen. After making desired changes, save the file. As soon as we save the file,

Webpack recompiles the code, and the page will refresh automatically, and changes

are reflected on the browser screen. Now, we can create as many components as we

want, import the newly created component inside the App.js file and that file will be

included in our main index.html file after compiling by Webpack.

Next, if we want to make the project for the production mode, type the following

command. This command will generate the production build, which is best

optimized.
$ npm build

React Features
Currently, ReactJS gaining quick popularity as the best JavaScript framework among

web developers. It is playing an essential role in the front-end ecosystem. The

important features of ReactJS are as following.

o JSX

o Components

o One-way Data Binding

o Virtual DOM

o Simplicity

o Performance

JSX
JSX stands for JavaScript XML. It is a JavaScript syntax extension. Its an XML or HTML

like syntax used by ReactJS. This syntax is processed into JavaScript calls of React

Framework. It extends the ES6 so that HTML like text can co-exist with JavaScript

react code. It is not necessary to use JSX, but it is recommended to use in ReactJS.

Components
ReactJS is all about components. ReactJS application is made up of multiple

components, and each component has its own logic and controls. These components

can be reusable which help you to maintain the code when working on larger scale

projects.

One-way Data Binding
ReactJS is designed in such a manner that follows unidirectional data flow or one-

way data binding. The benefits of one-way data binding give you better control

throughout the application. If the data flow is in another direction, then it requires

additional features. It is because components are supposed to be immutable and the

data within them cannot be changed. Flux is a pattern that helps to keep your data

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 52 | P a g e

unidirectional. This makes the application more flexible that leads to increase

efficiency.

Virtual DOM
A virtual DOM object is a representation of the original DOM object. It works like a

one-way data binding. Whenever any modifications happen in the web application,

the entire UI is re-rendered in virtual DOM representation. Then it checks the

difference between the previous DOM representation and new DOM. Once it has

done, the real DOM will update only the things that have actually changed. This

makes the application faster, and there is no wastage of memory.

Simplicity
ReactJS uses JSX file which makes the application simple and to code as well as

understand. We know that ReactJS is a component-based approach which makes the

code reusable as your need. This makes it simple to use and learn.

Performance
ReactJS is known to be a great performer. This feature makes it much better than

other frameworks out there today. The reason behind this is that it manages a virtual

DOM. The DOM is a cross-platform and programming API which deals with HTML,

XML or XHTML. The DOM exists entirely in memory. Due to this, when we create a

component, we did not write directly to the DOM. Instead, we are writing virtual

components that will turn into the DOM leading to smoother and faster

performance.

React JSX
As we have already seen that, all of the React components have a render function.

The render function specifies the HTML output of a React component. JSX(JavaScript

Extension), is a React extension which allows writing JavaScript code that looks like

HTML. In other words, JSX is an HTML-like syntax used by React that extends

ECMAScript so that HTML-like syntax can co-exist with JavaScript/React code. The

syntax is used by preprocessors (i.e., transpilers like babel) to transform HTML-like

syntax into standard JavaScript objects that a JavaScript engine will parse.

JSX provides you to write HTML/XML-like structures (e.g., DOM-like tree structures)

in the same file where you write JavaScript code, then preprocessor will transform

these expressions into actual JavaScript code. Just like XML/HTML, JSX tags have a

tag name, attributes, and children.

Example
Here, we will write JSX syntax in JSX file and see the corresponding JavaScript code

which transforms by preprocessor(babel).

JSX File

<div>Hello JavaTpoint</div>

Corresponding Output

1. React.createElement("div", null, "Hello JavaTpoint");

The above line creates a react element and passing three arguments inside where

the first is the name of the element which is div, second is the attributes passed in

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 53 | P a g e

the div tag, and last is the content you pass which is the "Hello JavaTpoint."

Why use JSX?
o It is faster than regular JavaScript because it performs optimization while

translating the code to JavaScript.

o Instead of separating technologies by putting markup and logic in separate

files, React uses components that contain both. We will learn components in a

further section.

o It is type-safe, and most of the errors can be found at compilation time.

o It makes easier to create templates.

React Components
Earlier, the developers write more than thousands of lines of code for developing a single
page application. These applications follow the traditional DOM structure, and making
changes in them was a very challenging task. If any mistake found, it manually searches the
entire application and update accordingly. The component-based approach was introduced to
overcome an issue. In this approach, the entire application is divided into a small logical
group of code, which is known as components.
A Component is considered as the core building blocks of a React application. It makes the
task of building UIs much easier. Each component exists in the same space, but they work
independently from one another and merge all in a parent component, which will be the final
UI of your application.
Every React component have their own structure, methods as well as APIs. They can be
reusable as per your need. For better understanding, consider the entire UI as a tree. Here, the
root is the starting component, and each of the other pieces becomes branches, which are
further divided into sub-branches.

In ReactJS, we have mainly two types of components. They areullscreen

1. Functional Components
2. Class Components

Functional Components
In React, function components are a way to write components that only contain a render
method and don't have their own state. They are simply JavaScript functions that may or may
not receive data as parameters. We can create a function that takes props(properties) as input

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 54 | P a g e

and returns what should be rendered. A valid functional component can be shown in the
below example.

function WelcomeMessage(props) {
 return <h1>Welcome to the , {props.name}</h1>;
}

The functional component is also known as a stateless component because they do not hold
or manage state. It can be explained in the below example.

Example
import React, { Component } from 'react';
class App extends React.Component {
 render() {
 return (
 <div>
 <First/>
 <Second/>
 </div>
);
 }
}
class First extends React.Component {
 render() {
 return (
 <div>
 <h1>JavaTpoint</h1>
 </div>
);
 }
}
class Second extends React.Component {
 render() {
 return (
 <div>
 <h2>www.javatpoint.com</h2>
 <p>This websites contains the great CS tutorial.</p>
 </div>
);
 }
}
export default App;

Output:

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 55 | P a g e

Class Components
Class components are more complex than functional components. It requires you to extend
from React. Component and create a render function which returns a React element. You can
pass data from one class to other class components. You can create a class by defining a class
that extends Component and has a render function. Valid class component is shown in the
below example.

class MyComponent extends React.Component {
 render() {
 return (
 <div>This is main component.</div>
);
 }
}

The class component is also known as a stateful component because they can hold or manage
local state. It can be explained in the below example.

Example
In this example, we are creating the list of unordered elements, where we will dynamically
insert StudentName for every object from the data array. Here, we are using ES6 arrow
syntax (=>) which looks much cleaner than the old JavaScript syntax. It helps us to create our
elements with fewer lines of code. It is especially useful when we need to create a list with a
lot of items.

import React, { Component } from 'react';
class App extends React.Component {
 constructor() {
 super();
 this.state = {
 data:
 [
 {
 "name":"Abhishek"
 },
 {
 "name":"Saharsh"
 },
 {
 "name":"Ajay"
 }

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 56 | P a g e

]
 }
 }
 render() {
 return (
 <div>
 <StudentName/>

 {this.state.data.map((item) => <List data = {item} />)}

 </div>
);
 }
}
class StudentName extends React.Component {
 render() {
 return (
 <div>
 <h1>Student Name Detail</h1>
 </div>
);
 }
}
class List extends React.Component {
 render() {
 return (

 {this.props.data.name}

);
 }
}
export default App;

Output:

React State
The state is an updatable structure that is used to contain data or information about

the component. The state in a component can change over time. The change in state

over time can happen as a response to user action or system event. A component

with the state is known as stateful components. It is the heart of the react

component which determines the behavior of the component and how it will render.

They are also responsible for making a component dynamic and interactive.

A state must be kept as simple as possible. It can be set by using

the setState() method and calling setState() method triggers UI updates. A state

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 57 | P a g e

represents the component's local state or information. It can only be accessed or

modified inside the component or by the component directly. To set an initial state

before any interaction occurs, we need to use the getInitialState() method.

For example, if we have five components that need data or information from the

state, then we need to create one container component that will keep the state for all

of them.

Defining State
To define a state, you have to first declare a default set of values for defining the

component's initial state. To do this, add a class constructor which assigns an initial

state using this.state. The 'this.state' property can be rendered

inside render() method.

Example
The below sample code shows how we can create a stateful component using ES6

syntax.

import React, { Component } from 'react';

class App extends React.Component {

 constructor() {

 super();

 this.state = { displayBio: true };

 }

 render() {

 const bio = this.state.displayBio ? (

 <div>

 <p><h3>Javatpoint is one of the best Java training institute in Noida,

Delhi, Gurugram, Ghaziabad and Faridabad. We have a team of experienced Java

developers and trainers from multinational companies to teach our campus stude

nts.</h3></p>

 </div>

) : null;

 return (

 <div>

 <h1> Welcome to JavaTpoint!! </h1>

 { bio }

 </div>

);

 }

}

export default App;

To set the state, it is required to call the super() method in the constructor. It is

because this.state is uninitialized before the super() method has been called.

Output

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 58 | P a g e

Changing the State
We can change the component state by using the setState() method and passing a

new state object as the argument. Now, create a new method toggleDisplayBio() in

the above example and bind this keyword to the toggleDisplayBio() method

otherwise we can't access this inside toggleDisplayBio() method.

this.toggleDisplayBio = this.toggleDisplayBio.bind(this);

Example
In this example, we are going to add a button to the render() method. Clicking on

this button triggers the toggleDisplayBio() method which displays the desired output.

import React, { Component } from 'react';

class App extends React.Component {

 constructor() {

 super();

 this.state = { displayBio: false };

 console.log('Component this', this);

 this.toggleDisplayBio = this.toggleDisplayBio.bind(this);

 }

 toggleDisplayBio(){

 this.setState({displayBio: !this.state.displayBio});

 }

 render() {

 return (

 <div>

 <h1>Welcome to JavaTpoint!!</h1>

 {

 this.state.displayBio ? (

 <div>

 <p><h4>Javatpoint is one of the best Java training institute in

Noida, Delhi, Gurugram, Ghaziabad and Faridabad. We have a team of experience

d Java developers and trainers from multinational companies to teach our campu

s students.</h4></p>

 <button onClick={this.toggleDisplayBio}> Show Less </button

>

 </div>

) : (

 <div>

 <button onClick={this.toggleDisplayBio}> Read More </but

ton>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 59 | P a g e

 </div>

)

 }

 </div>

)

 }

}

export default App;

Output:

When you click the Read More button, you will get the below output, and when you

click the Show Less button, you will get the output as shown in the above image.

React Props
Props stand for "Properties." They are read-only components. It is an object which

stores the value of attributes of a tag and work similar to the HTML attributes. It

gives a way to pass data from one component to other components. It is similar to

function arguments. Props are passed to the component in the same way as

arguments passed in a function.

Props are immutable so we cannot modify the props from inside the component.

Inside the components, we can add attributes called props. These attributes are

available in the component as this.props and can be used to render dynamic data in

our render method.

When you need immutable data in the component, you have to add props

to reactDom.render() method in the main.js file of your ReactJS project and used it

inside the component in which you need. It can be explained in the below example.

Example
App.js

import React, { Component } from 'react';

class App extends React.Component {

 render() {

 return (

 <div>

 <h1> Welcome to { this.props.name } </h1>

 <p> <h4> Javatpoint is one of the best Java training institute in Noida, De

lhi, Gurugram, Ghaziabad and Faridabad. </h4> </p>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 60 | P a g e

 </div>

);

 }

}

export default App;

Main.js

import React from 'react';

import ReactDOM from 'react-dom';

import App from './App.js';

ReactDOM.render(<App name = "JavaTpoint!!" />, document.getElementById('ap

p'));

Output

Default Props
It is not necessary to always add props in the reactDom.render() element. You can

also set default props directly on the component constructor. It can be explained in

the below example.

Example
App.js

import React, { Component } from 'react';

class App extends React.Component {

 render() {

 return (

 <div>

 <h1>Default Props Example</h1>

 <h3>Welcome to {this.props.name}</h3>

 <p>Javatpoint is one of the best Java training institute in Noida, Delhi, Gu

rugram, Ghaziabad and Faridabad.</p>

 </div>

);

 }

}

App.defaultProps = {

 name: "JavaTpoint"

}

export default App;

Main.js

import React from 'react';

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 61 | P a g e

import ReactDOM from 'react-dom';

import App from './App.js';

ReactDOM.render(<App/>, document.getElementById('app'));

Output

State and Props
It is possible to combine both state and props in your app. You can set the state in

the parent component and pass it in the child component using props. It can be

shown in the below example.

