DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

DIGITALNOTES
ON

SCRIPTING LANGUAGES
R22A0518

B.TECH Ill YEAR -1l SEM
(R22) REGULATION

(2024-25)

Prepared by
D SAI ESWARI
Asst.Professor

MALLAREDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution-UGC, Govt.of India)

Recognized under2(f)and12(B) of UGC ACT1956

(Affiliated to INTUH,Hyderabad,ApprovedbyAICTE-AccreditedoyNBA&NAAC—°A’Grade-
1SO9001:2015Certified)
Maisammaguda, Dhulapally(PostVia.Hakimpet),Secunderabad-500100, TelanganaState, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Vision

To acknowledge quality education and instill high patterns of discipline making the

students technologically superior and ethically strong which involves the

improvement in the quality of life in human race.

Mission
®To achieve and impart holistic technical education using the best of infrastructure,
outstanding technical and teaching expertise to establish the students into competent
and confident engineers.
® Evolving the center of excellence through creative and innovative teaching learning
practicesforpromotingacademicachievementtoproduceinternationallyacceptedcompetiti

veand world class professionals.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1-ANALYTICALSKILLS

® To facilitate the graduates with the ability to visualize, gather information, articulate, analyze,
solve complex problems, and make decisions. These are essential to address the challenges of
complex and computation intensive problems increasing their productivity.
PEO2-TECHNICALSKILLS
® Tofacilitatethegraduateswiththetechnicalskillsthatpreparethemforimmediateemploymentandpurs
ue certification providing a deeper understanding of the technology in advanced areas of
computer science and related fields, thus encouraging pursuing higher education and research
based on their interest.
PEO3-SOFTSKILLS

® To facilitate the graduates with the soft skills that include fulfilling the mission, setting goals,
showing self confidence by communicating effectively, having a positive attitude, get
involved in team-work, being a leader, managing their career and their life.
PEO4-PROFESSIONALETHICS
® To facilitate the graduates with the knowledge of professional and ethical responsibilities by
paying attention to grooming, being conservative with style, following dress codes, safety

codes, and adapting them to technological advancements.

PROGRAM SPECIFIC OUTCOMES (PSOs)

After the completion of the course, B.Tech Computer Science and Engineering, the graduates
will have the following Program Specific Outcomes:

1.FundamentalsandcriticalknowledgeoftheComputerSystem: -
AbletoUnderstandtheworkingprinciples of the computer System and its components, Apply
the knowledge to build, asses, and analyze the software and hardware aspects of it.

2.The comprehensive and Applicative knowledge of Software Development. Comprehensive
skills of Programming Languages, Software process models, methodologies, and able to plan,
develop, test, analyze, and manage the software and hardware intensive systems in
heterogeneous platforms individually or working in teams.

3.Applications of Computing Domain & Research: Able to use the professional, managerial,
interdisciplinary skill set, and domain specific tools in development processes, identify their
search gaps, and provide innovative solutions to them.

PROGRAM OUTCOMES (POs)

Engineering Graduates should possess the following:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals,andanengineeringspecializationtothesolutionofcomplexengineeringproblems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions wusing first principles of
mathematics, natural sciences, and engineering sciences.

3. Design / development of solutions: Design solutions for complex
engineeringproblemsanddesignsystemcomponentsorprocessesthatmeetthespecifiedneedswit
happropriateconsideration for thepublic health and safety, and the
cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of
the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
the professional engineering practice.

7.Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as member or leader in
diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and
receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage
in independent and life-long learning in the broadest context of technological change.

SYLLABUS

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

I11 Year B.Tech CSE-Il SEM L/T/P/C
3/-1-13
(R22A0518) SCRIPTING LANGUAGES

COURSE OBJECTIVES:

This course will enable students to

1. To study the basics of scripting languages like Java script, Perl, PHP and Ruby
2. To understand the requirements of Scripting Languages

3. Toidentify the uses of Scripting Languages

4. To introduce in-depth knowledge of programming features of Perl and PHP.

5. To state the implementation and applications of Scripting.

UNIT-1I

Introduction to Scripts and Scripting Languages — Scripts and Programs, Uses for Scripting Languages,
Web Scripting.

JavaScript: Variables, DataTypes, Operators, Conditional statements, Loops, Arrays, Functions,

Objects- Predefined objects, Accessing objects, Object Methods.

UNIT- 11

JavaScript programming of reactive web pages elements:

JavaScript Events- Mouse events, Keyboard events, Form events, window events, Event handlers, Frames,
Form object, JavaScript Form Validation.

UNIT- I

PERL : Data Types, Variables, Scalars, Operators, Conditional statements , Loops, Arrays ,
Strings , Hashes ,
Lists , Built-in Functions, Pattern matching and regular expression operators.

UNIT -1V

PHP : Data Types, Variables, Operators, Conditional statements, Loops ,Arrays - Indexed
Array, Associative

Array, String Functions, Functions- Parameterized Function, Call By Value, all By Reference ,
File Handling,

PHP Form handling.

UNIT-V

Ruby : Data types, Variables, Operators, Conditional statements, Loops, Methods, Blocks, Modules,
Arrays, Strings, Hashes, File 1/0, Ruby Form handling.

TEXT BOOKS:
1. The World of Scripting Languages, David Barron, Wiley Publications.

2.

Learning PHP, MySQL, JavaScript, CSS & HTML5: A Step-by-Step Guide to Creating
DynamicWebsites 3rdEdition,O’ReillyPublications

REFERENCE BOOKS:

~oop=

The Ruby Programming Language, David Flanagan and Yukihiro Matsumoto, O’Reilly Publications.
Beginning JavaScript with Dom scripting and AJAX, Russ Ferguson, Christian Heilmann, Apress.
Programming Perl, Larry Wall, T. Christiansen and J. Orwant, O’Reilly, SPD.

Open Source Web Development with LAMP using Linux Apache, MySQL, Perl and PHP,

J. Lee and B. Ware (Addison Wesley) Pearson Education.

COURSE OUTCOMES:
The students will be able:

1.

o~ wb

Comprehend the differences between typical scripting languages and typical system and
application programming languages.

To implement the design of programs for simple applications.

To write and apply Perl & PHP scripts.

Gain knowledge of the strengths and weakness of Perl, and Ruby.

To create software systems using scripting languages such as Perl, PHP, and Ruby.

INDEX

UNIT TOPIC ElgGE

Scripts and Programs 5

Web Scripting 7
JavaScript — Variables & DataTypes 8
Operators 9

| Control structures 12
Arrays 16
Functions 17
Objects 18
JavaScript Events 21

Event handlers 25
Frames 26

. Form object 27
JavaScript Form Validation 36

PERL 38

Data Types 38
Variables, Scalars 39
Operators 42

4l Conditional statements 46
Loops 49
Arrays 52
Hashes 54

Strings 57

Lists 59
Built-in Functions 59

Pattern matching and regular expression operators

60

PHP - Variables

63

Data Types 63
Operators 64
Conditional statements 67
Loops 69
IV [Arrays 69
String Functions 70
Functions 71
File Handling 73
PHP Form handling 74
Ruby -Data types 76
Variables 77
Operators 77
Conditional statements 80
Loops 81
Vv Methods, Blocks, Modules 82
Arrays 85
Strings 86
Hashes 86
File I/0 87
Ruby Form handling 90

SCRIPTING LANGUAGES AY: 2024-2025

UNIT-I:

Introduction to Scripts and Scripting Languages: Scripts and Programs, Uses for Scripting
Languages, Web Scripting.

JavaScript: Variables, Data Types, Operators, Conditional statements, Loops, Arrays, Functions,
Objects- Predefined objects, Accessing objects, Object Methods.

Scripting Languages

Scripting languages, as the name suggests, is a programming language that supports
scripts. A scripting language binds a set of software components that collaborate to
solve a particular problem. Scripting assumes the existence of powerful components
and provides the means to connect them together. Scripting languages are glue
languages that integrate the execution of system utilities including compilers;
command line interpretation; shell-based programming; and execution of codes
written in web-based languages. The purpose of a scripting language is the
development of applications by plugging existing components together and they
generally favor high-level programming over execution speed. Scripting is used in a
variety of applications, and scripting languages are correspondingly diverse. Python is
a powerful scripting language for complex system involving operating system,
networks, and web-based programming.

Programming Languages

A programming language is an organized way of communicating with a computer,
such that the computer behaves according to the instructions given by the
programmer. A programming language is an artificial formalism in which algorithms
can be expressed. In the modern era, the problems to be solved by computers lie in
different problem domains such as scientific computing, database programming,
business applications, process automation, and web-based applications. All these
domains are quite different with varied requirements. A programming language is a
specific set of instructions given to a computer in a language that the computer
understands to perform specific tasks. Today’s programming languages are the
product of development that started in the 1950s. The term programming languages
usually refer to high-level languages such as C++, Java, Ada, Pascal, and FORTRAN.

Uses for scripting languages
The functions and applications of scripting languages vary based on the type of

scripting language you're using. There are many uses for scripting languages,
including:

e Task automation: Programmers often use scripting languages to automate task
execution within a runtime environment. This involves writing code that allows
individuals to use software to complete repetitive, predictable and
straightforward tasks, such as paying bills from an account and sending
notifications via email.

e Content display for web applications: Programmers use scripting to ensure
programs run correctly on the server and display the functional and interactive

Dept of CSE

http://www.differencebetween.net/language/difference-between-solve-and-resolve/
http://www.differencebetween.net/technology/difference-between-a-server-and-database/

SCRIPTING LANGUAGES AY: 2024-2025

content on a webpage, such as images and links.

e Command sequences: Many programmers apply scripting languages to
condense command sequences, allowing the program to run faster and
improving the functionality of parent applications.

e Data extraction: Programmers use scripting languages to pull data from data
sets, such as in data analysis, research and statistics.

e Dynamic web apps: Programmers use a variety of scripting languages to power
webpages and applications on the server side with efficient code and clear
instructions for displaying dynamic content, which is data that changes based
on the user's behavior or preferences.

e System administration: When administrators want to generate and pull data,
guide user queries and improve systems, they use scripting languages.

e Game modding: Game modification creators use scripting languages to make
custom content for games with unique functionality and designs that improve
regular gameplay.

Web Scripting

e The process of creating and embedding scripts in a web page is known as web-
scripting. A script or a computer-script is a list of commands that are embedded
in a web-page normally and are interpreted and executed by a certain program
or scripting engine.

e Scripts may be written for a variety of purposes such as for automating
processes on a local-computer or to generate web pages.

e The programming languages in which scripts are written are called scripting
language, there are many scripting languages available today.

e Common scripting languages are VBScript, JavaScript, ASP, PHP, PERL, JSP
etc.

Java Script

JavaScript (JS) is the world’s most popular lightweight, interpreted compiled
programming language. It is also known as a scripting language for web pages. It can
be used for Client-side as well as Server-side developments.JavaScript is the most
popular and hence the most loved language around the globe. Apart from this, there
are abundant reasons to learn it.

Below are a listing of few important points:

e No need of compilers: Since JavaScript is an interpreted language, therefore it
does not need any compiler for compilations.

e Used both Client and Server-side: Earlier JavaScript was used to build client-
side applications only, but with the evolution of its frameworks namely Node.js
and Express.js, it is now widely used for building server-side applications too.

Dept of CSE

https://www.geeksforgeeks.org/vbscript-introduction/
https://www.geeksforgeeks.org/javascript-tutorial/
https://www.geeksforgeeks.org/asp-full-form/
https://www.geeksforgeeks.org/php/
https://www.geeksforgeeks.org/perl-programming-language/
https://www.geeksforgeeks.org/introduction-to-jsp/
https://www.geeksforgeeks.org/server-side-client-side-programming/
https://www.geeksforgeeks.org/server-side-client-side-programming/

SCRIPTING LANGUAGES AY: 2024-2025

e Helps to build a complete solution: As we saw, JavaScript is widely used in
both client and server-side applications, therefore it helps us to build an end-to-
end solution to a given problem.

e Used everywhere: JavaScript is so loved because it can be used anywhere. It
can be used to develop websites, games or mobile apps, etc.

e Huge community support: JavaScript has a huge community of users and
mentors who love this language and take it’s legacy forward.

Variables
Variables are containers for storing data (storing data values).
Declare a JavaScript Variable:
o Using var
o Using let
« Using const
declared with the var keyword:
var x=5;
var y=6;
var z=x+y;
o/p: The value of z is: 11
In this example, X, y, and z, are variables, declared with the let keyword:
let x=5;
let y=6;
let z=x+y;
o/p: The value of z is: 11
If you want a general rule: always declare variables with const.
If you think the value of the variable can change, use let.
const p1=5;
const p2=6;
Let tot=p1=p2;
o/p: The total is: 11

Datatypes

e Numbers: Represent both integer and floating-point numbers. Example: 5, 6.5,
7 etc.

e String: A string is a sequence of characters. In JavaScript, strings can be
enclosed within the single or double quotes. Example: “Hello GeeksforGeeks”
etc.

e Boolean: Represent a logical entity and can have two values: true or false.

e Null: This type has only one value: null. It is left intentionally so that it shows
something that does not exist.

e Undefined: A variable that has not been assigned a value is undefined.

