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(R22A0261) NETWORK ANALYSIS & SYNTHESIS
COURSEOBJECTIVES:

1. To solve the two port network parameters.

2. To recognize the behavior of R, L, C with DC excitation.

3. Concept of Series , parallel resonance and current locus diagrams

4. To know the pole zero location for driving point and transfer functions

5. To describe Foster and Cauer forms and the properties of immittance

functions.

UNIT-I: TWO PORT NETWORKS:

Impedance Parameters, Admittance Parameters, Hybrid Parameters,
Transmission (ABCD) Parameters, Conversion of one parameter to another
parameter, Conditions for Reciprocity and symmetry, Interconnection of two
port networks in series, parallel and cascaded configurations, Illustrative

problems.

UNIT-II: D.C.TRANSIENT ANALYSIS (FIRST & SECOND ORDER CIRCUITS):
Introduction to transient response and steady state response, Transient response of
series —RL,RC, RLC Circuits for D.C excitation with Initial Conditions, Solutions
using Differential Equations approach and Laplace Transform approach ,Ilustrative

problems.

UNIT-I11: LOCUS DIAGRAMS & RESONANCE:

Locus diagrams: Locus diagrams of Series RL, RC circuits with variation of various

parameters, parallel RL, RC circuits with variation of various parameters.

Resonance: Resonance-Series and Parallel circuits, Concept of Bandwidth and Quality

factor.

UNIT-IV: NETWORK FUNCTIONS: Review of Network functions for one port and two
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port networks: — pole zero location for driving point and transfer functions-Impulse response

of Network functions from pole-zero plots.

UNIT-V: SYNTHESIS OF ONE PORT NETWORKS
Synthesis of reactive one-ports by Foster’s and Cauer methods (forms I and II) -Synthesis of
LC, RC and RL driving-point functions.
Text Books:
1. K. S. Suresh Kumar, —Electric Circuit Analysisl, Pearson Publications, 2013.
2. 2. Ravish R. Singh, "Network Analysis and Synthesis”, McGraw-Hill Education,
2013

References:

1. Franklin Kuo, —Network Analysis and Synthesisl, 2nd Ed.,Wiley India.

2. Van Valkenburg M.E., —Introduction to Modern Network Synthesis,| Wiley Eastern,
1960 (reprint 1986).

3. Van Valkenburg M.E, —Network Analysis,| Prentice Hall India, 2014.

4. Charles A. Desoer and Ernest S. Kuh, —Basic Circuit Theory,| Tata McGraw Hill
Edition.

5. Chakrabarti, A., "Circuit Theory Analysis and Synthesis", Dhanpat Rai& Co., Seventh
- Revised edition, 2018

6. S. K. Bhattacharya, —Network Analysis and Synthesis,| Pearson Education India.

COURSE OUTCOMES:
« Able to solve two port network parameters

« Able to analyze the transient and steady state analysis of RLC Circuits.

« Accomplish the computation of Quality factor, band width and current locus diagram
for a given electrical circuit.

« ldentify the properties and characteristics of network functions.

« Synthesize passive one-port networks using standard Foster and Cauer forms.
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TWO PORT

NETWORKS




A pair of terminals at which a signal may enter (or) leave a network is called a port, and a
network having only one such pair of terminals 1s called a one-port network (or) simply a one-
port. Now connections may be made to any other nodes interval to the one-port, and it is there
fore evident that ‘i;” must be equal to ‘i’ in the one port network shown in figure. When more
than on pair of terminals 1s present, the network 1s known as a multi-port network.

In this case 1; = 1 and 1, = 1.

A two-port network 1s a special case of multi-port network. Each port consists of two
terminals, one for enfry and other for exit. From the definition of a pot, the current at entry 1s
equal to that at the exit terminal of a port.

Examples:- Transforms, Power Transmission lines, Bridge circuits, Filters etc.,




Let us consider a network having six terminals to which extemal connections can be

Fig. Six — Terminal network
The special methods of analysis which have been developed for two-port networks, the
current and voltage relationships at the terminals of the networks and existing at the specific
nature of the currents & voltage within the networks.




RELATIONSHIP OF TWO-PORT VARIABLES

In the two-port network as shown in figure.

HT

114

Fig. Two-port network

Here four variables i.e., two voltages and two currents. There are other voltages and
currents that are present inside the box. The box enclosing the network has the function of
indicating that other voltages and currents are not available for measurement (or) are not
important. We assume that the variables are transform quantities and use ‘V;” and ‘I;" as
variables at the input i.e., port 1, and V; and I; as the variables at output port 2. Now only two of
the four variables are independent, and the specification of any two of them determines the
remaining two. For example, if V; and V; are specified. the I; and I; are determined. The
dependence of two of the four variables on the other two is described in a number of ways,
depending on which of the variables are choosen to be the independent variables.




NAME

FUNCTION

EXPRESS

INTERMS OF

EQUATION

OPEN CIRCUIT
IMPEDANCE
[Z-PARAMETERS]

Vi, V2

I, L

Vi=ZnhitZnh
Vo=ZnhitZnl

SHORT CIRCUIT
ADMITTANCE
[Y-PARAMETERS]

I L

V1.V

L=YuVitYpV,
L=YyVitYpV;

TRANSMISSION
[ABCD-PARAMETERS]

Vi. ]y

Vo, I

Vl = AV; — BI_:;
Il = CV} - DI_:g

INVERSE TRANSMISSION
[AIBIC!D!-PARAMETERS]

Vo, I

Vi. ]y

VEZAIVI—BIL
IfCWl -Dlll

HYBRID
h-PARAMETERS|

Vi, I

11,V,

Vi=hp L +hp V)
L=hy ) +hpV,

INVERSE HYBRID
g-PARAMETERS

I, Vs,

Vi,

L=aguVitanh
Vo=gn Vitanh




OPEN CITRCUIT IMPEDANCE — PARAMETERS (OR) Z-PARAMETERS
(V1. Vo) = f1;. I2) Vi=Z1 ) v 221 —_—» (1)
Va2=Zx» 11 +Zx 1> . 2)
Putting in matrix form.
[Vl] :|:le ZIZ:”:Il:l
V2 ZZI Zn IZ

Determination of Z-parameters:

I_;_{:D I ]_:0

.2
TWO-PORT | n L ‘I|: TWO-PORT
Vo Wy

NETWORE NETWOREL
Ly & Foy Zir S Fan

Fig (a) Fig (b)

Mathematically,

— » Input dnving point impedance with out put port open circuited.

I, |I,=0

— » Reverse transfer function impedance with input port open circuited.

——» Forwarded transfer function impedance with put port open circuited.

—— Output driving point impedance with input port open circuited.




The Z-parameters equivalent circuit corresponding to equations (1) & (2) is shown in
figure (c). The voltage sources Vi = Zj2 Iz & V3 = Z1 I; are called current controlled voltage
sources [CCWVS] as their voltages are dependent on current I; and I; respectivelw.

I I

+1.e—— Zn Zyy |—e—w 24

V) Z1215 @) C_I_ ZnIy Va2

- 11 J ‘11-

Fig (c) ; Two Generator Equivalent circuit using £-parameters

Writing equation as

Vi1i=(Zn —Z1) 1 + Z1z (1 —Iz) = (3)
Vi=(Zn-—-Zp)h+(Exn—-Zp)h+Zp T +12) —— (4)

]]_ IE .
S o

In-Zyz Zn-Z1 (Z£21-Z12)1

Fig_ (d) : One Generator equivalent circuit




SHORT — CTRCUIT ADMITTANCE — PARAMETERS (OR) Y-PARAMETERS
(I;. I) = ATV 1. V2) L= Y 1 Vi+ Y2V —m—» (1)
L=Y21 V1 +Y»nV, ——MmM» 2)
Putting in matrix form,
|:II:| _ [Yu Yu][Vl]
I:‘, 1’;.‘,1 Y:‘,:‘, VI‘,

Determination of Y-parameters:

I

Lox TWO-PORT | . TWO-PORT

~ NETWORK NETWOREK
1

Yy & Yo Yo & Yoz
11 d

Fig (a) Fig (b)
M athematicallwy,

I
1'7112—1

- . —  » Input dnving point admittance with out put port short-circuited.
2 prmm—

- o —  » Reverse transfer admittance with input port short-circuited.
1 pm—

——» Forwarded transfer admittance with out put port short-circuited.

¥, =0

- - —  » Output driving point admittance with input port short-circuited.
l m—

NOTE: [Short circuit admittance matrix] = [Open circuit impedance matrix] -1

And Y, izi ie., ¥, ?&ZI ¥, = ! efc.,

i 11 12




The Y -parameters equivalent circuit corresponding to equations (1) & (2) is shown in
figure (c). The current sources Iy = Y12 V2 & [z = Y1 V1 are called wvoltage controlled current
sources [V CCS] as the wvalues of their currents are dependent on voltages V) and V3 respectivelvw.

Fig (c) : Two Generator Equivalent circuit using Y -parameters

IL1I=(Yu+¥Y12)V1-Yr (V1 —-V2) > (3)
L=(Ya-—-Y1i2 )Vi+ Y+t Y1) V2- Y2 (V2—-V1) ———» (4)

From which the following equivalent circuit is obtain as shown in figure (d)

-Y12 . 2

= -

lfY 21-¥ 12V

Fig_ (d) : One Generator equivalent circuit




HYBRID —- PARAMETERS (OR) h -PARAMETERS

The hybrid parameters are wide usage in electronic circuits, especially in constructing
models for transistors. In this case, voltage of the input port and the current of the output port
are expressed in terms of the current of the input port and the voltage of the output port. The
parameters are dimensionally mixed and due to this reason, these parameters are called as
“Hybrid Parameters”.

(V1. L) =f1;, V1) Vi=hyLi+hpVy, —— (1)

L=hyL3i+hnV, —— (2)

Putting in matrix form,

ARt

TWO-PORT . TWO-PORT
NETWORK B NETWORK
hy; & hy hy; & hy




Mathematically,

4

[ — » Input impedance with the out put port short-circuited.
1|%2 =

hy, =

o — » Reverse voltage with the input port open circuited.
1 —

S — » Forward current gain with the out put port short-circuited.
2 —

— » Output admittance with the input port open circuited.

The h-parameters equivalent circuit corresponding to equations (1) & (2) is shown in
figure (c). Where V; = h;; V, & I, = hy; I; are voltage controlled voltage sources [VCVS] and
currents controlled current source [CCCS] respectively.

Fig (c) ; h-parameters equivalent network




INVERSE - HYBRID - PARAMETERS (OR) g -PARAMETERS

The hybrid parameters and inverse hybrid parameters are dual of each other like Z and Y-
parameters.

[g] =[h]
1, Vo)) =fV.L) L=gnVitgpnlh ———»

Vo=gn Vitgnlh, ——m

Determination of g-parameters:

Igzﬂ 9

TWO-PORT ' TWO-PORT
NETWORK NETWORK

g & gn gnn& gn

Fig (a) Fig (b)




Mathematically,

_ I
En V|1, =

I, =

En =

£
1,

I—’lz

7 =0

0 —— Input admittance with out put port open circuited.