Example
App.js

import React, { Component } from 'react';

class App extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

 name: "JavaTpoint",

 }

 }

 render() {

 return (

 <div>

 <JTP jtpProp = {this.state.name}/>

 </div>

);

 }

}

class JTP extends React.Component {

 render() {

 return (

 <div>

 <h1>State & Props Example</h1>

 <h3>Welcome to {this.props.jtpProp}</h3>

 <p>Javatpoint is one of the best Java training institute in Noida, Delhi, G

urugram, Ghaziabad and Faridabad.</p>

 </div>

);

 }

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 62 | P a g e

}

export default App;

Main.js

import React from 'react';

import ReactDOM from 'react-dom';

import App from './App.js';

ReactDOM.render(<App/>, document.getElementById('app'));

Output:

React Forms
Forms are an integral part of any modern web application. It allows the users to

interact with the application as well as gather information from the users. Forms can

perform many tasks that depend on the nature of your business requirements and

logic such as authentication of the user, adding user, searching, filtering, booking,

ordering, etc. A form can contain text fields, buttons, checkbox, radio button, etc.

Creating Form
React offers a stateful, reactive approach to build a form. The component rather than

the DOM usually handles the React form. In React, the form is usually implemented

by using controlled components.

There are mainly two types of form input in React.

1. Uncontrolled component

2. Controlled component

Uncontrolled component
The uncontrolled input is similar to the traditional HTML form inputs. The DOM itself

handles the form data. Here, the HTML elements maintain their own state that will be

updated when the input value changes. To write an uncontrolled component, you

need to use a ref to get form values from the DOM. In other words, there is no need

to write an event handler for every state update. You can use a ref to access the input

field value of the form from the DOM.4K

OOPs Concepts in Java

Example

In this example, the code accepts a field username and company name in an

uncontrolled component.

import React, { Component } from 'react';

class App extends React.Component {

 constructor(props) {

 super(props);

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 63 | P a g e

 this.updateSubmit = this.updateSubmit.bind(this);

 this.input = React.createRef();

 }

 updateSubmit(event) {

 alert('You have entered the UserName and CompanyName successfully.');

 event.preventDefault();

 }

 render() {

 return (

 <form onSubmit={this.updateSubmit}>

 <h1>Uncontrolled Form Example</h1>

 <label>Name:

 <input type="text" ref={this.input} />

 </label>

 <label>

 CompanyName:

 <input type="text" ref={this.input} />

 </label>

 <input type="submit" value="Submit" />

 </form>

);

 }

}

export default App;

Output

When you execute the above code, you will see the following screen.

After filling the data in the field, you get the message that can be seen in the below

screen.

Controlled Component
In HTML, form elements typically maintain their own state and update it according to

the user input. In the controlled component, the input form element is handled by

the component rather than the DOM. Here, the mutable state is kept in the state

property and will be updated only with setState() method.

Controlled components have functions that govern the data passing into them on

every onChange event, rather than grabbing the data only once, e.g., when you click

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 64 | P a g e

a submit button. This data is then saved to state and updated with setState()

method. This makes component have better control over the form elements and

data.

A controlled component takes its current value through props and notifies the

changes through callbacks like an onChange event. A parent component "controls"

this changes by handling the callback and managing its own state and then passing

the new values as props to the controlled component. It is also called as a "dumb

component."

Example

import React, { Component } from 'react';

class App extends React.Component {

 constructor(props) {

 super(props);

 this.state = {value: ''};

 this.handleChange = this.handleChange.bind(this);

 this.handleSubmit = this.handleSubmit.bind(this);

 }

 handleChange(event) {

 this.setState({value: event.target.value});

 }

 handleSubmit(event) {

 alert('You have submitted the input successfully: ' + this.state.value);

 event.preventDefault();

 }

 render() {

 return (

 <form onSubmit={this.handleSubmit}>

 <h1>Controlled Form Example</h1>

 <label>

 Name:

 <input type="text" value={this.state.value} onChange={this.handleCha

nge} />

 </label>

 <input type="submit" value="Submit" />

 </form>

);

 }

}

export default App;

Output

When you execute the above code, you will see the following screen.

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 65 | P a g e

After filling the data in the field, you get the message that can be seen in the below

screen.

Handling Multiple Inputs in Controlled Component
If you want to handle multiple controlled input elements, add a name attribute to

each element, and then the handler function decided what to do based on the value

of event.target.name.

Example
import React, { Component } from 'react';

class App extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

 personGoing: true,

 numberOfPersons: 5

 };

 this.handleInputChange = this.handleInputChange.bind(this);

 }

 handleInputChange(event) {

 const target = event.target;

 const value = target.type === 'checkbox' ? target.checked : target.value;

 const name = target.name;

 this.setState({

 [name]: value

 });

 }

 render() {

 return (

 <form>

 <h1>Multiple Input Controlled Form Example</h1>

 <label>

 Is Person going:

 <input

 name="personGoing"

 type="checkbox"

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 66 | P a g e

 checked={this.state.personGoing}

 onChange={this.handleInputChange} />

 </label>

 <label>

 Number of persons:

 <input

 name="numberOfPersons"

 type="number"

 value={this.state.numberOfPersons}

 onChange={this.handleInputChange} />

 </label>

 </form>

);

 }

}

export default App;
Output

The Example

Before we go further, take a look at the following example:
What you have here is a simple React app that uses React Router to provide
all of the navigation and view-loading goodness! Click on the various links to
load the relevant content, and feel free to open up this page in its own browser
window to use the back and forward buttons to see them working.

In the following sections, we are going to be building this app in
pieces. By the end, not only will you have re-created this app, you'll
hopefully have learned enough about React Router to build cooler
and more awesomer things.

Getting Started
The first thing we need to do is get our project setup. We'll use our
trusty create-react-app command to do this. From your favorite
terminal, navigate to the folder you want to create your app, and
type the following:

https://www.kirupa.com/react/examples/react_router/index.html
https://www.kirupa.com/react/examples/react_router/index.html

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 67 | P a g e

create-react-app react_spa

This will create our new project inside a folder called react_spa. Go
ahead and navigate into this folder:
cd react_spa

Normally, this is where we start messing around with deleting the
existing content to start from a blank slate. We will do that, but first,
we are going to install React Router. To do that, run the following
command:

npm i react-router-dom --save

This copies the appropriate React Router files and registers it in
our package.json so that our app is made aware of its existence.
That's good stuff, right?

Now that you've done this, it is time to clean up our project to start
from a clean slate. From inside your react_spa folder, delete
everything found inside your public and src folders. Once you've
done this, let's create our index.html file that will serve as our app's
starting point. In your public folder, create a file
called index.html and add the following contents into it:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <meta name="viewport"

 content="width=device-width, initial-scale=1, shrink-to-fit=no">

 <title>React Router Example</title>

 </head>

 <body>

 <div id="root"></div>

 </body>

</html>

Take a quick glance at the HTML. There shouldn't be anything
surprising here. Next, we'll create our JavaScript entry point. Inside
the src folder, create a file called index.js and add the following
contents into it:

import React from "react";

import ReactDOM from "react-dom";

import Main from "./Main";

ReactDOM.render(

 <Main/>,

 document.getElementById("root")

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 68 | P a g e

);

Our ReactDOM.render call lives here, and what we are rendering is
our Main component...which doesn't exist yet. The Main component
will be the starting point for our SPA expedition using React Router,
and we'll see how starting with the next section.

Building our Single Page App

The way we build our app is no different than all the apps we've
been building so far. We will have a main parent component. Each
of the individual "pages" of our app will be separate components that
feed into the main component. The magic React Router brings to to
the table is basically choosing which components to show and which
to hide. To make this feel natural, all of this navigating is tied in with
our browser's address bar and back/forward buttons, so it is all
made to look seamless..

Displaying the Initial Frame
When building a SPA, there will always be a part of your page that
will remain static. This static part, also referred to as an app frame,
could just be one invisible HTML element that acts as the container
for all of your content, or could include some additional visual things
like a header, footer, navigation, etc. In our case, our app frame will
just be a component that contains UI elements for our navigation
header and an empty area for content to load in.
Inside our src folder, create a new file called Main.js and add the
following content into it:

import React, { Component } from "react";

class Main extends Component {

 render() {

 return (

 <div>

 <h1>Simple SPA</h1>

 <ul className="header">

 Home

 Stuff

 Contact

 <div className="content">

 </div>

 </div>

);

 }

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 69 | P a g e

}

export default Main;

Once you have pasted this, take a look at what we have here. We
have a component called Main that returns some HTML. That's it. To
see what we have so far in action, npm start it up and see what is
going on in your browser.

You should see an unstyled version of an app title and
some list items appear:

I know that this doesn't look all fancy and styled, but that's OK for
now. We will deal with that later. The important thing to call out is
that there is nothing React Router specific here. ABSOLUTELY
NOTHING!

Creating our Content Pages
Our app will have three pages of content. This content will just be a
simple component that prints out some JSX. Let's just get those
created and out of the way! First, create a file called Home.js in
our src directory and add the following content:

import React, { Component } from "react";

class Home extends Component {

 render() {

 return (

 <div>

 <h2>HELLO</h2>

 <p>Cras facilisis urna ornare ex volutpat, et

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 70 | P a g e

 convallis erat elementum. Ut aliquam, ipsum vitae

 gravida suscipit, metus dui bibendum est, eget rhoncus nibh

 metus nec massa. Maecenas hendrerit laoreet augue

 nec molestie. Cum sociis natoque penatibus et magnis

 dis parturient montes, nascetur ridiculus mus.</p>

 <p>Duis a turpis sed lacus dapibus elementum sed eu lectus.</p>

 </div>

);

 }

}

export default Home;

Next, create a file called Stuff.js in the same location and add in the
following:

import React, { Component } from "react";

class Stuff extends Component {

 render() {

 return (

 <div>

 <h2>STUFF</h2>

 <p>Mauris sem velit, vehicula eget sodales vitae,

 rhoncus eget sapien:</p>

 Nulla pulvinar diam

 Facilisis bibendum

 Vestibulum vulputate

 Eget erat

 Id porttitor

 </div>

);

 }

}

export default Stuff;

We just have one more page left. Create a file called Contact.js in
our src folder and make sure its contents are the following:

import React, { Component } from "react";

class Contact extends Component {

 render() {

 return (

 <div>

 <h2>GOT QUESTIONS?</h2>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 71 | P a g e

 <p>The easiest thing to do is post on

 our forums.

 </p>

 </div>

);

 }

}

export default Contact;

That's the last of our content we are going to add. If you took a look
at what it is you were adding, you'll see that these components can't
get any simpler. They just returned some boilerplate JSX content.
Now, make sure to save all of your changes to these three files.
We'll look at how to make them useful shortly.

Using React Router
We have our app frame in the form of our Main component. We have
our content pages represented by the Home, Stuff,
and Contact components. What we need to do is tie all of these
together to create our app. This is where React Router comes in. To
start using it, go back to Main.js, and ensure your import statements
look as follows:

import React, { Component } from "react";

import {

 Route,

 NavLink,

 HashRouter

} from "react-router-dom";

import Home from "./Home";

import Stuff from "./Stuff";

import Contact from "./Contact";

We are importing Route, NavLink, and HashRouter from the react-
router-dom NPM package we installed earlier. In addition, we are
importing our Home, Stuff, and Contact components since we will be
referencing them as part of loading our content.