Dept of CSE

https://www.geeksforgeeks.org/javascript-numbers/
https://www.geeksforgeeks.org/javascript-strings/
https://www.geeksforgeeks.org/javascript-boolean/
https://www.geeksforgeeks.org/null-in-javascript/
https://www.geeksforgeeks.org/javascript-undefined-property/

SCRIPTING LANGUAGES AY: 2024-2025

e Symbol: Unlike other primitive data types, it does not have any literal form. It
is a built-in object whose constructor returns a symbol-that is unique.

¢ Dbigint: The bigint type represents the whole numbers that are larger than 293.1,
To form a bigint literal number, you append the letter n at the end of the
number.

e Object: It is the most important data-type and forms the building blocks for
modern JavaScript. We will learn about these data types in detail in further
articles.

Operators
JavaScript operators are symbols that are used to perform operations on operands. For

example:
1. var sum=10+20;
Here, + is the arithmetic operator and = is the assignment operator.
There are following types of operators in JavaScript.
1. Arithmetic Operators
Comparison (Relational) Operators
Bitwise Operators
Logical Operators
Assignment Operators
6. Special Operators

Arithmetic Operators
Arithmetic operators are used to perform arithmetic operations on the operands. The

following operators are known as JavaScript arithmetic operators.

o bk own

Dept of CSE

https://www.geeksforgeeks.org/bigint-in-javascript/
https://www.geeksforgeeks.org/objects-in-javascript/

SCRIPTING LANGUAGES AY: 2024-2025

Comparison operators

Operator Description Example Result
== Equal to 1 == true
=== Equal in value and type l === '1"' false
!= Not equal to 1 d=2 true
l== Not equal in value and type 1l l== '1" true
> Greater than 1l = 2 false
< Less than 1 € 2 true
>= Greater than or equal to 1 == 1 true
<= Less than or equal to 2 &= false

Bitwise operators

Name Operator Syntax Example
Bitwise AND & output = vari&var2; Output = 2&3;;
Bitwise OR | Output = var1|var2; Output =3]|2;
Bitwise XOR A Output = varlAvar2; Output = 3A2;
Bitwise NOT ~ Output = ~var2; Output =~5;
Left Shift << Output = varl<<var2; Output = 5<<1;
Right Shift >> Output = varl>>var2; Output = 4>>1;

Dept of CSE

SCRIPTING LANGUAGES AY: 2024-2025

Logical Operators

Operator Meaning Example Result
&& Logical and (5<2)&&(5>3) False

I Logical or (5<2)II(5>3) True

! ~ Logical not 1(5<2) True

Assignment Operators

Operator Example Same As Result
= X=y x=5
4= x+=y X=x+y X= l 5
-= X-=y X=X~y x=5
— x=y x=x*y x=50
/= x/=y x=x/y X=

Yo= x%=y x=x%y X=

Special Operators

NAME ! OPERATOR ! DESCRIPTION

Property access . Appends an object, method, or property to another object

Array index L] Accesses an element of an array

Function call O Calls up functions or changes the order in which individual
operations in an expression are evaluated

Comma ’ Allows you to include multiple expressions in the same statement

Conditional expression Za Executes one of two expressions based on the results of a
conditional expression

Delete delete Deletes array elements, variables created without the vax
keyword, and properties of custom objects

Property exists in Returns a value of txue if a specified property is contained
within an object

Object type instanceo= Returns true if an object is of a specified object type

New object new Creates a new instance of a user-defined object type or a
predefined JavaScript object type

Data type typeof Determines the data type of a variable

Void wvoid Evaluates an expression without returning a result

Dept of CSE 6

SCRIPTING LANGUAGES AY: 2024-2025

Conditional Statements
There are three forms of if statement in JavaScript.

1. If Statement
2. If else statement
3. if else if statement

If statement
It evaluates the content only if expression is true. The signature of JavaScript if

statement is given below.
if(expression)
{
/[content to be evaluated
}
<script>
var a=20;
if(a>10){
document.write(*'value of a is greater than 10");
}
</script>

Output of the above example
value of a is greater than 10

If...else Statement
It evaluates the content whether condition is true of false. The syntax of JavaScript if-

else statement is given below.

if(expression)
{

/Icontent to be evaluated if condition is true

¥

else

{

/[content to be evaluated if condition is false
}
<script>
var a=20;
if(a%2==0)
{

Dept of CSE 7

SCRIPTING LANGUAGES

document.write(™a is even number");

}
else
{
document.write("a is odd number");
}
</script>

Output of the above example
a is even number

If...else if statement
It evaluates the content only if expression is true from several expressions.

The signature of JavaScript if else if statement is given below.
if(expressionl)

{

/[content to be evaluated if expressionl is true

¥

else if(expression2)

{

/[content to be evaluated if expression?2 is true

¥

else if(expression3)

{

/[content to be evaluated if expression3 is true

¥

else

{

/lcontent to be evaluated if no expression is true
¥

Let’s see the simple example of if else if statement in javascript.
<script>

var a=20;

if(a==10)

{

document.write(™a is equal to 10");

¥

else if(a==15){ document.write("a is equal to 15");
¥

Dept of CSE

AY: 2024-2025

SCRIPTING LANGUAGES AY: 2024-2025

else if(a==20){

document.write(™a is equal to 20");

¥

else{

document.write(™a is not equal to 10, 15 or 20");
¥

</script>

Output :
a is equal to 20

Loops
Ioogs are used to iterate the piece of code using for, while, do while or for-in loops. It
makes the code compact. It is mostly used in array.
There are four types of loops in JavaScript.
1. for loop
2. while loop
3. do-while loop

For loop
The for loop iterates the elements for the fixed number of times. It should be used if

number of iteration is known. The syntax of for loop is given below.
for (initialization; condition; increment)
{
code to be executed
}
<script>
for (i=1; i<=5; i++)
{

document.write(i + "
")

¥

</script>

Output:
1

g B~ 0PN

Dept of CSE 9

SCRIPTING LANGUAGES AY: 2024-2025

while loop
The while loop iterates the elements for the infinite number of times. It should be

used if number of iteration is not known. The syntax of while loop is given below.
while (condition)

{
code to be executed
¥
Let’s see the simple example of while loop in javascript.
<script>
var i=11;
while (i<=15)
{
document.write(i + "
");
i++;
¥
</script>
Output:
11
12
13
14
15
do while loop

The do while loop iterates the elements for the infinite number of times like while
loop. But, code is executed at least once whether condition is true or false. The syntax
of do while loop is given below.

do{

code to be executed

}while (condition);

<script>

var i=21;

do{

document.write(i + "
");

i++;

while (i<=25);

</script>
Output:

Dept of CSE

10

SCRIPTING LANGUAGES AY: 2024-2025

21
22
23
24
25

Arrays

array is an object that represents a collection of similar type of elements.
The syntax of creating array

var arrayname=new Array();
Here, new keyword is used to create instance of array.
Let's see the example of creating array directly.
<script>
var i;
var emp = new Array();
emp[0] = "Arun*;
emp[1] ="Varun";
emp[2] = "John";
for (i=0;i<emp.length;i++){
document.write(emp[i] + "
");
¥
</script>
Output of the above example

Arun
Varun
John

Dept of CSE 11

SCRIPTING LANGUAGES AY: 2024-2025

Functions
functions are used to perform operations. We can call JavaScript function many times

to reuse the code.

Advantage of JavaScript function
There are mainly two advantages of JavaScript functions.

1. Code reusability: We can call a function several times so it save coding.
2. Less coding: It makes our program compact. We don’t need to write many
lines of code each time to perform a common task.

Function Syntax
The syntax of declaring function is given below.

1. function functionName([argl, arg2, ...argN]){

2. llcode to be executed

3.}

Let’s see the simple example of function in JavaScript that does not has arguments.

<script>
function msg(){
alert("hello! this is message");
}
</script>

<input type="button" onclick="msg()" value="call function"/>

[call function -

b

Function Arguments
We can call function by passing arguments. Let’s see the example of function that has

one argument.
<script>
function getcube(number){
alert(number*number*number);
b
</script>
<form>
<input type="button" value="click" onclick="getcube(4)"/>
</form>

-

Dept of CSE 12

SCRIPTING LANGUAGES AY: 2024-2025

Function with Return Value
We can call function that returns a value and use it in our program. Let’s see the

example of function that returns value.
<script>
function getinfo(){
return "hello javatpoint! How r u?";
}
</script>
<script>
document.write(getinfo());
</script>

o/p:hello javatpoint! How r u?
JavaScript Objects
A javaScript object is an entity having state and behavior (properties and method). For

example: car, pen, bike, chair, glass, keyboard, monitor etc.

JavaScript is an object-based language. Everything is an object in JavaScript.
JavaScript is template based not class based. Here, we don't create class to get the
object. But, we direct create objects.

Creating Objects
By creating instance of Object
The syntax of creating object directly is given below:

1. var objectname=new Object();
Here, new keyword is used to create object.
Let’s see the example of creating object directly.
1. <script>
var emp=new Object();
emp.id=101;
emp.name="Ravi Malik";
emp.salary=50000;
document.write(emp.id+" "+emp.name+
</script>
0/p:101 Ravi 50000
Accessing objects
A common way to access the property of an object is the dot property accessor syntax:
expression.identifier
expression should evaluate to an object, and identifier is the name of the property
you'd like to access.

+emp.salary);

N o bk w

Dept of CSE 13

SCRIPTING LANGUAGES AY: 2024-2025

Predefined objects
Fundamental objects:
e Object
e Function
e Boolean
e Symbol
Error objects
Error objects are a special type of fundamental object. They include the basic
Error type, as well as several specialized error types.
e Error
o AggregateError
e EvalError
e RangeError
o ReferenceError
Number and date objects
These are the base objects representing numbers, dates, and mathematical
calculations.
e Number
e Biglint
e Math
e Date

Text processing objects
These objects represent strings and support manipulating them.
e String
e RegExp
Keyed collections
These objects represent collections which use keys. The iterable collections
(Map and Set) contain elements which are easily iterated in the order of
insertion.
e Map
o Set
o WeakMap
o \WeakSet

Dept of CSE 14

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/AggregateError
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/EvalError
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RangeError
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ReferenceError
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakSet

SCRIPTING LANGUAGES AY: 2024-2025

Object methods

S.No Methods Description

1 Object.assign() This method is used to copy enumerable and own
properties from a source object to a target object

2 Object.create() This method is used to create a new object with
the specified prototype object and properties.

3 Object.defineProperty() This method is used to describe some behavioral
attributes of the property.

4 Object.defineProperties() This method is used to create or configure multiple
object properties.

5 Object.entries|) This method returns an array with arrays of the
key, value pairs.

6 Object.freeze() This method prevents existing properties from
being removed.

7 Object.getOwnPropertyDescriptor() = This method returns a property descriptor for the
specified property of the specified object.

8 Object.getOwnPropertyDescriptors() This method returns all own property descriptors

of a given object.

Dept of CSE 15

SCRIPTING LANGUAGES AY: 2024-2025

UNIT- 11

JavaScript programming of reactive web pages elements: JavaScript Events- Mouse events, Keyboard
events, Form events, window events, Event handlers, Frames, Form object, JavaScript Form
Validation.

Events:
HTML events are "'things" that happen to HTML elements.
When JavaScript is used in HTML pages, JavaScript can "'react' on these events.
HTML Events
An HTML event can be something the browser does, or something a user does.
Here are some examples of HTML events:
« An HTML web page has finished loading
« An HTML input field was changed
o An HTML button was clicked
Often, when events happen, you may want to do something.
JavaScript lets you execute code when events are detected.
HTML allows event handler attributes, with JavaScript code, to be added to HTML
elements.
With single quotes:
<element event="some JavaScript'>
With double quotes:
<element event=""some JavaScript''>
In the following example, anonclick attribute (with code), is added to
a <button> element:
<button onclick="document.getElementByld(‘demo’).innerHTML = Date()">The time
is?</button>
| The time is? |

Thu Dec 22 2022 10:47:18 GMT=+0330 (India Standard Time)

Mouse events:
Events that occur when the mouse interacts with the HTML document belongs to the

MouseEvent Object.

Dept of CSE 16

SCRIPTING LANGUAGES AY: 2024-2025

MouseEvent Properties and Methods

Property/Method Description

altkey Returns whether the "ALT" key was pressed when the mouse event was triggered

button Returns which mouse button was pressed when the mouse event was triggered

buttons Returns which mouse buttons were pressed when the mouse event was triggered

clientX Returns the horizontal coordinate of the mouse pointer, relative to the current window, when the mouse

event was triggered

clientY Returns the vertical coordinate of the mouse pointer, relative to the current window, when the mouse event
was triggered
ctrikey Returns whether the "CTRL" key was pressed when the mouse event was triggered

getModifierState() Returns true if the specified key is activated

metaKey Returns whether the "META" key was pressed when an event was triggered
movementX Returns the horizontal coordinate of the mouse pointer relative to the position of the last mousemove event
movementY Returns the vertical coordinate of the mouse pointer relative to the position of the last mousemove event

Dept of CSE 17

SCRIPTING LANGUAGES AY: 2024-2025

Event Types

These event types belongs to the MouseEvent Object:

Event Description

onclick The event occurs when the user clicks on an element

oncontextmenu The event occurs when the user right-clicks on an element to open a context menu
ondbiclick The event occurs when the user double-clicks on an element

onmousedown The event occurs when the user presses a mouse button over an element
onmouseenter The event occurs when the pointer is moved onto an element

onmouseleave The event occurs when the pointer is moved out of an element

onmousemove The event occurs when the pointer is moving while it is over an element

onmouseout The event occurs when a user moves the mouse pointer out of an element, or out
of one of its children

onmouseover The event occurs when the pointer is moved onto an element, or onto one of its
children

onmouseup The event occurs when a user releases a mouse button over an element

Keyboard events

Events that occur when user presses a key on the keyboard, belongs to the
KeyboardEvent Object.