——» Reverse current gain with input port short-circuited.

R Forward voltage with out put port open circuited.

e Qutput impedance with input port short-circuited.

The g-parameters equivalent circuit comresponding to equations (1) & (2) is shown in
figure (c). Where I1 = g1z I & V2= g1 Vi are current controlled current sources [CCCS] and
Voltage controlled voltage source [VCVS] respectively.

1.

I
1—-‘-‘-

l gi2l>

Fig (c) : Equivalent circuit of g-parameters



TRANSMISSION [T] (OR) CHAIN (OR) ABCD-PARAMETERS (OR) GENERAL
CIRCUIT PARAMETERS:

The transmission ‘T’ (or) Chain (or) ABCD — Parameters can be expressed as
Vi, I)=f[V ) Vi=AV2 -BDL — (1)

I,=CV; -DL, — 2
Putting in matrix form,

e 2]

Determination of ABCD (or) T-parameters:

I,=0

TWO-PORT —‘—T
V

]

2

.2 .2

NETWORK )
A&C :

F'2=ﬂ

]1 'IE
1,
] ]
V1 v
11 li l
2

1 1

Fig (a) Fig (b)

In order to determine the T-Parameters, open and short the circuit output port [receiving
end] and applied some voltage "V to input port [sending end] as shown in figure (a) & (b) to
obtain A_C and B.D respectivelv.




Mathematicallv,

—— Reverse voltage ratio with the receiving end open circuited.

1,=0

——» Reverse transfer impedance with the receiving end short-circuited.

——» Reverse transfer admittance with the receiving end open circuited.

I,=0

Il
LV, =0

ﬂ_

—» Rewverse current ratio with the receiving end short-circuited.

NOTE: For passive network the all the four T-parameters are positive, since I; is itself negative
(or) — Iz is positive.




INVERSE TRANSMISSION (OR) INVERSE ABCD (OR) T! - PARAMETERS:
T!- parameters can be expressed as output variables in terms of input port variablesi e
(V2. I)=fV..I)) V=AWV, -B'; —» (1)

L=CW,-DI, — (2

Putting in matrix form,

aHE B

The equivalent circuit of a two port network is also not possible in terms of T' —
Parameters.

Determination of T!-parameters:

1,=0




Mathematically,

P —» Forwarded voltage ratio with sending end open circuited.
1 =

” ﬂ;p Forward transfer impedance with sending end short-circuited.

— » Forward transfer admittance with sending end open circuited.

D'= I—jr . ﬂ—h Forwarded current ratio with sending end short-circuited.
~I, |V, =

NOTE: - For passive network in the case also all the four T!-parameters are positive, as I; is
itself negative (or) — I 1s positive.




INTER RELATION SHIPS BETWEEN PARAMETERS SETS

If we want to express “o’-parameters in terms of ‘B’-parameters, we have to write ‘B’-

parameters equations & then the algebraic manipulation, rewrite the equations as needed for “o’-
parameters.

Z-PARAMETERS IN TERMS OF OTHER PARAMETERS

Z-parameters in terms of Y-parameters
We know that Y-parameters as
L=YuVi+YpV, — (1)

L=YuVi+Y¥npV; — (2)
Putting in matrix form,

Ll _(fu Tnfh
Il YZI Fﬂ Vl
AR
— =
Vl Yll Yﬂ Il
~[Z21=[¥]1"

-1
ie {le Zu] :[Fu Yu] :i{ Yy _Yu]
Zy Zy Y, I AY | -Y, T

Where AY=Y11 Yo — Y12 Y

-7¥. ¥,
Z, =—2- 7z =11
21 ﬁ}r >3 M




Z-parameters in terms of T-parameters
We know that T-parameters as
Vl = Wﬁwyw B Ig

11: CVZ -DI;
o
C

2

From equation (2), 7, = IEI +

D l

Ly =

) C pi| C
Substituting V; m equation (1)

I
ﬂ:Ai+91,ﬂg:fL+
¢ C C

Put AT=AD-BC

A, AT
VIZEII"'EII

Z-parameters in terms of T-parameters
We know that Tl-parameters as

VEZALV] - Blll EE—

L= ClV, -DIy

Substituting V; i equation (1)
+fﬁ

V=4 =1 +—=1I a I,

D 1_}_thumkﬂwﬂ !

Put AT! = AIDLBIC!




Z-parameters in terms of h-parameters Z-parameters in terms of g-parameters
We know that h-parameters as We know that g-parameters as
Vi=huLi+hpV, ——

L=hyly ThpV, —— L=gunVitgnh ——

- Vo=g1 Vi +onl, —»
From equation (2) we have 27BN BN

V. —I_l_@f __hmf n 1 b From equation (1) we have
B 17 1 2

hyy Iy hyy iy Vl:ir_l_@jl
En  &n

. P
..le— }lQl s Zn—hn .Z _i- Z __gll
Ly = L=
En &1
Substituting V4 in equation (2)

1
vy :gzl{_l_@jrz]*‘gu I, :@Il + 28

Substituting V5 in equation (1)

4 :]"11}1"“”‘u[_}:l21 1)+ : ]:ﬁhfl"'hu I

hy |y, h,, 2 Put Ag=gi1 80— 812 811

_&n Ag
Put Ah =hy; hyy —hpp hy vy = 2, I+ g_u I
by
Z Zzl — gZI : 222 — Ag

gll gll

gn Eu gn g




Y-PARAMETERS IN TERMS OF OTHER PARAMETERS

Y-parameters in terms of Z-parameters
We know that Z-parameters as
Vi=Zyhi+Zp, — (1)

Vi=Zpyh+inl
Putting in matrix, we have

le le

_Z 21 2

le 2

_le 22

A

i.ﬂ. |:Yll 1711:|:|:le le:|_1
7 Yll FIE le ZH
Where,&ZZZHZH—ZIEZgl

Z _le.

S———r ¢

AZT R AZ




Y-parameters in terms of T-parameters
We know that T-parameters as

Vf% BI;

IFCVQ-DIE
From equation (1), we have
ALY
B B B B
-1 4
L =— 1, ==
pi| B Y B
Substituting I in equation (2)
fFCVz‘DFVﬁéVz} D -
BB

Put AT =AD-BC
D AT
IIZEVI_EVE

=

Y-parameters in terms of T'-parameters
We know that the T-parameters as

Vg:AIV] - Bl 11

I_g: CIV] -D'1 11
From equation (1), we have

4 -1
Iy :?; b v
Substituting I; 1n equation (2)

_ il |
j'l_ch—DhV—E
Put AT! = AIDLBIC!

AT D
IEZTVI-I-?VI
oA D
AT Ry

Bl

4 Vl}: (4D -BC')

v+

Dl

Bl

4




Y-parameters in terms of h-parameters
We know that h-parameters as
Vi=hy i thpVy —
h=hylj thyV; ——

From equation (1), we have
P by
Ty hu
1 -
e
hll hll

Substitutmg [; 1 equation (2)

el K @V}Jrhmy_hﬁlh(huh huhm)

1 1

Put Ah=hy; hyy -hyp by

1

h
I,= 1‘V+MV

hy oy
Ah

h
Fy== y=—
by Ty

Y-parameters in terms of g-parameters
We know that g-parameters as

=guVitenh
Visgu Vit —

From equation (2) we have

- V.
Il :ﬁVl -|-_:l

& &n
&n &n
Substituting I, n equation (1)

Loy =

I=g, V+£'1{ & V+£} (8’11 §n~ 5’115’:11)V i) 7,

& &
Put Ag=g11 81— 21 &1
I Ag V o gll V
gn gll

Yn:ﬁ; Yu:@

g1 &n

&

&




T-PARAMETERS IN TERMS OF OTHER PARAMETERS

-parameters in terms of Z-parameters
e know that Z-parameters as
Vi=Zuyhi+Zplh

Vo=dnlh TL4nl
From Equation (2). we have
VvV, Z
1, = ) 2

Zy Ly
1 Z

. C=—; D=
le le

Substituting I; in equation (1)

le le

VIZZII|:

2
= AVE _gfl
le le

Where AZ = le Zﬂ—zlg Zgl
Ly AL

nA=ZL. p=—2
le le




T-parameters in terms of Y-parameters T-parameters in terms of T-parameters
We know that the T'-parameters as

We know that Y-parameters as V,=AlV, - Bl
[=YuVitYpV, —— L= ClV, “DI,
Putting in matrix form,
L=YyVi+YpV, — 7, |4 B Vl}
-1

From Equation (2), we have L [¢ p

Vi=—=V,+—1, Rewriting the above equation,

¥y Iy RA _ 4 -B
e SO -L] |-¢" D

i

Il
oA b=
¥y Yy . {

V| | 4 -B'|
Substituting V1 in equation (1)

LM
4 B[4 -8]" 1[D B
1.e. = S
Where AT! = AIDLBI(!
| | 1
D g B C

I =Y, e vy + : 171] +1, 0,
r, Y,

AT T ATV T ATV

Where AY = Yll Ygg — Ylg Ygl

we=A pTh

Y, b, NOTE: -[T)=[T']"




T-parameters in terms of h-parameters T-parameters in terms of g-parameters
We know that h-parameters as We know that g-parameters as

Vi=hy L +hpVy ——
L=hyl; thy 'V,

From equation (2), we have Vo=gy Vy +gnl, ————>
From equation (2) we have

L=gnVi+tgplh, ——m

v, &g
v, :_1__11;1
£

A=—: p=52

Substituting I; in equation (1) Suhstimtgi;ilg —_— aﬁiatinn M
1

V, &g
I, :gu{_l__ufz] +gnl,
. hl gn E&xu
—A 1
=—V,+211I, _Euy 28,
hﬁl hﬁl & i
Put Ah=hy; hy —hyp hyg Put Ag=g11 20— 812 811
@' D:ﬂg

& En

_}Z” V, + : fl}mlm

1 1

C=




TL-PARAMETERS IN TERMS OF OTHER PARAMETERS

Tl-parameters in terms of Z-parameters
We known, that the Z-parameters as
Vi=ZnynLi 2121
Vo=Zo ) X 21>
From Equation (1), we have

V. Z.
I, =1 Zug
le zll
ol = 1 Dlzzll
zll le
Substituting I, in equation (2)

V, =Zy I, +zﬂ[ " Zu Il]
zll le

Z
_Zn, Az,
le le
Where AZ = Z11 Zor— Zo1 Z12
e ) NS
Zis Z

'_A]': B]':




Lparameters in terms of Y-parameters
¢ known, the Y-parameters as
[=YuVitYpV, ——
L=YuVitYpV, —
From Equation (1), we have

Vl — I Fll V — - Jlr1
h, §, I
. Al :__Yll. B =
4
Putting V; 1n equation (2)

L =Y,V +Yn[_}ql V+ 4 ]
r, I

Where AY = Yll Ygg - Ylg Ygl
Cl :ﬁj Dl :ﬁ
Iy Iy

Tl-parameters in terms of T-parameters
We know that the T-parameters as
Vl = MM B I_:;
[=CV,-D],
Putting in matrix form,

e L

Rewriting the above equation,

KNl
~[i]Le ) )

A/EEI

L[4 B[4 -B]7_1
et ptl |-C D AT|C

Where AT = AD-BC
.-.AI:E; B=—":(C'=—:D
AT AT AT

NOTE: -.[T1=[1]”




Tl-parameters in terms of g-parameters

Tl-parameters in terms of h-parameters
We know that g-parameters as

We know that h-parameters as
Vi=hy L1 +thpV, ——
L=hyl; +hpV, ———> L=guVitgnh ——

From equation (1), we have Vo=gu Vit enlh ——mM

4
V, = mf

From equation (1), we have

=
hy  hy I _
11:_1_@;!1: g"Vl+ifl
En &n En En
Crl — - gll : Dl _]'
En En
Putting I, in equation (2)

—g 1
I, =hy I, +hy| — 4 h” szgzll]l"'gn[ HVI-I__II:|
h, hu g1 &n

Putting V, in equation (2)

_fw g, AR, _%?+ I,

h, : h, ! &1 &n
Put Ah =h;; hy, —hyp hyg Put Ag= g1 22— 812 811
hﬂ_ Dl—ﬁh _'_Alz_ﬂg' B].:_gﬂ

)

L (T=2 =—
h, i h, 4] 4]




h-.PARAMETERS IN TERMS OF OTHER PARAMETERS

h-parameters in terms of Z-parameters
We know that Z-parameters as
Vi=ZyaL v 2 1n
Vo=ZFon ) + 721>

From Equation (2), we have

7. — Vs, _le Ilz—zll I, + v,
£y Ly

., =

Put I in equation (1)

1
£y

Vl :lefl "‘E“'11|:_Z:E’1 Il + Vl ]
Zﬂ le

£

Zﬂ 22

AL =711 L — 12 L

v,




h-parameters in terms of Y-parameters
We know, Y-parameters as

h-parameters in terms of T-parameters
We know that the T-parameters as
L=YuVi+tYnV, — (1)
Vl = AVZ -B Ig
L=Yu V7YV, — (2)
From Equation (1), we have L=CV,-D, ——
V, = 4L h v, From equation (2), we have
h kL
-1
hy=—: hy
by

Put V; in equation (2)
1 :Yzllf_l_iyz] +h 7

n Iy Put I, m equation (1)

Y, AY I -
= bt lq:AVl—BBH%VE}:%m%VE

1 1

CAY=YnYn-Yn Yy “AT=4AD-BC




h-parameters in terms of g-parameters
We know that the g-parameters as
L=aVitgp, — ()
Virg Vit — ()
Putting in matrix, we have

h-parameters in terms of T'-parameters
We know that the T!-parameters as

Vg:m BIIL —

L= ClV, -DH;

From equation (1), we have
| |
:E{.B_]l :B_I .|.lV

Vl All 15!12

Put V; m equation (2)
B

; -AT . (!
R 7

I,=C' 4 }—D‘Il :del v,

AT = 4'D =B

_§11 @’11_
1 &y &n

_ _5'11 E’u_
[ &n &n)

-[H=[gl"

16

AZ= g - e

:
m

- 4
Fﬂ hu}: &1l gu} :l{ & ‘@’u}
’ by hy & &n] N8 &

RTINS

Ag

A~ :

14 Ag Ag




g-PARAMETERS IN TERMS OF OTHER PARAMETERS

g-parameters in terms of Z-parameters
We know, Z-parameters as
Vi=ZnLi +Z2 1z
Vo=Zn ) ¥ 721
From Equation (1), we have

V; Z
I, = | N 1,
Ly Ly

1 — Lq

- 8 = L
VAT AR

Substituting [; in equation (2)
V. Z
Zy Ly

oA
£y, £y,

AL =711 Loy — L2 £y




g-parameters in terms of Y-parameters g-parameters in terms of T-parameters
We know, Y-parameters as We know that the T-parameters as

L=YuVi+YpV, —— (1)

Vi=AV, -B])
L=YuV, 7 YoV, — (2 _
From Equation (2), we have L= CY,-Dh

T Y From equation (1), we have
v,=2-4y, ——iVl+ifl /B

n n V——-I- 5
1 o
. _1- =
Put V; in equation (1) --5’11‘15 gﬂ_i
Y. 1
L=YyV+0,| -2V +—I
1 =" 1{ Y, 1 T, 1] Put Vgi]lﬁ[]llﬂ'[iﬂll (2)
AY e i
=—V+21, I =C +BI -DI, —EV ﬂ—TI
Y, | T, 4 4 44
TAY=Y 1 Yn-Yin Yy AT =AD-BC

' _ﬂY_ _Yu Vg —g' g —iT
- 8n Yn: ) Y, - Bl A! ) 1




g-parameters in terms of T'-parameters
We know that the T!-parameters as

Y;FAW] - Blll EE— (])

I_:g - CWl -DI Il — (2)
From equation (2), we have
I = g11 1= I_ll
D D
C' -1

S 8 :E; g :E

PutI; m equation (1)

1 . 1
Vlz,et‘Vl—Bllc V+I1]:MV1+B I

Dl Dl Dl Dl 2
‘AT = A'D' - B'(*
AT! B!

. &y :FQ En :E

g-parameters in terms of h-parameters
We know that the h-parameters as

Vi=hyLi+hpVy ——
I_g = hgl nr hﬂ Vg e
Putting 1 in matrix, we have

[hu hy |
oy |

[y by
i hll Iy |
[gl [

5’11]:[}‘11 hu]_l_i[hm _hu]
&n| M My An|—hy By

ie. [gu
&

" Ah=hy; hyy - hyphy

_11: gll _hu ? gl] A gﬂ hll

STy, Ah ah Al
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UNIT-2

TRANSIENT RESPONSE

INTRODUCTION: - As we are aware that the terminal characteristics of capacitors and
inductors are governed by differential relationships. The connection of these elements with the
resistors and energy sources will result in integro-differential (or) simply differential equations
with constant coefficients. The solutions of these equations in time - domain gives the
“TRANSIENT RESPONSE” of the system of equations. The time - domain response of the
circuit for different test signals is almost important to synthesize (or) design electronic circuits.

Whenever a circuit is switched from one condition to another, either by a change in the
applied source or a change in the circuit elements, there is a transition period during which the
branch currents and element voltages change from their former values to new values. The
period is called the “TRANSIENT STATE (or) NATURAL RESPONSE”. After the transient
period has passed, the circuit is said to be in the “STEADY STATE (or) FORCED
RESPONSE”. Thus, the total response of the network is the sum of its transient response and
steady state response.

Now, the linear differential equation that describes the circuit will have two parts to its
solution, the complementary function corresponding to the transient and the particular solution

corresponding to the steady state.
INITIAL VALUES OF NETWORK ELEMENTS

RESISTOR: -
If a circuit is purely resistive, it does not exhibit any transient response. Thus in the circuit, the
current instantaneously rises to its steady state value ie., ity «t=0 g

.V . .
i = R’ and there is no transient response.

«— Vi) —>
t =0~ — Represents the instant just prior to the closing of the switch at t = 0.
t=0" — Represents the instant immediately after closing of the switch at t = 0.

Att:0—>i=0,butatt=0+—>izvﬁ

INDCUTOR: - - .
If a circuit is purely inductor as shown in figure. I(t)
If the switch is closed at t = 0, by, applying KVL to the circuit
di N
V = LE fort>0 o V(1) >

At t =07, the current is zero, assuming the circuit to be relaxed [ie., No initial inductor current].
At t=0", the current must still be zero, since the current through an inductor cannot become
zero instantaneously, even if it is not zeroat t=0".

S1=0 Att=0"
Hence, it is obvious that at t(0"), the inductor ‘L’ act as an open circuit. The equivalent circuit

at t(0") is as shown in figure...
L4 L4 ¢ OCe

i(t) =L’ is replaced by an open circuit

— V() ——>
However, if at t(0")the inductor is already carrying a current due to a previously applied

forcing function, it would continue to flow at t(0"), without change of magnitude.
Let ‘1o be the initial inductor current as shown in figure... it) t=0 L
_H

—
lo

——— V() —>



The equivalent circuit at t(0*)is shown in figure...

)
S
— V() ——»

‘L’ is replaced by open and ‘Iy’ is replaced by equal current source.

CAPACITOR: - t=0 ¢
If the circuit contains pure capacitor as shown in figure. =2<A |
If the switch is closed at t = 0 by, applying |
KVL to the circuit 1(®)
vzéjidt for t>0* VO —
i—cdv
dt

At t =07, the voltage across capacitor is zero, assuming the circuit to be relaxed [ie., No initial
capacitor voltage]. Also current, i =0.

At t=0", the voltage across capacitor must be zero, since the voltage across a capacitor cannot
become zero instantaneously even if it is not zero at t =0". It means that, at t =0, the capacitor
acts as Short Circuit. The equivalent circuit at t(0") is as shown in figure...

Hence ‘C’ is replaced by short circuit =

i(t)

— V() ——>t

However, at t=0", if there is a capacitor voltage due to previously applied forcing function,
then at t =0" also, it would remain without change in magnitude.
Let “Vo' be initial capacitor voltage as shown in figure...

t=0 C
2<. I
[l
it) +V, -

«— Vi) —»
The equivalent circuit at t(0*)is shown in figure...

i(®)

Vo

«— V) —>
‘C’ is replaced by Short Circuit and “Vo' is replaced by an equal voltage source.
FINAL VALUES OF NETWORK ELEMENTS

We shall next see how we can obtain equivalent circuits under Steady state conditions
ie., att= .
RESISTOR: -

A resistor obviously remains un effected. Hence a resistance R of a given network
remains as ‘R” only in the equivalent circuit at t = c. also.
INDUCTOR: -

We have induced e.m.f in an inductor across ‘L’ then




di

V =L—
dt
When Steady state has been reached ie., at t = «., there is no change of current
ie., ai_ 0 =V, =0
dt

Since, there is no inductor voltage, it implies that the inductor acts as short - circuit. Hence an
inductor acts as open - circuit at t = 0%, but it acts as short - circuit at t = 0.

I(t) t=0 L
—p—o

o—— V(i) —»

Equivalent circuit at t = 0. sC

it)

«— VO ———>pe

CAPACITOR: -
The current through a capacitor is given as

i=C d;ic where Vc— Capacitor voltage

At Steady state, there is no change of capacitor voltage
Ve _ 0 ~i=0

dt

It implies that the capacitor acts as an open - circuit at t = .

Hence a capacitor acts as short - circuit at t = 0%, but acts as open - circuit at t = co.
t=0 C

S

i(t)

+— Vi) —»

Equivalent circuit of t = oo.

L4 L4 ® O Ce

i(t)

“— Vi) ——d

SUMMARY:
% The current through an inductor cannot change instantaneously.
Voltage across a capacitor cannot change instantaneously.
At t (0%), an inductor acts as an open - circuit.
At t (0%), a capacitor acts as short - circuit.
At t (0%), with initial inductor current ‘lo’ is replaced by an equal current source with the
same polarity.
% At t (0*), with an initial capacitor voltage ‘V¢’ is replaced by an equal voltage source with
the same polarity.
% Att (0*) and at t = o, a resistor remains as it is, without any change.

*

R/
SO X4

R/
*

X/ X/
L XA X4



% An inductor acts as short - circuit, under Steady state conditions, for a forcing function

of constant magnitude like step (or) DC voltage.
A capacitor acts as open - circuit, under Steady state conditions, for a forcing function of

constant magnitude like step (or) DC voltage.
TRANSIENT RESPONSE IN TIME DOMAIN WITH CONSTANT INPUT
[DC EXCITATION]
RC CIRCUIT
The constant input as shown in figure..... is called step input (or) constant input. Since it

R/
A X4

steps from 0 to V volts at a time t=0
Let us assume that the voltage is suddenly applied at t=0 to the RC circuit shown in

figure. Let us assume the initial charge on the capacitor is zero.

t=0
P,
—

\Y, v —
— i c___ Ve

v
A +

0 » t(Sec)
FIG : RC Circuit with Step Input

v Att=0-—> Vc(O-)=0
Att=0*—"" Vc(O*)=0 [ Voltage across capacitor cannot change instantaneously]

Initially it act as short circuit

. \
S0 =—
©)=1
Let ‘i” be the current flowing in the circuit when the switch is closed at t = 0. Using KVL,

the equilibrium equation is

1.
RHEI'dt:V ...(1)
Differentiating the equation (1) with respect to time t’.
Rﬂ+ii:0:>ﬂ+ii:0 :>[D+i}i=0 ..(2)
dt C dt RC RC

The equation (2) is a first order linear homogeneous equation. Hence the total solution

will have only complementary function, and particular integral is zero.

i(t) = Ae V/FC .. (3)
To evaluate the constant ‘A’ we will use the initial condition i.e.,
. \Y
i(0%) = R
. \Y
i(0)| 0= A=
. V _ ) V.
.'.|(t):Ee t/RC (or)l(t):Ee Y ()

This solution is called Natural response of the circuit and also called as the
complementary function. Where 1=RC is called the time constant of an RC circuit.

VOLTAGE ACROSS CAPACITOR:

t
V. = éju dt :é!vﬁe—“fdt — Rlcﬁ[e—“f]g



F:/_C(— RC)[e " Ji= Vet —1]=Vi-et] ...

As ‘t’ is varying from 0 to o the time response characteristics of current and voltage
across the capacitor from equations (4) and (5) are shown in figure.

V Response
A

> tinsec

0 T

The transient solution is a total solution of the circuits i.e., i(t)=iss+it = Ee_t“ . Where “iss’

is steady state value and ‘it’ is the transient value. The response of the circuit will depend upon
‘. If 'R" and ‘C’ are larger then the circuit takes longer time to settle down to the new steady
state value.
TIME CONSTANT
The interpretation of the time constant as ‘the time interval during which the response of the
circuit starting from any point of time during the transient interval, would have reached its
final value if it had maintained its rate of change constant at the value it had at that point of
time”. If the time is equal to one time constant then Vc = V(1-e1) = 0.632V. The time constant
can be regarded as the time required for the transient response to attain 63.2% of the steady
state value starting from zero. In two, three, four (or) five time constants the time response
values would be 0.864, 0.95, 0.982 and 0.993 of its steady state value. For all practical purposes
most of the electrical instruments used for measurement of electrical quantities will have a least
count of 1% after approximately five time constants have elapsed.
RL CIRCUIT
The RL network is excited by a step input is shown in figure. Let us assume that at the

time t=0 the switch is closed and initially the current through the inductor is zero.

Att=0-— > iL(O-)=0 o

Att=0*—""> iL(O*)=0 :>< —

[ Current in the inductor cannot change instantaneously]

+

Using KVL, the equilibrium equation is —
. di v —
Ri+L—=vVv (1 T [ Vi
dt @ - /'> : %

d|+5i:!:>[D+B}i:X ....(2)
L L L

dt L

The equation (2) is a first order differential equation and the solution gives the response
of the circuit. To get the solution we will obtain the transient part [complementary function]
and steady state part [particular integral] separately. The transient part of the solution is
obtained by solving the homogenous part of the differential equation by making forcing
function to zero.

ie., I:D-I-B}i =0
L

The general solution is of the form
R

i, =Aet @3

Steady state part of the solution (or) particular integral is obtained from




R|. V . \Y
D+ I | = I =1= —R
L{ D+ }
L
To get the steady state part of the solution, substitute D=0 [for DC excitation].
. \Y \Y
I = =— o (4)
L«R R
L

The complete solution is

R
L —t
=i +It:E+Ae L

SS

To evaluate the constant A, we use initial condition i(0 *)=0 At t=0*

i(0)=Y 4 A 0= A+l = A=—T
R R R

. The complete solution is

i V. V &V —t/

f)=———e " =—[-e"""

. . . L
Where ‘1’ is the time constant and is equal to R

VOLTAGE ACROSS THE INDUCTOR:

di

The voltage across the inductor V|, =L ™

v U
R(l e )}_E(l)e”f:\i*ﬂet” —\e
dt R\r
As ‘t’ is varying from 0 to o the time response characteristics of current and voltage
across the inductor from equations (5) & (6) are shown in figure......
A Response

|
=V, =L

v
R

V|__

» tinsec

0

TIME CONSTANT
If the time is equal to one time constant then Vi = V(e) = 0.3678 Volts. The time constant can
be regarded as the time required for the transient response to attain 36.78% of initial value.

RLC CIRCUIT
The behaviour of an RLC series circuit with constant t=0 5
excitation is presented here. Such RLC circuits are of o >< fZIF_GU\
great importance, since they occur, in many practical +

situations. In the figure shown above. A battery of —
voltage ‘V’ is suddenly applied to the series RLC —
circuit with no-initial current in the inductor and - c ——
initial charge on the capacitor N
Att=0- """ iL(0)=0;Vc(0°)=0
Att=0+*—""> i, (0N =0;Vc(0*) =0




Applying KVL, the equilibrium equation is
ooodi 1.
Ri+L—+—|idt=V (1
x el 0

Differentiating with respect to time, ‘t’
- - 2 - 2 -
Rﬂ+Ld—|2+£i:O:iz+5g+ii:O:{D2+BD+i}i:O 2)
dt  dt® C dt° Ldt LC L LC
This is a second order differential equation and it is a homogeneous equation.
The solution of this equation is of the form

i =ne™ 4™ e)

Where ‘A’ and ‘B’ are constants to be determined from the initial conditions of the

network and m1 and mo are the roots of characteristic equations.

p2+Rpyt o
L LC

The roots of the characteristic equation are

2
e ey 2
L L LC -R R 1
m,,m, = =—=d |l —| ——
2 2L 2L LC

The response of the network depends on the nature of the roots m; and m>. Also depend
up on the value under radical. Three cases of these roots are explained below.

2 2
CASE 1 : When (EJ —iis positive. In this case (ij >i. Hence the roots are
2L LC 2L LC

negative real. The response of the circuit is with out oscillations as shown in figure, curve 1. In
this case the final value is reached more slowly and is said to be over damped.

2 2
CASE 2 : When Ry_L is equal to zero. In this case R i Hence the roots are
2L LC 2L LC

R . . . e
equal to T In this case the response rises faster than curve 1 without any oscillations and

no over-shoot on the final value. This response is called critically damped and is shown by
curve 2 in figure. The time of response is shortest.

2 2
CASE 3 : When [ij —iis negative i.e., (i] <i then the roots mi1 and my are
2L LC 2L LC

complex conjugates with negative real parts. The response of the system is oscillatory with
over shoots on the final value. This response is termed as under damped. Such a response is
often said to be ringing. The under damped behaviour is shown by curve 3 in figure.

A
i

/V Curve (3)

N

Curve (2

Curve (1)

0!  FIG:RESPONSE OF THE CIRCUIT > tinsec



THE EXPRESSION FOR CIRCUIT CURRENT
The expression for current of an RLC series circuit may be written as

2- -
u+2§a)nﬂ+a)§i =0
dt

dt?

Whose roots are m;,m, = - @, +w,/¢* —1 and the solution is
. ~C ot 2Lt L wg—mp Pt
i(t) = Cle[ | + Cze[ |

The solution will have different farms depending up on the value of ‘C’. If ‘C’ is less than
one then R<Rc and the response is under damped. If ‘C’ is equal to one then R=Rc and the
response is critically damped. If ‘" is more than one then R>Rc and the response is over
damped.



UNIT-3

LOCUS DIAGRAMS

An AC circuit is generally analyzed presuming the input voltage is constant. If
the values of R, L, C and f are varied the current in AC circuit gets affected in
magnitude and phase. The behavior of the circuit under such conditions can be studied
using LOCUS DIAGRAMS.
Example: - The performance of induction machine can be determined using the locus
diagram. The transmission line performance for different load conditions can be easily
evaluated using locus diagrams in power system engineering.

IMPEDANCE LOCUS DIAGRAMS

1. SERIES R - L CIRCUIT WITH CONSTANT ‘X.” AND VARIABLE ‘R":

Let us consider an R-L circuit with AC sinusoidal excitation in which the
inductance is constant and resistance is variable as shown in figure.

I ImgZ a
—

l

| XL
® 5 ;

I

Real Z
Locus of Impedance

The impedance of the network is Z = R + jXi, where XL = Lw. The current in the
network is
vV vV

I= = R—-jX Is in complex form
R+ jX, R2+XL2( a2 P
VR . VX, . 14 R . 14 X,
= 3 2—] 3 > :x—]y: > . > —J 5 . -
R*+X," "R +X, JR+x,2 R +x,> "R +x.}? (R +X,
12.¢
Where  x= LZ =1Cos¢ and y=———"=2—+5=1Sing
R’ +X, R +X,
)(2 +y2212: V2 = V2 *ﬁzl* VXL :—V*y
R*+X,> R?+X.? X, X, R*+X,? X,

2 2
:>x2+y2:—v*y:>(x—0)2+ y + V| oY
X, ox, ) |2x,

v with a radius of v ,
X 2X,

L

The above equation is a circle whose center is at (0,—
where ‘R’ is varying from 0 to . The current varies as a semicircle as shown in figure.