The way React Router works is by defining what I call a routing
region. Inside this region, you will have two things:

i. Your navigation links
ii. The container to load your content into

There is a close correlation between what URL your navigation links
specify and the content that ultimately gets loaded. There is no way
to easily explain this without first getting our hands dirty and
implementing what we just read about.

http://forum.kirupa.com/

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 72 | P a g e

The first thing we are going to do is define our routing region.
Inside our Main component's render method, add the following
highlighted lines:

class Main extends Component {

 render() {

 return (

 <HashRouter>

 <div>

 <h1>Simple SPA</h1>

 <ul className="header">

 Home

 Stuff

 Contact

 <div className="content">

 </div>

 </div>

 </HashRouter>

);

 }

}

The HashRouter component provides the foundation for the
navigation and browser history handling that routing is
made up of. What we are going to do next is define our
navigation links. We already have list elements with
the a element defined. We need to replace them with the
more specialized NavLink component, so go ahead and
make the following highlighted changes:

class Main extends Component {

 render() {

 return (

 <HashRouter>

 <div>

 <h1>Simple SPA</h1>

 <ul className="header">

 <NavLink to="/">Home</NavLink>

 <NavLink to="/stuff">Stuff</NavLink>

 <NavLink to="/contact">Contact</NavLink>

 <div className="content">

 </div>

 </div>

 </HashRouter>

);

 }

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 73 | P a g e

}

For each link, pay attention to the URL we are telling our
router to navigate to. This URL value (defined by
the to prop) acts as an identifier to ensure the right content
gets loaded. The way we match the URL with the content
is by using a Route component. Go ahead and add the
following highlighted lines:

class Main extends Component {

 render() {

 return (

 <HashRouter>

 <div>

 <h1>Simple SPA</h1>

 <ul className="header">

 <NavLink to="/">Home</NavLink>

 <NavLink to="/stuff">Stuff</NavLink>

 <NavLink to="/contact">Contact</NavLink>

 <div className="content">

 <Route path="/" component={Home}/>

 <Route path="/stuff" component={Stuff}/>

 <Route path="/contact" component={Contact}/>

 </div>

 </div>

 </HashRouter>

);

 }

}

As you can see, the Route component contains a path prop. The
value you specify for the path determines when this route is going to
be active. When a route is active, the component specified by
the component prop gets rendered. For example, when we click on
the Stuff link (whose path is /stuff as set by
the NavLink component's to prop), the route whose path value is
also /stuff becomes active. This means the contents of
our Stuff component get rendered.
You can see all of this for yourself. Jump back to your browser to
see the live updates or run npm start again. Click around on the links
to see the content loading in and out. Something seems off, though,
right? The content for our home page seems to always display even
if we are clicking on the Stuff or Contact links:

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 74 | P a g e

That seems problematic. We'll look at how to fix that and do many
more little housekeeping tasks in the next section when we go one
level deeper into using React Router.

It's the Little Things
In the previous section, we got our SPA mostly up and running. We
just wrapped our entire routing region inside a HashRouter component,
and we separated our links and the place our links would load by
using the NavLink and Route components respectively. Getting our
example mostly up and running and fully up and running are two
different things. In the following sections, we'll close those
differences.

Fixing our Routing
We ended the previous section by calling out that our
routing has a bug in it. The contents of
our Home component is always displaying. The reason for it
is because the path for loading our Home component is /.
Our Stuff and Contact components have the / character as
part of their paths as well. This means
our Home component always matches whatever path we
are trying to navigate to. The fix for that is simple. In

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 75 | P a g e

the Route component representing our home content, add
the exact prop as highlighted below:

<div className="content">

 <Route exact path="/" component={Home}/>

 <Route path="/stuff" component={Stuff}/>

 <Route path="/contact" component={Contact}/>

</div>

This prop ensures the Route is active only if the path is an
exact match for what is being loaded. If you preview your
app now, you'll see that the content loads correctly with
the home content only displaying when our app is in the
home view.

Adding Some CSS
Right now, our app is completely unstyled. The fix for that
is easy. In your src folder, create a file
called index.css and add the following style rules into it:

body {

 background-color: #FFCC00;

 padding: 20px;

 margin: 0;

}

h1, h2, p, ul, li {

 font-family: sans-serif;

}

ul.header li {

 display: inline;

 list-style-type: none;

 margin: 0;

}

ul.header {

 background-color: #111;

 padding: 0;

}

ul.header li a {

 color: #FFF;

 font-weight: bold;

 text-decoration: none;

 padding: 20px;

 display: inline-block;

}

.content {

 background-color: #FFF;

 padding: 20px;

}

.content h2 {

 padding: 0;

 margin: 0;

}

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 76 | P a g e

.content li {

 margin-bottom: 10px;

}

After you've done this, we need to reference this style
sheet in our app. At the top of index.js, add
the import statement to do just that:

import React from "react";

import ReactDOM from "react-dom";

import Main from "./Main";

import "./index.css";

 ReactDOM.render(

 <Main/>,

 document.getElementById("root")

);

Save all of your changes if you haven't done so yet. If you preview
the app now, you'll notice that it is starting to look a bit more like the
example we started out with:

We are almost done here! There is just a few more things we need
to do.

Highlighting the Active Link
Right now, it's hard to tell which link corresponds to content that is
currently loaded. It would be useful to have some sort of a visual cue
to solve this. The creators of React Router have already thought of
that! When you click on a link, a class value of active is automatically
assigned to it.

For example, this is what the HTML for clicking on the
Stuff link looks like:

<a aria-current="true" href="#/stuff" class="active">Stuff

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 77 | P a g e

This means all we really have to do is add the appropriate CSS that
lights up when an element has a class value of active set on it. To
make this happen, go back to index.css and add the following style
rule towards the bottom of your document:
.active {

 background-color: #0099FF;

}

Once you have added this rule and saved your document, go back
to your browser and click around on the links in our example. You'll
see that the active link whose content is displayed from is
highlighted with a blue color. What you will also see is our Home link
always highlighted. That isn't correct. The fix for that is simple. Just
add the exact prop to our NavLink component representing our home
content:
<NavLink exact to="/">Home</NavLink>

<NavLink to="/stuff">Stuff</NavLink>

<NavLink to="/contact">Contact</NavLink>

Once you have done that, go back to our browser. You'll
see that our Home link only gets the active color treatment
when the home content is displayed:

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 78 | P a g e

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 79 | P a g e

UNIT - IV

Java Web Development: JAVA PROGRAMMING BASICS, Model View Controller (MVC)

Pattern MVC Architecture using Spring RESTful API using Spring Framework Building an

application using Maven

Model View Controller (MVC) Pattern MVC Architecture using Spring

The Spring Web MVC framework provides Model-View-Controller (MVC) architecture
and ready components that can be used to develop flexible and loosely coupled web
applications. The MVC pattern results in separating the different aspects of the
application (input logic, business logic, and UI logic), while providing a loose coupling
between these elements.

 The Model encapsulates the application data and in general they will consist
of POJO.

 The View is responsible for rendering the model data and in general it
generates HTML output that the client's browser can interpret.

 The Controller is responsible for processing user requests and building an
appropriate model and passes it to the view for rendering.

The DispatcherServlet

The Spring Web model-view-controller (MVC) framework is designed around
a DispatcherServlet that handles all the HTTP requests and responses. The request
processing workflow of the Spring Web MVC DispatcherServlet is illustrated in the
following diagram −

Following is the sequence of events corresponding to an incoming HTTP request
to DispatcherServlet −

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 80 | P a g e

 After receiving an HTTP request, DispatcherServlet consults
the HandlerMapping to call the appropriate Controller.

 The Controller takes the request and calls the appropriate service methods
based on used GET or POST method. The service method will set model data
based on defined business logic and returns view name to
the DispatcherServlet.

 The DispatcherServlet will take help from ViewResolver to pickup the defined
view for the request.

 Once view is finalized, The DispatcherServlet passes the model data to the
view which is finally rendered on the browser.

All the above-mentioned components, i.e. HandlerMapping, Controller, and
ViewResolver are parts of WebApplicationContext which is an extension of the
plainApplicationContext with some extra features necessary for web applications.

Required Configuration

You need to map requests that you want the DispatcherServlet to handle, by using a
URL mapping in the web.xml file. The following is an example to show declaration
and mapping for HelloWeb DispatcherServlet example −

<web-app id = "WebApp_ID" version = "2.4"
 xmlns = "http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <display-name>Spring MVC Application</display-name>

 <servlet>
 <servlet-name>HelloWeb</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>HelloWeb</servlet-name>
 <url-pattern>*.jsp</url-pattern>
 </servlet-mapping>

</web-app>

The web.xml file will be kept in the WebContent/WEB-INF directory of your web
application. Upon initialization of HelloWeb DispatcherServlet, the framework will try
to load the application context from a file named [servlet-name]-servlet.xml located
in the application's WebContent/WEB-INF directory. In this case, our file will
be HelloWebservlet.xml.

Next, <servlet-mapping> tag indicates what URLs will be handled by which
DispatcherServlet. Here all the HTTP requests ending with .jsp will be handled by

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 81 | P a g e

the HelloWeb DispatcherServlet.

If you do not want to go with default filename as [servlet-name]-servlet.xml and
default location as WebContent/WEB-INF, you can customize this file name and
location by adding the servlet listener ContextLoaderListener in your web.xml file as
follows −

<web-app...>

 <!-------- DispatcherServlet definition goes here----->

 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/HelloWeb-servlet.xml</param-value>
 </context-param>

 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>

</web-app>

Now, let us check the required configuration for HelloWeb-servlet.xml file, placed in
your web application's WebContent/WEB-INF directory −

<beans xmlns = "http://www.springframework.org/schema/beans"
 xmlns:context = "http://www.springframework.org/schema/context"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <context:component-scan base-package = "com.tutorialspoint" />

 <bean class = "org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name = "prefix" value = "/WEB-INF/jsp/" />
 <property name = "suffix" value = ".jsp" />
 </bean>

</beans>

Following are the important points about HelloWeb-servlet.xml file −

 The [servlet-name]-servlet.xml file will be used to create the beans defined,
overriding the definitions of any beans defined with the same name in the
global scope.

 The <context:component-scan...> tag will be use to activate Spring MVC
annotation scanning capability which allows to make use of annotations like
@Controller and @RequestMapping etc.

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 82 | P a g e

 The InternalResourceViewResolver will have rules defined to resolve the view
names. As per the above defined rule, a logical view named hello is delegated
to a view implementation located at /WEB-INF/jsp/hello.jsp .

The following section will show you how to create your actual components, i.e.,
Controller, Model, and View.

Defining a Controller

The DispatcherServlet delegates the request to the controllers to execute the
functionality specific to it. The @Controller annotation indicates that a particular
class serves the role of a controller. The @RequestMapping annotation is used to
map a URL to either an entire class or a particular handler method.

@Controller
@RequestMapping("/hello")
public class HelloController {
 @RequestMapping(method = RequestMethod.GET)
 public String printHello(ModelMap model) {
 model.addAttribute("message", "Hello Spring MVC Framework!");
 return "hello";
 }
}

The @Controller annotation defines the class as a Spring MVC controller. Here, the
first usage of @RequestMapping indicates that all handling methods on this
controller are relative to the /hello path.

Next annotation @RequestMapping(method = RequestMethod.GET) is used to
declare the printHello() method as the controller's default service method to handle
HTTP GET request. You can define another method to handle any POST request at
the same URL.

You can write the above controller in another form where you can add additional
attributes in @RequestMapping as follows −

@Controller
public class HelloController {
 @RequestMapping(value = "/hello", method = RequestMethod.GET)
 public String printHello(ModelMap model) {
 model.addAttribute("message", "Hello Spring MVC Framework!");
 return "hello";
 }
}

The value attribute indicates the URL to which the handler method is mapped and
the method attribute defines the service method to handle HTTP GET request. The
following important points are to be noted about the controller defined above −

 You will define required business logic inside a service method. You can call
another method inside this method as per requirement.

 Based on the business logic defined, you will create a model within this
method. You can use setter different model attributes and these attributes will

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 83 | P a g e

be accessed by the view to present the final result. This example creates a
model with its attribute "message".

 A defined service method can return a String, which contains the name of
the view to be used to render the model. This example returns "hello" as
logical view name.

Creating JSP Views

Spring MVC supports many types of views for different presentation technologies.
These include - JSPs, HTML, PDF, Excel worksheets, XML, Velocity templates,
XSLT, JSON, Atom and RSS feeds, JasperReports, etc. But most commonly we use
JSP templates written with JSTL.

Let us write a simple hello view in /WEB-INF/hello/hello.jsp −

<html>
 <head>
 <title>Hello Spring MVC</title>
 </head>

 <body>
 <h2>${message}</h2>
 </body>
</html>

Here ${message} is the attribute which we have set up inside the Controller. You
can have multiple attributes to be displayed inside your view.

Spring Web MVC Framework Examples

Based on the above concepts, let us check few important examples which will help
you in building your Spring Web Applications −

Sr.No. Example & Description

1 Spring MVC Hello World Example

This example will explain how to write a simple Spring Web Hello World
application.

2 Spring MVC Form Handling Example

This example will explain how to write a Spring Web application using
HTML forms to submit the data to the controller and display a processed
result.

3 Spring Page Redirection Example

Learn how to use page redirection functionality in Spring MVC
Framework.

https://www.tutorialspoint.com/spring/spring_mvc_hello_world_example.htm
https://www.tutorialspoint.com/spring/spring_mvc_form_handling_example.htm
https://www.tutorialspoint.com/spring/spring_page_redirection_example.htm

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 84 | P a g e

4 Spring Static Pages Example

Learn how to access static pages along with dynamic pages in Spring
MVC Framework.

