
DEPARTMENT OF COMPUTER SCIENCE AND 

ENGINEERING 

 
DIGITAL NOTES 

ON 

             SCRIPTING LANGUAGES 
R22A0518 

 

B. TECH  III  YEAR – II SEM    

(R22) REGULATION 

(2024-25) 

 

 

 

 

 

 

 

 

 

 
 

    Prepared by 
D SAI ESWARI 

Asst.Professor 

 

 

MALLAREDDY COLLEGE OF ENGINEERING & TECHNOLOGY 

(Autonomous Institution–UGC, Govt.of India) 
Recognized under2(f)and12(B) of UGC ACT1956 

(Affiliated to JNTUH,Hyderabad,ApprovedbyAICTE-AccreditedbyNBA&NAAC–‘A’Grade- 

ISO9001:2015Certified) 

         Maisammaguda, Dhulapally(PostVia.Hakimpet),Secunderabad–500100,TelanganaState,India 

 



 

 

 
 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

Vision 

To acknowledge quality education and instill high patterns of discipline making the 

students   technologically   superior   and   ethically     strong     which     involves the 

improvement in the quality of life in human race. 

 
Mission 

To achieve and impart holistic technical education using the best of infrastructure, 

outstanding technical and teaching expertise to establish the students into competent 

and confident engineers. 

 Evolving the center of excellence through creative and   innovative   teaching learning 

practicesforpromotingacademicachievementtoproduceinternationallyacceptedcompetiti

veand world class professionals. 



 

 

 

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) 

 
PEO1–ANALYTICALSKILLS 

To facilitate the graduates with the ability to visualize, gather information, articulate, analyze, 

solve complex problems, and make decisions. These are essential to address the challenges of 

complex and computation intensive problems increasing their productivity. 

PEO2–TECHNICALSKILLS 

Tofacilitatethegraduateswiththetechnicalskillsthatpreparethemforimmediateemploymentandpurs

ue certification providing a deeper understanding of the technology in advanced areas of 

computer science and related fields, thus encouraging pursuing higher education and research 

based on their interest. 

PEO3–SOFTSKILLS 

To facilitate the graduates with the soft skills that include fulfilling the mission, setting goals, 

showing  self confidence by communicating effectively, having a positive attitude, get 

involved in team-work, being a leader, managing their career and their life. 

PEO4–PROFESSIONALETHICS 

To facilitate the graduates with the knowledge of professional and ethical responsibilities by 

paying attention to grooming, being conservative with style, following dress codes, safety 

codes, and adapting them to technological advancements. 

 

PROGRAM SPECIFIC OUTCOMES (PSOs) 

After the completion of the course, B.Tech Computer Science and Engineering, the graduates 

will have the following Program Specific Outcomes: 

 
1. FundamentalsandcriticalknowledgeoftheComputerSystem:-

AbletoUnderstandtheworkingprinciples of the computer System and its components, Apply 

the knowledge to build, asses, and analyze the software and hardware aspects of it. 

 
2. The comprehensive and Applicative knowledge of Software Development: Comprehensive  

skills of Programming Languages, Software process models, methodologies, and able to plan,  

develop, test, analyze,  and  manage  the  software  and  hardware  intensive  systems in 

heterogeneous platforms individually or working in teams. 

 
3. Applications of Computing Domain & Research: Able to use the professional, managerial, 

interdisciplinary skill set, and domain specific tools in development processes, identify their 

search gaps, and provide innovative solutions to them. 



 

 

 

PROGRAM OUTCOMES (POs) 

Engineering Graduates should possess the following: 

 

1. Engineering knowledge:  Apply the  knowledge  of  mathematics,  science, engineering 

fundamentals,andanengineeringspecializationtothesolutionofcomplexengineeringproblems.  

 

2. Problem analysis: Identify, formulate, review research   literature,   and   analyze complex 

engineering  problems  reaching  substantiated  conclusions  using   first principles of 

mathematics, natural sciences, and engineering sciences. 

 

3. Design / development  of solutions:  Design  solutions for complex

 engineeringproblemsanddesignsystemcomponentsorprocessesthatmeetthespecifiedneedswit

happropriateconsideration for the public health  and safety, and the 

 cultural, societal, and environmental considerations. 

 

4. Conduct investigations of complex problems: Use research-based knowledge and research 

methods including design of experiments, analysis and interpretation of data, and synthesis of 

the information to provide valid conclusions. 

 

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern 

engineering and IT tools including prediction and modeling to complex engineering activities 

with an understanding of the limitations. 

 

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess 

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to 

the professional engineering practice. 

 

7. Environment and sustainability: Understand the impact of the professional engineering 

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need 

for sustainable development. 

 
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and 
norms of the engineering practice. 

 
9. Individual and team work: Function effectively as an individual, and as member or leader in 
diverse teams, and in multidisciplinary settings. 

 

10. Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend and write 

effective reports and design documentation, make effective presentations, and give and 

receive clear instructions. 

 

11. Project management and finance: Demonstrate knowledge and understanding of the 

engineering and management principles and apply these to one’s own work, as a member and 

leader in a team, to manage projects and in multidisciplinary environments. 

 
12. Life-long learning: Recognize the need for, and have the preparation and ability to engage 
in independent and life-long learning in the broadest context of technological change. 



 
 

SYLLABUS 
 

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY 
 

III Year B.Tech CSE-II SEM L/T/P/C 
 3/ -/ - /3 

(R22A0518) SCRIPTING LANGUAGES 

COURSE OBJECTIVES: 
This course will enable students to 
1. To study the basics of scripting languages like Java script, Perl, PHP and Ruby 

2. To understand the requirements of Scripting Languages 

3. To identify the uses of Scripting Languages 

4. To introduce in-depth knowledge of programming features of Perl and PHP. 

5. To state the implementation and applications of Scripting. 

 
UNIT- I 

Introduction to Scripts and Scripting Languages – Scripts and Programs, Uses for Scripting Languages, 

Web Scripting. 

JavaScript: Variables, DataTypes, Operators, Conditional statements, Loops, Arrays, Functions, 

Objects- Predefined objects, Accessing objects, Object Methods. 

 

U NIT- II 

JavaScript programming of reactive web pages elements: 

JavaScript Events- Mouse events, Keyboard events, Form events, window events, Event handlers, Frames, 

Form object, JavaScript Form Validation. 

UNIT- III 

PERL : Data Types, Variables, Scalars, Operators, Conditional statements , Loops, Arrays , 

Strings , Hashes , 
Lists , Built-in Functions, Pattern matching and regular expression operators. 

 

UNIT -IV 

PHP : Data Types, Variables, Operators, Conditional statements, Loops ,Arrays - Indexed 

Array, Associative 

Array, String Functions, Functions- Parameterized Function, Call By Value, all By Reference , 

File Handling, 

PHP Form handling. 

 
UNIT- V 

Ruby : Data types, Variables, Operators, Conditional statements, Loops, Methods, Blocks, Modules, 

Arrays, Strings, Hashes, File I/O, Ruby Form handling. 



 
 

TEXT BOOKS: 

1. The World of Scripting Languages, David Barron, Wiley Publications. 

2. Learning PHP, MySQL, JavaScript, CSS & HTML5: A Step-by-Step Guide to Creating 

DynamicWebsites 3rdEdition,O’ReillyPublications 

 

REFERENCE BOOKS: 

1. The Ruby Programming Language, David Flanagan and Yukihiro Matsumoto, O’Reilly Publications. 

2. Beginning JavaScript with Dom scripting and AJAX, Russ Ferguson, Christian Heilmann, Apress. 

3. Programming Perl, Larry Wall, T. Christiansen and J. Orwant, O’Reilly, SPD. 

4. Open Source Web Development with LAMP using Linux Apache, MySQL, Perl and PHP, 

J. Lee and B. Ware (Addison Wesley) Pearson Education. 

 
COURSE OUTCOMES: 

The students will be able: 

1. Comprehend the differences between typical scripting languages and typical system and 

application programming languages. 

2. To implement the design of programs for simple applications. 

3. To write and apply Perl & PHP scripts. 

4. Gain knowledge of the strengths and weakness of Perl, and Ruby. 

5. To create software systems using scripting languages such as Perl, PHP, and Ruby. 



 
 

INDEX 

 

 

UNIT 

 

TOPIC 

 
PAGE 
NO 

 

 

 

 

 

 
I 

Scripts and Programs 
6 

Web Scripting 7 

JavaScript – Variables & DataTypes 8 

Operators 9 

Control structures 12 

Arrays 16 

Functions 17 

Objects 18 

 

 

 

II 

JavaScript Events 21 

Event handlers 25 

Frames 26 

Form object 27 

JavaScript Form Validation 36 

 

 

 

 

 

 

 
III 

PERL 38 

Data Types 38 

Variables, Scalars 39 

Operators 42 

Conditional statements 46 

Loops 49 

Arrays 52 

Hashes 54 

Strings 57 

Lists 59 

Built-in Functions 59 

Pattern matching and  regular expression operators 60 



 
 

 

 

 

 

 

 

 

 
IV 

PHP - Variables 63 

Data Types 63 

Operators 64 

Conditional statements 67 

Loops 69 

Arrays 69 

String Functions 70 

Functions 71 

File Handling 73 

PHP Form handling 74 

 

 

 

 

 

 

 

 

 
V 

Ruby -Data types 76 

Variables 77 

Operators 77 

Conditional statements 80 

Loops 81 

Methods, Blocks, Modules 82 

Arrays 85 

Strings 86 

Hashes 86 

File I/O 87 

Ruby Form handling 90 

 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  1  

 

 

 

 

 

 

Scripting Languages 

Scripting languages, as the name suggests, is a programming language that supports 

scripts. A scripting language binds a set of software components that collaborate to 

solve a particular problem. Scripting assumes the existence of powerful components 

and provides the means to connect them together. Scripting languages are glue 

languages that integrate the execution of system utilities including compilers; 

command line interpretation; shell-based programming; and execution of codes 

written in web-based languages. The purpose of a scripting language is the 

development of applications by plugging existing components together and they 

generally favor high-level programming over execution speed. Scripting is used in a 

variety of applications, and scripting languages are correspondingly diverse. Python is 

a powerful scripting language for complex system involving operating system, 

networks, and web-based programming. 

Programming Languages 

A programming language is an organized way of communicating with a computer, 

such that the computer behaves according to the instructions given by the 

programmer. A programming language is an artificial formalism in which algorithms 

can be expressed. In the modern era, the problems to be solved by computers lie in 

different problem domains such as scientific computing, database programming, 

business applications, process automation, and web-based applications. All these 

domains are quite different with varied requirements. A programming language is a 

specific set of instructions given to a computer in a language that the computer 

understands to perform specific tasks. Today’s programming languages are the 

product of development that started in the 1950s. The term programming languages 

usually refer to high-level languages such as C++, Java, Ada, Pascal, and FORTRAN. 

Uses for scripting languages 

The functions and applications of scripting languages vary based on the type of 

scripting language you're using. There are many uses for scripting languages, 

including: 

• Task automation: Programmers often use scripting languages to automate task 

execution within a runtime environment. This involves writing code that allows 

individuals to use software to complete repetitive, predictable and 

straightforward tasks, such as paying bills from an account and sending 

notifications via email. 

• Content display for web applications: Programmers use scripting to ensure 

programs run correctly on the server and display the functional and interactive 

UNIT-I: 

Introduction to Scripts and Scripting Languages: Scripts and Programs, Uses for Scripting 

Languages, Web Scripting.  

JavaScript: Variables, Data Types, Operators, Conditional statements, Loops, Arrays, Functions, 

Objects- Predefined objects, Accessing objects, Object Methods. 

http://www.differencebetween.net/language/difference-between-solve-and-resolve/
http://www.differencebetween.net/technology/difference-between-a-server-and-database/


SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  2  

content on a webpage, such as images and links. 

