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COURSE OBJECTIVES: 

1. To understand common forms of number representation in digital electronic circuits 

and to be able to convert between different representations. 

2. To implement simple logical operations using combinational logic circuits 

3. To design combinational logic circuits, sequential logic circuits. 

4. To impart to student the concepts of sequential circuits, enabling them to 

analyze sequential systems. 

5. Understanding of the different technologies related to HDLs, construct, compile and execute 

Verilog HDL programs using provided. 

6. Designing digital circuits, behavior and RTL modeling of digital circuits using Verilog 

HDL. 
 

UNIT –I: 

 

Number Systems, Boolean Algebra and Switching Functions: 

Number Systems, Base Conversion Methods, Complements of Numbers, Codes- Binary Codes, 

Binary Coded Decimal Code, Unit Distance Codes, Error Detecting and Error Correcting Codes, 

Hamming Code. 
Boolean Algebra: 

Basic Theorems and Properties, Switching Functions, Canonical and Standard Forms, Algebraic 

Simplification of Digital Logic Gates, Properties of XOR Gates, Universal Logic Gates. 

 
UNIT –II 

 

Minimization and Design of Combinational Circuits: 

K- Map Method, up to Five variable K- Maps, Don’t Care Map Entries, Combinational Design, 

Arithmetic Circuits, Comparator, decoder, Encoder, Multiplexers, De-Multiplexers, Code 

Converters. 

UNIT –III: 

 

Sequential Machines Fundamentals: 

Introduction, Basic Architectural Distinctions between Combinational and Sequential circuits, 

classification of sequential circuits, The binary cell, The S-R-Latch Flip-Flop The D- 

Latch Flip-Flop, The “Clocked T” Flip-Flop, The “ Clocked J-K” Flip-Flop, Conversion 

from one type of Flip-Flop to another. 
 

UNIT –IV: 

 

INTRODUCTION TO VERILOG HDL: Verilog as HDL, Levels of Design Description, Concurrency, 

Simulation and Synthesis, Programming Language Interface, Module. 

Language Constructs and Conventions: Introduction, Keywords, Identifiers, White Space, 

Characters, Comments, Numbers, Strings, Logic Values, Data Types, Operators. 
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UNIT –V: 

 

GATE LEVEL MODELING: Introduction, AND Gate Primitive, Module Structure, Other Gate 

Primitives, Illustrative Examples, Design of Flip- Flops with Gate Primitives, Delay. 

MODELING AT DATAFLOW LEVEL: Introduction, Continuous Assignment Structure, Delays and 

Continuous Assignments. 

BEHAVIORAL MODELING: Introduction, Operations and Assignments, 'Initial' Construct, ‘always’ 

construct, , Design at Behavioral Level, The 'Case' Statement, 'If' and 'if-Else' Constructs 
 
 

TEXT BOOKS: 

 

1. Digital Design- Morris Mano, PHI, 3rd Edition. 

2. Switching Theory and Logic Design-A. Anand Kumar, PHI, 2nd Edition. 

3. T.R. Padmanabhan, B Bala Tripura Sundari, Design through Verilog HDL, Wiley 2009. 

4. Verilog HDL - Samir Palnitkar, 2nd Edition, Pearson Education, 2009.  

REFERENCE BOOKS: 

 

1. Introduction to Switching Theory and Logic Design – Fredriac J. Hill, Gerald R. 

Peterson, 3rdEd,John Wiley & Sons Inc. 

2. Digital Fundamentals – A Systems Approach – Thomas L. Floyd, Pearson, 2013. 

3. Switching Theory and Logic Design – Bhanu Bhaskara –Tata McGraw Hill Publication, 2012 

4. Fundamentals of Logic Design- Charles H. Roth, Cengage Learning, 5th, Edition, 2004. 

5. Fundamentals of Digital Logic with Verilog Design - Stephen Brown,Zvonkoc Vranesic, 

TMH, 2nd Edition. 

6. Advanced Digital Design with Verilog HDL - Michel D. Ciletti, PHI, 2009. 

 
COURSE OUTCOMES: 

 

Upon completion of the course, student should possess the following skills: 

 

1. Be able to manipulate numeric information in different forms 

2. Be able to manipulate simple Boolean expressions using the theorems and 

postulates of Boolean algebra and to minimize combinational functions. 

3. Be able to design and analyze small combinational circuits and to use 

standard combinational functions to build larger more complex circuits. 

4. Be able to design and analyze Digital circuits 

5. Verify behavior and Implement RTL models on FPGAs. 
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UNIT I 

Number System and Boolean Algebra 

If base or radix of a number system is ‘r’, then the numbers present in that number system are 

ranging from zero to r-1. The total numbers present in that number system is ‘r’. So, we will get 

various number systems, by choosing the values of radix as greater than or equal to two. 

In this chapter, let us discuss about the popular number systems and how to represent a number in 

the respective number system. The following number systems are the most commonly used. 

 Decimal Number system 

 Binary Number system 

 Octal Number system 

 Hexadecimal Number system 

Decimal Number System 

The base or radix of Decimal number system is 10. So, the numbers ranging from 0 to 9 are used in 

this number system. The part of the number that lies to the left of the decimal pointis known as 

integer part. Similarly, the part of the number that lies to the right of the decimal point is known as 

fractional part. 

In this number system, the successive positions to the left of the decimal point having weights of 100, 

101, 102, 103 and so on. Similarly, the successive positions to the right of the decimal point having 

weights of 10-1, 10-2, 10-3 and so on. That means, each position has specific weight, which is power of 

base 10 

Example 

Consider the decimal number 1358.246. Integer part of this number is 1358 and fractional part of this 

number is 0.246. The digits 8, 5, 3 and 1 have weights of 100, 101, 102 and 103respectively. Similarly, 

the digits 2, 4 and 6 have weights of 10-1, 10-2 and 10-3 respectively. 

Mathematically, we can write it as 

1358.246 = (1 × 103) + (3 × 102) + (5 × 101) + (8 × 100) + (2 × 10-1) + 

(4 × 10-2) + (6 × 10-3) 

After simplifying the right hand side terms, we will get the decimal number, which is on left hand side. 
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Binary Number System 

All digital circuits and systems use this binary number system. The base or radix of this number 

system is 2. So, the numbers 0 and 1 are used in this number system. 

The part of the number, which lies to the left of the binary point is known as integer part. Similarly, 

the part of the number, which lies to the right of the binary point is known as fractional part. 

In this number system, the successive positions to the left of the binary point having weights of 20, 21, 

22, 23 and so on. Similarly, the successive positions to the right of the binary point having weights of 2-

1, 2-2, 2-3 and so on. That means, each position has specific weight, which is power of base 2. 

Example 

Consider the binary number 1101.011. Integer part of this number is 1101 and fractional part of this 

number is 0.011. The digits 1, 0, 1 and 1 of integer part have weights of 20, 21, 22, 23respectively. 

Similarly, the digits 0, 1 and 1 of fractional part have weights of 2-1, 2-2, 2-3 respectively. 

Mathematically, we can write it as 

1101.011 = (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20) + (0 × 2-1) + 

(1 × 2-2) + (1 × 2-3) 

After simplifying the right hand side terms, we will get a decimal number, which is an equivalent of 

binary number on left hand side. 

Octal Number System 

The base or radix of octal number system is 8. So, the numbers ranging from 0 to 7 are used in this 

number system. The part of the number that lies to the left of the octal point is known as integer part. 

Similarly, the part of the number that lies to the right of the octal point is known as fractional part. 

In this number system, the successive positions to the left of the octal point having weights of 80, 81, 

82, 83 and so on. Similarly, the successive positions to the right of the octal point having weights of 8-1, 

8-2, 8-3 and so on. That means, each position has specific weight, which is power of base 8. 

Example 

Consider the octal number 1457.236. Integer part of this number is 1457 and fractional part of this 

number is 0.236. The digits 7, 5, 4 and 1 have weights of 80, 81, 82 and 83respectively. Similarly, the 

digits 2, 3 and 6 have weights of 8-1, 8-2, 8-3 respectively. 

Mathematically, we can write it as 

1457.236 = (1 × 83) + (4 × 82) + (5 × 81) + (7 × 80) + (2 × 8-1) + 

(3 × 8-2) + (6 × 8-3) 
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After simplifying the right hand side terms, we will get a decimal number, which is an equivalent of 

octal number on left hand side. 

Hexadecimal Number System 

The base or radix of Hexa-decimal number system is 16. So, the numbers ranging from 0 to 9 and the 

letters from A to F are used in this number system. The decimal equivalent of Hexa-decimal digits 

from A to F are 10 to 15. 

The part of the number, which lies to the left of the hexadecimal point is known as integer part. 

Similarly, the part of the number, which lies to the right of the Hexa-decimal point is known as 

fractional part. 

In this number system, the successive positions to the left of the Hexa-decimal point having weights of 

160, 161, 162, 163 and so on. Similarly, the successive positions to the right of the Hexa-decimal point 

having weights of 16-1, 16-2, 16-3 and so on. That means, each position has specific weight, which 

is power of base 16. 

Example 

Consider the Hexa-decimal number 1A05.2C4. Integer part of this number is 1A05 and fractional part 

of this number is 0.2C4. The digits 5, 0, A and 1 have weights of 160, 161, 162 and 163respectively. 

Similarly, the digits 2, C and 4 have weights of 16-1, 16-2 and 16-3 respectively. 

Mathematically, we can write it as 

1A05.2C4 = (1 × 163) + (10 × 162) + (0 × 161) + (5 × 160) + (2 × 16-1) + 

(12 × 16-2) + (4 × 16-3) 

After simplifying the right hand side terms, we will get a decimal number, which is an equivalent of 

Hexa-decimal number on left hand side. 

In previous chapter, we have seen the four prominent number systems. In this chapter, let us convert 

the numbers from one number system to the other in order to find the equivalent value. 

Decimal Number to other Bases Conversion 

If the decimal number contains both integer part and fractional part, then convert both the parts of 

decimal number into other base individually. Follow these steps for converting the decimal number 

into its equivalent number of any base ‘r’. 

 Do division of integer part of decimal number and successive quotients with base ‘r’ and note 

down the remainders till the quotient is zero. Consider the remainders in reverse order to get 

the integer part of equivalent number of base ‘r’. That means, first and last remainders denote 

the least significant digit and most significant digit respectively. 
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 Do multiplication of fractional part of decimal number and successive fractions with base ‘r’ 

and note down the carry till the result is zero or the desired number of equivalent digits is 

obtained. Consider the normal sequence of carry in order to get the fractional part of 

equivalent number of base ‘r’. 

Decimal to Binary Conversion 

The following two types of operations take place, while converting decimal number into its equivalent 

binary number. 

 Division of integer part and successive quotients with base 2. 

 Multiplication of fractional part and successive fractions with base 2. 

Example 

Consider the decimal number 58.25. Here, the integer part is 58 and fractional part is 0.25. 

Step 1 − Division of 58 and successive quotients with base 2. 

Operation Quotient Remainder 

58/2 29 0 (LSB) 

29/2 14 1 

14/2 7 0 

7/2 3 1 

3/2 1 1 

1/2 0 1(MSB) 

⇒(58)10 = (111010)2 

Therefore, the integer part of equivalent binary number is 111010. 

Step 2 − Multiplication of 0.25 and successive fractions with base 2. 
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Operation Result Carry 

0.25 x 2 0.5 0 

0.5 x 2 1.0 1 

- 0.0 - 

⇒(.25)10 = (.01)2 

Therefore, the fractional part of equivalent binary number is .01 

⇒(58.25)10 = (111010.01)2 

Therefore, the binary equivalent of decimal number 58.25 is 111010.01. 

Decimal to Octal Conversion 

The following two types of operations take place, while converting decimal number into its equivalent 

octal number. 

 Division of integer part and successive quotients with base 8. 

 Multiplication of fractional part and successive fractions with base 8. 

Example 

Consider the decimal number 58.25. Here, the integer part is 58 and fractional part is 0.25. 

Step 1 − Division of 58 and successive quotients with base 8. 

Operation Quotient Remainder 

58/8 7 2 

7/8 0 7 

⇒(58)10 = (72)8 

Therefore, the integer part of equivalent octal number is 72. 

Step 2 − Multiplication of 0.25 and successive fractions with base 8. 
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Operation Result Carry 

0.25 x 8 2.00 2 

- 0.00 - 

⇒ (.25)10 = (.2)8 

Therefore, the fractional part of equivalent octal number is .2 

⇒ (58.25)10 = (72.2)8 

Therefore, the octal equivalent of decimal number 58.25 is 72.2. 

Decimal to Hexa-Decimal Conversion 

The following two types of operations take place, while converting decimal number into its equivalent 

hexa-decimal number. 

 Division of integer part and successive quotients with base 16. 

 Multiplication of fractional part and successive fractions with base 16. 

Example 

Consider the decimal number 58.25. Here, the integer part is 58 and decimal part is 0.25. 

Step 1 − Division of 58 and successive quotients with base 16. 

Operation Quotient Remainder 

58/16 3 10=A 

3/16 0 3 

⇒ (58)10 = (3A)16 

Therefore, the integer part of equivalent Hexa-decimal number is 3A. 

Step 2 − Multiplication of 0.25 and successive fractions with base 16. 
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Operation Result Carry 

0.25 x 16 4.00 4 

- 0.00 - 

⇒(.25)10 = (.4)16 

Therefore, the fractional part of equivalent Hexa-decimal number is .4. 

⇒(58.25)10 = (3A.4)16 

Therefore, the Hexa-decimal equivalent of decimal number 58.25 is 3A.4. 

Binary Number to other Bases Conversion 

The process of converting a number from binary to decimal is different to the process of converting a 

binary number to other bases. Now, let us discuss about the conversion of a binary number to 

decimal, octal and Hexa-decimal number systems one by one. 

Binary to Decimal Conversion 

For converting a binary number into its equivalent decimal number, first multiply the bits of binary 

number with the respective positional weights and then add all those products. 

Example 

Consider the binary number 1101.11. 

Mathematically, we can write it as 

(1101.11)2 = (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20) + (1 × 2-1) + 

(1 × 2-2) 

⇒ (1101.11)2 = 8 + 4 + 0 + 1 + 0.5 + 0.25 = 13.75 

⇒ (1101.11)2 = (13.75)10 

Therefore, the decimal equivalent of binary number 1101.11 is 13.75. 

Binary to Octal Conversion 

We know that the bases of binary and octal number systems are 2 and 8 respectively. Three bits of 

binary number is equivalent to one octal digit, since 23 = 8. 

Follow these two steps for converting a binary number into its equivalent octal number. 
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 Start from the binary point and make the groups of 3 bits on both sides of binary point. If one 

or two bits are less while making the group of 3 bits, then include required number of zeros on 

extreme sides. 

 Write the octal digits corresponding to each group of 3 bits. 

Example 

Consider the binary number 101110.01101. 

Step 1 − Make the groups of 3 bits on both sides of binary point. 

101 110.011 01 

Here, on right side of binary point, the last group is having only 2 bits. So, include one zero on extreme 

side in order to make it as group of 3 bits. 

⇒ 101 110.011 010 

Step 2 − Write the octal digits corresponding to each group of 3 bits. 

⇒ (101 110.011 010)2 = (56.32)8 

Therefore, the octal equivalent of binary number 101110.01101 is 56.32. 

Binary to Hexa-Decimal Conversion 

We know that the bases of binary and Hexa-decimal number systems are 2 and 16 respectively. Four 

bits of binary number is equivalent to one Hexa-decimal digit, since 24 = 16. 

Follow these two steps for converting a binary number into its equivalent Hexa-decimal number. 

 Start from the binary point and make the groups of 4 bits on both sides of binary point. If some 

bits are less while making the group of 4 bits, then include required number of zeros on 

extreme sides. 

 Write the Hexa-decimal digits corresponding to each group of 4 bits. 

Example 

Consider the binary number 101110.01101 

Step 1 − Make the groups of 4 bits on both sides of binary point. 

10 1110.0110 1 

Here, the first group is having only 2 bits. So, include two zeros on extreme side in order to make it as 

group of 4 bits. Similarly, include three zeros on extreme side in order to make the last group also as 

group of 4 bits. 

⇒ 0010 1110.0110 1000 

Step 2 − Write the Hexa-decimal digits corresponding to each group of 4 bits. 
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⇒ (0010 1110.0110 1000)2 = (2E.68)16 

Therefore, the Hexa-decimal equivalent of binary number 101110.01101 is (2E.68). 

Octal Number to other Bases Conversion 

The process of converting a number from octal to decimal is different to the process of converting an 

octal number to other bases. Now, let us discuss about the conversion of an octal number to decimal, 

binary and Hexa-decimal number systems one by one. 

Octal to Decimal Conversion 

For converting an octal number into its equivalent decimal number, first multiply the digits of octal 

number with the respective positional weights and then add all those products. 

Example 

Consider the octal number 145.23. 

Mathematically, we can write it as 

(145.23)8 = (1 × 82) + (4 × 81) + (5 × 80) + (2 × 8-1) + (3 × 8-2) 

⇒ (145.23)8 = 64 + 32 + 5 + 0.25 + 0.05 = 101.3 

⇒ (145.23)8 = (101.3)10 

Therefore, the decimal equivalent of octal number 145.23 is 101.3. 

Octal to Binary Conversion 

The process of converting an octal number to an equivalent binary number is just opposite to that of 

binary to octal conversion. By representing each octal digit with 3 bits, we will get the equivalent 

binary number. 

Example 

Consider the octal number 145.23. 

Represent each octal digit with 3 bits. 

(145.23)8 = (001 100 101.010 011)2 

The value doesn’t change by removing the zeros, which are on the extreme side. 

⇒ (145.23)8 = (1100101.010011)2 

Therefore, the binary equivalent of octal number 145.23 is 1100101.010011. 

Octal to Hexa-Decimal Conversion 

Follow these two steps for converting an octal number into its equivalent Hexa-decimal number. 

 Convert octal number into its equivalent binary number. 
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 Convert the above binary number into its equivalent Hexa-decimal number. 

Example 

Consider the octal number 145.23 

In previous example, we got the binary equivalent of octal number 145.23 as 1100101.010011. 

By following the procedure of binary to Hexa-decimal conversion, we will get 

(1100101.010011)2 = (65.4C)16 

⇒(145.23)8 = (65.4C)16 

Therefore, the Hexa-decimal equivalent of octal number 145.23 is 65.4C. 

Hexa-Decimal Number to other Bases Conversion 

The process of converting a number from Hexa-decimal to decimal is different to the process of 

converting Hexa-decimal number into other bases. Now, let us discuss about the conversion of Hexa-

decimal number to decimal, binary and octal number systems one by one. 

Hexa-Decimal to Decimal Conversion 

For converting Hexa-decimal number into its equivalent decimal number, first multiply the digits of 

Hexa-decimal number with the respective positional weights and then add all those products. 

Example 

Consider the Hexa-decimal number 1A5.2 

Mathematically, we can write it as 

(1A5.2)16 = (1 × 162) + (10 × 161) + (5 × 160) + (2 × 16-1) 

⇒ (1A5.2)16 = 256 + 160 + 5 + 0.125 = 421.125 

⇒ (1A5.2)16 = (421.125)10 

Therefore, the decimal equivalent of Hexa-decimal number 1A5.2 is 421.125. 

Hexa-Decimal to Binary Conversion 

The process of converting Hexa-decimal number into its equivalent binary number is just opposite to 

that of binary to Hexa-decimal conversion. By representing each Hexa-decimal digit with 4 bits, we 

will get the equivalent binary number. 

Example 

Consider the Hexa-decimal number 65.4C 

Represent each Hexa-decimal digit with 4 bits. 

(65.4C)6 = (0110 0101.0100 1100)2 
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The value doesn’t change by removing the zeros, which are at two extreme sides. 

⇒ (65.4C)16 = (1100101.010011)2 

Therefore, the binary equivalent of Hexa-decimal number 65.4C is 1100101.010011. 

Hexa-Decimal to Octal Conversion 

Follow these two steps for converting Hexa-decimal number into its equivalent octal number. 

 Convert Hexa-decimal number into its equivalent binary number. 

 Convert the above binary number into its equivalent octal number. 

Example 

Consider the Hexa-decimal number 65.4C 

In previous example, we got the binary equivalent of Hexa-decimal number 65.4C as 1100101.010011. 

By following the procedure of binary to octal conversion, we will get 

(1100101.010011)2 = (145.23)8 

⇒(65.4C)16 = (145.23)𝟖 

Therefore, the octal equivalent of Hexa-decimal number 65.4Cis 145.23. 

We can make the binary numbers into the following two groups − Unsigned numbers and Signed 

numbers. 

Unsigned Numbers 

Unsigned numbers contain only magnitude of the number. They don’t have any sign. That means all 

unsigned binary numbers are positive. As in decimal number system, the placing of positive sign in 

front of the number is optional for representing positive numbers. Therefore, all positive numbers 

including zero can be treated as unsigned numbers if positive sign is not assigned in front of the 

number. 

Signed Numbers 

Signed numbers contain both sign and magnitude of the number. Generally, the sign is placed in front 

of number. So, we have to consider the positive sign for positive numbers and negative sign for 

negative numbers. Therefore, all numbers can be treated as signed numbers if the corresponding sign 

is assigned in front of the number. 

If sign bit is zero, which indicates the binary number is positive. Similarly, if sign bit is one, which 

indicates the binary number is negative. 

Representation of Un-Signed Binary Numbers 
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The bits present in the un-signed binary number holds the magnitude of a number. That means, if the 

un-signed binary number contains ‘N’ bits, then all N bits represent the magnitude of the number, 

since it doesn’t have any sign bit. 

Example 

Consider the decimal number 108. The binary equivalent of this number is 1101100. This is the 

representation of unsigned binary number. 

(108)10 = (1101100)2 

It is having 7 bits. These 7 bits represent the magnitude of the number 108. 

Representation of Signed Binary Numbers 

The Most Significant Bit (MSB) of signed binary numbers is used to indicate the sign of the numbers. 

Hence, it is also called as sign bit. The positive sign is represented by placing ‘0’ in the sign bit. 

Similarly, the negative sign is represented by placing ‘1’ in the sign bit. 

If the signed binary number contains ‘N’ bits, then (N-1) bits only represent the magnitude of the 

number since one bit (MSB) is reserved for representing sign of the number. 

There are three types of representations for signed binary numbers 

 Sign-Magnitude form 

 1’s complement form 

 2’s complement form 

Representation of a positive number in all these 3 forms is same. But, only the representation of 

negative number will differ in each form. 

Example 

Consider the positive decimal number +108. The binary equivalent of magnitude of this number is 

1101100. These 7 bits represent the magnitude of the number 108. Since it is positive number, 

consider the sign bit as zero, which is placed on left most side of magnitude. 

(+108)10 = (01101100)2 

Therefore, the signed binary representation of positive decimal number +108 is 𝟎𝟏𝟏𝟎𝟏𝟏𝟎𝟎. So, the 

same representation is valid in sign-magnitude form, 1’s complement form and 2’s complement form 

for positive decimal number +108. 
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Sign-Magnitude form 

In sign-magnitude form, the MSB is used for representing signof the number and the remaining bits 

represent the magnitudeof the number. So, just include sign bit at the left most side of unsigned 

binary number. This representation is similar to the signed decimal numbers representation. 

Example 

Consider the negative decimal number -108. The magnitude of this number is 108. We know the 

unsigned binary representation of 108 is 1101100. It is having 7 bits. All these bits represent the 

magnitude. 

Since the given number is negative, consider the sign bit as one, which is placed on left most side of 

magnitude. 

(−108)10 = (11101100)2 

Therefore, the sign-magnitude representation of -108 is 11101100. 

1’s complement form 

The 1’s complement of a number is obtained by complementing all the bits of signed binary number. 

So, 1’s complement of positive number gives a negative number. Similarly, 1’s complement of 

negative number gives a positive number. 

That means, if you perform two times 1’s complement of a binary number including sign bit, then you 

will get the original signed binary number. 

Example 

Consider the negative decimal number -108. The magnitude of this number is 108. We know the 

signed binary representation of 108 is 01101100. 

It is having 8 bits. The MSB of this number is zero, which indicates positive number. Complement of 

zero is one and vice-versa. So, replace zeros by ones and ones by zeros in order to get the negative 

number. 

(−108)10 = (10010011)2 

Therefore, the 1’s complement of (108)10 is (10010011)2. 

2’s complement form 

The 2’s complement of a binary number is obtained by adding one to the 1’s complement of signed 

binary number. So, 2’s complement of positive number gives a negative number. Similarly, 2’s 

complement of negative number gives a positive number. 
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That means, if you perform two times 2’s complement of a binary number including sign bit, then you 

will get the original signed binary number. 