5 Spring Exception Handling Example

Learn how to handle exceptions in Spring MVC Framework.

https://www.tutorialspoint.com/spring/spring_web_mvc_framework.htm
RESTful API using Spring Framework
Web-based application development is a common part of Java development. It is part
and parcel of the enterprise domain wherein they share many common attributes of
building a production-ready application. Spring uniquely addresses the concern for
building a Web application through its MVC framework. It is called MVC because it
is based upon the MVC (Model-View-Controller) pattern. Refer to Wikipedia: Model-
view-controller for quick information about this. Web applications, in most cases,
have a REST counterpart for resource sharing. This article builds up on both the idea
and ends with a quick example to describe them in a terse manner.

Spring MVC

A Web application is inherently multi-layered because the intricacies between the user
request and server response go through several in-between stages of information
processing. Each stage is handled by a layer. For example, the Web interaction begins
with user interaction with the browser, such as by triggering a request and getting a
response from the server. The request response paradigm is nothing more than an
exchange of certain arranged data, which can be anywhere from trivial to heavily
loaded information gathered from, for example, a form submitted by the user. The
URL encapsulates the request from the user and flutters into the network oblivion.
Voilà! It is returned back with the digital PIZZA you have requested onto the platter
called a browser. The request actually goes through a bunch of agents under the
purview of the Spring MVC framework. Each of these agents performs specific
functions, technically called request processing, before actually responding back to
the requester. Here is an illustration to give you an idea.

https://www.tutorialspoint.com/spring/spring_static_pages_example.htm
https://www.tutorialspoint.com/spring/spring_exception_handling_example.htm
https://www.tutorialspoint.com/spring/spring_web_mvc_framework.htm
https://www.developer.com/java/
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 85 | P a g e

Figure 1: The Spring framework

1. The journey begins with the HTTP request (sometimes with data payload; for
example, due to form submission) in a URL. It first stations at DispatcherServlet.
The DispatcherServlet is a class defined in
the org.springframework.web.servlet package. It is the central dispatcher, a Java
Servlet Component for the Spring MVC framework. This front controller receives
all incoming HTTP client requests and delegates responsibilities to other
components for further processing of the request payload.

2. The handler mapping decides where the request’s next stop would be. It acts as a
consultant to the central dispatcher (DispatcherServlet) for routing the request to
the appropriate controller. The handler mapping parses the request URL to make
decisions and the dispatcher then delegates the request to the controller.

3. The controller‘s responsibility is to process the information payload received from
the request. Typically, a controller is associated with one or more business service
classes which, in turn, may have associated database services repository classes.
The repository classes fetch database information according to the business service
logic. It is the business service classes that contain the crux of processing. The
controller class simply carries the information received from one or more service
classes to the user. However, the response of the controller classes is still raw data
referred to as the model and may not be user friendly (with indentation, bullets,
tables, images, look-and-feel, and so forth).

4. Therefore, the controller packages the model data along with model and view name
back again to the central dispatcher, DispatcherServlet.

5. The view layer can be designed using any third-party framework such as Node.js,
Angular, JSP, and so on. The controller is decoupled from the view by passing the
view name to the DispatcherServlet and is least interested in it. The
DispatcherServlet simply carries the logical name and consults with the view
resolver to map the logical view name with the actual implementation.

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 86 | P a g e

6. Once the mapping between logical view name and the actual view implementation
is made, the DispatcherServlet delegates the responsibility of rendering model data
to the view implementation.

7. The view implementation finally carries the response back to the client browser.

REST

REST is the acronym of Representational State Transfer. It is a term coined in Roy
Thomas Fielding’s doctoral thesis where REST is a part that encompasses the
architecture of transferring the state of resources. The REST architecture is made
popular as an alternative to a SOAP implementation of Web services. Although REST
has a much wider connotation than just Web services, here we’ll limit our discussion
to dealing with REST resources only. The idea Web services are basically resource
sharing in the Web architecture that forms the cornerstone of distributed machine-to-
machine communication. The Spring MVC framework resides pretty well with REST
and provides the necessary API support to implement it seamlessly, with little effort.

The URL and HTTP Methods

The REST resources are located on a remote host using URL. The idea is based on the
foundation of the protocol called HTTP. For example, the
URL http://www.payroll.com/employees may mean a list of employees to search
and http://www.payroll.com/employees/101 may mean the detail of an employee with,
say, ID 101. Hence, the URL/URI actually represents the actual location of a resource
on the Web. The resource may be anything a Web page, an image, audio, video
content, or the like. The HTTP protocol specifies several methods. If they are
combined with the URL that points to the resource, we can get the following CRUD
results as outlined below.

URL Method Outcome

http://www.payroll.com/employees POST Creates a list of employees

http://www.payroll.com/employees PUT or
PATCH

Updates a list of employees

http://www.payroll.com/employees DELETE Deletes a list of employees

http://www.payroll.com/employees GET Gets a list of employees

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.payroll.com/employees
http://www.mylibrary.com/book/987654321

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 87 | P a g e

http://www.payroll.com/employees/101 POST Creates a employee with ID 101

http://www.payroll.com/employees/101 PUT or
PATCH

Updates employee with ID 101

http://www.payroll.com/employees/101 DELETE Deletes employee with ID 101

http://www.payroll.com/employees/101 GET Gets employee details with ID
101

Though the URL is associated with HTTP methods in REST, there are no strict rules
to adhere to the outcome described above. The point is that RESTful URL structure
should be able to locate a resource on the server. For instance, the PUT instruction can
be used to create a new resource and POST can be used to update a resource.

REST in Spring

The REST API support was introduced in Spring from version 3.0 onwards; since
then, it has steadily evolved to the present day. We can create REST resources in the
following ways:

 Using controllers which are used to handle HTTP requests such as GET, POST,
PUT, and so forth. The PATCH command is supported by Spring 3.2 and higher
versions.

 Using the @PathVariable annotation. This annotation is used to handle
parameterized URLs. This is usually associated with
the @RequestMapping handler method in a Servlet environment.

 There are multiple ways to represent a REST resource using Spring views and view
resolvers with rendering model data as XML, JSON, Atom, and RSS.

 The type of model data view suits the client can be resolved
via ContentNegotiatingViewResolver. The ContentNegotiatingViewResolver,
however, does not resolve views itself but delegates to other ViewResolvers. By
default, these other view resolvers are picked up automatically from the application
context, though they can also be set explicitly by using the viewResolver property.

 Consuming REST resources using RestTemplate.

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 88 | P a g e

A Quick Example: Creating a Simple REST Endpoint

When working with REST services with Spring, we either publish application data as
a REST service or access data in the application from third-party REST services. Here
in this sample application, we combine Spring MVC to work with a REST endpoint in
a controller named EmployeeController.

Firstly, we create a model class named Employee. This may be designated with JPA
annotation to persist in the backend database. But, to keep it simple, we’ll not use
JPA; instead, we’ll supply dummy data through the EmployeeService class. In a real
situation, data is fetched from the backend database server and the data access
methods are defined in a repository class. To give a hint, in our case, if we had used
JPA with a back-end database, it may have been an interface that
extends CrudRepository, something like this.

public interface EmployeeRepository extends

 CrudRepository<Employee, String>{

 // ...

}

Employee.java

package
com.mano.spring_mvc_rest_example.spring_mvc_rest.employee
;

public class Employee {

 private String id;

 private String name;

 private String address;

 public Employee() {

 }

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 89 | P a g e

 public Employee(String id, String name, String
address) {

 this.id = id;

 this.name = name;

 this.address = address;

 }

 public String getId() {

 return id;

 }

 public void setId(String id) {

 this.id = id;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public String getAddress() {

 return address;

 }

 public void setAddress(String address) {

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 90 | P a g e

 this.address = address;

 }

}

EmployeeService.java

package com.mano.spring_mvc_rest_example.spring_

 mvc_rest.employee;

import org.springframework.stereotype.Service;

import java.util.Arrays;

import java.util.List;

@Service

public class EmployeeService {

 List<Employee> employeeList= Arrays.asList(

 new Employee("spiderman","Peter Parker",

 "New York"),

 new Employee("batman","Bruce Wayne",

 "Gotham City"),

 new Employee("superman","Clark Kent",

 "Metropolis"),

 new Employee("blackpanther","T'Challa",

 "Wakanda"),

 new Employee("ironman","Tony Stark",

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 91 | P a g e

 "New York")

);

 public List<Employee> getEmployees(){

 return employeeList;

 }

 public Employee getEmployee(String id){

 return employeeList.stream().filter(e->e.getId()

 .equals(id)).findFirst().get();

 }

 public void addEmployee(Employee employee){

 }

 public void updateEmployee(Employee employee, String
id){

 for(int i=0;i<employeeList.size();i++){

 Employee e=employeeList.get(i);

 if(e.getId().equals(id)) {

 employeeList.set(i, employee);

 break;

 }

 }

 }

 public void deleteEmployee(String id){

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 92 | P a g e

 employeeList.removeIf(e->e.getId().equals(id));

 }

}

EmployeeController.java

package
com.mano.spring_mvc_rest_example.spring_mvc_rest.employee
;

import
org.springframework.beans.factory.annotation.Autowired;

import org.springframework.web.bind.annotation.*;

import java.util.List;

@RestController

public class EmployeeController {

 @Autowired

 private EmployeeService employeeService;

 @RequestMapping("/employees")

 public List<Employee> getEmployees(){

 return employeeService.getEmployees();

 }

 @RequestMapping("/employees/{empid}")

 public Employee getEmployee(@PathVariable("empid")

 String id){

 return employeeService.getEmployee(id);

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 93 | P a g e

 }

 @RequestMapping(method= RequestMethod.POST,

 value="/employees")

 public void addEmployee(@RequestBody Employee
employee){

 employeeService.addEmployee(employee);

 }

 @RequestMapping(method = RequestMethod.PUT,

 value="/employees/{id}")

 public void updateEmployee(@RequestBody Employee
employee,

 @PathVariable String id){

 employeeService.updateEmployee(employee, id);

 }

 @RequestMapping(method = RequestMethod.DELETE,

 value="/employees/{id}")

 public void deleteEmployee(@PathVariable String id){

 employeeService>.deleteEmployee(id);

 }

}
Observe that the Web controller class named EmployeeController is designated as
a @RestController annotation. This is a convenience annotation that actually
combines the @Controller and @ResponseBody annotations.
The @Controller annotation designates a POJO as a Web controller and is a
specialization of @Component. When we designate a POJO class with @Controller or
@Component, or even a @RestController, Spring auto detects them by considering

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 94 | P a g e

them as a candidate while class path scanning. The @ResponseBody annotation
indicates that the method response value should be bound to the Web response body.

The valid URL requests for publishing REST resources for the above code are as
follows:

 Get all employees: http://localhost:8080/employees

 Get one employee: http://localhost:8080/employees/batman

Conclusion

For REST CRUD operations such as adding, updating, and deleting Employee, we
need a HTTP client application that enables us to test Web services, such as postman;
otherwise, we need to implement the view layer of the application with the help of
JavaScript frameworks such as jQuery, AngularJS, and the like. To keep the write-up
well within limits, we have not implemented them here. If possible, we’ll take them
up in a separate write-up. By the way, we have only scratched the surface of Spring
MVC and Spring REST support. Take this as a warm-up before the deep plunge you
may want to take into the stream of Spring. As you swim across, you’ll find many

interesting sight scenes. 🙂

https://www.developer.com/java/exploring-rest-apis-with-spring-mvc/

Building an application using Maven

Lifecycle Management
One of the primary objectives of Maven is to manage the lifecycle of a

Java project. While building a Java application may appear to be a simple,

one-step process, there are actually multiple steps that take place.

Maven divides this process into three lifecycles:

1. clean: Prepares the project for building by removing unneeded

files and dependencies

2. default: Builds the project

3. site: Creates project documentation

http://localhost:8080/employees
http://localhost:8080/employees/batman
https://www.getpostman.com/
https://jquery.com/
https://angularjs.org/
https://www.developer.com/java/exploring-rest-apis-with-spring-mvc/

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 95 | P a g e

Phases
Maven further subdivides these lifecycles into phases, which represent a

stage in the build process. For example, the default lifecycle includes

the following phases (as well as others):

1. validate

2. compile

3. test

4. package

5. deploy

In the same way as a deployment pipeline (pp. 103 of Continuous

Delivery) granularizes the stages of deployment into discrete steps,

Maven also divides its build process into distinct phases. These phases

create a chain, where the execution of a later phase executes dependent

phases.

For example, if we wish to package an application through a Maven

build, our application must first be validated, compiled, and then tested

before Maven can generate the resulting package. Thus, when executing

the package phase of a build, Maven with first execute

the validate, compile, and test phases of the build before finally

executing the package phase. Maven phases, therefore, act as a sequence

of ordered steps.

We can execute phases by supplying them as command-line arguments

to the mvn command:

1
mvn package

https://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912
https://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 96 | P a g e

Goals & Plugins
Maven breaks phases down one more time into goals, which represent

discrete tasks that are executed as part of each phase. For example, when

we execute the compile phase in a Maven build, we are actually

compiling both the main sources that make up our project as well as the

test sources that will be used when executing our automated test cases.

Thus, the compile phase is composed of two goals:

1. compiler:compile

2. compiler:testCompile

The compiler portion of the goal is the plugin name. A Maven plugin is

an artifact that supplies Maven goals. The addition of these plugins

allows Maven to be extended beyond its basic functionality.

For example, suppose that we wish to add a goal that verifies that our

code meets the formatting standard of our company. To do this, we could

create a new plugin that has a goal that checks the source code and

compares it to our company standard, succeeding if our code meets the

standard and failing otherwise.

We can then tie this goal into the validate phase so that when Maven

runs the validate phase (such as when the compile phase is run), our

custom goal is executed. Creating such a plugin is outside the scope of

this article, but detailed information can be found in the official

Maven Plugin Development documentation.

Note that a goal may be associated with zero or more phases. If no phase

is associated with the goal, the goal will not be included in a build by

default but can be explicitly executed. For example, if we create a

https://maven.apache.org/guides/plugin/guide-java-plugin-development.html

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 97 | P a g e

goal foo:bar that is not associated with any phase, Maven will not

execute this goal for us (since no dependency is created to a phase that

Maven is executing), but we can explicitly instruct Maven to execute this

goal on the command line:

1
mvn foo:bar

Likewise, a phase can have zero or more goals associated with it. If a

phase does not have any goals associated with it, though, it will not be

executed by Maven.

For a complete list of all phases and goals included in Maven by default,

see the official Maven Introduction to the Build Lifecycle documentation.

https://dzone.com/articles/building-java-applications-with-maven

https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://dzone.com/articles/building-java-applications-with-maven

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 98 | P a g e

UNIT - V

Databases & Deployment: Relational schemas and normalization

Structured Query Language (SQL) Data persistence using Spring JDBC Agile

development principles and deploying application in Cloud

Structured Query Language (SQL)

Structured Query Language is a standard Database language which is used
to create, maintain and retrieve the relational database. Following are some
interesting facts about SQL.

 SQL is case insensitive. But it is a recommended practice to use
keywords (like SELECT, UPDATE, CREATE, etc) in capital letters and
use user defined things (liked table name, column name, etc) in small
letters.

 We can write comments in SQL using “–” (double hyphen) at the
beginning of any line.

 SQL is the programming language for relational databases (explained
below) like MySQL, Oracle, Sybase, SQL Server, Postgre, etc. Other
non-relational databases (also called NoSQL) databases like
MongoDB, DynamoDB, etc do not use SQL

 Although there is an ISO standard for SQL, most of the
implementations slightly vary in syntax. So we may encounter queries
that work in SQL Server but do not work in MySQL.

What is Relational Database?
Relational database means the data is stored as well as retrieved in the form
of relations (tables). Table 1 shows the relational database with only one
relation called STUDENT which
stores ROLL_NO, NAME, ADDRESS, PHONE and AGE of students.

ROLL_NO NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 99 | P a g e

2 RAMESH GURGAON 9652431543 18

3 SUJIT ROHTAK 9156253131 20

4 SURESH DELHI 9156768971 18

TABLE 1

These are some important terminologies that are used in terms of relation.
Attribute: Attributes are the properties that define a relation.
e.g.; ROLL_NO, NAME etc.
Tuple: Each row in the relation is known as tuple. The above relation
contains 4 tuples, one of which is shown as:

1 RAM DELHI 9455123451 18

Degree: The number of attributes in the relation is known as degree of the
relation. The STUDENT relation defined above has degree 5.
Cardinality: The number of tuples in a relation is known as cardinality.
The STUDENT relation defined above has cardinality 4.
Column: Column represents the set of values for a particular attribute. The
column ROLL_NO is extracted from relation STUDENT.

ROLL_NO

1

2

3

4

The queries to deal with relational database can be categories as:

Data Definition Language: It is used to define the structure of the database.
e.g; CREATE TABLE, ADD COLUMN, DROP COLUMN and so on.
Data Manipulation Language: It is used to manipulate data in the relations.
e.g.; INSERT, DELETE, UPDATE and so on.
Data Query Language: It is used to extract the data from the relations. e.g.;
SELECT
So first we will consider the Data Query Language. A generic query to
retrieve from a relational database is:

SELECT [DISTINCT] Attribute_List FROM R1,R2….RM
[WHERE condition]
[GROUP BY (Attributes)[HAVING condition]]
[ORDER BY(Attributes)[DESC]];

Part of the query represented by statement 1 is compulsory if you want to
retrieve from a relational database. The statements written inside [] are
optional. We will look at the possible query combination on relation shown in
Table 1.

Case 1: If we want to retrieve attributes ROLL_NO and NAME of all

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 100 |

P a g e

students, the query will be:
SELECT ROLL_NO, NAME FROM STUDENT;

ROLL_NO NAME

1 RAM

2 RAMESH

3 SUJIT

4 SURESH

Case 2: If we want to retrieve ROLL_NO and NAME of the students
whose ROLL_NO is greater than 2, the query will be:
SELECT ROLL_NO, NAME FROM STUDENT

WHERE ROLL_NO>2;

ROLL_NO NAME

3 SUJIT

4 SURESH

CASE 3: If we want to retrieve all attributes of students, we can write * in
place of writing all attributes as:
SELECT * FROM STUDENT

WHERE ROLL_NO>2;

ROLL_NO NAME ADDRESS PHONE AGE

3 SUJIT ROHTAK 9E+09 20

4 SURESH DELHI 9E+09 18

CASE 4: If we want to represent the relation in ascending order by AGE, we
can use ORDER BY clause as:
SELECT * FROM STUDENT ORDER BY AGE;

ROLL_NO NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18

2 RAMESH GURGAON 9652431543 18

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 101 |

P a g e

4 SURESH DELHI 9156768971 18

3 SUJIT ROHTAK 9156253131 20

Note: ORDER BY AGE is equivalent to ORDER BY AGE ASC. If we want to
retrieve the results in descending order of AGE, we can use ORDER
BY AGE DESC.
CASE 5: If we want to retrieve distinct values of an attribute or group of
attribute, DISTINCT is used as in:
SELECT DISTINCT ADDRESS FROM STUDENT;

ADDRESS

DELHI

GURGAON

ROHTAK

If DISTINCT is not used, DELHI will be repeated twice in result set. Before
understanding GROUP BY and HAVING, we need to understand
aggregations functions in SQL.

AGGRATION FUNCTIONS: Aggregation functions are used to perform
mathematical operations on data values of a relation. Some of the common
aggregation functions used in SQL are:
1. COUNT: Count function is used to count the number of rows in a relation.

e.g; SELECT COUNT (PHONE) FROM STUDENT;

COUNT(PHONE)

4

2. SUM: SUM function is used to add the values of an attribute in a relation.
e.g; SELECT SUM (AGE) FROM STUDENT;

SUM(AGE)

74

In the same way, MIN, MAX and AVG can be used. As we have seen

above, all aggregation functions return only 1 row.

AVERAGE: It gives the average values of the tupples. It is also defined as

sum divided by count values.

Syntax:AVG(attributename)

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 102 |

P a g e

OR

Syntax: SUM(attributename)/COUNT(attributename)

The above mentioned syntax also retrieves the average value of tupples.

MAXIMUM: It extracts the maximum value among the set of tupples.

Syntax:MAX(attributename)

MINIMUM: It extracts the minimum value amongst the set of all the tupples.

Syntax:MIN(attributename)

GROUP BY: Group by is used to group the tuples of a relation based on an

attribute or group of attribute. It is always combined with aggregation function

which is computed on group. e.g.;

SELECT ADDRESS, SUM(AGE) FROM STUDENT

GROUP BY (ADDRESS);

In this query, SUM(AGE) will be computed but not for entire table but for

each address. i.e.; sum of AGE for address DELHI(18+18=36) and similarly

for other address as well. The output is:

ADDRESS SUM(AGE)

DELHI 36

GURGAON 18

ROHTAK 20

If we try to execute the query given below, it will result in error because
although we have computed SUM(AGE) for each address, there are more
than 1 ROLL_NO for each address we have grouped. So it can’t be
displayed in result set. We need to use aggregate functions on columns after
SELECT statement to make sense of the resulting set whenever we are
using GROUP BY.

SELECT ROLL_NO, ADDRESS, SUM(AGE) FROM STUDENT

GROUP BY (ADDRESS);

What is Data Normalization and Why Is It
Important?
Normalization is the process of reducing data redundancy in a table and
improving data integrity. Then why do you need it? If there is no
normalization in SQL, there will be many problems, such as:

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 103 |

P a g e

 Insert Anomaly: This happens when we cannot insert data into the table
without another.

 Update Anomaly: This is due to data inconsistency caused by data
redundancy and data update.

 Delete exception: Occurs when some attributes are lost due to the
deletion of other attributes.

So normalization is a way of organizing data in a database. Normalization
involves organizing the columns and tables in the database to ensure that
their dependencies are correctly implemented using database constraints.
Normalization is the process of organizing data in a proper manner. It is used
to minimize the duplication of various relationships in the database. It is also
used to troubleshoot exceptions such as inserts, deletes, and updates in the
table. It helps to split a large table into several small normalized tables.
Relational links and links are used to reduce redundancy. Normalization,
also known as database normalization or data normalization, is an important
part of relational database design because it helps to improve the speed,
accuracy, and efficiency of the database.
Now the is a question arises: What is the relationship between SQL and
normalization? Well, SQL is the language used to interact with the database.
Normalization in SQL improves data distribution. In order to initiate
interaction, the data in the database must be normalized. Otherwise, we
cannot continue because it will cause an exception. Normalization can also
make it easier to design the database to have the best structure for atomic
elements (that is, elements that cannot be broken down into smaller parts).
Usually, we break large tables into small tables to improve efficiency. Edgar
F. Codd defined the first paradigm in 1970, and finally other paradigms.
When normalizing a database, organize data into tables and columns. Make
sure that each table contains only relevant data. If the data is not directly
related, create a new table for that data. Normalization is necessary to
ensure that the table only contains data directly related to the primary key,
each data field contains only one data element, and to remove redundant
(duplicated and unnecessary) data.

DDL

DDL is Data Definition Language and is used to define the structures like schema, database,
tables, constraints etc. Examples of DDL are create and alter statements.

DML

DML is Data Manipulation Language and is used to manipulate data. Examples of DML are
insert, update and delete statements.

Following are the important differences between DDL and DML.

https://www.geeksforgeeks.org/introduction-of-database-normalization/

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 104 |

P a g e

Sr.

No.

Key DDL DML

1
Stands for DDL stands for Data Definition

Language.
DML stands for Data
Manipulation Language.

2
Usage DDL statements are used to create

database, schema, constraints, users,
tables etc.

DML statement is used to
insert, update or delete the
records.

3
Classification DDL has no further classification. DML is further classified into

procedural DML and non-
procedural DML.

4
Commands CREATE, DROP, RENAME and

ALTER.
INSERT, UPDATE and
DELETE.

Transaction Control language is a language that manages transactions within the database.

It is used to execute the changes made by the DML statements.

TCL Commands

Transaction Control Language (TCL) Commands are:

 Commit − It is used to save the transactions in the database.
 Rollback − It is used to restore the database to that state which was last

committed.
 Begin − It is used at the beginning of a transaction.
 Savepoint − The changes done till savpoint will be unchanged and all the

transactions after savepoint will be rolled back.

Example

Given below is an example of the usage of the TCL commands in the database management
system (DBMS) −

BEGIN TRANSACTION

UPDATE employees

SET empname=’bob’
WHERE empid=’001’

UPDATE employees

SET empname =’bob’
WHERE city=’hyderabad’

IF @@ROWCOUNT=5

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 105 |

P a g e

 COMMIT TRANSACTION

ELSE

 ROLLBACK TRANSACTION

In the above example after we begin the transaction, we are trying to update the employee’s
name with some value of id. If we affect five rows with our first query then, it will
COMMIT transaction else It will be ROLLBACK.