• Command sequences: Many programmers apply scripting languages to 

condense command sequences, allowing the program to run faster and 

improving the functionality of parent applications. 

• Data extraction: Programmers use scripting languages to pull data from data 

sets, such as in data analysis, research and statistics. 

• Dynamic web apps: Programmers use a variety of scripting languages to power 

webpages and applications on the server side with efficient code and clear 

instructions for displaying dynamic content, which is data that changes based 

on the user's behavior or preferences. 

• System administration: When administrators want to generate and pull data, 

guide user queries and improve systems, they use scripting languages. 

• Game modding: Game modification creators use scripting languages to make 

custom content for games with unique functionality and designs that improve 

regular gameplay. 

Web Scripting 

• The process of creating and embedding scripts in a web page is known as web- 

scripting. A script or a computer-script is a list of commands that are embedded 

in a web-page normally and are interpreted and executed by a certain program 

or scripting engine. 

• Scripts may be written for a variety of purposes such as for automating 

processes on a local-computer or to generate web pages. 

• The programming languages in which scripts are written are called scripting 

language, there are many scripting languages available today. 

• Common scripting languages are VBScript, JavaScript, ASP, PHP, PERL, JSP 

etc. 

Java Script 

JavaScript (JS) is the world’s most popular lightweight, interpreted compiled 

programming language. It is also known as a scripting language for web pages. It can 

be used for Client-side as well as Server-side developments.JavaScript is the most 

popular and hence the most loved language around the globe. Apart from this, there 

are abundant reasons to learn it. 

Below are a listing of few important points: 

• No need of compilers: Since JavaScript is an interpreted language, therefore it 

does not need any compiler for compilations. 

• Used both Client and Server-side: Earlier JavaScript was used to build client- 

side applications only, but with the evolution of its frameworks namely Node.js 

and Express.js, it is now widely used for building server-side applications too. 

https://www.geeksforgeeks.org/vbscript-introduction/
https://www.geeksforgeeks.org/javascript-tutorial/
https://www.geeksforgeeks.org/asp-full-form/
https://www.geeksforgeeks.org/php/
https://www.geeksforgeeks.org/perl-programming-language/
https://www.geeksforgeeks.org/introduction-to-jsp/
https://www.geeksforgeeks.org/server-side-client-side-programming/
https://www.geeksforgeeks.org/server-side-client-side-programming/


SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  3  

• Helps to build a complete solution: As we saw, JavaScript is widely used in 

both client and server-side applications, therefore it helps us to build an end-to- 

end solution to a given problem. 

• Used everywhere: JavaScript is so loved because it can be used anywhere. It 

can be used to develop websites, games or mobile apps, etc. 

• Huge community support: JavaScript has a huge community of users and 

mentors who love this language and take it’s legacy forward. 

 

Variables 

Variables are containers for storing data (storing data values). 

Declare a JavaScript Variable: 

• Using var 

• Using let 

• Using const 

declared with the var keyword: 

var x=5; 

var y=6; 

var z=x+y; 
o/p: The value of z is: 11 

In this example, x, y, and z, are variables, declared with the let keyword: 

let x=5; 

let y=6; 

let z=x+y; 
o/p: The value of z is: 11 

If you want a general rule: always declare variables with const. 

If you think the value of the variable can change, use let. 

const p1=5; 

const p2=6; 

Let tot=p1=p2; 

o/p: The total is: 11 

 

Datatypes 

• Numbers: Represent both integer and floating-point numbers. Example: 5, 6.5, 

7 etc. 

• String: A string is a sequence of characters. In JavaScript, strings can be 

enclosed within the single or double quotes. Example: “Hello GeeksforGeeks” 

etc. 

• Boolean: Represent a logical entity and can have two values: true or false. 

• Null: This type has only one value: null. It is left intentionally so that it shows 

something that does not exist. 

• Undefined: A variable that has not been assigned a value is undefined. 

https://www.geeksforgeeks.org/javascript-numbers/
https://www.geeksforgeeks.org/javascript-strings/
https://www.geeksforgeeks.org/javascript-boolean/
https://www.geeksforgeeks.org/null-in-javascript/
https://www.geeksforgeeks.org/javascript-undefined-property/


SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  4  

• Symbol: Unlike other primitive data types, it does not have any literal form. It 

is a built-in object whose constructor returns a symbol-that is unique. 

• bigint: The bigint type represents the whole numbers that are larger than 253-1. 

To form a bigint literal number, you append the letter n at the end of the 

number. 

• Object: It is the most important data-type and forms the building blocks for 

modern JavaScript. We will learn about these data types in detail in further 

articles. 

 
Operators 

JavaScript operators are symbols that are used to perform operations on operands. For 

example: 

1. var sum=10+20; 

Here, + is the arithmetic operator and = is the assignment operator. 

There are following types of operators in JavaScript. 

1. Arithmetic Operators 

2. Comparison (Relational) Operators 

3. Bitwise Operators 

4. Logical Operators 

5. Assignment Operators 

6. Special Operators 

Arithmetic Operators 

Arithmetic operators are used to perform arithmetic operations on the operands. The 

following operators are known as JavaScript arithmetic operators. 

https://www.geeksforgeeks.org/bigint-in-javascript/
https://www.geeksforgeeks.org/objects-in-javascript/


SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  5  

Comparison operators 
 

 

 
 

Bitwise operators 
 

 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  6  

 

 
 

 

Assignment Operators 
 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  7  

 

Conditional Statements 

There are three forms of if statement in JavaScript. 

1. If Statement 

2. If else statement 

3. if else if statement 
 

If statement 

It evaluates the content only if expression is true. The signature of JavaScript if 

statement is given below. 

if(expression) 

{ 

//content to be evaluated 

} 

<script> 

var a=20; 

if(a>10){ 

document.write("value of a is greater than 10"); 

} 

</script> 

Output of the above example 

value of a is greater than 10 
 

If...else Statement 

It evaluates the content whether condition is true of false. The syntax of JavaScript if- 

else statement is given below. 

 
if(expression) 

{ 

 
} 

else 

{ 

 
} 

//content to be evaluated if condition is true 

 

 

 

//content to be evaluated if condition is false 

<script> 

var a=20; 

if(a%2==0) 

{ 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  8  

 
} 

else 

{ 

 
} 

document.write("a is even number"); 

 

 

 

document.write("a is odd number"); 

</script> 

Output of the above example 

a is even number 
 

If...else if statement 

It evaluates the content only if expression is true from several expressions. 

The signature of JavaScript if else if statement is given below. 

if(expression1) 

{ 

//content to be evaluated if expression1 is true 

} 

else if(expression2) 

{ 

//content to be evaluated if expression2 is true 

} 

else if(expression3) 

{ 

//content to be evaluated if expression3 is true 

} 

else 

{ 

//content to be evaluated if no expression is true 

} 

 
Let’s see the simple example of if else if statement in javascript. 

<script> 

var a=20; 

if(a==10) 

{ 

document.write("a is equal to 10"); 

} 

else if(a==15){ document.write("a is equal to 15"); 

} 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  9  

else if(a==20){ 

document.write("a is equal to 20"); 

} 

else{ 

document.write("a is not equal to 10, 15 or 20"); 

} 

</script> 

Output : 

a is equal to 20 

 
Loops 

loops are used to iterate the piece of code using for, while, do while or for-in loops. It 

makes the code compact. It is mostly used in array. 

There are four types of loops in JavaScript. 

1. for loop 

2. while loop 

3. do-while loop 

For loop 

The for loop iterates the elements for the fixed number of times. It should be used if 

number of iteration is known. The syntax of for loop is given below. 

for (initialization; condition; increment) 

{ 

code to be executed 

} 

<script> 

for (i=1; i<=5; i++) 

{ 

document.write(i + "<br/>") 

} 

</script> 

 
Output: 

1 

2 

3 

4 

5 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  10  

while loop 

The while loop iterates the elements for the infinite number of times. It should be 

used if number of iteration is not known. The syntax of while loop is given below. 

while (condition) 

{ 

code to be executed 

} 

Let’s see the simple example of while loop in javascript. 

<script> 

var i=11; 

while (i<=15) 

{ 

document.write(i + "<br/>"); 

i++; 

} 

</script> 

Output: 

11 

12 

13 

14 

15 

do while loop 

The do while loop iterates the elements for the infinite number of times like while 

loop. But, code is executed at least once whether condition is true or false. The syntax 

of do while loop is given below. 

do{ 

code to be executed 

}while (condition); 

<script> 

var i=21; 

do{ 

document.write(i + "<br/>"); 

i++; 

}while (i<=25); 

</script> 

Output: 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  11  

21 

22 

23 

24 

25 

 
Arrays 

 

array is an object that represents a collection of similar type of elements. 

The syntax of creating array 

 
var arrayname=new Array(); 

Here, new keyword is used to create instance of array. 

Let's see the example of creating array directly. 

<script> 

var i; 

var emp = new Array(); 

emp[0] = "Arun"; 

emp[1] = "Varun"; 

emp[2] = "John"; 

for (i=0;i<emp.length;i++){ 

document.write(emp[i] + "<br>"); 

} 

</script> 

Output of the above example 

 
Arun 

Varun 

John 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  12  

Functions 

functions are used to perform operations. We can call JavaScript function many times 

to reuse the code. 

Advantage of JavaScript function 

There are mainly two advantages of JavaScript functions. 

1. Code reusability: We can call a function several times so it save coding. 

2. Less coding: It makes our program compact. We don’t need to write many 

lines of code each time to perform a common task. 

Function Syntax 

The syntax of declaring function is given below. 

1. function functionName([arg1, arg2, ...argN]){ 

2. //code to be executed 

3. } 

Let’s see the simple example of function in JavaScript that does not has arguments. 

<script> 

function msg(){ 

alert("hello! this is message"); 

} 

</script> 

<input type="button" onclick="msg()" value="call function"/> 
 

Function Arguments 

We can call function by passing arguments. Let’s see the example of function that has 

one argument. 

<script> 

function getcube(number){ 

alert(number*number*number); 

} 

</script> 

<form> 

<input type="button" value="click" onclick="getcube(4)"/> 

</form> 
 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  13  

Function with Return Value 

We can call function that returns a value and use it in our program. Let’s see the 

example of function that returns value. 

<script> 

function getInfo(){ 

return "hello javatpoint! How r u?"; 

} 

</script> 

<script> 

document.write(getInfo()); 

</script> 

o/p:hello javatpoint! How r u? 

JavaScript Objects 

A javaScript object is an entity having state and behavior (properties and method). For 

example: car, pen, bike, chair, glass, keyboard, monitor etc. 

JavaScript is an object-based language. Everything is an object in JavaScript. 

JavaScript is template based not class based. Here, we don't create class to get the 

object. But, we direct create objects. 

 
Creating Objects 

By creating instance of Object 

The syntax of creating object directly is given below: 

1. var objectname=new Object(); 

Here, new keyword is used to create object. 

Let’s see the example of creating object directly. 

1. <script> 

2. var emp=new Object(); 

3. emp.id=101; 

4. emp.name="Ravi Malik"; 

5. emp.salary=50000; 

6. document.write(emp.id+" "+emp.name+" "+emp.salary); 

7. </script> 

o/p:101 Ravi 50000 

Accessing objects 

A common way to access the property of an object is the dot property accessor syntax: 

expression.identifier 

expression should evaluate to an object, and identifier is the name of the property 

you'd like to access. 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  14  

Predefined objects 

Fundamental objects: 

• Object 

• Function 

• Boolean 

• Symbol 

Error objects 

Error objects are a special type of fundamental object. They include the basic 

Error type, as well as several specialized error types. 

• Error 

• AggregateError 

• EvalError 

• RangeError 

• ReferenceError 

Number and date objects 

These are the base objects representing numbers, dates, and mathematical 

calculations. 

• Number 

• BigInt 

• Math 

• Date 

 
Text processing objects 

These objects represent strings and support manipulating them. 

• String 

• RegExp 

Keyed collections 

These objects represent collections which use keys. The iterable collections 

(Map and Set) contain elements which are easily iterated in the order of 

insertion. 

• Map 

• Set 

• WeakMap 

• WeakSet 

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/AggregateError
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/EvalError
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RangeError
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ReferenceError
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakSet


SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  15  

Object methods 

 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  16  

 

 
 

Events: 

HTML events are "things" that happen to HTML elements. 

When JavaScript is used in HTML pages, JavaScript can "react" on these events. 

HTML Events 

An HTML event can be something the browser does, or something a user does. 

Here are some examples of HTML events: 

• An HTML web page has finished loading 

• An HTML input field was changed 

• An HTML button was clicked 

Often, when events happen, you may want to do something. 

JavaScript lets you execute code when events are detected. 

HTML allows event handler attributes, with JavaScript code, to be added to HTML 

elements. 

With single quotes: 

<element event='some JavaScript'> 

With double quotes: 
<element event="some JavaScript"> 

In the following example, an onclick attribute (with code), is added to 

a <button> element: 

<button onclick="document.getElementById('demo').innerHTML = Date()">The time 

is?</button> 

 
Mouse events: 

Events that occur when the mouse interacts with the HTML document belongs to the 

MouseEvent Object. 

UNIT- II  

JavaScript programming of reactive web pages elements: JavaScript Events- Mouse events, Keyboard 

events, Form events, window events, Event handlers, Frames, Form object, JavaScript Form 

Validation. 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  17  

 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  18  

 

Keyboard events 

 

Events that occur when user presses a key on the keyboard, belongs to the 

KeyboardEvent Object. 

 

 

 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  19  

 

 
 

 
 

 
 

 

 
 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  20  

 

Event handlers 

To allow you to run your bits of code when these events occur, JavaScript provides us 

with event handlers. All the event handlers in JavaScript start with the word on, and 

each event handler deals with a certain type of event. Here’s a list of all the event 

handlers in JavaScript, along with the objects they apply to and the events that trigger 

them: 

 

 

 

 

 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  21  

 

 

 

 

 

Frames 

• Frame object represents an HTML frame which defines one particular 

window(frame) within a frameset. 

• It defines the set of frame that make up the browser window. 

• Itisapropertyofthewindowobject. 

Syntax:<frame> 

• It has no end tag but they need to be closed properly. 

• It is an HTML element. 

• It defines a particular area in which another HTML document can be displayed. 

• A frame should be used within a <FRAMESET> tag. 
 

 

 

 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  22  

Form Object 

form object is a Browser object of JavaScript used to access an HTML form. If a user 

wants to access all forms within a document then he can use the forms array. The form 

object is actually a property of document object that is uniquely created by the 

browser for each form present in a document. The properties and methods associated 

with form object are used to access the form fields, attributes and controls associated 

with forms. 

Properties of Form Object: 

• action 

• elements[] 

• encoding 

• length 

• method 

• name 

• target 

• button 

• checkbox 

• FileUpload 

• hidden 

• password 

action: 

action property of form object is used to access the action attribute present in HTML 

associated with the <form> tag. This property is a read or write property and its value 

is a string. 

elements[]: 

elements property of form object is an array used to access any element of the form. It 

contains all fields and controls present in the form. The user can access any element 

associated with the form by using the looping concept on the elements array. 

encoding: 

The encoding property of a form object is used to access the enctype attribute present 

in HTML associated with the <form> tag. This property is a read or write property 

and its value is a string. This property helps determine the way of encoding the form 

data. 

length: 

length property of form object is used to specify the number of elements in the form. 

This denotes the length of the elements array associated with the form. 

method: 

method property of form object is used to access the method attribute present in 

HTML associated with the <form> tag. This property is a read or write property and 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  23  

its value is a string. This property helps determine the method by which the form is 

submitted. 

name: 

name property of form object denotes the form name. 

target: 

target property of form object is used to access the target attribute present in HTML 

associated with the <form> tag. This property denotes the name of the target window 

to which form it is to be submitted into. 

button: 

The button property of form object denotes the button GUI control placed in the form. 

checkbox: 

checkbox property of form object denotes the checkbox field placed in the form. 

FileUpload: 

FileUpload property of form object denotes the file upload field placed in the form.. 

hidden: 

The hidden property of form object denotes the hidden field placed in the form. 

password: 

password property of form object denotes the object that is placed as a password field 

in the form. 

 
Form Object 

 
• Form object represents an HTML form. 

• It is used to collect user input through elements like text fields, check box and radio 

button, select option, text area, submit buttons and etc. 

 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  24  

 
 

 

 

Hidden Object 

• Hidden object represents a hidden input field in an HTML form and it is invisible to 

the user. 

• This object can be placed anywhere on the web page. 

• It is used to send hidden form of data to a server. 
 

 
 

 

 

 

Password Object 

 
• Password object represents a single-line password field in an HTML form. 

• The content of a password field will be masked – appears as spots or asterisks in the 

browser using password object. 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  25  

 

 
 

 

 

 

 
 

 

 

 

Checkbox Object 

• Check box object represents a checkbox in an HTML form. 

• It allows the user to select one or more options from the available choices. 

 

 
 

Checkbox Object Properties 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  26  

 

 
 

 

 

 

 

 

 

 

 

 

Select Object 

• Select object represents a dropdown list in an HTML form. 

• It allows the user to select one or more options from the available choices. 
 

 

 
 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  27  

Select Object Properties 
 
 

 

 

 
Select Object Methods 

 

 

 

Option Object 

• Option object represents an HTML <option> element. 

• It is used to add items to a select element. 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  28  

 

 
 

 

 

<html> 

<head> 

<script type="text/javascript"> 

function optionfruit(select) 

{ 
var a = select.selectedIndex; 

var fav = select.options[a].value; 

if(a==0) 

{ 
alert("Please select a fruit"); 

} 

else 

{ 

document.write("Your Favorite Fruit is <b>"+fav+".</b>"); 

} 

} 
</script> 

</head> 

<body> 

<form> 

List of Fruits: 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  29  

<select name="fruit"> 

<option value="0">Select a Fruit</option> 

<option value="Mango">Mango</option> 

<option value="Apple">Apple</option> 

<option value="Banana">Banana</option> 

<option value="Strawberry">Strawberry</option> 

<option value="Orange">Orange</option> 

</select> 

<input type="button" value="Select" onClick="optionfruit(this.form.fruit);"> 

</form> 

</body> 

</html> 

 

Output: 

 

 

 

 

 

 

Your Favorite Fruit is Mango. 

Radio Object 

 

Radio object represents a radio button in an HTML form. 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  30  

 
 

 

Text Object 

Text object represents a single-line text input field in an HTML form. 
 

 

 
 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  31  

 

 
 

Textarea Object 

Textarea object represents a text-area in an HTML form. 
 

 

 

 

 

 

 
JavaScript Form Validation 

HTML form validation can be done by JavaScript. 

If a form field (fname) is empty, this function alerts a message, and returns false, to 

prevent the form from being submitted: 

functionvalidateForm(){ 

letx=document.forms["myForm"]["fname"].value; 

if(x==""){ 

alert("Namemustbefilledout"); 

returnfalse; 
} 

} 

The function can be called when the form is submitted: 

HTML Form Example 

<formname="myForm"action="/action_page.php"onsubmit="return 

validateForm()"method="post"> 

Name:<inputtype="text"name="fname"> 

<inputtype="submit"value="Submit"> 

</form> 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  32  

JavaScript Can Validate Numeric Input 

JavaScript is often used to validate numeric input: 
 
 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  33  

 

 

Perl is a general purpose, high level interpreted and dynamic programming language. 

Perl supports both the procedural and Object-Oriented programming. Perl is a lot 

similar to C syntactically and is easy for the users who have knowledge of C, C++. 

Since Perl is a lot similar to other widely used languages syntactically, it is easier to 

code and learn in Perl. Programs can be written in Perl in any of the widely used text 

editors like Notepad++, gedit, etc. 

 
Data types 

There are different data types available in Perl for different purposes. Some of them 

have been presented below: 

• Boolean 

• Integer 

• Float 

• Array 

• String 

Unlike other languages such as C++ or Java, Perl does not require defining variables 

along with a specific data type. The type of a variable is picked based on the value 

assigned to it. 

Here is a brief overview of the types: 
 

Boolean 

Boolean data type is used to store true or false values. The numeric value 0 is used to 

represent false, whereas any other numeric value represents true. Let’s look at the 

code below: 

$false = 0; # reutrns false 

$true = 1; # any values greater or less than 0 returns true 
 

Integer 

An integer is a positive or negative whole number. Perl allows you to assign integer 

constants in decimal, hexadecimal, octal or binary numbering systems. Consider the 

following code: 

$negative = -3; # negative 

$zero = 0; # zero (can also be false, if used as a Boolean 

$positive = 123; # positive decimal 

$zeroPos = 0123; #0 prefix is used to sepcify octal - octal value = 83 decimal $hex = 

0xAB; #0x prefix is used to specify hexadecimal - hexadecimal value = 171 decimal 

$bin = 0b1010; # 0b prefix is used to specify binary - binary value = 10 decimal print 

$negative," " ,$zero," " , $positive," " , $zeroPos," " , $hex," " , $bin; 

UNIT- III  

PERL: Data Types, Variables, Scalars, Operators, Conditional statements ,Loops, Arrays , Strings , 

Hashes , Lists , Built-in Functions, Pattern matching and regular expression operators. 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  34  

Output 

-3 0 123 83 171 10 
 

Float 

Floating point numbers, doubles or simply called floats are decimal numbers. 

$float1 = 1.23; 

$float2 = 10.0000001; 

print $float1," ",$float2; 

Output 

1.23 10.0000001 
 

Array 

An array is like a list of values (similar or of different data types). The simplest form 

of an array is indexed by an integer, and ordered by the index, with the first element 

lying at index 0. We use @ to initiate an array with values enclosed in () pair of 

parenthesis. Look at the following code: 

@intarray = (1, 2, 3); 

# An array of integers print "@intarray \n"; 

@floatarray = (1.123, 2.356, 19.76); 

# An array of floats print "@floatarray \n"; 

@chararray = ('a', 'b','c'); 

# An array of characters print "@chararray \n"; 

@mixed = (1, 2, 3, 'a', 'b', 'c'); 

#contains both characters and numbers print "@mixed"; 

Output 

1 2 3 1.123 2.356 19.76 a b c 1 2 3 a b c 
 

String 

A string is an array of characters. We can declare a string using either single quotes (') 

or double quotes ("). 

$string1 = "A quick brown fox jumps over the lazy dog"; 

print $string1; 

Output 

A quick brown fox jumps over the lazy dog 

Variables 

A variable in any programming language is a named piece of computer memory to 

hold some program data. Variables are an essential part of a computer program. 

You can declare a variable in Perl using a $ sign followed by its name, e.g., $myVar. 

onsider the following Perl code where we store data in variables and display them on 

the screen. 

$string = "This is a string."; 

# stores string 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  35  

$int = 5; 

# stores an integer 

$float = 5.7; 

# stores a floating point type value 

$char = 'a'; 

# stores character type value 

print $string, "\n"; 

print "An integer type: ", $int, "\n"; 

print "A float type: ", $float, "\n"; 

print "A character type: ", $char, "\n"; 

 
 

Output 

This is a string. An integer type: 5 A float type: 5.7 A character type: a 

scalars 

A scalar is a single unit of data. That data might be an integer number, floating point, 

a character, a string, a paragraph, or an entire web page. 

Here is a simple example of using scalar variables − 

#!/usr/bin/perl 

$age = 25; # An integer assignment 

$name = "John Paul"; # A string 

$salary = 1445.50; # A floating point 

print "Age = $age\n"; 

print "Name = $name\n"; 

print "Salary = $salary\n"; 

This will produce the following result − 

Age = 25 

Name = John Paul 

Salary = 1445.5 

Numeric Scalars 

A scalar is most often either a number or a string. Following example demonstrates 

the usage of various types of numeric scalars − 

#!/usr/bin/perl 

$integer = 200; 

$negative = -300; 

$floating = 200.340; 

$bigfloat = -1.2E-23; 

# 377 octal, same as 255 decimal 

$octal = 0377; 

# FF hex, also 255 decimal 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  36  

$hexa = 0xff; 

print "integer = $integer\n"; 

print "negative = $negative\n"; 

print "floating = $floating\n"; 

print "bigfloat = $bigfloat\n"; 

print "octal = $octal\n"; 

print "hexa = $hexa\n"; 

This will produce the following result − 

integer = 200 

negative = -300 

floating = 200.34 

bigfloat = -1.2e-23 

octal = 255 

hexa = 255 

String Scalars 

Following example demonstrates the usage of various types of string scalars. Notice 

the difference between single quoted strings and double quoted strings − 

#!/usr/bin/perl 

$var = "This is string scalar!"; 

$quote = 'I m inside single quote - $var'; 

$double = "This is inside single quote - $var"; 

$escape = "This example of escape -\tHello, World!"; 

print "var = $var\n"; 

print "quote = $quote\n"; 

print "double = $double\n"; 

print "escape = $escape\n"; 

This will produce the following result − 

var = This is string scalar! 

quote = I m inside single quote - $var 

double = This is inside single quote - This is string scalar! 

escape = This example of escape - Hello, World 

Scalar Operations 

You will see a detail of various operators available in Perl in a separate chapter, but 

here we are going to list down few numeric and string operations. 

#!/usr/bin/perl 

$str = "hello" . "world"; # Concatenates strings. 

$num = 5 + 10; # adds two numbers. 

$mul = 4 * 5; # multiplies two numbers. 

$mix = $str . $num; # concatenates string and number. 

print "str = $str\n"; 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  37  

print "num = $num\n"; 

print "mul = $mul\n"; 

print "mix = $mix\n"; 

This will produce the following result − 

str = helloworld 

num = 15 

mul = 20 

mix = helloworld15 

Multiline Strings 

If you want to introduce multiline strings into your programs, you can use the standard 

single quotes as below − 

#!/usr/bin/perl 

$string = 'This is 

a multiline 

string'; 

print "$string\n"; 

This will produce the following result − 

This is 

a multiline 

string 

 
Operators 

4 + 5 is equal to 9. Here 4 and 5 are called operands and + is called operator. Perl 

language supports many operator types, but following is a list of important and most 

frequently used operators − 

• Numeric operators 

• String operators 

• Logical operators 

• Bitwise operators 

• Special operators 

• Comparison operators 

• Assignment operators 

Numeric operators 

Numeric operators are the standard arithmetic operators like addition (+), subtraction 

(-), multiplication (*), division (/) and modulo (%), etc. 

String operators 

String operators are positive and negative regular expression with repetition (=~ and 

!~) and concatenation ( .). 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  38  

String Concatenation operator 

use 5.010; 

use strict; 

use warnings; 

my $result = "Hello this is " . "JavaTpoint."; 

say $result; 

output: 

Hello this is JavaTpoint. 

String Repetition operator 

use 5.010; 

use strict; 

use warnings; 

my $result = "Thank You " x 3; 

say $result; 

output: 

Thank You Thank You Thank You. 

Here, note that on the right of 'x' it must be an integer. 

There should be space on either side of the 'x' operator. 

For example, 

$result = "Thank You " x 3; # This is correct 

1. $result = "Thank You "x3;  # This is incorrect 

 
Logical operators 

Logical operators give a Boolean value to their operands. They are (&&, || and or). 

&& -> In && operator, if $a is 0, then value of $a && $b must be false irrespective 

of the value of $b. So perl does not bother to check $b value. This is called short- 

circuit evaluation. 

|| -> In || operator, if $a is non-zero, then value of $a && $b must be true irrespective 

of the value of $b. So perl does not bother to check $b value. 

Example: 

use 5.010; 

use strict; 

use warnings; 

$a = 0; 

$b = 12; 

my $result1 = $a && $b; 

say $result1; 

$a = 12; 

$b = 14; 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  39  

my $result2 = $a || $b; 

say $result2; 

Output: 

0 

12 

Bitwise operators 

Bitwise operators treat their operands numerically at bit level. These are (<<, >>, &, |, 

^, <<=, >>=, &=, |=, ^=). 

Every number will be denoted in terms of 0s and 1s. Initially integers will be 

converted into binary bit and result will be evaluated. Final result will be displayed in 

the integer form. 

Example: 

use 5.010; 

use strict; 

use warnings; 

#OR operator 

my $result1 = 124.3 | 99; 

say $result1; 

#AND operator 

my $result2 = 124.3 & 99; 

say $result2; 

#XOR operator 

my $result3 = 124.3 ^ 99; 

say $result3; 

#Shift operator 

my $result4 = 124 >> 3; 

say $result4; 

Output: 

127 

96 

31 

15 

Special operators 

The auto-increment (++) operator is a special operator that increments the numeric 

character itself by 1. 

Example: 

use 5.010; 

use strict; 

use warnings; 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  40  

my $num = 9; 

my $str = 'x'; 

$num++; 

$str++; 

say $num++; 

say $str++; 

Output: 

10 

Y 

Comparison operators 

The comparison operator compares the values of its operands. These are ( ==, <, <=, 

>, >=, <=>, !=). 

Example: 

use 5.010; 

use strict; 

use warnings; 

say "Enter your salary:"; 

my $salary = <>; 

if($salary >= 20000) 

{ 

say "You are earning well"; 

} else { 

say "You are not earning well"; 

} 

Output: 

Enter your salary: 

15000 

You are not earning well 

 
Assignment operators 

The assignment operator assigns a value to a variable. 

These are (=, +=, -=, *=, /=, |=, &=, %=) 

Example: 

use 5.010; 

use strict; 

use warnings; 

$a = 20; 

my $result1 = $a += $a; 

say $result1; 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  41  

my $result2 = $a -= 10; 

say $result2; 

my $result3 = $a |= 10; 

say $result3; 

my $result4 = $a &= 10; 

say $result4; 

output: 

40 

30 

30 

10 

 
Conditional Statements 

Perl conditional statements helps in the decision making, which require that the 

programmer specifies one or more conditions to be evaluated or tested by the 

program, along with a statement or statements to be executed if the condition is 

determined to be true, and optionally, other statements to be executed if the condition 

is determined to be false. 

A Perl if statement consists of a boolean expression followed by one or more 

statements. 

Syntax 

The syntax of an if statement in Perl programming language is − 

if(boolean_expression) { 

# statement(s) will execute if the given condition is true 

} 

If the boolean expression evaluates to true then the block of code inside the if 

statement will be executed. If boolean expression evaluates to false then the first set of 

code after the end of the if statement (after the closing curly brace) will be executed. 

The number 0, the strings '0' and "" , the empty list () , and undef are all false in a 

boolean context and all other values are true. Negation of a true value by ! or not 

returns a special false value. 

#!/usr/local/bin/perl 

$a = 10; 

# check the boolean condition using if statement 

if( $a < 20 ) { 

# if condition is true then print the following 

printf "a is less than 20\n"; 

} 

print "value of a is : $a\n"; 

$a = ""; 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  42  

# check the boolean condition using if statement 

if( $a ) { 

# if condition is true then print the following 

printf "a has a true value\n"; 

} 

print "value of a is : $a\n"; 

o/p: 

a is less than 20 

value of a is : 10 

value of a is : 

if-else 

A Perl if statement can be followed by an optional else statement, which executes 

when the boolean expression is false. 

Syntax 

The syntax of an if...else statement in Perl programming language is − 

if(boolean_expression) { 

# statement(s) will execute if the given condition is true 

} else { 

# statement(s) will execute if the given condition is false 

} 

If the boolean expression evaluates to true, then the if block of code will be executed 

otherwise else block of code will be executed. 

The number 0, the strings '0' and "" , the empty list () , and undef are all false in a 

boolean context and all other values are true. Negation of a true value by ! or not 

returns a special false value. 

#!/usr/local/bin/perl 

$a = 100; 

# check the boolean condition using if statement 

if( $a < 20 ) { 

# if condition is true then print the following 

printf "a is less than 20\n"; 

} else { 

# if condition is false then print the following 

printf "a is greater than 20\n"; 

} 

print "value of a is : $a\n"; 

$a = ""; 

# check the boolean condition using if statement 

if( $a ) { 

# if condition is true then print the following 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  43  

printf "a has a true value\n"; 

} else { 

# if condition is false then print the following 

printf "a has a false value\n"; 

} 

print "value of a is : $a\n"; 

When the above code is executed, it produces the following result − 

a is greater than 20 

value of a is : 100 

a has a false value 

value of a is : 

if-elsif-else 

An if statement can be followed by an optional elsif...else statement, which is very 

useful to test the various conditions using single if...elsif statement. 

When using if , elsif , else statements there are few points to keep in mind. 

• An if can have zero or one else's and it must come after any elsif's. 

• An if can have zero to many elsif's and they must come before the else. 

• Once an elsif succeeds, none of the remaining elsif's or else's will be tested. 

Syntax 

The syntax of an if...elsif...else statement in Perl programming language is − 

if(boolean_expression 1) { 

# Executes when the boolean expression 1 is true 

} elsif( boolean_expression 2) { 

# Executes when the boolean expression 2 is true 

} elsif( boolean_expression 3) { 

# Executes when the boolean expression 3 is true 

} else { 

# Executes when the none of the above condition is true 

} 

#!/usr/local/bin/perl 

$a = 100; 

# check the boolean condition using if statement 

if( $a == 20 ) { 

# if condition is true then print the following 

printf "a has a value which is 20\n"; 

} elsif( $a == 30 ) { 

# if condition is true then print the following 

printf "a has a value which is 30\n"; 

} else { 

# if none of the above conditions is true 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  44  

printf "a has a value which is $a\n"; 

} 

o/p:a has a value which is 100 

 

Loops 

Perl programming language provides the following types of loop to handle the looping 

requirements. 

A while loop statement in Perl programming language repeatedly executes a target 

statement as long as a given condition is true. 

Syntax 

The syntax of a while loop in Perl programming language is − 

while(condition) { 

statement(s); 

} 

#!/usr/local/bin/perl 

$a = 10; 

# while loop execution 

while( $a < 20 ) { 

printf "Value of a: $a\n"; 

$a = $a + 1; 

} 

Here we are using the comparison operator < to compare value of variable $a against 

20. So while value of $a is less than 20, while loop continues executing a block of 

code next to it and as soon as the value of $a becomes equal to 20, it comes out. When 

executed, above code produces the following result − 

Value of a: 10 

Value of a: 11 

Value of a: 12 

Value of a: 13 

Value of a: 14 

Value of a: 15 

Value of a: 16 

Value of a: 17 

Value of a: 18 

Value of a: 19 

An until loop statement in Perl programming language repeatedly executes a target 

statement as long as a given condition is false. 

Syntax 

The syntax of an until loop in Perl programming language is − 

until(condition) { 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  45  

statement(s); 

} 

#!/usr/local/bin/perl 

$a = 5; 

# until loop execution 

until( $a > 10 ) { 

printf "Value of a: $a\n"; 

$a = $a + 1; 

} 

Here we are using the comparison operator > to compare value of variable $a against 

10. So until the value of $a is less than 10, until loop continues executing a block of 

code next to it and as soon as the value of $a becomes greater than 10, it comes out. 

When executed, above code produces the following result − 

Value of a: 5 

Value of a: 6 

Value of a: 7 

Value of a: 8 

Value of a: 9 

Value of a: 10 

A for loop is a repetition control structure that allows you to efficiently write a loop 

that needs to execute a specific number of times. 

Syntax 

The syntax of a for loop in Perl programming language is − 

for ( init; condition; increment ) { 

statement(s); 

} 

#!/usr/local/bin/perl 

# for loop execution 

for( $a = 10; $a < 20; $a = $a + 1 ) { 

print "value of a: $a\n"; 

} 

When the above code is executed, it produces the following result − 

value of a: 10 

value of a: 11 

value of a: 12 

value of a: 13 

value of a: 14 

value of a: 15 

value of a: 16 

value of a: 17 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  46  

value of a: 18 

value of a: 19 

Unlike for and while loops, which test the loop condition at the top of the loop, the 

do...while loop checks its condition at the bottom of the loop. 

A do...while loop is similar to a while loop, except that a do...while loop is guaranteed 

to execute at least one time. 

Syntax 

The syntax of a do...while loop in Perl is − 

do { 

statement(s); 

}while( condition ); 

#!/usr/local/bin/perl 

$a = 10; 

# do...while loop execution 

do{ 

printf "Value of a: $a\n"; 

$a = $a + 1; 

}while( $a < 20 ); 

When the above code is executed, it produces the following result − 

Value of a: 10 

Value of a: 11 

Value of a: 12 

Value of a: 13 

Value of a: 14 

Value of a: 15 

Value of a: 16 

Value of a: 17 

Value of a: 18 

value of a: 19 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  47  

Arrays 

An array is a variable that stores an ordered list of scalar values. Array variables are 

preceded by an "at" (@) sign. To refer to a single element of an array, you will use the 

dollar sign ($) with the variable name followed by the index of the element in square 

brackets. 

Here is a simple example of using the array variables − 

#!/usr/bin/perl 

@ages = (25, 30, 40); 

@names = ("John Paul", "Lisa", "Kumar"); 

print "\$ages[0] = $ages[0]\n"; 

print "\$ages[1] = $ages[1]\n"; 

print "\$ages[2] = $ages[2]\n"; 

print "\$names[0] = $names[0]\n"; 

print "\$names[1] = $names[1]\n"; 

print "\$names[2] = $names[2]\n"; 

Here we have used the escape sign (\) before the $ sign just to print it. Other Perl will 

understand it as a variable and will print its value. When executed, this will produce 

the following result − 

$ages[0] = 25 

$ages[1] = 30 

$ages[2] = 40 

$names[0] = John Paul 

$names[1] = Lisa 

$names[2] = Kumar 

In Perl, List and Array terms are often used as if they're interchangeable. But the list is 

the data, and the array is the variable. 

Array Creation 

Array variables are prefixed with the @ sign and are populated using either 

parentheses or the qw operator. For example − 

@array = (1, 2, 'Hello'); 

@array = qw/This is an array/; 

The second line uses the qw// operator, which returns a list of strings, separating the 

delimited string by white space. In this example, this leads to a four-element array; the 

first element is 'this' and last (fourth) is 'array'. This means that you can use different 

lines as follows − 

@days = qw/Monday 

Tuesday 

... 

Sunday/; 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  48  

Accessing Array Elements 

When accessing individual elements from an array, you must prefix the variable with 

a dollar sign ($) and then append the element index within the square brackets after 

the name of the variable. For example − 

#!/usr/bin/perl 

@days = qw/Mon Tue Wed Thu Fri Sat Sun/; 

print "$days[0]\n"; 

print "$days[1]\n"; 

print "$days[2]\n"; 

print "$days[6]\n"; 

print "$days[-1]\n"; 

print "$days[-7]\n"; 

This will produce the following result − 

Mon 

Tue 

Wed 

Sun 

Sun 

Mon 

Array indices start from zero, so to access the first element you need to give 0 as 

indices. You can also give a negative index, in which case you select the element from 

the end, rather than the beginning, of the array. This means the following − 

print $days[-1]; # outputs Sun 

print $days[-7]; # outputs Mon 

Sequential Number Arrays 

Perl offers a shortcut for sequential numbers and letters. Rather than typing out each 

element when counting to 100 for example, we can do something like as follows − 

#!/usr/bin/perl 

@var_10 = (1..10); 

@var_20 = (10..20); 

@var_abc = (a..z); 

print "@var_10\n"; # Prints number from 1 to 10 

print "@var_20\n"; # Prints number from 10 to 20 

print "@var_abc\n"; # Prints number from a to z 

Here double dot (..) is called range operator. This will produce the following result − 

1 2 3 4 5 6 7 8 9 10 

10 11 12 13 14 15 16 17 18 19 20 

a b c d e f g h i j k l m n o p q r s t u v w x y z 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  49  

Hashes 

A hash is a set of key/value pairs. Hash variables are preceded by a percent (%) sign. 

To refer to a single element of a hash, you will use the hash variable name preceded 

by a "$" sign and followed by the "key" associated with the value in curly brackets.. 

Here is a simple example of using the hash variables − 

#!/usr/bin/perl 

%data = ('John Paul', 45, 'Lisa', 30, 'Kumar', 40); 

print "\$data{'John Paul'} = $data{'John Paul'}\n"; 

print "\$data{'Lisa'} = $data{'Lisa'}\n"; 

print "\$data{'Kumar'} = $data{'Kumar'}\n"; 

This will produce the following result − 

$data{'John Paul'} = 45 

$data{'Lisa'} = 30 

$data{'Kumar'} = 40 

Creating Hashes 

Hashes are created in one of the two following ways. In the first method, you assign a 

value to a named key on a one-by-one basis − 

$data{'John Paul'} = 45; 

$data{'Lisa'} = 30; 

$data{'Kumar'} = 40; 

In the second case, you use a list, which is converted by taking individual pairs from 

the list: the first element of the pair is used as the key, and the second, as the value. 

For example − 

%data = ('John Paul', 45, 'Lisa', 30, 'Kumar', 40); 

For clarity, you can use => as an alias for , to indicate the key/value pairs as follows − 

%data = ('John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40); 

Here is one more variant of the above form, have a look at it, here all the keys have 

been preceded by hyphen (-) and no quotation is required around them − 

%data = (-JohnPaul => 45, -Lisa => 30, -Kumar => 40); 

But it is important to note that there is a single word, i.e., without spaces keys have 

been used in this form of hash formation and if you build-up your hash this way then 

keys will be accessed using hyphen only as shown below. 

$val = %data{-JohnPaul} 

$val = %data{-Lisa} 

Accessing Hash Elements 

When accessing individual elements from a hash, you must prefix the variable with a 

dollar sign ($) and then append the element key within curly brackets after the name 

of the variable. For example − 

#!/usr/bin/perl 

%data = ('John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40); 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  50  

print "$data{'John Paul'}\n"; 

print "$data{'Lisa'}\n"; 

print "$data{'Kumar'}\n"; 

This will produce the following result − 

45 

30 

40 

Extracting Slices 

You can extract slices of a hash just as you can extract slices from an array. You will 

need to use @ prefix for the variable to store the returned value because they will be a 

list of values − 

#!/uer/bin/perl 

%data = (-JohnPaul => 45, -Lisa => 30, -Kumar => 40); 

@array = @data{-JohnPaul, -Lisa}; 

print "Array : @array\n"; 

This will produce the following result − 

Array : 45 30 

Extracting Keys and Values 

You can get a list of all of the keys from a hash by using keys function, which has the 

following syntax − 

keys %HASH 

This function returns an array of all the keys of the named hash. Following is the 

example − 

#!/usr/bin/perl 

%data = ('John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40); 

@names = keys %data; 

print "$names[0]\n"; 

print "$names[1]\n"; 

print "$names[2]\n"; 

This will produce the following result − 

Lisa 

John Paul 

Kumar 

Getting Hash Size 

You can get the size - that is, the number of elements from a hash by using the scalar 

context on either keys or values. Simply saying first you have to get an array of either 

the keys or values and then you can get the size of array as follows − 

#!/usr/bin/perl 

%data = ('John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40); 

@keys = keys %data; 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  51  

$size = @keys; 

print "1 - Hash size: is $size\n"; 

@values = values %data; 

$size = @values; 

print "2 - Hash size: is $size\n"; 

This will produce the following result − 

1 - Hash size: is 3 

2 - Hash size: is 3 

Add and Remove Elements in Hashes 

Adding a new key/value pair can be done with one line of code using simple 

assignment operator. But to remove an element from the hash you need to use delete 

function as shown below in the example − 

#!/usr/bin/perl 

%data = ('John Paul' => 45, 'Lisa' => 30, 'Kumar' => 40); 

@keys = keys %data; 

$size = @keys; 

print "1 - Hash size: is $size\n"; 

# adding an element to the hash; 

$data{'Ali'} = 55; 

@keys = keys %data; 

$size = @keys; 

print "2 - Hash size: is $size\n"; 

# delete the same element from the hash; 

delete $data{'Ali'}; 

@keys = keys %data; 

$size = @keys; 

print "3 - Hash size: is $size\n"; 

This will produce the following result − 

1 - Hash size: is 3 

2 - Hash size: is 4 

3 - Hash size: is 3 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  52  

Strings 

Strings are an essential part of the Perl language. They are scalar variables, so they 

start with ($) sign. A string can be defined within a single quote (') or double quote 

("). 

Perl String Operators 

The operators make it easy to manipulate a string in different ways. There are two 

types of string operators: 

• Concatenation (.) 

• Repetition (x) 

Concatenation Operator 

Perl strings are concatenated with a (.) sign instead of (+) sign. 

1. $firstName = "Christian"; 

2. $lastName = "Grey"; 

3. $fullName = $firstName . " " . $lastName; 

4. print "$fullName\n"; 

Christian Grey 

Repeitition Operator 

Perl strings can be repeated a number of times with (x) variable. 

1. $text = "Thank You "; 

2. $output = $text x 3; 

3. print "$output\n"; 

Output: 

Thank You Thank You Thank You 

Initializing and Declaring a String 

In Perl, to declare a string use my keyword before variable name. 

A string can be initialised and declared with the following syntax: 

my $variableName = ""; 

In this example, we have shown how to initialize and declare a string. We have 

printed several strings together by using a dot (.) operator. 

se strict; 

use warnings; 

# Declaring and initializing a string. 

my $msg1 = "Welcome at JavaTpoint."; 

my $msg2 = "This is our Perl Tutorial."; 

#printing using . operator. 

print $msg1 . "" . $msg2. "\n"; 

#print as separate arguments. 

print $msg1, "",$msg2, "\n"; 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  53  

#embedd string in a bigger string. 

print "$msg1$msg2\n"; 

Output: 

Welcome at JavaTpoint. This is our Perl Tutorial. 

Welcome at JavaTpoint. This is our Perl Tutorial. 

Welcome at JavaTpoint. This is our Perl Tutorial. 

Determining String Length, length() 

string length can be determined with length() function. 

my $msg = "Our site javaTpoint provides all type of tutorials"; 

print "String Length : ", length($msg), "\n"; 

Output: 

String Length : 50 

Replacing a string with another string, s///g 

A string can be replaced with another string in two ways. 

In first one, we have replaced Tigers with Lions which occurs single time in the string 

with s///. 

In second one, we have replaced roses with flowers globally with s///g. 

my $var1 = "Tigers are big and frightening."; 

$var1 =~ s/Tigers/Lions/; 

print "$var1\n"; 

my $var2 = "Red roses are very popular. Yellow roses are less seen."; 

$var2 =~ s/roses/flowers/g; 

print "$var2\n"; 

Output: 

Lions are big and frightening. 

Red flowers are very popular. Yellow flowers are less seen. 

Perl Concatenating two Strings (.=) 

Two strings can be joined together using (.=) operator. 

my $str1 = "Where there is a will,"; 

my $str2 = "there is a way.\n"; 

my $joining = ''; 

$joining = $str1 . ' '; 

$joining .= $str2; 

print $joining; 

Output: 

Where there is a will, there is a way. 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  54  

Lists 

A list is a collection of scalar values. We can access the elements of a list using 

indexes. Index starts with 0 (0th index refers to the first element of the list). We use 

parenthesis and comma operators to construct a list. In Perl, scalar variables start with 

a $ symbol whereas list variables start with @ symbol. 

 
Example : 

#!/usr/bin/perl 

# Empty List assigned to an array 

@empty_list = (); 

# List of integers 

@integer_list = (1, 2, 3); 

# List of strings assigned to an array 

@string_list = ("hai", "for", "hai"); 

print "Empty list: @empty_list\n"; 

print "Integer list: @integer_list\n"; 

print "String list: @string_list\n"; 

Output: 

Empty list: 

Integer list: 1 2 3 

String list: hai for hai 

Builtin functions 

The chr() function in Perl returns a string representing a character whose Unicode 

code point is an integer. 

join()function 

join() function is used to combine the elements of a List into a single string with the 

use of a separator provided to separate each element. 

#!/usr/bin/perl 

# Initializing list with alphabets A to Z 

@list = (A..Z); 

# Printing the original list 

print "List: @list\n"; 

# Using join function introducing 

# hyphen between each alphabets 

print "\nString after join operation:\n"; 

print join("-", @list); 

Output: 

List: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

https://www.geeksforgeeks.org/introduction-to-perl/


SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  55  

String after join operation: 

A-B-C-D-E-F-G-H-I-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X-Y-Z 

reverse()function 

Reverse() function in Perl returns the elements of List in reverse order in a list context. 

# Initializing a list 

@list = ("Raj", "E123", 12000); 

# Reversing the list 

@rname = reverse(@list); 

# Printing the reversed list 

print "Reversed list is @rname"; 

# Initializing a scalar 

$string = "for"; 

# Reversing a scalar 

$r = reverse($string); 

print "\nReversed string is $r"; 

Reversed list is 12000 E123 Raj 

Reversed string is rof 

 
Regular Expressions 

A regular expression is a string of characters that defines the pattern or patterns you 

are viewing. 

There are three regular expression operators within Perl. 

• Match Regular Expression - m// 

• Substitute Regular Expression - s/// 

• Transliterate Regular Expression - tr/// 

1. The Match Operator 

The match operator, m//, is used to match a string or statement to a regular expression. 

For example, to match the character sequence "foo" against the scalar $bar, you might 

use a statement like this − 

#!/usr/bin/perl 

$bar = "This is foo and again foo"; 

if ($bar =~ /foo/) { 

print "First time is matching\n"; 

} else { 

print "First time is not matching\n"; 

} 

$bar = "foo"; 

if ($bar =~ /foo/) { 

print "Second time is matching\n"; 

} else { 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  56  

print "Second time is not matching\n"; 

} 

When above program is executed, it produces the following result − 

First time is matching 

Second time is matching 

2. The Substitution Operator 

The substitution operator, s///, is really just an extension of the match operator that 

allows you to replace the text matched with some new text. The basic form of the 

operator is − 

s/PATTERN/REPLACEMENT/; 

#/user/bin/perl 

$string = "The cat sat on the mat"; 

$string =~ s/cat/dog/; 

print "$string\n"; 

When above program is executed, it produces the following result − 

The dog sat on the mat 

3. The Translation Operator 

Translation is similar, but not identical, to the principles of substitution, but unlike 

substitution, translation (or transliteration) does not use regular expressions for its 

search on replacement values. The translation operators are − 

tr/SEARCHLIST/REPLACEMENTLIST/cds 

y/SEARCHLIST/REPLACEMENTLIST/cds 

#/user/bin/perl 

$string = 'The cat sat on the mat'; 

$string =~ tr/a/o/; 

print "$string\n"; 

When above program is executed, it produces the following result − 

The cot sot on the mot. 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  57  

 
 

 

The PHP Hypertext Preprocessor (PHP) is a programming language that allows 

web developers to create dynamic content that interacts with databases. PHP is 

basically used for developing web based software applications. 

PHP is a MUST for students and working professionals to become a great Software 

Engineer specially when they are working in Web Development Domain. I will list 

down some of the key advantages of learning PHP: 

• PHP is a recursive acronym for "PHP: Hypertext Preprocessor". 

• PHP is a server side scripting language that is embedded in HTML. It is used to 

manage dynamic content, databases, session tracking, even build entire e- 

commerce sites. 

• It is integrated with a number of popular databases, including MySQL, 

PostgreSQL, Oracle, Sybase, Informix, and Microsoft SQL Server. 

• PHP is pleasingly zippy in its execution, especially when compiled as an Apache 

module on the Unix side. The MySQL server, once started, executes even very 

complex queries with huge result sets in record-setting time. 

• PHP supports a large number of major protocols such as POP3, IMAP, and 

LDAP. PHP4 added support for Java and distributed object architectures (COM 

and CORBA), making n-tier development a possibility for the first time. 

• PHP is forgiving: PHP language tries to be as forgiving as possible. 

• PHP Syntax is C-Like. 

Characteristics of PHP 

Five important characteristics make PHP's practical nature possible − 

• Simplicity 

• Efficiency 

• Security 

• Flexibility 

• Familiarity 

 
Applications of PHP 

As mentioned before, PHP is one of the most widely used language over the web. I'm 

going to list few of them here: 

• PHP performs system functions, i.e. from files on a system it can create, open, 

read, write, and close them. 

• PHP can handle forms, i.e. gather data from files, save data to a file, through 

email you can send data, return data to the user. 
• You add, delete, modify elements within your database through PHP. 

• Access cookies variables and set cookies. 

• Using PHP, you can restrict users to access some pages of your website. 

UNIT -IV  

PHP : Data Types, Variables, Operators, Conditional statements ,Loops ,Arrays - Indexed Array, 

Associative Array, String Functions, Functions- Parameterized Function, Call By Value, Call By 

Reference , File Handling, PHP Form handling. 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  58  

• It can encrypt data. 

 
Variables 

Variables are "containers" for storing information. 

Creating (Declaring) PHP Variables 

In PHP, a variable starts with the $ sign, followed by the name of the variable: 
 

Example 

<?php 

$txt="Helloworld!"; 

$x=5; 

$y=10.5; 

?> 

output: 

Hey 

Helloworld! 

5 

10.5 

Data Types 

Variables can store data of different types, and different data types can do different 

things. 

PHP supports the following data types: 

• String 

• Integer 

• Float (floating point numbers - also called double) 

• Boolean 

String 

A string is a sequence of characters, like "Hello world!". 

A string can be any text inside quotes. You can use single or double quotes: 

<?php 

$x="Helloworld!"; 

$y='Helloworld!'; 

echo$x; 

echo"<br>"; 

echo$y; 

?> 

Helloworld! 

Hello world! 

Integer 

An integer data type is a non-decimal number between -2,147,483,648 and 

2,147,483,647. 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  59  

Rules for integers: 

• An integer must have at least one digit 

• An integer must not have a decimal point 

• An integer can be either positive or negative 

• Integers can be specified in: decimal (base 10), hexadecimal (base 16), octal 

(base 8), or binary (base 2) notation 

In the following example $x is an integer. The PHP var_dump() function returns the 

data type and value: 

<?php 

$x=5985; 

var_dump($x); 

?> 

int(5985) 

Float 

A float (floating point number) is a number with a decimal point or a number in 

exponential form. 

In the following example $x is a float. The PHP var_dump() function returns the data 

type and value: 

Example 

<?php 

$x=10.365; 

var_dump($x); 

?> 

float(10.365) 

Boolean 

A Boolean represents two possible states: TRUE or FALSE. 

$x=true; 

$y = false; 

Operators 

4 + 5 is equal to 9. Here 4 and 5 are called operands and + is called operator. 

Arithmetic Operators 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  60  

 
 

 

 

 

 

Comparison Operators 

 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  61  

Logical Operators 
 

 
 

 

 
 

Assignment Operators 

 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  62  

Conditional Operator 

There is one more operator called conditional operator. This first evaluates an 

expression for a true or false value and then execute one of the two given statements 

 
 

depending upon the result of the evaluation. 

 
Conditional statements 

The If...Else Statement 

If you want to execute some code if a condition is true and another code if a condition 

is false, use the if. .. else statement. 

Syntax 

if (condition) 

code to be executed if condition is true; 

else 

code to be executed if condition is false; 

The following example will output "Have a nice weekend!" if the current day is 

Friday, Otherwise, it will output "Have a nice day!": 

<html> 

<body> 

<?php 

$d = date("D"); 

if ($d == "Fri") 

echo "Have a nice weekend!"; 

else 

echo "Have a nice day!"; 

?> 

</body> 

</html> 

It will produce the following result − 

Have a nice weekend! 

ElseIf Statement 

If you want to execute some code if one of the several conditions are true use the 

elseif statement 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  63  

Syntax 

if (condition) 

code to be executed if condition is true; 

elseif (condition) 

code to be executed if condition is true; 

else 

code to be executed if condition is false; 

Example 

The following example will output "Have a nice weekend!" if the current day is 

Friday, and "Have a nice Sunday!" if the current day is Sunday. Otherwise, it will 

output "Have a nice day!" 

<html> 

<body> 

<?php 

$d = date("D"); 

if ($d == "Fri") 

echo "Have a nice weekend!"; 

elseif ($d == "Sun") 

echo "Have a nice Sunday!"; 

else 

echo "Have a nice day!"; 

?> 

</body> 

</html> 

It will produce the following result − 

o/p:Have a nice Weekend! 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  64  

Loops 

Loops in PHP are used to execute the same block of code a specified number of times. 

PHP supports following four loop types. 

• for − loops through a block of code a specified number of times. 

• while − loops through a block of code if and as long as a specified condition is 

true. 

• do...while − loops through a block of code once, and then repeats the loop as 

long as a special condition is true. 

• foreach − loops through a block of code for each element in an array. 

for loop 

The for statement is used when you know how many times you want to execute a 

statement or a block of statements. 

Syntax 

for (initialization; condition; increment){ 

code to be executed; 

} 

while loop 

Syntax 

while (condition) { 

code to be executed; 

} 

do-while loop 

do { 

code to be executed; 

} 

while (condition); 

foreach 

foreach (array as value) { 

code to be executed; 

} 

Arrays 

array is an ordered map (contains value on the basis of key). It is used to hold multiple 

values of similar type in a single variable. 

Indexed Array 

index is represented by number which starts from 0. We can store number, string and 

object in the PHP array. All PHP array elements are assigned to an index number by 

default. 

to define indexed array: 

$season=array("summer","winter","spring","autumn"); 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  65  

Associative Array 

We can associate name with each array elements in PHP using => symbol. 

to define associative array: 

$salary=array("Sonoo"=>"350000","John"=>"450000","Kartik"=>"200000"); 

 
String Functions 

 

 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  66  

Functions 

function is a piece of code that can be reused many times. It can take input as 

argument list and return value. There are thousands of built-in functions in PHP. 
User-defined Functions 

We can declare and call user-defined functions easily. Let's see the syntax to declare 

user-defined functions. 

Syntax 

1. function functionname() 

2. { 

3. //code to be executed 

4. } 

<?php 

function sayHello(){ 

echo "Hello PHP Function"; 

} 

sayHello();//calling function 

?> 

o/p:Hello PHP Function 

Call by value 

In call by value, actual value is not modified if it is modified inside the function. 

<?php 

function increment($i) 

{ 

$i++; 

} 

 

 

 

 

o/p:10 

$i = 10; 

increment($i); 

echo $i; 

?> 

Call By Reference 

Value passed to the function doesn't modify the actual value by default (call by value). 

But we can do so by passing value as a reference. 

By default, value passed to the function is call by value. To pass value as a reference, 

you need to use ampersand (&) symbol before the argument name. 

<?php 

function adder(&$str2) 

{ 

$str2 .= 'Call By Reference'; 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  67  

} 

$str = 'Hello '; 

adder($str); 

echo $str; 

?> 

Hello Call By Reference 

Parameterized Function 

PHP Parameterized functions are the functions with parameters. You can pass any 

number of parameters inside a function. These passed parameters act as variables 

inside your function. 

They are specified inside the parentheses, after the function name. 

The output depends upon the dynamic values passed as the parameters into the 

function. 

<!DOCTYPE html> 

<html> 

<head> 

<title>Parameter Addition and Subtraction Example</title> 

</head> 

<body> 

<?php 

//Adding two numbers 

function add($x, $y) { 

$sum = $x + $y; 

echo "Sum of two numbers is = $sum <br><br>"; 

} 

add(467, 943); 

//Subtracting two numbers 

function sub($x, $y) { 

$diff = $x - $y; 

echo "Difference between two numbers is = $diff"; 

} 

sub(943, 467); 

?> 

</body> 

</html> 

 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  68  

File Handling 

PHP File System allows us to create file, read file line by line, read file character by 

character, write file, append file, delete file and close file. 

Open File - fopen() 

fopen() function is used to open a file. 

Syntax 

resource fopen ( string $filename , string $mode [, bool $use_include_path = fa 

lse [, resource $context 

<?php  
$handle = fopen("c:\\folder\\file.txt", "r"); 

?> 

Close File - fclose() 

fclose() function is used to close an open file pointer. 

Syntax 

ool fclose ( resource $handle ) 

Example 

<?php 

fclose($handle); 

?> 

Read File - fread() 

The PHP fread() function is used to read the content of the file. It accepts two 

arguments: resource and file size. 

Syntax 

string fread ( resource $handle , int $length ) 

<?php 

$filename = "c:\\myfile.txt"; 

$handle = fopen($filename, "r");//open file in read mode 

 
$contents = fread($handle, filesize($filename));//read file 

 
echo $contents;//printing data of file 

fclose($handle);//close file 

?> 

Output 

hello php file 

 
Write File - fwrite() 

fwrite() function is used to write content of the string into file 

Syntax 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  69  

int fwrite ( resource $handle , string $string [, int $length ] ) 

Example 

<?php 

$fp = fopen('data.txt', 'w');//open file in write mode 

fwrite($fp, 'hello '); 

fwrite($fp, 'php file'); 

fclose($fp); 

 
echo "File written successfully"; 

?> 

Output 

File written successfully 

Form Handling 

We can create and use forms in PHP. To get form data, we need to use PHP 

superglobals $_GET and $_POST. 

The form request may be get or post. To retrieve data from get request, we need to use 

$_GET, for post request $_POST. 

Get Form 

Get request is the default form request. The data passed through get request is visible 

on the URL browser so it is not secured. You can send limited amount of data through 

get request. 

<form action="welcome.php" method="get"> 

Name: <input type="text" name="name"/> 

<input type="submit" value="visit"/> 

</form> 

<?php  
$name=$_GET["name"];//receiving name field value in $name variable 

echo "Welcome, $name"; 

?> 

Post Form 

Post request is widely used to submit form that have large amount of data such as file 

upload, image upload, login form, registration form etc. 

The data passed through post request is not visible on the URL browser so it is 

secured. You can send large amount of data through post request. 

<form action="login.php" method="post"> 

<table> 

<tr><td>Name:</td><td> <input type="text" name="name"/></td></tr> 

<tr><td>Password:</td><td> <input type="password" name="password"/></td 

></tr> 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  70  

 

 

 

<?php 

<tr><td colspan="2"><input type="submit" value="login"/> </td></tr> 

</table> 

</form> 

 
$name=$_POST["name"];//receiving name field value in $name variable 

$password=$_POST["password"];//receiving password field value in $passwor 

d variable 

echo "Welcome: $name, your password is: $password"; 

?> 
 
 

 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  71  

 

 

Ruby is a object-oriented, reflective, general-purpose, dynamic programming 

language. Ruby was developed to make it act as a sensible buffer between human 

programmers and the underlying computing machinery. It is an interpreted scripting 

language which means most of its implementations execute instructions directly and 

freely, without previously compiling a program into machine-language instructions. 

Ruby is used to create web applications of different sorts. It is one of the hot 

technology at present to create web applications. 

Data types 

Data types represents a type of data such as text, string, numbers, etc. There are 

different data types in Ruby: 

• Numbers 

• Strings 

• Symbols 

• Hashes 

• Arrays 

Numbers 

Integers and floating point numbers come in the category of numbers. 

Integers are held internally in binary form. Integer numbers are numbers without a 

fraction. According to their size, there are two types of integers. One is Bignum and 

other is Fixnum. 

Strings 

A string is a group of letters that represent a sentence or a word. Strings are defined by 

enclosing a text within single (') or double (") quote. 

Symbols 

Symbols are like strings. A symbol is preceded by a colon (:). For example, 

1. :abcd 

They do not contain spaces. Symbols containing multiple words are written with (_). 

One difference between string and symbol is that, if text is a data then it is a string but 

if it is a code it is a symbol. 

Symbols are unique identifiers and represent static values, while string represent 

values that change. 

Hashes 

A hash assign its values to its keys. They can be looked up by their keys. Value to a 

key is assigned by => sign. A key/value pair is separated with a comma between them 

and all the pairs are enclosed within curly braces. For example, 

• {"Akash" => "Physics", "Ankit" => "Chemistry", "Aman" => "Maths"} 

UNIT- V  

Ruby : Introduction to Ruby, Feature of Ruby, Data types, Variables, Operators, Conditional 

statements, Loops, , Arrays, Strings, Hashes, working on Methods, Blocks, and Modules. 

https://www.geeksforgeeks.org/ruby-programming-language/


SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  72  

Arrays 

An array stroes data or list of data. It can contain all types of data. Data in an array are 

separated by comma in between them and are enclosed by square bracket. For 

example, 

1. ["Akash", "Ankit", "Aman"] 

 
Variables 

Variables are the memory locations, which hold any data to be used by any program. 

Local variables begin with a lowercase letter or _. The scope of a local variable ranges 

from class, module, def, or do to the corresponding end or from a block's opening 

brace to its close brace {}.When an uninitialized local variable is referenced, it is 

interpreted as a call to a method that has no arguments.Global variables begin with $. 

Uninitialized global variables have the value nil and produce warnings with the -w 

option.Assignment to global variables alters the global status. It is not recommended 

to use global variables. They make programs cryptic. 

 
Operators 

Ruby supports a rich set of operators, as you'd expect from a modern language. Most 

operators are actually method calls. For example, a + b is interpreted as a.+(b), where 

the + method in the object referred to by variable a is called with b as its argument. 

Arithmetic Operators 
 

 
 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  73  

Comparison Operators 
 

 

 

Assignment Operators 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  74  

Bitwise Operators 
 

 

 

 

 

 

Logical Operators 

 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  75  

 

 
 

Ternary Operator 

It first evaluates an expression for a true or false value and then executes one of the 

two given 

statements depending upon the result of the evaluation. 

 

 
Conditional statements 

Ruby offers conditional structures that are pretty common to modern languages. 

Ruby if...else Statement 

Syntax 

if conditional [then] 

code... 

[elsif conditional [then] 

code...]... 

[else 

code...] 

end 

#!/usr/bin/ruby 

x = 1 

if x > 2 

puts "x is greater than 2" 

elsif x <= 2 and x!=0 

puts "x is 1" 

else 

puts "I can't guess the number" 

end 

x is 1 

Ruby unless Statement 

Syntax 

unless conditional [then] 

code 

[else 

code ] 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  76  

end 

Executes code if conditional is false. If the conditional is true, code specified in the 

else clause is executed. 

#!/usr/bin/ruby 

x = 1 

unless x>=2 

puts "x is less than 2" 

else 

puts "x is greater than 2" 

end 

This will produce the following result − 

x is less than 2 

Loops 

Loops in Ruby are used to execute the same block of code a specified number of 

times. 

Ruby while Statement 

Syntax 

while conditional [do] 

code 

end 

#!/usr/bin/ruby 

$i = 0 

$num = 5 

while $i < $num do 

puts("Inside the loop i = #$i" ) 

$i +=1 

end 

This will produce the following result − 

Inside the loop i = 0 

Inside the loop i = 1 

Inside the loop i = 2 

Inside the loop i = 3 

Inside the loop i = 4 

 

for statement 

Syntax 

for variable [, variable ...] in expression [do] 

code 

end 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  77  

#!/usr/bin/ruby 

for i in 0..5 

puts "Value of local variable is #{i}" 

end 

Here, we have defined the range 0..5. The statement for i in 0..5 will allow i to take 

values in the range from 0 to 5 (including 5). This will produce the following result − 

Value of local variable is 0 

Value of local variable is 1 

Value of local variable is 2 

Value of local variable is 3 

Value of local variable is 4 

Value of local variable is 5 

Methods 

Ruby methods are very similar to functions in any other programming language. Ruby 

methods are used to bundle one or more repeatable statements into a single unit. 

def method_name 

expr.. 

end 

#!/usr/bin/ruby 

def test(a1 = "Ruby", a2 = "Perl") 

puts "The programming language is #{a1}" 

puts "The programming language is #{a2}" 

end 

test "C", "C++" 

test 

This will produce the following result − 

The programming language is C 

The programming language is C++ 

The programming language is Ruby 

The programming language is Perl 

return Statement 

The return statement in ruby is used to return one or more values from a Ruby 

Method. 

def test 

i = 100 

j = 200 

k = 300 

return i, j, k 

end 

var = test 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  78  

puts var 

This will produce the following result − 

100 

200 

300 

Blocks 

A block consists of chunks of code. 

• You assign a name to a block. 

• The code in the block is always enclosed within braces ({}). 

• A block is always invoked from a function with the same name as that of the 

block. This means that if you have a block with the name test, then you use the 

function test to invoke this block. 

• You invoke a block by using the yield statement. 

syntax 

block_name { 

statement1 

statement2 

.......... 

} 

#!/usr/bin/ruby 

def test 

puts "You are in the method" 

yield 

puts "You are again back to the method" 

yield 

end 

test {puts "You are in the block"} 

This will produce the following result − 

You are in the method 

You are in the block 

You are again back to the method 

You are in the block 

Modules 

Modules are a way of grouping together methods, classes, and constants. Modules 

give you two major benefits. 

• Modules provide a namespace and prevent name clashes. 

• Modules implement the mixin facility. 

Modules define a namespace, a sandbox in which your methods and constants can 

play without having to worry about being stepped on by other methods and constants. 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  79  

Syntax 

module Identifier 

statement1 

statement2 

........... 

end 

Module constants are named just like class constants, with an initial uppercase letter. 

The method definitions look similar, too: Module methods are defined just like class 

methods. 

As with class methods, you call a module method by preceding its name with the 

module's name and a period, and you reference a constant using the module name and 

two colons. 

Example 

#!/usr/bin/ruby 

# Module defined in trig.rb file 

module Trig 

PI = 3.141592654 

def Trig.sin(x) 

# .. 

end 

def Trig.cos(x) 

# .. 

end 

end 

We can define one more module with the same function name but different 

functionality 

#!/usr/bin/ruby 

# Module defined in moral.rb file 

module Moral 

VERY_BAD = 0 

BAD = 1 

def Moral.sin(badness) 

# ... 

end 

end 

Like class methods, whenever you define a method in a module, you specify the 

module name followed by a dot and then the method name. 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  80  

Arrays 

Ruby arrays are ordered, integer-indexed collections of any object. Each element in an 

array is associated with and referred to by an index. 

Array indexing starts at 0, as in C or Java. A negative index is assumed relative to the 

end of the array --- that is, an index of -1 indicates the last element of the array, -2 is 

the next to last element in the array, and so on. 

Creating Arrays 

There are many ways to create or initialize an array. One way is with the new class 

method − 

names = Array.new 

You can set the size of an array at the time of creating array − 

names = Array.new(20) 

The array names now has a size or length of 20 elements. 

#!/usr/bin/ruby 

names = Array.new(20) 

puts names.size # This returns 20 

puts names.length # This also returns 20 

This will produce the following result − 

20 

20 

You can assign a value to each element in the array as follows 

#!/usr/bin/ruby 

names = Array.new(4, "mac") 

puts "#{names}" 

This will produce the following result − 

["mac", "mac", "mac", "mac"] 

You can also use a block with new, populating each element with what the block 

evaluates to 

#!/usr/bin/ruby 

nums = Array.new(10) { |e| e = e * 2 } 

puts "#{nums}" 

This will produce the following result − 

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18] 

There is another method of Array, []. It works like this − 

nums = Array.[](1, 2, 3, 4,5) 

One more form of array creation is as follows − 

nums = Array[1, 2, 3, 4,5] 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  81  

Strings 

A String object in Ruby holds and manipulates an arbitrary sequence of one or more 

bytes, typically representing characters that represent human language. 

The simplest string literals are enclosed in single quotes (the apostrophe character). 

The text within the quote marks is the value of the string − 

'This is a simple Ruby string literal' 

Expression Substitution 

Expression substitution is a means of embedding the value of any Ruby expression 

into a string using #{ and } − 

#!/usr/bin/ruby 

x, y, z = 12, 36, 72 

puts "The value of x is #{ x }." 

puts "The sum of x and y is #{ x + y }." 

puts "The average was #{ (x + y + z)/3 }." 

This will produce the following result − 

The value of x is 12. 

The sum of x and y is 48. 

The average was 40. 

 

We need to have an instance of String object to call a String method. Following is the 

way to create an instance of String object − 

new [String.new(str = "")] 

This will return a new string object containing a copy of str. Now, using str object, we 

can all use any available instance methods. 

#!/usr/bin/ruby 

myStr = String.new("THIS IS TEST") 

foo = myStr.downcase 

puts "#{foo}" 

This will produce the following result − 

this is test 

 
Hashes 

A Hash is a collection of key-value pairs like this: "employee" = > "salary". It is 

similar to an Array, except that indexing is done via arbitrary keys of any object type, 

not an integer index. 

The order in which you traverse a hash by either key or value may seem arbitrary and 

will generally not be in the insertion order. If you attempt to access a hash with a key 

that does not exist, the method will return nil. 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  82  

Creating Hashes 

As with arrays, there is a variety of ways to create hashes. You can create an empty 

hash with the new class method − 

months = Hash.new 

#!/usr/bin/ruby 

months = Hash.new( "month" ) 

puts "#{months[0]}" 

puts "#{months[72]}" 

This will produce the following result − 

month 

month 

#!/usr/bin/ruby 

H = Hash["a" => 100, "b" => 200] 

puts "#{H['a']}" 

puts "#{H['b']}" 

This will produce the following result − 

100 

200 

 
File I/O 

Ruby provides a whole set of I/O-related methods implemented in the Kernel module. 

All the I/O methods are derived from the class IO. 

The class IO provides all the basic methods, such as read, write, gets, puts, readline, 

getc, and printf. 

The puts Statement 

In the previous chapters, you have assigned values to variables and then printed the 

output using puts statement. 

The puts statement instructs the program to display the value stored in the variable. 

This will add a new line at the end of each line it writes. 

#!/usr/bin/ruby 

val1 = "This is variable one" 

val2 = "This is variable two" 

puts val1 

puts val2 

This will produce the following result − 

This is variable one 

This is variable two 

The gets Statement 

The gets statement can be used to take any input from the user from standard screen 

called STDIN. 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  83  

Example 

The following code shows you how to use the gets statement. This code will prompt 

the user to enter a value, which will be stored in a variable val and finally will be 

printed on STDOUT. 

#!/usr/bin/ruby 

puts "Enter a value :" 

val = gets 

puts val 

This will produce the following result − 

Enter a value : 

This is entered value 

This is entered value 

The putc Statement 

Unlike the puts statement, which outputs the entire string onto the screen, the putc 

statement can be used to output one character at a time. 

Example 

The output of the following code is just the character H − 

#!/usr/bin/ruby 

str = "Hello Ruby!" 

putc str 

This will produce the following result − 

H 

The print Statement 

The print statement is similar to the puts statement. The only difference is that the puts 

statement goes to the next line after printing the contents, whereas with the print 

statement the cursor is positioned on the same line. 

#!/usr/bin/ruby 

print "Hello World" 

print "Good Morning" 

This will produce the following result − 

Hello WorldGood Morning 

Opening and Closing Files 

Until now, you have been reading and writing to the standard input and output. Now, 

we will see how to play with actual data files. 

The File.new Method 

You can create a File object using File.new method for reading, writing, or both, 

according to the mode string. Finally, you can use File.close method to close that file. 

Syntax 

aFile = File.new("filename", "mode") 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  84  

# ... process the file 

aFile.close 

The File.open Method 

You can use File.open method to create a new file object and assign that file object to 

a file. However, there is one difference in between File.open and File.new methods. 

The difference is that the File.open method can be associated with a block, whereas 

you cannot do the same using the File.new method. 

File.open("filename", "mode") do |aFile| 

# ... process the file 

end 

Here is a list of The Different Modes of opening a File − 

Reading and Writing Files 

The same methods that we've been using for 'simple' I/O are available for all file 

objects. So, gets reads a line from standard input, and aFile.gets reads a line from the 

file object aFile. 

The sysread Method 

You can use the method sysread to read the contents of a file. You can open the file in 

any of the modes when using the method sysread. For example − 

Following is the input text file − 

This is a simple text file for testing purpose. 

Now let's try to read this file − 

#!/usr/bin/ruby 

aFile = File.new("input.txt", "r") 

if aFile 

content = aFile.sysread(20) 

puts content 

else 

puts "Unable to open file!" 

end 

This statement will output the first 20 characters of the file. The file pointer will now 

be placed at the 21st character in the file. 

The syswrite Method 

You can use the method syswrite to write the contents into a file. You need to open 

the file in write mode when using the method syswrite. For example − 

#!/usr/bin/ruby 

aFile = File.new("input.txt", "r+") 

if aFile 

aFile.syswrite("ABCDEF") 

else 

puts "Unable to open file!" 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  85  

<%= form_tag( {:action => 'upload'}, :multipart => true ) %> 

<%= form_tag( { :action => 'upload' }, :multipart => true ) %> 

Upload file: <%= file_field( "form", "file" ) %> 
<br /> 

 

<%= submit_tag( "Upload file" ) %> 

<%= end_form_tag %> 

end 

Renaming and Deleting Files 

You can rename and delete files programmatically with Ruby with the rename and 

delete methods. 

Following is the example to rename an existing file test1.txt − 

#!/usr/bin/ruby 

# Rename a file from test1.txt to test2.txt 

File.rename( "test1.txt", "test2.txt" ) 

Following is the example to delete an existing file test2.txt − 

#!/usr/bin/ruby 

# Delete file test2.txt 

File.delete("test2.txt") 

Form Handling 

Form 

To create a form tag with the specified action, and with POST request, use the 

following syntax − 

 
Use :multipart => true to define a MIME-multipart form (for file uploads). 

 

File Upload 

Define a multipart form in your view − 

Handle the upload in the controller − 

 

def upload 

file_field = @params['form']['file'] rescue nil 

 

# file_field is a StringIO object 

file_field.content_type # 'text/csv' 

file_field.full_original_filename 

... 

end 

<%= form_tag :action => 'update', :id => @some_object %> 

 

<%= form_tag( { :action => :save, }, { :method => :post }) %> 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  86  

<%= text_field :modelname, :attribute_name, options %> 

<%= file_field ... %> 

<%= text_area ... %> 

<textarea cols = "20" rows = "40" id = "post_body" name =" post[body]"> 

<%={@post.body}%> 

</textarea> 

<%= radio_button :modelname, :attribute, :tag_value, options %> 

<input type = "radio" id = "post_category" name = "post[category]" 

value = "rails" checked = "checked" /> 

<input type = "radio" id = "post_category" name = "post[category]" value = "java" /> 

<%= check_box :modelname, :attribute,options,on_value,off_value%> 

Text Fields 

To create a text field use the following syntax − 

Have a look at the following example − 

 
This will generate following code − 

 
To create hidden fields, use the following syntax; 

 
To create password fields, use the following syntax; 

 
To create file upload fields, use the following syntax; 

 

Text Area 

To create a text area, use the following syntax − 

Have a look at the following example − 

 
This will generate the following code − 

 

Radio Button 

To create a Radio Button, use the following syntax − 

Have a look at the following example − 

 
This will generate the following code − 

 

Checkbox Button 

To create a Checkbox Button use the following syntax − 

Have a look at the following example − 

 
This will generate the following code − 

check_box("post", "validated") 

radio_button("post", "category", "rails") 

radio_button("post", "category", "java") 

<%= text_area "post", "body", "cols" => 20, "rows" => 40%> 

<%= password_field ... %> 

<%= hidden_field ... %> 

<input type = "text" id = "person_name" name = "person[name]" 

size = "20" value = "<%= @person.name %>" /> 

<%= text_field "person", "name", "size" => 20 %> 



SCRIPTING LANGUAGES                                                                                            AY: 2024-2025 
 

Dept of CSE  87  

<%= select :variable,:attribute,choices,options,html_options%> 

<select name = "post[person_id]"> 

<option value = "1">David</option> 

<option value = "2">Sam</option> 

<option value = "3">Tobias</option> 

</select> 

<%= date_select :variable, :attribute, options %> 

<%= datetime_select :variable, :attribute, options %> 

<%= end_form_tag %> 

 
Let's check another example − 

 
This will generate following code − 

 
 

Options 

To create a dropdopwn list, use the following syntax − 

Have a look at the following example − 

 
This could generate the following code. It depends on what value is available in your 

database. − 

 

Date Time 

Following is the syntax to use data and time − 

Following are examples of usage − 

 
 

End Form Tag 

Use following syntax to create </form> tag − 

<%=date_select "post", "written_on"%> 

<%=date_select "user", "birthday", :start_year => 1910%> 

<%=date_select "user", "cc_date", :start_year => 2005, 

:use_month_numbers => true, :discard_day => true, :order => [:year, :month]%> 

<%=datetime_select "post", "written_on"%> 

select("post", "person_id", Person.find(:all).collect {|p| [ p.name, p.id ] }) 

<input type = "checkbox" id = "puppy_gooddog" name = "puppy[gooddog]" value = 

"yes" /> 

<input name = "puppy[gooddog]" type = "hidden" value = "no" /> 

check_box("puppy", "gooddog", {}, "yes", "no") 

<input type = "checkbox" id = "post_validate" name = "post[validated]" 

value = "1" checked = "checked" /> 

<input name = "post[validated]" type = "hidden" value = "0" /> 


	MALLAREDDY COLLEGE OF ENGINEERING & TECHNOLOGY
	Vision
	Mission
	PEO1–ANALYTICALSKILLS
	PEO2–TECHNICALSKILLS
	PEO3–SOFTSKILLS
	PEO4–PROFESSIONALETHICS

	PROGRAM OUTCOMES (POs)
	Engineering Graduates should possess the following:


