

DATA STRUCTURE USING PYTHON

Lecture Notes

B.TECH
(II YEAR – II SEM)

(2020-21)

Prepared by:

Mrs. G.VAIDEHI, Assistant Professor

Mr. K.SURESH, Assistant Professor

Department of Electronics and Communication Engineering

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
Recognized under 2(f) and 12 (B) of UGC ACT 1956

(AffiliatedtoJNTUH,Hyderabad,ApprovedbyAICTE-AccreditedbyNBA&NAAC–‘A’Grade-ISO9001:2015Certified)

Maisammaguda,Dhulapally(PostVia.Kompally),Secunderabad–500100,TelanganaState,India

B.Tech (ECE) R-18

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
II Year B.Tech. ECE-II Sem L T/P/D C

3 -/-/- 3
(R18A0553) DATA STRUCTURES USING PYTHON

COURSE OBJECTIVES:
1. To read and write simple Python programs.
2. To develop Python programs with conditionals and loops.
3. To define Python functions and call them.
4. To use Python data structures –- lists, tuples, dictionaries.
5. To do input/output with files in Python.

UNIT I
Introduction to Python, Installation and Working with Python, Understanding Python variables,
Python basic Operators, Understanding python blocks, Python Data Types: Declaring and using
Numeric data types: int, float, complex, Using string data type and string operations.

UNIT II
Control Flow- if, if-elif-else, loops ,For loop using ranges, string ,Use of while loops in python,
Loop manipulation using pass, continue, break and else, Programming using Python conditional
and loops block, Python arrays.

UNIT III
Functions -Calling Functions, Passing Arguments, Keyword Arguments, Default Arguments,
Variable-length arguments, Anonymous Functions, Fruitful Functions(Function Returning
Values), Scope of the Variables in a Function - Global and Local Variables. Powerful Lamda
function in python.

UNIT IV
Data Structures-List Operations, Slicing, Methods; Tuples, Sets, Dictionaries, Sequences.
Comprehensions,Dictionary manipulation, list and dictionary in build functions.

UNIT V
Sorting: BubbleSort,SelectionSort,InsertionSort,Mergesort,Quicksort.LinkedLists,Stacks,Queues.

TEXTBOOKS:

1. Allen B. Downey, ``Think Python: How to Think Like a Computer Scientist‘‘, 2nd edition,
Updated for Python 3, Shroff/O‘Reilly Publishers, 2016.

2. R. Nageswara Rao, “Core Python Programming”, dreamtech

3. Python Programming: A Modern Approach, Vamsi Kurama, Pearson

Malla Reddy College of Engineering and Technology (MRCET)

B.Tech (ECE) R-18

REFERENCES:
1. Core Python Programming, W.Chun, Pearson.
2. Introduction to Python, Kenneth A. Lambert, Cengage .
3. Learning Python, Mark Lutz, Orielly

COURSE OUTCOMES:
At the end of the course, the students will be able to

1. Read, write, execute by hand simple Python programs.
2. Structure simple Python programs for solving problems.
3. Decompose a Python program into functions.
4. Represent compound data using Python lists, tuples, dictionaries.
5. Read and write data from/to files in Python Programs

Malla Reddy College of Engineering and Technology (MRCET)

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

UNIT – I

Introduction to Python:

Python is a widely used general-purpose, high level programming language. It was initially

designed by Guido van Rossum in 1991 and developed by Python Software Foundation. It

was mainly developed for emphasis on code readability, and its syntax allows programmers

to express concepts in fewer lines of code.

Python is a programming language that lets you work quickly and integrate systems more

efficiently.

There are two major Python versions- Python 2 and Python 3.

• On 16 October 2000, Python 2.0 was released with many new features.
• On 3rd December 2008, Python 3.0 was released with more testing and includes new

features.

History of Python:

Python was developed by Guido Van Rossam in 1989 while he was working for a project at

CWI in Netherlands. The programming language which Python is said to have succeeded is

ABC Programming Language, which had the interfacing with the Amoeba Operating System

and had the feature of exception handling. He had taken the syntax of ABC, and some of its

good features and had created a good scripting language which had removed all the flaws.

The inspiration for the name came from BBC’s TV Show – ‘Monty Python’s Flying Circus’,

as he was a big fan of the TV show and also he wanted a short, unique and slightly mysterious
name for his invention and hence he named it Python!

Python is derived from many other languages
1. Functional programming from C language

2. OOP Features from C++

3. Scripting languages features from Perl and shell

4. Modular programming features from modula3.

Python syntax borrowed from C and ABC language.

Major implementations of Python are :

Cpython, Jython, IronPython, Brython, RubyPython, PyPy etc.

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Beginning with Python programming:

1) Finding an Interpreter:

Before we start Python programming, we need to have an interpreter to interpret and run our

programs. There are certain online interpreters like https://ide.geeksforgeeks.org/,

http://ideone.com/ or http://codepad.org/ that can be used to start Python without installing

an interpreter.

Windows: There are many interpreters available freely to run Python scripts like IDLE

(Integrated Development Environment) which is installed when you install the python

software from http://python.org/downloads/

2) Writing first program:

Script Begins

Statement 1

Statement 2

Statement 3

Script Ends

http://ideone.com/
http://ideone.com/
http://codepad.org/
http://python.org/downloads/

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Differences between scripting language and programming language:

Python versions:
 Python 1.0 introduced in jan 1994

 Python 2.0 introduced in oct 2000

 Python 3.0 introduced in Dec 2008

 Python 3.7.3 introduced in March 25,2019
Latest version of python:

 Python 3.9.0 introduced in Oct 5,2020. This is a 64-bit installer that disallows installation on
Windows 7, This version is incomplatible with unsupported version of Windows,

Note:

 Any new version should provide support for old version programs. In python there is no such
type of backward compatibility.

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Why to use Python:

Following are the main features of Python which are the primary factors to use python

in day-to-day life:

1. Python is object-oriented
Structure supports such concepts as polymorphism, operation overloading and

multiple inheritance.
2. Indentation

Indentation is one of the greatest feature in python
3. It’s free (open source)

Downloading python and installing python is free and easy
4. It’s Powerful

 Dynamic typing

 Built-in types and tools
 Library utilities
 Third party utilities (e.g. Numeric, NumPy, sciPy)
 Automatic memory management

5. It’s Portable
 Python runs virtually every major platform used today

 As long as you have a compaitable python interpreter installed,

python programs will run in exactly the same manner, irrespective of

platform.
6. It’s easy to use and learn

 No intermediate compile

 Python Programs are compiled automatically to an intermediate form

called byte code, which the interpreter then reads.

 This gives python the development speed of an interpreter without

the performance loss inherent in purely interpreted languages.
 Structure and syntax are pretty intuitive and easy to grasp.

7. Interpreted Language
Python is processed at runtime by python Interpreter

8. Interactive Programming Language
Users can interact with the python interpreter directly for writing the programs

9. Straight forward syntax
The formation of python syntax is simple and straight forward which also makes it

popular.

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Installation and Working with Python:

Installation:

There are many interpreters available freely to run Python scripts like IDLE (Integrated

Development Environment) which is installed when you install the python software from

http://python.org/downloads/

Steps to be followed and remembered:

Step 1: Select Version of Python to Install.

Step 2: Download PythonExecutableInstaller.

Step 3: Run Executable Installer.

Step 4: Verify Python Installed On Windows.

Step 5: Verify Pip Was Installed.

Step 6: Add Python Path to Environment Variables (Optional)

http://python.org/downloads/

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Working with Python

Python CodeExecution:

Python’s traditional runtime execution model: Source code you type is translated to byte

code, which is then run by the Python Virtual Machine (PVM). Your code is automatically

compiled, but then it is interpreted.

Source Byte code Runtime

m.py m.pyc
PVM

Source code extension is .py Byte code extension is .pyc

(Compiled python code)

There are two modes for using the Python interpreter:

• Interactive Mode

• Script Mode

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Running Python in interactive mode:

Without passing python script file to the interpreter, directly execute code to Python prompt.

Once you’re inside the python interpreter, then you can start.

>>> print("hello world")

hello world

Relevant output is displayed on subsequent lines without the >>> symbol

>>> x=[0,1,2]

Quantities stored in memory are not displayed by default.

>>> x

#If a quantity is stored in memory, typing its name will display it.

[0, 1, 2]

>>>

2+3 5

The chevron at the beginning of the 1st line, i.e., the symbol >>> is a prompt the python

interpreter uses to indicate that it is ready. If the programmer types 2+6, the interpreter

replies 8.

Running Python in script mode:

Alternatively, programmers can store Python script source code in a file with the .py

extension, and use the interpreter to execute the contents of the file. To execute the

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

script by the interpreter, you have to tell the interpreter the name of the file. For example, if

you have a script name MyFile.py and you're working on Unix, to run the script you have to

type:

python MyFile.py

Working with the interactive mode is better when Python programmers deal with small

pieces of code as you can type and execute them immediately, but when the code is more

than 2-4 lines, using the script for coding can help to modify and use the code in future.

Example:

Understanding Python variables:

Variables are nothing but reserved memory locations to store values. This means that when

you create a variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides what can

be stored in the reserved memory. Therefore, by assigning different data types to variables,

you can store integers, decimals or characters in these variables.

Rules for Python variables:

• A variable name must start with a letter or the underscore character

• A variable name cannot start with a number

• A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9,

and _)

• Variable names are case-sensitive (age, Age and AGE are three different variables)

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Assigning Values to Variables:

Python variables do not need explicit declaration to reserve memory space. The declaration

happens automatically when you assign a value to a variable. The equal sign (=) is used to

assign values to variables.

The operand to the left of the = operator is the name of the variable and the operand to the

right of the = operator is the value stored in the variable.

For example −

a= 100

An integer

assignment b = 1000.0

A

floating point

c = "John"

A string

print (a)

print (b)

print (c)

This produces the following result −

100

1000.0

John

Multiple Assignment:

Python allows you to assign a single value to several variables

simultaneously. For example :

a = b = c = 1

Here, an integer object is created with the value 1, and all three variables are assigned to the

same memory location. You can also assign multiple objects to multiple variables.

For example −

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

a,b,c = 1,2,"mrcet“

Here, two integer objects with values 1 and 2 are assigned to variables a and b respectively,

and one string object with the value "john" is assigned to the variable c.

Output Variables:

The Python print statement is often used to output variables.

Variables do not need to be declared with any particular type and can even change type after

they have been set.

x = 5

x = "mrcet "

str print(x)

x is of type int

x is now of type

Output: mrcet

To combine both text and a variable, Python uses the “+” character:

Example

x = "awesome"

print("Python is " + x)

Output

Python is awesome

You can also use the + character to add a variable to another variable:

Example

x = "Python is

" y =

"awesome" z =

x + y print(z)

Output:

Python is awesome

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Python basic Operators:

Operators are used to perform operations on variables and values. Python divides the

operators in the following groups:

 Arithmetic operators
 Assignment operators
 Comparison operators
 Logical operators
 Identity operators
 Membership operators
 Bitwise operators

Arithmetic operators

 Operator Name Example

 + Addition x + y

 - Subtraction x - y

 * Multiplication x * y

 / Division x / y

Assignment operators

 Operator Example Same As

 = x = 5 x = 5

 += x += 3 x = x + 3

 -= x -= 3 x = x - 3

 *= x *= 3 x = x * 3

 /= x /= 3 x = x / 3

Comparison operators

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Operator Name Example

== Equal x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal x >= y

 to

<= Less than or equal to x <= y

Logical operators

Operator Description Example

and Returns True if x < 5 and x < 10

 both statements are

 true

or Returns True if one of x < 5 or x < 4

 the statements is true

not Reverse the result, not(x < 5 and x < 10)

 returns False if the result

 is true

Identity operators

Operator Description Example

is Returns true if both variables are the same object x is y

is not Returns true if both variables are not the same object x is not y

Membership operators

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

 Operator Description Example

 in Returns True if a sequence with the specified value is x in y

 present in the object

 not in Returns True if a sequence with the specified value is not x not in y

 present in the object

Bitwise operators

Operator Name Description

& AND Sets each bit to 1 if both bits are 1

| OR Sets each bit to 1 if one of two bits is 1

^ XOR Sets each bit to 1 if only one of two bits is 1

~ NOT Inverts all the bits

<< Zero fill left shift Shift left by pushing zeros in from the right and let the

 leftmost bits fall off

>> Signed right shift Shift right by pushing copies of the leftmost bit in from

 the left, and let the rightmost bits fall off

Understanding python blocks:

Most of the programming languages like C, C++, Java use braces { } to define a block of

code. Python uses indentation.