Difference between Commit, rollback and savepoint of TCL commands

Sno. Rollback Commit Savepoint

1. Rollback means the database
is restored to the last
committed state

DML commands saves
modification and it
permanently saves the
transaction.

Savepoint helps to
save the transaction
temporarily.

2. Syntax- ROLLBACK [To
SAVEPOINT_NAME];

Syntax- COMMIT; Syntax- SAVEPOINT
[savepoint_name;]

3. Example- ROLLBACK
Update5;

Example- SQL> COMMIT; Example-
SAVEPOINT
table_create;

SPRING JDBC EXAMPLE
To understand the concepts related to Spring JDBC framework with JdbcTemplate class, let us

write a simple example which will implement all the CRUD operations on the following Student

table.

CREATE TABLE Student(

ID INT NOT NULL AUTO_INCREMENT,
NAME VARCHAR(20) NOT NULL,
AGE INT NOT NULL,
PRIMARY KEY (ID)

);

Steps to Create a JDBC Spring Application:

Step Description

1 Create a project with a name SpringExample and create a package com.mrcet

under the src folder in the created project.

2 Add required Spring libraries using Add External JARs.

3 Add Spring JDBC specific latest libraries mysql-connector-java.jar,

org.springframework.jdbc.jar and org.springframework.transaction.jar in the

project. You can download required libraries if you do not have them already.

4 Create DAO interface StudentDAO and list down all the required methods.

5 Create other required Java classes Student, StudentMapper, StudentJDBCTemplate

and MainApp under the com.mrcet package.

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 106 |

P a g e

6 Make sure you already created Student table in TEST database. Also make sure

your MySQL server is working fine and you have read/write access on the database

using the give username and password.

7 Create Beans configuration file Beans.xml under the src folder.

8 The final step is to create the content of all the Java files and Bean Configuration file

and run the application as explained below.

1. Spring JDBC - insert Query

The following example will demonstrate how to create a query using Insert query with the
help of Spring JDBC. We'll insert a few records in Student Table.

Syntax

String insertQuery = "insert into Student (name, age) values (?, ?)";
jdbcTemplateObject.update(insertQuery, name, age);

Where,

 insertQuery − Insert query having placeholders.
 jdbcTemplateObject − StudentJDBCTemplate object to insert student object

in database.

To understand the above-mentioned concepts related to Spring JDBC, let us write an example
which will insert a query. To write our example use the following steps to create a Spring
application.

Following is the content of the Data Access Object interface file StudentDAO.java.

package com.mrcet;

import java.util.List;
import javax.sql.DataSource;

public interface StudentDAO {
 /**
 * This is the method to be used to initialize
 * database resources ie. connection.
 */
 public void setDataSource(DataSource ds);

 /**
 * This is the method to be used to create
 * a record in the Student table.
 */
 public void create(String name, Integer age);

 /**
 * This is the method to be used to list down
 * all the records from the Student table.
 */

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 107 |

P a g e

 public List<Student> listStudents();
}

Following is the content of the Student.java file.

package com.mrcet;

public class Student {
 private Integer age;
 private String name;
 private Integer id;

 public void setAge(Integer age) {
 this.age = age;
 }
 public Integer getAge() {
 return age;
 }
 public void setName(String name) {
 this.name = name;
 }
 public String getName() {
 return name;
 }
 public void setId(Integer id) {
 this.id = id;
 }
 public Integer getId() {
 return id;
 }
}

Following is the content of the StudentMapper.java file.

package com.mrcet;

import java.sql.ResultSet;
import java.sql.SQLException;
import org.springframework.jdbc.core.RowMapper;

public class StudentMapper implements RowMapper<Student> {
 public Student mapRow(ResultSet rs, int rowNum) throws SQLException {
 Student student = new Student();
 student.setId(rs.getInt("id"));
 student.setName(rs.getString("name"));
 student.setAge(rs.getInt("age"));
 return student;
 }
}

Following is the implementation class file StudentJDBCTemplate.java for the defined
DAO interface StudentDAO.

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 108 |

P a g e

package com.mrcet;

import java.util.List;
import javax.sql.DataSource;
import org.springframework.jdbc.core.JdbcTemplate;

public class StudentJDBCTemplate implements StudentDAO {
 private DataSource dataSource;
 private JdbcTemplate jdbcTemplateObject;

 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 this.jdbcTemplateObject = new JdbcTemplate(dataSource);
 }
 public void create(String name, Integer age) {
 String insertQuery = "insert into Student (name, age) values (?, ?)";
 jdbcTemplateObject.update(insertQuery, name, age);
 System.out.println("Created Record Name = " + name + " Age = " + age);
 return;
 }
 public List<Student> listStudents() {
 String SQL = "select * from Student";
 List <Student> students = jdbcTemplateObject.query(SQL, new StudentMapper());
 return students;
 }
}

Following is the content of the MainApp.java file.

package com.mrcet;

import java.util.List;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import com.mrcet.StudentJDBCTemplate;

public class MainApp {
 public static void main(String[] args) {
 ApplicationContext context = new ClassPathXmlApplicationContext("Beans.xml");

 StudentJDBCTemplate studentJDBCTemplate =
(StudentJDBCTemplate)context.getBean("studentJDBCTemplate");

 System.out.println("------Records Creation--------");
 studentJDBCTemplate.create("Zara", 11);
 studentJDBCTemplate.create("Nuha", 2);
 studentJDBCTemplate.create("Ayan", 15);

 System.out.println("------Listing Multiple Records--------");
 List<Student> students = studentJDBCTemplate.listStudents();

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 109 |

P a g e

 for (Student record : students) {
 System.out.print("ID : " + record.getId());
 System.out.print(", Name : " + record.getName());
 System.out.println(", Age : " + record.getAge());
 }
 }
}

Following is the configuration file Beans.xml.

<?xml version = "1.0" encoding = "UTF-8"?>
<beans xmlns = "http://www.springframework.org/schema/beans"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd ">

 <!-- Initialization for data source -->
 <bean id = "dataSource"
 class = "org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name = "driverClassName" value = "com.mysql.cj.jdbc.Driver"/>
 <property name = "url" value = "jdbc:mysql://localhost:3306/TEST"/>
 <property name = "username" value = "root"/>
 <property name = "password" value = "admin"/>
 </bean>

 <!-- Definition for studentJDBCTemplate bean -->
 <bean id = "studentJDBCTemplate"
 class = "com.mrcet.StudentJDBCTemplate">
 <property name = "dataSource" ref = "dataSource" />
 </bean>
</beans>

Once you are done creating the source and bean configuration files, let us run the application.
If everything is fine with your application, it will print the following message.

------Records Creation--------
Created Record Name = Zara Age = 11
Created Record Name = Nuha Age = 2
Created Record Name = Ayan Age = 15
------Listing Multiple Records--------
ID : 1, Name : Zara, Age : 11
ID : 2, Name : Nuha, Age : 2
ID : 3, Name : Ayan, Age : 15

2. Spring JDBC - Select Query
Following example will demonstrate how to read a query using Spring JDBC. We'll read
available records in Student Table.

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 110 |

P a g e

Syntax

String selectQuery = "select * from Student";
List <Student> students = jdbcTemplateObject.query(selectQuery, new StudentMapper());

Where,

 selectQuery − Select query to read students.
 jdbcTemplateObject − StudentJDBCTemplate object to read student object

from database.
 StudentMapper − StudentMapper is a RowMapper object to map each

fetched record to student object.

To understand above mentioned concepts related to Spring JDBC, let us write an example
which will select a query. To write our example, use the following steps to create a Spring
application.

Following is the content of the Data Access Object interface file StudentDAO.java.

package com.mrcet;

import java.util.List;
import javax.sql.DataSource;

public interface StudentDAO {
 /**
 * This is the method to be used to initialize
 * database resources ie. connection.
 */
 public void setDataSource(DataSource ds);

 /**
 * This is the method to be used to list down
 * all the records from the Student table.
 */
 public List<Student> listStudents();
}

Following is the content of the Student.java file.

package com.mrcet;

public class Student {
 private Integer age;
 private String name;
 private Integer id;

 public void setAge(Integer age) {
 this.age = age;
 }
 public Integer getAge() {
 return age;
 }

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 111 |

P a g e

 public void setName(String name) {
 this.name = name;
 }
 public String getName() {
 return name;
 }
 public void setId(Integer id) {
 this.id = id;
 }
 public Integer getId() {
 return id;
 }
}

Following is the content of the StudentMapper.java file.

package com.mrcet;

import java.sql.ResultSet;
import java.sql.SQLException;
import org.springframework.jdbc.core.RowMapper;

public class StudentMapper implements RowMapper<Student> {
 public Student mapRow(ResultSet rs, int rowNum) throws SQLException {
 Student student = new Student();
 student.setId(rs.getInt("id"));
 student.setName(rs.getString("name"));
 student.setAge(rs.getInt("age"));
 return student;
 }
}

Following is the implementation class file StudentJDBCTemplate.java for the defined
DAO interface StudentDAO.

package com.mrcet;

import java.util.List;
import javax.sql.DataSource;
import org.springframework.jdbc.core.JdbcTemplate;

public class StudentJDBCTemplate implements StudentDAO {
 private DataSource dataSource;
 private JdbcTemplate jdbcTemplateObject;

 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 this.jdbcTemplateObject = new JdbcTemplate(dataSource);
 }
 public List<Student> listStudents() {
 String SQL = "select * from Student";
 List <Student> students = jdbcTemplateObject.query(SQL, new StudentMapper());
 return students;

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 112 |

P a g e

 }
}

Following is the content of the MainApp.java file.

package com.mrcet;

import java.util.List;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import com.mrcet.StudentJDBCTemplate;

public class MainApp {
 public static void main(String[] args) {
 ApplicationContext context = new ClassPathXmlApplicationContext("Beans.xml");
 StudentJDBCTemplate studentJDBCTemplate =
(StudentJDBCTemplate)context.getBean("studentJDBCTemplate");

 System.out.println("------Listing Multiple Records--------");
 List<Student> students = studentJDBCTemplate.listStudents();

 for (Student record : students) {
 System.out.print("ID : " + record.getId());
 System.out.print(", Name : " + record.getName());
 System.out.println(", Age : " + record.getAge());
 }
 }
}

Following is the configuration file Beans.xml.

<?xml version = "1.0" encoding = "UTF-8"?>
<beans xmlns = "http://www.springframework.org/schema/beans"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd ">

 <!-- Initialization for data source -->
 <bean id = "dataSource"
 class = "org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name = "driverClassName" value = "com.mysql.cj.jdbc.Driver"/>
 <property name = "url" value = "jdbc:mysql://localhost:3306/TEST"/>
 <property name = "username" value = "root"/>
 <property name = "password" value = "admin"/>
 </bean>

 <!-- Definition for studentJDBCTemplate bean -->
 <bean id="studentJDBCTemplate"
 class = "com.mrcet.StudentJDBCTemplate">
 <property name = "dataSource" ref = "dataSource" />
 </bean>
</beans>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 113 |

P a g e

Once you are done creating the source and bean configuration files, let us run the application.
If everything is fine with your application, it will print the following message.

------Listing Multiple Records--------
ID : 1, Name : Zara, Age : 11
ID : 2, Name : Nuha, Age : 2
ID : 3, Name : Ayan, Age : 15

3. Spring JDBC - Update Query
Following example will demonstrate how to update a query using Spring JDBC. We'll update
the available records in Student Table.

Syntax

String updateQuery = "update Student set age = ? where id = ?";
jdbcTemplateObject.update(updateQuery, age, id);

Where,

 updateQuery − Update query to update student with place holders.
 jdbcTemplateObject − StudentJDBCTemplate object to update student object

in the database.

To understand the above-mentioned concepts related to Spring JDBC, let us write an example
which will update a query. To write our example, let us have a working Eclipse IDE in place
and use the following steps to create a Spring application.

Following is the content of the Data Access Object interface file StudentDAO.java.

package com.mrcet;

import java.util.List;
import javax.sql.DataSource;

public interface StudentDAO {
 /**
 * This is the method to be used to initialize
 * database resources ie. connection.
 */
 public void setDataSource(DataSource ds);

 /**
 * This is the method to be used to update
 * a record into the Student table.
 */
 public void update(Integer id, Integer age);

 /**
 * This is the method to be used to list down
 * a record from the Student table corresponding
 * to a passed student id.
 */

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 114 |

P a g e

 public Student getStudent(Integer id);
}

Following is the content of the Student.java file.

package com.mrcet;

public class Student {
 private Integer age;
 private String name;
 private Integer id;

 public void setAge(Integer age) {
 this.age = age;
 }
 public Integer getAge() {
 return age;
 }
 public void setName(String name) {
 this.name = name;
 }
 public String getName() {
 return name;
 }
 public void setId(Integer id) {
 this.id = id;
 }
 public Integer getId() {
 return id;
 }
}

Following is the content of the StudentMapper.java file.

package com.mrcet;

import java.sql.ResultSet;
import java.sql.SQLException;
import org.springframework.jdbc.core.RowMapper;

public class StudentMapper implements RowMapper<Student> {
 public Student mapRow(ResultSet rs, int rowNum) throws SQLException {
 Student student = new Student();
 student.setId(rs.getInt("id"));
 student.setName(rs.getString("name"));
 student.setAge(rs.getInt("age"));
 return student;
 }
}

Following is the implementation class file StudentJDBCTemplate.java for the defined
DAO interface StudentDAO.

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 115 |

P a g e

package com.mrcet;

import java.util.List;
import javax.sql.DataSource;
import org.springframework.jdbc.core.JdbcTemplate;

public class StudentJDBCTemplate implements StudentDAO {
 private DataSource dataSource;
 private JdbcTemplate jdbcTemplateObject;

 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 this.jdbcTemplateObject = new JdbcTemplate(dataSource);
 }
 public void update(Integer id, Integer age){
 String SQL = "update Student set age = ? where id = ?";
 jdbcTemplateObject.update(SQL, age, id);
 System.out.println("Updated Record with ID = " + id);
 return;
 }
 public Student getStudent(Integer id) {
 String SQL = "select * from Student where id = ?";
 Student student = jdbcTemplateObject.queryForObject(
 SQL, new Object[]{id}, new StudentMapper()
);
 return student;
 }
}

Following is the content of the MainApp.java file.

package com.mrcet;

import java.util.List;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import com.mrcet.StudentJDBCTemplate;

public class MainApp {
 public static void main(String[] args) {
 ApplicationContext context = new ClassPathXmlApplicationContext("Beans.xml");
 StudentJDBCTemplate studentJDBCTemplate =
 (StudentJDBCTemplate)context.getBean("studentJDBCTemplate");

 System.out.println("----Updating Record with ID = 2 -----");
 studentJDBCTemplate.update(2, 20);

 System.out.println("----Listing Record with ID = 2 -----");
 Student student = studentJDBCTemplate.getStudent(2);
 System.out.print("ID : " + student.getId());
 System.out.print(", Name : " + student.getName());
 System.out.println(", Age : " + student.getAge());

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 116 |

P a g e

 }
}

Following is the configuration file Beans.xml.

<?xml version = "1.0" encoding = "UTF-8"?>
<beans xmlns = "http://www.springframework.org/schema/beans"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd ">

 <!-- Initialization for data source -->
 <bean id = "dataSource"
 class = "org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name = "driverClassName" value = "com.mysql.cj.jdbc.Driver"/>
 <property name = "url" value = "jdbc:mysql://localhost:3306/TEST"/>
 <property name = "username" value = "root"/>
 <property name = "password" value = "admin"/>
 </bean>

 <!-- Definition for studentJDBCTemplate bean -->
 <bean id = "studentJDBCTemplate"
 class = "com.mrcet.StudentJDBCTemplate">
 <property name = "dataSource" ref = "dataSource" />
 </bean>

</beans>

Once you are done creating the source and bean configuration files, let us run the application.
If everything is fine with your application, it will print the following message.

----Updating Record with ID = 2 -----
Updated Record with ID = 2
----Listing Record with ID = 2 -----
ID : 2, Name : Nuha, Age : 20

4. Spring JDBC - Delete Query
The following example will demonstrate how to delete a query using Spring JDBC. We'll
delete one of the available records in Student Table

Syntax

String deleteQuery = "delete from Student where id = ?";
jdbcTemplateObject.update(deleteQuery, id);

Where,

 deleteQuery − Delete query to delete student with placeholders.
 jdbcTemplateObject − StudentJDBCTemplate object to delete student object

in the database.

To understand the above-mentioned concepts related to Spring JDBC, let us write an example

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 117 |

P a g e

which will delete a query. To write our example, use the following steps to create a Spring
application.

Following is the content of the Data Access Object interface file StudentDAO.java.

package com.mrcet;

import java.util.List;
import javax.sql.DataSource;

public interface StudentDAO {
 /**
 * This is the method to be used to initialize
 * database resources ie. connection.
 */
 public void setDataSource(DataSource ds);

 /**
 * This is the method to be used to list down
 * all the records from the Student table.
 */
 public List<Student> listStudents();

 /**
 * This is the method to be used to delete
 * a record from the Student table corresponding
 * to a passed student id.
 */
 public void delete(Integer id);
}

Following is the content of the Student.java file.

package com.mrcet;

public class Student {
 private Integer age;
 private String name;
 private Integer id;

 public void setAge(Integer age) {
 this.age = age;
 }
 public Integer getAge() {
 return age;
 }
 public void setName(String name) {
 this.name = name;
 }
 public String getName() {
 return name;
 }
 public void setId(Integer id) {

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 118 |

P a g e

 this.id = id;
 }
 public Integer getId() {
 return id;
 }
}

Following is the content of the StudentMapper.java file.

package com.mrcet;

import java.sql.ResultSet;
import java.sql.SQLException;
import org.springframework.jdbc.core.RowMapper;

public class StudentMapper implements RowMapper<Student> {
 public Student mapRow(ResultSet rs, int rowNum) throws SQLException {
 Student student = new Student();
 student.setId(rs.getInt("id"));
 student.setName(rs.getString("name"));
 student.setAge(rs.getInt("age"));
 return student;
 }
}

Following is the implementation class file StudentJDBCTemplate.java for the defined
DAO interface StudentDAO.

package com.mrcet;

import java.util.List;
import javax.sql.DataSource;
import org.springframework.jdbc.core.JdbcTemplate;

public class StudentJDBCTemplate implements StudentDAO {
 private DataSource dataSource;
 private JdbcTemplate jdbcTemplateObject;

 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 this.jdbcTemplateObject = new JdbcTemplate(dataSource);
 }
 public List<Student> listStudents() {
 String SQL = "select * from Student";
 List <Student> students = jdbcTemplateObject.query(SQL, new StudentMapper());
 return students;
 }
 public void delete(Integer id){
 String SQL = "delete from Student where id = ?";
 jdbcTemplateObject.update(SQL, id);
 System.out.println("Deleted Record with ID = " + id);
 return;
 }

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 119 |

P a g e

}

Following is the content of the MainApp.java file.

package com.mrcet;

import java.util.List;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import com.mrcet.StudentJDBCTemplate;

public class MainApp {
 public static void main(String[] args) {
 ApplicationContext context = new ClassPathXmlApplicationContext("Beans.xml");
 StudentJDBCTemplate studentJDBCTemplate =
 (StudentJDBCTemplate)context.getBean("studentJDBCTemplate");

 System.out.println("----Delete Record with ID = 2 -----");
 studentJDBCTemplate.delete(2);

 System.out.println("------Listing Multiple Records--------");
 List<Student> students = studentJDBCTemplate.listStudents();

 for (Student record : students) {
 System.out.print("ID : " + record.getId());
 System.out.print(", Name : " + record.getName());
 System.out.println(", Age : " + record.getAge());
 }
 }
}

Following is the configuration file Beans.xml.

<?xml version = "1.0" encoding = "UTF-8"?>
<beans xmlns = "http://www.springframework.org/schema/beans"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd ">

 <!-- Initialization for data source -->
 <bean id = "dataSource"
 class = "org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name = "driverClassName" value = "com.mysql.cj.jdbc.Driver"/>
 <property name = "url" value = "jdbc:mysql://localhost:3306/TEST"/>
 <property name = "username" value = "root"/>
 <property name = "password" value = "admin"/>
 </bean>

 <!-- Definition for studentJDBCTemplate bean -->
 <bean id = "studentJDBCTemplate"
 class = "com.mrcet.StudentJDBCTemplate">
 <property name = "dataSource" ref = "dataSource" />
 </bean>

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 120 |

P a g e

</beans>

Once you are done creating the source and bean configuration files, let us run the application.
If everything is fine with your application, it will print the following message.

----Updating Record with ID = 2 -----
Updated Record with ID = 2
----Listing Record with ID = 2 -----
ID : 2, Name : Nuha, Age : 20

Different Types of Cloud Computing Deployment Models

Most cloud hubs have tens of thousands of servers and storage devices to enable

fast loading. It is often possible to choose a geographic area to put the data "closer"

to users. Thus, deployment models for cloud computing are categorized based on

their location. To know which model would best fit the requirements of your

organization, let us first learn about the various types.

Public Cloud

The name says it all. It is accessible to the public. Public deployment models in the

cloud are perfect for organizations with growing and fluctuating demands. It also

makes a great choice for companies with low-security concerns. Thus, you pay a

cloud service provider for networking services, compute virtualization & storage

available on the public internet. It is also a great delivery model for the teams with

development and testing. Its configuration and deployment are quick and easy,

making it an ideal choice for test environments.

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 121 |

P a g e

Benefits of Public Cloud

o Minimal Investment - As a pay-per-use service, there is no large upfront cost

and is ideal for businesses who need quick access to resources

o No Hardware Setup - The cloud service providers fully fund the entire

Infrastructure

o No Infrastructure Management - This does not require an in-house team to

utilize the public cloud.

Limitations of Public Cloud

o Data Security and Privacy Concerns - Since it is accessible to all, it does not

fully protect against cyber-attacks and could lead to vulnerabilities.

o Reliability Issues - Since the same server network is open to a wide range of

users, it can lead to malfunction and outages

o Service/License Limitation - While there are many resources you can exchange

with tenants, there is a usage cap.

Private Cloud

Now that you understand what the public cloud could offer you, of course, you are

keen to know what a private cloud can do. Companies that look for cost efficiency

and greater control over data & resources will find the private cloud a more suitable

choice.

It means that it will be integrated with your data center and managed by your IT

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 122 |

P a g e

team. Alternatively, you can also choose to host it externally. The private cloud offers

bigger opportunities that help meet specific organizations' requirements when it

comes to customization. It's also a wise choice for mission-critical processes that may

have frequently changing requirements.

Benefits of Private Cloud

o Data Privacy - It is ideal for storing corporate data where only authorized

personnel gets access

o Security - Segmentation of resources within the same Infrastructure can help

with better access and higher levels of security.

o Supports Legacy Systems - This model supports legacy systems that cannot

access the public cloud.

Limitations of Private Cloud

o Higher Cost - With the benefits you get, the investment will also be larger

than the public cloud. Here, you will pay for software, hardware, and resources

for staff and training.

o Fixed Scalability - The hardware you choose will accordingly help you scale in

a certain direction

o High Maintenance - Since it is managed in-house, the maintenance costs also

increase.

Community Cloud

The community cloud operates in a way that is similar to the public cloud. There's

just one difference - it allows access to only a specific set of users who share

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 123 |

P a g e

common objectives and use cases. This type of deployment model of cloud

computing is managed and hosted internally or by a third-party vendor. However,

you can also choose a combination of all three.

Benefits of Community Cloud

o Smaller Investment - A community cloud is much cheaper than the private &

public cloud and provides great performance

o Setup Benefits - The protocols and configuration of a community cloud must

align with industry standards, allowing customers to work much more

efficiently.

Limitations of Community Cloud

o Shared Resources - Due to restricted bandwidth and storage capacity,

community resources often pose challenges.

o Not as Popular - Since this is a recently introduced model, it is not that

popular or available across industries

Hybrid Cloud

As the name suggests, a hybrid cloud is a combination of two or more cloud

architectures. While each model in the hybrid cloud functions differently, it is all part

of the same architecture. Further, as part of this deployment of the cloud computing

model, the internal or external providers can offer resources.

Let's understand the hybrid model better. A company with critical data will prefer

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 124 |

P a g e

storing on a private cloud, while less sensitive data can be stored on a public cloud.

The hybrid cloud is also frequently used for 'cloud bursting'. It means, supposes an

organization runs an application on-premises, but due to heavy load, it can burst into

the public cloud.

Benefits of Hybrid Cloud

o Cost-Effectiveness - The overall cost of a hybrid solution decreases since it

majorly uses the public cloud to store data.

o Security - Since data is properly segmented, the chances of data theft from

attackers are significantly reduced.

o Flexibility - With higher levels of flexibility, businesses can create custom

solutions that fit their exact requirements

Limitations of Hybrid Cloud

o Complexity - It is complex setting up a hybrid cloud since it needs to integrate

two or more cloud architectures

o Specific Use Case - This model makes more sense for organizations that have

multiple use cases or need to separate critical and sensitive data

Real World Applications of Cloud Computing

In simple Cloud Computing refers to the on-demand availability of IT
resources over internet. It delivers different types of services to the customer
over the internet. There are three basic types of services models are
available in cloud computing i.e., Infrastructure As A Service (IAAS),
Platform As A Service (PAAS), Software As A Service (SAAS). On the basis
of accessing and availing cloud computing services, they are divided mainly
into four types of cloud i.e Public cloud, Private Cloud, Hybrid Cloud, and

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 125 |

P a g e

Community cloud which is called Cloud deployment model. The demand for
cloud services is increasing so fast and the global cloud computing market is
growing at that rate. A large number of organizations and different business
sectors are preferring cloud services nowadays as they are getting a list of
benefits from cloud computing. Different organizations using cloud computing
for different purposes and with respect to that Cloud Service Providers are
providing various applications in different fields. Applications of Cloud
Computing in real-world : Cloud Service Providers (CSP) are providing
many types of cloud services and now if we will cloud computing has
touched every sector by providing various cloud applications. Sharing and
managing resources is easy in cloud computing that’s why it is one of the
dominant fields of computing. These properties have made it an active
component in many fields. Now let’s know some of the real-world
applications of cloud computing.
1. Online Data Storage: Cloud computing allows storing data like files,

images, audios, and videos, etc on the cloud storage. The organization
need not set physical storage systems to store a huge volume of business
data which costs so high nowadays. As they are growing technologically,
data generation is also growing with respect to time, and storing that
becoming problem. In that situation, Cloud storage is providing this
service to store and access data any time as per requirement.

2. Backup and Recovery : Cloud vendors provide security from their side
by storing safe to the data as well as providing a backup facility to the
data. They offer various recovery application for retrieving the lost data. In
the traditional way backup of data is a very complex problem and also it is
very difficult sometimes impossible to recover the lost data. But cloud
computing has made backup and recovery applications very easy where
there is no fear of running out of backup media or loss of data.

3. Bigdata Analysis : We know the volume of big data is so high where
storing that in traditional data management system for an organization is
impossible. But cloud computing has resolved that problem by allowing
the organizations to store their large volume of data in cloud storage
without worrying about physical storage. Next comes analyzing the raw
data and finding out insights or useful information from it is a big
challenge as it requires high-quality tools for data analytics. Cloud
computing provides the biggest facility to organizations in terms of storing
and analyzing big data.

4. Testing and development : Setting up the platform for development and
finally performing different types of testing to check the readiness of the
product before delivery requires different types of IT resources and
infrastructure. But Cloud computing provides the easiest approach for
development as well as testing even if deployment by using their IT
resources with minimal expenses. Organizations find it more helpful as
they got scalable and flexible cloud services for product development,
testing, and deployment.

https://www.geeksforgeeks.org/what-is-big-data/
https://www.geeksforgeeks.org/software-testing-basics/
https://www.geeksforgeeks.org/an-introduction-to-software-development-design-principles/

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 126 |

P a g e

5. Anti-Virus Applications : Previously, organizations were installing
antivirus software within their system even if we will see we personally
also keep antivirus software in our system for safety from outside cyber
threats. But nowadays cloud computing provides cloud antivirus software
which means the software is stored in the cloud and monitors your
system/organization’s system remotely. This antivirus software identifies
the security risks and fixes them. Sometimes also they give a feature to
download the software.

6. E-commerce Application : Cloud-based e-commerce allows responding
quickly to the opportunities which are emerging. Users respond quickly to
the market opportunities as well as the traditional e-commerce responds
to the challenges quickly. Cloud-based e-commerce gives a new
approach to doing business with the minimum amount as well as
minimum time possible. Customer data, product data, and other
operational systems are managed in cloud environments.

7. Cloud computing in education : Cloud computing in the education
sector brings an unbelievable change in learning by providing e-learning,
online distance learning platforms, and student information portals to the
students. It is a new trend in education that provides an attractive
environment for learning, teaching, experimenting, etc to students, faculty
members, and researchers. Everyone associated with the field can
connect to the cloud of their organization and access data and information
from there.

8. E-Governance Application : Cloud computing can provide its services to
multiple activities conducted by the government. It can support the
government to move from the traditional ways of management and
service providers to an advanced way of everything by expanding the
availability of the environment, making the environment more scalable
and customized. It can help the government to reduce the unnecessary
cost in managing, installing, and upgrading applications and doing all
these with help of could computing and utilizing that money public service.

9. Cloud Computing in Medical Fields : In the medical field also nowadays
cloud computing is used for storing and accessing the data as it allows to
store data and access it through the internet without worrying about any
physical setup. It facilitates easier access and distribution of information
among the various medical professional and the individual patients.
Similarly, with help of cloud computing offsite buildings and treatment
facilities like labs, doctors making emergency house calls and
ambulances information, etc can be easily accessed and updated
remotely instead of having to wait until they can access a hospital
computer.

10. Entertainment Applications : Many people get entertainment from
the internet, in that case, cloud computing is the perfect place for
reaching to a varied consumer base. Therefore different types of
entertainment industries reach near the target audience by adopting a
multi-cloud strategy. Cloud-based entertainment provides various

https://www.geeksforgeeks.org/how-an-antivirus-works/
https://www.geeksforgeeks.org/e-commerce/
https://www.geeksforgeeks.org/e-governance/

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 127 |

P a g e

entertainment applications such as online music/video, online games and
video conferencing, streaming services, etc and it can reach any device
be it TV, mobile, set-top box, or any other form. It is a new form of
entertainment called On-Demand Entertainment (ODE). With respect to
this as a cloud, the market is growing rapidly and it is providing various
services day by day. So other application of cloud computing includes
social applications, management application, business applications, art
application, and many more. So in the future cloud computing is going to
touch many more sectors by providing more applications and services.

1. What are the different commands used in MySQL?

2. Describe Different types of cloud computing deployment models

3. a) Write a program to insert a record using Spring JDBC

b) Write short note on DDL query with example

4. a) Write a program to delete a record using Spring JDBC

b) Explain about DML Query with example

5. a) Write a program to update a record using Spring JDBC[8M]

b) Describe DCL and TCL in detail with example

6. Write a program to read records using Spring JDBC

7. Describe Different types of cloud computing deployment models

8. Explain Real World Applications of Cloud Computing.

9. Write a program to perform any DML operation using Spring JDBC

FULL STACK DEVELOPMENT A.Y 2023-24

DEPARTMENT OF CSE 128 |

P a g e

	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	DIGITAL NOTES
	ON
	[R20A0516]

	Description of HTML Example
	HTML Tags
	Syntax
	HTML Tag Examples
	<h2> Heading Tag </h2>

	HTML Elements
	Example

	HTML Heading
	Note: The main keyword of the whole content of a webpage should be display by h1 heading tag.

	Heading no. 1
	Heading no. 2
	Heading no. 3
	Heading no. 4
	Heading no. 5
	Heading no. 6

	HTML Anchor
	href attribute of HTML anchor tag
	Specify a location for Link using target attribute
	Example:

	HTML Image
	Attributes of HTML img tag
	1) src
	2) alt
	3) width
	4) height

	Use of height and width attribute with img tag
	Example:
	Note: Always try to insert the image with height and width, else it may flicker while displaying on webpage.

	Use of alt attribute

	HTML Table
	HTML Lists
	HTML Ordered List or Numbered List
	HTML Unordered List or Bulleted List
	HTML Unordered List Example
	ul type="circle"
	ul type="square"

	HTML Form
	Why use HTML Form
	HTML Form Syntax
	HTML TextField Control
	HTML <textarea> tag in form
	Label Tag in Form
	NOTE: It is good to use <label> tag with form, although it is optional but if you will use it, then it will provide a focus when you tap or click on label tag. It is more worthy with touchscreens.

	HTML Password Field Control
	HTML 5 Email Field Control
	Radio Button Control
	ADVERTISEMENT
	Checkbox Control
	Note: These are similar to radio button except it can choose multiple options at a time and radio button can select one button at a time, and its display.

	Submit button control
	HTML <fieldset> element:
	HTML Form Example
	HTML Form Example

	HTML style using CSS
	Three ways to apply CSS
	Inline CSS:
	Example:
	Learning HTML using Inline CSS

	Internal CSS:
	Example:

	Learning HTML with internal CSS
	External CSS:
	Example:

	What is Git?
	What does Git do?
	Working with Git

	HTML JavaScript
	Example:
	Syntax:
	Example:
	Note: You will learn more about JavaScript Events in our JavaScript tutorial.

	Example:
	Example:
	Example:
	Example:
	Use of External javaScript
	Note: Do not add <script> tag in the external file, and provide the complete path where you have put the JS file.
	Syntax:
	Example:

	JavaScript Objects
	Creating Objects in JavaScript
	1) JavaScript Object by object literal
	Output

	102 Shyam Kumar 40000
	2) By creating instance of Object
	101 Ravi Malik 50000
	3) By using an Object constructor
	<html>
	<body>
	<script>
	functionemp(id,name,salary){
	this.id=id;
	this.name=name;
	this.salary=salary;
	}
	e=new emp(103,"Vimal Jaiswal",30000);
	document.write(e.id+" "+e.name+" "+e.salary);
	</script>
	</body>
	</html>
	Out put:
	103 Vimal Jaiswal 30000
	Class Declarations
	Class Declarations Example

	JQuery
	jQuery Example

	jQuery Events
	jQuery click() event
	jQuery focus()
	Example of jQuery focus() event

	jQuery submit()
	Example of jQuery submit() event

	jQuerymouseover()
	Difference between mouseenter() and mouseover()
	Example of jQuery mouseover() event
	jQuerymouseover() event example 2
	jQuery UI Categorization

	JSON Example
	JSON Object Example
	Memory life cycle
	Allocation in JavaScript
	Value initialization
	Allocation via function calls

	Using values
	Release when the memory is not needed anymore

	UNIT-3
	React Introduction
	React create-react-app
	Requirements
	Installation
	Install React
	Create a new React project
	NOTE: We can combine the above two steps in a single command using npx. The npx is a package runner tool which comes with npm 5.2 and above version.

	React Environment Setup

	React Features
	JSX
	Components
	One-way Data Binding
	Virtual DOM
	Simplicity
	Performance

	React JSX
	Example
	Why use JSX?

	React Components
	Functional Components
	Class Components
	Example

	React State
	Defining State
	Example

	Changing the State
	Example

	React Props
	Example
	Default Props
	It is not necessary to always add props in the reactDom.render() element. You can also set default props directly on the component constructor. It can be explained in the below example.
	Example
	State and Props
	Example

	React Forms
	Creating Form
	Uncontrolled component
	Controlled Component

	Handling Multiple Inputs in Controlled Component
	Example

	The Example
	Getting Started
	Building our Single Page App
	Displaying the Initial Frame
	Creating our Content Pages
	Using React Router
	It's the Little Things
	Fixing our Routing
	Adding Some CSS
	Highlighting the Active Link

	The DispatcherServlet
	Required Configuration
	Defining a Controller
	Creating JSP Views
	Spring Web MVC Framework Examples
	Spring MVC
	REST
	The URL and HTTP Methods
	REST in Spring
	A Quick Example: Creating a Simple REST Endpoint
	Employee.java
	EmployeeService.java
	EmployeeController.java

	Conclusion
	Lifecycle Management
	Phases
	Goals & Plugins

	Databases & Deployment: Relational schemas and normalization Structured Query Language (SQL) Data persistence using Spring JDBC Agile development principles and deploying application in Cloud
	Structured Query Language (SQL)
	What is Data Normalization and Why Is It Important?
	DDL
	DML
	TCL Commands

	2. Spring JDBC - Select Query
	3. Spring JDBC - Update Query
	4. Spring JDBC - Delete Query
	Different Types of Cloud Computing Deployment Models
	Public Cloud
	Private Cloud
	Community Cloud
	Hybrid Cloud