A N RY

»
FI'
|
|
|

0,——
2X, ) M

Locus of |




As the resistance is varied from 0 to « the current is traversing along the semicircle

AMB. The maximum horizontal component of I is AN = r

L
Power factor is Cos 450 = 0.707  lagging.
2
=V(cosp), . =Vx _r Watts .
2X, 2X,
2. SERIES R - L CIRCUIT WITH CONSTANT ‘R’ AND VARIABLE “X1":
Let us consider an R-L circuit with AC sinusoidal excitation in which the

inductance is constant and resistance is variable as shown in figure.
I

> AN/ Img Z A
R

z/ |
1O 7 N
|
R
Real Z

Locus of Impedance
The impedance of the network is Z = R + jXi, where XL = Lw. The current in the
network is

»
»

— V .
I= V' = ~(R—-jX,) Is in complex form
R+jX, R+X,
_WR v V. RV X
R +X,” "R +Xx] JR+x,2 R +x.? "R +x.? (R +X,
R 12,4
Where  x= % =1Cos¢ and y= —2—L2 =1Sing
R +X, R +X,
byt el v _ v R VR V#x
RP+X,” R*+X, R +X,° R

2]

The above equation is a circle having radius (2Rj and centre (% Oj The locus of the

) , V=xx V
=X +y = = x——
R 2R

current when L is varying from 0 to « is shown in figure.

"
A 2R

Locus of |

v

The current is maximum when the inductance is the circuit is zero. Therefore 1, =



The current and the voltage are in phase. Then the power factor is unity.
2
P =V({cos¢), . =V LV Watts .
R R

3. SERIES R - C CIRCUIT WITH CONSTANT ‘X" AND VARIABLE ‘R":
Let us consider an R-C circuit with AC sinusoidal excitation in which the
capacitance is constant and resistance is variable as shown in figure.

I
: LR | -
‘ R : Real Z

7 |
| X
v ¢ '

Locus of Impedance

ImgZ vy
. . . 1 .
The impedance of the network is Z = R - jXc, where Xc =C—. The current in the
W
network is
jo_ V. VReXo) VR VK
R-jX. R*+x./ R+x. "R +Xx/
v RV X
JR+x2 R +x.2 TR+ xR+ x>
R . VX
Where x:Icos¢:V—2 and y=Ising=—">5—
R+ X, R*+ X,
Xyt =1 = V? _ V2 XC_V* VX, :V*y

RP+X. R +X.72 Xo Xo R+X.7 X

= (v _o)+(y— Z)V(C jz - Lz)V(C jz

r as radius and | 0, v
2X

C

This is an equation of a circle with ( Jas the centre of the

C
circle. The current locus diagram is as shown in figure.

A

__wlocusof I

=L ____=
<vy



The maximum horizontal component is AN =

and this occurs at ¢=45° leading

C
(Current leads the voltage).

v &
P, =V(Icosg) =V* = Watts.
2X.  2X,
4. SERIES R - C CIRCUIT WITH CONSTANT ‘R’ AND VARIABLE “X¢”":
Let us consider an R-C circuit with AC sinusoidal excitation in which the

resistance is constant and capacitance is variable as shown in figure.

I

> AA~ R
R Ll

Jo e N

Locus of Impedance

Real Z

ImgZ vy
. . . 1 .
The impedance of the network is Z = R - jXc, where Xc =C—. The current in the
W
network is
jo V. VReXO) VR VX
R-jX. R*+X.) R+Xx. "R+x./
v RV KX
VR + X2 R +x.2 "R +x} R+ x>
R . VX
Where x:Icos¢:V—2 and y=Ising=—"">5—
R+ X, R*+ X,
2 2 v? V2 R V VR V#x
X +y =] = 5 == ; 2._:_* . —=
R°+X.,” R°+X.” R R R +X, R

(g (3]

. . . . 4 V
This is an equation of a circle having radius R and center at (E,Oj. The current locus

of a series RC circuit with variable C is as shown in figure since the current leads the
voltage.

Locus of I




RESONANCE IN AC CIRCUITS

INTRODUCTION

If the voltage applied to a RLC circuit is sinusoidal and happens to have the
same frequency as the natural frequency then a very sinusoidal current flows in the
network, even with the small voltage applied. This phenomenon is called
RESONANCE. Signals at hundreds of frequencies are almost available at different
locations waiting to be picked up. It is the phenomenon of resonance through
resonance networks which enables us to select the signal we want and discord others.
Hence resonance is an important practical phenomenon. The use of resonance networks
in Radio and communication systems is an established fact.

In general there are two types of resonance in electrical circuits:
@ Series resonance and
@ Parallel resonance
SERIES RESONANCE IN AC CIRCUITS
#¥ SERIES RLC RESONANCE IN AC CIRCUITS
I > AAA I 1 Let us consider a RLC series

I circuit with an AC sinusoidal excitation
R L C

as shown in figure (1). An electrical
v circuit is said to undergo resonance
when the net or total current is in phase
with the applied voltage. A circuit at
resonance exhibits certain characteristic
FIG (1): Series RLC Circuit properties.
A series RLC circuit is said to be in resonance when the net reactance is zero. By
varying o of the supply a Condition that the total reactance is zero can be achieved
when

I1X.=1X, IX1 4
1
= La)o I
Ca, > >
1 V=IR
®, = ,|— Rad /sec
LC IXc §
1 . :
~.the resonance frequency, f, = ———— Hz FIG (2): Phasor Diagram

27N LC

The voltages at resonance condition are shown in figure (2). The impedance at
resonance is Z = R + j0 is the minimum. The current at resonance is maximum and this

value is given by /,, =% Amps .

IMPEDANCE OF RLC CIRCUIT AS FUNCTION OF ‘w’
As o is varying from 0 to « the impedance of a series RLC circuit is also varying.

Z=R +j(La)—CL)(0r)Z =R+ j(X,-X,)
®
The variation of X1, Xc and Z are depicted in figure (3).
At resonance frequency, ®=wm, = 1/% . The impedance is minimum and the

admittance is maximum. At this instant Z = R and the voltage and current are in phase
and the power factor is unity.



The current in RLC circuit is given by,
V V

[ = =
2 2
\/R +(X, - X¢) \/RZ +(La)_LlC)2 R
The voltage across R is Vr then
Vi = /R ; =IR
R*+(Lo——)°
\/ ( C a)) g
Similarly,
X
v, = VX, 1 =X,
R +(Loo——)°
\/ ( C a)) ;
A\ 4
V.= VXc =IX, FIG (3): Characteristics

1
\/ R +(Lo-—)°
Co
At resonance VL =Vcand /, = 4 (maximum resonant current) and for other

frequencies ‘I will be less than ‘Io” as shown in figure (4). The peak of this current can
be increased with decrease in R. Hence the small resistance is said to give sharp tuning
and large resistance broad tuning. A desired frequency can be selected by decreasing
the resistance. Effect of resistance on current variation is shown in figure (5). This
selection of desired frequency with reduced value of R is called selectivity of RLC series

circuit. A
Al I
|4
ly=—F----->
R 1
:
|
|
|
|
! Q
0 (ON) ” 0
FIG (4): Current FIG (5): Different R’s

QUALITY FACTOR or VOLTAGE MAGNIFICATION FACTOR

The quality factor Qo of the resonant circuit may also be called as figure of merit
of the circuit (or) magnification factor. The value of Qo represents the quality of the
circuit in terms of its voltage magnification. The ratio of the voltage developed across L
or C to the applied voltage is termed as voltage magnification and is denoted by as ‘Q’".
We have
0, = (Voltage across the inductor at resonance) OR (Voltage across the capacitor at resonance)

0

Supply Voltage Supply Voltage

Cn X A ToXe | Lo 1
F=R|RILR|T @ TR OReoR

Puttiing o, = ‘/%, we get
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JLC
CONDITION FOR MAXIMUM VALUE OF Vi BY VARIATION OF INDUCTANCE
By varying inductance the condition for the maximum voltage across the
inductor and the corresponding frequency can be determined as given below,
The voltage across the inductor is
VX,

\/R2 +(X, _Xc)2

L 1 1 |L
= OR R el

V, =1X, =

. . . av,
The voltage across the inductor is maximum when —* =0

dx,
1

dVL :\/R2 +(XL _/Yc)2 *V_@[Rz +(XL _Xc)z]ig*z(XL _XC):O
dX, 2

= R?+X. =X, X,

2 2
Lx, _RxS
Xe

The frequency at which the voltage across the inductor is maximum is derived as
shown below,




UNIT-4

NETWORK FUNCTIONS
INTRODUCTION: - A function relating currents (or) voltages at different ports of the network,
called a transfer function is found to be mathematically similar to the transform impedance
function. These functions are called Network Functions.

PORTS [or] TERMINAL PAIRS

I 2
vllx - One —port
1y | Network
Fig (a)
1 O—— 3
i Network o 3!
Ii 15}

IA Two —port < 22
b | Network L b

Fig (b) Fig (c)

Fig (a), (b) & (c): REPRESENTION OF ONE PORT, TWO PORT & N-PORT NETWORKS
In fig.(a) is shown a representation of a one-port network. The pair of terminals is connected to
an energy source which is the driving force for the network. So that, the pair of terminals is
known as the driving point of the network. Fig.(b) shows a two port network. The port 1-11 is
assumed to be connected to the driving force (as an input), and port 2-2! is connected to a load
(as an output). In fig.(c) shows a representation of an N-port network for the general case.

COMPLEX FREQUENCY
We considered only DC and pure sinusoidal as the forcing functions. However, circuits may be
subjected to other types of forcing functions also as for example exponentially increasing (or)
decreasing sinusoidal. In order to facilitate this study, a new concept of frequency called
“complex frequency” is introduced. Thus complex frequencies is defined as S = ¢ + jo, and by
setting o or ® as both equal to zero, the functions are obtained.
Case (1) Let o = 0: we have S = jo, we know that this is the frequency of a purely sinusoidal
alternating function.
Case (2) Let » = 0; we have S = g, a real number, either positive (or) negative. This gives us an
exponentially varying function. [Exponentially decreasing if o is negative]
Case (3) Let 0 = 0 & ® = 0, we have S = 0. This is representative of a direct function.

A m A A >0
\% I —
(o) U V(or) I V (or) I <
o<()

>t =t >t

w#0,0=0 w=0,0=0 w=0,0#0
Fig (a), (b) & (c): REPRESENTION Sinusoidal, DC & Exponential excitations

Since ‘S” is complex in nature and is also variable, it is termed as “complex frequency variable”.
Its real part ‘0’ is termed as “Neper frequency” with units Nepers / Sec and its imaginary part
‘W’ is termed as “Radian frequency” with units Radians / Sec.

NETWORK FUNCTIONS
The transform impedance at a port has been defined as the ratio of voltage transform to current
transform, with zero initial conditions with no internal voltage (or) current sources except
controlled sources. Thus we write

2()=YS)

1(s)




Similarly, the transform admittance is defined as the ratio of current transform to voltage

transform i.e.,

Y(g) = @ = L

V(S)~ Z(S)

The transform impedance and transform admittance must relate to the source port 1-11 (or) 2-21.
The impedance (or) admittance found at a given port is called a driving point impedance (or)
admittance i.e., transform impedance (or) admittances of port 1-1' and 2-2! are also called as
input and output driving point impedances (or) admittances respectively.
Because of the similarly of impedance & admittance, these two quantities are assigned one

name “Immittance” function [combination of impedance and admittance]. An immittance

function is thus an impedance function (or) admittance function.
IMMITTANCE FUNCTIONS FOR CIRCUIT ELEMENTS

ELEMENTS IMPEDANCE FUNCTION | ADMITTANCE FUNCTION
Z(S) Y(S)

RESISTOR (R) in © R % _G
INDUCTOR (L) in H SL SLL
CAPACITOR (C) in F % s

1 1 1
Therefore Z(S)=R=SL=— & Y(S)=—=G=—=5SC
SC R SL

IMMITTANC FUNCTION FOR SOME SIMPLE NETWORKS

NETWORKS IMPEDANCE FUNCTION | ADMITTANCE FUNCTION
Z©S) y(S)
R L 1
oo Rt R+SL
R ¢ 1 _SRC+1 SC
o——~——] |—o SC sC SRC+1
- ¢ o, 1 _SLC+1 SC
o———{ |—o sC~ sC SLCA1
R oL ; RagL. L _SRC+S’LC+1 Ne
O AP ——| |—0 SC SC SRC+S?LC +1
R
—AAA
o— L o SRL R+SL
17 R +SL SRL
L




R
—— =AM
R SRC+1
[ SRC+1 R
|
C
T.
akidl SL S2LC+1
o— —o O Y E—— _—
| S’LC+1 SL
C
R
—ANN——
o et o SRL S2RLC+SL+R
| S2RLC+SL+R SRL
C

The transfer function is used to describe networks which have at least two ports. In general, the
transfer function relates the transform of a quantity at one part to the transform of another
quantity at another part. Thus transfer functions have the following possible forms:

v" The ratio of one voltage to another current (or) one current to another voltage is Z(S) or Y(S).
v" The ratio of one voltage to another voltage called voltage transfer function; G(S)

v" The ratio of one current to another current called current transfer function; a (S)

It is conventional, t define transfer functions as the ratio of an output quantity. In terms of the
two-port network, the output quantities are V2(S) & I2(S) and the input quantities are V1(S) and
I1(S). Using this scheme, we have

1. Transfer, impedance function; Z,,(S)= \1/2((88))
1
2. Transfer Admittance function; Y,,(S)= L(S)
Vi(S)
3. Voltage transfer function; G,,(S)= V,(S)
Vi(S)
- L(S)
4. Current transfer function; a,,(S)=--%
1,(S)

NOTE: - The ratio of an input Quantity to an output quantity is termed as the “Inverse
transfer function”

5. Inverse Transfer impedance function; Z,,(S)= Vi) (S)
1,(S)
6. Inverse transfer Admittance function; Y,,(S)= L,(S)
V,(S)

Vi (S)

7. Inverse Voltage transfer function; G,,(S)=

—

—~~
n

N

Z1AE
L(S)
POLES AND ZEROS OF NETWORK FUNCTIONS

If the network functions of a circuit (or) system are known, the behaviour of the circuit can be
easily understood. Network functions are generally characterized by their poles and zeros.
The poles and zeros of network impedance functions facilitate both network analysis and
synthesis. We know that the driving point impedance Z(S) is given as a ratio of two
polynomials in the complex frequencies considers the network function.

8. Inverse current transfer function; a,,(S)=




N(S) = p(S)  a,5"+a,S"" +...+a,,S+a,
q(S) b,S™+b,S™ "' +....+b_ S+b,_
Where ag, ai..., an & bo, by, ..., bm are coefficients which are real & positive, if the network is

passive and does not contain any dependant energy sources.
Let Zo, Z1, ..., Zn be the roots of the equation p(S) =0 and po, p1,, -.... , pm the roots of the equation

q(S) =0. also let %o _H. Where H is termed as “Scale factor”.
Po

The network function can be expressed in the form

(S-z,)(S-2,).....(S-z,)

N(S)=H

(8-p.)(S-P2)-AS—P0)
By putting S = z1, 2o, ..zn, the network function becomes equal to zero. Hence the roots z1, z», ...,
Zn are termed as “Zeros” of the function. Similarly by putting S = p1, p2, .., pm the network
function becomes infinite. Hence the roots p1, p2, ..., pm are termed as “poles” of the function.
All the roots are complex frequencies. If zi, z», .. zn are all unequal, the network function is said
to have n distinct zeros. Like wise, if p1, p2,...,pm are all unequal, the network function is said to
process m distinct poles. If on the other n and, some of the zeros (or) poles are equal, the zero
(or) pole is said to have repeated multiplicity. For example, if a zero repeats it self, say z1 = z, it
is said to be double (or) have multiplicity 2. Similarly if a pole repeats it self twice, say ps = pe=
p7, it is said to be triple (or) have multiple3.
The poles and zeros of a rational network function for S = 0 & S = w are termed as “external
poles & zeros”, and all other poles are zeros are termed as “Internal poles & zeros”. If both
internal & External poles and zeros of a network function are taken into account, then, total no
of poles = total no of zeros. A function has either a zeros or a pole at S = 0 and at S = «. The
poles and zeros of a network function are usually plotted in a S-plane.
Example: - Consider a network function

NO)= e ot e
(S+2)(S+1+j1)(S+1-j1)
By inspection, for expression N(S), has two zeros at E
S=0& S = -5 and has three poles S = -2, S = - (1+j1) ORI
& S = - (141). These poles and zeros are shown in !

the S-plane. Zeros are shown as circles (or) simple o
‘0" and poles are shown as crosses (or) simple "X’ by
standard convention. Such as display of zeros &
poles of a network function in the S? plane is termed -y
as “pole - zero plots” (or) pole zero configuration”.
The pole zero plot is very useful in describing the

FanY
A
Q v

behaviour of the network following fig. Fig.: Pole - zero plot
SIGNIFICANCE OF POLES & ZEROS
Consider the impedance function Z,,(S)= \171((85))
1

At every zero of the function, the network impedance is zero, and hence voltage would be zero.
This represents a short circuit. Thus at critical frequencies represented by the zeros of the
function, the network behaves as if it is short circuited. Also, at critical frequencies represented
by the poles of the function, the impedance is infinite and hence current would be zero. This
represents open circuit condition.

1,(S)

Similarly we consider the driving point admittance functionY,(S)= m , we see that at every
1

zero of this function, the network admittance is zero and this represents an open-circuit



condition. Also at critical frequencies represented by the poles of the function, the admittance
of the circuit is infinite and this represents a short -circuit condition. With regard to transfer
functions also, it can be shown that the zero’s of such functions determine the magnitude of the
response and the poles determine the time ~domain behaviour of the network response.

N o=

NECESSARY CONDITIONS FOR DRIVING POINT FUNCTIONS
(With common factors is p(S) & q(S) cancelled)
The coefficients in the polynomials p(S) & q(S) must be real & positive.
Poles & zeros must be conjugate if imaginary (or) complex.
The real part of all poles & zeros must be negative (or) zero, if the real part is zero, then that
pole (or) zero must be simple i.e., all the roots of p(S) =0&  q(S) = 0 lie on the left half of S
-plane and simple roots may lie on the imaginary (or) jo -axis.
The polynomials p(S) & q(S) may not have missing terms between those of highest and
lowest degrees, unless all even (or) all odd terms are missing.
The highest degree of p(S) & q(S) may differ either zero (or) one only.
The lowest degree of p(S) & q(S) may differ either zero (or) one only.
NECESSARY CONDITIONS FOR TRANSFER FUNCTIONS
(With common factors in p(S) and q(S) cancelled)

The coefficient in the polynomials p(S) & q(S) of N(S)= &3 must be real and those for q(S)
q

must be positive

Poles & zeros must be conjugate if imaginary (or) complex.

The real part of poles must be negative (or) zero, if the real part is zero, then that pole must

be simple. This includes the origin.

The polynomial q(S) may not have any missing terms between that of highest & lowest

degrees, unless all even (or) all odd terms are missing.

The polynomial p(S) may have terms missing between the terms of lowest and highest

degree and some of the coefficients may be negative.

The degree of p(S) may be as small as zero in dependant of the degree of q(S).

a). For G and a :- The maximum degree of p(S) is equal to the degree of q(S)
)

b). For Z and Y :- The maximum degree of p(S) is equal to the degree of q(S) plus one.



UNIT-5

NETWORK SYNTHESIS

INTRODUCTION
Two important topics with in the domain of Electric Network Theory are Network Analysis and
Network Synthesis. The difference between Network Synthesis and Network Analysis is as
follows:
“If the network and excitation (input) are given and the response (output) is to be determine, the
problem is defined as Network Analysis”.
“When the excitation (input) and the response (output) are given and it is required to determine a
network, the problem is defined as Network Synthesis”.
There fore we can say Synthesis by the process of finding a network corresponding to a given
Driving Point Impedance (or) Admittance. Such a Synthesis is called Driving Point Synthesis.
The starting point for any network synthesis problem is the network function N(S) which is the
ratio of response (output) to the excitation (input). The first step in a network synthesis is to
determine whether the network functions N(S) could be realized as a physical passive network.
One of the elements of realizability is positive real function which is important because it
represents physically realizable passive driving point impedances ie., impedances and
admittances. Another element of realizability is a class of polynomial known as Hurwitz
Polynomial. It is infact the denominator polynomial of the network function satisfying certain
conditions.
Basically, there are two methods of synthesizing One - Port network, first one is the partial
fraction method, and the network obtained by this method of synthesis is called FOSTER FORM
of network and the second method of synthesis is continued fraction expansion method, and
network obtained by this method of synthesis is called CAUER FORM of network. Quite often the
term canonic is used for foster and cauer form. Because CANONIC means the network contains
the possible number of elements.

The elements required in synthesizing these networks are linear, passive and time invariant and

are inherently causal ie., in such networks the response (Effect) can not precede the excitation

(Cause) and therefore, given the transfer function we need not bother about the causality

condition. We must test the stability of the network which indirectly means we are left with the

checking of physical realizability of H(S) in terms of the following conditions:

v H(S) should not have poles in the right half of the S - plane.

v H(S) should not have multiple poles in the jo - axis.

v The degree of the numerator of H(S) should not be more than unity with reference to the
denominator. This means in order to test H(S) for its physical realizability we have to test the
denominator polynomial of H(S). Infact the denominator polynomials of the transfer function
belong to across of polynomials known as Hurwitz polynomials.

HURWITZ - POLYNOMIAL
A polynomial is said to be Hurwitz if the following conditions are satisfied.

_p©)
NG=4s)

> p(S)isreal when Sis real.

» The roots of p(S) have real parts which are zero (or) negative which means these lie along jw -
axis as in the negative half of S - plane.

Properties:-

Suppose p(s) is given as
p(s)=a,S"+a, ,S" ' +---+a,S+a,

Then

> All the coefficients an, an1, ...,a0 must be real and positive which means that between the
highest order term in ’S” and the lowest order term. None of the coefficients is zero unless of
course the polynomial is even (or) odd.



» Hurwitz polynomial is that either odd or even parts have roots on the jw - axis only. If we

denote the odd and even parts of p(S) by n(S) and m(S) respectively then
p(S) =n(S)+m(S)

Then n(S) and m(S) both have roots on the jw - axis only. Therefore, if p(S) is either even or odd
its roots lies on jo - axis.

» The continued fraction expansion of the ratio of the odd to even parts (or) even to odd parts of
p(S) yields all positive quotients.

CONTINUED FRACTION EXPANSION REQUIRES DIVISION AND INVERSION AND HAS

THE FOLLOWING IMPORTANT CHARACTERISTICS

v" The continued fraction expansion of even to odd parts (or) vice - versa of a polynomial must
be finite in length ie., the process terminates and does not continue indefinitely.

v" If the continued fraction expansion of odd to even parts (or) vice - versa of a polynomial yields
positive quotient term, then the polynomial must be Hurwitz to with in a multiplicative factor
W(S) ie., if we write

F(S)=W(S)xF(S)
Then, F(S) is Hurwitz if W(S) and F1(S) are Hurwitz. Therefore, in order to check whether the
given polynomial is Hurwitz (or) not following tests must be carried out.
> All the coefficients of the polynomial must be real and positive and none of them must be
missing except if the polynomial has only even (or) odd order terms. This can be done by
inspection of the polynomial, no calculation is required.
> The quotients of the continued fraction expansion of even to odd parts (or) vice - versa of
the polynomial are positive. This is done by actual carrying out the continued fraction
expansion. However, it is to be noted that if p(S) is completely even (or) completely odd
then the second parts for continued fraction expansion are obtained by differentiating p(S)

P6)

with reference to ‘S’ ie., the continued fraction be begin with has the parts = % It can be

seen that if p(S) is completely odd then p!(S) is completely even and vice - versa.
POSITIVE REAL FUNCTIONS
A very important class of functions is known as POSITIVE REAL FUNCTIONS. These functions
are important in the sense, that if a function is positive real, this represents a physically realizable
passive driving point Immitance.
Now, a function F(S) is said to be positive real if it satisfies the following conditions:
* F(S)isreal for real ‘S’ ie., F(o) is real (as S = c+jw) we take only real part of ‘S’
= Real F(s)>0if Re(S)>0
There fore, we provide here an alternative set of necessary and sufficient conditions for a rational
function with real coefficient to be positive real. These are:
1. F(S) must have no poles in the right half of the S - plane.
2. F(S) may have only simple poles on the jo - axis with real and positive residues.
3. ReF(jo)=0, For allo.

Let us understood one by one the implication of these three conditions.
The first one requires that we must test the denominator of F(S) whether it is Hurwitz (or) not
which can be obtained by continued fraction expansion of the polynomials.
The second condition is tested by finding partial expansion of F(S) and checking whether the
residues of the poles on the jo -axis are positive and real. Therefore if F(S) has a pair of poles at
S =tjom, a partial fraction expansion gives terms of the form.
K, N K,
s—jo, S+jo,

The residues of complex conjugate poles are conjugate themselves. If the residues are real which
these should be for F(S) to be positive real then K; = K] so that



K, N K, _ 2KS
S—jo, S+jo, S+’

Therefore, if K1 is found to be positive, then F(S) satisfies the second condition.
The third condition we first find the real part of F(jo) from the original function F(S) suppose,

F(s)= P©S)
Q(S)
Say M1, Mz and N1, N2 are the odd and even parts of P(S) and Q(S) respectively such that
A HOERE)
M, (S) +N,(S)

Let us obtain even and odd parts of F(S), multiply numerator and denominator of F(S) by

M, (S)-N,(S)we obtain

(5)+N (S) « My(S) =N, (S)

M,(S)+N,(S) M,(S)-N,(S)
)~
)=

F(S) = (5) 2(S) =N (S)N,(S) | My(S)N,(S) =M, (S)N,(S)
M;(8)-N;3(S) M;(8)-N;3(S)
\ J \ J
Y Y

Even function 0Odd function

Note: - Multiplication of even with even (or) odd with odd gives even function where as
multiplication of odd with even (or) Vice - versa gives an odd function.
If we substitute S = jo we find the even part of any polynomial is real where as the odd part is
imaginary so that if F (jo) is written as

F(jw) = Re[F(jo)] + jIm[F(jo)]

Then

Re [F(jo)|= Even[F(S)],_,

jim|[F(jo)]= Odd[F(S)L.;,
Therefore to test for the third condition for positive realness we determine the real part of F (jo) by
finding out the even part F(S) and then substituting S = jo we then check to see whether
Re[F(jw)] = 0for all o.

The denominator of Re[F(jo)]is always a positive quantity because

M (jo) =N (jo) = Mj (jo) + N3 (joo) 2 0
Since A (®?) represent an even polynomial and may be written as

A=A, 0" +A, 0" +A, 0"+ + A, L, 0 +A,,
If all the coefficients of A (w?) are positive then A (w?) is positive for all values of o between 0
andoo. However, if all the A - Coefficients are not positive then a test known as STURM's test is
carried out which is explained as follows:
Let us put ®? = x and assume A (®?) = Po(x). The above equation reduced to

A(0*)=P,(x) =a,x" +a, X" +--+a,_, x+a,
Here Po(x) is the first of a set of functions known as Sturm’s functions. The second function is
obtained by differentiating the first one, thus

P,(x)=a,rx"" +a, (r-1)x"7* +
Now if Po(x) is divided by P1(x), it gives a two - term quotient, the remainder is the negative of the
next Sturm’s function Px(x) ie.,

Py (%) =0, X+ 0L, + —P,(x)

P, (x) P (x)
Here P>(x) is one degree lower than Pi(x). The division is repeated to yield the next Sturm’s
function Ps(x) ie.,




ST 1)

P,(x) P,(x)
The procedure is continued till (i) the last Sturm’s function P of degree zero is found (or) (ii) the
remainder resulting from the division process is identically zero.
After we have obtained P, P,,:---- ,P., Sturm’s theorem states that the number of zeros of Po(x) in

the interval 0 < x < o is equal to S» - Sp where Sw and Sp are the number of sing changes in the set
(Py,Py,eeeee ,P.). Evaluate at x = 0 and x = « respectively. If, however, there are no sign changes ie.,
S» - Sp = 0 then A(w”)>0, for all ® . It is to be noted that a0, - ,a,are of no consequence to

find Py through Pr and are to be ignored.
PROPERTIES OF POSITIVE REAL FUNCTIONS

PE©S)
q(5)

The coefficients of the numerator and denominator polynomials in N(S)= are real and

positive, as follows
v" N(S) is real when ‘S’ is real.
Complex poles and zeros of N(S) occur in conjugate pairs.

a, . o
The scale factor H = —%is real and positive.
0

v

v

v" The poles and zeros of N(S) have either negative or zero real parts.

v Pole of N(S) on the imaginary axis must be simple and their residues must be real and

positive. The same statement applies to the poles of

1
N(S)
v' The degrees of numerator and denominator polynomials in N(S) differ at most by 1. Thus
the number of finite poles and finite zeros of N(S) differ at must be by 1.
v" The terms of lowest degree in the numerator and denominator polynomials of N(S) differ in
degree at most by 1. So, N(S) has neither multiple poles nor zeros at the origin.
The passive elements to be used for synthesizing a network the R, L and C and the impedances
and / or admittances of these elements are rational function of ‘S’ as is seen here under...
v If F(S) = SL where L is a real positive number, it is a positive real by definition and L is an
inductance if F(S) is impedance.
v" F(S) = R where ‘R’ is a real positive number, here again F(S) is positive real by definition
and if F(S) is an impedance ‘R’ is the resistance.

v F(S) :EWhere ‘K’ is a real positive, here F(S) is positive real by definition and %is the
capacitance. Here F(S) is positive real because when ‘S’ is real F(S) is real and when real

part of $>0,Re(S)=oc >0 then Re(Ej S R
S) o +ow
Therefore, F(S) is positive real. So, the passive impedances are positive real functions. Similarly, it
is clear that the admittance.

Y(S)=KS;Y(S) =Kand Y(S) = %

are positive real if ‘K’ is real and positive.
LC - IMMITANCE FUNCTIONS
Let us consider the impedance of a passive one - port network.
26 - MO NS )
M, (S)+N,(S)
The average power dissipated by the one - port network having reactance elements L and C is
zero which mean that the real part of Z(jo)is zero ie.,

Re[Z(jow)|=[Z(jo)},., =0




[Z(j) |5y =

M1 (S) Mz (S) — N1 (S) Nz (S)

M3 (S)-N
which means M, (S) M, (S)— N, (S) N,(S) =0.

@

For this situation to raise either of the following cases must hold

(a) M;=0=N>
(b) M2=0=N;y
N,(S) _

From equation (1), for (a) Z(S) = M, (S)

This means that the driving point Immitance

——(3)and (b) Z(S)=

e Isaratio of even to odd (or) odd to even polynomials.
e Has poles and zeros of Z(S) (or) Y(S) on the imaginary axis.
e The poles and zeros interlace on the jo - axis ie., the poles and zeros alternate on the jo -

axis. This is known as separation property.
The separation property is given by 0 <o, <o, <o, <

given as

Z(S) =

< owhere there frequencies in Z(S) are

K(S* +0)(S* +@3)-+(S* + 5, 4)

S(S”+@)(S +0}) (S + 0}, )

-0©)

Here frequenciesw,,®,,---,®,, ;are known as internal zeros and ®,,0,,---,»,, ,are known as

internal poles. The critical frequencies at S = 0 and S = o are called external critical frequencies,

expanding x(S) in to partial fraction we have

K, 2K,S
7(S)=—"0 + 27 L ToM4T o L. +K S ———(6
O)="g gy .5 -=-(6)
Let S = jo we see that Z(jw)has zero real part and can thus be rewritten as a pure reactance jx(w)
Z(jo)=j| o 2K0 Lk co} ———(7)
= jx(@)
Differentiating with respect to ‘o” we have
2 2
dx(w) _ K_g YK+ M ...... ——(8)
do o (0 —®7)

. . e . dx
Since all the residues K; are positive it is found that for an LC function ——* 2>

Similarly for an admittance function it can be shown that

of the LC function.
A

do

»
>

Frequency
o —p

dB(w) > O0where B (o) is the susceptance

Thus on plotting X againsto,
the slope of the curve is
always positive ie., X always
increases with the increase of
o. Thus as we increase the
frequency from a value o,
the impedance X increases
from Xireaching infinity at a
certain higher values as
shown. Under this conditions
of frequency at infinite
reactance, the sign of X
changes ie., X(w) becomes - .

For higher values of o, reactance X increases becoming less and less negative. Thus, the slope is
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again positive as given by curve CD in figure. At some frequency, X becomes zero and then
beyond this frequency, X again becomes positive and ultimately reaches infinity at a higher
frequency. Beyond this frequency, the cycle repeats. Frequencies at which X becomes zero are
called ZERO’S while the frequencies at which X becomes infinite in magnitude are called POLE’S.
The zero frequencies are called Anti - resonant frequencies.

. . . dX., . .
Now in a reactive network since — is always positive the poles and zeros must alternate, ie., zero

must lie in between two poles and similarly a pole must lie in between two zeros. This property of
a reactive network is referred as the separation property.

e The Highest (or) Lowest powers of numerator and denominator must differ by unity.

e With this we observe that at S = 0 at S = oo; there is always a critical frequency whether

zero (or) a pole.
RC - NETWORK FUNCTIONS

The fig.s (a) and (b) shows simple parallel RC and series RC networks. The impedance of the
parallel network of fig. (a) is

Ra
Fig.: (a) Fig.: (b)
Z&)-R|C. = | — | -
Clg, 1
Ra Ca
and the admittance of the network of figure (b) is Y, (S) = Ri s S (2)
b S+ 1
Rb Cb
A comparison of equations (1) and (2) shows that both have their poles on the negative real axis in

Y(S)

the S - plane, comparison also shows that Z(S) and Thave the same from for these two

particular networks.

NOTE: - -
111 g BRES oy 2= R 1
zS) R, 1 R, R, 1+R,C,S 1
C,|S+
C,S ! R,C
(_
_)
1 R,C,S+1 1 1, S
Z,(S)=R, cCs beS (or) Yb(s)=Z =5
b b b(S) IRb S+ 1
Rb Cb
(_
The general form of Zrc(S) is as follows
Z,(6) =IO R
S(S+o,)-
By partial fraction expansion the above equation can be reduced to
ZRC(S):&+ LS + K, +--+K, ———(4)

S (540, (S+o0,)
If zero at S = 0, then equation (3) becomes



_H(S+0,)(5+0,)- L
Zpc(S)= 510)(S+0,) (5)

Which has the same of partial fraction expansion as equation (4) but with Ko =0
A

jo
Last zero may be at
infinity

\

O O O

/

First pole may be at origin

v

From these results we may state the following properties of RC impedance functions:
1. All poles and zeros are simple and are located on the negative real axis of the S - plane.
2. Poles and Zeros are interlaced.
3. The lowest critical frequency is a pole which is at the origin only if K, # 0.

4. The highest critical frequency is a zero which is at infinity only if K_ =0.
5. The residues evaluated at the poles of Zrc(S) are real and positive.
Now that the poles and zeros of RC impedances are on the - ¢ axis, let us find the relative

locations of the critical frequency, for which, we find out the slope of Z(S) atS=c
dZRC(S):K_S+ -K 2+...+—_Ki 5
do - (o+0)) (c+o0,)

It is clear that @ < 0ie., it is negative.
c

Since the slope of Z,.(c)is always negative as - o
decreases (or) ¢ increases, Z,.(o)must increase until at
S=o0,,Z(-0,)=». At 6 =-0,,Z(c) changes sign and is 20
negative because between-o, & —c,, the term in the

denominator (c+0o;)becomes negative whereas the

other three factors are positive and it continues until the
next critical frequency (-o,)is reached where the

F 3

function is zero. Since Z,.(o)increases for decreasing - ¢

, the third critical frequency must be a pole at S =-c,. As

Zyc(o)changes sign at —o;, the final critical frequency

must be zero at S=-c,. Beyond o©=-oc,the curve | .

becomes equal to Z(x) = 1.

RL - NETWORK FUNCTIONS
The fig.s (a) & (b) shows simple parallel RL and series RL networks. The impedance of the parallel
network of fig.(a) is

N R L

Fig. (a) Fig.: (b)




Ly

s =)
(S+R"J
Lb

A comparison of equations (1) and (2) shows that both have their poles on the negative real axis in

Z(S)

the S - plane, comparison also shows that Tand Y(S) have the same form for these two

and the admittance of the network of figure (b) is Y, (S) =

particular networks. The general form of Zgr.(S) is as follows
K;S N K,S . K;S

Zr (S) =K, + = +.-+K_S
S+o, S+o, S+o,
The pole zero configuration as shown in figure _
Ajo
Last pole may be at
infinity

v

7

First zero may be at origin

From these results we may state the following properties of RL impedance functions:
1. Poles and zeros are simple and are located
on the negative real axis of the S - plane.

2. Poles and zeros are interlaced.

3. The singularity nearest to (or at) the origin
is a zero. The singularity nearest to (or at) S
= oo must be a pole.

4. The residues of ZgrL(S) the poles must be
real and negative however the residues of

Zp (S) —c;
S

4 Zu(o)

are real and positive.

5. The slope of ZgrL(S) is positive and
Zgy () > Zg, (0).
6. The plot of Z, (S)as a function of o are as

shown in fig. , ,
Realization of canonic forms [Foster & Cauer Forms]

Forster form-1: -
Since we know that the poles & zeros of an LC immittance function lie on the jo—axis, the partial

fraction of the LC immittance function will, in general, be of the form
F(S) = Ko + 22K282 + 22K4SZ e +K_S -——(1)
S S+w;, S+
While synthesizing such a network each term in the partial fraction is associated with an element
(or) a pair of elements and then these are to be connected in series. For example if F(S) is Z(S) then

K . .
the term ?0 represents a capacitor of 1 Farads, the term K_S an inductor of K, Henry and the

0

K,S o . :

term ——2— represents a parallel combination of L & C where C is Farads and the inductor
+ o, 2

: K, .

is of —* Henry and the elements are connected as shown in Table.

®,



It is to be noted that since all poles of LC immittance function lie on jo—axis, we can remove all

the poles simultaneously using partial fraction. If Z(S) has no pole at the origin [and so it has a
zero at origin] the first term in the partial fraction will be missing [Co will be absent]. Similarly, if
there is a zero rather than a pole at infinity then the inductor will be absent.
Forster form - II : -
However if the function F(S) is given in admittance form Y(S), then the partial fraction expansion
of Y(S) gives a circuit consisting of parallel branches. Let

Y(S)= K + ZZKZSZ + 22K482 doenens +K, S -—--(2)

S S +m;, S +o;

Each term here represents an admittance of an element (or) a pair of elements to be connected

K . 1
across a two port network. ?0 represent an inductor element of — Henry and K_S represents

0

capacitor of K, Farads. Similarly, if L & C are in series, their admittance is L= Henry &

2

C= 2K22 Farads. Therefore, the network takes the shape as shown in Table.

©,

Cauer form-1: -

Continued fraction expansion is used in cauer method. In first cauer from we arrange the
polynomials in the numerator and denominator in the descending powers of S and we eliminate
during every step a pole at infinity (S=o). If the original function is Z(S) with the order of

numerator is 2n, then that of the denominator is 2n-1, we eliminate a pole at infinity by diving
numerator by the denominator, and thereby we get the quotient is Z1(S). Therefore, the remainder
function Z»(S) is still LC immittance function and is

Z,(5)=2(5)~2.,(9)
Now the denominator of Z>(S) is of the order 2n-1 where as the numerator becomes 2n-2 as the
difference in power must be one. Since in cauer-I, we always eliminate a pole at infinity, therefore,
we invert Z(S) to obtain,

Again divide this numerator of Y2(S) by its denominator we have Z3(S) which will forms the series
element. Next we again invert Y4(S) so that we can have a pole at infinity. The process is continued
till the remainder is zero. In fact, this process is known as continued fraction expansion and is
given as follows:

Since the expansion of Z(S) looks a ladder, the network so synthesized are known as ladder

network.
Whenever be the form of the original function whether Z(S) (or) Y(S), in first form of cauer a pole

is eliminated at infinity (S=o0) at every step. Therefore, if the numerator of the original function

has power of S smaller than that of the denominator, it should be inverted and the continued
fraction expansion carried out. The final network synthesized is a ladder network whose series
elements are inductor & shunt elements are capacitors shown in Table.

Cauer form-1I : -

Here we arrange the given function polynomials (numerator as well as denominator) in the
ascending order power of S and remove a pole at origin (5=0) successively. Since the lowest



degree of numerator & denominator of an LC admittance must differ by one, it follows that there
must be a zero (or) a pole at (5=0). After arranging the numerator & denominator in the

ascending power of S we divide the lowest power of the numerator by the lowest power of
denominator, and then we invert the remainder & divide again. With this we will have an
alternate form of ladder network which will have series capacitors and shunt (reactors) inductors.
Series capacitor impedance has a pole at origin whereas shunt reactor admittance has a pole at
origin. A general network is shown in Table.

1
Z(S)=2Z,(S)+ :
Y,(9)+ .
Z,(5)+ 1
Y,(6)+
5 (S) deeennn
Table: Foster forms — I & II and Cauer forms — I & II with LC, RC and RL Circuits
LC CIRCUIT
S. No. Form Description Circuit
L Lo L
al fraction | o=t e H % - c-
B R
FORM -1 7(9) L=,
. 4] .
FORM - II Y©) 2k, ¢ - arc ¢
Continued L Ly Ls

s | SAUER | o | [
' FORM - I < Cs Co
Z(S) (or) Y(S) T T T

about infinity e ¢ d o -
Continued €1 3 s
fraction M -
4 CAUER expansion of
. _ Ly Ly L
FORM - 11 7(9) (or) Y(S)
about zero - . ° o — — —
RC CIRCUIT
Partial fraction 1 "'"m_‘
1 FOSTER expansion of =" ir =r ="
FORM -1 () Exen
o T T
' FORM - II p VS 0 K, K, T
&) - T °1 I °2 ___

Continued \ o
CAUER fract%on ‘
3. expansion of ¢

2 C, Ce
FORM -1 Z(S) (or) Y(S) T T T
about infinity . o s -~ — — — .




Z(S) (or) Y(S)

C] C3 C5
Continued . I ( » I ( * I ( - ————
CAUER ex;f)lza\arfzgg of
_ R R &
FORM-I1 1 78) (o) Y(9) 2 w3 wg
about zero
b @ ® ~————
RL CIRCUIT
L1 L2
Ro
rosren | Pratcton | oW U - -
_ R, ;
FORM -1 7(9) R L
o- R
O- pr—
roste | Petiliton | g 2 3
FORM - 11 Y(S) L L
c_ —— —
Continued Ol PUYB sl GRY Ny s s s ns suass
1 LT L? L m
caume | ion oL ,,
—_— 1 2 m
FORM -1 Z(S) (or) Y(S)
about infinity o —
Contir}ued O “‘3"\' ‘VB/I\ y------- N
CAUER fr"‘rftioﬁ f L L z
FORM - Il expansion o A ; "

about zero
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