KeyboardEvent Properties and Methods

Property/Method Description

altkey Returns whether the "ALT" key was pressed when the key event was triggered
charCode Returns the Unicode character code of the key that triggered the event

code Returns the code of the key that triggered the event

ctrikey Returns whether the "CTRL" key was pressed when the key event was triggered

getModifierState()

Returns true if the specified key is activated

isComposing Returns whether the state of the event is composing or not

key Returns the key value of the key represented by the event

keyCode Deprecated. Avoid using it.

location Returns the location of a key on the keyboard or device

metaKey Returns whether the "meta” key was pressed when the key event was triggered
repeat Returns whether a key is being hold down repeatedly, or not

shiftkey Returns whether the "SHIFT" key was pressed when the key event was triggered

Dept of CSE

18

SCRIPTING LANGUAGES AY: 2024-2025

Event Types

These event types belongs to the KeyboardEvent Object:

Event Description

onkeydown The event occurs when the user is pressing a key
onkeypress The event occurs when the user presses a key
onkeyup The event occurs when the user releases a key

Form events:

Event Event Description

Performed Handler

focus onfocus When the user focuses on an element

submit onsubmit When the user submits the form

blur onblur When the focus is away from a form element

change onchange When the user modifies or changes the value of a form
element

Window/Document evenis

Event Event Description

Performed Handler

load onload When the browser finishes the loading of the page

unload onunload When the visitor leaves the current webpage, the browser
unloads it

resize onresize When the visitor resizes the window of the browser

Dept of CSE 19

SCRIPTING LANGUAGES AY: 2024-2025

Event handlers
To allow you to run your bits of code when these events occur, JavaScript provides us

with event handlers. All the event handlers in JavaScript start with the word on, and
each event handler deals with a certain type of event. Here’s a list of all the event
handlers in JavaScript, along with the objects they apply to and the events that trigger

them:
Event handler Applies to: Triggered when:
The loading of the image
onAbort Image
is cancelled.
Button, Checkbox, FileUpload, The objectin question
Layer, Password, Radio, loses focus (e.g. by
onBlur
Reset, Select, Submit, Text, clicking outside itor
TextArea, Window pressing the TAB key).
The data in the form
FileUpload, Select, Text,
onChange element is changed by

TextArea
the user.

. Button, Document, Checkbox,
onClick The object is clicked on.
Link, Radio, Reset, Submit

. The object is double-
onDb1Click Document, Link
clicked on.

: An icon is dragged and
onDragDrop Window
dropped into the browser.

onError Image, Window A JavaScript error occurs.

Button, Checkbox, FileUpload, The object in question

Layer, Password, Radio, gains focus (e.g. by
onFocus
Reset, Select, Submit, Text, clickingon itor pressing
TextArea, Window the TAB key).
Document, Image, Link,
onKeyDown The user presses a key.

TextArea

Dept of CSE 20

SCRIPTING LANGUAGES AY: 2024-2025

Frames

e Frame object represents an HTML frame which defines one particular
window(frame) within a frameset.

e |t defines the set of frame that make up the browser window.

e |tisapropertyofthewindowobject.
Syntax:<frame>

e It has no end tag but they need to be closed properly.

e Itisan HTML element.

e [t defines a particular area in which another HTML document can be displayed.

e A frame should be used within a <FRAMESET> tag.

<FRAME:= Tag Attributes
Attribute Description
SIC It is used to give the file name that should be located in the frame. Its value can be any URL.

For example: src="/html/abc.html”

name It allows you to give a name to a frame. This aftribute is used to indicate that a document should be
loaded into a frame.

frameborder | It specifies whether or not the borders of that frame are shown. This attribute overrides the value given
in the frameborder attribute on the tag if one is given. This can take values either 1 (Yes) or 0 (No).

marginwidth | It allows you to specify the width of the space between the left and right of the frame's border and the
content. The value is given in pixels.
For example: marginwidth =*10".

marginheight | It allows you to specify the height of the space between the top and bottom of the frame's borders and
its contents. The value is given in pixels.
For example: marginheight ="10".

Dept of CSE 21

SCRIPTING LANGUAGES AY: 2024-2025

Form Object
form object is a Browser object of JavaScript used to access an HTML form. If a user

wants to access all forms within a document then he can use the forms array. The form
object is actually a property of document object that is uniquely created by the
browser for each form present in a document. The properties and methods associated
with form object are used to access the form fields, attributes and controls associated
with forms.
Properties of Form Object:

e action

e elements[]

e encoding

e length

e method

e name

e target

e Dutton

e checkbox

e FileUpload

e hidden

e password

action:
action property of form object is used to access the action attribute present in HTML

associated with the <form> tag. This property is a read or write property and its value
IS a string.

elements[]:

elements property of form object is an array used to access any element of the form. It
contains all fields and controls present in the form. The user can access any element
associated with the form by using the looping concept on the elements array.
encoding:

The encoding property of a form object is used to access the enctype attribute present
in HTML associated with the <form> tag. This property is a read or write property
and its value is a string. This property helps determine the way of encoding the form
data.

length:
length property of form object is used to specify the number of elements in the form.

This denotes the length of the elements array associated with the form.

method:
method property of form object is used to access the method attribute present in

HTML associated with the <form> tag. This property is a read or write property and

Dept of CSE

SCRIPTING LANGUAGES AY: 2024-2025

its value is a string. This property helps determine the method by which the form is
submitted.

name:

name property of form object denotes the form name.

target:

target property of form object is used to access the target attribute present in HTML
associated with the <form> tag. This property denotes the name of the target window
to which form it is to be submitted into.

button:

The button property of form object denotes the button GUI control placed in the form.
checkbox:

checkbox property of form object denotes the checkbox field placed in the form.
FileUpload:

FileUpload property of form object denotes the file upload field placed in the form..
hidden:

The hidden property of form object denotes the hidden field placed in the form.
password:

password property of form object denotes the object that is placed as a password field
in the form.

Form Object

« Form object represents an HTML form.

« Itis used to collect user input through elements like text fields, check box and radio
button, select option, text area, submit buttons and etc.

Form Object Properties

Property Description

Action It sets and returns the value of the action attribute in a form.

enctype It sets and returns the value of the enctype attribute in a form.

Length It returns the number of elements in a form.

Method It sets and returns the value of the method attribute in a form that is GET or POST.

Name It sets and returns the value of the name attribute in a form.

Target It sets and returns the value of the target attribute in a form.

Dept of CSE 23

SCRIPTING LANGUAGES AY: 2024-2025

Form Object Methods
Method Description
reset() It resets a form.
submit() It submits a form.
Hidden Object
« Hidden object represents a hidden input field in an HTML form and it is invisible to
the user.
« This object can be placed anywhere on the web page.
« Itisused to send hidden form of data to a server.
Hidden Object Properties
Property Description
Name It sets and returns the value of the name attribute of the hidden input field.
Type It returns type of a form element.
Value It sets or returns the value of the value attribute of the hidden input field.
Password Object

« Password object represents a single-line password field in an HTML form.

« The content of a password field will be masked — appears as spots or asterisks in the
browser using password object.

Dept of CSE 24

SCRIPTING LANGUAGES AY: 2024-2025

Password Object Properties

Property Description
defaultValue |1t sets or returns the default value of a password field.
maxLength It sets or returns the maximum number of characters allowed in a password filed.
Name It sets or returns the value of the name attribute of a password field.
readOnly It sets or returns whether a password fields is read only or not.
Size It sets or returns the width of a password field.
Value It sets or returns the value of the attribute of the password field.

Password Object Methods

Method Description
select() It selects the content of & password field.
Checkbox Object

o Check box object represents a checkbox in an HTML form.
« Itallows the user to select one or more options from the available choices.

Checkbox Object Properties

Dept of CSE 25

SCRIPTING LANGUAGES AY: 2024-2025

Property Description
Name It sets or returns the name of the checkbox.
Type 1t returns the value "check’.
Value It sets or refurns the value of the attribute of a checkbox,
checked It sets or refurns the checked state of a checkbox,
defaultChecked It returns the default value of the checked attribute.

Checkbox Object Methods

Method Description

click() It sets the checked property.

Select Object
« Select object represents a dropdown list in an HTML form.
« Itallows the user to select one or more options from the available choices.

Select Object Collections

Collection Description

options It returns a collection of all the options in a dropdown list,

Dept of CSE 26

SCRIPTING LANGUAGES AY: 2024-2025

Select Object Properties

Select Object Properties
Property Description
Length It returns the number of options in a dropdown list.
selectedIndex It sets or returns the index of the selected option in a dropdown list.
Type It returns a type of form element.
name It returns the name of the selection list.

Select Object Methods

Select Object Methods

Method Description

add() It adds an option to a dropdown list.

remove() It removes an option from a dropdown list.

Option Object
« Option object represents an HTML <option> element.
o Itisused to add items to a select element.

Dept of CSE 27

SCRIPTING LANGUAGES AY: 2024-2025

Option Object Properties
Property Description
Index It sets or returns the index position of an option in a dropdown list.
Text It sefs or returns the text of an option element.
defaultSelected It determines whether the option is selected by default.
Value It sets or returns the value to the server if the option was selected.
Prototype It is used to create additional properties.
Option Object Methods
Methods Description
blur() It removes the focus from the option.
focus() It gives the focus to the option.
<htmlI>
<head>

<script type="text/javascript">
function optionfruit(select)
{
var a = select.selectedIndex;
var fav = select.options[a].value;
if(a==0)

alert("Please select a fruit");

}

else

{

¥
¥

</script>
</head>
<body>
<form>
List of Fruits:

document.write(*"Your Favorite Fruit is "+fav+".");

Dept of CSE

SCRIPTING LANGUAGES AY: 2024-2025

<select name="fruit">
<option value="0">Select a Fruit</option>
<option value="Mango">Mango</option>
<option value="Apple">Apple</option>
<option value="Banana">Banana</option>
<option value="Strawberry">Strawberry</option>
<option value="0Orange">0Orange</option>
</select>
<input type="button" value="Select" onClick="optionfruit(this.form.fruit);">
</form>
</body>
</html>

Output:

List of Fruits: | Select a Fruit v | | Select |
 Select a Fruit

Apple
Banana
Strawberry
 Orange

Your Favorite Fruit is Mango.

Radio Object

Radio object represents a radio button in an HTML form.

Dept of CSE 29

SCRIPTING LANGUAGES

Radio Object Properties

AY: 2024-2025

Property Description
Checked It sets or returns the checked state of a radio button.
defaultChecked Returns the default value of the checked attribute.
Name It sets or returns the value of the name attribute of a radio button.
Type It returns the type of element which is radio button.
Value It sets or returns the value of the radio button.

Radio Object Methods
Method Description
blur() It takes the focus away from the radio button.
click() It acts as if the user clicked the button.
focus() It gives the focus to the radio button,
Text Object

Text object represents a single-line text input field in an HTML form.

Text Object Properties
Property Description
Value It sets or returns the value of the text field.
defaultValue |It sefs or returns the default value of a text field.
Name 1t sets or returns the value of the name attribute of a text field.
maxLength It sets or returns the maximum number of characters allowed in a text field.
readOnly It sets or returns whether a text field is read-only or not.
Size It sets or returns the width of a text field.
Type It returns type of form element of a text field.

Dept of CSE

30

SCRIPTING LANGUAGES AY: 2024-2025

Textarea Object
Textarea object represents a text-area in an HTML form.

Textarea Object Properties

Property Description
Value It sets or returns the value of the text field.
defaultValue It sets or returns the default value of a text field.
Name It sets or returns the value of the name attribute of a text field.
Type It returns type of form element of a text field.
Rows It displays the number of rows In a text area.
Cols It displays the number of columns in a text area.

JavaScript Form Validation
HTML form validation can be done by JavaScript.

If a form field (fname) is empty, this function alerts a message, and returns false, to
prevent the form from being submitted:

functionvalidateForm(){
letx=document.forms["myForm"][""fname"].value;
if(x==""){
alert("Namemustbefilledout");
returnfalse;

¥
¥

The function can be called when the form is submitted:

HTML Form Example
<formname="myForm"action="/action_page.php"onsubmit=""return

validateForm()'*'method="post">
Name:<inputtype="text"name="fname">
<inputtype="submit"value="Submit">
</form>

Dept of CSE

SCRIPTING LANGUAGES AY: 2024-2025

JavaScript Can Validate Numeric Input
JavaScript is often used to validate numeric input:

Please input a number between 1 and 10

6 | Submit

Input OK

Dept of CSE 32

SCRIPTING LANGUAGES AY: 2024-2025

UNIT- 111
PERL.: Data Types, Variables, Scalars, Operators, Conditional statements ,Loops, Arrays , Strings ,
Hashes , Lists , Built-in Functions, Pattern matching and regular expression operators.

Perl is a general purpose, high level interpreted and dynamic programming language.
Perl supports both the procedural and Object-Oriented programming. Perl is a lot
similar to C syntactically and is easy for the users who have knowledge of C, C++.
Since Perl is a lot similar to other widely used languages syntactically, it is easier to
code and learn in Perl. Programs can be written in Perl in any of the widely used text
editors like Notepad++, gedit, etc.

Data types
There are different data types available in Perl for different purposes. Some of them

have been presented below:
Boolean
Integer
Float
Array
e String
Unlike other languages such as C++ or Java, Perl does not require defining variables
along with a specific data type. The type of a variable is picked based on the value
assigned to it.
Here is a brief overview of the types:

Boolean
Boolean data type is used to store true or false values. The numeric value 0 is used to

represent false, whereas any other numeric value represents true. Let’s look at the
code below:

$false = 0; # reutrns false

$true = 1; # any values greater or less than 0 returns true

Integer
An integer is a positive or negative whole number. Perl allows you to assign integer

constants in decimal, hexadecimal, octal or binary numbering systems. Consider the
following code:

$negative = -3; # negative

$zero = 0; # zero (can also be false, if used as a Boolean

$positive = 123; # positive decimal

$zeroPos = 0123; #0 prefix is used to sepcify octal - octal value = 83 decimal $hex =
OxAB; #0x prefix is used to specify hexadecimal - hexadecimal value = 171 decimal
$bin = 0b1010; # Ob prefix is used to specify binary - binary value = 10 decimal print
$negative," " ,$zero," ", $positive," ", $zeroPos," ", Shex," ", $bin;

Dept of CSE

SCRIPTING LANGUAGES AY: 2024-2025

Output
-301238317110

Float
Floating point numbers, doubles or simply called floats are decimal numbers.

$floatl = 1.23;

$float2 = 10.0000001;
print $floatl," " $float2;
Output

1.23 10.0000001

Array
An array is like a list of values (similar or of different data types). The simplest form

of an array is indexed by an integer, and ordered by the index, with the first element
lying at index 0. We use @ to initiate an array with values enclosed in () pair of
parenthesis. Look at the following code:

@intarray = (1, 2, 3);

An array of integers print "@intarray \n";

@floatarray = (1.123, 2.356, 19.76);

An array of floats print "@floatarray \n";

@chararray = (‘a', 'b','c");

An array of characters print "@chararray \n";

@mixed =(1, 2, 3, 'a, 'b', 'c");

#contains both characters and numbers print "@mixed";

Output
12311232356 19.76abcl23abc

Strin

A stri?]g Is an array of characters. We can declare a string using either single quotes ()
or double quotes (™).

$stringl = "A quick brown fox jumps over the lazy dog";

print $string1;

Output

A quick brown fox jumps over the lazy dog

Variables
A variable in any programming language is a named piece of computer memory to

hold some program data. Variables are an essential part of a computer program.

You can declare a variable in Perl using a $ sign followed by its name, e.g., $myVar.
onsider the following Perl code where we store data in variables and display them on
the screen.

$string = "This is a string.";

stores string

Dept of CSE 34

SCRIPTING LANGUAGES AY: 2024-2025

$int =5;

stores an integer

$float =5.7;

stores a floating point type value
$char ="a;

stores character type value

print $string, "\n";

print "An integer type: ", $int, "\n";
print "A float type: ", $float, "\n";
print "A character type: ", $char, "\n";

Output
This is a string. An integer type: 5 A float type: 5.7 A character type: a

scalars

A scalar is a single unit of data. That data might be an integer number, floating point,
a character, a string, a paragraph, or an entire web page.
Here is a simple example of using scalar variables —
#!/usr/bin/perl

$age = 25; # An integer assignment

$name = "John Paul"; # A string

$salary = 1445.50; # A floating point

print "Age = $age\n";

print "Name = $name\n";

print "Salary = $salary\n";

This will produce the following result —

Age =25

Name = John Paul

Salary = 1445.5

Numeric Scalars

A scalar is most often either a number or a string. Following example demonstrates
the usage of various types of numeric scalars —
#!/usr/bin/perl

$integer = 200;

$negative = -300;

$floating = 200.340;

$bigfloat = -1.2E-23;

377 octal, same as 255 decimal

$octal = 0377;

FF hex, also 255 decimal

Dept of CSE

35

SCRIPTING LANGUAGES AY: 2024-2025

$hexa = Oxff;

print "integer = $integer\n";
print "negative = $negative\n";
print "floating = $floating\n";
print "bigfloat = $bigfloat\n";
print "octal = $octal\n™;

print "hexa = $hexa\n";

This will produce the following result —
integer = 200

negative = -300

floating = 200.34

bigfloat = -1.2e-23

octal = 255

hexa = 255

String Scalars
Following example demonstrates the usage of various types of string scalars. Notice

the difference between single quoted strings and double quoted strings —
#!/usr/bin/perl

$var = "This is string scalar!";

$quote ='I m inside single quote - $var';

$double = "This is inside single quote - $var";

$escape = "This example of escape -\tHello, World!";
print "var = $var\n";

print "quote = $quote\n”;

print "double = $double\n";

print "escape = $escape\n™;

This will produce the following result —

var = This is string scalar!

quote = | m inside single quote - $var

double = This is inside single quote - This is string scalar!
escape = This example of escape - Hello, World

Scalar Operations
You will see a detail of various operators available in Perl in a separate chapter, but

here we are going to list down few numeric and string operations.
#!/usr/bin/perl

$str = "hello" . "world"; # Concatenates strings.

$num =5 + 10; # adds two numbers.

$mul =4 * 5; # multiplies two numbers.

$mix = $str . $num; # concatenates string and number.

print "str = $str\n";

Dept of CSE 36

SCRIPTING LANGUAGES AY: 2024-2025

print "num = $num\n";

print "mul = $mul\n";

print "mix = $mix\n";

This will produce the following result —
str = helloworld

num =15

mul =20

mix = helloworld15

Multiline Strings
If you want to introduce multiline strings into your programs, you can use the standard

single quotes as below —

#!/usr/bin/perl

$string = 'This is

a multiline

string’;

print "$string\n";

This will produce the following result —
This is

a multiline

string

Operators
4 + 5 is equal to 9. Here 4 and 5 are called operands and + is called operator. Perl

language supports many operator types, but following is a list of important and most
frequently used operators —

Numeric operators

String operators

Logical operators

Bitwise operators

Special operators

Comparison operators

Assignment operators

Numeric operators
Numeric operators are the standard arithmetic operators like addition (+), subtraction

(-), multiplication (*), division (/) and modulo (%), etc.

String operators
String operators are positive and negative regular expression with repetition (=~ and

I~) and concatenation (.).

Dept of CSE 37

SCRIPTING LANGUAGES AY: 2024-2025

String Concatenation operator
use 5.010;
use strict;
use warnings;
my $result = "Hello this is " . "JavaTpoint.";
say $result;
output:
Hello this is JavaTpoint.
String Repetition operator
use 5.010;
use strict;
use warnings;
my $result = "Thank You " x 3;
say $result;
output:
Thank You Thank You Thank You.
Here, note that on the right of 'x' it must be an integer.
There should be space on either side of the X' operator.
For example,
$result ="Thank You " x 3; # This is correct
1. $result ="Thank You "x3; # This is incorrect

Logical operators
Logical operators give a Boolean value to their operands. They are (&&, || and or).

&& -> In && operator, if $a is 0, then value of $a && $b must be false irrespective
of the value of $b. So perl does not bother to check $b value. This is called short-
circuit evaluation.
|| -> In || operator, if $a is non-zero, then value of $a && $b must be true irrespective
of the value of $b. So perl does not bother to check $b value.
Example:

use 5.010;

use strict;

use warnings;

$a=0;

$h=12;

my $resultl = $a && $b;

say $resultl;

$a=12;

$b = 14;

Dept of CSE 38

SCRIPTING LANGUAGES AY: 2024-2025

my $result2 = $a || $b;
say $result2;

Output:

0

12

Bitwise operators
Bitwise operators treat their operands numerically at bit level. These are (<<, >>, &, |,

N <<=, >>=, &=, |=, M)
Every number will be denoted in terms of Os and 1s. Initially integers will be
converted into binary bit and result will be evaluated. Final result will be displayed in
the integer form.
Example:
use 5.010;
use strict;
use warnings;
#OR operator
my $resultl = 124.3 | 99;
say $resultl;
#AND operator
my $result2 = 124.3 & 99;
say $result2;
#XOR operator
my $result3 = 124.3 ~ 99;
say $result3;
#Shift operator
my $resultd = 124 >> 3;
say $result4;
Output:
127
96
31
15

Special operators
The auto-increment (++) operator is a special operator that increments the numeric

character itself by 1.
Example:
use 5.010;
use strict;
use warnings;

Dept of CSE

39

SCRIPTING LANGUAGES AY: 2024-2025

my $num = 9;
my $str = 'X;
$num++;
$str++;
say $num++;
say $str++;

Output:

10

Y

Comparison operators
The comparison operator compares the values of its operands. These are (==, <, <=,

> >= <=> I=),
Example:
use 5.010;
use strict;
use warnings;
say "Enter your salary:";
my $salary = <>;
if($salary >= 20000)
{

say "You are earning well™;

}else {

say "You are not earning well";
¥
Output:
Enter your salary:
15000
You are not earning well

Assignment operators
The assignment operator assigns a value to a variable.

These are (=, +=, -=, *=, /=, |=, &=, %=)
Example:
use 5.010;

use strict;

use warnings;

$a = 20;

my $resultl = $a += $a;

say $resultl;

Dept of CSE

SCRIPTING LANGUAGES AY: 2024-2025

my $result2 = $a -= 10;
say $result2;
my $result3 = $a |= 10;
say $result3;
my $resultd = $a &= 10;
say $results;
output:
40
30
30
10

Conditional Statements

Perl conditional statements helps in the decision making, which require that the
programmer specifies one or more conditions to be evaluated or tested by the
program, along with a statement or statements to be executed if the condition is
determined to be true, and optionally, other statements to be executed if the condition
Is determined to be false.

A Perl if statement consists of a boolean expression followed by one or more

statements.

Syntax
The syntax of an if statement in Perl programming language is —

if(boolean_expression) {
statement(s) will execute if the given condition is true

}

If the boolean expression evaluates to true then the block of code inside the if
statement will be executed. If boolean expression evaluates to false then the first set of
code after the end of the if statement (after the closing curly brace) will be executed.
The number 0, the strings '0' and " , the empty list () , and undef are all false in a
boolean context and all other values are true. Negation of a true value by ! or not
returns a special false value.
#!/usr/local/bin/perl
$a =10;
check the boolean condition using if statement
if($a<20){

if condition is true then print the following

printf "a is less than 20\n";

¥

print "value of a is : $a\n";
$a=""

Dept of CSE 41

SCRIPTING LANGUAGES AY: 2024-2025

check the boolean condition using if statement

if($a) {
if condition is true then print the following
printf "a has a true value\n™;

}

print "value of a is : $a\n";

o/p:

a is less than 20

value of ais : 10

value of ais :

if-else

A Perl if statement can be followed by an optional else statement, which executes

when the boolean expression is false.

Syntax
The syntax of an if...else statement in Perl programming language is —

if(boolean_expression) {
statement(s) will execute if the given condition is true

}else {

statement(s) will execute if the given condition is false
¥
If the boolean expression evaluates to true, then the if block of code will be executed
otherwise else block of code will be executed.
The number 0, the strings '0' and " , the empty list () , and undef are all false in a
boolean context and all other values are true. Negation of a true value by ! or not
returns a special false value.
#!/usr/local/bin/perl
$a = 100;
check the boolean condition using if statement
if($a<20){
if condition is true then print the following
printf "a is less than 20\n";
}else {
if condition is false then print the following
printf “a is greater than 20\n";
b
print "value of a is : $a\n";
$a="",
check the boolean condition using if statement
if($a) {
if condition is true then print the following

Dept of CSE

42

SCRIPTING LANGUAGES AY: 2024-2025

printf "a has a true value\n";
}else {
if condition is false then print the following
printf "a has a false value\n";
¥
print "value of a is : $a\n";
When the above code is executed, it produces the following result —
a is greater than 20
value of ais : 100
a has a false value
value of ais :
if-elsif-else
An if statement can be followed by an optional elsif...else statement, which is very
useful to test the various conditions using single if...elsif statement.
When using if, elsif , else statements there are few points to keep in mind.
e An if can have zero or one else's and it must come after any elsif's.
e An if can have zero to many elsif's and they must come before the else.
e Once an elsif succeeds, none of the remaining elsif's or else's will be tested.
Syntax
The syntax of an if...elsif...else statement in Perl programming language is —
if(boolean_expression 1) {
Executes when the boolean expression 1 is true
} elsif(boolean_expression 2) {
Executes when the boolean expression 2 is true
} elsif(boolean_expression 3) {
Executes when the boolean expression 3 is true

}else {

Executes when the none of the above condition is true
¥
#!/usr/local/bin/perl
$a = 100;
check the boolean condition using if statement
if($a==20){
if condition is true then print the following
printf "a has a value which is 20\n";
}elsif($a==30){
if condition is true then print the following
printf "a has a value which is 30\n";

}else {

if none of the above conditions is true

Dept of CSE

43

SCRIPTING LANGUAGES AY: 2024-2025

printf "a has a value which is $a\n";

}

o/p:a has a value which is 100

Loops
Perl programming language provides the following types of loop to handle the looping
requirements.
A while loop statement in Perl programming language repeatedly executes a target
statement as long as a given condition is true.
Syntax
The syntax of a while loop in Perl programming language is —
while(condition) {
statement(s);
}
#!/usr/local/bin/perl
$a =10;
while loop execution
while($a<20) {
printf "Value of a: $a\n";
$a=%a+1;
¥
Here we are using the comparison operator < to compare value of variable $a against
20. So while value of $a is less than 20, while loop continues executing a block of
code next to it and as soon as the value of $a becomes equal to 20, it comes out. When
executed, above code produces the following result —
Value of a: 10
Value of a: 11
Value of a: 12
Value of a: 13
Value of a: 14
Value of a: 15
Value of a: 16
Value of a: 17
Value of a: 18
Value of a: 19
An until loop statement in Perl programming language repeatedly executes a target
statement as long as a given condition is false.