A code block (body of a function, loop etc.) starts with indentation and ends with the first

unindented line. The amount of indentation is up to you, but it must be consistent throughout

that block.

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Generally four whitespaces are used for indentation and is preferred over tabs. Here is an

example.

>>> for i in

range(1,11):

print(i)

if i == 5:

break

output:

1

2

3

4

5

The enforcement of indentation in Python makes the code look neat and clean. This results

into Python programs that look similar and consistent.

Indentation can be ignored in line continuation. But it's a good idea to always indent. It

makes the code more readable. For example:

>>> if True:

print('Hello')

a = 5

Output: Hello

>>> if True: print('Hello'); a = 5

Output: Hello

A code block is a piece of Python program text that can be executed as a unit, such as a

module, a class definition or a function body. Some code blocks (like modules) are normally

executed only once, others (like function bodies) may be executed many times. Code blocks

may textually contain other code blocks. Code blocks may invoke other code blocks (that

may or may not be textually contained in them) as part of their execution, e.g.,

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

by invoking (calling) a function.

The following are code blocks: A module is a code block. A function body is a code block.

A class definition is a code block. Each command typed interactively is a separate code

block; a script file (a file given as standard input to the interpreter or specified on the

interpreter command line the first argument) is a code block; a script command (a command

specified on the interpreter command line with the `-c' option) is a code block. The file read

by the built-in function execfile() is a code block. The string argument passed to the built-in

function eval() and to the exec statement is a code block. And finally, the expression read

and evaluated by the built-in function input() is a code block.

Some examples:

1. if-statement

pwd=input("enter

string") if pwd ==

'mrcet':

print('Logging on ...')

else:

print('Incorrect password.')

print('All done!')

Output:

===

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/iff.py

==

enter string mrcet

Logging on ...

All done!

2. if/elif-statements

age = int(input('How old are you? '))

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

if age <= 2:

print(' free')

elif 2 < age < 13:

print(' child fare')

else:

print('adult fare')

Output:

===

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/if1.py

==

How old are you? 5

child fare

3. Functions

def my_college():

print("Hello mrcet")

my_college()

Output:

===

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/if2.py

==

Hello mrcet

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Sample structure of block:

Python Data Types:

The data stored in memory can be of many types. For example, a person's age is stored as a

numeric value and his or her address is stored as alphanumeric characters. Python has

various standard data types that are used to define the operations possible on them and the

storage method for each of them.

Python has five standard data types

− Numbers

String List

Tuple

Dictionary

Declaring and using Numeric data types:

Number data types store numeric values. Number objects are created when you assign
a value to them.

For example:

var1 = 1

var2 = 10

You can delete a single object or multiple objects by using the del statement.

For example:

del var

del var_a, var_b

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Python supports four different numerical types −

• int (signed integers)

• long (long integers, they can also be represented in octal and hexadecimal)

• float (floating point real values)

• complex (complex numbers)

Int, or integer, is a whole number, positive or negative, without decimals, of unlimited

length.

Float, or "floating point number" is a number, positive or negative, containing one or more

decimals.

Float can also be scientific numbers with an "e" to indicate the power of 10.

A complex number consists of an ordered pair of real floating-point numbers denoted by x +

yj, where x and y are the real numbers and j is the imaginary unit.

Examples: Here are some examples of numbers −

Example: 1

x = 1

y = 2.8

z = 1j

int

float

complex

To verify the type of any object in Python, use the type()

function: print(type(x))

print(type(y))

print(type(z)

)

Output:

<class 'int'>

<class 'float'>

<class 'complex'>

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Example: 2

x = 35e3

y = 12E4

z = -87.7e100

print(type(x))

print(type(y))

print(type(z)

)

Output:

<class 'float'>

<class 'float'>

<class 'float'>

Python Casting:

There may be times when you want to specify a type on to a variable. This can be done with

casting. Python is an object-orientated language, and as such it uses classes to define data

types, including its primitive types. Casting in python is therefore done using constructor

functions:

int() - constructs an integer number from an integer literal, a float literal (by rounding down

to the previous whole number), or a string literal (providing the string represents a whole

number)

float() - constructs a float number from an integer literal, a float literal or a string literal

(providing the string represents a float or an integer)

str() - constructs a string from a wide variety of data types, including strings, integer literals

and float literals

Examples:

Integers:

x = int(1) # x will be 1

y = int(2.8) # y will be

2 z = int("3") # z will

be 3

Print(x)

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Print(y)

Print(z)

Output:

1

2

3

Floats:

x = float(1) # x will be 1.0

y = float(2.8) # y will be 2.8

z = float("3") # z will be 3.0

w = float("4.2") # w will be

4.2 Print(x)

Print(y)

Print(z)

Print(w)

Output:

1.0

2.8

3.0

4.2

Strings:

x = str("s1") # x will be 's1'

y = str(2) # y will be '2'

z = str(3.0) # z will be '3.0'

Print(x)

Print(y)

Print(z

)

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Output:

s1

2

3.0

Using string data type and string operations:

1. Strings in Python are identified as a contiguous set of characters represented

in the quotation marks. Python allows for either pairs of single or double quotes.

• 'hello' is the same as "hello".

• Strings can be output to screen using the print function. For example: print("hello").

2. Subsets of strings can be taken using the slice operator ([] and [:]) with indexes

starting at 0 in the beginning of the string and working their way from -1 at the end.
3. The plus (+) sign is the string concatenation operator and the asterisk (*) is the

repetition operator.
4. Like many other popular programming languages, strings in Python are arrays of

bytes representing Unicode characters. However, Python does not have a character

data type, a single character is simply a string with a length of 1. Square brackets can

be used to access elements of the string.

Examples:

Get the character at position 1 (remember that the first character has the position 0):

mrcet = "Hello, World!"

print(mrcet[1])

Output:

e

 Substring. Get the characters from position 2 to position 5 (not included):

b = "Hello, World!"

print(b[2:5])

Output:

llo

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

• The strip() method removes any whitespace from the beginning or the

end: a = 'Hello,World!'

print(a.strip('He'))

string = 'android is

awesome'

print(string.strip('an'))

b = 'Hello,World!

Hello'

print(b.strip('Hello'))

Output:

llo,World!

droid is awesome

,World!

• The len() method returns the length of a

string: a = "Hello, World!"

print(len(a))

Output:

13

• The lower() method returns the string in lower case:

a = "Hello, World!"

print(a.lower())

Output:

hello, world!

• The upper() method returns the string in upper

case: a = "Hello, World!"

print(a.upper())

Output:

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

HELLO, WORLD!

• The replace() method replaces a string with another

string: a = "Hello, World!"

print(a.replace("H", "J"))

Output:

Jello, World!

• The split() method splits the string into substrings if it finds instances of

the separator:

a = "Hello, World!"

b = a.split(",")

print(b)

Output:

['Hello', 'World!']

For example −

str = 'Hello World!'

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character print

str * 2 # Prints string two times

print str + "TEST" # Prints concatenated string

Output:

Hello

World! H

llo

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

llo World!

Hello World!Hello

World! Hello

World!TEST

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

UNIT – II

Control Flows:

if

if Statement Syntax:

if test expression:

statement(s)

if Statement Flowchart:

Fig: Operation of if statement

Example: Python if Statement

a = 3

if a > 2:
print(a, "is greater")

print("done")

a = -1

if a < 0:
print(a, "a is smaller")

print("Finish")

output:

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/if1.py

3 is greater

done
-1 a is

smaller

Finish

Syntax of if - else :

if test expression:

Body of if stmts

else:

Body of else stmts

If - else Flowchart :

Fig: Operation of if – else statement

Example of if - else:

a=int(input('enter the number'))

if a>5:

print("a is greater")

else:

print("a is smaller than the input given")

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/ifelse.py enter the number 2

a is smaller than the input given

If – elif - else:

Syntax of if – elif - else :

If test expression:
Body of if stmts

elif test expression:

Body of elif stmts

else:
Body of else stmts

Flowchart of if – elif - else:

Fig: Operation of if – elif - else statement

Example of if - elif – else:

a=int(input('enter the

number')) b=int(input('enter

the number'))

c=int(input('enter the

number')) if a>b:

print("a is

greater") elif b>c:

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

print("b is greater")

else:

print("c is greater")

Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ifelse.py

enter the number5

enter the number2

enter the number9

a is greater

>>>
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/ifelse.py

enter the number2

enter the number5

enter the number9

c is greater

Python Nested if statements

Syntax of nested if– elif – else:

if
expression1

:

statement(s

)
if

expression2
:

statement(s)

elif

expression3:

statement(s)
elif

expression4:

statement(s)
else:

statement(s)
else:

statement(s)

Example of Nested if:
a = int(input("Enter a number: "))

if a >= 0:

if a == 0:

print("Zero")

else:
print("Positive number")

else:

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

print("Negative number")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/nestedif.py

Enter a number: -1

Negative number

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/nestedif.py Enter a number: 5

Positive number

>>>

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/nestedif.py Enter a number: 0

Zero

Loops:

Statements are executed sequentially: The first statement in a function is executed first,

followed by the second, and so on. There may be a situation when you need to execute a
block of code several number of times.

Programming languages provide various control structures that allow for more complicated
execution paths. A loop statement allows us to execute a statement or group of statements
multiple times. The following diagram illustrates a loop statement −

Flow chart:

DATA STRUCTURES USING PYTHON II YEAR/II SEM MRCET

There are different types
 of loops to
 handle
 looping
 requirements:

1. while loop

2. for loop

3. Nested loops

Loop control statements:

T

h
e

s

e

c
o

n

t

r

o
l

s

t

a
t

e

m

e
n

t

s

c
h

a

n

g

e

e

x

e

c
u

t

i

o

n

f

r

o
m

i

t

s

n

o

r

m
a

l

s

e
q

u

e

n
c

e

.

P
y

t

h

o

n

s

u

p

p
o

r

t

s

t

h

e

f

o

l

l

o
w

i

n

g

:

 Break statement
 Continue statement
 Pass statement

For loop using ranges:

For loop:

P

y
t

h

o

n

f

o

r

l
o

o

p

i
s

u

s

e
d

f

o
r

r

e

p
e

a

t

e

d

e

x

e

c
u

t

i

o

n

o

f

a

g

r

o
u

p

o

f

s

t

a

t
e

m

e

n

t
s

f

o
r

t

h

e

d

e

s

i
r

e

d

n
u

m

b

e
r

o

f

t

i

m

e

s
.

I

t

i

t

e

r

a
t

e

s

o

v

e

r

t

h

e

i
t

e

m

s

o

f

l

i
s

t

s

,

t

u

p

l
e

s

,

s
t

r

i

n

g
s

,

t

h
e

d

i
c

t

i

o

n
a

r

i

e

s

a

n

d

o

t

h

e
r

i

t

e
r

a

b

l

e

o

b

j

e
c

t

s

Syntax : for vari nsequence: Statement(s)

A sequence of values assigned to var in each

it

e

r

at

i

o

n

H

o

l

d

s

t

h

e

v

al

u

e

o

f

it

em
in sequence in each iteration

Sample Program:

numbers = [1, 2, 4, 6, 11,

20] seq=0

for val in

numbers:

seq=val*val

print(seq)

Output:

C:/Users/MRCET/AppData

/Local/Programs/Python/Py

thon38-32/fr.py

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

1

4

16

36

121
400

Flowchart:

Iterating over a list:

#list of items

list = ['M','R','C','E','T']
i = 1

#Iterating over the list

for item in list:

print ('college ',i,' is

',item) i = i+1

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/lis.py

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

college 1 is M

college 2 is R

college 3 is C

college 4 is E

college 5 is T

Iterating over a Tuple:

tuple = (2,3,5,7)
print ('These are the first four prime numbers ')

#Iterating over the tuple
for a in tuple:
print (a)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-
32/pyyy/fr3.py These are the first four prime numbers

2

3
5
7

Iterating over a dictionary:

#creating a dictionary

college = {"ces":"block1","it":"block2","ece":"block3"}

#Iterating over the dictionary to print keys

print ('Keys are:')

for keys in college:
print (keys)

#Iterating over the dictionary to print values

print ('Values are:')

for blocks in college.values():
print(blocks)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/dic.py Keys are:

ces

it

ece

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Values are:
block1

block2

block3

Iterating over a String:

#declare a string to iterate

over college = 'MRCET'

#Iterating over the

string for name in

college:

print (name)

Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/strr.py M

R

C

E

T

Range ():

range() function in for loop to iterate over numbers defined by range().

How to use range():

 range(n) : will generate numbers from 0 to (n-1)

For example: range(8) is equivalent to [0, 1, 2, 3, 4, 5, 6, 7]

 range(x, y) : will generate numbers from x to (y-1)

For example: range(5, 9) is equivalent to [5, 6, 7,

8]

 range(start, end, step_size) : will generate numbers from start to end with step_size

as incremental factor in each iteration. step_size is default if not explicitly

mentioned.

For example: range(1, 10, 2) is equivalent to [1, 3, 5, 7, 9]

Examples:
x=10

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

for i in

range(x):

print(i)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/fr2.py

0

1

2

3

4

5

6

7

8
9

x=10

for i in

range(6,x):

print(i)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/fr2.py

6

7

8
9

x=10

for i in

range(2,13,2):

print(i)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/fr2.py

2

4

6
8

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

10
12

String:

Iterating over a String:

#declare a string to iterate

over college = 'MRCET'

#Iterating over the

string for name in

college:

print (name)

Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/strr.py M

R

C

E

T

Using range():

#declare a string to iterate

over college = 'MRCET'

print("the college name

is") #Iterating over the

string for i in

range(len(college)):

print (college[i])

Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/rn.py

= the college name is
M

R

C

E

T

#declare a string to iterate

over college = 'MRCET'

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

print("To print the portion of

string") #Iterating over the string

for i in college[0:3:1]:
print (i)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/strr1.py

To print the portion of string

M

R

C

#declare a string to iterate

over college = 'MRCET'

print("To print the string in reverse")

#Iterating over the string

for i in college[: :-1]:
print (i)

Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/strr2.py

To print the string in reverse

T

E

C

R

M

#declare a string to iterate

over college = 'MRCET'

print("To print the string in reverse using index")

#Iterating over the string

i=len(college) -

1 while i > 0:

print(college[i])

i=i-1

#for i in college[: :-1]:
#print (i)

Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/strr3.py

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

To print the string in reverse using

index T

E

C

R

#declare a string to iterate

over i=1

college = 'MRCET'

print("To print the string in reverse using negative
index") #Iterating over the string while

i<=len(college):

print(college[-i])

i=i+1

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/strr4.py To print the string in reverse using index T

E

C

R

M

Use of while loops in python:

While loop:

 Loops are either infinite or conditional. Python while loop keeps reiterating a block

of code defined inside it until the desired condition is met.

 The while loop contains a boolean expression and the code inside the loop is

repeatedly executed as long as the boolean expression is true.

 The statements that are executed inside while can be a single line of code or a block

of multiple statements.

Syntax:

while(expression):

Statement(s)

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Flowchart:

Example Programs:

1.

i=1

while i<=6:

print("Mrcet

college") i=i+1

output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/wh1.py Mrcet college

Mrcet college

Mrcet college

Mrcet college

Mrcet college

Mrcet college

2. -

i=1

while i<=3:

print("MRCET",end="

")

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

j=1

while j<=1:
print("CSE DEPT",end="")

j=j+1

i=i+1

print()

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/wh2.py MRCET CSE DEPT

MRCET CSE DEPT

MRCET CSE

DEPT

3.

i=1

j=1

while i<=3:

print("MRCET",end="

")

while j<=1:
print("CSE DEPT",end="")

j=j+1

i=i+1

print()

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/wh3.py

MRCET CSE DEPT

MRCET

MRCET
4. -

i = 1

while (i < 10):
print (i)

i = i+1

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/wh4.py

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

1

2

3

4

5
6

7

8
9

5.

a = 1

b = 1

while (a<10):
print ('Iteration',a)

a = a + 1

b = b + 1

if (b == 4):

break
print ('While loop terminated')

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-
32/pyyy/wh5.py Iteration 1

Iteration 2

Iteration 3
While loop terminated

Loop manipulation using pass, continue, break and else:

In Python, break and continue statements can alter the flow of a normal loop. Sometimes

we wish to terminate the current iteration or even the whole loop without checking

test expression. The break and continue statements are used in these cases.

Break:

The break statement terminates the loop containing it and control of the program flows

to the statement immediately after the body of the loop. If break statement is inside a

nested loop (loop inside another loop), break will terminate the innermost loop.

Flowchart:

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

The following shows the working of break statement in for and while loop:

for var in sequence:

code inside for loop

If condition:
break (if break condition satisfies it jumps to outside

loop) # code inside for loop
code outside for loop

while test expression

code inside while loop

If condition:
break (if break condition satisfies it jumps to outside

loop) # code inside while loop
code outside while loop

Example:

for val in "MRCET

COLLEGE": if val == " ":

break

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

print(val)

print("The end")

Output:

M

R

C

E

T

The end

Program to display all the elements before number 88

for num in [11, 9, 88, 10, 90, 3, 19]:
print(num)

if(num==88):

print("The number 88 is found")

print("Terminating the loop")

break

Output:
11

9

88
The number 88 is found

Terminating the loop

Continue:

The continue statement is used to skip the rest of the code inside a loop for the current

iteration only. Loop does not terminate but continues on with the next iteration.

Flowchart:

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

The following shows the working of break statement in for and while loop:

for var in sequence:

code inside for loop

If condition:
continue (if break condition satisfies it jumps to outside

loop) # code inside for loop
code outside for loop

while test expression

code inside while loop

If condition:
continue(if break condition satisfies it jumps to outside

loop) # code inside while loop
code outside while loop

Example:

Program to show the use of continue statement inside loops

for val in "string":

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

if val ==

"i":

continue

print(val)

print("The end")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/cont.py s

t

r

n

g

The end

program to display only odd

numbers for num in [20, 11, 9, 66, 4,

89, 44]:

Skipping the iteration when number is
even if num%2 == 0:

continue
This statement will be skipped for all even numbers
print(num)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/cont2.py 11

9
89

Pass:

In Python programming, pass is a null statement. The difference

between a comment and pass statement in Python is that, while the interpreter ignores a
comment entirely, pass is not ignored.

pass is just a placeholder for functionality to be added later.

Example:
sequence = {'p', 'a', 's', 's'}

for val in sequence:

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

pass

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/f1.y.py
>>>

Similarily we can also write,

def f(arg): pass # a function that does nothing

(yet) class C: pass # a class with no methods

(yet)

Python arrays:

Array is a container which can hold a fix number of items and these items should be of the
same type. Most of the data structures make use of arrays to implement their algorithms.

Following are the important terms to understand the concept of Array.

 Element− Each item stored in an array is called an element.

 Index − Each location of an element in an array has a numerical index, which is used
to identify the element.

Array Representation

Arrays can be declared in various ways in different languages. Below is an illustration.

Elements

Int array [10] = {10, 20, 30, 40, 50, 60, 70, 80, 85, 90}

Type Name Size Index 0

As per the above illustration, following are the important points to be considered.

 Index starts with 0.

 Array length is 10 which means it can store 10 elements.

 Each element can be accessed via its index. For example, we can fetch an element at
index 6 as 70

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Basic Operations
Following are the basic operations supported by an array.

 Traverse − print all the array elements one by one.

 Insertion − Adds an element at the given index.

 Deletion − Deletes an element at the given index.

 Search − Searches an element using the given index or by the value.

 Update − Updates an element at the given index.

Array is created in Python by importing array module to the python program. Then the
array is declared as shown below.

from array import *

arrayName=array(typecode, [initializers])

Typecode are the codes that are used to define the type of value the array will hold. Some
common typecodes used are:

Typecode Value

b Represents signed integer of size 1 byte/td>

B Represents unsigned integer of size 1 byte

c Represents character of size 1 byte

i Represents signed integer of size 2
 bytes

I Represents unsigned integer of size 2 bytes

f Represents floating point of size 4 bytes

d Represents floating point of size 8 bytes

Creating an array:

from array import *

array1 = array('i',

[10,20,30,40,50]) for x in array1:

print(x)

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Output:

>>>

RESTART: C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/arr.py

10

20

30

40

50

Accessing Array Element

We can access each element of an array using the index of the element.

from array import *

array1 = array('i', [10,20,30,40,50])
print

(array1[0])

print

(array1[2])

Output:

RESTART: C:/Users/MRCET/AppData/Local/Programs/Python/Python38-
32/pyyy/arr2.py 10

30

Insertion Operation

Insert operation is to insert one or more data elements into an array. Based on the

requirement, a new element can be added at the beginning, end, or any given index of

array.

Here, we add a data element at the middle of the array using the python in-built insert()

method.

from array import *
array1 = array('i',

[10,20,30,40,50])

array1.insert(1,60)

for x in

array1:

print(x)

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Output:

==

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/arr3.py

===

10

60

20

30
40

50
>>>

Deletion Operation

Deletion refers to removing an existing element from the array and re-organizing all

elements of an array.

Here, we remove a data element at the middle of the array using the python in-built

remove() method.

from array import *
array1 = array('i',

[10,20,30,40,50])

array1.remove(40)

for x in array1:
print(x)

Output:

==
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/arr4.py
==

= 10
20

30

50

Search Operation

You can perform a search for an array element based on its value or its

index. Here, we search a data element using the python in-built index()

method. from array import *

array1 = array('i', [10,20,30,40,50])

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

print (array1.index(40))

Output:

==
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/arr5.py
==

= 3
>>>

Update Operation

Update operation refers to updating an existing element from the array at a given index.

Here, we simply reassign a new value to the desired index we want to update.

from array import *
array1 = array('i',

[10,20,30,40,50]) array1[2] = 80

for x in array1:

print(x)

Output:

==
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/arr6.py
==

= 10
20
80

40

50

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

UNIT – III

Functions:

Function is a group of related statements that perform a specific task. Functions help break

our program into smaller and modular chunks. As our program grows larger and larger,
functions make it more organized and manageable. It avoids repetition and makes code

reusable.

Basically, we can divide functions into the following two types:

1. Built-in functions - Functions that are built into

Python. Ex: abs(),all().ascii(),bool()………so on….

integer = -20

print('Absolute value of -20 is:', abs(integer))

Output:

Absolute value of -20 is: 20

2. User-defined functions - Functions defined by the users

themselves. def add_numbers(x,y):

sum = x + y
return sum

print("The sum is", add_numbers(5, 20))

Output:

The sum is 25

There are three types of Python function arguments using which we can call a function.

1. Default Arguments

2. Keyword Arguments
3. Variable-length Arguments

Syntax:

def functionname():

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

statements

.

.

.

functionname()

Function definition consists of following components:

1. Keyword def indicates the start of function header.
2. A function name to uniquely identify it. Function naming follows the same rules of writing

identifiers in Python.
3. Parameters (arguments) through which we pass values to a function. They are optional.

4. A colon (:) to mark the end of function header.

5. Optional documentation string (docstring) to describe what the function does.
6. One or more valid python statements that make up the function body. Statements must

have same indentation level (usually 4 spaces).
7. An optional return statement to return a value from the function.

Example:

def hf():

hello world

hf()

In the above example we are just trying to execute the program by calling the function. So it

will not display any error and no output on to the screen but gets executed.

To get the statements of function need to be use print().

#calling function in python:

def hf():

print("hello world")

hf()

Output:

hello world

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

def hf():

print("hw")

print("gh kfjg

66666") hf()

hf()

hf()

Output:

hw
gh kfjg 66666

hw

gh kfjg 66666

hw

gh kfjg 66666

def

add(x,y):

c=x+y

print(c)

add(5,4)

Output:

9

def

add(x,y):

c=x+y

return c

print(add(5,4))

Output:9

-

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

def

add_sub(x,y):

c=x+y

d=x-y

return c,d

print(add_sub(10,5))

Output:

(15, 5)

The return statement is used to exit a function and go back to the place from where it was

called. This statement can contain expression which gets evaluated and the value is returned.

If there is no expression in the statement or the return statement itself is not present inside a

function, then the function will return the None object.

def hf():

return "hw"

print(hf())

Output:

hw

-

def hf():

return "hw"

hf()

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu.py

>>>

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

-

def hello_f():

return "hellocollege"

print(hello_f().upper())

Output:

HELLOCOLLEGE

Passing Arguments

def hello(wish):

return '{}'.format(wish)

print(hello("mrcet"))

Output:

mrcet

Here, the function wish() has two parameters. Since, we have called this function with two

arguments, it runs smoothly and we do not get any error. If we call it with different number

of arguments, the interpreter will give errors.

def wish(name,msg):

"""This function greets

to

the person with the provided

message""" print("Hello",name + ' ' +

msg)

wish("MRCET","Good morning!")

Output:

Hello MRCET Good morning!

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Below is a call to this function with one and no arguments along with their respective error

messages.

>>> wish("MRCET") # only one argument

TypeError: wish() missing 1 required positional argument: 'msg'

>>> wish() # no arguments

TypeError: wish() missing 2 required positional arguments: 'name' and 'msg'

def hello(wish,hello):

return “hi” '{},{}'.format(wish,hello)

print(hello("mrcet","college"))

Output:

himrcet,college

#Keyword Arguments

When we call a function with some values, these values get assigned to the arguments

according to their position.

Python allows functions to be called using keyword arguments. When we call functions in

this way, the order (position) of the arguments can be changed.

(Or)

If you have some functions with many parameters and you want to specify only some
of them, then you can give values for such parameters by naming them - this is called
keyword arguments - we use the name (keyword) instead of the position (which we

have been using all along) to specify the arguments to the function.

There are two advantages - one, using the function is easier since we do not need to

worry about the order of the arguments. Two, we can give values to only those

parameters which we want, provided that the other parameters have default argument

values.

def func(a, b=5, c=10):
print 'a is', a, 'and b is', b, 'and c is', c

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

func(3, 7)

func(25, c=24)

func(c=50,

a=100)

Output:

a is 3 and b is 7 and c is 10

a is 25 and b is 5 and c is
24

a is 100 and b is 5 and c is 50

Note:

The function named func has one parameter without default argument values,
followed by two parameters with default argument values.

In the first usage, func(3, 7), the parameter a gets the value 3, the parameter b gets the
value 5 and c gets the default value of 10.

In the second usage func(25, c=24), the variable a gets the value of 25 due to the
position of the argument. Then, the parameter c gets the value of 24 due to naming i.e.

keyword arguments. The variable b gets the default value of 5.

In the third usage func(c=50, a=100), we use keyword arguments completely to

specify the values. Notice, that we are specifying value for parameter c before that for
a even though a is defined before c in the function definition.

For example: if you define the function like below

def func(b=5, c=10,a): # shows error : non-default argument follows default argument

def print_name(name1, name2):

""" This function prints the name """

print (name1 + " and " + name2 + " are friends")

#calling the function

print_name(name2 = 'A',name1 = 'B')

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Output:

B and A are friends

#Default Arguments

Function arguments can have default values in Python.

We can provide a default value to an argument by using the assignment operator

(=) def hello(wish,name='you'):

return '{},{}'.format(wish,name)

print(hello("good morning"))

Output:

good morning,you

def hello(wish,name='you'):

return '{},{}'.format(wish,name) //print(wish + ‘ ‘ + name)

print(hello("good morning","nirosha")) // hello("good

morning","nirosha") Output:

good morning,nirosha // good morning nirosha

Note: Any number of arguments in a function can have a default value. But once we have a

default argument, all the arguments to its right must also have default values.

This means to say, non-default arguments cannot follow default arguments. For example,
if we had defined the function header above as:

def hello(name='you', wish):

Syntax Error: non-default argument follows default argument

-

def sum(a=4, b=2): #2 is supplied as default argument

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

""" This function will print sum of two numbers

if the arguments are not supplied

it will add the default value """

print (a+b)

sum(1,2) #calling with arguments

sum() #calling without

arguments Output:

3

6

#Variable-length arguments

Sometimes you may need more arguments to process function then you mentioned in the
definition. If we don’t know in advance about the arguments needed in function, we can use
variable-length arguments also called arbitrary arguments.

For this an asterisk (*) is placed before a parameter in function definition which can hold
non-keyworded variable-length arguments and a double asterisk (**) is placed before a
parameter in function which can hold keyworded variable-length arguments.

If we use one asterisk (*) like *var, then all the positional arguments from that point till the
end are collected as a tuple called ‘var’ and if we use two asterisks (**) before a variable
like

**var, then all the positional arguments from that point till the end are collected as a
dictionary called ‘var’.

def wish(*names):

"""This function greets all
the person in the names tuple."""

names is a tuple with arguments
for name in names:

print("Hello",name)

wish("MRCET","CSE","SIR","MADAM")

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Output:

Hello MRCET

Hello CSE

Hello SIR

Hello MADAM

Some examples on functions:

To display vandemataram by using function use no args no return type

#function defination

def display():

print("vandemataram")

print("i am in main")

#function

call display()

print("i am in main")

Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/fu1.py i am in main

vandemataram

i am in main

#Type1 : No parameters and no return type

def Fun1() :

print("function 1")

Fun1()

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

function 1

#Type 2: with param with out return type

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

def fun2(a) :

print(a)

fun2("hello")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

Hello

#Type 3: without param with return type

def fun3():
return "welcome to python"

print(fun3())

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

welcome to python

#Type 4: with param with return type

def

fun4(a):

return a

print(fun4("python is better then c"))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

python is better then c

#Program to find area of a circle using function use single return value function

with argument.

pi=3.14
def areaOfCircle(r):

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

return pi*r*r
r=int(input("Enter radius of

circle")) print(areaOfCircle(r))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-
32/pyyy/fu1.py Enter radius of circle 3

28.259999999999998

#Program to write sum different product and using arguments with return

value function.

def

calculete(a,b):

total=a+b

diff=a-b

prod=a*b

div=a/b

mod=a%b

return total,diff,prod,div,mod

a=int(input("Enter a value"))

b=int(input("Enter b value"))

#function call

s,d,p,q,m = calculete(a,b)

print("Sum= ",s,"diff= ",d,"mul= ",p,"div= ",q,"mod= ",m)

#print("diff= ",d)

#print("mul= ",p)

#print("div= ",q)

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

#print("mod= ",m)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

Enter a value 5

Enter b value 6
Sum= 11 diff= -1 mul= 30 div= 0.8333333333333334 mod= 5

#program to find biggest of two numbers using functions.

def

biggest(a,b):

if a>b :

return a

else :

return b

a=int(input("Enter a

value")) b=int(input("Enter

b value")) #function call

big= biggest(a,b)

print("big number=

",big)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

Enter a value 5

Enter b value-2

big number=

5

#program to find biggest of two numbers using functions. (nested if)

def

biggest(a,b,c):

if a>b :

if a>c :
return a

else :

return c

else :

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

if b>c :

return b

else :
return c

a=int(input("Enter a

value")) b=int(input("Enter

b value"))

c=int(input("Enter c

value")) #function call

big= biggest(a,b,c)

print("big number=

",big)

Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

Enter a value 5

Enter b value -

6 Enter c value

7 big number=

7

#Writer a program to read one subject mark and print pass or fail use single return

values function with argument.

def

result(a):

if a>40:

return "pass"

else:

return "fail"
a=int(input("Enter one subject

marks")) print(result(a))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-
32/pyyy/fu1.py Enter one subject marks 35

fail

#Write a program to display mrecet cse dept 10 times on the screen. (while loop)

def

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

usingFunctions():

count =0

while count<10:
print("mrcet cse dept",count)

count=count+1

usingFunctions()

Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

mrcet cse dept 0

mrcet cse dept

1 mrcet cse dept

2 mrcet cse dept

3 mrcet cse dept

4 mrcet cse dept

5 mrcet cse dept

6 mrcet cse dept

7 mrcet cse dept

8 mrcet cse dept

9

Anonymous Functions:
Anonymous function is a function i.e. defined without name.

While normal functions are defined using the def keyword.

Anonymous functions are defined using lambda keyword hence anonymous functions are

also called lambda functions.

Syntax: lambda arguments: expression

 Lambda function can have any no. of arguments for any one expression.
 The expression is evaluated and returns.

Use of Lambda functions:

 Lambda functions are used as nameless functions for a short period of time.
 In python lambda functions are an argument to higher order functions.

 Lambda functions are used along with built-in functions like filter(),map() and

reduce() etc….

Write a program to double a given number

double = lambda x:2*x

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

print(double(5))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-
32/pyyy/fu1.py 10

#Write a program to sum of two numbers

add = lambda

x,y:x+y

print(add(5,4))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/fu1.py 9

#Write a program to find biggest of two numbers

biggest = lambda x,y: a if x>y else y

print(biggest(20,30))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/fu1.py 30

Fruitful Functions (Function Returning Values):

We write functions that return values, which we will call fruitful functions. We have seen

the return statement before, but in a fruitful function the return statement includes a
return value. This statement means: "Return immediately from this function and use the
following expression as a return value."

returns the area of a circle with the given radius:

def area(radius):
temp = 3.14 * radius**2

return temp

print(area(4))

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

(or)

def area(radius):
return 3.14 * radius**2

print(area(2))

Sometimes it is useful to have multiple return statements, one in each branch of a
conditional:

def

absolute_value(x):

if x < 0:

return -x

else:

return x

Since these return statements are in an alternative conditional, only one will be executed.

As soon as a return statement executes, the function terminates without executing any
subsequent statements. Code that appears after a return statement, or any other place the
flow of execution can never reach, is called dead code.

In a fruitful function, it is a good idea to ensure that every possible path through the program
hits a return statement. For example:

def

absolute_value(x):

if x < 0:

return -x

if x > 0:

return x

This function is incorrect because if x happens to be 0, both conditions is true, and the
function ends without hitting a return statement. If the flow of execution gets to the end of a
function, the return value is None, which is not the absolute value of 0.

>>> print

absolute_value(0) None

By the way, Python provides a built-in function called abs that computes absolute values.

Write a Python function that takes two lists and returns True if they have at least
one common member.

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

def common_data(list1,

list2): for x in list1:

for y in list2:

if x == y:

result = True

return result

print(common_data([1,2,3,4,5], [1,2,3,4,5]))

print(common_data([1,2,3,4,5], [1,7,8,9,510]))
print(common_data([1,2,3,4,5], [6,7,8,9,10]))

Output:
C:\Users\MRCET\AppData\Local\Programs\Python\Python38-

32\pyyy\fu1.py True

True

None

Scope of the Variables in a Function - Global and Local Variables:

The scope of a variable determines its accessibility and availability in different portions of a
program. Their availability depends on where they are defined. Similarly, life is a period in
which the variable is stored in the memory.

Depending on the scope and the lifetime, there are two kinds of variables in Python.

 Local Variables
 Global Variables

Local Variables vs. Global Variables

Here are some of the points to list out the difference between global and local variable for
their proper understanding.

 Variables or parameters defined inside a function are called local variables as their
scope is limited to the function only. On the contrary, Global variables are defined
outside of the function.

 Local variables can’t be used outside the function whereas a global variable can be
used throughout the program anywhere as per requirement.

 The lifetime of a local variable ends with the termination or the execution of a

function, whereas the lifetime of a global variable ends with the termination of the
entire program.

 The variable defined inside a function can also be made global by using the global
statement.

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

def function_name(args):

.............

global x #declaring global variable inside a function

..............

create a global variable

x =

"global" def

f():

print("x inside :", x)

f()

print("x outside:", x)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/fu1.py x inside : global

x outside: global

create a local variable

def f1():

y = “local"

print(y)

f1()

Output:
local

 If we try to access the local variable outside the scope for example,

def f2():
y = "local"

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

f2()
print(y)

Then when we try to run it shows an error,

Traceback (most recent call last):

File "C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py",
line 6, in <module>

print(y)
NameError: name 'y' is not defined

The output shows an error, because we are trying to access a local variable y in a
global scope whereas the local variable only works inside f2() or local scope.

use local and global variables in same code

x =

"global" def

f3():

global x
y =
"local" x

= x * 2
print(x)

print(y)

f3()

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

globalglobal

local

 In the above code, we declare x as a global and y as a local variable in the f3(). Then,
we use multiplication operator * to modify the global variable x and we print both x
and y.

 After calling the f3(), the value of x becomes global global because we used the x * 2
to print two times global. After that, we print the value of local variable y i.e local.

use Global variable and Local variable with same name

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

x = 5

def f4():

x = 10
print("local x:", x)

f4()
print("global x:", x)

Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/fu1.py local x: 10

global x: 5

Powerful Lamda function in python:

Lambda functions are used along with built-in functions like filter(), map() and
reduce()etc….

Filter():

 The filter functions takes list as argument.
 The filter() is called when new list is returned which contains items for which the

function evaluates to true.
 Filter:The filter() function returns an iterator were the items are filtered through a

function to test if the item is accepted or not.

Syntax: filter(function, iterable)

#Write a program to filter() function to filter out only even numbers from the given list

myList =[1,2,3,4,5,6]

newList = list(filter(lambda x: x%2 ==0,myList))

print(newList)

Output:

C:\Users\MRCET\AppData\Local\Programs\Python\Python38-

32\pyyy\fu1.py [2, 4, 6]

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

#Write a program for filter() function to print the items greater than 4

list1 = [10,2,8,7,5,4,3,11,0, 1]

result = filter (lambda x: x > 4,

list1) print(list(result))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/m1.py =

[10, 8, 7, 5, 11]

Map() :

 Map() function in python takes a function & list.
 The function is called with all items in the list and a new list is returned which

contains items returned by that function for each item.
 Map applies a function to all the items in an list.
 The advantage of the lambda operator can be seen when it is used in combination

with the map() function.
 map() is a function with two arguments:

Syntax: r = map(func, seq)

#Write a program for map() function to double all the items in the list

myList =[1,2,3,4,5,6,7,8,9,10]
newList = list(map(lambda x: x*2,myList))

print(newList)

Output:

C:\Users\MRCET\AppData\Local\Programs\Python\Python38-

32\pyyy\fu1.py [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Write a program to seperate the letters of the word "hello" and add the letters

as items of the list.
letters = []

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

letters = list(map(lambda

x:x,"hello")) print(letters)

Output:

C:\Users\MRCET\AppData\Local\Programs\Python\Python38-

32\pyyy\fu1.py ['h', 'e', 'l', 'l', 'o']

#Write a program for map() function to double all the items in the list?

def

addition(n):

return n + n

numbers = (1, 2, 3, 4)

result = map(addition, numbers)

print(list(result))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/m1.py

= [2, 4, 6, 8]

Reduce():

 Applies the same operation to items of sequence.

 Use the result of the first operation for the next operation

 Returns an item, not a list.
 Reduce: The reduce(fun, seq)function is used to apply a particular
 function passed in its argument to all of the list elementsmentioned in the sequence

passed along. This function is defined in “functools” module.

#Write a program to find some of the numbers for the elements of the list by using

reduce()

import functools

myList =[1,2,3,4,5,6,7,8,9,10]
print(functools.reduce(lambda x,y: x+y,myList))

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Output:

C:\Users\MRCET\AppData\Local\Programs\Python\Python38-

32\pyyy\fu1.py 55

#Write a program for reduce() function to print the product of items in a list

from functools import reduce

list1 = [1,2,3,4,5]

product = reduce (lambda x, y: x*y,

list1) print(product)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/m1.py =

120

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

UNIT – IV

DATA STRUCTURES:

Data Structures in Python provides / include Python list, Python Tuple, Python set, and

Python dictionaries with their syntax and examples.

Here in this data structure we will come to know as a way of organizing and storing

data such that we can access and modify it efficiently

List:

 It is a general purpose most widely used in data structures

 List is a collection which is ordered and changeable and allows duplicate members.

(Grow and shrink as needed, sequence type, sortable).

 To use a list, you must declare it first. Do this using square brackets and separate

values with commas.
 We can construct / create list in many

ways. Ex:

>>> list1=[1,2,3,'A','B',7,8,[10,11]]

>>> print(list1)

[1, 2, 3, 'A', 'B', 7, 8, [10, 11]]

>>> x=list()

>>> x

[]

>>> tuple1=(1,2,3,4)

>>> x=list(tuple1)

>>> x

[1, 2, 3, 4]

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

The list data type has some more methods. Here are all of the methods of list objects:

List Operations:

 Del()

 Append()

 Extend()

 Insert()

 Pop()

 Remove()

 Reverse()
 Sort()

Delete: Delete a list or an item from a list

>>> x=[5,3,8,6]

>>> del(x[1]) #deletes the index position 1 in a list

>>> x

[5, 8, 6]

>>> del(x)

>>> x # complete list gets deleted

Append: Append an item to a list

>>> x=[1,5,8,4]

>>> x.append(10)

>>> x

[1, 5, 8, 4, 10]

Extend: Append a sequence to a list.

>>> x=[1,2,3,4]

>>> y=[3,6,9,1]

>>> x.extend(y)

>>> x

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

[1, 2, 3, 4, 3, 6, 9, 1]

Insert: To add an item at the specified index, use the insert () method:

>>> x=[1,2,4,6,7]

>>> x.insert(2,10) #insert(index no, item to be inserted)

>>> x

[1, 2, 10, 4, 6, 7]

-

>>> x.insert(4,['a',11])

>>> x

[1, 2, 10, 4, ['a', 11], 6, 7]

Pop: The pop() method removes the specified index, (or the last item if index is not

specified) or simply pops the last item of list and returns the item.

>>> x=[1, 2, 10, 4, 6, 7]

>>> x.pop()

7

>>> x

[1, 2, 10, 4, 6]

-

>>> x=[1, 2, 10, 4, 6]

>>> x.pop(2)

10

>>> x

[1, 2, 4, 6]

Remove: The remove() method removes the specified item from a given list.

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

>>> x=[1,33,2,10,4,6]

>>> x.remove(33)

>>> x

[1, 2, 10, 4, 6]

>>> x.remove(4)

>>> x

[1, 2, 10, 6]

Reverse: Reverse the order of a given list.

>>> x=[1,2,3,4,5,6,7]

>>> x.reverse()

>>> x

[7, 6, 5, 4, 3, 2, 1]

Sort: Sorts the elements in ascending order

>>> x=[7, 6, 5, 4, 3, 2, 1]

>>> x.sort()

>>> x

[1, 2, 3, 4, 5, 6, 7]

-

>>> x=[10,1,5,3,8,7]

>>> x.sort()

>>> x

[1, 3, 5, 7, 8, 10]

Slicing: Slice out substrings, sub lists, sub Tuples using index.

[Start: stop: steps]

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

 Slicing will start from index and will go up to stop in step of steps.

 Default value of start is 0,

 Stop is last index of list

 And for step default is 1

Example:

>>> x='computer'

>>> x[1:4]

'omp'

>>> x[1:6:2]

'opt'

>>> x[3:]

'puter'

>>> x[:5]

'compu'

>>> x[-1]

'r'

>>> x[-3:]

'ter'

>>> x[:-2]

'comput'

>>> x[::-2]

'rtpo'

>>> x[::-1]

'retupmoc'

List:

>>> list1=range(1,6)

>>> list1

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

range(1, 6)

>>>

print(list1)

range(1, 6)

>>> list1=[1,2,3,4,5,6,7,8,9,10]

>>> list1[1:]

[2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> list1[:1]

[1]

>>> list1[2:5]

[3, 4, 5]

>>> list1[:6]

[1, 2, 3, 4, 5,

6]

>>> list1[1:2:4]

[2]

>>> list1[1:8:2]

[2, 4, 6, 8]

Tuple:

>>> list1=(11,12,13,14)

>>> list1[:2]

(11, 12)

To create a slice:

>>> print(slice(3))

slice(None, 3, None)

>>> print(slice(2))

slice(None, 2, None)

>>>

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

print(slice(1,6,4))

slice(1, 6, 4)

To get substring from a given string using slice object:

>>> pystr='python'

>>> x=slice(3)

>>> print(pystr[x])

Pyt

Using –ve index:

>>> pystr='python'

>>> x=slice(1,-3,1)

>>> print(pystr[x])

>>> yt

To get sublist and sub-tuple from a given list and tuple respectively:

>>> list1=['m','r','c','e','t']

>>> tup1=('c','o','l','l','e','g','e')

>>> x=slice(1,4,1)

>>> print(tup1[x])

('o', 'l', 'l')

>>>

print(list1[x]) ['r',

'c', 'e']

>>> x=slice(1,5,2)

>>>

print(list1[x]) ['r',

'e']

>>>

print(tup1[x]) ('o',

'l')

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

>>> x=slice(-1,-4,-1) #negative index

>>>

print(list1[x]) ['t',

'e', 'c']

>>> x=slice(-1,-4,-1) #negative index

>>> print(tup1[x])

('e', 'g', 'e')

>>> print(list1[0:3]) #extending indexing

syntax ['m', 'r', 'c']

Tuples:

A tuple is a collection which is ordered and unchangeable. In Python tuples are written

with round brackets.

 Supports all operations for sequences.
 Immutable, but member objects may be mutable.

 If the contents of a list shouldn’t change, use a tuple to prevent items from

accidently being added, changed, or deleted.
 Tuples are more efficient than list due to python’s implementation.

We can construct tuple in many

ways: X=() #no item tuple

X=(1,2,3)

X=tuple(list1)

X=1,2,3,4

Example:

>>> x=(1,2,3)
>>> print(x)
(1, 2, 3)
>>> x

(1, 2, 3)

-

>>> x=()
>>> x

()

-

>>> x=[4,5,66,9]
>>> y=tuple(x)

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

>>> y

(4, 5, 66, 9)

>>> x=1,2,3,4
>>> x
(1, 2, 3, 4)

Some of the operations of tuple are:

 Access tuple items
 Change tuple items
 Loop through a tuple
 Count()
 Index()
 Length()

Access tuple items: Access tuple items by referring to the index number, inside square

brackets

>>> x=('a','b','c','g')
>>> print(x[2])

c

Change tuple items: Once a tuple is created, you cannot change its values. Tuples are

unchangeable.

>>> x=(2,5,7,'4',8)
>>> x[1]=10

Traceback (most recent call last):

File "<pyshell#41>", line 1, in <module>

x[1]=10

TypeError: 'tuple' object does not support item assignment

>>> x

(2, 5, 7, '4', 8) # the value is still the same

Loop through a tuple: We can loop the values of tuple using for loop

>>> x=4,5,6,7,2,'aa'
>>> for i in x:

print(i)

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

4

5

6

7
2

aa

Count (): Returns the number of times a specified value occurs in a tuple

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)
>>>

x.count(2) 4

Index (): Searches the tuple for a specified value and returns the position of where it

was found

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)
>>>

x.index(2) 1

(Or)

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)
>>> y=x.index(2)
>>> print(y)

1

Length (): To know the number of items or values present in a tuple, we use len().

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)
>>> y=len(x)
>>> print(y)

12

Set:

A set is a collection which is unordered and unindexed with no duplicate elements. In
Python sets are written with curly brackets.

 To create an empty set we use set()

 Curly braces ‘{}’ or the set() function can be used to create sets

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

We can construct tuple in many

ways: X=set()

X={3,5,6,8}
X=set(list1)

Example:

>>> x={1,3,5,6}

>>> x
{1, 3, 5, 6}

>>> x=set()

>>> x

set()

-

>>> list1=[4,6,"dd",7]

>>> x=set(list1)
>>> x
{4, 'dd', 6, 7}

 We cannot access items in a set by referring to an index, since sets are unordered
the items has no index.

 But you can loop through the set items using a for loop, or ask if a specified
value is present in a set, by using the in keyword.

Some of the basic set operations are:

 Add()
 Remove()

 Len()

 Item in x

 Pop

 Clear

Add (): To add one item to a set use the add () method. To add more than one item to a

set use the update () method.

>>> x={"mrcet","college","cse","dept"}
>>> x.add("autonomous")
>>> x
{'mrcet', 'dept', 'autonomous', 'cse', 'college'}

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

-

>>> x={1,2,3}

>>> x.update("a","b")

>>> x
{1, 2, 3, 'a', 'b'}

-

>>> x={1,2,3}
>>> x.update([4,5],[6,7,8])

>>> x

{1, 2, 3, 4, 5, 6, 7, 8}

Remove (): To remove an item from the set we use remove or discard methods.

>>> x={1, 2, 3, 'a', 'b'}

>>> x.remove(3)
>>> x

{1, 2, 'a', 'b'}

Len (): To know the number of items present in a set, we use len().

>>> z={'mrcet', 'dept', 'autonomous', 'cse', 'college'}
>>> len(z)

5

Item in X: you can loop through the set items using a for loop.

>>> x={'a','b','c','d'}
>>> for item in x:

print(item)

c

d

a

b

pop ():This method is used to remove an item, but this method will remove the last item.

Remember that sets are unordered, so you will not know what item that gets removed.

>>> x={1, 2, 3, 4, 5, 6, 7, 8}
>>> x.pop()

1

>>> x
{2, 3, 4, 5, 6, 7, 8}

Clear (): This method will the set as empty.

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

>>> x={2, 3, 4, 5, 6, 7, 8}
>>> x.clear()

>>> x
set()

The set also consist of some mathematical operations like:

Intersection AND &

Union OR |

Symmetric Diff XOR ^

Diff In set1 but not in set2 set1-set2

Subset set2 contains set1 set1<=set2

Superset set1 contains set2 set1>=set2
Some examples:

>>> x={1,2,3,4}

>>> y={4,5,6,7}

>>> print(x|y)
{1, 2, 3, 4, 5, 6, 7}

>>> x={1,2,3,4}

>>> y={4,5,6,7}

>>> print(x&y)

{4}

-

>>> A={1,2,3,4,5}

>>> B={4,5,6,7,8}

>>> print(A-B)
{1, 2, 3}

>>> B={4,5,6,7,8}
>>> A={1,2,3,4,5}
>>> print(B^A)
{1, 2, 3, 6, 7, 8}

Dictionaries:

A dictionary is a collection which is unordered, changeable and indexed. In Python

dictionaries are written with curly brackets, and they have keys and values.

 Key-value pairs
 Unordered

We can construct or create dictionary like:

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

X={1:’A’,2:’B’,3:’c’}

X=dict([(‘a’,3)

(‘b’,4)]

X=dict(‘A’=1,’B’ =2)

Examples:

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}

>>> dict1
{'brand': 'mrcet', 'model': 'college', 'year': 2004}

To access specific value of a dictionary, we must pass its key,

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}
>>> x=dict1["brand"]
>>> x
'mrcet'

-

To access keys and values and items of dictionary:

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}
>>> dict1.keys()

dict_keys(['brand', 'model',

'year'])

>>> dict1.values()

dict_values(['mrcet', 'college', 2004])

>>> dict1.items()

dict_items([('brand', 'mrcet'), ('model', 'college'), ('year', 2004)])

-

>>> for items in
dict1.values():
print(items)

mrcet

college

2004

>>> for items in
dict1.keys():

print(items)

brand

mode

l year

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

>>> for i in
dict1.items():
print(i)

('brand', 'mrcet')
('model', 'college')

('year', 2004)

Some of the operations are:

 Add/change

 Remove

 Length
 Delete

Add/change values: You can change the value of a specific item by referring to its key

name

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}
>>> dict1["year"]=2005

>>> dict1

{'brand': 'mrcet', 'model': 'college', 'year': 2005}

Remove(): It removes or pop the specific item of dictionary.

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}
>>> print(dict1.pop("model"))

college

>>> dict1
{'brand': 'mrcet', 'year': 2005}

Delete: Deletes a particular item.

>>> x = {1:1, 2:4, 3:9, 4:16, 5:25}

>>> del x[5]
>>> x

Length: we use len() method to get the length of dictionary.

>>>{1: 1, 2: 4, 3: 9, 4: 16}

{1: 1, 2: 4, 3: 9, 4: 16}

>>> y=len(x)
>>> y

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

4

Iterating over (key, value) pairs:
>>> x = {1:1, 2:4, 3:9, 4:16, 5:25}
>>> for key in x:

print(key, x[key])

1 1

2 4

3 9

4 16

5 25

>>> for k,v in
x.items():

print(k,v)

1 1

2 4
3 9
4 16
5 25

List of Dictionaries:

>>> customers = [{"uid":1,"name":"John"},
{"uid":2,"name":"Smith"},

{"uid":3,"name":"Andersson"},

]
>>> >>> print(customers)
[{'uid': 1, 'name': 'John'}, {'uid': 2, 'name': 'Smith'}, {'uid': 3, 'name': 'Andersson'}]

Print the uid and name of each customer
>>> for x in customers:

print(x["uid"], x["name"])

1 John

2 Smith
3 Andersson

Modify an entry, This will change the name of customer 2 from Smith to Charlie
>>> customers[2]["name"]="charlie"

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

>>> print(customers)
[{'uid': 1, 'name': 'John'}, {'uid': 2, 'name': 'Smith'}, {'uid': 3, 'name':

'charlie'}] ## Add a new field to each entry

>>> for x in customers:

x["password"]="123456" # any initial value

>>> print(customers)
[{'uid': 1, 'name': 'John', 'password': '123456'}, {'uid': 2, 'name': 'Smith', 'password':

'123456'}, {'uid': 3, 'name': 'charlie', 'password': '123456'}]

Delete a field

>>> del customers[1]

>>> print(customers)
[{'uid': 1, 'name': 'John', 'password': '123456'}, {'uid': 3, 'name': 'charlie', 'password':
'123456'}]

>>> del customers[1]

>>> print(customers)

[{'uid': 1, 'name': 'John', 'password': '123456'}]

Delete all fields

>>> for x in
customers: del
x["uid"]

>>> x
{'name': 'John', 'password': '123456'}

Sequences:

A sequence is a succession of values bound together by a container that reflects their
type. Almost every stream that you put in python is a sequence. Some of them are:

 String

 List
 Tuples

 Range object

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

String: A string is a group of characters. Since Python has no provision for arrays, we

simply use strings. This is how we declare a string. We can use a pair of single or double
quotes. Every string object is of the type ‘str’.

>>> type("name")

<class 'str'>
>>> name=str()
>>> name

''

>>> a=str('mrcet')

>>> a

'mrcet'

>>> a=str(mrcet)

>>> a[2]

'c'

List: A list is an ordered group of items. To declare it, we use square brackets.

>>> college=["cse","it","eee","ece","mech","aero"]
>>>

college[1] 'it'
>>>

college[:2]
['cse', 'it']

>>>
college[:3]
['cse', 'it', 'eee']
>>> college[3:]

['ece', 'mech',

'aero']

>>> college[0]="csedept"

>>> college
['csedept', 'it', 'eee', 'ece', 'mech', 'aero']

Tuple: It is an immutable group of items. When we say immutable, we mean we cannot
change a single value once we declare it.

>>> x=[1,2,3]

>>> y=tuple(x)
>>> y

(1, 2, 3)

>>> hello=tuple(["mrcet","college"])
>>> hello

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

('mrcet', 'college')

Range object: A range() object lends us a range to iterate on; it gives us a list of
numbers.

>>> a=range(4)
>>> type(a)
<class 'range'>

>>> for i in

range(1,6,2):
print(i)

1

3

5

Some of the python sequence operations and functions are:
1. Indexing
2. Slicing

3. Adding/Concatenation
4. Multiplying

5. Checking membership

6. Iterating

7. Len()

8. Min()
9. Max()

10.Sum()

11.Sorted(

)

12.Count()

13.Index()

1. Indexing
Access any item in the sequence using its index.

string List

>>> x='mrcet' >>> x=['a','b','c']
>>> print(x[2]) >>> print(x[1])
c b

2. Slicing
Slice out substrings, sub lists, sub tuples using index

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

[start : stop : step size]

>>> x='computer'

>>> x[1:4]

'omp'

>>> x[1:6:2]

'opt'

>>> x[3:]

'puter'

>>> x[:5]

'compu'

>>> x[-1]

'r'

>>> x[-3:]

'ter'

>>> x[:-2]

'comput'

>>> x[::-2]

'rtpo'

>>> x[::-1]

'retupmoc'

3. Adding/concatenation:

Combine 2 sequences of same type using +.

 string List

 >>> x='mrcet' + 'college' >>> x=['a','b'] + ['c']

 >>> print(x) >>> print(x)

 Mrcetcollege ['a', 'b', 'c']

4. Multiplying:

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Multiply a sequence using *.

string List

>>> x='mrcet'*3 >>> x=[3,4]*2

>>> x >>> x

'mrcetmrcetmrcet' [3, 4, 3, 4]

5. Checking Membership:
Test whether an item is in or not in a sequence.

string List

>>> x='mrcet' >>> x=['a','b','c']
>>> print('c' in x) >>> print('a' not in x)

True False

6. Iterating:
Iterate through the items in asequence

>>> x=[1,2,3]

>>> for item in x:
print(item*2)

2

4
6

If we want to display the items of a given list with index then we have to use
“enumerate” keyword.

>>> x=[5,6,7]
>>> for item,index in

enumerate(x):
print(item,index)

0 5
1 6
2 7

7. len():

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

It will count the number of items in a given sequence.

string List

>>> x="mrcet" >>> x=["aa","b",'c','cc']

>>> print(len(x)) >>> print(len(x))

5 4

8. min():
Finds the minimum item in a given sequence lexicographically.

string List

>>> x="mrcet" >>> x=["apple","ant1","ant"]
>>> print(min(x)) >>> print(min(x))

c ant

It is an alpha-numeric type but cannot mix types.

>>> x=["apple","ant1","ant",11]
>>> print(min(x))

Traceback (most recent call last):
File "<pyshell#73>", line 1, in <module>

print(min(x))

TypeError: '<' not supported between instances of 'int' and 'str'

9. max():
Finds the maximum item in a given sequence

string List

>>> x='cognizant' >>> x=["hello","yummy","zebra"]
>>> print(max(x)) >>>

z print(max(x))

 zebra

It is an alpha-numeric type but cannot mix types.

>>> x=["hello","yummy1","zebra1",22]
>>> print(max(x))

Traceback (most recent call last):

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

File "<pyshell#79>", line 1, in <module>

print(max(x))

TypeError: '>' not supported between instances of 'int' and 'str'

10. Sum:
Finds the sum of items in a sequence

>>> x=[1,2,3,4,5]
>>>

print(sum(x)) 15

>>> print(sum(x[-
2:])) 9

Entire string must be numeric type.

>>> x=[1,2,3,4,5,"mrcet"]
>>> print(sum(x))

Traceback (most recent call last):

File "<pyshell#83>", line 1, in <module>

print(sum(x))

TypeError: unsupported operand type(s) for +: 'int' and 'str'

11. Sorted():
Returns a new list of items in sorted order but does not change the original list.

string List

>>> x='college' >>> x=['a','r','g','c','j','z']
>>> print(sorted(x)) >>> print(sorted(x))
['c', 'e', 'e', 'g', 'l', 'l', 'o'] ['a', 'c', 'g', 'j', 'r', 'z']

12. Count():
It returns the count of an item

string List

>>> x='college' >>> x=['a','b','a','a','c','a']
>>> print(x.count('l')) >>> print(x.count('a'))
2 4

>>> 'college'.count('l')
2

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

13. Index()
Returns the index of first occurrence

string List

>>> x='college' >>> x=['a','b','a','a','c','a']
>>> >>> print(x.index('a'))

print(x.index('l')) 2 0

Comprehensions:

List:

List comprehensions provide a concise way to create lists. Common applications are to make

new lists where each element is the result of some operations applied to each member of

another sequence or iterable, or to create a subsequence of those elements that satisfy a

certain condition.

For example, assume we want to create a list of squares, like:

>>> list1=[]

>>> for x in range(10):

list1.append(x**2)

>>> list1

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

(or)

This is also equivalent to

>>> list1=list(map(lambda x:x**2, range(10)))

>>> list1

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

(or)

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Which is more concise and redable.

>>> list1=[x**2 for x in range(10)]

>>> list1

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Similarily some examples:

>>> x=[m for m in range(8)]
>>> print(x)

[0, 1, 2, 3, 4, 5, 6, 7]

>>> x=[z**2 for z in range(10) if z>4]
>>> print(x)

[25, 36, 49, 64, 81]

>>> x=[x ** 2 for x in range (1, 11) if x % 2 == 1]
>>> print(x)

[1, 9, 25, 49, 81]

>>> a=5

>>> table = [[a, b, a * b] for b in range(1, 11)]

>>> for i in table:
print(i)

[5, 1, 5]

[5, 2, 10]

[5, 3, 15]

[5, 4, 20]

[5, 5, 25]

[5, 6, 30]

[5, 7, 35]

[5, 8, 40]

[5, 9, 45]
[5, 10, 50]

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Tuple:

Tuple Comprehensions are special: The result of a tuple comprehension is special. You

might expect it to produce a tuple, but what it does is produce a special "generator"

object that we can iterate over.

For example:

>>> x = (i for i in 'abc') #tuple comprehension

>>> x
<generator object <genexpr> at 0x033EEC30>

>>> print(x)
<generator object <genexpr> at 0x033EEC30>

You might expect this to print as ('a', 'b', 'c') but it prints as <generator object <genexpr>

at 0x02AAD710> The result of a tuple comprehension is not a tuple: it is actually a

generator. The only thing that you need to know now about a generator now is that you

can iterate over it, but ONLY ONCE. So, given the code

>>> x = (i for i in 'abc')
>>> for i in x:

print(i)

a

b

c

Create a list of 2-tuples like (number, square):

>>> z=[(x, x**2) for x in range(6)]

>>> z

[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]

Set:

Similarly to list comprehensions, set comprehensions are also supported:

>>> a = {x for x in 'abracadabra' if x not in 'abc'}
>>> a

{'r', 'd'}

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

>>> x={3*x for x in range(10) if x>5}
>>> x
{24, 18, 27, 21}

Dictionary:

Dictionary comprehensions can be used to create dictionaries from arbitrary key and

value expressions:

>>> z={x: x**2 for x in (2,4,6)}

>>> z
{2: 4, 4: 16, 6: 36}

>>> dict11 = {x: x*x for x in range(6)}
>>> dict11

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

UNIT – V

Sorting:

Bubble Sort:

It is a simple sorting algorithm which sorts ‘n’ number of elements in the list by

comparing the ach pair of adjacent items and swaps them if they are in wrong order.

Algorithm:

1. Starting with the first element (index=0), compare the current element with the next

element of a list.
2. If the current element is greater (>) than the next element of the list then swap them.
3. If the current element is less (<) than the next element of the list move to the next

element.
4. Repeat step 1 until it correct order is framed.

For ex: list1= [10, 15, 4, 23, 0] so here we are comparing values again

If > --- yes ---- swap and again, so we use

loops. If < --- No Do nothing/remains same

#Write a python program to arrange the elements in ascending order using

bubble sort:

list1=[9,16,6,26,0]

print("unsorted list1 is",

list1) for j in

range(len(list1)-1):

for i in range(len(list1)-

1): if list1[i]>list1[i+1]:

list1[i],list1[i+1]=list1[i+1],list1[i]

print(list1)

else:

print(list1)

print()

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

print("sorted list is",list1)

Output:

unsorted list1 is [9, 16, 6, 26, 0]

[9, 16, 6, 26, 0]
[9, 6, 16, 26, 0]

[9, 6, 16, 26, 0]
[9, 6, 16, 0, 26]

[6, 9, 16, 0, 26]

[6, 9, 16, 0, 26]

[6, 9, 0, 16, 26]
[6, 9, 0, 16, 26]

[6, 9, 0, 16, 26]

[6, 0, 9, 16, 26]

[6, 0, 9, 16, 26]
[6, 0, 9, 16, 26]

[0, 6, 9, 16, 26]

[0, 6, 9, 16, 26]

[0, 6, 9, 16, 26]
[0, 6, 9, 16, 26]

sorted list is [0, 6, 9, 16, 26]

#If we want to reduce no of iterations/steps in output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/bubb.py list1=[9,16,6,26,0]

print("unsorted list1 is", list1)

for j in range(len(list1)-1,0,-

1): for i in range(j):

if list1[i]>list1[i+1]:

list1[i],list1[i+1]=list1[i+1],list1[i]

print(list1)

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

else:

print(list1)

print()

print("sorted list is",list1)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-
32/pyyy/bubb2.py unsorted list1 is [9, 16, 6, 26, 0]

[9, 16, 6, 26, 0]

[9, 6, 16, 26, 0]

[9, 6, 16, 26, 0]
[9, 6, 16, 0, 26]

[6, 9, 16, 0, 26]
[6, 9, 16, 0, 26]

[6, 9, 0, 16, 26]

[6, 9, 0, 16, 26]
[6, 0, 9, 16, 26]

[0, 6, 9, 16, 26]

sorted list is [0, 6, 9, 16, 26]

In a different way:

list1=[9,16,6,26,0]

print("unsorted list1 is", list1)

for j in range(len(list1)-1):

for i in range(len(list1)-1-j):

if list1[i]>list1[i+1]:

list1[i],list1[i+1]=list1[i+1],list1[i]

print(list1)

else:

print(list1)

print()

print("sorted list is",list1)

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/bubb3.py

unsorted list1 is [9, 16, 6, 26, 0]

[9, 16, 6, 26, 0]

[9, 6, 16, 26, 0]

[9, 6, 16, 26, 0]
[9, 6, 16, 0, 26]

[6, 9, 16, 0, 26]

[6, 9, 16, 0, 26]
[6, 9, 0, 16, 26]

[6, 9, 0, 16, 26]
[6, 0, 9, 16, 26]

[0, 6, 9, 16, 26]

sorted list is [0, 6, 9, 16, 26]

Program to give input from the user to sort the elements

list1=[]
num=int(input("enter how many

numbers:")) print("enter values")

for k in range(num):

list1.append(int(input()))

print("unsorted list1 is",

list1) for j in

range(len(list1)-1):

for i in range(len(list1)-
1): if list1[i]>list1[i+1]:

list1[i],list1[i+1]=list1[i+1],list1[i]

print(list1)

else:
print(list1)

print()

print("sorted list is",list1)

Output:

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/bubb4.py

enter how many

numbers:5 enter values

5
77

4

66

30

unsorted list1 is [5, 77, 4, 66, 30]

[5, 77, 4, 66, 30]

[5, 4, 77, 66, 30]

[5, 4, 66, 77, 30]
[5, 4, 66, 30, 77]

[4, 5, 66, 30, 77]

[4, 5, 66, 30, 77]

[4, 5, 30, 66, 77]
[4, 5, 30, 66, 77]

[4, 5, 30, 66, 77]

[4, 5, 30, 66, 77]

[4, 5, 30, 66, 77]
[4, 5, 30, 66, 77]

[4, 5, 30, 66, 77]

[4, 5, 30, 66, 77]

[4, 5, 30, 66, 77]

[4, 5, 30, 66, 77]

sorted list is [4, 5, 30, 66, 77]

#bubble sort program for descending order

list1=[9,16,6,26,0]

print("unsorted list1 is",

list1) for j in

range(len(list1)-1):

for i in range(len(list1)-

1): if list1[i]<list1[i+1]:

list1[i],list1[i+1]=list1[i+1],list1[i]

print(list1)

else:

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

print(list1)

print()

print("sorted list is",list1)

Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

2/pyyy/bubbdesc.py unsorted list1 is [9, 16, 6, 26, 0]

[16, 9, 6, 26, 0]

[16, 9, 6, 26, 0]

[16, 9, 26, 6, 0]
[16, 9, 26, 6, 0]

[16, 9, 26, 6, 0]

[16, 26, 9, 6, 0]

[16, 26, 9, 6, 0]
[16, 26, 9, 6, 0]

[26, 16, 9, 6, 0]

[26, 16, 9, 6, 0]

[26, 16, 9, 6, 0]
[26, 16, 9, 6, 0]

[26, 16, 9, 6, 0]

[26, 16, 9, 6, 0]

[26, 16, 9, 6, 0]
[26, 16, 9, 6, 0]

sorted list is [26, 16, 9, 6, 0]

Selection Sort:

Sort (): Built-in list method

Sorted (): built in function

 Generally this algorithm is called as in-place comparison based algorithm. We
compare numbers and place them in correct position.

 Search the list and find out the min value, this we can do it by min () method.
 We can take min value as the first element of the list and compare with the next

element until we find small value.

Algorithm:

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

1. Starting from the first element search for smallest/biggest element in the list of
numbers.

2. Swap min/max number with first element
3. Take the sub-list (ignore sorted part) and repeat step 1 and 2 until all the elements

are sorted.

#Write a python program to arrange the elements in ascending order using selection

sort:

list1=[5,3,7,1,9,6]
print(list1)

for i in range(len(list1)):

min_val=min(list1[i:])

min_ind=list1.index(min_val)

list1[i],list1[min_ind]=list1[min_ind],list1[i]

print(list1)

Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/selectasce.py

[5, 3, 7, 1, 9, 6]

[1, 3, 7, 5, 9, 6]

[1, 3, 7, 5, 9, 6]

[1, 3, 5, 7, 9, 6]

[1, 3, 5, 6, 9, 7]

[1, 3, 5, 6, 7, 9]

[1, 3, 5, 6, 7, 9]

#Write a python program to arrange the elements in descending order using selection

sort:

list1=[5,3,7,1,9,6]

print(list1)

for i in range(len(list1)):

min_val=max(list1[i:])

min_ind=list1.index(min_val)

list1[i],list1[min_ind]=list1[min_ind],list1[i]

print(list1)

Output:

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/selecdecs.py

[5, 3, 7, 1, 9, 6]

[9, 7, 6, 5, 3, 1]

Note: If we want the elements to be sorted in descending order use max () method in place

of min ().

Insertion Sort:

 Insertion sort is not a fast sorting algorithm. It is useful only for small datasets.
 It is a simple sorting algorithm that builds the final sorted list one item at a time.

Algorithm:

1. Consider the first element to be sorted & the rest to be unsorted.
2. Take the first element in unsorted order (u1) and compare it with sorted part

elements(s1)
3. If u1<s1 then insert u1 in the correct order, else leave as it is.
4. Take the next element in the unsorted part and compare with sorted element.
5. Repeat step 3 and step 4 until all the elements get sorted.

Write a python program to arrange the elements in ascending order using insertion

sort (with functions)

def insertionsort(my_list):

#we need to sorrt the unsorted part at a

time. for index in range(1,len(my_list)):

current_element=my_list[index]

pos=index

while current_element<my_list[pos-1]and

pos>0: my_list[pos]=my_list[pos-1]

pos=pos-1

my_list[pos]=current_element

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

list1=[3,5,1,0,10,2]

list”)) insertionsort(list1)

num=int(input(“enter how many elements to be in

list1=[int(input()) for i in range (num)]

print(list1)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/inserti.py [0, 1, 2, 3, 5, 10]

Write a python program to arrange the elements in descending order using insertion

sort (with functions)

def insertionsort(my_list):

#we need to sorrt the unsorted part at a

time. for index in range(1,len(my_list)):

current_element=my_list[index]

pos=index

while current_element>my_list[pos-1]and

pos>0: my_list[pos]=my_list[pos-1]

pos=pos-1

my_list[pos]=current_element

#list1=[3,5,1,0,10,2]

#insertionsort(list1)

#print(list1)

num=int(input("enter how many elements to be in

list")) list1=[int(input())for i in range(num)]

insertionsort(list1)

print(list1)

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/insertdesc.py

enter how many elements to be in list 5

8

1

4

10

2

[10, 8, 4, 2, 1]

Merge Sort:

Generally this merge sort works on the basis of divide and conquer algorithm. The three

steps need to be followed is divide, conquer and combine. We will be dividing the unsorted

list into sub list until the single element in a list is found.

Algorithm:

1. Split the unsorted list.
2. Compare each of the elements and group them
3. Repeat step 2 until whole list is merged and sorted.

Write a python program to arrange the elements in ascending order using Merge

sort (with functions)

def

mergesort(list1):

if len(list1)>1:

mid=len(list1)//2

left_list=list1[:mid]

right_list=list1[mid:]

mergesort(left_list)

mergesort(right_list)

i=0

j=0

k=0

while i<len(left_list) and j<len(right_list):

if left_list[i]<right_list[j]:

list1[k]=left_list[i]

i=i+1

k=k+1

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

else:
list1[k]=right_list[j]

j=j+1

k=k+1

while

i<len(left_list):

list1[k]=left_list[i

] i=i+1

k=k+1
while

j<len(right_list):

list1[k]=right_list[j

] j=j+1

k=k+1
num=int(input("how many numbers in

list1")) list1=[int(input()) for x in

range(num)] mergesort(list1)

print("sorted list1",list1)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/merg.py

how many numbers in

list15 5

9

10

1

66

sorted list1 [1, 5, 9, 10, 66]

Quick Sort:

Algorithm:

1. Select the pivot element
2. Find out the correct position of pivot element in the list by rearranging it.
3. Divide the list based on pivot element
4. Sort the sub list recursively

Note: Pivot element can be first, last, random elements or median of three values.

In the following program we are going to write 3 functions. The first function is to find pivot

element and its correct position. In second function we divide the list based on pivot element

and sort the sub list and third function (main fun) is to print input and output.

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Write a python program to arrange the elements in ascending order using Quick sort

(with functions)

#To get the correct position of pivot element:

def

pivot_place(list1,first,last):

pivot=list1[first]

left=first+1

right=last

while True:

while left<=right and list1[left]<=pivot:

left=left+1

while left<=right and

list1[right]>=pivot: right=right-1

if right<left:

break

else:
list1[left],list1[right]=list1[right],list1[left]

list1[first],list1[right]=list1[right],list1[first]

return right

#second function
def

quicksort(list1,first,last):

if first<last:

p=pivot_place(list1,first,last)

quicksort(list1,first,p-1)

quicksort(list1,p+1,last)

#main fun

list1=[56,25,93,15,31,44]

n=len(list1)

quicksort(list1,0,n-1)

print(list1)

Output:
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/qucksort.py

[15, 25, 31, 44, 56, 93]

Write a python program to arrange the elements in descending order using Quick

sort (with functions)

#To get the correct position of pivot element:

def pivot_place(list1,first,last):

pivot=list1[first]

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

left=first+1

right=last

while

True:

while left<=right and list1[left]>=pivot:

left=left+1

while left<=right and

list1[right]<=pivot: right=right-1

if right<left:

break

else:

list1[left],list1[right]=list1[right],list1[left]

list1[first],list1[right]=list1[right],list1[first]

return right

def

quicksort(list1,first,last):

if first<last:

p=pivot_place(list1,first,last)

quicksort(list1,first,p-1)

quicksort(list1,p+1,last)

#main fun

list1=[56,25,93,15,31,44]

n=len(list1)

quicksort(list1,0,n-1)

print(list1)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/qukdesc.py [93, 56, 44, 31, 25, 15]

Linked Lists:

Linked lists are one of the most commonly used data structures in any programming
language. Linked Lists, on the other hand, are different. Linked lists, do not store data at

contiguous memory locations. For each item in the memory location, linked list stores value
of the item and the reference or pointer to the next item. One pair of the linked list item and

the reference to next item constitutes a node.

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

The following are different types of linked lists.

 Single Linked List

A single linked list is the simplest of all the variants of linked lists. Every node in a
single linked list contains an item and reference to the next item and that's it.

 Doubly Linked List

 Circular Linked List

 Linked List with Header
 Sorted Linked List

Python program to create a linked list and display its elements.

The program creates a linked list using data items input from the user and displays it.

Solution:

1. Create a class Node with instance variables data and next.
2. Create a class Linked List with instance variables head and last_node.
3. The variable head points to the first element in the linked list while last_node points to

the last.
4. Define methods append and display inside the class Linked List to append data

and display the linked list respectively.

5. Create an instance of Linked List, append data to it and display the list.

Program:

class Node:

def init (self, data):

self.data = data

self.next = None

class LinkedList:

def init (self):

self.head = None

self.last_node =

None

def append(self, data):

if self.last_node is None:

self.head = Node(data)

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

else:

self.last_node.next = Node(data)

self.last_node = self.last_node.next

def display(self):

current = self.head

while current is not None:

print(current.data, end = ' ')

current = current.next

a_llist = LinkedList()

n = int(input('How many elements would you like to add? '))

for i in range(n):

data = int(input('Enter data item: '))

a_llist.append(data)

print('The linked list: ', end = '')

a_llist.display()

Program Explanation

1. An instance of Linked List is created.
2. The user is asked for the number of elements they would like to add. This is stored in n.
3. Using a loop, data from the user is appended to the linked list n times.
4. The linked list is displayed.

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/link1.py How many elements would you like to add? 5 Enter data
item:

4 Enter data

item: 4 Enter

data item: 6

Enter data item:

8 Enter data

item: 9

The linked list: 4 4 6 8 9

Stacks:

Stack works on the principle of “Last-in, first-out”. Also, the inbuilt functions in Python

make the code short and simple. To add an item to the top of the list, i.e., to push an item,

we use append() function and to pop out an element we use pop() function.

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

Python code to demonstrate Implementing stack using list

stack = ["Amar", "Akbar",

"Anthony"] stack.append("Ram")

stack.append("Iqbal")

print(stack)

print(stack.pop())

print(stack)

print(stack.pop())

print(stack)

Output:
['Amar', 'Akbar', 'Anthony', 'Ram', 'Iqbal']

Iqbal

['Amar', 'Akbar', 'Anthony', 'Ram']

Ram

['Amar', 'Akbar', 'Anthony']

Queues:

Queue works on the principle of “First-in, first-out”. Time plays an important factor here.

We saw that during the implementation of stack we used append() and pop() function which

was efficient and fast because we inserted and popped elements from the end of the list, but

in queue when insertion and pops are made from the beginning of the list, it is slow. This

occurs due to the properties of list, which is fast at the end operations but slow at the

beginning operations, as all other elements have to be shifted one by one. So, we prefer the

use of collections. Deque over list, which was specially designed to have fast appends and

pops from both the front and back end.

#Python code to demonstrate Implementing Queue using deque and list

from collections import deque

queue = deque(["Ram", "Tarun", "Asif",

"John"]) print(queue)

queue.append("Akbar")

print(queue)

queue.append("Birbal")

print(queue)

DATASTRUCTURES USINGPYTHON II YEAR/II SEM MRCET

print(queue.popleft())

print(queue.popleft())

print(queue)

Output:
deque(['Ram', 'Tarun', 'Asif', 'John'])

deque(['Ram', 'Tarun', 'Asif', 'John', 'Akbar'])
deque(['Ram', 'Tarun', 'Asif', 'John', 'Akbar', 'Birbal'])

Ram

Tarun
deque(['Asif', 'John', 'Akbar', 'Birbal'])