Example 

Consider the negative decimal number -108. 

We know the 1’s complement of (108)10 is (10010011)2 

2’s compliment of (108)10 = 1’s compliment of (108)10 + 1. 

= 10010011 + 1 

= 10010100 

Therefore, the 2’s complement of (108)10 is (10010100)2. 

In this chapter, let us discuss about the basic arithmetic operations, which can be performed on any 

two signed binary numbers using 2’s complement method. The basic arithmetic operations are 

addition and subtraction. 

Addition of two Signed Binary Numbers 

Consider the two signed binary numbers A & B, which are represented in 2’s complement form. We 

can perform the addition of these two numbers, which is similar to the addition of two unsigned 

binary numbers. But, if the resultant sum contains carry out from sign bit, then discard (ignore) it in 

order to get the correct value. 

If resultant sum is positive, you can find the magnitude of it directly. But, if the resultant sum is 

negative, then take 2’s complement of it in order to get the magnitude. 

Example 1 

Let us perform the addition of two decimal numbers +7 and +4 using 2’s complement method. 

The 2’s complement representations of +7 and +4 with 5 bits each are shown below. 

(+7)10 = (00111)2 

(+4)10 = (00100)2 

The addition of these two numbers is 

(+7)10 +(+4)10 = (00111)2+(00100)2 

⇒(+7)10 +(+4)10 = (01011)2. 
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The resultant sum contains 5 bits. So, there is no carry out from sign bit. The sign bit ‘0’ indicates that 

the resultant sum is positive. So, the magnitude of sum is 11 in decimal number system. Therefore, 

addition of two positive numbers will give another positive number. 

Example 2 

Let us perform the addition of two decimal numbers -7 and -4using 2’s complement method. 

The 2’s complement representation of -7 and -4 with 5 bits each are shown below. 

(−7)10 = (11001)2 

(−4)10 = (11100)2 

The addition of these two numbers is 

(−7)10 + (−4)10 = (11001)2 + (11100)2 

⇒(−7)10 + (−4)10 = (110101)2. 

The resultant sum contains 6 bits. In this case, carry is obtained from sign bit. So, we can remove it 

Resultant sum after removing carry is (−7)10 + (−4)10 = (10101)2. 

The sign bit ‘1’ indicates that the resultant sum is negative. So, by taking 2’s complement of it we will 

get the magnitude of resultant sum as 11 in decimal number system. Therefore, addition of two 

negative numbers will give another negative number. 

Subtraction of two Signed Binary Numbers 

Consider the two signed binary numbers A & B, which are represented in 2’s complement form. We 

know that 2’s complement of positive number gives a negative number. So, whenever we have to 

subtract a number B from number A, then take 2’s complement of B and add it to A. 

So, mathematicallywe can write it as 

A - B = A + (2's complement of B) 

Similarly, if we have to subtract the number A from number B, then take 2’s complement of A and add 

it to B. So, mathematically we can write it as 

B - A = B + (2's complement of A) 

So, the subtraction of two signed binary numbers is similar to the addition of two signed binary 

numbers. But, we have to take 2’s complement of the number, which is supposed to be subtracted. 

This is the advantage of 2’s complement technique. Follow, the same rules of addition of two signed 

binary numbers. 
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Example 3 

Let us perform the subtraction of two decimal numbers +7 and +4 using 2’s complement method. 

The subtraction of these two numbers is 

(+7)10 − (+4)10 = (+7)10 + (−4)10. 

The 2’s complement representation of +7 and -4 with 5 bits each are shown below. 

(+7)10 = (00111)2 

(+4)10 = (11100)2 

⇒(+7)10 + (+4)10 = (00111)2 + (11100)2 = (00011)2 

Here, the carry obtained from sign bit. So, we can remove it. The resultant sum after removing carry is 

(+7)10 + (+4)10 = (00011)2 

The sign bit ‘0’ indicates that the resultant sum is positive. So, the magnitude of it is 3 in decimal 

number system. Therefore, subtraction of two decimal numbers +7 and +4 is +3. 

Example 4 

Let us perform the subtraction of two decimal numbers +4 and +7 using 2’s complement method. 

The subtraction of these two numbers is 

(+4)10 − (+7)10 = (+4)10 + (−7)10. 

The 2’s complement representation of +4 and -7 with 5 bits each are shown below. 

(+4)10 = (00100)2 

(-7)10 = (11001)2 

⇒(+4)10 + (-7)10 = (00100)2 + (11001)2 = (11101)2 

Here, carry is not obtained from sign bit. The sign bit ‘1’ indicates that the resultant sum is negative. 

So, by taking 2’s complement of it we will get the magnitude of resultant sum as 3 in decimal number 

system. Therefore, subtraction of two decimal numbers +4 and +7 is -3. 

In the coding, when numbers or letters are represented by a specific group of symbols, it is said to be 

that number or letter is being encoded. The group of symbols is called as code. The digital data is 

represented, stored and transmitted as group of bits. This group of bits is also called as binary code. 

Binary codes can be classified into two types. 

 Weighted codes 
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 Unweighted codes 

If the code has positional weights, then it is said to be weighted code. Otherwise, it is an unweighted 

code. Weighted codes can be further classified as positively weighted codes and negatively weighted 

codes. 

Binary Codes for Decimal digits 

The following table shows the various binary codes for decimal digits 0 to 9. 

Decimal Digit 8421 Code 2421 Code 84-2-1 Code Excess 3 Code 

0 0000 0000 0000 0011 

1 0001 0001 0111 0100 

2 0010 0010 0110 0101 

3 0011 0011 0101 0110 

4 0100 0100 0100 0111 

5 0101 1011 1011 1000 

6 0110 1100 1010 1001 

7 0111 1101 1001 1010 

8 1000 1110 1000 1011 

9 1001 1111 1111 1100 
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We have 10 digits in decimal number system. To represent these 10 digits in binary, we require 

minimum of 4 bits. But, with 4 bits there will be 16 unique combinations of zeros and ones. Since, we 

have only 10 decimal digits, the other 6 combinations of zeros and ones are not required. 

8 4 2 1 code 

 The weights of this code are 8, 4, 2 and 1. 

 This code has all positive weights. So, it is a positively weighted code. 

 This code is also called as natural BCD (Binary Coded Decimal) code. 

Example 

Let us find the BCD equivalent of the decimal number 786. This number has 3 decimal digits 7, 8 and 

6. From the table, we can write the BCD (8421) codes of 7, 8 and 6 are 0111, 1000 and 0110 

respectively. 

∴ (786)10 = (011110000110)BCD 

There are 12 bits in BCD representation, since each BCD code of decimal digit has 4 bits. 

2 4 2 1 code 

 The weights of this code are 2, 4, 2 and 1. 

 This code has all positive weights. So, it is a positively weighted code. 

 It is an unnatural BCD code. Sum of weights of unnatural BCD codes is equal to 9. 

 It is a self-complementing code. Self-complementing codes provide the 9’s complement of a 

decimal number, just by interchanging 1’s and 0’s in its equivalent 2421 representation. 

Example 

Let us find the 2421 equivalent of the decimal number 786. This number has 3 decimal digits 7, 8 and 

6. From the table, we can write the 2421 codes of 7, 8 and 6 are 1101, 1110 and 1100 respectively. 

Therefore, the 2421 equivalent of the decimal number 786 is 110111101100. 

8 4 -2 -1 code 

 The weights of this code are 8, 4, -2 and -1. 

 This code has negative weights along with positive weights. So, it is a negatively weighted 

code. 

 It is an unnatural BCD code. 

 It is a self-complementing code. 
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Example 

Let us find the 8 4-2-1 equivalent of the decimal number 786. This number has 3 decimal digits 7, 8 

and 6. From the table, we can write the 8 4 -2 -1 codes of 7, 8 and 6 are 1001, 1000 and 1010 

respectively. 

Therefore, the 8 4 -2 -1 equivalent of the decimal number 786 is 100110001010. 

Excess 3 code 

 This code doesn’t have any weights. So, it is an un-weighted code. 

 We will get the Excess 3 code of a decimal number by adding three (0011) to the binary 

equivalent of that decimal number. Hence, it is called as Excess 3 code. 

 It is a self-complementing code. 

Example 

Let us find the Excess 3 equivalent of the decimal number 786. This number has 3 decimal digits 7, 8 

and 6. From the table, we can write the Excess 3 codes of 7, 8 and 6 are 1010, 1011 and 1001 

respectively. 

Therefore, the Excess 3 equivalent of the decimal number 786 is 101010111001 

Gray Code 

The following table shows the 4-bit Gray codes corresponding to each 4-bit binary code. 

Decimal Number Binary Code Gray Code 

0 0000 0000 

1 0001 0001 

2 0010 0011 

3 0011 0010 

4 0100 0110 
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5 0101 0111 

6 0110 0101 

7 0111 0100 

8 1000 1100 

9 1001 1101 

10 1010 1111 

11 1011 1110 

12 1100 1010 

13 1101 1011 

14 1110 1001 

15 1111 1000 

 This code doesn’t have any weights. So, it is an un-weighted code. 

 In the above table, the successive Gray codes are differed in one bit position only. Hence, this 

code is called as unit distance code. 

Binary code to Gray Code Conversion 

Follow these steps for converting a binary code into its equivalent Gray code. 

 Consider the given binary code and place a zero to the left of MSB. 

 Compare the successive two bits starting from zero. If the 2 bits are same, then the output is 

zero. Otherwise, output is one. 
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 Repeat the above step till the LSB of Gray code is obtained. 

Example 

From the table, we know that the Gray code corresponding to binary code 1000 is 1100. Now, let us 

verify it by using the above procedure. 

Given, binary code is 1000. 

Step 1 − By placing zero to the left of MSB, the binary code will be 01000. 

Step 2 − By comparing successive two bits of new binary code, we will get the gray code as 1100. 

Error Detection & Correction Codes 

We know that the bits 0 and 1 corresponding to two different range of analog voltages. So, during 

transmission of binary data from one system to the other, the noise may also be added. Due to this, 

there may be errors in the received data at other system. 

That means a bit 0 may change to 1 or a bit 1 may change to 0. We can’t avoid the interference of 

noise. But, we can get back the original data first by detecting whether any errors𝑠 present and then 

correcting those errors. For this purpose, we can use the following codes. 

 Error detection codes 

 Error correction codes 

Error detection codes − are used to detect the errors𝑠 present in the received data bitstream. 

These codes contain some bits𝑠, which are included appended to the original bit stream. These 

codes detect the error, if it is occurred during transmission of the original 

data bitstream.Example − Parity code, Hamming code. 

Error correction codes − are used to correct the errors𝑠 present in the received data bitstream so 

that, we will get the original data. Error correction codes also use the similar strategy of error 
detection codes.Example − Hamming code. 

Therefore, to detect and correct the errors, additional bits𝑠 are appended to the data bits at 

the time of transmission. 

Parity Code 

It is easy to include append one parity bit either to the left of MSB or to the right of LSB of 

original bit stream. There are two types of parity codes, namely even parity code and odd 

parity code based on the type of parity being chosen. 
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Even Parity Code 

The value of even parity bit should be zero, if even number of ones present in the binary code. 
Otherwise, it should be one. So that, even number of ones present in even parity code. Even 

parity code contains the data bits and even parity bit. 

The following table shows the even parity codes corresponding to each 3-bit binary code. Here, 

the even parity bit is included to the right of LSB of binary code. 

 

Binary Code Even Parity bit Even Parity Code 

000 0 0000 

001 1 0011 

010 1 0101 

011 0 0110 

100 1 1001 

101 0 1010 

110 0 1100 

111 1 1111 

Here, the number of bits present in the even parity codes is 4. So, the possible even number 

of ones in these even parity codes are 0, 2 & 4. 

 If the other system receives one of these even parity codes, then there is no error in 
the received data. The bits other than even parity bit are same as that of binary code. 

 If the other system receives other than even parity codes, then there will be an 
errors𝑠 in the received data. In this case, we can’t predict the original binary code 

because we don’t know the bit positions𝑠 of error. 

Therefore, even parity bit is useful only for detection of error in the received parity code. But, 

it is not sufficient to correct the error. 

Odd Parity Code 

The value of odd parity bit should be zero, if odd number of ones present in the binary code. 
Otherwise, it should be one. So that, odd number of ones present in odd parity code. Odd 

parity code contains the data bits and odd parity bit. 

The following table shows the odd parity codes corresponding to each 3-bit binary code. 

Here, the odd parity bit is included to the right of LSB of binary code. 
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Binary Code Odd Parity bit Odd Parity Code 

000 1 0001 

001 0 0010 

010 0 0100 

011 1 0111 

100 0 1000 

101 1 1011 

110 1 1101 

111 0 1110 

Here, the number of bits present in the odd parity codes is 4. So, the possible odd number of 

ones in these odd parity codes are 1 & 3. 

 If the other system receives one of these odd parity codes, then there is no error in the 
received data. The bits other than odd parity bit are same as that of binary code. 

 If the other system receives other than odd parity codes, then there is an errors𝑠 in the 

received data. In this case, we can’t predict the original binary code because we don’t 
know the bit positions𝑠 of error. 

Therefore, odd parity bit is useful only for detection of error in the received parity code. But, it 

is not sufficient to correct the error. 

Hamming Code 

Hamming code is useful for both detection and correction of error present in the received data. 
This code uses multiple parity bits and we have to place these parity bits in the positions of 

powers of 2. 

The minimum value of 'k' for which the following relation is correct valid𝑣𝑎𝑙𝑖𝑑 is nothing but 

the required number of parity bits. 

 

 

Where, 

‘n’ is the number of bits in the binary code information𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

‘k’ is the number of parity bits 

Therefore, the number of bits in the Hamming code is equal to n + k. 
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Let the Hamming code is bn+kbn+k−1..... & parity bits pk,pk−1,....p1𝑝𝑘,𝑝𝑘−1,....𝑝1. We can place the ‘k’ 

parity bits in powers of 2 positions only. In remaining bit positions, we can place the ‘n’ bits of 

binary code. 

Based on requirement, we can use either even parity or odd parity while forming a Hamming 
code. But, the same parity technique should be used in order to find whether any error 

present in the received data. 

Follow this procedure for finding parity bits. 

 Find the value of p1, based on the number of ones present in bit positions b3, b5, b7 and 

so on. All these bit positions 𝑠𝑢𝑓𝑓𝑖𝑥𝑒𝑠 in their equivalent binary have ‘1’ in the place 

value of 20. 
 Find the value of p2, based on the number of ones present in bit positions b3, b6, b7 and 

so on. All these bit positions 𝑠𝑢𝑓𝑓𝑖𝑥𝑒𝑠 in their equivalent binary have ‘1’ in the place 

value of 21. 
 Find the value of p3, based on the number of ones present in bit positions b5, b6, b7 and 

so on. All these bit positions 𝑠𝑢𝑓𝑓𝑖𝑥𝑒𝑠 in their equivalent binary have ‘1’ in the place 

value of 22. 

 Similarly, find other values of parity bits. 

Follow this procedure for finding check bits. 

 Find the value of c1, based on the number of ones present in bit positions b1, b3, b5, 
b7 and so on. All these bit positions 𝑠𝑢𝑓𝑓𝑖𝑥𝑒𝑠 in their equivalent binary have ‘1’ in the 

place value of 20. 
 Find the value of c2, based on the number of ones present in bit positions b2, b3, b6, 

b7 and so on. All these bit positions 𝑠𝑢𝑓𝑓𝑖𝑥𝑒𝑠 in their equivalent binary have ‘1’ in the 

place value of 21. 
 Find the value of c3, based on the number of ones present in bit positions b4, b5, b6, 

b7 and so on. All these bit positions 𝑠𝑢𝑓𝑓𝑖𝑥𝑒𝑠 in their equivalent binary have ‘1’ in the 

place value of 22. 
 Similarly, find other values of check bits. 

The decimal equivalent of the check bits in the received data gives the value of bit position, 
where the error is present. Just complement the value present in that bit position. Therefore, 

we will get the original binary code after removing parity bits. 

Example 1 

Let us find the Hamming code for binary code, d4d3d2d1 = 1000. Consider even parity bits. 

The number of bits in the given binary code is n=4. 

We can find the required number of parity bits by using the following mathematical relation. 
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The minimum value of k that satisfied the above relation is 3. Hence, we require 3 parity bits 
p1, p2, and p3. Therefore, the number of bits in Hamming code will be 7, since there are 4 bits 

in binary code and 3 parity bits. We have to place the parity bits and bits of binary code in the 

Hamming code as shown below. 

The 7-bit Hamming 
code is b7b6b5b4b3b2b1=d4d3d2p3d1p2bp1𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1=𝑑4𝑑3𝑑2𝑝3𝑑1𝑝2𝑏𝑝1 

By substituting the bits of binary code, the Hamming code will 
be b7b6b5b4b3b2b1=100p3Op2p1𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1=100𝑝3𝑂𝑝2𝑝1. Now, let us find the parity 

bits. 

p1=b7⊕b5⊕b3=1⊕0⊕0=1𝑝1=𝑏7⊕𝑏5⊕𝑏3=1⊕0⊕0=1 

p2=b7⊕b6⊕b3=1⊕0⊕0=1𝑝2=𝑏7⊕𝑏6⊕𝑏3=1⊕0⊕0=1 

p3=b7⊕b6⊕b5=1⊕0⊕0=1 

By substituting these parity bits, the Hamming code will 

be b7b6b5b4b3b2b1=1001011𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1=1001011. 

Example 2 

In the above example, we got the Hamming code 

as b7b6b5b4b3b2b1=1001011𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1=1001011. Now, let us find the error position when 

the code received is b7b6b5b4b3b2b1=1001111𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1=1001111. 

Now, let us find the check bits. 

c1=b7⊕b5⊕b3⊕b1=1⊕0⊕1⊕1=1𝑐1=𝑏7⊕𝑏5⊕𝑏3⊕𝑏1=1⊕0⊕1⊕1=1 

c2=b7⊕b6⊕b3⊕b2=1⊕0⊕1⊕1=1𝑐2=𝑏7⊕𝑏6⊕𝑏3⊕𝑏2=1⊕0⊕1⊕1=1 

c3=b7⊕b6⊕b5⊕b4=1⊕0⊕0⊕1=0𝑐3=𝑏7⊕𝑏6⊕𝑏5⊕𝑏4=1⊕0⊕0⊕1=0 

The decimal value of check bits gives the position of error in received Hamming code. 

c3c2c1=(011)2=(3)10𝑐3𝑐2𝑐1=(011)2=(3)10 
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Therefore, the error present in third bit (b3) of Hamming code. Just complement the value 

present in that bit and remove parity bits in order to get the original binary code. 

Boolean Algebra  

is an algebra, which deals with binary numbers & binary variables. Hence, it is also called as 

Binary Algebra or logical Algebra. A mathematician, named George Boole had developed this algebra 

in 1854. The variables used in this algebra are also called as Boolean variables. 

The range of voltages corresponding to Logic ‘High’ is represented with ‘1’ and the range of voltages 

corresponding to logic ‘Low’ is represented with ‘0’. 

Postulates and Basic Laws of Boolean Algebra 

In this section, let us discuss about the Boolean postulates and basic laws that are used in Boolean 

algebra. These are useful in minimizing Boolean functions. 

Boolean Postulates 

Consider the binary numbers 0 and 1, Boolean variable (x) and its complement (x’). Either the Boolean 

variable or complement of it is known as literal. The four possible logical OR operations among these 

literals and binary numbers are shown below. 

x + 0 = x 

x + 1 = 1 

x + x = x 

x + x’ = 1 

Similarly, the four possible logical AND operations among those literals and binary numbers are 

shown below. 

x.1 = x 

x.0 = 0 

x.x = x 

x.x’ = 0 

These are the simple Boolean postulates. We can verify these postulates easily, by substituting the 

Boolean variable with ‘0’ or ‘1’. 

Note− The complement of complement of any Boolean variable is equal to the variable itself. i.e., 

(x’)’=x. 
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Basic Laws of Boolean Algebra 

Following are the three basic laws of Boolean Algebra. 

 Commutative law 

 Associative law 

 Distributive law 

Commutative Law 

If any logical operation of two Boolean variables give the same result irrespective of the order of 

those two variables, then that logical operation is said to be Commutative. The logical OR & logical 

AND operations of two Boolean variables x & y are shown below 

x + y = y + x 

x.y = y.x 

The symbol ‘+’ indicates logical OR operation. Similarly, the symbol ‘.’ indicates logical AND operation 

and it is optional to represent. Commutative law obeys for logical OR & logical AND operations. 

Associative Law 

If a logical operation of any two Boolean variables is performed first and then the same operation is 

performed with the remaining variable gives the same result, then that logical operation is said to 

be Associative. The logical OR & logical AND operations of three Boolean variables x, y & z are shown 

below. 

x + (y + z) = (x + y) + z 

x.(y.z) = (x.y).z 

Associative law obeys for logical OR & logical AND operations. 

Distributive Law 

If any logical operation can be distributed to all the terms present in the Boolean function, then that 

logical operation is said to be Distributive. The distribution of logical OR & logical AND operations of 

three Boolean variables x, y & z are shown below. 

x.(y + z) = x.y + x.z 

x + (y.z) = (x + y).(x + z) 

Distributive law obeys for logical OR and logical AND operations. 

These are the Basic laws of Boolean algebra. We can verify these laws easily, by substituting the 

Boolean variables with ‘0’ or ‘1’. 
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Theorems of Boolean Algebra 

The following two theorems are used in Boolean algebra. 

 Duality theorem 

 DeMorgan’s theorem 

Duality Theorem 

This theorem states that the dual of the Boolean function is obtained by interchanging the logical AND 

operator with logical OR operator and zeros with ones. For every Boolean function, there will be a 

corresponding Dual function. 

Let us make the Boolean equations (relations) that we discussed in the section of Boolean postulates 

and basic laws into two groups. The following table shows these two groups. 

Group1 Group2 

x + 0 = x x.1 = x 

x + 1 = 1 x.0 = 0 

x + x = x x.x = x 

x + x’ = 1 x.x’ = 0 

x + y = y + x x.y = y.x 

x + (y + z) = (x + y) + z x.(y.z) = (x.y).z 

x.(y + z) = x.y + x.z x + (y.z) = (x + y).(x + z) 

In each row, there are two Boolean equations and they are dual to each other. We can verify all these 

Boolean equations of Group1 and Group2 by using duality theorem. 
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DeMorgan’s Theorem 

This theorem is useful in finding the complement of Boolean function. It states that the complement 

of logical OR of at least two Boolean variables is equal to the logical AND of each complemented 

variable. 

DeMorgan’s theorem with 2 Boolean variables x and y can be represented as 

(x + y)’ = x’.y’ 

The dual of the above Boolean function is 

(x.y)’ = x’ + y’ 

Therefore, the complement of logical AND of two Boolean variables is equal to the logical OR of each 

complemented variable. Similarly, we can apply DeMorgan’s theorem for more than 2 Boolean 

variables also. 

Simplification of Boolean Functions 

Till now, we discussed the postulates, basic laws and theorems of Boolean algebra. Now, let us 

simplify some Boolean functions. 

Example 1 

Let us simplify the Boolean function, f = p’qr + pq’r + pqr’ + pqr 

We can simplify this function in two methods. 

Method 1 

Given Boolean function, f = p’qr + pq’r + pqr’ +pqr. 

Step 1 − In first and second terms r is common and in third and fourth terms pq is common. So, take 

the common terms by using Distributive law. 

⇒ f = (p’q + pq’)r + pq(r’ + r) 

Step 2 − The terms present in first parenthesis can be simplified to Ex-OR operation. The terms 

present in second parenthesis can be simplified to ‘1’ using Boolean postulate 

⇒ f = (p ⊕q)r + pq(1) 

Step 3 − The first term can’t be simplified further. But, the second term can be simplified to pq 

using Boolean postulate. 

⇒ f = (p ⊕q)r + pq 

Therefore, the simplified Boolean function is f = (p⊕q)r + pq 
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Method 2 

Given Boolean function, f = p’qr + pq’r + pqr’ + pqr. 

Step 1 − Use the Boolean postulate, x + x = x. That means, the Logical OR operation with any Boolean 

variable ‘n’ times will be equal to the same variable. So, we can write the last term pqr two more 

times. 

⇒ f = p’qr + pq’r + pqr’ + pqr + pqr + pqr 

Step 2 − Use Distributive law for 1st and 4th terms, 2nd and 5th terms, 3rd and 6th terms. 

⇒ f = qr(p’ + p) + pr(q’ + q) + pq(r’ + r) 

Step 3 − Use Boolean postulate, x + x’ = 1 for simplifying the terms present in each parenthesis. 

⇒ f = qr(1) + pr(1) + pq(1) 

Step 4 − Use Boolean postulate, x.1 = x for simplifying the above three terms. 

⇒ f = qr + pr + pq 

⇒ f = pq + qr + pr 

Therefore, the simplified Boolean function is f = pq + qr + pr. 

So, we got two different Boolean functions after simplifying the given Boolean function in each 

method. Functionally, those two Boolean functions are same. So, based on the requirement, we can 

choose one of those two Boolean functions. 

Example 2 

Let us find the complement of the Boolean function, f = p’q + pq’. 

The complement of Boolean function is f’ = (p’q + pq’)’. 

Step 1 − Use DeMorgan’s theorem, (x + y)’ = x’.y’. 

⇒ f’ = (p’q)’.(pq’)’ 

Step 2 − Use DeMorgan’s theorem, (x.y)’ = x’ + y’ 

⇒ f’ = {(p’)’ + q’}.{p’ + (q’)’} 

Step3 − Use the Boolean postulate, (x’)’=x. 

⇒ f’ = {p + q’}.{p’ + q} 

⇒ f’ = pp’ + pq + p’q’ + qq’ 

Step 4 − Use the Boolean postulate, xx’=0. 
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⇒ f = 0 + pq + p’q’ + 0 

⇒ f = pq + p’q’ 

Therefore, the complement of Boolean function, p’q + pq’ is pq + p’q’. 

We will get four Boolean product terms by combining two variables x and y with logical AND 

operation. These Boolean product terms are called as min terms or standard product terms. The min 

terms are x’y’, x’y, xy’ and xy. 

Similarly, we will get four Boolean sum terms by combining two variables x and y with logical OR 

operation. These Boolean sum terms are called as Max terms or standard sum terms. The Max terms 

are x + y, x + y’, x’ + y and x’ + y’. 

The following table shows the representation of min terms and MAX terms for 2 variables. 

x y Min terms Max terms 

0 0 m0=x’y’ M0=x + y 

0 1 m1=x’y M1=x + y’ 

1 0 m2=xy’ M2=x’ + y 

1 1 m3=xy M3=x’ + y’ 

If the binary variable is ‘0’, then it is represented as complement of variable in min term and as the 

variable itself in Max term. Similarly, if the binary variable is ‘1’, then it is represented as complement 

of variable in Max term and as the variable itself in min term. 

From the above table, we can easily notice that min terms and Max terms are complement of each 

other. If there are ‘n’ Boolean variables, then there will be 2n min terms and 2n Max terms. 

Canonical SoP and PoS forms 

A truth table consists of a set of inputs and output(s). If there are ‘n’ input variables, then there will be 

2n possible combinations with zeros and ones. So the value of each output variable depends on the 

combination of input variables. So, each output variable will have ‘1’ for some combination of input 

variables and ‘0’ for some other combination of input variables. 

Therefore, we can express each output variable in following two ways. 
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 Canonical SoP form 

 Canonical PoS form 

Canonical SoP form 

Canonical SoP form means Canonical Sum of Products form. In this form, each product term contains 

all literals. So, these product terms are nothing but the min terms. Hence, canonical SoP form is also 

called as sum of min terms form. 

First, identify the min terms for which, the output variable is one and then do the logical OR of those 

min terms in order to get the Boolean expression (function) corresponding to that output variable. 

This Boolean function will be in the form of sum of min terms. 

Follow the same procedure for other output variables also, if there is more than one output variable. 

Example 

Consider the following truth table. 

Inputs Output 

p q r f 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 
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1 1 1 1 

Here, the output (f) is ‘1’ for four combinations of inputs. The corresponding min terms are p’qr, pq’r, 

pqr’, pqr. By doing logical OR of these four min terms, we will get the Boolean function of output (f). 

Therefore, the Boolean function of output is, f = p’qr + pq’r + pqr’ + pqr. This is the canonical SoP 

form of output, f. We can also represent this function in following two notations. 

f=m3+m5+m6+m7f=m3+m5+m6+m7 

f=∑m(3,5,6,7)f=∑m(3,5,6,7) 

In one equation, we represented the function as sum of respective min terms. In other equation, we 

used the symbol for summation of those min terms. 

Canonical PoS form 

Canonical PoS form means Canonical Product of Sums form. In this form, each sum term contains all 

literals. So, these sum terms are nothing but the Max terms. Hence, canonical PoS form is also called 

as product of Max terms form. 

First, identify the Max terms for which, the output variable is zero and then do the logical AND of 

those Max terms in order to get the Boolean expression (function) corresponding to that output 

variable. This Boolean function will be in the form of product of Max terms. 

Follow the same procedure for other output variables also, if there is more than one output variable. 

Example 

Consider the same truth table of previous example. Here, the output (f) is ‘0’ for four combinations of 

inputs. The corresponding Max terms are p + q + r, p + q + r’, p + q’ + r, p’ + q + r. By doing logical AND 

of these four Max terms, we will get the Boolean function of output (f). 

Therefore, the Boolean function of output is, f = (p + q + r).(p + q + r’).(p + q’ + r).(p’ + q + r). This is 

the canonical PoS formof output, f. We can also represent this function in following two notations. 

f=M0.M1.M2.M4f=M0.M1.M2.M4 

f=∏M(0,1,2,4)f=∏M(0,1,2,4) 

In one equation, we represented the function as product of respective Max terms. In other equation, 

we used the symbol for multiplication of those Max terms. 

The Boolean function, f = (p + q + r).(p + q + r’).(p + q’ + r).(p’ + q + r) is the dual of the Boolean 

function, f = p’qr + pq’r + pqr’ + pqr. 
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Therefore, both canonical SoP and canonical PoS forms are Dualto each other. Functionally, these two 

forms are same. Based on the requirement, we can use one of these two forms. 

Standard SoP and PoS forms 

We discussed two canonical forms of representing the Boolean output(s). Similarly, there are two 

standard forms of representing the Boolean output(s). These are the simplified version of canonical 

forms. 

 Standard SoP form 

 Standard PoS form 

We will discuss about Logic gates in later chapters. The main advantage of standard forms is that the 

number of inputs applied to logic gates can be minimized. Sometimes, there will be reduction in the 

total number of logic gates required. 

Standard SoP form 

Standard SoP form means Standard Sum of Products form. In this form, each product term need not 

contain all literals. So, the product terms may or may not be the min terms. Therefore, the Standard 

SoP form is the simplified form of canonical SoP form. 

We will get Standard SoP form of output variable in two steps. 

 Get the canonical SoP form of output variable 

 Simplify the above Boolean function, which is in canonical SoP form. 

Follow the same procedure for other output variables also, if there is more than one output variable. 

Sometimes, it may not possible to simplify the canonical SoP form. In that case, both canonical and 

standard SoP forms are same. 

Example 

Convert the following Boolean function into Standard SoP form. 

f = p’qr + pq’r + pqr’ + pqr 

The given Boolean function is in canonical SoP form. Now, we have to simplify this Boolean function in 

order to get standard SoP form. 

Step 1 − Use the Boolean postulate, x + x = x. That means, the Logical OR operation with any Boolean 

variable ‘n’ times will be equal to the same variable. So, we can write the last term pqr two more 

times. 

⇒ f = p’qr + pq’r + pqr’ + pqr + pqr + pqr 
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Step 2 − Use Distributive law for 1st and 4th terms, 2nd and 5th terms, 3rd and 6th terms. 

⇒ f = qr(p’ + p) + pr(q’ + q) + pq(r’ + r) 

Step 3 − Use Boolean postulate, x + x’ = 1 for simplifying the terms present in each parenthesis. 

⇒ f = qr(1) + pr(1) + pq(1) 

Step 4 − Use Boolean postulate, x.1 = x for simplifying above three terms. 

⇒ f = qr + pr + pq 

⇒ f = pq + qr + pr 

This is the simplified Boolean function. Therefore, the standard SoP form corresponding to given 

canonical SoP form is f = pq + qr + pr 

Standard PoS form 

Standard PoS form means Standard Product of Sums form. In this form, each sum term need not 

contain all literals. So, the sum terms may or may not be the Max terms. Therefore, the Standard PoS 

form is the simplified form of canonical PoS form. 

We will get Standard PoS form of output variable in two steps. 

 Get the canonical PoS form of output variable 

 Simplify the above Boolean function, which is in canonical PoS form. 

Follow the same procedure for other output variables also, if there is more than one output variable. 

Sometimes, it may not possible to simplify the canonical PoS form. In that case, both canonical and 

standard PoS forms are same. 

Example 

Convert the following Boolean function into Standard PoS form. 

f = (p + q + r).(p + q + r’).(p + q’ + r).(p’ + q + r) 

The given Boolean function is in canonical PoS form. Now, we have to simplify this Boolean function in 

order to get standard PoS form. 

Step 1 − Use the Boolean postulate, x.x = x. That means, the Logical AND operation with any Boolean 

variable ‘n’ times will be equal to the same variable. So, we can write the first term p+q+r two more 

times. 

⇒ f = (p + q + r).(p + q + r).(p + q + r).(p + q + r’).(p +q’ + r).(p’ + q + r) 
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Step 2 − Use Distributive law, x + (y.z) = (x + y).(x + z) for 1st and 4th parenthesis, 2nd and 

5th parenthesis, 3rd and 6thparenthesis. 

⇒ f = (p + q + rr’).(p + r + qq’).(q + r + pp’) 

Step 3 − Use Boolean postulate, x.x’=0 for simplifying the terms present in each parenthesis. 

⇒ f = (p + q + 0).(p + r + 0).(q + r + 0) 

Step 4 − Use Boolean postulate, x + 0 = x for simplifying the terms present in each parenthesis 

⇒ f = (p + q).(p + r).(q + r) 

⇒ f = (p + q).(q + r).(p + r) 

This is the simplified Boolean function. Therefore, the standard PoS form corresponding to given 

canonical PoS form is f = (p + q).(q + r).(p + r). This is the dual of the Boolean function, f = pq + qr + pr. 

Therefore, both Standard SoP and Standard PoS forms are Dual to each other. 

 

Digital electronic circuits operate with voltages of two logic levelsnamely Logic Low and Logic High. 

The range of voltages corresponding to Logic Low is represented with ‘0’. Similarly, the range of 

voltages corresponding to Logic High is represented with ‘1’. 

The basic digital electronic circuit that has one or more inputs and single output is known as Logic 

gate. Hence, the Logic gates are the building blocks of any digital system. We can classify these Logic 

gates into the following three categories. 

 Basic gates 

 Universal gates 

 Special gates 

Now, let us discuss about the Logic gates come under each category one by one. 

Basic Gates 

In earlier chapters, we learnt that the Boolean functions can be represented either in sum of products 

form or in product of sums form based on the requirement. So, we can implement these Boolean 

functions by using basic gates. The basic gates are AND, OR & NOT gates. 

AND gate 

An AND gate is a digital circuit that has two or more inputs and produces an output, which is 

the logical AND of all those inputs. It is optional to represent the Logical AND with the symbol ‘.’. 
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The following table shows the truth table of 2-input AND gate. 

A B Y = A.B 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Here A, B are the inputs and Y is the output of two input AND gate. If both inputs are ‘1’, then only the 

output, Y is ‘1’. For remaining combinations of inputs, the output, Y is ‘0’. 

The following figure shows the symbol of an AND gate, which is having two inputs A, B and one 

output, Y. 

 

This AND gate produces an output (Y), which is the logical ANDof two inputs A, B. Similarly, if there 

are ‘n’ inputs, then the AND gate produces an output, which is the logical AND of all those inputs. That 

means, the output of AND gate will be ‘1’, when all the inputs are ‘1’. 

OR gate 

An OR gate is a digital circuit that has two or more inputs and produces an output, which is the logical 

OR of all those inputs. This logical OR is represented with the symbol ‘+’. 

The following table shows the truth table of 2-input OR gate. 

A B Y = A + B 

0 0 0 



Department of ECE   Digital Logic Design 

0 1 1 

1 0 1 

1 1 1 

Here A, B are the inputs and Y is the output of two input OR gate. If both inputs are ‘0’, then only the 

output, Y is ‘0’. For remaining combinations of inputs, the output, Y is ‘1’. 

The following figure shows the symbol of an OR gate, which is having two inputs A, B and one output, 

Y. 

 

This OR gate produces an output (Y), which is the logical OR of two inputs A, B. Similarly, if there are 

‘n’ inputs, then the OR gate produces an output, which is the logical OR of all those inputs. That 

means, the output of an OR gate will be ‘1’, when at least one of those inputs is ‘1’. 

NOT gate 

A NOT gate is a digital circuit that has single input and single output. The output of NOT gate is 

the logical inversion of input. Hence, the NOT gate is also called as inverter. 

The following table shows the truth table of NOT gate. 

A Y = A’ 

0 1 

1 0 

Here A and Y are the input and output of NOT gate respectively. If the input, A is ‘0’, then the output, 

Y is ‘1’. Similarly, if the input, A is ‘1’, then the output, Y is ‘0’. 

The following figure shows the symbol of NOT gate, which is having one input, A and one output, Y. 
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This NOT gate produces an output (Y), which is the complement of input, A. 

Universal gates 

NAND & NOR gates are called as universal gates. Because we can implement any Boolean function, 

which is in sum of products form by using NAND gates alone. Similarly, we can implement any 

Boolean function, which is in product of sums form by using NOR gates alone. 

NAND gate 

NAND gate is a digital circuit that has two or more inputs and produces an output, which is 

the inversion of logical AND of all those inputs. 

The following table shows the truth table of 2-input NAND gate. 

A B Y = (A.B)’ 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

Here A, B are the inputs and Y is the output of two input NAND gate. When both inputs are ‘1’, the 

output, Y is ‘0’. If at least one of the input is zero, then the output, Y is ‘1’. This is just opposite to that 

of two input AND gate operation. 

The following image shows the symbol of NAND gate, which is having two inputs A, B and one output, 

Y. 
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NAND gate operation is same as that of AND gate followed by an inverter. That’s why the NAND gate 

symbol is represented like that. 

NOR gate 

NOR gate is a digital circuit that has two or more inputs and produces an output, which is 

the inversion of logical OR of all those inputs. 

The following table shows the truth table of 2-input NOR gate 

A B Y = (A+B)’ 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

Here A, B are the inputs and Y is the output. If both inputs are ‘0’, then the output, Y is ‘1’. If at least 

one of the input is ‘1’, then the output, Y is ‘0’. This is just opposite to that of two input OR gate 

operation. 

The following figure shows the symbol of NOR gate, which is having two inputs A, B and one output, 

Y. 
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NOR gate operation is same as that of OR gate followed by an inverter. That’s why the NOR gate 

symbol is represented like that. 

Special Gates 

Ex-OR & Ex-NOR gates are called as special gates. Because, these two gates are special cases of OR & 

NOR gates. 

Ex-OR gate 

The full form of Ex-OR gate is Exclusive-OR gate. Its function is same as that of OR gate except for 

some cases, when the inputs having even number of ones. 

The following table shows the truth table of 2-input Ex-OR gate. 

A B Y = A⊕B 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Here A, B are the inputs and Y is the output of two input Ex-OR gate. The truth table of Ex-OR gate is 

same as that of OR gate for first three rows. The only modification is in the fourth row. That means, 

the output (Y) is zero instead of one, when both the inputs are one, since the inputs having even 

number of ones. 

Therefore, the output of Ex-OR gate is ‘1’, when only one of the two inputs is ‘1’. And it is zero, when 

both inputs are same. 

Below figure shows the symbol of Ex-OR gate, which is having two inputs A, B and one output, Y. 
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Ex-OR gate operation is similar to that of OR gate, except for few combination(s) of inputs. That’s why 

the Ex-OR gate symbol is represented like that. The output of Ex-OR gate is ‘1’, when odd number of 

ones present at the inputs. Hence, the output of Ex-OR gate is also called as an odd function. 

Ex-NOR gate 

The full form of Ex-NOR gate is Exclusive-NOR gate. Its function is same as that of NOR gate except for 

some cases, when the inputs having even number of ones. 

The following table shows the truth table of 2-input Ex-NOR gate. 

A B Y = A⊙B 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

Here A, B are the inputs and Y is the output. The truth table of Ex-NOR gate is same as that of NOR 

gate for first three rows. The only modification is in the fourth row. That means, the output is one 

instead of zero, when both the inputs are one. 

Therefore, the output of Ex-NOR gate is ‘1’, when both inputs are same. And it is zero, when both the 

inputs are different. 

The following figure shows the symbol of Ex-NOR gate, which is having two inputs A, B and one 

output, Y. 

 

Ex-NOR gate operation is similar to that of NOR gate, except for few combination(s) of inputs. That’s 

why the Ex-NOR gate symbol is represented like that. The output of Ex-NOR gate is ‘1’, when even 



Department of ECE   Digital Logic Design 

number of ones present at the inputs. Hence, the output of Ex-NOR gate is also called as an even 

function. 

From the above truth tables of Ex-OR & Ex-NOR logic gates, we can easily notice that the Ex-NOR 

operation is just the logical inversion of Ex-OR operation. 

The maximum number of levels that are present between inputs and output is two in two level logic. 

That means, irrespective of total number of logic gates, the maximum number of Logic gates that are 

present (cascaded) between any input and output is two in two level logic. Here, the outputs of first 

level Logic gates are connected as inputs of second level Logic gate(s). 

Consider the four Logic gates AND, OR, NAND & NOR. Since, there are 4 Logic gates, we will get 16 

possible ways of realizing two level logic. Those are AND-AND, AND-OR, ANDNAND, AND-NOR, OR-

AND, OR-OR, OR-NAND, OR-NOR, NAND-AND, NAND-OR, NANDNAND, NAND-NOR, NOR-AND, NOR-

OR, NOR-NAND, NOR-NOR. 

These two level logic realizations can be classified into the following two categories. 

 Degenerative form 

 Non-degenerative form 

Degenerative Form 

If the output of two level logic realization can be obtained by using single Logic gate, then it is called 

as degenerative form. Obviously, the number of inputs of single Logic gate increases. Due to this, the 

fan-in of Logic gate increases. This is an advantage of degenerative form. 

Only 6 combinations of two level logic realizations out of 16 combinations come under degenerative 

form. Those are AND-AND, AND-NAND, OR-OR, OR-NOR, NAND-NOR, NORNAND. 

In this section, let us discuss some realizations. Assume, A, B, C & D are the inputs and Y is the output 

in each logic realization. 

AND-AND Logic 

In this logic realization, AND gates are present in both levels. Below figure shows an example for AND-

AND logic realization. 
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We will get the outputs of first level logic gates as Y1=ABY1=AB and Y2=CDY2=CD 

These outputs, Y1Y1 and Y2Y2 are applied as inputs of AND gate that is present in second level. So, 

the output of this AND gate is 
Y=Y1Y2Y=Y1Y2 

Substitute Y1Y1 and Y2Y2 values in the above equation. 
Y=(AB)(CD)Y=(AB)(CD) 

⇒Y=ABCD⇒Y=ABCD 

Therefore, the output of this AND-AND logic realization is ABCD. This Boolean function can be 

implemented by using a 4 input AND gate. Hence, it is degenerative form. 

AND-NAND Logic 

In this logic realization, AND gates are present in first level and NAND gate(s) are present in second 

level. The following figure shows an example for AND-NAND logic realization. 
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Previously, we got the outputs of first level logic gates as Y1=ABY1=AB and Y2=CDY2=CD 

These outputs,Y1Y1 and Y2Y2 are applied as inputs of NAND gate that is present in second level. So, 

the output of this NAND gate is 
Y=(Y1Y2)′Y=(Y1Y2)′ 

Substitute Y1Y1 and Y2Y2 values in the above equation. 
Y=((AB)(CD))′Y=((AB)(CD))′ 

⇒Y=(ABCD)′⇒Y=(ABCD)′ 

Therefore, the output of this AND-NAND logic realization is (ABCD)′(ABCD)′. This Boolean function can 

be implemented by using a 4 input NAND gate. Hence, it is degenerative form. 

OR-OR Logic 

In this logic realization, OR gates are present in both levels. The following figure shows an example 

for OR-OR logic realization. 

 

We will get the outputs of first level logic gates as Y1=A+BY1=A+Band Y2=C+DY2=C+D. 

These outputs, Y1Y1 and Y2Y2 are applied as inputs of OR gate that is present in second level. So, the 

output of this OR gate is 
Y=Y1+Y2Y=Y1+Y2 

Substitute Y1Y1 and Y2Y2 values in the above equation. 
Y=(A+B)+(C+D)Y=(A+B)+(C+D) 

⇒Y=A+B+C+D⇒Y=A+B+C+D 

Therefore, the output of this OR-OR logic realization is A+B+C+D. This Boolean function can be 

implemented by using a 4 input OR gate. Hence, it is degenerative form. 

Similarly, you can verify whether the remaining realizations belong to this category or not. 
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Non-degenerative Form 

If the output of two level logic realization can’t be obtained by using single logic gate, then it is called 

as non-degenerative form. 

The remaining 10 combinations of two level logic realizations come under nondegenerative form. 

Those are AND-OR, AND-NOR, OR-AND, OR-NAND, NAND-AND, NANDOR, NAND-NAND, NOR-AND, 

NOR-OR, NOR-NOR. 

Now, let us discuss some realizations. Assume, A, B, C & D are the inputs and Y is the output in each 

logic realization. 

AND-OR Logic 

In this logic realization, AND gates are present in first level and OR gate(s) are present in second level. 

Below figure shows an example for AND-OR logic realization. 

 

Previously, we got the outputs of first level logic gates as Y1=ABY1=AB and Y2=CDY2=CD. 

These outputs, Y1 and Y2 are applied as inputs of OR gate that is present in second level. So, the 

output of this OR gate is 

Y=Y1+Y2Y=Y1+Y2 

Substitute Y1Y1 and Y2Y2 values in the above equation 
Y=AB+CDY=AB+CD 

Therefore, the output of this AND-OR logic realization is AB+CD. This Boolean function is in Sum of 

Products form. Since, we can’t implement it by using single logic gate, this AND-OR logic realization is 

a non-degenerative form. 
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AND-NOR Logic 

In this logic realization, AND gates are present in first level and NOR gate(s) are present in second 

level. The following figure shows an example for AND-NOR logic realization. 

 

We know the outputs of first level logic gates as Y1=ABY1=AB and Y2=CDY2=CD 

These outputs, Y1 and Y2 are applied as inputs of NOR gate that is present in second level. So, the 

output of this NOR gate is 

Y=(Y1+Y2)′Y=(Y1+Y2)′ 

Substitute Y1Y1 and Y2Y2 values in the above equation. 
Y=(AB+CD)′Y=(AB+CD)′ 

Therefore, the output of this AND-NOR logic realization is (AB+CD)′(AB+CD)′. This Boolean function is 

in AND-OR-Invert form. Since, we can’t implement it by using single logic gate, this AND-NOR logic 

realization is a non-degenerative form 

OR-AND Logic 

In this logic realization, OR gates are present in first level & AND gate(s) are present in second level. 

The following figure shows an example for OR-AND logic realization. 
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Previously, we got the outputs of first level logic gates as Y1=A+BY1=A+B and Y2=C+DY2=C+D. 

These outputs, Y1Y1 and Y2Y2 are applied as inputs of AND gate that is present in second level. So, 

the output of this AND gate is 
Y=Y1Y2Y=Y1Y2 

Substitute Y1Y1 and Y2Y2 values in the above equation. 
Y=(A+B)(C+D)Y=(A+B)(C+D) 

Therefore, the output of this OR-AND logic realization is (A + B) (C + D). This Boolean function is 

in Product of Sums form. Since, we can’t implement it by using single logic gate, this OR-AND logic 

realization is a non-degenerative form. 

Similarly, you can verify whether the remaining realizations belong to this category or not. 

Universal Gates 

Universal gates are those gates that can perform the tasks of other gates with minor adjustments. 

Universal gates are widely used in formulating NAT-based questions in the GATE exam. There are 

two universal gates: 

 NAND Gate 

 NOR Gate 

NAND Gate 

The NAND gate is one of the universal gates. The NAND gate is a AND gate followed by a NOT gate. 

Thus, we can say it is a AND NOT operation. It may have two or more inputs but only one output. The 

logical symbols of a NAND Gate and the truth table are shown below. 

https://byjusexamprep.com/gate-exams
https://byjusexamprep.com/gate-cse/nand-gate-truth-table
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 Thus, the logical expression for the output is 

 

It is clear from the truth table of the two-input NAND gate that the output is 1 when either A or B or 

both the inputs are at logic ‘0’. We can say that if Ā = 1 = B are, both A and B are 1, and the output is 

1. Therefore, the NAND gate can perform the OR function by inverting the inputs. 

NOR Gate 

The NOR gate is one of the universal gates. A NOR gate combines two basic logic gates: an OR gate 

and a NOT gate. So we can say it is an OR-NOT operation. It may have two or more inputs and an 

output. The logical symbols of the NOR Gate are shown: 

 

 It is clear from the truth table that the output is ‘1’ only if all the inputs are at logic ‘0’. It can 

also say that if the inputs A’ = B’ = 1, the output Y is 1. Thus, the NOR gate is equivalent to the 

AND gate with inverted inputs, and it can be realized by a bubbled AND gate, as shown above. 

 The logical expression for the output is  

 

NOT Gate Realization 

Using NAND Gate 

For the NOT gate realization, we require 1 NAND gate, as shown in the circuit diagram: 

https://byjusexamprep.com/gate-eee/basic-logic-gates
https://byjusexamprep.com/gate-cse/nor-gate-truth-table
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Using NOR Gate 

For the NOT gate realization, we require 1 NOR gate, as shown in the circuit diagram: 

 

AND Gate Realization 

Using NAND gate 

For the AND gate realization, we require 2 NAND gates, as shown in the circuit diagram: 

 

Using NOR Gate 

For the AND gate realization, we require 3 NOR gates if the inputs are not available in complement 

form, as shown in the circuit diagram: 

 

OR Gate Realization 

Using NAND Gate 

For the OR gate realization, we require 3 NAND gates if the inputs are not available in complement 

form, as shown in the circuit diagram: 
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Using NOR Gate  

For the OR gate realization, we require 2 NOR gates, as shown in the circuit diagram: 

 

 

EX-OR Gate Realization 

Using NAND Gate 

For the EX-OR gate realization, we require 4 NAND gates, as shown in the circuit diagram: 

  

Using NOR Gate 

For the EX-OR gate realization, we require 5 NOR gates, as shown in the circuit diagram: 
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EX-NOR Gate Realization 

Using NAND Gate 
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 For the EX-NOR gate realization, we require 5 NAND gates, as shown in the circuit 

diagram: 

 

Using NOR Gate 

For the EX-NOR gate realization, we require 4 NOR gates, as shown in the circuit diagram: 

  

NOR Gate Realization Using NAND Gate 
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For the NOR gate realization using the NAND gate, we require 4 NAND gates, as shown in the circuit 

diagram: 

 

NAND Gate Realization Using NOR Gate 

For the NAND gate realization using the NOR gate, we require 4 NAND gates, as shown in the circuit 

diagram: 

 

 

 

Properties of XOR Gate 

Understanding the properties of XOR Gate is essential for understanding the working of XOR gates in 

various applications, including encryption, error detection, and arithmetic operations. 

 Commutative Property: The XOR gate follows the commutative property, which means that the 

order of the inputs does not affect the output. In other words, K XOR L produces the same result 

as L XOR K. 

Example: K XOR L = L XOR K 
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 Associative Property: The XOR gate also adheres to the associative property, implying that the 

grouping of inputs does not affect the final output. Thus, (K XOR L) XOR M is equivalent to K 

XOR (L XOR M). 

Example: (K XOR L) XOR M = K XOR (L XOR M) 

 Self-Inverse Property: When both inputs of the XOR gate are the same (either both 0 or both 1), 

the output is always 0. Conversely, when the inputs are different, the output is always 1. This 

self-inverse property makes the XOR gate its own complement. 

Example: K XOR K = 0 

 Exclusive Operation: The XOR gate performs an exclusive operation, producing a TRUE output 

(1) only when the inputs differ. If both inputs are the same, the output is FALSE (0). 

Example: 0 XOR 0 = 0, 1 XOR 0 = 1, 0 XOR 1 = 1, 1 XOR 1 = 0 

 Bit Flipping: The XOR gate is often used for bit flipping. XORing a bit with 1 toggles its value, 

while XORing it with 0 keeps the value unchanged. 

Example: 1 XOR 1 = 0 (flips the bit), 0 XOR 1 = 1 (flips the bit), 1 XOR 0 = 1 (keeps the bit 

unchanged), 0 XOR 0 = 0 (keeps the bit unchanged) 

 No Dependency on Input Order: The XOR gate does not depend on the order in which the inputs 

are given. The output remains the same regardless of whether A is the first input and B is the 

second input or vice versa. 

Example: K XOR L produces the same output as L XOR K 

 Non-Associative Property with More Than Two Inputs: While the XOR gate follows the 

associative property with two inputs, it does not hold the associative property when extended to 

more than two inputs. The grouping of inputs can affect the final output. 

Example: (K XOR L) XOR M is not necessarily equal to K XOR (L XOR M) 

The XOR gate, with its distinct behavior and logical operations, is a vital component in digital logic. Its 

ability to produce a HIGH output only when the inputs differ makes it indispensable in various 

applications, including data encryption, error detection, and arithmetic operations. Understanding the 

principles and applications of the XOR gate is essential for anyone venturing into the fascinating world 

of digital electronics and computer science. As technology continues to evolve, the XOR gate remains 

an integral part of our increasingly interconnected world. 
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UNIT‐II 
 

Minimization Techniques 

In previous chapters, we have simplified the Boolean functions using Boolean postulates and 

theorems. It is a time consuming process and we have to re-write the simplified expressions after 

each step. 

To overcome this difficulty, Karnaugh introduced a method for simplification of Boolean functions in 

an easy way. This method is known as Karnaugh map method or K-map method. It is a graphical 

method, which consists of 2n cells for ‘n’ variables. The adjacent cells are differed only in single bit 

position. 

K-Maps for 2 to 5 Variables 

K-Map method is most suitable for minimizing Boolean functions of 2 variables to 5 variables. Now, let 

us discuss about the K-Maps for 2 to 5 variables one by one. 

2 Variable K-Map 

The number of cells in 2 variable K-map is four, since the number of variables is two. The following 

figure shows 2 variable K-Map. 

 

 There is only one possibility of grouping 4 adjacent min terms. 

 The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m2, m3), (m0, m2) 

and (m1, m3)}. 

3 Variable K-Map 

The number of cells in 3 variable K-map is eight, since the number of variables is three. The following 

figure shows 3 variable K-Map. 
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 There is only one possibility of grouping 8 adjacent min terms. 

 The possible combinations of grouping 4 adjacent min terms are {(m0, m1, m3, m2), (m4, m5, m7, 

m6), (m0, m1, m4, m5), (m1, m3, m5, m7), (m3, m2, m7, m6) and (m2, m0, m6, m4)}. 

 The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m1, m3), (m3, m2), 

(m2, m0), (m4, m5), (m5, m7), (m7, m6), (m6, m4), (m0, m4), (m1, m5), (m3, m7) and (m2, m6)}. 

 If x=0, then 3 variable K-map becomes 2 variable K-map. 

4 Variable K-Map 

The number of cells in 4 variable K-map is sixteen, since the number of variables is four. The following 

figure shows 4 variable K-Map. 

 

 There is only one possibility of grouping 16 adjacent min terms. 

 Let R1, R2, R3 and R4 represents the min terms of first row, second row, third row and fourth 

row respectively. Similarly, C1, C2, C3 and C4 represents the min terms of first column, second 

column, third column and fourth column respectively. The possible combinations of grouping 8 

adjacent min terms are {(R1, R2), (R2, R3), (R3, R4), (R4, R1), (C1, C2), (C2, C3), (C3, C4), (C4, C1)}. 

 If w=0, then 4 variable K-map becomes 3 variable K-map. 
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5 Variable K-Map 

The number of cells in 5 variable K-map is thirty-two, since the number of variables is 5. The following 

figure shows 5 variable K-Map. 

 

 There is only one possibility of grouping 32 adjacent min terms. 

 There are two possibilities of grouping 16 adjacent min terms. i.e., grouping of min terms from 

m0 to m15 and m16 to m31. 

 If v=0, then 5 variable K-map becomes 4 variable K-map. 

In the above all K-maps, we used exclusively the min terms notation. Similarly, you can use exclusively 

the Max terms notation. 

Minimization of Boolean Functions using K-Maps 

If we consider the combination of inputs for which the Boolean function is ‘1’, then we will get the 

Boolean function, which is in standard sum of products form after simplifying the K-map. 

Similarly, if we consider the combination of inputs for which the Boolean function is ‘0’, then we will 

get the Boolean function, which is in standard product of sums form after simplifying the K-map. 

Follow these rules for simplifying K-maps in order to get standard sum of products form. 

 Select the respective K-map based on the number of variables present in the Boolean function. 

 If the Boolean function is given as sum of min terms form, then place the ones at respective 

min term cells in the K-map. If the Boolean function is given as sum of products form, then 

place the ones in all possible cells of K-map for which the given product terms are valid. 

 Check for the possibilities of grouping maximum number of adjacent ones. It should be powers 

of two. Start from highest power of two and upto least power of two. Highest power is equal 

to the number of variables considered in K-map and least power is zero. 
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 Each grouping will give either a literal or one product term. It is known as prime implicant. The 

prime implicant is said to be essential prime implicant, if atleast single ‘1’ is not covered with 

any other groupings but only that grouping covers. 

 Note down all the prime implicants and essential prime implicants. The simplified Boolean 

function contains all essential prime implicants and only the required prime implicants. 

Note 1 − If outputs are not defined for some combination of inputs, then those output values will be 

represented with don’t care symbol ‘x’. That means, we can consider them as either ‘0’ or ‘1’. 

Note 2 − If don’t care terms also present, then place don’t cares ‘x’ in the respective cells of K-map. 

Consider only the don’t cares ‘x’ that are helpful for grouping maximum number of adjacent ones. In 

those cases, treat the don’t care value as ‘1’. 

Example 

Let us simplify the following Boolean function, f(W, X, Y, Z)= WX’Y’ + WY + W’YZ’ using K-map. 

The given Boolean function is in sum of products form. It is having 4 variables W, X, Y & Z. So, we 

require 4 variable K-map. The 4 variable K-map with ones corresponding to the given product terms 

is shown in the following figure. 

 

Here, 1s are placed in the following cells of K-map. 

 The cells, which are common to the intersection of Row 4 and columns 1 & 2 are corresponding 

to the product term, WX’Y’. 

 The cells, which are common to the intersection of Rows 3 & 4 and columns 3 & 4 are 

corresponding to the product term, WY. 

 The cells, which are common to the intersection of Rows 1 & 2 and column 4 are corresponding 

to the product term, W’YZ’. 
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There are no possibilities of grouping either 16 adjacent ones or 8 adjacent ones. There are three 

possibilities of grouping 4 adjacent ones. After these three groupings, there is no single one left as 

ungrouped. So, we no need to check for grouping of 2 adjacent ones. The 4 variable K-map with these 

three groupings is shown in the following figure. 

 

Here, we got three prime implicants WX’, WY & YZ’. All these prime implicants are essential because 

of following reasons. 

 Two ones (m8 & m9) of fourth row grouping are not covered by any other groupings. Only 

fourth row grouping covers those two ones. 

 Single one (m15) of square shape grouping is not covered by any other groupings. Only the 

square shape grouping covers that one. 

 Two ones (m2 & m6) of fourth column grouping are not covered by any other groupings. Only 

fourth column grouping covers those two ones. 

Therefore, the simplified Boolean function is 

f = WX’ + WY + YZ’ 

Follow these rules for simplifying K-maps in order to get standard product of sums form. 

 Select the respective K-map based on the number of variables present in the Boolean function. 

 If the Boolean function is given as product of Max terms form, then place the zeroes at 

respective Max term cells in the K-map. If the Boolean function is given as product of sums 

form, then place the zeroes in all possible cells of K-map for which the given sum terms are 

valid. 

 Check for the possibilities of grouping maximum number of adjacent zeroes. It should be 

powers of two. Start from highest power of two and upto least power of two. Highest power is 

equal to the number of variables considered in K-map and least power is zero. 
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 Each grouping will give either a literal or one sum term. It is known as prime implicant. The 

prime implicant is said to be essential prime implicant, if atleast single ‘0’ is not covered with 

any other groupings but only that grouping covers. 

 Note down all the prime implicants and essential prime implicants. The simplified Boolean 

function contains all essential prime implicants and only the required prime implicants. 

Note − If don’t care terms also present, then place don’t cares ‘x’ in the respective cells of K-map. 

Consider only the don’t cares ‘x’ that are helpful for grouping maximum number of adjacent zeroes. In 

those cases, treat the don’t care value as ‘0’. 

Example 

Let us simplify the following Boolean function, f(X,Y,Z)=∏M(0,1,2,4)f(X,Y,Z)=∏M(0,1,2,4) using K-map. 

The given Boolean function is in product of Max terms form. It is having 3 variables X, Y & Z. So, we 

require 3 variable K-map. The given Max terms are M0, M1, M2 & M4. The 3 variable K-map with 

zeroes corresponding to the given Max terms is shown in the following figure. 

 

There are no possibilities of grouping either 8 adjacent zeroes or 4 adjacent zeroes. There are three 

possibilities of grouping 2 adjacent zeroes. After these three groupings, there is no single zero left as 

ungrouped. The 3 variable K-map with these three groupings is shown in the following figure. 
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Here, we got three prime implicants X + Y, Y + Z & Z + X. All these prime implicants 

are essential because one zero in each grouping is not covered by any other groupings except with 

their individual groupings. 

Therefore, the simplified Boolean function is 

f = (X + Y).(Y + Z).(Z + X) 

In this way, we can easily simplify the Boolean functions up to 5 variables using K-map method. For 

more than 5 variables, it is difficult to simplify the functions using K-Maps. Because, the number 

of cells in K-map gets doubled by including a new variable. 

Due to this checking and grouping of adjacent ones (min terms) or adjacent zeros (Max terms) will be 

complicated. We will discuss Tabular method in next chapter to overcome the difficulties of K-map 

method. 

 

 

 

 

Combinational circuits consist of Logic gates. These circuits operate with binary values. The output(s) 

of combinational circuit depends on the combination of present inputs. The following figure shows 

the block diagram of combinational circuit. 

 

This combinational circuit has ‘n’ input variables and ‘m’ outputs. Each combination of input variables 

will affect the output(s). 

Design procedure of Combinational circuits 

 Find the required number of input variables and outputs from given specifications. 

 Formulate the Truth table. If there are ‘n’ input variables, then there will be 2n possible 

combinations. For each combination of input, find the output values. 
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 Find the Boolean expressions for each output. If necessary, simplify those expressions. 

 Implement the above Boolean expressions corresponding to each output by using Logic gates. 

 In this chapter, let us discuss about the basic arithmetic circuits like Binary adder and Binary 

subtractor. These circuits can be operated with binary values 0 and 1. 

 Binary Adder 

 The most basic arithmetic operation is addition. The circuit, which performs the addition of two 

binary numbers is known as Binary adder. First, let us implement an adder, which performs the 

addition of two bits. 

 Half Adder 

 Half adder is a combinational circuit, which performs the addition of two binary numbers A and 

B are of single bit. It produces two outputs sum, S & carry, C. 

 The Truth table of Half adder is shown below. 

Inputs Outputs 

A B C S 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 

 When we do the addition of two bits, the resultant sum can have the values ranging from 0 to 

2 in decimal. We can represent the decimal digits 0 and 1 with single bit in binary. But, we can’t 

represent decimal digit 2 with single bit in binary. So, we require two bits for representing it in 

binary. 

 Let, sum, S is the Least significant bit and carry, C is the Most significant bit of the resultant 

sum. For first three combinations of inputs, carry, C is zero and the value of S will be either zero 

or one based on the number of ones present at the inputs. But, for last combination of inputs, 

carry, C is one and sum, S is zero, since the resultant sum is two. 
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 From Truth table, we can directly write the Boolean functionsfor each output as 

 S=A⊕BS=A⊕B 

 C=ABC=AB 

 We can implement the above functions with 2-input Ex-OR gate & 2-input AND gate. 

The circuit diagram of Half adder is shown in the following figure. 

  

 In the above circuit, a two input Ex-OR gate & two input AND gate produces sum, S & carry, C 

respectively. Therefore, Half-adder performs the addition of two bits. 

 Full Adder 

 Full adder is a combinational circuit, which performs the addition of three bits A, B and Cin. 

Where, A & B are the two parallel significant bits and Cin is the carry bit, which is generated 

from previous stage. This Full adder also produces two outputs sum, S & carry, Cout, which are 

similar to Half adder. 

 The Truth table of Full adder is shown below. 

Inputs Outputs 

A B Cin Cout S 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 
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0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

 When we do the addition of three bits, the resultant sum can have the values ranging from 0 to 

3 in decimal. We can represent the decimal digits 0 and 1 with single bit in binary. But, we can’t 

represent the decimal digits 2 and 3 with single bit in binary. So, we require two bits for 

representing those two decimal digits in binary. 

 Let, sum, S is the Least significant bit and carry, Cout is the Most significant bit of resultant sum. 

It is easy to fill the values of outputs for all combinations of inputs in the truth table. Just count 

the number of ones present at the inputs and write the equivalent binary number at outputs. If 

Cin is equal to zero, then Full adder truth table is same as that of Half adder truth table. 

 We will get the following Boolean functions for each output after simplification. 

 S=A⊕B⊕CinS=A⊕B⊕Cin 

 cout=AB+(A⊕B)cincout=AB+(A⊕B)cin 

 The sum, S is equal to one, when odd number of ones present at the inputs. We know that Ex-

OR gate produces an output, which is an odd function. So, we can use either two 2input Ex-OR 

gates or one 3-input Ex-OR gate in order to produce sum, S. We can implement carry, Cout using 

two 2-input AND gates & one OR gate. The circuit diagram of Full adder is shown in the 

following figure. 
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 This adder is called as Full adder because for implementing one Full adder, we require two Half 

adders and one OR gate. If Cin is zero, then Full adder becomes Half adder. We can verify it 

easily from the above circuit diagram or from the Boolean functions of outputs of Full adder. 

Decoder is a combinational circuit that has ‘n’ input lines and maximum of 2n output lines. One of 

these outputs will be active High based on the combination of inputs present, when the decoder is 

enabled. That means decoder detects a particular code. The outputs of the decoder are nothing but 

the min termsof ‘n’ input variables (lines), when it is enabled. 

2 to 4 Decoder 

Let 2 to 4 Decoder has two inputs A1 & A0 and four outputs Y3, Y2, Y1 & Y0. The block diagram of 2 to 4 

decoder is shown in the following figure. 

 

One of these four outputs will be ‘1’ for each combination of inputs when enable, E is ‘1’. The Truth 

table of 2 to 4 decoder is shown below. 
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Enable Inputs Outputs 

E A1 A0 Y3 Y2 Y1 Y0 

0 x x 0 0 0 0 

1 0 0 0 0 0 1 

1 0 1 0 0 1 0 

1 1 0 0 1 0 0 

1 1 1 1 0 0 0 

From Truth table, we can write the Boolean functions for each output as 

Y3=E.A1.A0Y3=E.A1.A0 

Y2=E.A1.A0′Y2=E.A1.A0′ 

Y1=E.A1′.A0Y1=E.A1′.A0 

Y0=E.A1′.A0′Y0=E.A1′.A0′ 

Each output is having one product term. So, there are four product terms in total. We can implement 

these four product terms by using four AND gates having three inputs each & two inverters. 

The circuit diagram of 2 to 4 decoder is shown in the following figure. 
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Therefore, the outputs of 2 to 4 decoder are nothing but the min terms of two input variables A1 & A0, 

when enable, E is equal to one. If enable, E is zero, then all the outputs of decoder will be equal to 

zero. 

Similarly, 3 to 8 decoder produces eight min terms of three input variables A2, A1 & A0 and 4 to 16 

decoder produces sixteen min terms of four input variables A3, A2, A1 & A0. 

Implementation of Higher-order Decoders 

Now, let us implement the following two higher-order decoders using lower-order decoders. 

 3 to 8 decoder 

 4 to 16 decoder 
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3 to 8 Decoder 

In this section, let us implement 3 to 8 decoder using 2 to 4 decoders. We know that 2 to 4 Decoder 

has two inputs, A1 & A0and four outputs, Y3 to Y0. Whereas, 3 to 8 Decoder has three inputs A2, A1 & 

A0 and eight outputs, Y7 to Y0. 

We can find the number of lower order decoders required for implementing higher order decoder 

using the following formula. 

Requirednumberoflowerorderdecoders=m2m1Requirednumberoflowerorderdecoders=m2m1 

Where, 

m1m1 is the number of outputs of lower order decoder. 

m2m2 is the number of outputs of higher order decoder. 

Here, m1m1 = 4 and m2m2 = 8. Substitute, these two values in the above formula. 
Requirednumberof2to4decoders=84=2Requirednumberof2to4decoders=84=2 

Therefore, we require two 2 to 4 decoders for implementing one 3 to 8 decoder. The block diagram of 

3 to 8 decoder using 2 to 4 decoders is shown in the following figure. 
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The parallel inputs A1 & A0 are applied to each 2 to 4 decoder. The complement of input A2 is 

connected to Enable, E of lower 2 to 4 decoder in order to get the outputs, Y3 to Y0. These are 

the lower four min terms. The input, A2 is directly connected to Enable, E of upper 2 to 4 decoder in 

order to get the outputs, Y7to Y4. These are the higher four min terms. 

4 to 16 Decoder 

In this section, let us implement 4 to 16 decoder using 3 to 8 decoders. We know that 3 to 8 Decoder 

has three inputs A2, A1& A0 and eight outputs, Y7 to Y0. Whereas, 4 to 16 Decoder has four inputs A3, 

A2, A1 & A0 and sixteen outputs, Y15 to Y0 

We know the following formula for finding the number of lower order decoders required. 

Requirednumberoflowerorderdecoders=m2m1Requirednumberoflowerorderdecoders=m2m1 

Substitute, m1m1 = 8 and m2m2 = 16 in the above formula. 
Requirednumberof3to8decoders=168=2Requirednumberof3to8decoders=168=2 

Therefore, we require two 3 to 8 decoders for implementing one 4 to 16 decoder. The block 

diagram of 4 to 16 decoder using 3 to 8 decoders is shown in the following figure. 

 

The parallel inputs A2, A1 & A0 are applied to each 3 to 8 decoder. The complement of input, A3 is 

connected to Enable, E of lower 3 to 8 decoder in order to get the outputs, Y7 to Y0. These are 
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the lower eight min terms. The input, A3 is directly connected to Enable, E of upper 3 to 8 decoder in 

order to get the outputs, Y15 to Y8. These are the higher eight min terms. 

An Encoder is a combinational circuit that performs the reverse operation of Decoder. It has 

maximum of 2n input lines and ‘n’ output lines. It will produce a binary code equivalent to the input, 

which is active High. Therefore, the encoder encodes 2ninput lines with ‘n’ bits. It is optional to 

represent the enable signal in encoders. 

4 to 2 Encoder 

Let 4 to 2 Encoder has four inputs Y3, Y2, Y1 & Y0 and two outputs A1 & A0. The block diagram of 4 to 2 

Encoder is shown in the following figure. 

 

At any time, only one of these 4 inputs can be ‘1’ in order to get the respective binary code at the 

output. The Truth table of 4 to 2 encoder is shown below. 

Inputs Outputs 

Y3 Y2 Y1 Y0 A1 A0 

0 0 0 1 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

1 0 0 0 1 1 
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From Truth table, we can write the Boolean functions for each output as 

A1=Y3+Y2A1=Y3+Y2 

A0=Y3+Y1A0=Y3+Y1 

We can implement the above two Boolean functions by using two input OR gates. The circuit 

diagram of 4 to 2 encoder is shown in the following figure. 

 

The above circuit diagram contains two OR gates. These OR gates encode the four inputs with two bits 

Octal to Binary Encoder 

Octal to binary Encoder has eight inputs, Y7 to Y0 and three outputs A2, A1 & A0. Octal to binary 

encoder is nothing but 8 to 3 encoder. The block diagram of octal to binary Encoder is shown in the 

following figure. 

 

At any time, only one of these eight inputs can be ‘1’ in order to get the respective binary code. 

The Truth table of octal to binary encoder is shown below. 
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Inputs Outputs 

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 A2 A1 A0 

0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 0 1 

0 0 0 0 0 1 0 0 0 1 0 

0 0 0 0 1 0 0 0 0 1 1 

0 0 0 1 0 0 0 0 1 0 0 

0 0 1 0 0 0 0 0 1 0 1 

0 1 0 0 0 0 0 0 1 1 0 

1 0 0 0 0 0 0 0 1 1 1 

From Truth table, we can write the Boolean functions for each output as 

A2=Y7+Y6+Y5+Y4A2=Y7+Y6+Y5+Y4 

A1=Y7+Y6+Y3+Y2A1=Y7+Y6+Y3+Y2 

A0=Y7+Y5+Y3+Y1A0=Y7+Y5+Y3+Y1 

We can implement the above Boolean functions by using four input OR gates. The circuit diagram of 

octal to binary encoder is shown in the following figure. 
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The above circuit diagram contains three 4-input OR gates. These OR gates encode the eight inputs 

with three bits. 

Drawbacks of Encoder 

Following are the drawbacks of normal encoder. 

 There is an ambiguity, when all outputs of encoder are equal to zero. Because, it could be the 

code corresponding to the inputs, when only least significant input is one or when all inputs 

are zero. 

 If more than one input is active High, then the encoder produces an output, which may not be 

the correct code. For example, if both Y3 and Y6 are ‘1’, then the encoder produces 111 at the 

output. This is neither equivalent code corresponding to Y3, when it is ‘1’ nor the equivalent 

code corresponding to Y6, when it is ‘1’. 

Multiplexer is a combinational circuit that has maximum of 2ndata inputs, ‘n’ selection lines and single 

output line. One of these data inputs will be connected to the output based on the values of selection 

lines. 

Since there are ‘n’ selection lines, there will be 2n possible combinations of zeros and ones. So, each 

combination will select only one data input. Multiplexer is also called as Mux. 

4x1 Multiplexer 
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4x1 Multiplexer has four data inputs I3, I2, I1 & I0, two selection lines s1 & s0 and one output Y. 

The block diagram of 4x1 Multiplexer is shown in the following figure. 

 

One of these 4 inputs will be connected to the output based on the combination of inputs present at 

these two selection lines. Truth table of 4x1 Multiplexer is shown below. 

Selection Lines Output 

S1 S0 Y 

0 0 I0 

0 1 I1 

1 0 I2 

1 1 I3 

From Truth table, we can directly write the Boolean functionfor output, Y as 

Y=S1′S0′I0+S1′S0I1+S1S0′I2+S1S0I3Y=S1′S0′I0+S1′S0I1+S1S0′I2+S1S0I3 

We can implement this Boolean function using Inverters, AND gates & OR gate. The circuit diagram of 

4x1 multiplexer is shown in the following figure. 
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We can easily understand the operation of the above circuit. Similarly, you can implement 8x1 

Multiplexer and 16x1 multiplexer by following the same procedure. 

Implementation of Higher-order Multiplexers. 

Now, let us implement the following two higher-order Multiplexers using lower-order Multiplexers. 

 8x1 Multiplexer 

 16x1 Multiplexer 

8x1 Multiplexer 

In this section, let us implement 8x1 Multiplexer using 4x1 Multiplexers and 2x1 Multiplexer. We 

know that 4x1 Multiplexer has 4 data inputs, 2 selection lines and one output. Whereas, 8x1 

Multiplexer has 8 data inputs, 3 selection lines and one output. 

So, we require two 4x1 Multiplexers in first stage in order to get the 8 data inputs. Since, each 4x1 

Multiplexer produces one output, we require a 2x1 Multiplexer in second stage by considering the 

outputs of first stage as inputs and to produce the final output. 

Let the 8x1 Multiplexer has eight data inputs I7 to I0, three selection lines s2, s1 & s0 and one output Y. 

The Truth table of 8x1 Multiplexer is shown below. 
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Selection Inputs Output 

S2 S1 S0 Y 

0 0 0 I0 

0 0 1 I1 

0 1 0 I2 

0 1 1 I3 

1 0 0 I4 

1 0 1 I5 

1 1 0 I6 

1 1 1 I7 

We can implement 8x1 Multiplexer using lower order Multiplexers easily by considering the above 

Truth table. The block diagramof 8x1 Multiplexer is shown in the following figure. 
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The same selection lines, s1 & s0 are applied to both 4x1 Multiplexers. The data inputs of upper 4x1 

Multiplexer are I7 to I4 and the data inputs of lower 4x1 Multiplexer are I3 to I0. Therefore, each 4x1 

Multiplexer produces an output based on the values of selection lines, s1 & s0. 

The outputs of first stage 4x1 Multiplexers are applied as inputs of 2x1 Multiplexer that is present in 

second stage. The other selection line, s2 is applied to 2x1 Multiplexer. 

 If s2 is zero, then the output of 2x1 Multiplexer will be one of the 4 inputs I3 to I0 based on the 

values of selection lines s1 & s0. 

 If s2 is one, then the output of 2x1 Multiplexer will be one of the 4 inputs I7 to I4 based on the 

values of selection lines s1 & s0. 

Therefore, the overall combination of two 4x1 Multiplexers and one 2x1 Multiplexer performs as one 

8x1 Multiplexer. 
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16x1 Multiplexer 

In this section, let us implement 16x1 Multiplexer using 8x1 Multiplexers and 2x1 Multiplexer. We 

know that 8x1 Multiplexer has 8 data inputs, 3 selection lines and one output. Whereas, 16x1 

Multiplexer has 16 data inputs, 4 selection lines and one output. 

So, we require two 8x1 Multiplexers in first stage in order to get the 16 data inputs. Since, each 8x1 

Multiplexer produces one output, we require a 2x1 Multiplexer in second stage by considering the 

outputs of first stage as inputs and to produce the final output. 

Let the 16x1 Multiplexer has sixteen data inputs I15 to I0, four selection lines s3 to s0 and one output Y. 

The Truth table of 16x1 Multiplexer is shown below. 

Selection Inputs Output 

S3 S2 S1 S0 Y 

0 0 0 0 I0 

0 0 0 1 I1 

0 0 1 0 I2 

0 0 1 1 I3 

0 1 0 0 I4 

0 1 0 1 I5 

0 1 1 0 I6 

0 1 1 1 I7 

1 0 0 0 I8 

1 0 0 1 I9 
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1 0 1 0 I10 

1 0 1 1 I11 

1 1 0 0 I12 

1 1 0 1 I13 

1 1 1 0 I14 

1 1 1 1 I15 

We can implement 16x1 Multiplexer using lower order Multiplexers easily by considering the above 

Truth table. The block diagram of 16x1 Multiplexer is shown in the following figure. 
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The same selection lines, s2, s1 & s0 are applied to both 8x1 Multiplexers. The data inputs of upper 8x1 

Multiplexer are I15 to I8 and the data inputs of lower 8x1 Multiplexer are I7 to I0. Therefore, each 8x1 

Multiplexer produces an output based on the values of selection lines, s2, s1 & s0. 

The outputs of first stage 8x1 Multiplexers are applied as inputs of 2x1 Multiplexer that is present in 

second stage. The other selection line, s3 is applied to 2x1 Multiplexer. 

 If s3 is zero, then the output of 2x1 Multiplexer will be one of the 8 inputs Is7 to I0 based on the 

values of selection lines s2, s1 & s0. 

 If s3 is one, then the output of 2x1 Multiplexer will be one of the 8 inputs I15 to I8 based on the 

values of selection lines s2, s1 & s0. 

Therefore, the overall combination of two 8x1 Multiplexers and one 2x1 Multiplexer performs as one 

16x1 Multiplexer. 

De-Multiplexer is a combinational circuit that performs the reverse operation of Multiplexer. It has 

single input, ‘n’ selection lines and maximum of 2n outputs. The input will be connected to one of 

these outputs based on the values of selection lines. 

Since there are ‘n’ selection lines, there will be 2n possible combinations of zeros and ones. So, each 

combination can select only one output. De-Multiplexer is also called as De-Mux. 

1x4 De-Multiplexer 

1x4 De-Multiplexer has one input I, two selection lines, s1 & s0and four outputs Y3, Y2, Y1 &Y0. 

The block diagram of 1x4 De-Multiplexer is shown in the following figure. 
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The single input ‘I’ will be connected to one of the four outputs, Y3 to Y0 based on the values of 

selection lines s1 & s0. The Truth table of 1x4 De-Multiplexer is shown below. 

Selection Inputs Outputs 

S1 S0 Y3 Y2 Y1 Y0 

0 0 0 0 0 I 

0 1 0 0 I 0 

1 0 0 I 0 0 

1 1 I 0 0 0 

From the above Truth table, we can directly write the Boolean functions for each output as 

Y3=s1s0IY3=s1s0I 

Y2=s1s0′IY2=s1s0′I 

Y1=s1′s0IY1=s1′s0I 

Y0=s1′s0′IY0=s1′s0′I 

We can implement these Boolean functions using Inverters & 3-input AND gates. The circuit 

diagram of 1x4 De-Multiplexer is shown in the following figure. 
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We can easily understand the operation of the above circuit. Similarly, you can implement 1x8 De-

Multiplexer and 1x16 De-Multiplexer by following the same procedure. 

Implementation of Higher-order De-Multiplexers 

Now, let us implement the following two higher-order De-Multiplexers using lower-order De-

Multiplexers. 

 1x8 De-Multiplexer 

 1x16 De-Multiplexer 

1x8 De-Multiplexer 

In this section, let us implement 1x8 De-Multiplexer using 1x4 De-Multiplexers and 1x2 De-

Multiplexer. We know that 1x4 De-Multiplexer has single input, two selection lines and four outputs. 

Whereas, 1x8 De-Multiplexer has single input, three selection lines and eight outputs. 
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So, we require two 1x4 De-Multiplexers in second stage in order to get the final eight outputs. Since, 

the number of inputs in second stage is two, we require 1x2 DeMultiplexer in first stage so that the 

outputs of first stage will be the inputs of second stage. Input of this 1x2 De-Multiplexer will be the 

overall input of 1x8 De-Multiplexer. 

Let the 1x8 De-Multiplexer has one input I, three selection lines s2, s1 & s0 and outputs Y7 to Y0. 

The Truth table of 1x8 De-Multiplexer is shown below. 

Selection Inputs Outputs 

s2 s1 s0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 

0 0 0 0 0 0 0 0 0 0 I 

0 0 1 0 0 0 0 0 0 I 0 

0 1 0 0 0 0 0 0 I 0 0 

0 1 1 0 0 0 0 I 0 0 0 

1 0 0 0 0 0 I 0 0 0 0 

1 0 1 0 0 I 0 0 0 0 0 

1 1 0 0 I 0 0 0 0 0 0 

1 1 1 I 0 0 0 0 0 0 0 

We can implement 1x8 De-Multiplexer using lower order Multiplexers easily by considering the above 

Truth table. The block diagram of 1x8 De-Multiplexer is shown in the following figure. 
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The common selection lines, s1 & s0 are applied to both 1x4 De-Multiplexers. The outputs of upper 

1x4 De-Multiplexer are Y7to Y4 and the outputs of lower 1x4 De-Multiplexer are Y3 to Y0. 

The other selection line, s2 is applied to 1x2 De-Multiplexer. If s2 is zero, then one of the four outputs 

of lower 1x4 De-Multiplexer will be equal to input, I based on the values of selection lines s1 & s0. 

Similarly, if s2 is one, then one of the four outputs of upper 1x4 DeMultiplexer will be equal to input, I 

based on the values of selection lines s1 & s0. 

1x16 De-Multiplexer 

In this section, let us implement 1x16 De-Multiplexer using 1x8 De-Multiplexers and 1x2 De-

Multiplexer. We know that 1x8 De-Multiplexer has single input, three selection lines and eight 

outputs. Whereas, 1x16 De-Multiplexer has single input, four selection lines and sixteen outputs. 

So, we require two 1x8 De-Multiplexers in second stage in order to get the final sixteen outputs. 

Since, the number of inputs in second stage is two, we require 1x2 DeMultiplexer in first stage so that 

the outputs of first stage will be the inputs of second stage. Input of this 1x2 De-Multiplexer will be 

the overall input of 1x16 De-Multiplexer. 
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Let the 1x16 De-Multiplexer has one input I, four selection lines s3, s2, s1 & s0 and outputs Y15 to Y0. 

The block diagram of 1x16 De-Multiplexer using lower order Multiplexers is shown in the following 

figure. 

 

The common selection lines s2, s1 & s0 are applied to both 1x8 De-Multiplexers. The outputs of upper 

1x8 De-Multiplexer are Y15 to Y8 and the outputs of lower 1x8 DeMultiplexer are Y7to Y0. 

The other selection line, s3 is applied to 1x2 De-Multiplexer. If s3 is zero, then one of the eight outputs 

of lower 1x8 De-Multiplexer will be equal to input, I based on the values of selection lines s2, s1 & s0. 

Similarly, if s3 is one, then one of the 8 outputs of upper 1x8 De-Multiplexer will be equal to input, I 

based on the values of selection lines s2, s1 & s0. 
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UNIT III 

Sequential Machines Fundamentals 

We discussed various combinational circuits in earlier chapters. All these circuits have a set of 

output(s), which depends only on the combination of present inputs. The following figure shows 

the block diagram of sequential circuit. 

 

This sequential circuit contains a set of inputs and output(s). The output(s) of sequential circuit 

depends not only on the combination of present inputs but also on the previous output(s). Previous 

output is nothing but the present state. Therefore, sequential circuits contain combinational circuits 

along with memory (storage) elements. Some sequential circuits may not contain combinational 

circuits, but only memory elements. 

Following table shows the differences between combinational circuits and sequential circuits. 

Combinational Circuits Sequential Circuits 

Outputs depend only on 

present inputs. 

Outputs depend on both present inputs 

and present state. 

Feedback path is not present. Feedback path is present. 
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Memory elements are not 

required. 
Memory elements are required. 

Clock signal is not required. Clock signal is required. 

Easy to design. Difficult to design. 

Types of Sequential Circuits 

Following are the two types of sequential circuits − 

 Asynchronous sequential circuits 

 Synchronous sequential circuits 

Asynchronous sequential circuits 

If some or all the outputs of a sequential circuit do not change (affect) with respect to active transition 

of clock signal, then that sequential circuit is called as Asynchronous sequential circuit. That means, 

all the outputs of asynchronous sequential circuits do not change (affect) at the same time. Therefore, 

most of the outputs of asynchronous sequential circuits are not in synchronous with either only 

positive edges or only negative edges of clock signal. 

Synchronous sequential circuits 

If all the outputs of a sequential circuit change (affect) with respect to active transition of clock signal, 

then that sequential circuit is called as Synchronous sequential circuit. That means, all the outputs of 

synchronous sequential circuits change (affect) at the same time. Therefore, the outputs of 

synchronous sequential circuits are in synchronous with either only positive edges or only negative 

edges of clock signal. 

There are two types of memory elements based on the type of triggering that is suitable to operate it. 

 Latches 

 Flip-flops 

Latches operate with enable signal, which is level sensitive. Whereas, flip-flops are edge sensitive. We 

will discuss about flip-flops in next chapter. Now, let us discuss about SR Latch & D Latch one by one. 

SR Latch 

SR Latch is also called as Set Reset Latch. This latch affects the outputs as long as the enable, E is 

maintained at ‘1’. The circuit diagram of SR Latch is shown in the following figure. 
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This circuit has two inputs S & R and two outputs Q(t) & Q(t)’. The upper NOR gate has two inputs R & 

complement of present state, Q(t)’ and produces next state, Q(t+1) when enable, E is ‘1’.  

Similarly, the lower NOR gate has two inputs S & present state, Q(t) and produces complement of 

next state, Q(t+1)’ when enable, E is ‘1’. 

We know that a 2-input NOR gate produces an output, which is the complement of another input 

when one of the input is ‘0’. Similarly, it produces ‘0’ output, when one of the input is ‘1’. 

 If S = 1, then next state Q(t + 1) will be equal to ‘1’ irrespective of present state, Q(t) values. 

 If R = 1, then next state Q(t + 1) will be equal to ‘0’ irrespective of present state, Q(t) values. 

At any time, only of those two inputs should be ‘1’. If both inputs are ‘1’, then the next state Q(t + 1) 

value is undefined. 

The following table shows the state table of SR latch. 

S R Q(t + 1) 

0 0 Q(t) 

0 1 0 
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1 0 1 

1 1 - 

Therefore, SR Latch performs three types of functions such as Hold, Set & Reset based on the input 

conditions. 

D Latch 

There is one drawback of SR Latch. That is the next state value can’t be predicted when both the 

inputs S & R are one. So, we can overcome this difficulty by D Latch. It is also called as Data Latch. 

The circuit diagram of D Latch is shown in the following figure. 

 

This circuit has single input D and two outputs Q(t) & Q(t)’. D Latch is obtained from SR Latch by 

placing an inverter between S amp;& R inputs and connect D input to S. That means we eliminated 

the combinations of S & R are of same value. 

 If D = 0 → S = 0 & R = 1, then next state Q(t + 1) will be equal to ‘0’ irrespective of present 

state, Q(t) values. This is corresponding to the second row of SR Latch state table. 

 If D = 1 → S = 1 & R = 0, then next state Q(t + 1) will be equal to ‘1’ irrespective of present 

state, Q(t) values. This is corresponding to the third row of SR Latch state table. 

The following table shows the state table of D latch. 

D Q(t + 1) 
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0 0 

1 1 

Therefore, D Latch Hold the information that is available on data input, D. That means the output of D 

Latch is sensitive to the changes in the input, D as long as the enable is High. 

In this chapter, we implemented various Latches by providing the cross coupling between NOR gates. 

Similarly, you can implement these Latches using NAND gates. 

In previous chapter, we discussed about Latches. Those are the basic building blocks of flip-flops. We 

can implement flip-flops in two methods. 

In first method, cascade two latches in such a way that the first latch is enabled for every positive 

clock pulse and second latch is enabled for every negative clock pulse. So that the combination of 

these two latches become a flip-flop. 

In second method, we can directly implement the flip-flop, which is edge sensitive. In this chapter, let 

us discuss the following flip-flops using second method. 

 SR Flip-Flop 

 D Flip-Flop 

 JK Flip-Flop 

 T Flip-Flop 

SR Flip-Flop 

SR flip-flop operates with only positive clock transitions or negative clock transitions. Whereas, SR 

latch operates with enable signal. The circuit diagram of SR flip-flop is shown in the following figure. 
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This circuit has two inputs S & R and two outputs Q(t) & Q(t)’. The operation of SR flipflop is similar to 

SR Latch. But, this flip-flop affects the outputs only when positive transition of the clock signal is 

applied instead of active enable. 

The following table shows the state table of SR flip-flop. 

S R Q(t + 1) 

0 0 Q(t) 

0 1 0 

1 0 1 

1 1 - 

Here, Q(t) & Q(t + 1) are present state & next state respectively. So, SR flip-flop can be used for one of 

these three functions such as Hold, Reset & Set based on the input conditions, when positive 

transition of clock signal is applied. The following table shows the characteristic table of SR flip-flop. 

Present Inputs Present State Next State 
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S R Q(t) Q(t + 1) 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 x 

1 1 1 x 

By using three variable K-Map, we can get the simplified expression for next state, Q(t + 1). The three 

variable K-Mapfor next state, Q(t + 1) is shown in the following figure. 

 

The maximum possible groupings of adjacent ones are already shown in the figure. Therefore, 

the simplified expression for next state Q(t + 1) is 

Q(t+1)=S+R′Q(t)Q(t+1)=S+R′Q(t) 

D Flip-Flop 
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D flip-flop operates with only positive clock transitions or negative clock transitions. Whereas, D latch 

operates with enable signal. That means, the output of D flip-flop is insensitive to the changes in the 

input, D except for active transition of the clock signal. The circuit diagram of D flip-flop is shown in 

the following figure. 

 

This circuit has single input D and two outputs Q(t) & Q(t)’. The operation of D flip-flop is similar to D 

Latch. But, this flip-flop affects the outputs only when positive transition of the clock signal is applied 

instead of active enable. 

The following table shows the state table of D flip-flop. 

D Q(t + 1) 

0 0 

0 1 

Therefore, D flip-flop always Hold the information, which is available on data input, D of earlier 

positive transition of clock signal. From the above state table, we can directly write the next state 

equation as 

Q(t + 1) = D 

Next state of D flip-flop is always equal to data input, D for every positive transition of the clock signal. 

Hence, D flip-flops can be used in registers, shift registers and some of the counters. 

JK Flip-Flop 



Department of ECE   Digital Logic Design 

JK flip-flop is the modified version of SR flip-flop. It operates with only positive clock transitions or 

negative clock transitions. The circuit diagram of JK flip-flop is shown in the following figure. 

 

This circuit has two inputs J & K and two outputs Q(t) & Q(t)’. The operation of JK flip-flop is similar to 

SR flip-flop. Here, we considered the inputs of SR flip-flop as S = J Q(t)’ and R = KQ(t) in order to utilize 

the modified SR flip-flop for 4 combinations of inputs. 

The following table shows the state table of JK flip-flop. 

J K Q(t + 1) 

0 0 Q(t) 

0 1 0 

1 0 1 

1 1 Q(t)' 

Here, Q(t) & Q(t + 1) are present state & next state respectively. So, JK flip-flop can be used for one of 

these four functions such as Hold, Reset, Set & Complement of present state based on the input 
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conditions, when positive transition of clock signal is applied. The following table shows 

the characteristic table of JK flip-flop. 

Present Inputs Present State Next State 

J K Q(t) Q(t+1) 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 0 

By using three variable K-Map, we can get the simplified expression for next state, Q(t + 1). Three 

variable K-Map for next state, Q(t + 1) is shown in the following figure. 
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The maximum possible groupings of adjacent ones are already shown in the figure. Therefore, 

the simplified expression for next state Q(t+1) is 

Q(t+1)=JQ(t)′+K′Q(t)Q(t+1)=JQ(t)′+K′Q(t) 

T Flip-Flop 

T flip-flop is the simplified version of JK flip-flop. It is obtained by connecting the same input ‘T’ to 

both inputs of JK flip-flop. It operates with only positive clock transitions or negative clock transitions. 

The circuit diagram of T flip-flop is shown in the following figure. 

 

This circuit has single input T and two outputs Q(t) & Q(t)’. The operation of T flip-flop is same as that 

of JK flip-flop. Here, we considered the inputs of JK flip-flop as J = T and K = T in order to utilize the 

modified JK flip-flop for 2 combinations of inputs. So, we eliminated the other two combinations of J 

& K, for which those two values are complement to each other in T flip-flop. 

The following table shows the state table of T flip-flop. 

D Q(t + 1) 

0 Q(t) 

1 Q(t)’ 

Here, Q(t) & Q(t + 1) are present state & next state respectively. So, T flip-flop can be used for one of 

these two functions such as Hold, & Complement of present state based on the input conditions, 
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when positive transition of clock signal is applied. The following table shows the characteristic 

table of T flip-flop. 

Inputs Present State Next State 

T Q(t) Q(t + 1) 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

From the above characteristic table, we can directly write the next state equation as 

Q(t+1)=T′Q(t)+TQ(t)′Q(t+1)=T′Q(t)+TQ(t)′ 

⇒Q(t+1)=T⊕Q(t)⇒Q(t+1)=T⊕Q(t) 

The output of T flip-flop always toggles for every positive transition of the clock signal, when input T 

remains at logic High (1). Hence, T flip-flop can be used in counters. 

In this chapter, we implemented various flip-flops by providing the cross coupling between NOR gates. 

Similarly, you can implement these flip-flops by using NAND gates. 

In previous chapter, we discussed the four flip-flops, namely SR flip-flop, D flip-flop, JK flip-flop & T 

flip-flop. We can convert one flip-flop into the remaining three flip-flops by including some additional 

logic. So, there will be total of twelve flip-flop conversions. 

Follow these steps for converting one flip-flop to the other. 

 Consider the characteristic table of desired flip-flop. 

 Fill the excitation values (inputs) of given flip-flop for each combination of present state and 

next state. The excitation table for all flip-flops is shown below. 
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Present 

State 

Next 

State 

SR flip-flop 

inputs 

D flip-flop 

input 

JK flip-flop 

inputs 

T flip-flop 

input 

Q(t) Q(t+1) S R D J K T 

0 0 0 x 0 0 x 0 

0 1 1 0 1 1 x 1 

1 0 0 1 0 x 1 1 

1 1 x 0 1 x 0 0 

 Get the simplified expressions for each excitation input. If necessary, use Kmaps for 

simplifying. 

 Draw the circuit diagram of desired flip-flop according to the simplified expressions using given 

flip-flop and necessary logic gates. 

Now, let us convert few flip-flops into other. Follow the same process for remaining flipflop 

conversions. 

SR Flip-Flop to other Flip-Flop Conversions 

Following are the three possible conversions of SR flip-flop to other flip-flops. 

 SR flip-flop to D flip-flop 

 SR flip-flop to JK flip-flop 

 SR flip-flop to T flip-flop 

SR flip-flop to D flip-flop conversion 

Here, the given flip-flop is SR flip-flop and the desired flip-flop is D flip-flop. Therefore, consider the 

following characteristic table of D flip-flop. 
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D flip-flop input Present State Next State 

D Q(t) Q(t + 1) 

0 0 0 

0 1 0 

1 0 1 

1 1 1 

We know that SR flip-flop has two inputs S & R. So, write down the excitation values of SR flip-flop for 

each combination of present state and next state values. The following table shows the characteristic 

table of D flip-flop along with the excitation inputs of SR flip-flop. 

D flip-flop input Present State Next State SR flip-flop inputs 

D Q(t) Q(t + 1) S R 

0 0 0 0 x 

0 1 0 0 1 

1 0 1 1 0 

1 1 1 x 0 

From the above table, we can write the Boolean functions for each input as below. 

S=m2+d3S=m2+d3 

R=m1+d0R=m1+d0 
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We can use 2 variable K-Maps for getting simplified expressions for these inputs. The k-Maps for S & R 

are shown below. 

 

So, we got S = D & R = D' after simplifying. The circuit diagram of D flip-flop is shown in the following 

figure. 

 

This circuit consists of SR flip-flop and an inverter. This inverter produces an output, which is 

complement of input, D. So, the overall circuit has single input, D and two outputs Q(t) & Q(t)'. Hence, 

it is a D flip-flop. Similarly, you can do other two conversions. 

D Flip-Flop to other Flip-Flop Conversions 

Following are the three possible conversions of D flip-flop to other flip-flops. 

 D flip-flop to T flip-flop 

 D flip-flop to SR flip-flop 

 D flip-flop to JK flip-flop 
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D flip-flop to T flip-flop conversion 

Here, the given flip-flop is D flip-flop and the desired flip-flop is T flip-flop. Therefore, consider the 

following characteristic tableof T flip-flop. 

T flip-flop input Present State Next State 

T Q(t) Q(t + 1) 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

We know that D flip-flop has single input D. So, write down the excitation values of D flip-flop for each 

combination of present state and next state values. The following table shows the characteristic table 

of T flip-flop along with the excitation inputof D flip-flop. 

T flip-flop input Present State Next State D flip-flop input 

T Q(t) Q(t + 1) D 

0 0 0 0 

0 1 1 1 

1 0 1 1 

1 1 0 0 

So, we require a two input Exclusive-OR gate along with D flip-flop. The circuit diagram of T flip-flop is 

shown in the following figure. 
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This circuit consists of D flip-flop and an Exclusive-OR gate. This Exclusive-OR gate produces an output, 

which is Ex-OR of T and Q(t). So, the overall circuit has single input, T and two outputs Q(t) & Q(t)’. 

Hence, it is a T flip-flop. Similarly, you can do other two conversions. 

JK Flip-Flop to other Flip-Flop Conversions 

Following are the three possible conversions of JK flip-flop to other flip-flops. 

 JK flip-flop to T flip-flop 

 JK flip-flop to D flip-flop 

 JK flip-flop to SR flip-flop 

JK flip-flop to T flip-flop conversion 

Here, the given flip-flop is JK flip-flop and the desired flip-flop is T flip-flop. Therefore, consider the 

following characteristic table of T flip-flop. 

T flip-flop input Present State Next State 

T Q(t) Q(t + 1) 

0 0 0 

0 1 1 

1 0 1 
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1 1 0 

We know that JK flip-flop has two inputs J & K. So, write down the excitation values of JK flip-flop for 

each combination of present state and next state values. The following table shows the characteristic 

table of T flip-flop along with the excitation inputs of JK flipflop. 

T flip-flop input Present State Next State JK flip-flop inputs 

T Q(t) Q(t + 1) J K 

0 0 0 0 x 

0 1 1 x 0 

1 0 1 1 x 

1 1 0 x 1 

From the above table, we can write the Boolean functions for each input as below. 

J=m2+d1+d3J=m2+d1+d3 

K=m3+d0+d2K=m3+d0+d2 

We can use 2 variable K-Maps for getting simplified expressions for these two inputs. The k-Maps for J 

& K are shown below. 
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So, we got, J = T & K = T after simplifying. The circuit diagramof T flip-flop is shown in the following 

figure. 

 

This circuit consists of JK flip-flop only. It doesn’t require any other gates. Just connect the same input 

T to both J & K. So, the overall circuit has single input, T and two outputs Q(t) & Q(t)’. Hence, it is a T 

flip-flop. Similarly, you can do other two conversions. 

T Flip-Flop to other Flip-Flop Conversions 

Following are the three possible conversions of T flip-flop to other flip-flops. 

 T flip-flop to D flip-flop 

 T flip-flop to SR flip-flop 

 T flip-flop to JK flip-flop 

T flip-flop to D flip-flop conversion 

Here, the given flip-flop is T flip-flop and the desired flip-flop is D flip-flop. Therefore, consider the 

characteristic table of D flip-flop and write down the excitation values of T flip-flop for each 

combination of present state and next state values. The following table shows the characteristic 

table of D flip-flop along with the excitation input of T flip-flop. 

D flip-flop input Present State Next State T flip-flop input 

D Q(t) Q(t + 1) T 

 

0 0 0 0 
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0 1 0 1 

 

1 0 1 1 

 

1 1 1 0 

 

From the above table, we can directly write the Boolean function of T as below. 

T=D⊕Q(t)T=D⊕Q(t) 

So, we require a two input Exclusive-OR gate along with T flip-flop. The circuit diagram of D flip-flop is 

shown in the following figure. 

 

This circuit consists of T flip-flop and an Exclusive-OR gate. This Exclusive-OR gate produces an output, 

which is Ex-OR of D and Q(t). So, the overall circuit has single input, D and two outputs Q(t) & Q(t)’. 

Hence, it is a D flip-flop. Similarly, you can do other two conversions. 

 

 

 

 

 

 



Unit-IV 

Introduction to Verilog HDL 
 

Verilog as HDL 
 

Verilog HDL (Verilog Hardware Description Language) consists of various constructs. All are aimed 

at providing a functionally tested and verified design description for the targeted FPGA (Field 

Programmable Gate Array) or ASIC(Application Specific Integrated Circuit). 

This language has dual functions – 

1. Fulfilling the need for a design description. 

2. Fulfilling the need for verifying the design for functionality and timing constraints like 

propagation delay, critical path delay, setup, and hold times. 

Levels of Design Description 

Using Verilog HDL design constructs, a module can be defined using various levels of abstraction. 

There are four levels of abstraction in Verilog HDL. 

They are: 1. Circuit Level  2. Gate Level  3. Data Flow Level  4. Behavioral Level 
 

1. Circuit Level 
 

 At the circuit level, a switch is the basic element with which digital circuits are built. Switches 

can be combined to form inverters and other gates at the next higher level of abstraction.  

 Verilog has the basic MOS switches built into its constructs, which can be used to build basic 

circuits like inverters, basic logic gates, simple 1-bit dynamic and static memories.  

The below Figure1 shows the circuit of an inverter suitable for description with the switch level 

constructs of Verilog. 
 

 
 

Figure 1: CMOS inverter 



2. Gate Level 
 

 It is the next higher level of abstraction, Here the design is carried out in terms of basic gates.  

 All the basic gates are available as ready modules called “Primitives”. Each such primitive is 

defined in terms of its inputs and outputs. Primitives can be incorporated into design 

descriptions directly.  

 Just as full physical hardware can be built using gates, the primitives can be used repeatedly to 

build larger systems. 

 In gate level modeling (or structural modeling) we should know the structure of the design to 

build the model. However, beyond 20 to 30 of such gate primitives in a circuit, the design 

description becomes difficult; testing and debugging becomes more complex. 

Figure 2 shows an AND gate suitable for description using the gate primitive of Verilog. 

 

3. Data Flow 
 

 Data flow is the next higher level of abstraction. All possible operations on signals and variables 

are represented here in terms of assignments.  

 All logic and algebraic operations are accommodated. The assignments define the continuous 

functioning of the concerned block.  

 At the data flow level, signals are assigned through the data manipulating equations. All such 

assignments are concurrent in nature. The design descriptions are more compact than those at 

the gate level. 

Figure 3 shows an A-O-I relationship suitable for description with the Verilog HDL constructs at the 

data flow level. 

 

 



 
 

4. Behavioral Level 
 

 Behavioral level constitutes the highest level of design description; it is essentially at the 

system level. (With the assignment possibilities, looping constructs and conditional operators, 

the design description looks like a “C” program.) 

 A module can be implemented in terms of the design algorithm. The designer no need to have 

any knowledge of hardware implementation. 

 The statements involved are “dense” in function. Compactness and the comprehensive nature 

of the design description make the development process fast and efficient. 

 Figure 4 shows an A-O-I gate expressed in pseudo code suitable for description with the 

behavioral level constructs of Verilog. 

 
 

The Overall Design module in Verilog HDL 
 

Verilog HDL facilitates the mixing of the above-mentioned levels of design. A design built at data 

flow level can be instantiated to form a structural mode design. Data flow assignments can be 

incorporated in designs which are basically at behavioral level. 

 

Concurrency 
 

In an electronic circuit all the units are to be active and functioning concurrently. The voltages and 

currents in the different elements in the circuit can change simultaneously. In turn the logic levels 

too can change. Simulation of such a circuit in an HDL calls for concurrency of operation. 

A number of activities – may be spread over different modules – are to be run concurrently here. 

Verilog simulators are built to simulate concurrency. (This is in contrast to programs in the normal 

languages like C where execution is sequential.) 

Concurrency is achieved by proceeding with simulation in equal time steps. The time step is kept 

small enough to be negligible compared with the propagation delay values. All the activities 



scheduled at one time step are completed and then the simulator advances to the next time step 

and so on. The time step values refer to simulation time and not real time.  

In some cases, the circuit itself may demand sequential operation as with data transfer and 

memory-based operations. Only in such cases sequential operation is ensured by the sequential 

constructs from Verilog HDL. 

Simulation and Synthesis 
 

 Testing the functionality of developed design (module) is called “simulation”. The design that 

is specified and entered as described earlier is simulated for functionality and fully 

debugged.  

 

 Translation of the debugged design into the corresponding hardware circuit is called 

“synthesis.” 

 The tools available for synthesis relate more easily with the gate level and data flow level 

modules. In contrast many of the behavioral level constructs are not directly synthesizable. 

The way out is to take the behavioral level modules and re-do each of them at lower levels 

(either in gate level or in Dataflow level).  

 The process is carried out successively with each of the behavioral level modules until 

practically the full design is available as a pack of modules at gate and data flow levels (more 

commonly called the “RTL level”). 

 

 

Programming Language Interface (PLI) 
 

PLI provides an active interface to a compiled Verilog module. The interface adds a new dimension 

to working with Verilog routines from a C platform.  

 

The key functions of the interface are as follows: 

 One can read data from a file and pass it to a Verilog module as input. Such data can be test 

vectors or other input data to the module. Similarly, variables in Verilog modules can be 

accessed and their values written to output devices.

 Delay values, logic values, etc., within a module can be accessed and altered.

 Blocks written in C language can be linked to Verilog modules.

 





MODULE 
 

Any Verilog HDL program begins with a keyword – called a “module”.  

A module is the name given to any system considering it as a black box with input and output 

terminals as shown in below figure.  

The terminals of the module are referred to as “ports”. 

 

 

The ports attached to a module can be of three types: 

 

 input ports: Through which one gets entry into the module; they signify the input signal 

terminals of the module.

 output ports: Through which one exits the module; these signify the output 
signal terminals of the module.

 

 inout ports: These represent ports through which one gets entry into the module 
or exits the module; These are terminals through which signals are input to the 
module sometimes; at some other times signals are output from the module 
through these.





Whether a module has any of the above ports and how many of each type are present depends on 
the functional nature of the module.  
 

 



The structure of modules and the mode of invoking them in a design are discussed here. 
 

 In Verilog HDL any program which forms a design description is a “module”. 
 

 Any program written to test a design description is also a “module”. The latter are often called 
as “stimulus modules” or “test benches”.  

 A test bench module used to do simulation has the form shown in Figure 2. Whenever a 
module is invoked for testing or for incorporation into a bigger design module, the name of 
the module (“test” here) is used to identify it for the purpose. 

 
 



LANGUAGE CONSTRUCTS AND CONVENTIONS IN VERILOG 
 

Introduction: 

The constructs and conventions implement any language. Verilog HDL has its own constructs and 
conventions [IEEE, Sutherland].  

Any source file in Verilog (as with any file in any other programming language) is made up of a 

number of ASCII characters. The characters are grouped into sets — referred to as “lexical tokens”.  

A lexical token in Verilog HDL can be a single character or a group of characters. Verilog has 7 types 

of lexical tokens- keywords, identifiers, white spaces, comments, numbers, strings and operators. 

Verilog HDL is a Case Sensitive Language. 
 

Verilog is a case-sensitive language like C. Thus sense, Sense, SENSE, sENse,… etc., are all different 

entities in Verilog HDL. 

 

*A module comprises a number of “lexical tokens” arranged according to some predefined 

order. The possible tokens are of seven categories: 

 Keywords

 Identifiers

 White spaces characters

 Comments

 Numbers

 Strings

 Operators

1. Keywords 
 

 The keywords define the language constructs.  

 A keyword signifies an activity to be carried out, initiated, or terminated.  

 A programmer cannot use a keyword for any purpose other than that it is intended for.  

 All keywords in Verilog are in small letters. 

Examples: 

 
module -- signifies the beginning of a module definition. 
endmodule --  signifies the end of a module definition. 
begin -- signifies the beginning of a block of statements. 
end -- signifies the end of a block of statements. 
if -- signifies a conditional activity to be checked. 
while -- signifies a conditional activity to be carried out. 



 

2. Identifiers 
 
Identifiers are used to define language constructs.  

• Identifiers refer objects to be referenced in the design.  

• Identifiers are made of alphabets (both cases), numbers, the underscore ‘_’ and the dollar sign ‘$’. 

• They start with an alphabetic character or underscore.  

• They cannot start with a number or with ‘$’ which is reserved for system tasks.  

• Identifiers are case sensitive i.e., identifiers differing in their case are distinct.  

• An identifier say count is different from COUNT, count and cOuNT. 

Example:  clock, enable, gate_1, . . . 

 

Example: 
 

name, _name, Name, name1, name_$, . . . -- all these are allowed as identifiers 
 

 name aa -- not allowed as an identifier because of the blank ( “name” and “aa” are interpreted 
as two different identifiers) 

 

 $name -- not allowed as an identifier because of the presence of “$” as the first character.  
 

 1_name -- not allowed as an identifier, since the numeral “1” is the first character 
 

 @name -- not allowed as an identifier because of the presence of the character “@”. 
  

 A+b --not allowed as an identifier because of the presence of the character “+”. 
 

3. White Space Characters 
 

 In any design description the white space characters are included to improve readability.  

 White space characters have significance only when they appear inside strings. 

 

Blank spaces (\b), 

Tabs (\t),  

Newlines (\n), are the white space characters in Verilog. 

Example:  

$monitor( “The value of a=%b, b=%b,  y=%b \n”, a,b,y); 



4. Comments 
 

Comments can be inserted in the code to improve readability and helps good documentation. 
There are two ways to write comments. 
  

 A one-line comment starts with "//". Verilog skips from that point to the end of line.  
 A multiple-line comment starts with "/*" and ends with "*/".  

 
Note: Multiple-line comments cannot be nested.  

 
Example1: 
module d_ff(Q, dp, clk);  //This is the design description of a D flip-flop.  

//Here Q is the output. 
     // dpis the input and clkis the clock. 
Example2: 
 
a = b && c; // This is a one-line comment 

/* This is a multiple 
   line comment */ 

/* This is /* an illegal */ comment */ 
 

5. Number Specification 
 

There are two types of number specification in Verilog:  
1. Sized numbers  2. Unsized numbers. 

 
 



1. Sized numbers 
 Sized numbers are represented as <size> '<base format> <number>. 

 

 <size> is written only in decimal and specifies the number of bits in the number.  
 Legal base formats are decimal ('d or 'D), hexadecimal ('h or 'H), binary ('b or 'B) and octal ('o 

or 'O).  
 
 The number is specified as consecutive digits from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f. 

 
 Only a subset of these digits is legal for a particular base. Uppercase letters are legal for 

number specification. 
Example: 

4'b1111 // This is a 4-bit binary number. 
12'habc // This is a 12-bit hexadecimal number. 
16'd255 // This is a 16-bit decimal number. 

 

2. Unsized numbers 
 

 Numbers that are specified without a <base format> specification are decimal numbers by 
default.  

 
 Numbers that are written without a <size> specification have a default number of bits that is 

simulator- and machine-specific (must be at least 32). 
Example: 

23456 // This is a 32-bit. 

'hc3 // This is a 32-bit . 

'o21 // This is a 32-bit decimal number by default hexadecimal number octal number. 

X or Z values: 
 

 Verilog has two symbols for unknown and high impedance values.  
 These values are very important for modeling real circuits. An unknown value is denoted by 

an x.  
 A high impedance value is denoted by z. 

Example: 

12'h13x  // This is a 12-bit hex number; 4 least significant bits are unknown. 

6'hx   // This is a 6-bit hex number. 

32'bz  // This is a 32-bit high impedance number. 
 



 An x or z sets four bits for a number in the hexadecimal base, three bits for a number in the 

octal base, and one bit for a number in the binary base.  

 If the most significant bit of a number is 0, x, or z, the number is automatically extended to 

fill the most significant bits, respectively, with 0, x, or z.  

 This makes it easy to assign x or z to whole vector. If the most significant digit is 1, then it is 

also zero extended. 

 

Negative numbers: 
 

 Negative numbers can be specified by putting a minus sign before the size for a constant 
number.  

 
 Size constants are always positive. It is illegal to have a minus sign between <base format> 

and <number>.  
 An optional signed specifier can be added for signed arithmetic. 

 
Example: 

 

-8'd3 // 8-bit negative number stored as 2's complement of 3. 

4'd-2 // Illegal specification. 

 
Underscore characters”_” and question marks”?”: 

 
 An underscore character "_" is allowed anywhere in a number except the first character.  

 
 Underscore characters are allowed only to improve readability of numbers and are ignored 

by Verilog. 
 

 A question mark "?" is the Verilog HDL alternative for z in the context of 

numbers.  

Exapmle: 

12'b1111_0000_1010 // Use of underline characters for readability 

4'b10?? // Equivalent of a 4'b10zz 
 

6. Strings 
 

 A string is a sequence of characters that are enclosed by double quotes.  

 The restriction on a string is that it must be contained on a single line, that is, without a 
carriage return.  

 It cannot be on multiple lines.  



Example: 

"Hello Verilog World" // is a string 

 "a / b" // is a string 

7. Operators 
 

Operators are of three types: unary, binary, and ternary.  

 Unary operators precede the operand.  

 Binary operators appear between two operands.  

 Ternary operators have two separate operators that separate three operands. 
 
Example: 

a = ~ b; // ~ is a unary operator. b is the operand 
a = b && c; // && is a binary operator. b and c are operands 
a = b ? c : d; // ?: is a ternary operator. b, c and d are operands 

 

Logic Values: 
 

Verilog supports four values and eight strengths to model the functionality of real hardware. The 
four value levels are listed in Table below. 

 

Value Level Condition in Hardware Circuits 

0 Logic zero, false condition 

1 Logic one, true condition 

X Unknown logic value 

Z High impedance, floating state 

 

Data Types: 

 
The data handled in Verilog fall into two categories: 
(i) Net data type 
(ii) Variable data type 

 
The two types differ in the way they are used as well as with regard to their respective hardware 
structures. Data type of each variable or signal has to be declared prior to its use. The same is valid 
within the concerned block or module. 

 

(i) Net Data Type 
A net signifies a connection from one circuit unit to another. Such a net carries the value of the 
signal it is connected to and transmits to the circuit blocks connected to it. If the driving end of a 
net is left floating, the net goes to the high impedance state. A net can be specified in different 
ways. 



wire: It represents a simple wire doing an interconnection. Only one output is connected to a wire 
and is driven by that. 

 
tri:  It represents a simple signal line as a wire. Unlike the wire, a tri can be driven by more than one 
signal outputs. 
Nets are one-bit values by default unless they are declared explicitly as vectors. The terms wire and 
net are often used interchangeably. 

 

(ii) Variable Data Type 
 

A variable is an abstraction for a storage device. It can be declared through the keyword “reg” and 
stores the value of a logic level: 0, 1, x, or z.  
A net or wire connected to a reg takes on the value stored in the reg and can be used as input to 
other circuit elements. But the output of a circuit cannot be connected to a reg. The value stored in 
a reg is changed through a fresh assignment in the program. 
Example: 
time, integer, real, and realtime are the other variable types of data. 
 

Scalars and Vectors: 
Entities representing single bits — whether the bit is stored, changed, or transferred — are called 
“scalars”.  
Similarly, a group of regs stores a value, which may be assigned, changed, and handled together. 
The collection here is treated as a “vector”. 
 
Figure below illustrates the difference between a scalar and a vector.  

 wr and rd are two scalar nets connecting two circuit blocks circuit1 and circuit2.  

 b is a 4-bit-wide vector net connecting the same two blocks.  

 b[0], b[1], b[2], and b[3] are the individual bits of vector b. They are “part vectors.” 
 
 

 



Examples: 

wire[3:0] a; /* a is a four bit vector of net type; the bits are designated as a[3], a[2], a[1] and 
a[0]. */ 

reg[2:0] b; /* b is a three bit vector of reg type; the bits are designated as b[2], b[1] and b[0]. */ 

reg[4:2] c; /* c is a three bit vector of reg type; the bits are designated as c[4], c[3] and c[2]. 
*/ 

wire[-2:2] d ; /* d is a 5 bit vector with individual bits designated as d[-2], d[-1], d[0], d[1] and d[2]. */ 
 

 Whenever a range is not specified for a net or a reg, the same is treated as a scalar – a single 
bit quantity. 

 In the range specification of a vector the most significant bit and the least significant bit can be 
assigned specific integer values.  

 These can also be expressions evaluating to integer constants – positive or negative. 

Normally vectors – nets or regs – are treated as unsigned quantities. They have to be specifically 
declared as “signed” if so desired. 

 

Examples: 
 

wire signed[4:0] num;       // num is a vector in the range -16 to +15. 
 

reg signed [3:0] num_1; // num_1 is a vector in the range -8 to +7. 



Unit-V 

Gate Level Modeling 
 

Introduction: 
 

Digital designers are normally familiar with all the common logic gates, their symbols, and their  

functionality. Flip-flops are built from the logic gates. All other functionally complex circuits can also 

be built using the basic gates.  

 

All the basic gates are available as “primitives” in Verilog HDL. Primitives are generalized modules 

that already exist in Verilog HDL. They can be instantiated directly in module descriptions. 

and Gate Primitive: 
 

The AND gate primitive in Verilog HDL is instantiated with the following 

and g1 (O, I1, I2, . . ., In); 

Here “and” is the keyword signifying an AND gate. “g1” is the name assigned to the specific 

instantiation. O is the gate output; I1, I2, etc., are the gate inputs.  

 The AND module has only one output. The first port in the argument list is the output port. 

 An AND gate instantiation can take any number of inputs. 

 A name need not be necessarily assigned to the AND gate instantiation. It is applicable for 

all the gate primitives available in Verilog HDL. 

Truth Table of AND Gate Primitive 
 

The truth table for a two-input AND gate is shown in Table below It can be directly extended to 

AND gate instantiations with multiple inputs. 

Truth table of AND gate primitive 
 

 
 Input 1 

0 1 X Z 

 

Input 2 

0 0 0 0 0 

1 0 1 X X 

X 0 X X X 

Z 0 X X X 



 If any one of the inputs to the AND gate instantiation is in the 0 state, its output is also in 
the 0 state. It is irrespective of whether the other inputs are at the 0, 1, X or Z  state. 

 

 The output is at 1 state if and only if every one of the inputs is at 1 state. 
 

 For all other cases the output is at the x state. 
 

 Note that the output is never at the high impedance (Z) state. This is true of all other gate 

primitives as well. 
 
 

Module Structure: 
 

In a general case a module can be more elaborate. A lot of flexibility is available in the definition of 
the body of the module. However, a few rules need to be followed: 

 

 The first statement of a module starts with the keyword module; it may be followed by the 
name of the module and the port list if any. 

 

 All the variables in the ports-list are to be identified as inputs, outputs, or inouts. The 
corresponding declarations have the form shown below: 
module <name identifier> (a1,a2,b1,b2,c1,c2); 

 input a1, a2; 
 output b1, b2; 
 inout c1, c2; 

 

The port-type declarations here follow the module declaration mentioned above. 
 

The ports and the other variables used within the body of the module are to be identified as 
nets or registers with specific types in each case.  

Examples: 

 
wire a1, a2, c;  
reg b1, b2; 

 

The type declaration must necessarily precede the first use of any variable or signal in the module. 

 The executable body of the module follows the declaration indicated above. 
 

 The last statement in any module definition is the keyword “endmodule”. 
 

 Comments can appear anywhere in the module definition. 



Other Gate Primitives: 
All basic gates are available as primitives in Verilog HDL. Details of  each gate instantiations are 
given in Table below. 
 

Table for Basic gate primitives in Verilog HDL 

Gate Primitive Mode of instantiation Output port(s) Input port(s) 

and and n1 (o, i1, i2, . . . i8); o i1, i2, . . 

or or n2 (o, i1, i2, . . . i8); o i1, i2, . . 

nand nand n3 (o, i1, i2, . . . i8); o i1, i2, . . 

nor nor n4 (o, i1, i2, . . . i8); o i1, i2, . . 

xor xor n5 (o, i1, i2, . . . i8); o i1, i2, . . 

xnor xnor n6 (o, i1, i2, . . . i8); o i1, i2, . . 

buf buf n7 (o1, o2, …. i); o1, o2, o3, . . i 

not not n8 (o1, o2, o3, . . . i); o1, o2, o3, . . i 

 

 Assign a name to the gate instantiation is an optional. It provides more clarity on circuit 
description. 

 

 In all the cases the output ports are declared first and the input ports are declared 
subsequently. 

 

 The buffer and the inverter have only one input, and any number of outputs. All other gates have 
one output, and any number of inputs. 

 

Example for a typical A-O-I gate circuit 
 

The commonly used A-O-I gate is shown in below Figure. The module and the test bench for the 

same are in Verilog HDL given below. The circuit has been realized here by instantiating the AND 

& NOR gate primitives. 

 The module named as “aoi_gate“ in the figure has input and output ports.  

 The module “aoi_tb” is a testbench module. It generates inputs to the aoi_gate module 

and gets its output. It has no input or output ports. 
 



/*module for the aoi-gate instantiating the gate primitives – above figure*/  

module aoi_gate (o,a1,a2,b1,b2); 

input a1,a2,b1,b2; // a1,a2,b1,b2 form the input ports of the module. 

output o; //o is the single output port of the module. 

wire o1,o2; //o1 and o2 are intermediate signals within the module. 

and g1(o1,a1,a2);   /*The AND gate primitive has two. In data flow this 

expression written as “assign o1=a1 && a2;” */ 

and g2(o2,b1,b2);   /* instantiations with assigned names g1 & g2. In data 

flow this expression written as “assign o2=b1 && b2;” */ 

nor g3(o,o1,o2); /*The nor gate has one instantiation with assigned name 

g3. In data flow this expression written as “assign o = !(o1 || o2);” */ 

endmodule 

//Test-bench for the above module as follows 

 module aoi_tb; 

reg a1,a2,b1,b2; /*specific values will be assigned to a1,a2,b1,and b2 and these connected 

to input ports of the gate instantiations. Hence these variables are declared as reg.*/ 

wire o; 

aoi_gate gg(o,a1,a2,b1,b2); 

initial  

begin  

a1 = 0; a2 = 0; b1 = 0; b2 = 0; 

#3 a1 = 1; 

#3 a2 = 1; 

#3 b1 = 1; 

#3 b2 = 0; 

#3 a1 = 1; 

#3 a2 = 0; 

#3 b1 = 0; 

#100 $stop; //the simulation ends after running for 100 time units. 

end 

initial  

$monitor($time , " o = %b , a1 = %b , a2 = %b , b1 = %b ,b2 = %b ",o,a1,a2,b1,b2);  

endmodule 
 



Tri-State Gates: 
 

Four types of tri-state buffers are available in Verilog as primitives. Their outputs can be turned 
ON or OFF by a control signal.  
 
The buffer is instantiated as 

 
bufif1 n1 (out, in, control); 

 

The symbol of the buffer is shown in Figure1. 

 out as the output variable. 

 in as the input variable. 
 control as the control signal variable. 

When control = 1, out = in. 
When control = 0,  out = tri-stated(Z). out is cut off from the input and tri-stated.  
 
The output, input and control signals should appear in the instantiation in the same order as 
mentioned. Details of tri-state primitives are shown in Table 1. 
 

 
 



Gate Delays 
 

Until now, we described circuits without any delays (i.e., zero delay). In real time circuits, the logic 

gates have delays associated with them. Gate delays allow the Verilog HDL user to specify delays 

through the logic circuits.  

There are three types of delays from the inputs to the output of a primitive gate as  

1. Rise Delay. 

2. Fall Delay. 

3. Turn-off Delay. 
 

1. Rise delay 

The rise delay is associated with a gate output transition to a 1 from another value (0 or x or z). 

 
 

2. Fall delay 

The fall delay is associated with a gate output transition to a 0 from another value  

(1 or x or z). 

 
 

3. Turn-off delay 

The turn-off delay is associated with a gate output transition to the high impedance value 

(Z) from another value (0 or 1 or X). 

NOTE: If the value changes to X, the minimum of the three delays is considered. 
 

Three types of delay specifications are allowed.  

 

 If only one delay is specified, this value is used for all transitions.  



 If two delays are specified, they refer to the rise and fall delay values. The turn-off 

delay is the minimum of the two delays.  

 If all three delays are specified, they refer to rise, fall, and turn-off delay values.  

 If no delays are specified, the default delay value is zero. 

Example: Types of gate Delay Specifications 
 

 and #(delay_time) g1(out, i1, i2);  //Delay of delay_time for all transitions. 

and #(5) a1(out, i1, i2);    //Delay of 5 for all transitions. 

 

 and #(rise_val, fall_val) g2(out, i1, i2); // Rise and Fall Delay Specification. 

and #(4,6) a2(out, i1, i2);    // Rise= 4, Fall = 6, then Turn-off Delay is 4. 

 

 bufif0 #(rise_val, fall_val, turnoff_val) g3 (out, in, control); /*Rise, Fall, and Turn-off 

Delay Specification*/ 

bufif0 #(3,4,5) b1 (out, in, control);  // Rise = 3, Fall = 4, Turn-off = 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Modeling at DATA FLOW Level 

Introduction 

Gate-level modeling is very easy to a designer with a basic knowledge of digital logic 

design.  

For small circuits, the gate-level modeling approach works very well, because the number 

of gates is limited and the designer can instantiate and connect each gate very easily. 

However, in complex designs a large number of gates are required. Thus, designers can 

design more effectively if they implement the function at a higher level of abstraction than 

gate level.  

 

Dataflow modeling provides an efficient way to implement such complex designs. Verilog 

HDL allows a module to be designed in terms of the data flow between registers.  

With gate densities on ICs increasing rapidly, dataflow modeling has assumed great 

importance. This approach allows the designer to concentrate on optimizing the circuit in 
terms of data flow. For maximum flexibility in the design process, designers typically use a 

Verilog HDL description style that combines the concepts of gate-level, data flow, and 

behavioral design.  

In the digital design community, the term RTL (Register Transfer Level) design is commonly 

used for a combination of dataflow modeling and behavioral modeling. 
 

Continuous Assignment structure 

A continuous assignment is the most basic statement in dataflow modeling, used to drive a value 

onto a net. 

This assignment replaces gates in the description of the circuit and describes the circuit at a higher 

level of abstraction. The assignment statement starts with the keyword “assign”.  

The assignment syntax starts with the keyword assign followed by the signal name which can be either 

by single signal or cocatenation of different signal nets. 

 Syntax: 

assign <net expression> = [#delay] <expression of different signals or constant values>; 

The delay value is an optional and can be used to specify delay on the assign statement. 

 

Continuous assignments have the following rules: 

1. The lefthand side of an assignment must always be a scalar or vector net or a concatenation of 

scalar and vector nets. It cannot be a scalar or vector register. 

2. Continuous assignments are always active. The assignment expression is evaluated as soon 

as one of the right-hand-side operands changes and the value is assigned to the left-hand-side 

net. 



3. The operands on the right-hand side can be registers or nets or functions. 

4. Delay values can be specified for assignments in terms of time units. This feature is similar 

to specifying delays for gates. 

Examples of Continuous Assignment 

Continuous assign: 

assign out = i1 & i2; //out is a net. i1 and i2 are nets.  

Continuous assign for vector nets: 

assign addr[15:0] = addr1_bits[15:0] ^ addr2_bits[15:0]; 

//addr is a 16-bit vector net addr1 and addr2 are 16-bit vector registers. 

Concatenation: 

 Left-hand side is a concatenation of a scalar net and a vector net. 

assign {c_out, sum[3:0]} = a[3:0] + b[3:0] + c_in; 
 

Implicit Continuous Assignment 

Instead of declaring a net and then writing a continuous assignment on the net, Verilog 

provides a shortcut by which a continuous assignment can be placed on a net when it is 

declared. There can be only one implicit declaration assignment per net because a net is 

declared only once. 

In the example below, an implicit continuous assignment is contrasted with a regular 

continuous assignment. 

 

//Regular continuous assignment  

wire out; 

assign out = in1 & in2; 
 

//Same effect is achieved by an implicit continuous assignment  

wire out = in1 & in2; 

Implicit Net Declaration 

If a signal name is used to the left of the continuous assignment, an implicit net 

declaration will be inferred for that signal name. If the net is connected to a module port, 

the width of the inferred net is equal to the width of the module port. 



wire i1, i2; 
assign out = i1 & i2;  /*Note that out was not declared as a wire but an implicit wire 

declaration for out is done by the simulator*/ 

Delays 

Delay values control the time between the change in a right-hand-side operand and when 

the new value is assigned to the left-hand side. Three ways of specifying delays in 

continuous assignment statements are regular assignment delay, implicit continuous 

assignment delay, and net declaration delay. 

Regular Assignment Delay: 

The first method is to assign a delay value in a continuous assignment statement. The 

delay value is specified after the keyword assign. Any change in values of in1 or in2 will 

result in a delay of 10 time units before recomputation of the expression in1 & in2, and 

the result will be assigned to out. If in1 or in2 changes value again before 10 time units 

when the result propagates to out, the values of in1 and in2 at the time of recomputation 

are considered. This property is called inertial delay. An input pulse that is shorter than 

the delay of the assignment statement does not propagate to the output. 

 
assign #10 out = in1 & in2;  // Delay in a continuous assign 

 

 
 

Figure: Delay instantiation in data flow modeling 
 

The above waveform is generated by simulating the above assign statement. It 

shows the delay on signal out.  

Note the following change: 

 
When signals in1 and in2 go high at time 20, out goes to a high 10 time units later (time 

= 30). 

When in1 goes low at 60, out changes to low at 70. 



 

However, in1 changes to high at 80, but it goes down to low before 10 time units have elapsed. 

Hence, at the time of recomputation, 10 units after time 80, in1 is 0. Thus, out gets the value 0.  

 
Implicit Continuous Assignment Delay: 

An equivalent method is to use an implicit continuous assignment to specify both a delay 

and an assignment on the net. 

 

//implicit continuous assignment delay  

wire #10 out = in1 & in2;  

//The above statement has the same effect as the following.  

wire out; 

assign #10 out = in1 & in2; 

Net Declaration Delay: 

A delay can be specified on a net when it is declared without putting a continuous 

assignment on the net. If a delay is specified on a net out, then any value change applied 

to the net out is delayed accordingly. Net declaration delays can also be used in gate-level 

modeling. 

 

//Net Delays  

wire # 10 out; 

assign out = in1 & in2; 

//The above statement has the same effect as the following.  

wire out; 

assign #10 out = in1 & in2; 

 

Expressions, Operands and Operators:  

Dataflow modeling describes the design in terms of expressions instead of primitive gates. 

Expressions, operators, and operands form the basis of dataflow modeling. 

Expressions: 

Expressions are constructs that combine operators and operands to produce a result. 

Eg: Expressions combines operands and operators as follows  

a ^ b 

addr1[20:17] + addr2[20:17]  

in1 | in2 
 



Operands: 

Some constructs will take only certain types of operands. Operands can be constants, integers, 

real numbers, nets, registers, times, bit-select (one bit of vector net or a vector register), part-

select (selected bits of the vector net or register vector), and memories. 

 

integer count, final_count; 

final_count = count + 1; //count is an integer operand 

 

real a, b, c; 

c = a - b; //a and b are real operands 

 

reg [15:0] reg1, reg2;  

reg [3:0] reg_out; 

reg_out = reg1[3:0] ^ reg2[3:0]; //reg1[3:0] and reg2[3:0] are part-select register operands. 

 

Operators: 

Operators act on the operands to produce desired results. Verilog provides various types of 

operators. 

 

d1 && d2   // && is an operator on operands d1 and d2  
!a   // ! is an operator on operand a 
B >> 1   // >> is an operator on operands B and 1 

 
Operator Types: 

Verilog provides many different operator types. Operators can be arithmetic, logical, 

relational, equality, bitwise, reduction, shift, concatenation, conditional. Some of these 

operators are similar to the operators used in the C programming language. Each operator 

type is denoted by a symbol. The following table shows the complete listing of operator 

symbols used in Verilog HDL. 

Table: Operator Types and Symbols 
 

Operator Type Performed  Operator Symbol Operation Number of Operands 

 
Arithmetic 

* multiply two 

/ divide two 

+ add two 

- subtract two 

% modulus two 

** power (exponent) two 



Logical 

! logical negation one 

&& logical and two 

|| logical or two 

Relational 

> greater than two 

< less than two 

>= greater than or equal two 

<= less than or equal two 

Equality 

== equality two 

!= inequality two 

=== case equality two 

!== case inequality two 

Bitwise 

~ bitwise negation one 

& bitwise and two 

| bitwise or two 

^ bitwise xor two 

^~ or ~^ bitwise xnor two 

Reduction 

& reduction and one 

~& reduction nand one 

| reduction or one 

~| reduction nor one 

^ reduction xor one 

^~ or ~^ reduction xnor one 

Shift 

>> Right shift Two 

<< Left shift Two 

>>> Arithmetic right shift Two 

<<< Arithmetic left shift Two 

Concatenation { } Concatenation Any number 

Replication { { } } Replication Any number 

Conditional ?: Conditional Three 



Let us now discuss each operator type in detail. 
 

Arithmetic Operators: 

There are two types of arithmetic operators: Binary and Unary. 

1.Binary operators 

Binary arithmetic operators are multiply (*), divide (/), add (+), subtract (-), power (**), 

and modulus (%). Binary operators take two operands. 

 
A = 4'b0011; B = 4'b0100; // A and B are register vectors  

D = 6; E = 4; F=2; // D, E, F are integers 

A * B   // Multiply A and B. Evaluates to 4'b1100 

D / E   // Divide D by E. Evaluates to 1. Truncates any fractional part. 

A + B   // Add A and B. Evaluates to 4'b0111 

B - A   // Subtract A from B. Evaluates to 4'b0001  

E ** F  //E to the power F, yields 16 

If any operand bit has a value x, then the result of the entire expression is x 

(unknown). 

 
in1 = 4'b101x; in2 = 4'b1010; 

sum = in1 + in2;  // sum will be evaluated to the value 4'bx 

Modulus operators ( % ) produce the remainder from the division of two numbers. 

They operate similarly to the modulus operator in the C programming language. 

 

13 % 3 // Evaluates to 1  

16 % 4 // Evaluates to 0  

-7 % 2 // Evaluates to -1, takes sign of the first operand 

7 % -2 // Evaluates to +1, takes sign of the first operand 

 
 

2.Unary operators 

The operators + and - can also work as unary operators. They are used to specify the 

positive or negative sign of the operand.  

Unary + or - operators have higher precedence than the binary + or - operators. 

-4 // Negative 4 
+5 // Positive 5 



 Negative numbers are represented as 2's complement internally in Verilog HDL.  

 It is advisable to use negative numbers only of the type integer or real in 

expressions.  

 Designers should avoid negative numbers of the type <sss> '<base> <nnn> in 

expressions because they are converted to unsigned 2's complement numbers and 

hence yield unexpected results. 

Advisable to use integer or real numbers -10 / 5 Evaluates to -2. 

Logical Operators: 

Logical operators are logical and (&&), logical or (||) and logical not (!).  

Operators && and || are binary operators.  

Operator ! is a unary operator.  

Logical operators follow these conditions: 

 Logical operators always evaluate to a single bit value as 0 (false), 1 (true), or x 

(ambiguous). 

 If an operand is not equal to zero, it is equivalent to a logical 1 (true condition). If it is 

equal to zero, it is equivalent to a logical 0 (false condition). If any operand bit is x or z, it 

is equivalent to x (ambiguous condition) and is normally treated by simulators as a false 

condition. 

 Logical operators take variables or expressions as operands. Use of parentheses to 

group logical operations is highly recommended to improve readability. Also, the user 

does not have to remember the precedence of operators. 

 
Logical operations A = 3; B = 0; 

A && B  // Evaluates to 0. Equivalent to (logical-1 && logical-0)  

A || B  // Evaluates to 1. Equivalent to (logical-1 || logical-0)  

!A  // Evaluates to 0. Equivalent to not(logical-1) 

!B  // Evaluates to 1. Equivalent to not(logical-0) 

 
Unknowns: 
A = 2'b0x; B = 2'b10; 
A && B   // Evaluates to x. Equivalent to (x && logical 1) 

Expressions: 
(a == 2) && (b == 3)  // Evaluates to 1 if both a == 2 and b == 3 are true. 

// Evaluates to 0 if either is false. 



 
Relational Operators: 

Relational operators are greater-than (>), less-than (<), greater-than-or-equal-to (>=), and 

less-than-or-equal-to (<=).  

 If relational operators are used in an expression, the expression returns a logical value 

of 1 if the expression is true, and 0 if the expression is false.  

 If there are any unknown or z bits in the operands, the expression takes a value x. 

Eg: 

A = 4, B = 3 

X = 4'b1010, Y = 4'b1101, Z = 4'b1xxx 

A <= B  // Evaluates to a logical 0  

A > B  // Evaluates to a logical 1  

Y >= X  // Evaluates to a logical 1  

Y < Z  // Evaluates to an x 

 

Equality Operators: 

Equality operators are logical equality (==), logical inequality (!=), case equality (===), and 

case inequality (!==) .  

 When used in an expression, equality operators return logical value 1 if true, 0 if false. 

These operators compare the two operands bit by bit, with zero filling if the 

operands are of unequal length. Table below lists the operators. 

 It is important to note the difference between the logical equality operators (==, !=) and 

case equality operators (===, !==). The logical equality operators (==, !=) will yield an x 

if either operand has x or z in its bits.  

 However, the case equality operators ( ===, !== ) compare both operands bit by bit and 

compare all bits, including x and z. 

 The result is 1 if the operands match exactly, including x and z bits. 

 The result is 0 if the operands do not match exactly.  

 Case equality operators never result in an x. 



Table: Equality Operators 
 

Expression Description Possible Logical Value 

a == b a equal to b, result unknown if x or z in a or b 0, 1, x 

a != b a not equal to b, result unknown if x or z in a or b 0, 1, x 

a === b a equal to b, including x and z 0, 1 

a !== b a not equal to b, including x and z 0, 1 
 

A = 4, B = 3 

X = 4'b1010, Y = 4'b1101, Z = 4'b1xxz, M = 4'b1xxz, N = 4'b1xxx A == B // Results in logical 0 

X != Y  // Results in logical 

1. 

X == Z  // Results in x. 

Z === M  // Results in logical 1 (all bits match, including x and z). 

Z === N  // Results in logical 0 (least significant bit does not match) . 

M !== N  // Results in logical 1. 

Bitwise Operators: 

Bitwise operators are negation (~), and (&), or (|), xor (^), xnor (^~, ~^). Bitwise operators 

perform a bit-by-bit operation on two operands. They take each bit in one operand and 

perform the operation with the corresponding bit in the other operand. 

Logic tables for the bit-by-bit computation are shown in below Table.  

A z is treated as an x in a bitwise operation. The exception is the unary negation operator 

(~), which takes only one operand and operates on the bits of the single operand. 

Table: Truth Tables for Bitwise Operators 
 
 



Examples of bitwise operators are shown below. 

 
X = 4'b1010, Y = 4'b1101 , Z = 4'b10x1 

~X  // Negation Result is 4'b0101 

X & Y  // Bitwise and Result is 4'b1000 

 X | Y  // Bitwise or Result is 4'b1111 

X ^ Y    // Bitwise xor. Result is 4'b0111  

X ^~ Y  // Bitwise xnor. Result is 4'b1000 

X & Z  // Result is 4'b10x0 

It is important to distinguish bitwise operators ~, &, and | from logical operators !, &&, 

||. Logical operators always yield a logical value 0, 1, x, whereas bitwise operators yield a 

bit-by-bit value.  

X = 4'b1010, Y = 4'b0000 

X | Y  // bitwise operation Result is 4'b1010 

X || Y  // logical operation Equivalent to 1 || 0 Result is 1. 

 
Reduction Operators: 

Reduction operators are and (&), nand (~&), or (|), nor (~|), xor (^), and xnor (~^, ^~).  

 Reduction operators take only one operand. Reduction operators perform a bitwise 

operation on a single vector operand and yield a 1-bit result.  

 The difference is that bitwise operations are on bits from two different operands, 
whereas reduction operations are on the bits of the same operand. 

 Reduction operators work bit by bit from right to left.  

 
X = 4'b1010 

 
&X  //Equivalent to 1 & 0 & 1 & 0. Results in 1'b0 

|X  //Equivalent to 1 | 0 | 1 | 0. Results in 1'b1 

^X  //Equivalent to 1 ^ 0 ^ 1 ^ 0. Results in 1'b0 

 // A reduction xor or xnor can be used for even or odd parity generation of a vector. 

The use of a similar set of symbols for logical (!, &&, ||), bitwise (~, &, |, ^), and reduction 

operators (&, |, ^) is somewhat confusing initially.  

The difference lies in the number of operands each operator takes and also the value of 

results computed. 



Shift Operators: 

Shift operators are right shift ( >>), left shift (<<), arithmetic right shift (>>>), and 

arithmetic left shift (<<<).  

 Regular shift operators shift a vector operand to the right or the left by a specified 
number of bits. The operands are the vector and the number of bits to shift.  

 When the bits are shifted, the vacant bit positions are filled with zeros. Shift 

operations do not wrap around.  

 Arithmetic shift operators use the context of the expression to determine the value 

with which to fill the vacated bits. 

 
// X = 4'b1100 

Y = X >> 1;   //Y is 4'b0110. Shift right by one bit. 0 filled in MSB position.  

Y = X << 1;  //Y is 4'b1000. Shift left by one bit. 0 filled in LSB position. 

Y = X << 2;  //Y is 4'b0000. Shift left two bits. 

 

integer a, b, c;  //Signed data types a = 0; 

b = -10;   // 00111...10110 binary 

c = a + (b >>> 3);  //Results in -2 decimal, due to arithmetic shift 

Shift operators are useful because they allow the designer to model shift operations, 

shift-and-add algorithms for multiplication, and other useful operations. 

 
Concatenation Operator: 
 

The concatenation operator ( { , } ) provides a mechanism to append multiple operands. 

The operands must be sized.  

 Unsized operands are not allowed because the size of each operand must be known 

for computation of the size of the result.  

 Concatenations are expressed as operands within braces, with commas separating 

the operands.  

 Operands can be scalar nets or registers, vector nets or registers, bit- select, part-

select, or sized constants. 



A =1'b1, B= 2'b00, C = 2'b10, D =3'b110 

Y = {B, C}    // Result Y is 4'b0010 

Y = {A, B , C, D , 3'b001}  // Result Y is 11'b10010110001 

Y = {A, B[0], C[1]}  // Result Y is 3'b101 

 

Replication Operator: 

Repetitive concatenation of the same number can be expressed by using a replication 

constant. A replication constant specifies how many times to replicate the number inside the 

brackets ( { } ). 

reg A; 

reg [1:0] B, C; 

reg [2:0] D; 

A = 1'b1; B = 2'b00; C = 2'b10; D = 3'b110; 

 

Y = { 4{A} }   // Result Y is 4'b1111 

Y = { 4{A} , 2{B} }   // Result Y is 8'b11110000 

Y = { 4{A} , 2{B} , C }  // Result Y is 8'b1111000010 

 

Conditional Operator: 

The conditional operator(?:) takes three operands.  

Syntax: condition_expr ? true_expr : false_expr ; 

The condition expression (condition_expr) is first evaluated. If the result is true (logical 1), 

then the true_expr is evaluated. If the result is false (logical 0), then the false_expr is 

evaluated. If the result is x (ambiguous), then both true_expr and false_ expr are evaluated 

and their results are compared, bit by bit, to return for each bit position an x if the bits are 

different and the value of the bits if they are the same. 

The action of a conditional operator is similar to a multiplexer. Alternately, it can be 

compared to the if-else expression. 



 
 

 
 
 
 

Conditional operators are frequently used in dataflow modeling to model 

conditional assignments. The conditional expression acts as a switching control. 

//model functionality of a tristate buffer 

assign addr_bus = drive_enable ? addr_out : 36'bz; 
 
 

//model functionality of a 2-to-1 mux 

assign out = control ? in1 : in0; 

Conditional operations can be nested. Each true_expr or false_expr can itself be a 

conditional operation.  

In the example that follows, convince yourself that (A==3) and control are the two 

select signals of 4-to-1 multiplexer with n, m, y, x as the inputs and out as the output 

signal. 

 
assign out = (A == 3) ? ( control ? x : y ): ( control ? m : n) ; 



Behavioral Modeling 
Introduction: 
 

Behavioral modeling is the highest level of abstraction in the Verilog HDL.  

The abstraction in this modeling is as simple as writing the logic in C language. The designer need is the 

algorithm of the design, which is the basic information for any design.  

The difference between gate level (structural), data flow and behavioural modelling styles is based on 

the type of concurrent statements used: 

 A gate level (structural) design uses only component (gate primitives) instantiation 

statements. 

 A dataflow level design uses only concurrent signal assignment statements.  

 A behavioral level design uses only process statements under procedural constructs (Eg: 

initial and always blocks). 

 

The “initial” Construct: 

The initial block is executed only once in the simulation, at time 0. If there is more than one initial 

block, then all the initial blocks are executed concurrently. The initial construct is used as follows: 

Eg1: 

initial  

begin  

reset=1'b0;  

clk=1'b1;  

end 

Eg2:  

initial 

clk = 1'b1; 

 

In Eg1 initial block, there are more than one statements hence they are written between begin and 

end.  

If there is only one statement (as mentioned in Eg2) then there is no need to put begin and  end. 



 

The “always” construct: 

The always block starts at time 0, and keeps on executing all the simulation times. It works like a 

infinite loop. It is generally used to model a functionality that is continuously repeated. 

Eg3: 

always 

 #5 clk = ~clk; 

 initial 

clk = 1'b0; 

The above code generates a clock signal clk, with a time period of 10 units. The initial blocks initiates 

the clk value to 0 at time 0. Then after every 5 units of time it toggled, hence we get a time period of 

10 units. This is the way in general used to generate a clock signal for use in test benches. 

 

Eg4: 

always@(posedge clk, negedge reset) begin 

a = b + c; 

d = 1'b1; 

end 

In the above example, the always block will be executed whenever there is a positive edge in the clk 

signal, or there is negative edge in the reset signal. This type of always is generally used in implement a 

Finite State machine(FSM), which has a reset signal. 

 

Eg5: 

always @(b,c,d)  

begin 

a = ( b + c )*d;  

e = b | c; 

end 

 



In the above example, whenever there is a change in b, c, or d the always block will be executed. Here 

the list b, c, and d is called the sensitivity list. 

 

Note: In the Verilog 2000, we can replace always @(b,c,d) with always @(*), it is equivalent to include 

all input signals, used in the always block. This is very useful when always blocks are used for 

implementing the combination logic. 

 

OPERATIONS AND ASSIGNMENTS: 

 

The design description at the behavioral level is done through a sequence of assignments. These are 

called ‘procedural assignments’ – in contrast to the continuous assignments at the data flow level. 

Though it appears similar to the assignments at the data flow level discussed in the last chapter, the 

two are different.  

The procedure assignment is characterized by the following: 

 

 The assignment is done through the “=” symbol (or the “<=” symbol) as was the case with the 

continuous assignment earlier. 

 An operation is carried out and the result assigned through the “=” operator to an operand 

specified on the left side of the “=” symbol. 

Example: N = ~N; 

 Here the content of reg N is complemented and assigned to the reg N itself.  

 The operation on the right can involve operands and operators. The operands can be of 

different types.  logical variables, numbers( real or integer) and so on. 

 

//Verilog code: 

module ctr_wt(a,clk,N);  

input clk; 

input[3:0]N; 

output[3:0]a; 



reg[3:0]a; 

initial  

a=4'b1111;  

always 

begin @(negedge clk)  

a=(a==N)?4'b0000:(a+1'b1); 

end  

endmodule  

//Test Bench 

module tst_ctr_wt;  

reg clk;  

reg[3:0]N; 

wire[3:0]a; 

ctr_wt c1(a,clk,N);  

initial 

begin 

clk=0; N=4'b1111; 

end  

always 

#2 clk=~clk; 

initial #35 $stop; 

initial $monitor($time,"clk=%h, N=%b, a=%b", clk, N, a,);  

endmodule 

 

Conditional (if-else) Statement: 

The condition (if-else) statement is used to make a decision whether a statement is executed or not. 

The keywords if and else are used to make conditional statement. The conditional statement can 

appear in the following forms. 

 



if ( condition_1 ) statement_1; 

-------------------------------- 

if ( condition_2 ) statement_2; 

else 

statement_3; 

------------------------------------ 

if ( condition_3 ) statement_4; 

else if ( condition_4 ) statement_5; 

else 

statement_6; 

------------------------------------- 

if ( condition_5 )  

begin 

statement_7;  

statement_8; 

end  

else  

begin 

statement_9; 

statement_10;  

end 

Conditional (if-else) statement usage is similar to that if-else statement of C programming language, 

except that parenthesis are replaced by begin and end. 

 

Case Statement: 

The case statement is a multi-way decision statement that tests whether an expression matches one of 

the expressions and branches accordingly. Keywords case and endcase are used to make a case 

statement. The case statement syntax is as follows. 

 



case (expression)  

case_item_1: statement_1;  

case_item_2: statement_2;  

case_item_3: statement_3; 

... 

... 

default: default_statement;  

endcase 

If there are multiple statements under a single match, then they are grouped using begin, and end 

keywords. The default item is optional. 

 

Case statement with don't cares: casez and casex: 

casez treats high-impedance values (z) as don't cares. casex treats both high-impedance (z) and 

unknown (x) values as don't cares. Don't-care values (z values for casez, z and x values for casex) in any 

bit of either the case expression or the case items shall be treated as don't-care conditions during the 

comparison, and that bit position shall not be considered. The don't cares are represented using the ? 

mark. 



For Loop: 

The For loop is defined using the keyword for. The execution of for loop block is controlled by a three 

step process, as follows: 

 Executes an assignment, normally used to initialize a variable that controls the number of times 

the for block is executed. 

 Evaluates an expression, if the result is false or z or x, the for-loop shall terminate, and if it is 

true, the for-loop shall execute its block. 

 Executes an assignment normally used to modify the value of the loop-control variable and 

then repeats with second step. 

Note that the first step is executed only once. 

initial  

begin 

a = 20; 

for (i = 0; i < a; i = i + 1, a = a - 1) 

end 

//The above example produces the same result as the example used to illustrate the functionality of 

the while loop. 

--------------------------------------------------- 

Examples: 

//Implementation of a multiplexer 4X1. 

module mux4_1 (out, in0, in1, in2, in3, s0, s1);  

output out; 

// out is declared as reg 

reg out; 

// out is declared as reg, because we will do a procedural assignment to it.  

input in0, in1, in2, in3, s0, s1; 

// always @(*) is equivalent to always @( in0, in1, in2, in3, s0, s1 ) 

always @(*) begin 

case ({s1,s0})  



2'b00: out = in0;  

2'b01: out = in1;  

2'b10: out = in2;  

2'b11: out = in3; 

default: out = 1'bx;  

endcase 

end  

endmodule 

-------------------------------------------------------------------------- 

//Implementation of a full adder. 

module full_adder (sum, c_out, in0, in1, c_in);  

output sum, c_out; 

reg sum, c_out; 

input in0, in1, c_in; 

always @( in0, in1, c_in) 

{c_out, sum} = in0 + in1 + c_in;  

endmodule 

---------------------------------------------------------------------------- 

//Implementation of a 8-bit upcounter. It is a sequential circuit. 

module upcounter (count, reset, clk ); 

output [7:0] count; 

reg [7:0] count;  

input reset, clk; 

// consider reset as active low signal 

always @( posedge clk, negedge reset)  

begin 

if(reset == 1'b 0)  

count <= 8'b 00000000; 

else 



count <= count + 8'b 00000001;  

end 

endmodule 

---------------------------------------- 

Implementation of a 8-bit upcounter is a very good example, which explains the advantage of 

behavioral modeling. Just imagine how difficult it will be implementing a 8-bit upcounter using gate- 

level modeling. 

In the above example the incrementation occurs on every positive edge of the clock. When count 

becomes 8'b11111111, the next increment will make it 8'b00000000. 

 

 



Verilog code for SR flip-flop – All Modeling styles 

 Describe the SR-flip flop using the three levels of abstraction – Gate leve, 

Dataflow and Behavioral Modeling. 

 Generate the RTL schematic for the SR flip flop. 

 Write the testbench. 

 Generate simulated waveforms. 

 

1. What is an SR flip flop? 

Flip Flops are the basic building blocks of sequential circuits. They are memory elements 

made by connecting logic gates. They can shift between two states (0 and 1) and hence, 

formally called bi-stable multivibrator. 

Did you know calculators and computers use flip flops to store data? 

Each flip flop can store one bit of data. Thus, a combination of flip flops makes it possible to 

store a large amount of data. 

An SR Flip Flop is short for Set-Reset Flip Flop. It has two inputs S(Set) and R(Reset) and two 

outputs Q(normal output) and Q'(inverted output). 

 

 

 



As we proceed, we will see how to write Verilog code for SR Flip Flop using different levels of 

abstraction. 

2.Gate Level Modeling 

With the assistance of a logic diagram, we will be able to know the essential logic gates 

needed to build a circuit. Verilog provides us with gate primitives, which help us create a 

circuit by connecting basic logic gates. Gate level Modeling enables us to describe thecircuit 

using these gate primitives. 

Given below is the logic diagram of an SR Flip Flop. 

 

From the above circuit, it is clear we need to interconnect four NAND gates in a specific 

fashion to obtain an SR flip flop. Let’s see how we can do that using the gate-level modeling 

style. 

2.1 Gate level Modeling of SR flip flop using Verilog HDL 

module srff_gate(q, qbar, s, r, clk); 

input s,r,clk;  

output q, qbar; 

wire nand1_out;  // output of nand1  

wire nand2_out;  // output of nand2  

nand (nand1_out,clk,s);  

nand (nand2_out,clk,r);  

nand (q,nand1_out,qbar); 

nand (qbar,nand2_out,q); 

endmodule 



3.Dataflow Modeling 

Gate level Modeling works for circuits having less number of logic gates. But, when the 

number of logic gates increases, the circuit complexity increases. Hence, it becomes 

challenging to instantiate a large number of gates and interconnections. 

Instead of knowing the logic circuit, we can describe the circuit using its logic expression. For 

that, we use a higher level of abstraction, which is Dataflow Modeling. This style describes 

how data flows from input to output using logic equations. 

Before moving on to the coding part, let’s see the characteristic equation of the SR flip flop: 

Q(next) = S +R’Q(previous) 

Let’s see how we code in this equation using dataflow Modeling. 

 

3.1 Dataflow Modeling of SR Flip Flop: 

module srff_dataflow(q,qbar,s,r,clk); 

input s,r,clk; 

output q, qbar; 

assign q = clk? (s + ((~r) & q)) : q; //using conditional operator 

assign qbar = ~q; 

endmodule 

 

But…there’s a problem. 

Flip flops are edge-triggered circuits. When we use a conditional operator, the statement is 

not executed at the clock edges(HIGH to LOW or LOW to HIGH) but the clock level(HIGH and 

LOW). Hence, the dataflow model of SR flip flop will work only as a latch. And not as an 

authentic flip-flop that triggers on clock edges. 

Therefore, we prefer the highest level of abstraction (Behavioral Modeling) for describing 

sequential circuits. 

4.Behavioral Modeling 

Behavioral Modeling is the highest level of abstraction in Verilog HDL. We can describe the 

circuit by just knowing how it works. 

Moreover, there’s additional good news! We do not need to know the logic circuit or logic 

equation. We just need a simple truth table. 



We need to know how SR flip flop behaves. Hence let’s go through the truth table. 

 

Using the described behaviour, we can now start coding. 

4.1 Behavioral Modeling of SR Flip Flip 

module srff_behave(q,qbar,s,r,clk); 

input s,r,clk; 

output reg q, qbar; 

always@(posedgeclk) 

begin 

if(s == 1) 

begin 

q = 1; 

qbar = 0; 

end 

else if(r == 1) 

begin 

q = 0; 

qbar =1; 

end 

else if(s == 0 & r == 0)  

begin  

q <= q; 

qbar<= qbar 

end 

end 

endmodule 



5.Testbench 

A testbench is an HDL module that is used to test another module, called the device under 

test (DUT). The test bench contains statements to apply inputs to the DUT and, ideally, to 

check that the correct outputs are produced. The input and desired output patterns are 

called test vectors. 

Ler’s see how we can write the testbench for SR flip flop. 

 

//test bench for srff_behave flip flop 

//1. Declare module and ports 

module srff_test; 

reg S,R, CLK; 

wire Q, QBAR; 

//2. Instantiate the module we want to test. We have instantiated the srff_behavior. 

srff_behavie DUT(.q(Q), .qbar(QBAR), .s(S), .r(R), .clk(CLK)); // instantiation by port name. 

//3. apply test vectors 

initial clk=0; 

always@(clk) #5 clk = ~clk;   

initial  

begin  

 S= 1; R= 0; 

 #10 S= 0; R= 1;  

 #10 S= 0; R= 0;  

 #10 S= 1; R= 1; 

 #20 $finish; 

end 

//4. Monitor testbench ports 

initial $monitor($time,"CLK = %b, S = %b, R = %b, Q = %b, QBAR = %b", CLK, S, R, Q, QBAR); 

endmodule 

 

 

 



6.RTL Schematic: 

Here’s how the RTL schematic will look if we peek into the elaborate design of the 

behavioral model of SR flip flop. 

 

7.Simulated Waveform: 

We can verify the functional correctness of described SR flip-flop by simulation. The 

simulated waveform of SR flip flop is given below: 

 

 

 

 

 

 

 

 

 

 

 



Verilog code for JK flip-flop – All modeling styles 

 

 

What is a JK flip flop? 

 Flip-flops are fundamental building blocks of sequential circuits. A flip flop can store 

one bit of data. Hence, it is known as a memory cell. Since they work on the 

application of a clock signal, they come under the category of synchronous circuits. 

 The J-K flip-flop is the most versatile of the basic flip flops.  

 The JK flip flop is a gated SR flip-flop with the addition of a clock input circuitry that 

prevents the illegal or invalid output condition that can occur when both inputs S and 

R are equal to logic 1.  

 Due to this additional clocked input, a JK flip-flop has four possible input 

combinations, “logic 1”, “logic 0”, “no change” and “toggle”. 

 

As we proceed, we will see how to write Verilog code for SR Flip Flop using different levels of 

abstraction. 

https://technobyte.org/flip-flops-latches-designing-truth-tables/


2.Gate-Level Modeling 

With the help of a logic diagram, we will be able to know the essential logic gates needed to 

build a circuit. Verilog provides us with gate primitives, which help us create a circuit by 

connecting basic logic gates.  

Gate level modeling enables us to describe the circuit using these gate primitives. 

 

2.1 Gate Level Modeling of JK Flip Flop: 

module jkff_gate(q,qbar,clk,j,k); 

input j,k,clk; 

output q,qbar; 

wire nand1_out;  // output from nand1 

wire nand2_out;  // output from nand2 

nand(nand1_out, j,clk,qbar); 

nand(nand2_out, k,clk,q); 

nand(q,qbar,nand1_out); 

nand(qbar,q,nand2_out); 

endmodule 

3.Dataflow Modeling 

Describing a flip flop using dataflow modeling is not applicable. Flip flops are supposed to 

work on edge-triggered clocks. In dataflow modeling, it is not possible to construct an edge-

https://technobyte.org/logic-gates-simple-deriving-using-nand-nor/
https://technobyte.org/gate-level-modeling-in-Verilog/
https://technobyte.org/dataflow-modeling-verilog/


triggered flip flop. It works more like a latch. Also, when modeling sequential circuits with 

dataflow, it can sometimes result in an unpredictable output during a simulation.  

Hence, we prefer the highest level of abstraction (behavioral modeling) to describe 

sequential circuits like flip flops. 

 

4.Behavioral Modeling 

Behavioral modeling is the highest level of abstraction. Unlike gate and dataflow modeling, 

behavior modeling does not demand knowing logic circuits or logic equations.  

As a designer, we just need to know the algorithm (behavior) of how we want the system to 

work. This type of modeling is simple since it does not involve using complex circuitry. A 

simple truth table will help us describe the design. 

 

 

4.1 Behavioral Modeling of JK Flip Flop 

module jkff_behave(clk,j,knq,qbar); 

input clk,j,k; 

output reg q,qbar; 

always@(posedge clk) 

begin 

if(k = 0) 

begin 

q <= 0; 

qbar <= 1; 

end 

always@(posedge clk) 

begin 



  if(k = 0) 

   begin 

    q <= 0; 

    qbar <= 1; 

   end 

  else if(j = 1) 

   begin 

    q <= 0; 

    qbar <= 0; 

   end 

  else if(j = 0 & k = 0) 

   begin 

    q <= q; 

    qbar <= qbar; 

   end 

  else if(j = 1 & k = 1) 

   begin 

    q <= ~q; 

    qbar <= ~qbar; 

   end 

end 

endmodule 

5.Testbench 

A testbench is an HDL module that is used to test another module, called the device under 

test (DUT). The test bench contains statements to apply inputs to the DUT and, ideally, to 

check that the correct outputs are produced. The input and desired output patterns are 

called test vectors. 

Ler’s see how we can write the testbench for JK flip flop. 

//test bench for JK flip flop 

//1. Declare module and ports 

module jkff_test; 

https://technobyte.org/testbench-in-verilog/
https://technobyte.org/2020/03/how-to-write-a-testbench-in-verilog/#What_is_the_Design_Under_Test?
https://technobyte.org/2020/03/how-to-write-a-testbench-in-verilog/#What_is_the_Design_Under_Test?


reg J,K, CLK; 

wire Q, QBAR; 

//2. Instantiate the module we want to test. We have instantiated the jkff_behavior. 

jkff_behave dut(.q(Q), .qbar(QBAR), .j(J), .k(K), .clk(CLK)); // instantiation by port name. 

//3. apply test vectors 

initial  

  clk=0; 

always@(clk) 

 #5 clk = ~clk;   

initial 

begin  

 J= 1; K= 0; 

 #10; J= 0; K= 1;  

 #10; J= 0; K= 0;  

 #10; J= 1; K=1;  

#20 $finish; 

end  

//4. Monitor TB ports 

initial $monitor($time, "CLK = %b, J = %b, K = %b, Q = %b, QBAR = %b", CLK, J, K, Q, QBAR); 

endmodule 

6.RTL Schematic 

Here’s how the RTL Schematic will look if we peek into the elaborate design of the 

behavioral model of the JK-flip flop. 



 

 

 

7.Simulated Waveform 

We can verify the functional correctness of described JK flip-flop by simulation. The 

simulated waveform of JK flip flop is given below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://i0.wp.com/technobyte.org/wp-content/uploads/2020/04/RTL-schematic.png?ssl=1
https://i0.wp.com/technobyte.org/wp-content/uploads/2020/04/RTL-schematic.png?ssl=1


Verilog code for D flip-flop – All modeling styles 

 

What is D flip flop? 

A flip flop can store one bit of data. Hence, it is known as a memory cell. Flip-flops are 

synchronous circuits since they use a clock signal. Using flip flops, we build complex circuits 

such as RAMs, Shift Registers, etc. 

A D flip-flop stands for data or delay flip-flop. The outputs of this flip-flop are equal to the 

inputs. 

 

As we proceed, we will see how we can design a D flip flop using different levels of 

abstraction 

1.Gate level modeling 

Gate level modeling uses primitive gates available in Verilog to build circuits. Hence, we 

need to know the logic diagram of the circuit we want to design. 

 

 

https://technobyte.org/flip-flops-latches-designing-truth-tables/
https://technobyte.org/shift-registers-parallel-serial-pipo-piso-siso-sipo/


From the above circuit, we can see that we need four NAND gates and one NOT gate to 

construct a D-flip flop in gate-level modeling. 

1.1 Gate level Modeling of D flip flop 

module d_ff_gate(q,qbar,d,clk); 

input d,clk;  

output q, qbar; 

wire dbar,x,y;  

not not1(dbar,d);  

nand nand1(x,clk,d);  

nand nand2(y,clk,dbar);  

nand nand3(q,qbar,y);  

nand nand4(qbar,q,x);  

endmodule 

 

2.Behavioral Modeling 

2.1 Behavioral Modeling of D flip flop with Synchronous Clear: 

Clear Input in Flip flop: 

All hardware systems should have a pin to clear everything and have a fresh start. It applies 

to flip flops too. Hence, we will include a clear pin that forces the flip flop to a state where Q 

= 0 and Q’ = 1 despite whatever input we provide at the D input. This clear input becomes 

handy when we tie up multiple flip flops to build counters, shift registers, etc. 

For synchronous clear, the output will reset at the triggered edge(positive edge in this case) 

of the clock after the clear input is activated. 

Here’s the code: 

module dff_behavioral(d,clk,clear,q,qbar);  

input d, clk, clear;  

output reg q, qbar;  

always@(posedge clk)  

begin 

if(clear== 1) 

q <= 0; 

https://technobyte.org/counters-up-down-synchronous-asynchronous/


qbar <= 1; 

else  

q <= d;  

qbar = !d;  

end  

endmodule 

 

2.2 Behavioral Modeling of D flip flop with Asynchronous Clear 

For asynchronous clear, the clear signal is independent of the clock. Here, as soon as clear 

input is activated, the output reset. 

This can be achieved by adding a clear signal to the sensitivity list. Hence we write our code 

as: 

module dff_behavioral(d,clk,clear,q,qbar);  

input d, clk, clear;  

output reg q, qbar;  

always@(posedge clk or posedge clear)  

begin 

if(clear== 1) 

q <= 0; 

qbar <= 1; 

else  

q <= d;  

qbar = !d;  

end  

endmodule 

 

3.Testbench 

A testbench is an HDL module that is used to test another module, called the device under 

test (DUT). The test bench contains statements to apply inputs to the DUT and, ideally, to 

check that the correct outputs are produced. The input and desired output patterns are 

called test vectors. 



Let’s see how we can write a test bench for D-flip flop by following step by step instruction 

 

//test bench for d flip flop 

//1. Declare module and ports 

module dff_test; 

reg D, CLK,reset; 

wire Q, QBAR; 

//2. Instantiate the module we want to test. We have instantiated the dff_behavior. 

dff_behavior dut(.q(Q), .qbar(QBAR), .clear(reset), .d(D), .clk(CLK));  

//3. apply test vectors 

initial   clk=0; 

always@(clk)  #5 clk = ~clk;   

initial begin  

 reset=1; D <= 0; 

 #10; reset=0; D <= 1; 

 #10; D <= 0; 

 #10; D <= 1; 

#20 $finish; 

end  

//4. Monitor TB ports 

initial $monitor($time, "CLK = %b, D = %b, reset = %b, Q = %b, QBAR = %b", CLK, D, reset, Q, 

QBAR); 

endmodule 

 

4. RTL Schematic 

Here’s how the RTL Schematic will look if we peek into the elaborate design of the 

behavioral model of the D-flip flop without clear input. 



 

5.Simulated Waveforms 

D flip flop Without Reset 

 

In this waveform, we can see that the Q and Q’ will be reset state at the positive cycle 

after clear is activated 

 

In this waveform, we can see that the Q and Q’ will be in the reset state as soon as clear is 

activated. 
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