Syntax
The syntax of an until loop in Perl programming language is —

until(condition) {

Dept of CSE

SCRIPTING LANGUAGES AY: 2024-2025

statement(s);
}
#!/usr/local/bin/perl
$a=05;
until loop execution
until($a>10) {
printf "Value of a: $a\n";
$a=%a+ 1;
}
Here we are using the comparison operator > to compare value of variable $a against
10. So until the value of $a is less than 10, until loop continues executing a block of
code next to it and as soon as the value of $a becomes greater than 10, it comes out.
When executed, above code produces the following result —
Value of a: 5
Value of a: 6
Value of a: 7
Value of a: 8
Value of a: 9
Value of a: 10
A for loop is a repetition control structure that allows you to efficiently write a loop
that needs to execute a specific number of times.
Syntax
The syntax of a for loop in Perl programming language is —
for ((init; condition; increment) {
statement(s);
}
#!/usr/local/bin/perl
for loop execution
for($a=10;%a<20;%a=%a+1){
print "value of a: $a\n";
}
When the above code is executed, it produces the following result —
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17

Dept of CSE

SCRIPTING LANGUAGES AY: 2024-2025

value of a: 18
value of a: 19
Unlike for and while loops, which test the loop condition at the top of the loop, the
do...while loop checks its condition at the bottom of the loop.
A do...while loop is similar to a while loop, except that a do...while loop is guaranteed
to execute at least one time.
Syntax
The syntax of a do...while loop in Perl is —
do {
statement(s);
}while(condition);
#!/usr/local/bin/perl
$a =10;
do...while loop execution
do{
printf "Value of a: $a\n";
$a="%a+1;
Jwhile($a < 20);
When the above code is executed, it produces the following result —
Value of a: 10
Value of a: 11
Value of a: 12
Value of a: 13
Value of a: 14
Value of a: 15
Value of a: 16
Value of a: 17
Value of a: 18
value of a: 19

Dept of CSE 46

SCRIPTING LANGUAGES AY: 2024-2025

Arrays

An array is a variable that stores an ordered list of scalar values. Array variables are
preceded by an "at" (@) sign. To refer to a single element of an array, you will use the
dollar sign ($) with the variable name followed by the index of the element in square
brackets.

Here is a simple example of using the array variables —

#!/usr/bin/perl

@ages = (25, 30, 40);

@names = ("John Paul”, "Lisa", "Kumar");

print "\$ages[0] = $ages[0]\n";

print "\$ages[1] = $ages[1]\n";

print "\$ages[2] = $ages[2]\n";

print "\$names[0] = $names[0]\n";

print "\$names[1] = $names[1]\n";

print "\$names[2] = $names[2]\n";

Here we have used the escape sign (\) before the $ sign just to print it. Other Perl will
understand it as a variable and will print its value. When executed, this will produce
the following result —

$ages[0] = 25

$ages[1] = 30

$ages[2] = 40

$names[0] = John Paul

$names[1] = Lisa

$names[2] = Kumar

In Perl, List and Array terms are often used as if they're interchangeable. But the list is
the data, and the array is the variable.

Array Creation
Array variables are prefixed with the @ sign and are populated using either

parentheses or the qw operator. For example —

@array = (1, 2, 'Hello");

@array = qw/This is an array/;

The second line uses the qw// operator, which returns a list of strings, separating the
delimited string by white space. In this example, this leads to a four-element array; the
first element is 'this' and last (fourth) is 'array'. This means that you can use different
lines as follows —

@days = qw/Monday

Tuesday

Sunday/;

Dept of CSE

SCRIPTING LANGUAGES AY: 2024-2025

Accessing Array Elements
When accessing individual elements from an array, you must prefix the variable with

a dollar sign ($) and then append the element index within the square brackets after
the name of the variable. For example —

#!/usr/bin/perl

@days = gqw/Mon Tue Wed Thu Fri Sat Sun/;

print "$days[0]\n";

print "$days[1]\n";

print "$days[2]\n";

print "$days[6]\n";

print "$days[-1]\n";

print "$days[-7]\n";

This will produce the following result —

Mon

Tue

Wed

Sun

Sun

Mon

Array indices start from zero, so to access the first element you need to give 0 as
indices. You can also give a negative index, in which case you select the element from
the end, rather than the beginning, of the array. This means the following —

print $days[-1]; # outputs Sun

print $days[-7]; # outputs Mon

Sequential Number Arrays

Perl offers a shortcut for sequential numbers and letters. Rather than typing out each
element when counting to 100 for example, we can do something like as follows —
#!/usr/bin/perl

@var_10=(1..10);

@var_20 = (10..20);

@var_abc = (a..2);

print "@var_10\n"; # Prints number from 1 to 10

print "@var_20\n"; # Prints number from 10 to 20

print "@var_abc\n"; # Prints number from a to z

Here double dot (..) is called range operator. This will produce the following result —
12345678910

1011121314151617181920

abcdefghijklmnopqgrstuvwxyz

Dept of CSE 48

SCRIPTING LANGUAGES AY: 2024-2025

Hashes

A hash is a set of key/value pairs. Hash variables are preceded by a percent (%) sign.
To refer to a single element of a hash, you will use the hash variable name preceded
by a "$" sign and followed by the "key" associated with the value in curly brackets..
Here is a simple example of using the hash variables —

#!/usr/bin/perl

%data = ("John Paul', 45, 'Lisa’, 30, 'Kumar', 40);

print "\$data{'John Paul'} = $data{'John Paul'}\n";

print "\$data{'Lisa’} = $data{'LisaF\n";

print "\$data{'Kumar'} = $data{'Kumar'H\n";

This will produce the following result —

$data{'John Paul'} = 45

$data{'Lisa'} = 30

$data{'Kumar'} = 40

Creating Hashes
Hashes are created in one of the two following ways. In the first method, you assign a

value to a named key on a one-by-one basis —

$data{'John Paul'} = 45;

$data{'Lisa'} = 30;

$data{'Kumar'} = 40;

In the second case, you use a list, which is converted by taking individual pairs from
the list: the first element of the pair is used as the key, and the second, as the value.
For example —

%data = ("John Paul', 45, 'Lisa’, 30, 'Kumar', 40);

For clarity, you can use => as an alias for , to indicate the key/value pairs as follows —
%data = (‘John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40);

Here is one more variant of the above form, have a look at it, here all the keys have
been preceded by hyphen (-) and no quotation is required around them —

%data = (-JohnPaul => 45, -Lisa => 30, -Kumar => 40);

But it is important to note that there is a single word, i.e., without spaces keys have
been used in this form of hash formation and if you build-up your hash this way then
keys will be accessed using hyphen only as shown below.

$val = %data{-JohnPaul}

$val = %data{-Lisa}

Accessing Hash Elements

When accessing individual elements from a hash, you must prefix the variable with a

dollar sign ($) and then append the element key within curly brackets after the name
of the variable. For example —

#!/usr/bin/perl

%data = ("John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40);

Dept of CSE 49

SCRIPTING LANGUAGES AY: 2024-2025

print "$data{'John Paul'}\n";

print "$data{'Lisa}\n";

print "$data{'Kumar}\n";

This will produce the following result —
45

30

40

Extracting Slices
You can extract slices of a hash just as you can extract slices from an array. You will

need to use @ prefix for the variable to store the returned value because they will be a
list of values —

#!/uer/bin/perl

%data = (-JohnPaul => 45, -Lisa => 30, -Kumar => 40);

@array = @data{-JohnPaul, -Lisa};

print "Array : @array\n";

This will produce the following result —

Array : 45 30

Extracting Keys and Values
You can get a list of all of the keys from a hash by using keys function, which has the

following syntax —

keys %HASH

This function returns an array of all the keys of the named hash. Following is the
example —

#!/usr/bin/perl

%data = ("John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40);
@names = keys %(data;

print "$names[0]\n";

print "$names[1]\n";

print "$names[2]\n";

This will produce the following result —

Lisa

John Paul

Kumar

Getting Hash Size
You can get the size - that is, the number of elements from a hash by using the scalar

context on either keys or values. Simply saying first you have to get an array of either
the keys or values and then you can get the size of array as follows —

#!/usr/bin/perl

%data = (‘John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40);

@keys = keys %data;

Dept of CSE

SCRIPTING LANGUAGES AY: 2024-2025

$size = @keys;

print "1 - Hash size: is $size\n";

@values = values %data;

$size = @values;

print "2 - Hash size: is $size\n";

This will produce the following result —

1 - Hash size: is 3

2 - Hash size: is 3

Add and Remove Elements in Hashes
Adding a new key/value pair can be done with one line of code using simple
assignment operator. But to remove an element from the hash you need to use delete
function as shown below in the example —
#!/usr/bin/perl

%data = ("John Paul' => 45, 'Lisa’' => 30, 'Kumar' => 40);
@keys = keys %data;

$size = @keys;

print "1 - Hash size: is $size\n";

adding an element to the hash;
$data{'Ali'} = 55;

@keys = keys %data;

Psize = @keys;

print "2 - Hash size: is $size\n";

delete the same element from the hash;
delete $data{'Ali'};

@keys = keys %data;

$size = @keys;

print "3 - Hash size: is $size\n";

This will produce the following result —

1 - Hash size: i1s 3

2 - Hash size: is 4

3 - Hash size: is 3

Dept of CSE 51

SCRIPTING LANGUAGES AY: 2024-2025

Strings
Stringgs are an essential part of the Perl language. They are scalar variables, so they
start with ($) sign. A string can be defined within a single quote (") or double quote
().
Perl String Operators
The operators make it easy to manipulate a string in different ways. There are two
types of string operators:
e Concatenation (.)
e Repetition (x)
Concatenation Operator
Perl strings are concatenated with a (.) sign instead of (+) sign.
1. $firstName = "Christian";
2. $lastName = "Grey";
3. $fullName = $firstName . " " . $lastName;
4. print "$fullName\n";
Christian Grey

Repeitition Operator
Perl strings can be repeated a number of times with (x) variable.

1. $text = "Thank You ";
2. $output = $text x 3;
3. print "$output\n”;
Output:
Thank You Thank You Thank You

Initializing and Declaring a String
In Perl, to declare a string use my keyword before variable name.

A string can be initialised and declared with the following syntax:
my $variableName = "";
In this example, we have shown how to initialize and declare a string. We have
printed several strings together by using a dot (.) operator.
se strict;
use warnings;
Declaring and initializing a string.
my $msgl = "Welcome at JavaTpoint.";
my $msg2 = "This is our Perl Tutorial.";
#printing using . operator.
print $msgl . " . $msg2. "\n";
#print as separate arguments.
print $msgl, ", $msg2, "\n";

Dept of CSE 52

SCRIPTING LANGUAGES AY: 2024-2025

#embedd string in a bigger string.

print "$msgl$msg2\n";
Output:
Welcome at JavaTpoint. This is our Perl Tutorial.
Welcome at JavaTpoint. This is our Perl Tutorial.
Welcome at JavaTpoint. This is our Perl Tutorial.

Determining String Length, length()
string length can be determined with length() function.

my $msg = "Our site javaTpoint provides all type of tutorials”;
print "String Length : ", length($msg), "\n";

Output:

String Length : 50

Replacing a string with another string, s///g
A string can be replaced with another string in two ways.

In first one, we have replaced Tigers with Lions which occurs single time in the string
with s///.
In second one, we have replaced roses with flowers globally with s///g.
my $varl = "Tigers are big and frightening.";
$varl =~ s/Tigers/Lions/;
print "$varl\n";
my $var2 = "Red roses are very popular. Yellow roses are less seen.";
$var2 =~ s/roses/flowers/g;
print "$var2\n";
Output:
Lions are big and frightening.
Red flowers are very popular. Yellow flowers are less seen.

Perl Concatenating two Strings (.=)
Two strings can be joined together using (.=) operator.

my $strl = "Where there is a will,";
my $str2 = "there is a way.\n";
my $joining = ";
$joining = $strl . '
$joining .= $str2;
print $joining;
Output:
Where there is a will, there is a way.

Dept of CSE 53

SCRIPTING LANGUAGES AY: 2024-2025

Lists
A list is a collection of scalar values. We can access the elements of a list using

indexes. Index starts with 0 (Oth index refers to the first element of the list). We use
parenthesis and comma operators to construct a list. In Perl, scalar variables start with
a $ symbol whereas list variables start with @ symbol.

Example :

#!/usr/bin/perl

Empty List assigned to an array

@empty _list = ();

List of integers

@integer_list=(1, 2, 3);

List of strings assigned to an array

@string_list = ("hai", "for", "hai");

print "Empty list: @empty_list\n";

print "Integer list: @integer_list\n";

print "String list: @string_list\n™;

Output:

Empty list:

Integer list: 12 3

String list: hai for hai

Builtin functions

The chr() function in Perl returns a string representing a character whose Unicode
code point is an integer.

join()function

join() function is used to combine the elements of a List into a single string with the
use of a separator provided to separate each element.
#!/usr/bin/perl

Initializing list with alphabets A to Z

@list = (A..2);

Printing the original list

print "List: @list\n";

Using join function introducing

hyphen between each alphabets

print "\nString after join operation:\n";

print join("-", @list);

Output:

List ABCDEFGHIJKLMNOPQRSTUVWXYZ

Dept of CSE 54

https://www.geeksforgeeks.org/introduction-to-perl/

SCRIPTING LANGUAGES AY: 2024-2025

String after join operation:
A-B-C-D-E-F-G-H-I-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X-Y-Z
reverse()function

Reverse() function in Perl returns the elements of List in reverse order in a list context.
Initializing a list

@list = ("Raj", "E123", 12000);

Reversing the list

@rname = reverse(@list);

Printing the reversed list

print "Reversed list is @rname™;

Initializing a scalar

$string = "for";

Reversing a scalar

$r = reverse($string);

print "\nReversed string is $r";

Reversed list is 12000 E123 Raj

Reversed string is rof

Regular Expressions
A regular expression is a string of characters that defines the pattern or patterns you
are viewing.
There are three regular expression operators within Perl.
e Match Regular Expression - m//
e Substitute Regular Expression - s///
e Transliterate Regular Expression - tr///

1. The Match Operator
The match operator, m//, is used to match a string or statement to a regular expression.

For example, to match the character sequence "foo" against the scalar $bar, you might
use a statement like this —
#!/usr/bin/perl
$bar = "This is foo and again foo";
if ($bar =~ /foo/) {

print "First time is matching\n";
}else {

print "First time is not matching\n";
b
$bar = "foo";
if ($bar =~ /foo/) {

print "Second time is matching\n";

}else {

Dept of CSE

SCRIPTING LANGUAGES AY: 2024-2025

print "Second time is not matching\n™;
¥
When above program is executed, it produces the following result —
First time is matching
Second time is matching

2. The Substitution Operator
The substitution operator, s///, is really just an extension of the match operator that

allows you to replace the text matched with some new text. The basic form of the
operator is —

SIPATTERN/REPLACEMENT/,

#/user/bin/perl

$string = "The cat sat on the mat";

$string =~ s/cat/dog/;

print "$string\n";

When above program is executed, it produces the following result —

The dog sat on the mat

3.The Translation Operator
Translation is similar, but not identical, to the principles of substitution, but unlike

substitution, translation (or transliteration) does not use regular expressions for its
search on replacement values. The translation operators are —
tr/SEARCHLIST/REPLACEMENTLIST/cds
y/SEARCHLIST/REPLACEMENTLIST/cds

#/user/bin/perl

$string = 'The cat sat on the mat';

$string =~ tr/alol;

print "$string\n";

When above program is executed, it produces the following result —

The cot sot on the mot.

Dept of CSE 56

SCRIPTING LANGUAGES AY: 2024-2025

UNIT -1V
PHP :
Associative Array, String Functions, Functions- Parameterized Function, Call By Value, Call By
Reference , File Handling, PHP Form handling.

Data Types, Variables, Operators, Conditional statements ,Loops ,Arrays - Indexed Array,

The PHP Hypertext Preprocessor (PHP) is a programming language that allows
web developers to create dynamic content that interacts with databases. PHP is
basically used for developing web based software applications.

PHP is a MUST for students and working professionals to become a great Software
Engineer specially when they are working in Web Development Domain. | will list
down some of the key advantages of learning PHP:

PHP is a recursive acronym for "PHP: Hypertext Preprocessor".
PHP is a server side scripting language that is embedded in HTML. It is used to
manage dynamic content, databases, session tracking, even build entire e-
commerce sites.
It is integrated with a number of popular databases, including MySQL,
PostgreSQL, Oracle, Sybase, Informix, and Microsoft SQL Server.
PHP is pleasingly zippy in its execution, especially when compiled as an Apache
module on the Unix side. The MySQL server, once started, executes even very
complex queries with huge result sets in record-setting time.
PHP supports a large number of major protocols such as POP3, IMAP, and
LDAP. PHP4 added support for Java and distributed object architectures (COM
and CORBA), making n-tier development a possibility for the first time.
PHP is forgiving: PHP language tries to be as forgiving as possible.
PHP Syntax is C-Like.

Characteristics of PHP

Five important characteristics make PHP's practical nature possible —

Simplicity
Efficiency
Security

Flexibility
Familiarity

Applications of PHP

As mentioned before, PHP is one of the most widely used language over the web. I'm
going to list few of them here:

PHP performs system functions, i.e. from files on a system it can create, open,
read, write, and close them.

PHP can handle forms, i.e. gather data from files, save data to a file, through
email you can send data, return data to the user.

You add, delete, modify elements within your database through PHP.

Access cookies variables and set cookies.

Using PHP, you can restrict users to access some pages of your website.

Dept of CSE 57

SCRIPTING LANGUAGES AY: 2024-2025

o It can encrypt data.

Variables
Variables are "containers" for storing information.

Creating (Declaring) PHP Variables
In PHP, a variable starts with the $ sign, followed by the name of the variable:

Example
<?php
$txt="Helloworld!";
$x=5;
$y=10.5;
7>
output:

Hey
Helloworld!

5

10.5

Data Types

Variables can store data of different types, and different data types can do different
things.

PHP supports the following data types:

String

Integer

Float (floating point numbers - also called double)

Boolean

String

A string is a sequence of characters, like "Hello world!".
A string can be any text inside quotes. You can use single or double quotes:
<?php

$x="Helloworld!";

$y="Helloworld!";

echo$x;

echo"
";

echo$y;

7>

Helloworld!

Hello world!

Integer
An integer data type is a non-decimal number between -2,147,483,648 and

2,147,483,647.

Dept of CSE

SCRIPTING LANGUAGES AY: 2024-2025

Rules for integers:
e An integer must have at least one digit
e An integer must not have a decimal point
e An integer can be either positive or negative
e Integers can be specified in: decimal (base 10), hexadecimal (base 16), octal
(base 8), or binary (base 2) notation
In the following example $x is an integer. The PHP var_dump() function returns the
data type and value:
<?php
$x=5985;
var_dump($x);
7>
int(5985)
Float
A float (floating point number) is a number with a decimal point or a number in
exponential form.
In the following example $x is a float. The PHP var_dump() function returns the data
type and value:

Example
<?php
$x=10.365;
var_dump($x);
7>
float(10.365)

Boolean
A Boolean represents two possible states: TRUE or FALSE.

$x=true;

$y = false;

Operators

4 +5is equal to 9. Here 4 and 5 are called operands and + is called operator.
Arithmetic Operators

Dept of CSE 59

SCRIPTING LANGUAGES AY: 2024-2025

Operator Description Example
+ Adds two operands A+ B will give
30
- Subtracts second operand from the first A - B will give
-10
* Multiply both operands A * B will give
200
/ Divide numerator by de-numerator B / A will give 2
% Modulus Operator and remainder of after an B % A will give
integer division 0
++ Increment operator, increases integer value by A++ will give
one 11
- Decrement operator, decreases integer value A will give 9
by one

Comparison Operators

Operator Description Example
== Checks if the value of two operands are equal or (A ==B)is
not, if yes then condition becomes true. not true.

1= Checks if the value of two operands are equal or (A= B)is
not, if values are not equal then condition true.
becomes true.

> Checks if the value of left operand is greater than (A > B) is
the value of right operand, if yes then condition not true.
becomes true.

< Checks if the value of left operand is less than the (A < B)is
value of right operand, if yes then condition true.
becomes true.

>= Checks if the value of left operand is greater than (A == B) is
or equal to the value of right operand, if yes then not true.
condition becomes true.

<= Checks if the value of left operand is less than or (A == B)is
equal to the value of right operand, if yes then true.
condition becomes true.

Dept of CSE 60

SCRIPTING LANGUAGES

AY: 2024-2025

Operator Description Example

and Called Logical AND operator. If both the operands (A and B) is
are true then condition becomes true. true.

or Called Logical OR Operator. If any of the two (AorB)is
operands are non zero then condition becomes true.
true.

&& Called Logical AND operator. If both the operands (A && B) is
are non zero then condition becomes true. true.

| Called Logical OR Operator. If any of the two (A|| B)is
operands are non zero then condition becomes true.
true.

! Called Logical NOT Operator. Use to reverses the WA && B) is
logical state of its operand. If a condition is true false.
then Logical NOT operator will make false.

Assignment Operators

Operator Description Example

= Simple assignment operator, Assigns C=A+ B will
values from right side operands to left side assign value of A +
operand B into C

+= Add AND assignment operator, It adds C+=Ais
right operand to the left operand and equivalentto C = C
assign the result to left operand + A

-= Subtract AND assignment operator, It C-=Ais
subtracts right operand from the left equivalentto C = C
operand and assign the result to left - A
operand

= Multiply AND assignment operator, It C= Ais
multiplies right operand with the left equivalentto C = C
operand and assign the result to left .
operand

= Divide AND assignment operator, It divides C/= Ais
left operand with the right operand and equivalentto C = C

Logical Operators

assign the result to left operand

A

Dept of CSE

61

SCRIPTING LANGUAGES AY: 2024-2025

Conditional Operator
There is one more operator called conditional operator. This first evaluates an

expression for a true or false value and then execute one of the two given statements

Operator Description Example
7 Conditional If Condition is true ? Then value X :
Expression Otherwise value Y

depending upon the result of the evaluation.

Conditional statements
The If...Else Statement
If you want to execute some code if a condition is true and another code if a condition

Is false, use the if. ..else statement.

Syntax
if (condition)

code to be executed if condition is true;
else

code to be executed if condition is false;

The following example will output "Have a nice weekend!" if the current day is
Friday, Otherwise, it will output "Have a nice day!"":
<htmlI>

<body>
<?php
$d = date("D");
if ($d =="Fri")
echo "Have a nice weekend!";
else
echo "Have a nice day!";
7>
</body>
</html>
It will produce the following result —
Have a nice weekend!
Elself Statement
If you want to execute some code if one of the several conditions are true use the
elseif statement

Dept of CSE

SCRIPTING LANGUAGES AY: 2024-2025

Syntax
it (condition)

code to be executed if condition is true;
elseif (condition)

code to be executed if condition is true;
else

code to be executed if condition is false;

Example
The following example will output "Have a nice weekend!" if the current day is

Friday, and "Have a nice Sunday!" if the current day is Sunday. Otherwise, it will
output "Have a nice day!"

<htmlI>
<body>
<?php
$d = date("D");
if ($d =="Fri")

echo "Have a nice weekend!";
elseif ($d =="Sun")
echo "Have a nice Sunday!";
else
echo "Have a nice day!";
7>
</body>
</html>
It will produce the following result —
o/p:Have a nice Weekend!

Dept of CSE 63

SCRIPTING LANGUAGES AY: 2024-2025

Loops
Loops in PHP are used to execute the same block of code a specified number of times.

PHP supports following four loop types.
e for — loops through a block of code a specified number of times.
e while — loops through a block of code if and as long as a specified condition is
true.
e do...while — loops through a block of code once, and then repeats the loop as
long as a special condition is true.
e foreach — loops through a block of code for each element in an array.

for loop
The for statement is used when you know how many times you want to execute a

statement or a block of statements.

Syntax
for (initialization; condition; increment){
code to be executed,;

¥

while loop

Syntax
while (condition) {

code to be executed:
}
do-while loop
do {
code to be executed;
}
while (condition);
foreach
foreach (array as value) {
code to be executed:;
}
Arrays
array is an ordered map (contains value on the basis of key). It is used to hold multiple
values of similar type in a single variable.

Indexed Array
index is represented by number which starts from 0. We can store number, string and

object in the PHP array. All PHP array elements are assigned to an index number by
default.
to define indexed array:

$season=array("'summer","

winter","spring”,"autumn™);

Dept of CSE 64

SCRIPTING LANGUAGES AY: 2024-2025

Associative Array
We can associate name with each array elements in PHP using => symbol.

to define associative array:
$salary=array(""'Sonoo"=>"350000","John"=>"450000","Kartik"=>"200000");

String Functions

PHP provides various string functions to access and manipulate strings.

A list of PHP string functions are given below.

addcslashes() It is used to return a string with backslashes.

addslashes() It is used to return a string with backslashes.

bin2hex() It is used to converts a string of ASCII characters to hexadecimal
values.

chop() It removes whitespace or other characters from the right end of a
string

chr() It is used to return a character from a specified ASCII value.

chunk_split() It is used to split a string into a series of smaller parts.

Dept of CSE 65

SCRIPTING LANGUAGES AY: 2024-2025

Functions

function is a piece of code that can be reused many times. It can take input as
argument list and return value. There are thousands of built-in functions in PHP.
User-defined Functions

We can declare and call user-defined functions easily. Let's see the syntax to declare
user-defined functions.

Syntax
1. function functionname()

2. {
3. /lcode to be executed
4.}
<?php
function sayHello(){
echo "Hello PHP Function";
}
sayHello();//calling function
7>
o/p:Hello PHP Function
Call by value
In call by value, actual value is not modified if it is modified inside the function.
<?php
function increment($i)

{
$i++;

¥

$i = 10;

increment($i);

echo $i;

?>
0/p:10
Call By Reference
Value passed to the function doesn't modify the actual value by default (call by value).
But we can do so by passing value as a reference.
By default, value passed to the function is call by value. To pass value as a reference,
you need to use ampersand (&) symbol before the argument name.
<?php

function adder(&$str2)

{
$str2 .= 'Call By Reference’;

Dept of CSE 66

SCRIPTING LANGUAGES AY: 2024-2025

}
$str = 'Hello *;

adder($str);
echo $str;
7>
Hello Call By Reference

Parameterized Function
PHP Parameterized functions are the functions with parameters. You can pass any

number of parameters inside a function. These passed parameters act as variables
inside your function.
They are specified inside the parentheses, after the function name.
The output depends upon the dynamic values passed as the parameters into the
function.
<IDOCTYPE html>
<html>
<head>
<title>Parameter Addition and Subtraction Example</title>
</head>
<body>
<?php
/[Adding two numbers
function add($x, $y) {
$sum = $x + Jy;
echo "Sum of two numbers is = $sum

";
}
add(467, 943);
/[Subtracting two numbers
function sub($x, $y) {
$diff = $x - By;
echo "Difference between two numbers is = $diff";
}
sub(943, 467);
7>
</body>
</html>

Sum of two numbers 1s = 1410

Difference between two numbers 1s = 476

Dept of CSE 67

SCRIPTING LANGUAGES AY: 2024-2025

File Handling
PHP File System allows us to create file, read file line by line, read file character by

character, write file, append file, delete file and close file.
Open File - fopen()
fopen() function is used to open a file.
Syntax
resource fopen (string $filename , string $mode [, bool $use_include_path = fa
Ise [, resource $context
<?php
$handle = fopen("c:\\folder\\file.txt", "r");
7>
Close File - fclose()
fclose() function is used to close an open file pointer.
Syntax
ool fclose (resource $handle)
Example
<?php
fclose($handle);
7>
Read File - fread()
The PHP fread() function is used to read the content of the file. It accepts two
arguments: resource and file size.
Syntax
string fread (resource $handle , int $length)
<?php
$filename = "c:\\myfile.txt";
$handle = fopen($filename, "r");//open file in read mode

$contents = fread($handle, filesize($filename));//read file

echo $contents;//printing data of file
fclose($handle);//close file
7>

Output

hello php file

Write File - fwrite()
fwrite() function is used to write content of the string into file

Syntax

Dept of CSE 68

SCRIPTING LANGUAGES AY: 2024-2025

int fwrite (resource $handle , string $string [, int $length])
Example

<?php

$fp = fopen('data.txt’, ‘w');//open file in write mode

fwrite($fp, 'hello ");

fwrite($fp, 'php file");

fclose($fp);

echo "File written successfully”;
7>

Output

File written successfully

Form Handling
We can create and use forms in PHP. To get form data, we need to use PHP

superglobals $ GET and $ POST.
The form request may be get or post. To retrieve data from get request, we need to use
$ GET, for post request $ POST.

Get Form
Get request is the default form request. The data passed through get request is visible

on the URL browser so it is not secured. You can send limited amount of data through
get request.
<form action="welcome.php" method="get">
Name: <input type="text" name="name"/>
<input type="submit" value="visit"/>
</form>
<?php
$name=$_ GET["name"];//receiving name field value in $name variable
echo "Welcome, $name";
7>
Post Form
Post request is widely used to submit form that have large amount of data such as file
upload, image upload, login form, registration form etc.
The data passed through post request is not visible on the URL browser so it is
secured. You can send large amount of data through post request.
<form action="login.php" method="post">
<table>
<tr><td>Name:</td><td> <input type="text" name="name"/></td></tr>
<tr><td>Password:</td><td> <input type="password" name="password"/></td
><[tr>

Dept of CSE 69

SCRIPTING LANGUAGES AY: 2024-2025

<tr><td colspan="2"><input type="submit" value="login"/> </td></tr>
</table>
</form>

<?php
$name=$ POST["name"];//receiving name field value in $name variable
$password=$_POST["password"];//receiving password field value in $passwor
d variable

echo "Welcome: $name, your password is: $password";
2>

[localhost/form1.html * %
&« = C | [localhost/form1.html

Name: |sc-ncrc-

Password: |

[localhost/login.php x %
€ - C' [localhost/login.php

Welcome: sonoo. vour password is: jaiswal

Dept of CSE 70

SCRIPTING LANGUAGES AY: 2024-2025

UNIT-V
Ruby : Introduction to Ruby, Feature of Ruby, Data types, Variables, Operators, Conditional
statements, Loops, , Arrays, Strings, Hashes, working on Methods, Blocks, and Modules.

Ruby is a object-oriented, reflective, general-purpose, dynamic programming
language. Ruby was developed to make it act as a sensible buffer between human
programmers and the underlying computing machinery. It is an interpreted scripting
language which means most of its implementations execute instructions directly and
freely, without previously compiling a program into machine-language instructions.
Ruby is used to create web applications of different sorts. It is one of the hot
technology at present to create web applications.

Data types

Data types represents a type of data such as text, string, numbers, etc. There are

different data types in Ruby:
Numbers

Strings

Symbols

e Hashes

o Arrays

Numbers
Integers and floating point numbers come in the category of numbers.

Integers are held internally in binary form. Integer numbers are numbers without a
fraction. According to their size, there are two types of integers. One is Bignum and
other is Fixnum.
Strings
A string is a group of letters that represent a sentence or a word. Strings are defined by
enclosing a text within single (') or double (*') quote.
Symbols
Symbols are like strings. A symbol is preceded by a colon (:). For example,

1. :abcd
They do not contain spaces. Symbols containing multiple words are written with ().
One difference between string and symbol is that, if text is a data then it is a string but
if it is a code it is a symbol.
Symbols are unique identifiers and represent static values, while string represent
values that change.
Hashes
A hash assign its values to its keys. They can be looked up by their keys. Value to a
key is assigned by => sign. A key/value pair is separated with a comma between them
and all the pairs are enclosed within curly braces. For example,

e {"Akash" =>"Physics", "Ankit" =>"Chemistry", "Aman" => "Maths"}

Dept of CSE 71

https://www.geeksforgeeks.org/ruby-programming-language/

SCRIPTING LANGUAGES AY: 2024-2025

Arrays
An array stroes data or list of data. It can contain all types of data. Data in an array are

separated by comma in between them and are enclosed by square bracket. For
example,
1. ["Akash", "Ankit", "Aman"]

Variables

Variables are the memory locations, which hold any data to be used by any program.
Local variables begin with a lowercase letter or _. The scope of a local variable ranges
from class, module, def, or do to the corresponding end or from a block's opening
brace to its close brace {}.When an uninitialized local variable is referenced, it is
interpreted as a call to a method that has no arguments.Global variables begin with $.
Uninitialized global variables have the value nil and produce warnings with the -w
option.Assignment to global variables alters the global status. It is not recommended
to use global variables. They make programs cryptic.

Operators

Ruby supports a rich set of operators, as you'd expect from a modern language. Most
operators are actually method calls. For example, a + b is interpreted as a.+(b), where
the + method in the object referred to by variable a is called with b as its argument.
Arithmetic Operators

Operator Description Example

+ Addition — Adds values on either side of a + b will give 30
the operator.

— Subtraction — Subtracts right hand a - b will give -10
operand from left hand operand.

* Multiplication — Multiplies values on either a * b will give 200
side of the operator.

/ Division — Divides left hand operand by b [/ a will give 2
right hand operand.

Yo Modulus — Divides left hand operand by b % a will give O
right hand operand and returns remainder.

*ok Exponent — Performs exponential (power) a**b will give 10 to
calculation on operators. the power 20

Dept of CSE 72

SCRIPTING LANGUAGES

AY: 2024-2025

Comparison Operators

Checks if the value of two operands
are equal or not, if yes then
condition becomes true.

Checks if the value of two operands
are equal or not, if values are not
equal then condition becomes true.

Checks if the value of left operand is

(a

(a

(a

== b) is not true.

!= b) is true.

= b) is not true.

greater than the value of right
operand, if yes then condition
becomes true.

< Checks if the value of left operand is (a < b} is true.

less than the value of right
operand, if yes then condition
becomes true.

greater than or equal to the value of
right operand, if yes then condition

becomes true.

Checks if the value of left operand is (a <= b) is true.
less than or equal to the value of

right operand, if yes then condition

becomes true.

Assignment Operators

Operator

oh=

Description

Simple assignment operator, assigns
values from right side operands to left side
operand.

Add AND assignment operator, adds right
operand to the left operand and assign the
result to left operand.

Subtract AND assignment operator,
subtracts right operand from the left
operand and assign the result to left
operand.

Multiply AND assignment operator,
multiplies right operand with the left
operand and assign the result to left
operand.

Divide AND assignment operator, divides
left operand with the right operand and
assign the result to left operand.

Modulus AND assignment operator, takes
modulus using two operands and assign
the result to left operand.

Example

c=a + b will
assign the value of
a+ bintoc

c+=alis
equivalenttoc = ¢
+ a

c -= a is equivalent
toc=c-a

C *= a is equivalent
toc=c*a

c /= a is equivalent
toc=c/a

c %= ais
equivalenttoc = ¢
% a

Checks if the value of left operand is (a >= b) is not true.

Dept of CSE

73

SCRIPTING LANGUAGES

Bitwise Operators

AY: 2024-2025

Bitwise operator works on bits and performs bit by bit operation.

Assume if a = 60; and b = 13; now in binary format they will be as follows —

a = (011 1100
b = 0000 1101
akb = 0000 1100
alb = 0011 1101
a“h = 0011 0001
~-a = 1100 0011
Logical Operators

Operator Description

and Called Logical AND operator. If both the operands
are true, then the condition becomes true.

or Called Logical OR Operator. If any of the two
operands are non zero, then the condition
becomes true.

&b Called Logical AND operator. If both the operands
are non zero, then the condition becomes true.

1 Called Logical OR Operator. If any of the two
operands are non zero, then the condition
becomes true.

! Called Logical NOT Operator. Use to reverses the
logical state of its operand. If a condition is true,
then Logical NOT operator will make false.

not Called Logical NOT Operator. Use to reverses the

logical state of its operand. If a condition is true,
then Logical NOT operator will make false.

Example
(a and b) is

true.

(a or b) is
true,

(a && b)) is
true.

(a | b)is
true.

(a && b) is
false.

not{a && b)
is false.

Dept of CSE

74

SCRIPTING LANGUAGES AY: 2024-2025

Ternary Operator
It first evaluates an expression for a true or false value and then executes one of the
two given
statements depending upon the result of the evaluation.

Operator Description Example
7 Conditional If Condition is true ? Then value X :
Expression Otherwise value Y

Conditional statements
Ruby offers conditional structures that are pretty common to modern languages.
Ruby if...else Statement

Syntax
if conditional [then]

code...
[elsif conditional [then]
code...]...
[else
code...]
end
#!/usr/bin/ruby
x=1
ifx>2
puts "x is greater than 2"
elsif x <=2 and x!1=0

puts "x is 1"
else

puts "I can't guess the number"
end
xisl

Ruby unless Statement

Syntax

unless conditional [then]
code

[else
code]

Dept of CSE 75

SCRIPTING LANGUAGES AY: 2024-2025

end
Executes code if conditional is false. If the conditional is true, code specified in the
else clause is executed.
#!/usr/bin/ruby
x=1
unless x>=2
puts "X is less than 2"
else
puts "X is greater than 2"
end
This will produce the following result —
X is less than 2
Loops
Loops in Ruby are used to execute the same block of code a specified number of
times.
Ruby while Statement

Syntax
while conditional [do]

code

end

#!/usr/bin/ruby

$i=0

$num =5

while $i < $num do
puts("Inside the loop i = #3i")
$i +=1

end

This will produce the following result —

Inside the loop i =0

Inside the loopi=1

Inside the loop i =2

Inside the loop i =3

Inside the loop i =4

for statement

Syntax
for variable [, variable ...] in expression [do]

code
end

Dept of CSE 76

SCRIPTING LANGUAGES AY: 2024-2025

#!/usr/bin/ruby
foriin0.5
puts "Value of local variable is #{i}"
end
Here, we have defined the range 0..5. The statement for i in 0..5 will allow i to take
values in the range from 0 to 5 (including 5). This will produce the following result —
Value of local variable is 0
Value of local variable is 1
Value of local variable is 2
Value of local variable is 3
Value of local variable is 4
Value of local variable is 5
Methods
Ruby methods are very similar to functions in any other programming language. Ruby
methods are used to bundle one or more repeatable statements into a single unit.
def method_name
expr..
end
#!/usr/bin/ruby
def test(al = "Ruby", a2 = "Perl")
puts "The programming language is #{al1}"
puts "The programming language is #{a2}"
end
test "C", "C++"
test
This will produce the following result —
The programming language is C
The programming language is C++
The programming language is Ruby
The programming language is Perl

return Statement
The return statement in ruby is used to return one or more values from a Ruby

Method.
def test

i =100

j =200

k =300
returni, j, k
end
var = test

Dept of CSE 77

SCRIPTING LANGUAGES AY: 2024-2025

puts var

This will produce the following result —
100

200

300

Blocks

A block consists of chunks of code.

e You assign a name to a block.

e The code in the block is always enclosed within braces ({}).

e A block is always invoked from a function with the same name as that of the
block. This means that if you have a block with the name test, then you use the
function test to invoke this block.

e You invoke a block by using the yield statement.

syntax
block_name {

statementl
statement2

#!/usr/bin/ruby
def test

puts "You are in the method"

yield

puts "You are again back to the method"

yield
end
test {puts "You are in the block"}
This will produce the following result —
You are in the method
You are in the block
You are again back to the method
You are in the block
Modules
Modules are a way of grouping together methods, classes, and constants. Modules
give you two major benefits.

e Modules provide a namespace and prevent name clashes.
e Modules implement the mixin facility.

Modules define a namespace, a sandbox in which your methods and constants can
play without having to worry about being stepped on by other methods and constants.

Dept of CSE 78

SCRIPTING LANGUAGES AY: 2024-2025

Syntax
module Identifier

statementl

statement2
end
Module constants are named just like class constants, with an initial uppercase letter.
The method definitions look similar, too: Module methods are defined just like class
methods.
As with class methods, you call a module method by preceding its name with the
module's name and a period, and you reference a constant using the module name and
two colons.

Example
#!/usr/bin/ruby

Module defined in trig.rb file
module Trig
Pl = 3.141592654
def Trig.sin(x)
#..
end
def Trig.cos(x)
#..
end
end
We can define one more module with the same function name but different
functionality
#!/usr/bin/ruby
Module defined in moral.rb file

module Moral
VERY_BAD =0
BAD=1
def Moral.sin(badness)
..
end

end

Like class methods, whenever you define a method in a module, you specify the
module name followed by a dot and then the method name.

Dept of CSE 79

SCRIPTING LANGUAGES AY: 2024-2025

Arrays

Ruby arrays are ordered, integer-indexed collections of any object. Each element in an
array is associated with and referred to by an index.

Array indexing starts at 0, as in C or Java. A negative index is assumed relative to the
end of the array --- that is, an index of -1 indicates the last element of the array, -2 is
the next to last element in the array, and so on.

Creating Arrays
There are many ways to create or initialize an array. One way is with the new class

method —

names = Array.new

You can set the size of an array at the time of creating array —
names = Array.new(20)

The array names now has a size or length of 20 elements.
#!/usr/bin/ruby

names = Array.new(20)

puts names.size # This returns 20

puts names.length # This also returns 20

This will produce the following result —

20

20

You can assign a value to each element in the array as follows
#!/usr/bin/ruby

names = Array.new(4, "mac")

puts "#{names}"

This will produce the following result —

["mac", "mac”, "mac", "mac"]

You can also use a block with new, populating each element with what the block
evaluates to

#!/usr/bin/ruby

nums = Array.new(10) { lele=e*2}

puts "#{nums}"

This will produce the following result —

[0, 2,4,6,8,10, 12, 14, 16, 18]

There is another method of Array, []. It works like this —
nums = Array.[](1, 2, 3, 4,5)

One more form of array creation is as follows —

nums = Array[1, 2, 3, 4,5]

Dept of CSE 80

SCRIPTING LANGUAGES AY: 2024-2025

Strings

A String object in Ruby holds and manipulates an arbitrary sequence of one or more
bytes, typically representing characters that represent human language.

The simplest string literals are enclosed in single quotes (the apostrophe character).
The text within the quote marks is the value of the string —

‘This is a simple Ruby string literal’

Expression Substitution

Expression substitution is a means of embedding the value of any Ruby expression

into a string using #{ and } —
#!/usr/bin/ruby

X, y,z=12, 36,72

puts "The value of x is #{ x }."

puts "The sumof xandy is#{ x +vy }."
puts "The average was #{ (x +y + 2)/3 }."
This will produce the following result —
The value of x is 12.

The sum of x and y is 48.

The average was 40.

We need to have an instance of String object to call a String method. Following is the
way to create an instance of String object —

new [String.new(str ="")]

This will return a new string object containing a copy of str. Now, using str object, we
can all use any available instance methods.

#!/usr/bin/ruby

myStr = String.new("THIS IS TEST")

foo = myStr.downcase

puts "#{foo}"

This will produce the following result —

this is test

Hashes

A Hash is a collection of key-value pairs like this: "employee" = > "salary"”. It is
similar to an Array, except that indexing is done via arbitrary keys of any object type,
not an integer index.

The order in which you traverse a hash by either key or value may seem arbitrary and
will generally not be in the insertion order. If you attempt to access a hash with a key
that does not exist, the method will return nil.

Dept of CSE 81

SCRIPTING LANGUAGES AY: 2024-2025

Creating Hashes
As with arrays, there is a variety of ways to create hashes. You can create an empty

hash with the new class method —
months = Hash.new

#!/usr/bin/ruby

months = Hash.new("month")

puts "#{months[0]}"

puts "#{months[72]}"

This will produce the following result —
month

month

#!/usr/bin/ruby

H = Hash["a" => 100, "b" => 200]

puts "#{H['a']}"

puts "#{H['bT}"

This will produce the following result —
100

200

File 110

Ruby provides a whole set of 1/0-related methods implemented in the Kernel module.
All the 1/0 methods are derived from the class 10.

The class 10 provides all the basic methods, such as read, write, gets, puts, readline,
getc, and printf.

The puts Statement
In the previous chapters, you have assigned values to variables and then printed the

output using puts statement.

The puts statement instructs the program to display the value stored in the variable.
This will add a new line at the end of each line it writes.
#!/usr/bin/ruby

vall = "This is variable one"

val2 = "This is variable two"

puts vall

puts val2

This will produce the following result —

This is variable one

This is variable two

The gets Statement
The gets statement can be used to take any input from the user from standard screen

called STDIN.

Dept of CSE 82

SCRIPTING LANGUAGES AY: 2024-2025

Example
The following code shows you how to use the gets statement. This code will prompt

the user to enter a value, which will be stored in a variable val and finally will be
printed on STDOUT.

#!/usr/bin/ruby

puts "Enter a value :"

val = gets

puts val

This will produce the following result —

Enter a value :

This is entered value

This is entered value

The putc Statement
Unlike the puts statement, which outputs the entire string onto the screen, the putc

statement can be used to output one character at a time.

Example
The output of the following code is just the character H —

#!/usr/bin/ruby

str = "Hello Ruby!"

putc str

This will produce the following result —
H

The print Statement
The print statement is similar to the puts statement. The only difference is that the puts

statement goes to the next line after printing the contents, whereas with the print
statement the cursor is positioned on the same line.

#!/usr/bin/ruby

print "Hello World"

print "Good Morning"

This will produce the following result —

Hello WorldGood Morning

Opening and Closing Files

Until now, you have been reading and writing to the standard input and output. Now,

we will see how to play with actual data files.

The File.new Method
You can create a File object using File.new method for reading, writing, or both,

according to the mode string. Finally, you can use File.close method to close that file.

Syntax
aFile = File.new("filename", "mode™)

Dept of CSE 83

SCRIPTING LANGUAGES AY: 2024-2025

... process the file
aFile.close

The File.open Method
You can use File.open method to create a new file object and assign that file object to
a file. However, there is one difference in between File.open and File.new methods.
The difference is that the File.open method can be associated with a block, whereas
you cannot do the same using the File.new method.
File.open(**filename™, ""mode™) do |aFile|

... process the file
end
Here is a list of The Different Modes of opening a File —

Reading and Writing Files
The same methods that we've been using for 'simple' 1/O are available for all file

objects. So, gets reads a line from standard input, and aFile.gets reads a line from the
file object aFile.

The sysread Method
You can use the method sysread to read the contents of a file. You can open the file in

any of the modes when using the method sysread. For example —
Following is the input text file —
This is a simple text file for testing purpose.
Now let's try to read this file —
#!/usr/bin/ruby
aFile = File.new("input.txt", "r")
if aFile
content = aFile.sysread(20)
puts content
else
puts "Unable to open file!"
end
This statement will output the first 20 characters of the file. The file pointer will now
be placed at the 21st character in the file.

The syswrite Method
You can use the method syswrite to write the contents into a file. You need to open

the file in write mode when using the method syswrite. For example —
#!/usr/bin/ruby
aFile = File.new("input.txt", "r+")
if aFile
aFile.syswrite("ABCDEF")
else
puts “Unable to open file!"

Dept of CSE 84

SCRIPTING LANGUAGES AY: 2024-2025

end

Renaming and Deleting Files
You can rename and delete files programmatically with Ruby with the rename and

delete methods.

Following is the example to rename an existing file testl.txt —
#!/usr/bin/ruby

Rename a file from testl.txt to test2.txt

File.rename("testl.txt", "test2.txt")

Following is the example to delete an existing file test2.txt —
#!/usr/bin/ruby

Delete file test2.txt

File.delete("test2.txt")

Form Handling

Form
To create a form tag with the specified action, and with POST request, use the
following syntax —

<%= form_tag :action => 'update’, :id => @some_object %>

<%= form_tag({ :action => :save, }, { :method => :post }) %>
Use :multipart => true to define a MIME-multipart form (for file uploads).

<%= form_tag({:action => 'upload'}, :multipart => true) %>

File Upload

Define a multipart form in your view —

<%= form_tag({ :action => 'upload' }, :multipart => true) %>
Upload file: <%= file_field("form", "file") %>

<%= submit_tag("Upload file") %>
<%= end_form_tag %>
Handle the upload in the controller —

def upload
file_field = @params[‘form‘]['file'] rescue nil

file_field is a StringlO object
file_field.content_type # 'text/csv'
file_field.full_original_filename

end

Dept of CSE 85

SCRIPTING LANGUAGES AY: 2024-2025

Text Fields
To create a text field use the following syntax —

<%-=text_field :modelname, :attribute_name, options %>
Have a look at the following example —

<%-=text_field "person”, "name", "size" => 20 %>

This will generate following code —

<input type = "text" id = "person_name" name = "person[name]
size = "20" value = "<%= @person.name %>" />

To create hidden fields, use the following syntax;

<%= hidden_field ... %>

To create password fields, use the following syntax;

<%= password_field ... %> |

To create file upload fields, use the following syntax;

<%= file_field ... %> |

Text Area

To create a text area, use the following syntax —

\<%: text_area ... %> \

Have a look at the following example —

\<%: text_area "post", "body", "cols" => 20, "rows" => 40%> \

This will generate the following code —

<textarea cols = "20" rows = "40" id = "post_body" name =" post[body]">
<%={@post.body}%>

<[textarea>

Radio Button
To create a Radio Button, use the following syntax —

<%-=radio_button :modelname, :attribute, :tag_value, options %>
Have a look at the following example —

radio_button(*"post™, "category", "rails")
radio_button(*'post”, "category", "java")
This will generate the following code —
<input type = "radio" id = "post_category" name = "post[category]"
value = "rails" checked = "checked" />
<input type = "radio" id = "post_category" name = "post[category]" value = "java" />

Checkbox Button
To create a Checkbox Button use the following syntax —

<%= check_box :modelname, :attribute,options,on_value,off value%>
Have a look at the following example —

check_box("post", "validated")
This will generate the following code —

Dept of CSE

SCRIPTING LANGUAGES AY: 2024-2025

<input type = "checkbox" id = "post_validate" name = "post[validated]"
value = "1" checked = "checked" />
<input name = "post[validated]" type = "hidden" value ="0" />
Let's check another example —
check_box("puppy"”, "gooddog"”, {}, "yes", "no")
This will generate following code —
<input type = "checkbox" id = "puppy_gooddog" name = "puppy[gooddog]" value =
"yes" />
<input name = "puppy[gooddog]" type = "hidden" value = "no" />

Options

To create a dropdopwn list, use the following syntax —

\<%: select :variable,:attribute,choices,options,html_options%> \
Have a look at the following example —

\select("post", "person_id", Person.find(:all).collect {|p| [p.name, p.id] }) \
This could generate the following code. It depends on what value is available in your
database. —

<select name = "post[person_id]">
<option value = "1">David</option>
<option value = "2">Sam</option>
<option value = "3">Tobias</option>
</select>

Date Time
Following is the syntax to use data and time —

<%= date_select :variable, :attribute, options %>
<%-= datetime_select :variable, :attribute, options %>
Following are examples of usage —

<%-=date_select "post", "written_on"%>
<%-=date_select "user", "birthday", :start_year => 1910%>
<%-=date_select "user", "cc_date", :start_year => 2005,
:use_month_numbers => true, :discard_day => true, :order => [:year, :month]%>
<%-=datetime_select "post", "written_on"%>

End Form Tag
Use following syntax to create </form> tag —

<%= end_form_tag %>

Dept of CSE 87

	MALLAREDDY COLLEGE OF ENGINEERING & TECHNOLOGY
	Vision
	Mission
	PEO1–ANALYTICALSKILLS
	PEO2–TECHNICALSKILLS
	PEO3–SOFTSKILLS
	PEO4–PROFESSIONALETHICS

	PROGRAM OUTCOMES (POs)
	Engineering Graduates should possess the following:

