DIGITAL NOTES ON

INTRODUCTION TO DBMS

(R20A0551)

B.TECH - ECE Il YEAR - Il SEM
(2022-23)

Prepared

By
Dr. M. Arunkumar (Assoc. Professor)

Dr. P. Vanitha (Assoc. Professor)

Mrs. K. Vijaya Bharathi (Asst. Professor)

B.Tech (Electronics & Communication Engineering)

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
Il Year B.Tech. ECE- Il Sem L/T/P/C

3/-/-/3

OPEN ELECTIVE - |
(R20A0551) INTRODUCTION TO DBMS
COURSE OBJECTIVES:
1) To understand the basic concepts and the applications of database systems
2) To Master the basics of SQL and construct queries using SQL
3) To understand the relational database design principles
4) To become familiar with the basic issues of transaction processing and concurrency control
5) To become familiar with database storage structures and access techniques

UNIT I:

INTRODUCTION

Database: Purpose of Database Systems, File Processing System Vs DBMS, History,
Characteristic- Three schema Architecture of a database, Functional components of a DBMS.
DBMS Languages- Database users and DBA.

UNIT II:

DATABASE DESIGN

ER Model: Objects, Attributes and its Type. Entity set and Relationship set-Design Issues of ER
model-Constraints. Keys-primary key, Super key, candidate keys. Introduction to relational
model-Tabular, Representation of Various ER Schemas. ER Diagram Notations- Goals of ER
Diagram- Weak Entity Set- Views.

UNIT Ill:

STRUCTURED QUERY LANGUAGE

SQL: Overview, The Form of Basic SQL Query -UNION, INTERSECT, and EXCEPT— join operations:
equi join and non equi join-Nested queries - correlated and uncorrelated- Aggregate Functions-
Null values. Views, Triggers.

UNITIV:

DEPENDENCIES AND NORMAL FORMS

Importance of a good schema design,:- Problems encountered with bad schema designs,
Motivation for normal forms- functional dependencies, -Armstrong's axioms for FD's- Closure of
a set of FD's,- Minimal covers-Definitions of 1NF, 2NF, 3NF and BCNF- Decompositions and
desirable properties.

UNIT V:

Transactions: Transaction concept, transaction state, System log, Commit point, Desirable
Properties of a Transaction, concurrent executions, serializability, recoverability, implementation
of isolation, transaction definition in SQL, Testing for serializability, Serializability by Locks-
Locking Systems with Several Lock Modes- Concurrency Control by Timestamps, validation.

TEXT BOOKS:

1) Abraham Silberschatz, Henry F. Korth, S. Sudarshan,|| Database System Concepts||,
McGraw- Hill, 6th Edition, 2010.

Malla Reddy College of Engineering and Technology (MRCET)

B.Tech (Electronics & Communication Engineering)

2) Fundamental of Database Systems, by Elmasri, Navathe, Somayajulu, and Gupta,
Pearson Education.

REFERENCE BOOKS:

1) Raghu Ramakrishnan, Johannes Gehrke, -Database Management System||, McGraw Hill.,
3rd Edition 2007.

2) Elmasri&Navathe,||[Fundamentals of Database System,|| Addison-Wesley Publishing, 5th
Edition, 2008.

3) Date.C.J, -An Introduction to Database||, Addison-Wesley Pub Co, 8th Edition, 2006.

4) Peterrob, Carlos Coronel, -Database Systems — Design, Implementation, and
Management||, 9th Edition, Thomson Learning, 2009.

COURSE OUTCOMES:
1) Understand the basic concepts and the applications of database systems
2) Master the basics of SQL and construct queries using SQL
3) Understand the relational database design principles
4) Familiarize with the basic issues of transaction processing and concurrency control
5) Familiarize with database storage structures and access techniques

Malla Reddy College of Engineering and Technology (MRCET)

MRCET-ECE Introduction to DBMS

UNIT 1

INTRODUCTION

Data:

The un processed facts that can be recorded and which have implicit meaning
known as"Data".

Example:

Customer

1.cname.

2.cno.

3.ccity.

Information: Processed data.

Database:

A database is an organized collection of data that can be modified, retrieved, or
updated.

Data, DBMS, and applications associated with them together formthe database
concept.

A database can be of any size and varying complexity. A database may be
generated and manipulated manually or it may be computerized.

It organizes the data in the form of tables, views, schemas, reports etc. For
Example, university database organizes the data about students, faculty, and
admin staff etc. which helps in efficient retrieval, insertion and deletion of data
from it.

Meta Data: It is Database definition (or) complete description of Database.

Database Management System:

A database management system (DBMS) is a collection of interrelated dataand a
set of programs to access those data.

It is a software application that is used to create, access, maintain, and manage
databases. DBMS accepts the incoming data either from an application or from a
user who is manually entering it.

Purpose of Database Systems:

e The primary goal of a Database Systems is to provide a way to store and
retrievedatabase information that is both convenient and efficient.

e Database systems are designed to manage large bodies of information.

1

MRCET-ECE Introduction to DBMS

e Management of data involves both defining structures for storage of
information and providing mechanisms for the manipulation of
information.

In addition, the database system must ensure the safety of the
information stored, despite system crashes or attempts at unauthorized
access.

If data are to be shared among several users, the system must avoid
possible anomalous results.

File Processing System:

Before the introduction of DBMS, data was stored in a computerin
operating system files.

To allow users to manipulate the information, the system has a
number of application programs that manipulate the files, including
programs

A typical file-processing system is supported by a conventional
operating system.

The system stores permanent records in various files, and it needs
different application programs to extract records from, and add
records to, the appropriate files.

Disadvantages of File Processing System:

» Data redundancy and inconsistency:

e Since different programmers create the files and application
programs over a long period, the various files are likely to have
different structures and the programs may be written in several
programming languages.

e There is always possibility of duplication of data.

e Some data can be stored in two different files. This redundancy
leads to higher storage and access cost. In addition, it may lead to
data inconsistency; that is, the various copies of the same data may
no longer agree.

» Difficulty in accessing data:

e To carry out any new task a new program has to be written.

e For example, an application program may be available to generatea
list of all students, but if we are required to generate a list of
students who stay in a particular location, we need to write a new
program as this is not anticipated.

MRCET-ECE Introduction to DBMS

> Data isolation: As data is scattered in various files, and stored in different
file formats, writing new application programs to retrieve theappropriate
data is difficult.

MRCET-ECE Introduction to DBMS

> Integrity problems:

e The data values stored in the database must satisfy certain typesof
consistency constraints.

Example, bank account balance should never fall below zero.
Developers enforce these constraints in the system by adding
appropriate code in the various application programs.
However, when new constraints are added, it is difficult tochange
the programs to enforce them.

» Atomicity problems:

e Atomicity means that operations must complete or fail as a whole
unit.

There should not be any partial complete, especially intransactions.
If a failure occurs data has to be restored to the consistence state
that existed prior to the failure. Example: online transactions or
reservations.

e It is difficult to ensure atomicity in a conventional file-processing
system.

» Concurrent-access anomalies.

e For the sake of overall performance of the system and faster
response, many systems allow multiple users to update the data
simultaneously.

But if data is getting updates by two users at the same time, there
is possibility of inconsistency of data.
To guard against this possibility, the system must maintain some
form of supervision.
In file processing system supervision is difficult to provide because
data may be accessed by many different application programs
that are coordinated.

» Security problems.

e Access to the database must be restricted to authorized users
only.

Not every user of the database system should be able to access all
the data.
Since application programs are added to the file-processing
system in an ad hoc manner, enforcing such security constraints is
difficult.

Advantages of DBMS:
» Controlling of Redundancy:

MRCET-ECE Introduction to DBMS

In a database system, by having a centralized database and
centralized control of data by the DBA the unnecessary duplication
of data is avoided.
It also eliminates the extra time for processing the large volume of
data.
e |t results in saving the storage space.
Improved Data Sharing: DBMS allows a user to share the data in any
number of application programs.
Data Integrity:
e Centralized control of the data helps in permitting the administrator
to define integrity constraints to the data in thedatabase.
e New constraints can be enforced easily.
Security:
e Complete authority over the operational data is provided todatabase
administrators (DBA).
e The DBA can define authorization checks to be carried outwhenever
access to sensitive data is attempted.
Data Consistency :
e By eliminating data redundancy, we greatly reduce theopportunities
for inconsistency.
Also updating data values is greatly simplified when each value is
stored in one place only.
Finally, one can avoid the wasted storage that results fromredundant
data storage.
Efficient Data Access : In a database system, the data is managed by the
DBMS and all access to the data is through the DBMS providing a key to
effective data processing.
Data Independence :
e The dbms provides the interface between the application programs
and the data.
e Any changes in data representation will not change the way datais
provided to the application programs.
The DBMS handles the task of transformation of data wherever
necessary.
Reduced Application Development and Maintenance Time : DBMS
supports many important functions that are common to many
applications, accessing data stored in the DBMS, which facilitates the quick
development of application

MRCET-ECE Introduction to DBMS

Disadvantages of DBMS
» It is bit complex. Since it supports multiple functionality to give the userthe

best, the underlying software has become complex. The designers and
developers should have thorough knowledge about the software toget the
most out of it.
Because of its complexity and functionality, it uses large amount of
memory. It also needs large memory to run efficiently.
DBMS system works on the centralized system, i.e.; all the users from all
over the world access this database. Hence any failure of the DBMS, will
impact all the users.
DBMS is generalized software, i.e.; it is written work on the entire systems
rather specific one. Hence some of the application will run slow.

Difference between File System and DBMS:

Basis File System

The file system is
software that
manages and DBMS is software for

Structure . — .

organizes the files in a managing the database.

storage medium

within a computer.

Redundant data can _
In DBMS there is no

Data Redundanc be present in afile
¥ P redundant data.

system.

It doesn’t provide backup | It provides backup and
Backup andRecovery andrecovery of data if it | recovery of data even
is lost. if itislost.

There is no efficient Efficient query
Query processing guery processingin the processing isthere in
file system. DBMS.

) There is more data
There is less data)
. , , , consistency because
Consistency consistency in thefile
of theprocess of
system. o
normalization.

MRCET-ECE

Introduction to DBMS

File System

DBMS

Complexity

It is less complex as
compared toDBMS.

It has more complexity
in handling as
compared to thefile
system.

Security Constraints

File systems provide less
security incomparison to
DBMS.

DBMS has more
security mechanisms as
compared tofile
systems.

It is less expensive than
DBMS.

It has a comparatively
highercost than a file
system.

Data Independence

There is no data
independence.

In DBMS data
independenceexists.

User Access

Only one user can access
data at atime.

Multiple users can
accessdata at a time.

Meaning

The user has to write
procedures formanaging
databases

The user not required to
write procedures.

Sharing

Data is distributed in

many files. So,not easy to

share data

Due to centralized
naturesharing is easy

Data Abstraction

It give details of storage
andrepresentation of
data

It hides the internal
details of Database

Integrity Constraints

Integrity Constraints
are difficult to

implement

Integrity constraints are
easyto implement

MRCET-ECE

Introduction to DBMS

Example

Cobol, C++

Oracle, SQL Server

MRCET-ECE Introduction to DBMS

Data Abstraction:

Data Abstraction is a process of hiding unwanted or irrelevant details from the
end user. It provides a different view and helps in achieving data independence
which is used to enhance the security of data.

Levels of data abstraction:
There are mainly three levels of data abstraction:

External External External External
Schema View View Vicwe

Conceptual Conceptual
Schema View

Internal Internal
Schema | View |

U

]

Fig: three levels of data abstraction

Physical level/Internal Level: The lowest level of abstraction describes
how the data are actually stored. It describes complex low-level data
structures in detail. The Database Administrators(DBA) decide how the
data has to be fragmented, where it has to be stored etc. It totally
depends on the DBA, how he/she manages the database at the physical
level.

Conceptual Level /Logical Level: This is the intermediate level of
abstraction describes what data are stored in the database, and what
relationships exist among those data. The logical level thus describes the
entire database in terms of a small number of relatively simple structures.
This level is maintained by the database administrators.

External Level/View Level: This is the topmost level where application
programs try to view the data. Only the data needed is shown and restof
the details are hidden from this view. Different users will have different

9

MRCET-ECE Introduction to DBMS

view according to the authorization they have.

MRCET-ECE Introduction to DBMS

Example: If we take college database, at physical level student data, faculty
data, department data etc are stored in the database using data structures.
At logical level the interrelationship among different data is defined and the
data-type of data stored is also defined. At view level several views of the
database are defined and a database user sees some or all of these views.

Instances and Schemas:
v" The collection of information stored in the database at a particular
moment is called an instance of the database.
v' The overall design of the database is called the database
Schema. Schemas don’t change frequently.

Based on the levels of abstraction we have physical schema and logical
schema:

The physical schema describes the database design at the physical level,
while the logical schema describes the database design at the logical
level.

Physical schema tells how data is physically organized in database and
what type of data is stored.

Logical schema specifies the actual data to be stored based on the
datatype of the fields and relationship among different records and
fields.

A database may also have several schemas at the view level, sometimes
called subschemas that describe different views of the database.

Of these, the logical schema is by far the most important, in terms of its
effect on application programs, since programmers construct
applications by using the logical schema.

Any change in logical schema affects the view of the application.

The physical schema is hidden beneath the logical schema, and can
usually be changed easily without affecting application programs.

Application programs exhibit physical data independence and thus need

not be rewritten if the physical schema changes.

MRCET-ECE Introduction to DBMS

Data Models:

Data model is a collection of conceptual tools for describing data, data
relationships, data semantics, and consistency constraints.

A data model provides a way to describe the design of a database at the
physical, logical, and view levels.

The data models can be classified into four different categories:

Relational Model:

The relational model uses a collection of tables to represent both data
and the relationships among those data.

Each table has multiple columns, and each column has a unique name.
Tables are also known as relations.

The relational model is an example of a record-based model.

Each table contains records of a particular type.

This is the most widely used commercial data model.

Entity-Relationship Model:

The entity-relationship (E-R) data model uses a collection of basicobjects,
called entities, and relationships among these objects.

An entity is a “thing” or “object” in the real world that is distinguishable
from other objects.

It is the logical representation of data as objects.

A set of attributes describe the entity.

Example: student_id,student_name describe the student entity.

Object-Based Data Model:

Object-oriented programming (especially in Java, C++, or C#) has become
the dominant software-development methodology.

This led to the development of an object-oriented data model that canbe
seen as extending the E-R model with notions of encapsulation, methods
(functions), and object identity.

Here objects are data carrying its properties.

The object-relational data model combines features of the object-oriented
data model and relational data model.

MRCET-ECE Introduction to DBMS

Semistructured Data Model:

The semistructured data model permits the specification of data where
individual data items of the same type may have different sets of
attributes.

This is in contrast to the data models mentioned earlier, where everydata
item of a particular type must have the same set of attributes.

The Extensible Markup Language (XML) is widely used to represent
semistructured data.

This data model is useful for exchange of data between different systems.
Two different DMBS can be converted to XML and data can beexchanged in
this format. Later from XML data is imported to database.

History of DBMS:

The development of database technology can be divided into three eras

based on data model or structure: navigational, SQL/relational, and post-

relational.

The two main early navigational data models were the hierarchical model
and the CODASYL model (network model). These were characterized by
the use of pointers to follow relationships from onerecord to another.

In 1960 Charles Bachman designed the Integrated Data Store (IDS) whichis
the first DBMS based on network model.

In late 1960’s IBM developed Information Management System (IMS)
based on hierarchical model.

Later Edgar F. Codd who worked for IBM was unhappy with the lack of
search engine inthese models.

He insisted that application should search for data by content ratherthan
by following links.

In 1970 he developed relational data model. Relational systems dominated
in all large-scale data processing applications till 1990’s.

Even till 2018 some of them were dominant like oracle, MySQl, SQLserver.
In 1980’s object-oriented model was developed. Post relational erastarted.
In late 2000’s XML based NoSQl and NEW SQL databases weredeveloped.
NoSQL database provide mechanism for storage and reteival of data in
means other than tables. It accommodates data as key-value, document,
columnar and graph formats. Eg: mongoDB.

13

MRCET-ECE Introduction to DBMS

e New SQL database is a modern relational database developed as a
combination of relational model with advancement in scalability and

flexibility with types of data. Eg: voltDB, clustrixDB.

Database Architecture:

Database architecture is a representation of DBMS design.

A DBMS design depends on its architecture and architecture depends on
how users are connected to database to get their request done.

DBMS architecture allows dividing the system into individual

components that can be independently modified.

Types of DBMS Architecture:
There are mainly three types of DBMS architecture:

e 1-Tier Architecture (Single Tier Architecture)
e 2-Tier Architecture
e 3-Tier Architecture

1-Tier Architecture:
e In1- Tier Architecture the database is directly available to the user.

e The client, server, and Database all reside on the same machine.
e But such architecture is rarely used in production. It is used for local

application development.

—|

2-Tier Architecture:
Basic client-server architecture where the application programs and user

interface run on the client-side and data resides on the server side.

We can have multiple clients connected to a single server.

The client-side application establishes a connection with the server side
communicates directly with the database at the server side.

MRCET-ECE Introduction to DBMS

Database system

Application

Client
3-Tier Architecture:

e 3-Tier Architecture in DBMS is the most popular client server
architecture in DBMS in which the development and maintenance of
functional processes, logic, data access, data storage, and user interface
is done independently as separate modules.
3-Tier architecture contains a presentation layer, an application layer,
and a database server.

The client does not directly communicate with the server.

The application on the client-side interacts with an application server
which further communicates with the database system.

This intermediate layer acts as a medium for the exchange of partially
processed data between server and client.

This type of architecture is used in the case of large web applications.

Application Server

Application Client

User

Client

MRCET-ECE Introduction to DBMS

Three schema Architecture of Database:

The three schema architecture is also called ANSI/SPARC architecture or
three-level architecture.

The three-schema architecture divides the database into three-level
used to create a separation between the physical database and the user
application.

This architecture hides the details of physical storage from the user.

The framework of this type of architecture includes an external schema,
conceptual schema, internal schema and database itself.

Mapping is used to transform the request and response between various
database levels of architecture.

In External / Conceptual mapping, the request is transformed from
external level to conceptual schema.

In Conceptual / Internal mapping, the request is transformed from the
conceptual to internal level.

-~
External Level ‘

External Schema { External Level }

\

External / Conceptual
Mapping

Conceptual Schema Conceptual Level ‘

F Y

Conceptual / Internal
Mapping

r

Internal Level

Internal Schema

Database

Fig: Three schema Architecture
Internal schema:
e The internal schema is also known as a physical schema.
e |t uses the physical data model to describe complex low-level data
structures in detail.
Activities of this field are:

MRCET-ECE Introduction to DBMS

o Storage space allocations.

MRCET-ECE Introduction to DBMS

= For Example: B-Trees, Hashing etc.
Access paths.
= For Example: Specification of primary and secondary keys,
indexes,pointers and sequencing.
o Data compression and encryption techniques.
o Optimization of internal structures.
o Representation of stored fields.

Conceptual schema:
e Conceptual schema is also known as logical schema.

e This schema describes the data datatypes and the relationship among
the data stored in database.

Internal details such as an implementation of the data structure are
hidden from this schema.

There is only one conceptual schema per database.

External schema:
e Anexternal schema is also known as view schema.
e At the external level, a database contains several schemas that
sometimes called as subschema.
The subschema is used to describe the different view of the database.

Each view schema describes the end user interaction with database
systems.

Functional Components of Database:

A database consist of following functional components:
Hardware
Software
Data
Procedures
Database Access Language
Users

MRCET-ECE Introduction to DBMS

Hardware

Components
of DBMS Procedures

@@ ©

Hardware

e The hardware is the actual computer system used for keeping and
accessing the database.
e Databases run on the range of machines from micro computers to
mainframes.
Software
e |tis the main component of DBMS.
e Software is a set of programs used to manage and control the database

e |tincludes the database software, operating system, network software
used to share the data with other users, and the applications used to
access the data.

Procedures:

e These are general instructions that are used for managing the DBMS and
its applications.

e Procedures are generally used to take back up of the database and to
change the structure of database etc.

Data:

e |tis also the most important component of the database management
system.

e The main task of DBMS is to process the data.

e Here, databases are defined, constructed, and then data is stored,
retrieved, and updated to and from the databases.

Users:

e The users are the people who control and manage the databases and
perform different types of operations on the databases in the database
management system.

MRCET-ECE Introduction to DBMS

There are three types of user who play different roles in DBMS:
» Application Programmers
» Database Administrators
» End-Users
Application Programmers:
The users who write the application programs in programming
languages to interact with databases are called Application
Programmers.
Database Administrators (DBA):
A person who manages the overall DBMS is called a database
administrator or simply DBA.
End-Users:
End-users are those who use the application program to interact with
DBMS.

Database Languages:
User can access, update, delete, and store data or information in the database
using database languages.
Following are different types of database languages:
1. Data Definition Language
. Data Manipulation Language

2
3. Data Control Language
4. Transaction Control Language

Types of DBMS Language

¥

Data Definition Data Manipulation Data Centrol Tr%z;a;t‘;rn
Language Language Language Language

3 Create L » Select
Revoke Rollback
- Drop L » insert

Grant Commit
— Truncate 3 Delete

—» Rename —» Update

MRCET-ECE Introduction to DBMS

Data Definition Language (DDL)

Data Definition Language is used for defining the structure or schema of
the database.

It is also used for creating tables, indexes, applying constraints, etc. in
the database.

Here are some tasks that come under DDL:

Create: It is used to create objects in the database.
Alter: It is used to alter the structure of the database.
Drop: It is used to delete objects from the database.
Truncate: It is used to remove all records from a table.
Rename: It is used to rename an object.

Comment: It is used to comment on the data dictionary.
Data Manipulation Language (DML)

= Data Manipulation Language is used for accessing and manipulating
datain a database.
= |t handles user requests.

Here are some tasks that come under DML:

Select: It is used to retrieve data from a database.

Insert: It is used to insert data into a table.

Update: It is used to update existing data within a table.

Delete: It is used to delete all records from a table.

Merge: It performs UPSERT operation, i.e., insert or update operations.

Data Control Language (DCL)

= Data Control Language is used to control privilege in Databases.

= To perform any operation in the database, such as for creating
tables,sequences, or views, we need privileges.
Privileges can be set for the system or for an object.

Tasks that come under DCL are:

MRCET-ECE Introduction to DBMS

o @Grant: Itis used to give user access privileges to a database.

o Revoke: It is used to take back permissions from the user.

Transaction Control Language (TCL)
= Transaction Control Language is used to run the changes made by
theDML statement.
= |t allows statements to be grouped into logical
transactions.
Tasks that come under TCL are:

Commit: It is used to save the transaction on the database.

Rollback: It is used to restore the database to original since the last
Commit.

Savepoint: It used to identify a point in transaction to which one can
laterrollback.

Database Users:
= Database users are people who interact with the database

usingapplication and interfaces provided by the DBMS.
Database users are divided into different types based on the way
theyinteract with the database.

Types of users are:

Native/Naive Users:

These are the end users who use the existing application to interact with
the database. For example, users logging into gmail using login id and
password to access mails.

Application Programmer:
These are the software professionals who write application programsand
user interface. They use tools like Rapid Application Development (RAD)
for creatingforms, reports and Ul with minimal efforts.

Sophisticated Users:

These are analysts who interact with the database using query languagelike
SQL. They submit each query to a query processor whose function is to
breakdown DML statements into instructions to the database.

MRCET-ECE Introduction to DBMS

Specialized Users:

Users who write complex programs and specialized database
applications that do not fit into the traditional data processing

framework.
Example, expert system, knowledge based system etc.

Database Administrators (DBA)

Database Administrator is a person or a group of person who are
responsible for managing all the activities related to database system.

DBA has central control over the DBMS.

MRCET-ECE Introduction to DBMS

UNIT 2

DATABASE DESIGN

Entity Relationship Model (ER-Model):

Objects: The ER model describes data objects as entities, relationships, and
attributes. The ERmodel is very useful in mapping the meanings and interactions of
real-world enterprises onto a conceptual schema. The ER-Model also has an
associated diagrammatic representation, the E-R diagram.

Entity:
e The basic concept that the ER model represents is an entity, which is a thing

or object in the real world with an independent existence.

For example each person in a university is an entity. An entity has a set of
properties, and the values for some set of properties may uniquely identify
an entity. For instance, a person may have a person id property whose value
uniquely identifies that person.

An entity set is a set of entities of the same type that share the same
properties, or attributes. The set of all people who are instructors at a given
university, for example, can be defined as the entity set instructor. Similarly,
the entity set student might represent the set of all students in the university.

instructor

Attributes:

e An entity is represented by a set of attributes. Attributes are descriptive
properties possessed by each member of an entity set.

e Each entity has a value for each of its attributes. For instance, a particular
Employee entity may have the value 12121 for ID, the value Kamalfor name,
the value Finance for dept name, and the value 90000 for salary.

There are five such types of attributes: Simple, Composite, Single-valued,Multi-

valued, and Derived attribute.

1. Simple attribute :

An attribute that cannot be further subdivided into components is a simple

attribute.

Example: The roll number of a student, the id number of an employee.

24

MRCET-ECE Introduction to DBMS

2. Composite attribute :
An attribute that can be split into components is a composite attribute.
Example: The address can be further split into house number, street number,

city, state, country, and pin code, the name can also be split into first name
middle name, and last name.

Address -

3. Single-valued attribute :

The attribute which takes up only a single value for each entity instance is a
single-valued attribute.

Example: The gender of a student.

Student

4, Multi-valued attribute :

The attribute which takes up more than a single value for each entity instance
is a multi-valued attribute.

Example: Phone number of a student: Landline and mobile, email id.

Ce

Student

5. Derived attribute :
An attribute that can be derived from other attributes is derived attributes.

25

MRCET-ECE Introduction to DBMS

Example: Total and average marks of a student, age can be derived from DOB.

DN

Student

Key Attribute:
It is the attribute which can identify an entity uniquely in an entity set.
Example: “Roll_no” is a key attribute as it can identify any student uniquely.

P >

Student

Domain of Attributes

The set of possible values that an attribute can take is called the domain of the

attribute.
For example, age attribute can take only positive integer values, the attribute
day may take any value from the set {Monday, Tuesday ... Friday}. Hence this
set canbe termed as the domain of the attribute day.

RELATIONSHIPS:
Associations between entities are called relationships
Example: An employee works for an organization. Here "works for" is a relation

between the entities employee and organization.
In ER modeling, notation for relationship is given below.

Relationship

A relationship set is a set of relationships of the same type. We define the
relationship set “works for” to denote the association between employee and

26

MRCET-ECE Introduction to DBMS

organization.

MRCET-ECE Introduction to DBMS

e The association between entity sets is referred to as participation; that is,

the entity sets E1, E2, . . . , En participate in relationship set R. A
relationship instance in an E-R schema represents an association between
the named entities in the real-world enterprise that is being modeled.
The function that an entity plays in a relationship is called that entity’s role.
Since entity sets participating in a relationship set are generally distinct,
roles may be different if the same entity set participates in a relationship
set more than once.

Degree of a Relationship:

The degree of a relationship type is the number of participating entity types. The
n-ary relationship is the general form for degree n. Special cases are unary,
binary, and ternary, where the degree is 1, 2, and 3, respectively.

Example for unary relationship: An employee is a manager of another employee
Example for binary relationship: An employee works-for department.
Example for ternary relationship: customer purchase item from a shop keeper

Mapping cardinalities: express the number of entities to which another entity
can be associated via a relationship set.

Mapping cardinalities are most useful in describing binary relationship sets,
although they can contribute to the description of relationship sets that involve
more than two entity sets.

For a binary relationship set R between entity sets A and B, the mapping
cardinality must be one of the following:

* One-to-one: An entity in A is associated with at most one entity in B, and an
entity in B is associated with at most one entity in A.

MRCET-ECE Introduction to DBMS

Example:
In a particular hospital, the surgeon department has one head of department.They
both serve one-to-one relationships.

Surgeon Headed by

* One-to-many: An entity in A is associated with any number (zero or more) of
entities in B. An entity in B, however, can be associated with at most one entity in

A.

/

/ N\

a

Example:
In a particular hospital, the surgeon department has multiple doctors. Theyserve
one-to-many relationships

Surgeon

Department Doctors

e Many-to-one: An entity in A is associated with at most one entity in B. An entity
in B, however, can be associated with any number (zero or more) of entities in A.

MRCET-ECE Introduction to DBMS

Example:
In a particular hospital, multiple surgeries are done by a single surgeon. Such a
type of relationship is known as a many-to-many relationship.

Multiple surgeries done by ' single surgeon

e Many-to-many: An entity in A is associated with any number (zero or more) of

entities in B, and an entity in B is associated with any number (zero or more) of
entities in A.

Example:
In a particular company, multiple people work on multiple projects. They serve

many-to-many relationships.

MRCET-ECE

Empoyees

Introduction to DBMS

Multiple projects

MRCET-ECE Introduction to DBMS

KEYS:

Keys are a set of attributes whose values can be used to uniquely identify
an individual entity in an entity set.

Key is an important constraint on an entity.

Eg: ID, Aadhar no, PAN card no etc.

Types of Keys:

Super key: is a set of one or more attributes that, taken collectively, allow us to
identify uniquely a tuple in the relation.

For example, the ID attribute of the relation instructor is sufficient to distinguish
one instructor tuple from another. The combination of ID and name is a superkey
for the relation instructor.

{ID, name}, {ID, name, address} examples of super key.

Candidate Key: The minimal attribute super keys are candidate keys.
e These are keys which cannot be further subdivided into keys to uniquely

identify an entity or a record in a relation.
If any one of the attribute is removed from this set then we cannot
uniquelyidentify a record.
Eg: {name, address}, {name, contact no}, {Id} these are candidate keys
whose values cannot be same for two different records at any time.
[
Primary Key: It is that candidate key whose value alone can be used to uniquely
identify an entity.
These are simple attributes which do not allow duplicate values.
They cannot take null values.
Eg: Id
We use the convention that the attributes that form the primary key of a
relation are underlined.

Secondary/Alternate key: These are the candidate keys that are not chosen as
primary key. These are used for accessing records.

Eg: {name, address}, {name, contact no}

Foreign Key: It is the attribute of an entity which is a primary key in the related
entity.

32

MRCET-ECE Introduction to DBMS

It is used to establish mapping between two or more entities.

Eg: In an employee relation deptno refers to the department an employee
works. But deptno is a primary key in department relation. Hence deptno
is Foreign key in employee relation.

Design Constraints in ER Model
Participation Constraints:

e The participation of an entity set E in a relationship set R is said to be total
if every entity in E participates in at least one relationship in R.
If only some entities in E participate in relationships in R, the participation
of entity set E in relationship R is said to be partial.
In a one to one relationship, participation of both the sets is total whereas
in other relationships it is partial from one of the sets.
For example, we expect every student entity to be related to at least one
faculty through the mentor relationship. Therefore the participation of
student in the relationship set mentor is total. In contrast, a faculty need
not mentor any student. Hence, it is possible that only some of the faculty
entities are related to the student entity set through the mentor
relationship, and the participation of faculty in the mentor relationship set
is therefore partial.

student faculty

Total Participation is indicated by double line.

Cardinality Constraint:

We can show minimum and maximum cardinality while showing the
relationship between two entities.

It indicates the minimum and maximum numbers of entities from an entity
set that are associated in a relationship.

MRCET-ECE Introduction to DBMS

Eg: In mentor relation, a student must have exactly one mentor, so here
min. and max. is 1 whereas a faculty can be a mentor to 0 or more
students.

Different notations are available for representing this.

. 0..*
student L1 @ faculty

Key Constraints:
e The constraint for keys is that no two entities can have same values for a
key.
e Primary key cannot be null.
Strong Entity: Entities which have sufficient key attributes are called Strong
entities. Strong entities have primary keys of their own.
Weak Entity: Entities which don’t have sufficient key attributes are called weak
entities.
e Entities belonging to a weak entity type are identified by the identifying
or owner entity type with which it is associated.
The relationship associating a weak entity type to its owner is called the
identifying relationship.
A weak entity type always has a total participation constraint (existence
dependency) with respect to its identifying relationship because a weak
entity cannot be identified without an owner entity.
The identifying relationship is many-to-one from the weak entity set to the
identifying entity set, and the participation of the weak entity set in the
relationship is total.
A weak entity type normally has a partial key, also known a discriminator,
which is the attribute that can uniquely identify weak entities that are
related to the same owner entity.
Eg: The entity type DEPENDENT, related to EMPLOYEE is a weak entity.
{dependent_name, dependent_address} of the weak entity can be taken as
partial key.
The primary key of a weak entity set is formed by the primary key of the
identifying entity set, plus the weak entity set’s discriminator.

MRCET-ECE Introduction to DBMS

Inthe above case {emp_id, dependent_name, dependent_address} is the
primary key of Dependent entity.

Employee

N

Dependants

Strong Entity

Weak Entity

Strong entity has a primary key.

Weak entity has a partial key.

Strong entity is independent

Weak entity is dependent on a
strongentity

Strong entity indicated by a
singlerectangle.

Strong entity indicated by a
doublerectangle.

Two strong entity’s relationship
isindicated by a single
diamond.

One strong and one weak entity
isindicated by a double
diamond.

Strong entity may be or may
notparticipate in
relationships.

Weak entity always participates
inrelationships.

In strong entity connecting line
is asingle line

In weak entity connecting line is a
doubleline

MRCET-ECE

ER Diagram Notations:

Represents Entity

Represents Attribute

Represents Relationship

Links Attribute(s) to entity set(s) or
Entity set(s) to Relationship set(s)

Represents Multivalued Attributes

Represents Derived Attributes

Represents Total Participation of Entity

Represents Weak Entity

Represents Weak Relationships

Represents Composite Attributes

Represents Key Attributes / Single Valued
Attributes

Introduction to DBMS

MRCET-ECE Introduction to DBMS

MRCET-ECE Introduction to DBMS

Relational Model:

It is the primary data model for commercial data processing applications

compared to earlier models.

It is simple and easy to use.

The relational model in DBMS is an abstract model used to organize and
manage the data stored in a database.

It was designed in 1969 by scientist Edgar F. Codd.

Relational database stores data in the form of relations.

Relations are represented as a collection of data in the form of tables with
rows and columns.

MRCET-ECE Introduction to DBMS

Relational Model Concepts:

Relation : Two-dimensional table used to store a collection of data
elements.
Tuple : Row of the relation, depicting a real-world entity.
Attribute/Field : Column of the relation, depicting properties that define
the relation.
Attribute Domain : Set of pre-defined atomic values that an attribute can
take i.e., it describes the legal values that an attribute can take.
Degree : It is the total number of attributes present in the relation.
Cardinality : It specifies the number of entities involved in the relation i.e.,
it is the total number of rows present in the relation.
Relational Schema : It is the logical blueprint of the relation i.e., it describes
the design and the structure of the relation. It contains the table name, its
attributes, and their types:

TABLE_NAME(ATTRIBUTE_1 TYPE_1, ATTRIBUTE_2 TYPE_2, ...)

For our Student relation example, the relational schema will be:
STUDENT(ROLL_NUMBER INTEGER, NAME VARCHAR(20),...)
« Relational Instance : It is the collection of records present in the relation at
a given time.
Relation Key : It is an attribute or a group of attributes that can be used to
uniquely identify an entity in a table or to determine the relationship
between two tables.

Constraints in Relational Model:

Relational models make use of some rules to ensure the accuracy and accessibility
of the data. These rules or constraints are known as Relational Integrity
Constraints. These constraints are checked before performing any operation like
insertion, deletion, or updation on the data present in a relational database.

These constraints include:

Domain Constraint : It specifies that every attribute is bound to have a
value that lies inside a specific range of values. It is implemented with the
help of the Attribute Domain concept.
o If we set a constraint on an attribute like age>0 then its age attribute
should not accept negative values.

39

MRCET-ECE Introduction to DBMS

« Key Constraint : It states that every relation must contain an attribute or a

set of attributes (Primary Key) that can uniquely identify a tuple in that
relation. This key can never be NULL or contain the same value for two
different tuples.
Referential Integrity Constraint : It is defined between two inter-related
tables. It works on foreign key concept. It states that if a given relation
refers to a key attribute of a different or same table, then that key must
exist in the given relation.

Advantages of using the relational model:
The advantages and reasons due to which the relational model in DBMS is widely
accepted as a standard are:

« Simple and Easy To Use - Storing data in tables is much easier to
understand and implement as compared to other storage techniques.
Manageability - Because of the independent nature of each relation in a
relational database, it is easy to manipulate and manage. This improves the
performance of the database.

Query capability - With the introduction of relational algebra, relational
databases provide easy access to data via high-level query language like
SQL.

Data integrity - With the introduction and implementation of relational
constraints, the relational model can maintain data integrity in the
database.

Disadvantages of using the relational model

The main disadvantages of relational model in DBMS occur while dealing with a

huge amount of data as:

o The performance of the relational model depends upon the number of

relations present in the database.
Hence, as the number of tables increases, the requirement of physical
memory increases.
The structure becomes complex and there is a decrease in the response
time for the queries.
Because of all these factors, the cost of implementing a relational database
increase.

MRCET-ECE Introduction to DBMS

UNIT 3

STRUCTURED QUERY LANGUAGE

What is SQL?

SQL is Structured Query Language, which is a database language designed for the
retrieval and management of data in a relational database.
All the RDBMS systems like MySQL, MS Access, Oracle, Sybase, Postgres, and
SQL Server use SQL as their standard database language.

Why to Use SQL?
SQL provides an interface to a relational database.
Here, are important reasons for using SQL

It helps users to access data in the RDBMS system.
It helps us to describe the data.

It allows us to define the data in a database and manipulate that specific data.

With the help of SQL commands in DBMS, we can create and drop databases and

tables.
SQL offers us to use the function in a database, create a view, and stored procedure.

We can set permissions on tables, procedures, and views.

History of SQL

"A Relational Model of Data for Large Shared Data Banks" was a paper which was published

by the great computer scientist "E.F. Codd" in 1970.

The IBM researchers Raymond Boyce and Donald Chamberlin originally developed the
SEQUEL (Structured English Query Language) after learning from the paper given by E.F.
Codd. They both developed the SQL at the San Jose Research laboratory of IBM Corporation
in 1970. In 1979, Relational Software, Inc. (now Oracle) introduced the first commercially

available implementation of SQL.

MRCET-ECE

Introduction to DBMS

SQL became a standard of the American National Standards Institute (ANSI) in 1986, and of
the International Organization for Standardization (1SO) in 1987.1 Since then, the standard

has been revised to include a larger set of features. Despite the existence of standards, most

SQL code requires at least some changes before being ported to different database systems.

New versions of the standard were published and most recently, 2016.

Types of SQL
Here are five types of widely used SQL queries.

Data Definition Language (DDL)
Data Manipulation Language (DML)
Data Control Language(DCL)
Transaction Control Language(TCL)
Data Query Language (DQL)

SOL Command

Create

Drop

Alter

— Truncate

Commit

— Rollback

Save
point

All operations performed on the information in a database are run using SQL statements. A

SQL statement consists of identifiers, parameters, variables, names, data types, and

SQL reserved words.

What is DDL?

https://en.wikipedia.org/wiki/SQL#cite_note-ISO_9075%3A1987-14

MRCET-ECE Introduction to DBMS

Definition: The Language used to define the database structure or schema is called

“Data Definition Language”.

e The Commands (or) statements used to define the structure of database are:

CREATE
ALTER
DROP
TRUNCATE
RENAME

1.CREATE
Create command can be used to create

0] Databases
(i) Tables and

(iii) Views.
(i) Creating Database

Syntax:

create database database name;

Ex: create database MRCET _ITA,

(i) Creating Table

Syntaxc

f Create table tablename(Columnnamel Datatype, \
Columnname?2 Datatype, , Columnnamen
Datatype);

_ _J

Ex: create table Student(SRno integer(5),

MRCET-ECE Introduction to DBMS

Snamevarchar(20),

Address varchar(15));

2. ALTER Command

e The ALTER TABLE statement is used to add, delete, or modify columns in an
existing table.

e The ALTER TABLE statement is also used to add and drop various constraints on an
existing table.

1. ALTER TABLE - ADD Column

To add a column in a table, use the following syntax:

ALTER TABLE table name
ADD column_namedatatype;

Ex: The following SQL adds an "Email" column to the

"Customers" table:

ALTERTABLE Customers
ADD Email varchar(255);

ALTER TABLE - DROP COLUMN

To delete a column in a table, use the following syntax (notice that some database systems

don't allow deleting a column):

Syntax:

ALTER TABLE table name
DROP COLUMN column_name;

Ex: The following SQL deletes the "Email™ column from the "Customers" table:

MRCET-ECE Introduction to DBMS

ALTERTABLE Customers
DROP COLUMN Email;

ALTER TABLE - ALTER/MODIFY COLUMN

To change the data type of a column in a table, use the following syntax:

SQL Server / MS Access:

ALTER TABLE table name
ALTER COLUMN column_namedatatype;

Ex: ALTER TABLE supplier

ALTER COLUMN supplier_nameVARCHAR(100) NOT NULL;

My SQL / Oracle (prior version 10G):

ALTER TABLE table name

MODIFY COLUMN column_namedatatype;

Example 1: Modifying single Column

ALTER TABLE supplier

MODIFY supplier_namechar(100) NOT NULL;

Example 2: Modifying Multiple Columns

ALTER TABLE supplier
MODIFY supplier_nameVARCHAR(100) NOT NULL,

MODIFY city VARCHAR(75);

Oracle 10G and later:

MRCET-ECE Introduction to DBMS

ALTER TABLE table name
MODIFY column_namedatatype;

3.Drop Command

Syntax
To drop a column in an existing table, the SQL ALTER TABLE syntax is:

ALTER TABLE table_name

DROP COLUMN column_name;

Example
Let's look at an example that drops (ie: deletes) a column from a table.

For example:

ALTER TABLE supplier

DROP COLUMN supplier_name;

This SQL ALTER TABLE example will drop the column

called supplier_name from the table called supplier.

TRUNCATE:

This command used to delete all the rows from the table and free the space containing the
table.

Syntax:

TRUNCATE TABLE table_name;

Example:

TRUNCATE table students;

What is Data Manipulation Language?

MRCET-ECE Introduction to DBMS

Data Manipulation Language (DML) allows user to modify the database instance by
inserting, modifying, and deleting its data. It is responsible for performing all types data

modification in a database.

There are three basic constructs which allow database program and user to enter data and

information are:
Here are some important DML commands in SQL.:

e INSERT
« UPDATE
« DELETE

INSERT:This statement is a SQL query. This command is used to insert data into the row of

a table.
Syntax:

INSERT INTO TABLE_NAME (coll, col2, col3,.... col N)
VALUES (valuel, value2, value3,.... valueN);

Or

INSERT INTO TABLE_NAME

VALUES (valuel, value2, values,.... valueN);

For example:

INSERT INTO students (RolINo, FIrstName, LastName) VALUES ('60', Tom', Erichsen’);
UPDATE:

This command is used to update or modify the value of a column in the table.

Syntax:

UPDATE table_name SET [column_namel= valuel,...column_nameN = valueN] [WHERE
CONDITION]

MRCET-ECE Introduction to DBMS

For example:

UPDATE students
SET FirstName = 'Jhon’, LastName= "Wick'
WHERE StudID = 3;

DELETE:

This command is used to remove one or more rows from a table.
Syntax:

DELETE FROM table_name [WHERE condition];

For example:

DELETE FROM students
WHERE FirstName = 'Jhon";

What is DCL?

DCL (Data Control Language) includes commands like GRANT and REVOKE, which are

useful to give "rights & permissions.” Other permission controls parameters of the database

system.

Examples of DCL commands:

Commands that come under DCL:

o Grant

« Revoke

Grant:

This command is use to give user access privileges to a database.

Syntax:

GRANT SELECT, UPDATE ON MY_TABLE TO SOME_USER, ANOTHER_USER;

48

MRCET-ECE Introduction to DBMS

For example:

GRANT SELECT ON Users TO'Tom'@'localhost;

Revoke:

It is useful to back permissions from the user.

Syntax:

REVOKE privilege_nameONobject_nameFROM {user_name |[PUBLIC |role_name}

For example:

REVOKE SELECT, UPDATE ON student FROM BCA, MCA;

What is TCL?

Transaction control language or TCL commands deal with the transaction within the

database.

Commit: This command is used to save all the transactions to the database.

Syntax:

Commit;

For example:

DELETE FROM Students
WHERE RolINo =25;
COMMIT;

Rollback

Rollback command allows you to undo transactions that have not already been saved to the

database.

Syntax:

MRCET-ECE Introduction to DBMS

ROLLBACK;

Example:

DELETE FROM Students
WHERE RolINo =25;

SAVEPOINT

This command helps you to sets a savepoint within a transaction.
Syntax:

SAVEPOINT SAVEPOINT_NAME;

Example:

SAVEPOINT RollINo;

What is DQL?

Data Query Language (DQL) is used to fetch the data from the database. It uses only one

command:

SELECT:

This command helps you to select the attribute based on the condition described by the
WHERE clause.

Syntax:

SELECT expressions
FROM TABLES
WHERE conditions;

For example:

SELECT FirstName
FROM Student

MRCET-ECE Introduction to DBMS

WHERE RolINo> 15;

TCL Commands

TCL Commands in SQL- Transaction Control Language Examples: Transaction Control
Language can be defined as the portion of a database language used for maintaining
consistency of the database and managing transactions in database. A set of SQL statements
that are co-related logically and executed on the data stored in the table is known as
transaction. In this tutorial, you will learn different TCL Commands in SQL with examples
and differences between them.

1. Commit Command
2. Rollback Command

3. Savepoint Command

TCL Commands in SQL- Transaction Control Language Examples
The modifications made by the DML commands are managed by using TCL commands.
Additionally, it makes the statements to grouped together into logical transactions.
TCL Commands
There are three commands that come under the TCL:

1. Commit
The main use of Commit command is to make the transaction permanent. If there is a need
for any transaction to be done in the database that transaction permanent through commit
command.
Syntax:
COMMIT;
Eor Example
UPDATE STUDENT SET STUDENT_NAME = ‘Maria® WHERE STUDENT_NAME =
‘Meena’;

COMMIT;

e By using the above set of instructions, you can update the wrong student name by the

correct one and save it permanently in the database. The update transaction gets
completed when commit is used. If commit is not used, then there will be lock on

‘Meena’ record till the rollback or commit is issued.

MRCET-ECE Introduction to DBMS

e Now have a look at the below diagram where ‘Meena’ is updated and there is a lock
on her record. The updated value is permanently saved in the database after the use of
commit and lock is released.

2. Rollback

e Using this command, the database can be restored to the last committed state.

e Additionally, it is also used with savepoint command for jumping to a savepoint in a
transaction.

Syntax:

Rollback to savepoint-name;

For example

UPDATE STUDENT SET STUDENT_NAME = ‘Manish’ WHERE STUDENT_NAME
= ‘Meena’; ROLLBACK;

e This command is used when the user realizes that he/she has updated the wrong
information after the student name and wants to undo this update.

52

MRCET-ECE Introduction to DBMS

e The users can issues ROLLBACK command and then undo the update.

Have a look at the below tables to know better about the implementation of this command.

3. Savepoint
The main use of the Savepoint command is to save a transaction temporarily. This way users
can rollback to the point whenever it is needed.
The general syntax for the savepoint command is mentioned below:
savepointsavepoint-name;

Eor Example

Following is the table of a school class

Use some SQL queries on the above table and then watch the results
INSERT into CLASS VALUES (101, ‘Rahul);

Commit;
UPDATE CLASS SET NAME= ‘Tyler’ where id= 101;

53

MRCET-ECE Introduction to DBMS

SAVEPOINT A;

INSERT INTO CLASS VALUES (102, ‘Zack’);
Savepoint B;

INSERT INTO CLASS VALUES (103, ‘Bruno”)
Savepoint C;

Select * from Class;

The result will look like

Now rollback to savepoint B
Rollback to B;
SELECT * from Class;

Now rollback to savepoint A
rollback to A;
SELECT * from class;

Difference between rollback, commit and savepointtcl commands in SQL.

Rollback Commit Savepoint

MRCET-ECE Introduction to DBMS

Saves modification | It saves the transaction
made by DML

Commands and it

Database can be restored to the last
committed state temporarily.
permanently saves

the transaction.

Syntax- ROLLBACK [To
SAVEPOINT_NAME];

Syntax- COMMIT; | Syntax- SAVEPOINT

[savepoint_name;]

Example- ROLLBACK Insert3; Example- SQL>

COMMIT;

Example- SAVEPOINT
table_create;

START TRANSACTION;
savepoint a;
update t1 set n1=18 where n1=13;

rollbackto a;

In relational database the data is stored as well as retrieved in the form of relations (tables).

Table 1 shows the relational database with only one relation called STUDENT which
stores ROLL_NO, NAME, ADDRESS, PHONE and AGE of students.

ROLL_NO

NAME

ADDRESS

PHONE

RAM

DELHI

9455123451

RAMESH

GURGAON

9652431543

SUIIT

ROHTAK

9156253131

SURESH

DELHI

9156768971

MRCET-ECE Introduction to DBMS

These are some important terminologies that are used in terms of relation.

Attribute: Attributes are the properties that define a relation. e.g.; ROLL_NO, NAME etc.

Tuple: Each row in the relation is known as tuple. The above relation contains 4 tuples, one

of which is shown as:

RAM DELHI 9455123451 18

Degree: The number of attributes in the relation is known as degree of the relation. The
STUDENT relation defined above has degree 5.

Cardinality: The number of tuples in a relation is known as cardinality. The STUDENT
relation defined above has cardinality 4.

Column: Column represents the set of values for a particular attribute. The column
ROLL_NO isextracted from relation STUDENT.

ROLL_NO

SQL Set Operations

Set operations allow the results of multiple queries to be combined into a single result set.

The Set Operators combine a similar type of data from two or more SQL database tables. It

mixes the result, which is extracted from two or more SQL queries, into a single result.

Set operators combine more than one select statement in a single query and return a specific

result set.

MRCET-ECE Introduction to DBMS

Set operators include UNION, INTERSECT, and EXCEPT.

UNION

In SQL the UNION clause combines the results of two SQL queries into a single table of all
matching rows. The two queries must result in the same number of columns and compatible
data types in order to unite. Any duplicate records are automatically removed unless UNION
ALL is used.

Syntax of UNION:

SELECT columnl, column2...., columnN FROM table_Namel [WHERE conditions]
UNION

SELECT columnl, column2...., columnN FROM table_Name2 [WHERE conditions];

A simple example would be a database having tables sales2005 and sales2006 that have
identical structures but are separated because of performance considerations. A UNION

query could combine results from both tables.

Note that UNION ALL does not guarantee the order of rows. Rows from the second operand

may appear before, after, or mixed with rows from the first operand. In situations where a
specific order is desired, ORDER BY must be used.

Note that UNION ALL may be much faster than plain UNION.

sales2005
person | amount
Joe 1000
Alex 2000

Bob 5000

MRCET-ECE Introduction to DBMS

sales2006

person amount
Joe 2000
Alex 2000

Zach | 35000

Executing this statement:
SELECT * FROM sales2005UNIONSELECT * FROM sales2006;

yields this result set, though the order of the rows can vary because no ORDER BY clause

was supplied:

person amount
Joe 1000
Alex 2000
Bob 5000
Joe 2000

Zach 35000

MRCET-ECE Introduction to DBMS

UNION ALL gives different results, because it will not eliminate duplicates. Executing this

statement:
SELECT * FROM sales2005UNION ALLSELECT * FROM sales2006;

would give these results, again allowing variance for the lack of an ORDER BY statement:

person | amount
Joe 1000
Joe 2000
Alex 2000
Alex 2000
Bob 5000

Zach 35000

MRCET-ECE Introduction to DBMS

INTERSECT
The SQL INTERSECT operator takes the results of two queries and returns only rows that

appear in both result sets. For purposes of duplicate removal the INTERSECT operator does
not distinguish between NULLSs.

The INTERSECT operator removes duplicate rows from the final result set. The
INTERSECT ALL operator does not remove duplicate rows from the final result set, but if a
row appears X times in the first query and Y times in the second, it will appear min(X, Y)

times in the result set.

The data type and the number of columns must be the same for each SELECT statement used
with the INTERSECT operator.

Syntax of INTERSECT

SELECT columnl, column2...., columnN FROM table_Namel [WHERE conditions]
INTERSECT

SELECT columnil, column2...., columnN FROM table_Name2 [WHERE conditions];

Let's understand the below example which explains how to execute INTERSECT operator in

Structured Query Language:

In this example, we used two tables. Both tables have four columns Emp_Id, Emp_Name,

Emp_Salary, and Emp_City.

Employee_detailsl:

Emp Id Emp Salary Emp City

201 25000 Delhi

202 45000 Delhi

203 30000 Aligarh

MRCET-ECE Introduction to DBMS

Employee_details2:

Emp Id Emp Name Emp Salary Emp City

203 Saket 30000 Aligarh

204 Saurabh 40000 Delhi

205 Ram 30000 Kerala

201 Sanjay 25000 Delhi

Suppose, we want to see a common record of the employee from both the tables in a single

output. For this, we have to write the following query in SQL:
SELECT Emp_Name FROM Employee_detailsl
INTERSECT

SELECT Emp_Name FROM Employee_details2 ;

Emp Id Emp Name Emp Salary Emp City

201 Sanjay 25000 Delhi

203 Saket 30000 Aligarh

EXCEPT
The SQL EXCEPT operator takes the distinct rows of one query and returns the rows that do

not appear in a second result set. For purposes of row elimination and duplicate removal, the
EXCEPT operator does not distinguish between NULLs. The EXCEPT ALL operator does

not remove duplicates, but if a row appears X times in the first query and Y times in the

second, it will appear max(X - Y, 0) times in the result set.

Notably, the Oracle platform provides a MINUS operator which is functionally equivalent to
the SQL standard EXCEPT DISTINCT operator.

61

MRCET-ECE Introduction to DBMS

The following example EXCEPT query returns all rows from the Orders table where
Quantity is between 1 and 49, and those with a Quantity between 76 and 100.

Worded another way; the query returns all rows where the Quantity is between 1 and 100,
apart from rows where the quantity is between 50 and 75.

SELECT *FROM Orders WHERE Quantity BETWEEN 1 AND 100
EXCEPT

SELECT *FROM Orders WHERE Quantity BETWEEN 50 AND 75;
Joins

A join is a query that combines rows from two or more tables, views, based on a common

field between them.

Consider the following two tables —

Table 1 — CUSTOMERS Table

|ID|NAME | AGE | ADDRESS | SALARY |

|1|Ramesh|32|Ahmedabad|2000.00|
|2|Khilan|25|Delhi|1500.00]
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00]
7	Muffy	24	Indore	10000.00

1102|2009-10-0800:00:00|3|3000|

MRCET-ECE Introduction to DBMS

1100/2009-10-0800:00:003|1500|
1101/2009-11-2000:00:00[2|1560|
1103|2008-05-2000:00:00|4]2060|

Now, let us join these two tables in our SELECT statement as shown below.

SELECT ID, NAME, AGE,AMOUNT FROM CUSTOMERS, ORDERS
WHERE CUSTOMERS.ID= ORDERS.CUSTOMER_ID;

This would produce the following result.

|ID|NAME | AGE | AMOUNT |

3	kaushik	23	3000
3	kaushik	23	1500
2	Khilan	25	1560
4	Chaitali	25	2060

Here, it is noticeable that the join is performed in the WHERE clause. Several operators can
be used to join tables, such as =, <, >, <>, <=, >=, I=, BETWEEN, LIKE, and NOT; they

can all be used to join tables. However, the most common operator is the equal to symbol.

SQL JOINS: EQUI JOIN and NON EQUI JOIN
The are two types of SQL JOINS - EQUI JOIN and NON EQUI JOIN
1) SQL EQUI JOIN:

The SQL EQUI JOIN is a simple SQL join uses the equal sign(=) as the comparison operator
for the condition. It has two types - SQL Outer join and SQL Inner join.

2) SQL NON EQUI JOIN :

The SQL NON EQUI JOIN is a join uses comparison operator other than the equal sign like

>, <, >=, <= with the condition.

MRCET-ECE Introduction to DBMS

SQL EQUI JOIN : INNER JOIN and OUTER JOIN
The SQL EQUI JOIN can be classified into two types - INNER JOIN and OUTER JOIN
1. SQL INNER JOIN

This type of EQUI JOIN returns all rows from tables where the key record of one table is
equal to the key records of another table.

2. SQL OUTER JOIN

This type of EQUI JOIN returns all rows from one table and only those rows from the
secondary table where the joined condition is satisfying i.e. the columns are equal in both
tables.

In order to perform a JOIN query, the required information we need are:

a) The name of the tables

b) Name of the columns of two or more tables, based on which a condition will perform.

Syntax:

FROM tablel

join_type table2

[ON (join_condition)]

ON can be replaced with WHERE

Pictorial Presentation of SQL Joins:

MRCET-ECE

INMER JOIM

-
select * from tab1

iNnner join tab2
on tab1.numid=tabZ.numid;
Result : [11,12]

e

eft outer join tab2 right outer join tabz2
on tab1.numid=tabZ. numid on tab1.numid=tabZ.numid;

Result : [10,14,11,12]

select * from tab1 select * from tab1
1
Result : [11.12,13,15]

LEFT OQOUTER JOIN RIGHT OUTER JCOIM

select * from tab1
full outer join tab2
on tab1 . numid=tab2._ numid;

Result : [10,74,11.12,13,15]

FLULL QOUTER JOIMN

Let’s Consider the two tables given below.
Table name- Student:

id Name

Hina

Megha

Gouri

Table name — Record:

id Class

Introduction to DBMS

MRCET-ECE Introduction to DBMS

EQUI JOIN :
EQUI JOIN creates a JOIN for equality or matching column(s) values of the relative tables.

EQUI JOIN also create JOIN by using JOIN with ON and then providing the names of the
columns with their relative tables to check equality using equal sign (=).
Syntax :

SELECT column_list

FROM tablel, table2....

WHERE tablel.column_name =

table2.column_name;

Example -

SELECT student.name, student.id, record.class, record.city

FROM student, record

WHERE student.city = record.city;

MRCET-ECE Introduction to DBMS

Megha

Gouri

2. NON EQUI JOIN :
NON EQUI JOIN performs a JOIN using comparison operator other than equal(=) sign like

> <, >=, <= with conditions.

Syntax:
SELECT *

FROM table_namel, table_name2

WHERE table_namel.column [>| <| >=| <=] table_name2.column;

Example —

SELECT student.name, record.id, record.city
FROM student, record
WHERE Student.id <Record.id ;

Output :

MRCET-ECE Introduction to DBMS

Nested Queries in SQL.:

In nested queries, a query is written inside a query. The result of inner query is used in
execution of outer query. Nested Queries are also called assubqueries.

Subqueries are useful when you must execute multiple queries to solve a single problem.
Each query portion of a statement is called a query block. In the following query, the

subquery in parentheses is the inner query block:

SELECT first_name, last_name FROM employees

WHERE department_id

IN (SELECTdepartment_idFROM departments
WHERE location_id = 1800);

e The inner SELECT statement retrieves the IDs of departments with location ID 1800.

These department IDs are needed by the outer query block, which retrieves names of

employees in the departments whose IDs were supplied by the subquery.

The structure of the SQL statement does not force the database to execute the inner
query first. For example, the database could rewrite the entire query as a join of
employees and departments, so that the subquery never executes by itself.
Subqueries can be correlated or uncorrelated.
Correlated subquery - In correlated subquery, inner query is dependent on the outer query.

Outer query needs to be executed before inner query

MRCET-ECE Introduction to DBMS

Non-Correlated subquery - In non-correlated query inner query does not dependent on the
outer query. They both can run separately.

Correlated Subqueries

A correlated subquery typically obtains values from its outer query before it executes. When
the subquery returns, it passes its results to the outer query.

In the following example, the subquery needs values from the addresses.state column in the
outer query:

=> SELECT name, street, city, state FROM addresses
WHERE EXISTS (SELECT * FROM states WHERE states.state = addresses.state);
This query is executed as follows:

The query extracts and evaluates each addresses.state value in the outer subquery
records.

Then the query—using the EXISTS predicate—checks the addresses in the inner
(correlated) subquery.

Because it uses the EXISTS predicate, the query stops processing when it finds the
first match.

NoncorrelatedSubqueries

A noncorrelatedsubquery executes independently of the outer query. The subquery executes

first, and then passes its results to the outer query, For example:

=> SELECT name, street, city, state FROM addresses WHERE state IN (SELECT state
FROM states);

This query is executed as follows:

e Executes the subquery SELECT state FROM states (in bold).

e Passes the subquery results to the outer query.

A query's WHERE and HAVING clauses can specify noncorrelatedsubqgueries if the

subquery resolves to a single row, as shown below:

MRCET-ECE Introduction to DBMS

In WHERE clause
=> SELECT COUNT(*) FROM SubQ1 WHERE SubQ1.a = (SELECT y from SubQ?2);

In HAVING clause
=> SELECT COUNT(*) FROM SubQ1 GROUP BY SubQ1.a HAVING SubQ1l.a =
(SubQl.a & (SELECT y from SubQ2)

Aggregate functions:

Aggregate functions operate on values across rows to perform mathematical calculations such
as sum, average, counting, minimum/maximum values, standard deviation, and estimation, as
well as some non-mathematical operations.

An aggregate function takes multiple rows (actually, zero, one, or more rows) as input and
produces a single output.

Various Aggregate Functions:

1. COUNT ([DISTINCT] A): The number of (unique) values in the A column.

2. SUM ([DISTINCT] A): The sum of all (unique) values in the A column.

3. AVG ([DISTINCT] A): The average of all (unique) values in the A column.

4. MAX (A): The maximum value in the A column.

5. MIN (A): The minimum value in the A column.

Let us consider a table that contains the following data:

selectx,yfromsimpleorderbyx,y;

11020 |
120 |44 |
13070 |

S S —

The aggregate function returns one output row for multiple input rows:

selectsum(x)

MRCET-ECE Introduction to DBMS

fromsimple;

Now let us understand each Aggregate function with a example:

Id Name Salary

F

Count():

Count(*): Returns total number of records .i.e 6.

Count(salary): Return number of Non Null values over the column salary. i.e 5.

Count(Distinct Salary): Return number of distinct Non Null values over the column salary
ded.

Sum():
sum(salary): Sum all Non Null values of Column salary i.e., 310

sum(Distinct salary): Sum of all distinct Non-Null values i.e., 250.

Avg():
Avg(salary) = Sum(salary) / count(salary) = 310/5
Avg(Distinct salary) = sum(Distinct salary) / Count(Distinct Salary) = 250/4

MRCET-ECE Introduction to DBMS
Min():

Min(salary): Minimum value in the salary column except NULL i.e., 40.
Max(salary): Maximum value in the salary i.e., 80.

Aggregate Functions and NULL Values

Some aggregate functions ignore NULL values. For example, AVG calculates the average of

values 1, 5, and NULL to be 3, based on the following formula:

1+5)/2=3

If all of the values passed to the aggregate function are NULL, then the aggregate function
returns NULL.

Some aggregate functions can be passed more than one column. For example:

select count(coll, col2) from tablel;

In these instances, the aggregate function ignores a row if any individual column is NULL.
insertintot(x,y)values

(1,2),

(3,null),

(null,6),

(null,null);

Query the table:

selectcount(x,y)fromt;

Similarly, if SUM is called with an expression that references two or more columns, and if
one or more of those columns is NULL, then the expression evaluates to NULL, and the row

is ignored:

selectsum(x+y)fromt;

https://docs.snowflake.com/en/sql-reference/functions/sum.html

MRCET-ECE

| SUM(X +Y) |

Introduction to DBMS

SQL also provides a special comparison operator IS NULL to test whether a column value is

null; for example the value of y IS NULL returns true when x is 3 and IS NOT NULL

returns false.

INTRODUCTION TO VIEWS
A view is a table whose rows are not explicitly stored in the database but are computed as

needed.

Views in SQL are kind of virtual tables. A view also has rows and columns as they are in a

real table in the database. We can create a view by selecting fields from one or more tables

present in the database. A View can either have all the rows of a table or specific rows based

on certain condition.

Sample Tables:

CREATING VIEWS

StudentDetails

Ashish Durgapur

Dhanraj

StudentMarks

Suresh

Dhanraj

We can create View using CREATE VIEW statement. A View can be created from a single

table or multiple tables.

MRCET-ECE Introduction to DBMS

Syntax:
CREATE VIEW view_name ASSELECT columnl, column2
FROM table_nameWHERE condition;

view_name: Name for the View
table_name: Name of the table
condition: Condition to select rows

Examples:

Creating View from a single table:
In this example we will create a View named DetailsView from the table StudentDetails.

Query:
CREATE VIEW DetailsView ASSELECT NAME, ADDRESS
FROM StudentDetailsWHERE S_ID < 5;

To see the data in the View, we can query the view in the same manner as we query a table.

SELECT * FROM DetailsView;

Output:

Ashish Durgapur

Dhanraj Bihar

Creating View from multiple tables: In this example we will create a View named
MarksView from two tables StudentDetails and StudentMarks. To create a View from
multiple tables we can simply include multiple tables in the SELECT statement.
Query:

CREATE VIEW MarksView AS

SELECT StudentDetails. NAME, StudentDetails. ADDRESS, StudentMarks.MARKS
FROM StudentDetails, StudentMarks

WHERE StudentDetails.NAME = StudentMarks.NAME;

74

MRCET-ECE Introduction to DBMS

To display data of View MarksView:

SELECT * FROM MarksView:;
Output:

Pratik Delhi 80

Ram Rajasthan 85
DELETING VIEWS

SQL allows us to delete an existing View. We can delete or drop a View using the DROP

statement.
Syntax:
DROP VIEW view_name;

view_name: Name of the View which we want to delete.

For example, if we want to delete the View MarksView, we can do this as:

DROP VIEW MarksView;
UPDATING VIEWS

There are certain conditions needed to be satisfied to update a view. If any one of these

conditions is not met, then we will not be allowed to update the view.

. The SELECT statement which is used to create the view should not include GROUP
BY clause or ORDER BY clause.
. The SELECT statement should not have the DISTINCT keyword.
3. The View should have all NOT NULL values.

. The view should not be created using nested queries or complex queries.

MRCET-ECE Introduction to DBMS

5. The view should be created from a single table. If the view is created using multiple
tables then we will not be allowed to update the view.
We can use the CREATE OR REPLACE VIEW statement to add or remove fields from a
view.
Syntax:
CREATE OR REPLACE VIEW view_name AS
SELECT columnl,coulmn2,..
FROM table_name
WHERE condition;

For example, if we want to update the view MarksView and add the field AGE to this View
from StudentMarks Table, we can do this as:

CREATE OR REPLACE VIEW MarksView AS

SELECT StudentDetails.NAME, StudentDetails. ADDRESS, StudentMarks.MARKS,
StudentMarks.AGEFROM StudentDetails, StudentMarks

WHERE StudentDetails. NAME = StudentMarks.NAME;

If we fetch all the data from MarksView now as:

SELECT * FROM MarksView;
Output:

Pratik Deihl 80 19
. Dhanry Bhar 95 21
Ram Rajasthan 85 18
Inserting a row in a view:
We can insert a row in a View in a same way as we do in a table. We can use the INSERT
INTO statement of SQL to insert a row in a View.Syntax:

INSERT INTO view_name(columnl, column2 , column3,..)

VALUES(valuel, value2, value3..);

view_name: Name of the View

MRCET-ECE Introduction to DBMS

Example:

In the below example we will insert a new row in the View DetailsView which we have
created above in the example of “creating views from a single table”.

INSERT INTO DetailsView(NAME, ADDRESS)

VALUES("Suresh","Gurgaon");
If we fetch all the data from DetailsView now as,
SELECT * FROM DetailsView:;

Output:

Ashish Durgapur

Dhanraj Bihar

Deleting a row from a View:

Deleting rows from a view is also as simple as deleting rows from a table. We can use the
DELETE statement of SQL to delete rows from a view. Also deleting a row from a view
first delete the row from the actual table and the change is then reflected in the
view.Syntax:

DELETE FROM view_name

WHERE condition;

view_name:Name of view from where we want to delete rows

condition: Condition to select rows

Example:

In this example we will delete the last row from the view DetailsView which we just added
in the above example of inserting rows.

DELETE FROM DetailsView

WHERE NAME="Suresh";

MRCET-ECE Introduction to DBMS

If we fetch all the data from DetailsView now as,
SELECT * FROM DetailsView:;

Output:

Ashish Durgapur

Dhanraj Bihar

TRIGGERS

A trigger is a stored procedure that is automatically invoked by the DBMS in response to
specified changes to the database, and is typically specified by the DBA. A database that
has a set of associated triggers is called an active database. A trigger description contains

three parts:

Event: A change to the database that activates the trigger.

Condition: A query or test that is run when the trigger is activated.

Action: A procedure that is executed when the trigger is activated and its con-dition is true.

A trigger action can examine the answers to the query in the condition part of the trigger,
refer to old and new values of tuples modified by the statement activating the trigger,

execute new queries, and make changes to the database.

Syntax:

create trigger [trigger_name]
[before | after]

{insert | update | delete}

on [table_name]

[for each row]

[trigger_body]

MRCET-ECE Introduction to DBMS

Explanation of syntax:

1. create trigger [trigger_name]: Creates or replaces an existing trigger with the
trigger_name.
[before | after]: This specifies when the trigger will be executed.

. {insert | update | delete}: This specifies the DML operation.

on [table_name]: This specifies the name of the table associated with the trigger.
[for each row]: This specifies a row-level trigger, i.e., the trigger will be executed for
each row being affected.

6. [trigger_body]: This provides the operation to be performed as trigger is fired

BEFORE and AFTER of Trigger:

BEFORE triggers run the trigger action before the triggering statement is run.

AFTER triggers run the trigger action after the triggering statement is run.

Examples of Triggers in SQL

The trigger called init count initializes a counter variable before every execution of an

INSERT statement that adds tuples to the Students relation. The trigger called incr count

increments the counter for each inserted tuple that satisfies the condition age < 18.

CREATE TRIGGER init count BEFORE INSERT ON Students /* Event */
DECLARE

count INTEGER;

BEGIN

count :=0;

END

I* Action */

CREATE TRIGGER incr count AFTER INSERT ON Students /* Event */
WHEN (new.age< 18) /* Condition; ‘new’ is just-inserted tuple */

FOR EACH ROW

BEGIN /* Action; a procedure in Oracle’s PL/SQL syntax */

MRCET-ECE Introduction to DBMS

count := count + 1;
END

(identifying the modified table, Students, and the kind of modifying statement, an
INSERT), and the third field is the number of inserted Students tuples with age < 18. (The

trigger in Figure 5.19 only computes the count; an additional trigger is required to insert the

appropriate tuple into the statistics table.)

CREATE TRIGGER set count AFTER INSERT ON Students /* Event */
REFERENCING NEW TABLE AS InsertedTuples

FOR EACH STATEMENT

INSERT /* Action */

INTO StatisticsTable(ModifiedTable, ModificationType, Count) SELECT

‘Students’, ‘Insert’, COUNT * FROM InsertedTuples | WHERE l.age< 18

MRCET-ECE Introduction to DBMS

Unit 4
DEPENDENCE AND NORMAL FORMS

Importance of a good schema design:

What is a Database Schema?
A database schema is a blueprint that represents the tables and relations of a
data set.
Itis important to have a good database schema design. The reasons are:
To avoid data redundancy which wastes memory and leads to data
inconsistency.
To have correctness and completeness of data.
To maintain data accuracy and integrity.
To write simple and easy queries.

Problems that arise with bad database schema is :
Anomalies occur whenever data is inserted, modified or deleted in case
of large database.
This makes data integrity harder to maintain.
Data inconsistency can occur.
Difficulty to scale the database when future application functionality is
added.
Performance reduces.
Maintenance also becomes difficult.

To prevent all these problems one has to normalize the database by efficiently

organizing the data.

Normalization

¢ Normalization is a process of specifying and defining keys, columns,
relationships in order to create an efficient database.

Objectives of Normalization

Normalization reduces data redundancy there by reduces the amount of
space used by database and ensures that data is stored efficiently.

It divides large tables into many smaller tables and makes a relation
between them.

It reduces cause of anomalies when data is manipulated.

MRCET-ECE Introduction to DBMS

Normalization defines rules for the relational table in the form of normal

forms.

MRCET-ECE Introduction to DBMS

Normal Form is a process that evaluates each relation against defined rules
and criteria. It removes multi-valued primary keys, joins, functional

dependencies etc., to improve the relational table integrity and efficiency.

Functional Dependency (FD):

The functional dependency is a relationship that exists between two
attributes.

It is constraint where one attribute determines the value of another one.
It plays a vital role to find the difference between good and bad
database design.

It typically exists between the primary key and non-key attribute within
a table.

For any relation R, attribute Y is functionally dependent on attribute X (usually
the PK), if for every valid instance of X, that value of X uniquely determines the
value of Y. This relationship is indicated by the representation below :
X->Y
e The left side of FD is known as a determinant, the right side of the

production is known as a dependent.

For example:
Assume we have an employee table with attributes: Emp_Id, Emp_Name,
Emp_Address.

e Here Emp_Id attribute can uniquely identify the Emp_Name attribute of
employee table because if we know the Emp_Id, we can tell that
employee name associated with it.

Functional dependency can be written as:
Emp_Id - Emp_Name
We can say that Emp_Name is functionally dependent on Emp_Id.

Types of Functional Dependencies:
There are mainly four types of Functional Dependency in DBMS:

Multivalued Dependency

Trivial Functional Dependency
Non-Trivial Functional Dependency
Transitive Dependency

MRCET-ECE Introduction to DBMS

Multivalued Functional Dependency

Multivalued dependency occurs in the situation where there are
multiple independent multivalued attributes in a single table.

In Multivalued FD, entities of the dependent set are not dependent on
each other.

In an Emp table empname and salary attributes both depend on empld for
identification. But both are independent to each other.

Emp_ld >{ Emp_Name,sal} is an example of multivalued FD.

Trivial Functional Dependency

In Trivial Functional Dependency, a dependent is always a subset of the
determinant.

i.e. If X = Y and Y is the subset of X, then it is called trivial functional
dependency.

In Emp table {Emp_Id,Emp_Name}->Emp_Name is a trivial FD as Emp_Name
is a subset of {Emp_Id,Emp_Name}.

{Emp_Id,Emp_Name}->Emp_Id is also a trivial FD.

Non-Trivial Functional Dependency

In this FD, the dependent is strictly not a subset of the determinant.
If X = Y then Y is not a subset of X

{Emp_Id,Emp_Name} set can determine the value of Emp_Address or Salary.
But Emp_Address or Salary doesn’t belong to the set or not a subset of
{Emp_Id,Emp_Name}

Hence, {Emp_Id,Emp_Name}->Sal is a non-trivial FD.
{Emp_Id,Emp_Name}->Emp_Address is also a non-trivial FD.

Transitive Functional Dependency
In transitive functional dependency, dependent is indirectly dependent on

determinant. It is formed by two functional dependencies.

MRCET-ECE Introduction to DBMS

IfA->Band B »>CthenA->C

If Emp_Id identifies Dept_No of an employee and Dept_No identifies
Dept_Name then Emp_Id can indirectly identify Dept_Name according to
transitive rule.

Emp_Id - Dept_No,
Dept_No - Dept_Name then Emp_Id - Dept_Name

Armstrong’s Axioms for Functional Dependencies
e Armstrong’s Axioms are a set of rules, developed by William
W.Armstrong in 1974.
e ltis used to infer all the functional dependencies on a relational
database.
e For a set of functional dependencies F, if these rules are applied
repeatedly, then they generate a closure of FDs denoted as, F*

Armstrong’s Axioms has mainly two different sets of rules:
1. Primary Rule
2. Secondary Rule

Primary Rule:

1.Axiom of reflexivity —

If Ais a set of attributes and B is subset of A, then A holds B.
If B S Athen A->B This property is trivial property.

e.g. {Emp_Id,Emp_Name}->Emp_Name

2.Axiom of augmentation —

If A holds B and C is an attribute set, then AC also holds BC. That is adding
attributes in dependencies, does not change the basic dependencies.

The augmentation is also called as a partial dependency. In augmentation, if A
determines B, then AC determines BC for any C.

if A->B then AC->BC
e.g. if Emp_Id->Emp_Name then

{Emp_Id,Emp_Address}>{Emp_Name,Emp_Adress}

MRCET-ECE Introduction to DBMS

3.Axiom of transitivity —
If A holds B and B holds C, then A also holds C. if A determines B and B determine C,

then A must also determine C.

IfA-> Band B >CthenA->C

e.g. If Emp_ld - Dept_No, Dept_No = Dept_Name then
Emp_Id - Dept_Name

Secondary Rule:
These are derived from above axioms.
1. Union -
Union rule says, if A determines B and A determines C, then A must also
determine B and C.
If A holds B and A holds C, then A holds BC.
If A-> B and A ->C then A - BC

. Decomposition —
Decomposition rule is also known as project rule. It is the reverse of union

rule. This Rule says, if A determines B and C, then A determines B and A
determines C separately.
If A holds BC and A holds B then A holds C.

If A> BCand A >BthenA > C

. Pseudo Transitivity —
In Pseudo transitive Rule, if A determines B and BC determines D, then AC
determines D.
If A holds B and BC holds D, then AC holds D.
If A= Band BC D then AC-> D

Proof:
if A->B then AC -> BC (Axiom of augmentation)

If AC-> BC and BC D then AC - D (Axiom of Transitivity)

Closure of Functional Dependencies

o The Closure Of Functional Dependencies means the complete set of all
possible FDs that can be derived from given set of FDs using Armstrong’s

Rules.
If Fis a set of functional dependencies of relation R then a closure set of

FDs implied by F is denoted by F*.

86

MRCET-ECE Introduction to DBMS

o Closure of a set of FDs can be achieved by finding closure of a set of
attributes X.

Example 1

We are given the relation R(A, B, C, D, E). This means that the table R has five
columns: A, B, C, D, and E. We are also given the set of functional
dependencies: {A->B, B->C, C->D, D->E}.

What is {A}"?

First, we add A to {A}*.

What columns can be determined given A? We have A -> B, so we can
determine B. Therefore, {A} is now {A, B}.

What columns can be determined given A and B? We have B -> Cin the
functional dependencies, so we can determine C. Therefore, {A}* is now
{A, B, C}.

Now, we have A, B, and C. What other columns can we determine? Well,
we have C-> D, so we can add D to {A}*.

Now, we have A, B, C, and D. Can we add anything else to it? Yes, since D
-> E, we can add E to {A}*.

We have used all of the columns in R and we have all used all functional
dependencies. {A}* = {A, B, C, D, E}.

Example 2

We have a table Course Editions. The table contains information about editions
of courses taught at a certain university.

Each year, each course can be taught by a different teacher. And each teacher
has a date of birth. With the year and the date of birth, you can determine the
age of the teacher at the time the course was taught.

Course Editions

course teacher date_of _birth

Databases

Chris Cape

1974-10-12

Mathematics

Daniel Parr

1985-05-17

Databases

Jennifer Clock

1990-06-09

87

MRCET-ECE Introduction to DBMS

Here are the functional dependencies in this table:

e course, year -> teacher
o Given the course and year, you can determine the teacher who
taught the course that year.
o teacher->date_of birth
o Given a teacher, you can determine the teacher’s date of birth.
« year, date_of birth ->age
o Given the year and date of birth, you can determine the age of the
teacher at the time the course was taught.

First, consider the closure of a set {year}, denoted {year}*. The first functional
dependency course, year -> teacher requires the course in addition to the year,
so it doesn't add anything to {year}*. The functional dependency year,
date_of birth -> age requires the date of birth in addition to the year, so it
doesn't add anything to {year}" either.

So, {year}* contains only one column, year, that is {year}* = {year}.

Next, let’s look at {year, teacher}*. Given the year and teacher, what other
columns can we determine?

If we know the teacher, we also know the date of birth because of the

teacher -> date_of birth functional dependency. So, date_of_birth is also in

{year, teacher}*, and we know three columns: {year, teacher, date_of birth}.

If we know the year and date of birth, we can also determine the age. Now,
{year, teacher}* has four columns {year, teacher, date _of birth, age}.

We have used two of the three functional dependencies. we can’t use the
remaining dependency, course, year -> teacher because we don’t know the
course.

Now that we have used all of the dependencies | can, {year, teacher}* =
{year, teacher, date_of birth, age}.

Minimal Covers:
A minimal cover of a set of functional dependencies (FD) E is a minimal set of
dependencies F that is equivalent to E.

MRCET-ECE Introduction to DBMS

The formal definition is: A set of FD F to be minimal if it satisfies the following
conditions —
. Every dependency in F has a single attribute for its right-hand side.
. We cannot replace any dependency X->A in F with a dependency Y->A,
where Y is a proper subset of X.
J We cannot remove any dependency from F.
Canonical cover is called minimal cover which is called the minimum set of FDs.
A set of FD FC is called canonical cover of F if each FD in FCis a -

e Simple FD.

e Leftreduced FD.

e Non-redundant FD.

Simple FD - X->Y is a simple FD if Y is a single attribute.
Left reduced FD - X->Y is a left reduced FD if there are no extraneous
attributes in X. {extraneous attributes: Let XA->Y then, A is a extraneous
attribute if X_>Y}
Non-redundant FD - X->Y is a Non-redundant FD if it cannot be derived from F-
{X->y}.
Example
Consider an example to find canonical cover of F.
The given functional dependencies are as follows -
A ->BC
B->C
A ->B
AB->C
¢ Minimal cover: The minimal cover is the set of FDs which are equivalent
to the given FDs.
Canonical cover: In canonical cover, the LHS (Left Hand Side) must be
unique.

First of all, we will find the minimal cover and then the canonical cover.
First step — Convert RHS attribute into singleton attribute.

A->B

A ->C

B ->C

A ->B

AB->C

Second step - Remove the extra LHS attribute

Find the closure of A.

A+={A, B, C}

MRCET-ECE Introduction to DBMS

So, AB -> C can be converted into A -> C

A->B

A->C

B->C

A->B

A->C

Third step - Remove the redundant FDs.

A->B

A->C

Now, we will convert the above set of FDs into canonical cover.
The canonical cover for the above set of FDs will be as follows -
A ->BC

B->C

NORMAL FORMS

Given a relation schema, we need to decide whether it is a good design or
whether we need to decompose it into smaller relations. Such a decision must
be guided by an understanding of what problems, if any, arise from the current
schema. To provide such guidance, several normal forms have been proposed.

If a relation schema is in one of these normal forms, we know that certain
kinds of problems cannot arise.

The normal forms based on FDs:

First Normal Form (1NF):

e First Normal Form is defined in the definition of relations (tables) itself.
This rule defines that all the attributes in a relation must have atomic
domains.

In the first normal form, only single values are permitted at the
intersection of each row and column; hence, there are no repeating
groups.

e To normalize a relation that contains a repeating group, remove the
repeating group and form two new relations.

Course Content
Programming Java, C++
Web HTML, PHP, ASP

We re-arrange the relation (table) as below, to convert it to First Normal Form.

MRCET-ECE Introduction to DBMS

Course

Programming

Programming
Web
Web
Web

Second Normal Form (2NF):
Before we learn about the second normal form, we need to understand the
following -
Prime Key attribute — An attribute, which is a part of the candidate-key,
is known as a prime attribute.
Non-prime attribute — An attribute, which is not a part of the prime-key,
is said to be a non-prime attribute.
For the second normal form, the relation must first be in 1NF.
The relation is automatically in 2NF if, and only if, the Prime Key
comprises a single attribute.
If the relation has a composite Prime Key, then each non-key attribute
must be fully dependent on the entire PK and not on a subset of the PK.
A relation is in 2NF if it has No Partial Dependency.
Partial Dependency — If the proper subset of candidate key determines
non-prime attribute, it is called partial dependency.

Student_Project

Stu_ID Proj_ID Stu_Name Proj_Name

~— S~

We see here in Student_Project relation that the prime key attributes are
Stu_ID and Proj_ID. According to the rule, non-key attributes, i.e. Stu_Name
and Proj_Name must be dependent upon both and not on any of the prime key
attribute individually. But we find that Stu_Name can be identified by Stu_ID
and Proj Name can be identified by Proj_ID independently. This is called
partial dependency, which is not allowed in Second Normal Form.

MRCET-ECE Introduction to DBMS

Student
Stu_ID

Project

Proj_ID Proj_Name

Third Normal Form (3NF):
To be in third normal form, the relation must be in second normal form. Also
- all transitive dependencies must be removed; a non-key attribute may not be
functionally dependent on another non-key attribute.
For any non-trivial functional dependency, X - A, then either —
e Xisasuperkey or,
e Ais prime attribute.

Transitive dependency — If A->B and B->C are two FDs then A->C is called
transitive dependency.

Student_Detail

Stu_ID Stu_Name City

NS

We find that in the above Student_detail relation, Stu_ID is the key and only
prime key attribute. We find that City can be identified by Stu_ID as well as Zip
itself. Neither Zip is a superkey nor is City a prime attribute. Additionally,
Stu_ID - Zip = City, so there exists transitive dependency.

To bring this relation into third normal form, we break the relation into two

relations as follows —

Student_Detail
Stu_ID Stu_Name

ZipCodes
Zip

MRCET-ECE Introduction to DBMS

Boyce-Codd Normal Form (BCNF):

Boyce-Codd Normal Form (BCNF) is an extension of Third Normal Form on
strict terms.

A relation is in BCNF iff in every non-trivial functional dependency X—>Y, X is a
super key.

In the above example, Stu_ID is the super-key in the relation Student_Detail
and Zip is the super-key in the relation ZipCodes. So,

Stu_ID - Stu_Name, Zip

and

Zip - City

Which confirms that both the relations are in BCNF.

Example

Consider a relation R with attributes (student, subject, teacher).

Student Teacher Subject

Jhansi P.Naresh Database

Jhansi K.Das

Subbu P.Naresh Database

Subbu R.Prasad

F: { (student, Teacher) -> subject

(student, subject) -> Teacher

Teacher -> subject}
Candidate keys are (student, teacher) and (student, subject).

The above relation is in 3NF [since there is no transitive dependency]. A
relation R is in BCNF if for every non-trivial FD X->Y, X must be a key.

The above relation is not in BCNF, because in the FD (teacher->subject),
teacher is not a key.

So R is divided into two relations R1(Teacher, subject) and R2(student,
Teacher).

MRCET-ECE Introduction to DBMS

R1
Subject
P.Naresh database
K.DAS C

R.Prasad C

Student Teacher
Jhansi P.Naresh
Jhansi K.Das
Subbu P.Naresh

Subbu R.Prasad

All the anomalies which were present in R, now removed in the above two
relations.

DECOMPOSITIONS

A decomposition of a relation schema R consists of replacing the relation
schema by two (or more) relation schemas that each contain a subset of the
attributes of R and together include all attributes in R.

When a relation in the relational model is not appropriate normal form then
the decomposition of a relation is required. In a database, breaking down the
table into multiple tables termed as decomposition.

The properties of a relational decomposition are listed below :

1. Attribute Preservation: Using functional dependencies the algorithms
decompose the universal relation schema R in a set of relation schemas D = {
R1, R2, Rn } relational database schema, where ‘D’ is called the
Decomposition of R.

The attributes in R will appear in at least one relation schema Ri in the
decomposition, i.e., no attribute is lost. This is called the Attribute Preservation
condition of decomposition.

2. Dependency Preservation: If each functional dependency X->Y specified in F
appears directly in one of the relation schemas Ri in the decomposition D or
could be inferred from the dependencies that appear in some Ri. This is the

Dependency Preservation.
94

MRCET-ECE Introduction to DBMS

If a relation R is decomposed into relation R1 and R2, then the dependencies of
R either must be a part of R1 or R2 or must be derivable from the combination
of functional dependencies of R1 and R2.

For example, suppose there is a relation R (A, B, C, D) with functional
dependency set (A->BC). The relational R is decomposed into R1(ABC) and
R2(AD) which is dependency preserving because FD A->BC is a part of relation
R1(ABC).

3.Lossless Join Decomposition: Lossless join property is a feature of
decomposition supported by normalization. It is the ability to ensure that any
instance of the original relation can be identified from corresponding instances
in the smaller relations.

For example: R : relation, F : set of functional dependencies onR, X, Y :
decomposition of R, A decomposition {R1, R2, ..., Rn} of a relation R is called a
lossless decomposition for R if the natural join of R1, R2, ..., Rn produces
exactly the relation R.

The relation is said to be lossless decomposition if natural joins of all the
decomposition give the original relation.

Decomposition is lossless if

1. The union of attributes of both the sub relations R1 and R2 must contain
all the attributes of original relation R.

R1 X R2 =R

2. The intersection of attributes of both the sub relations R1 and R2 must
not be null, i.e., there should be some attributes that are present in both
R1 and R2.

R1NnR2z &

3. The intersection of attributes of both the sub relations R1 and R2 must
be the superkey of R1 or R2, or both R1 and R2.

R1 n R2 = Super key of R1 or R2

Let’s see an example of a lossless join decomposition. Suppose we have the
following relation EmployeeProjectDetail as:

MRCET-ECE Introduction to DBMS

<Employee Project Detail>
Employee_Code Employee_Name Employee_Email Project_Name Project_ID

101 John john@demo.com Project103 P03

101 John john@demo.com Project101 PO1

102 Ryan ryan@example.com Project102 P02

103 Stephanie stephanie@abc.com Project102 P02

Now, we decompose this relation into EmployeeProject and ProjectDetail relations
as:

<Employee Project>
Employee_Code Project_ID Employee_Name Employee_Email

101 P03 John john@demo.com

101 PO1 John john@demo.com

102 P04 Ryan ryan@example.com

103 P02 Stephanie stephanie@abc.com

The primary key of the above relation is {Employee_Code, Project_ID}.

<Project Detail>
Project_ID Project_Name
P03 Project103
PO1 Project101
P04 Project104

P02 Project102

The primary key of the above relation is {Project_ID}.

Let’s first check the EmployeeProject X ProjectDetail:

mailto:john@demo.com
mailto:john@demo.com
mailto:ryan@example.com
mailto:stephanie@abc.com
mailto:john@demo.com
mailto:john@demo.com
mailto:ryan@example.com
mailto:stephanie@abc.com

MRCET-ECE Introduction to DBMS

<Employee Project U Project Detail>
Employee_Code Project_ID Employee_Name Employee_Email Project_Name

101 P03 John john@demo.com Project103

101 PO1 John john@demo.com Project101

102 P04 Ryan ryan@example.com Project104

103 P02 Stephanie stephanie@abc.com Project102

As we can see all the attributes of Employee Project and Project Detail are in
Employee Project U Project Detail relation and it is the same as the original
relation. So the first condition holds.

Now let’s check the EmployeeProject N ProjectDetail:

<EmployeeProject N ProjectDetail>

Project_ID
P03
PO1
P04

P02

As we can see this is not null, so the the second condition holds as well. Also
the EmployeeProject N ProjectDetail = Project_Id. This is the super key of the
ProjectDetail relation, so the third condition holds as well.

Now, since all three conditions hold for our decomposition, this is a lossless
join decomposition.

4. Lack of Data Redundancy
e Lack of Data Redundancy is also known as a Repetition of Information.
e The proper decomposition should not suffer from any data redundancy.
e The lack of data redundancy property may be achieved by Normalization
process.

mailto:john@demo.com
mailto:john@demo.com
mailto:ryan@example.com
mailto:stephanie@abc.com

MRCET-ECE Introduction to DBMS

Unit 5
TRANSACTIONS

Transaction concept:

Transaction refers to a collection of operations that form a single logical
unit of work. For instance, transfer of money from one account to
another is a transaction consisting of two updates, one to each account.
A transaction includes one or more database access operations—these
caninclude insertion, deletion, modification (update), or retrieval
operations.

One way of specifying the transaction boundaries is by specifying explicit
begin transaction and end transaction statements in an application
program.

If the database operations in a transaction do not update the database
but only retrieve data, the transaction is called a read-only transaction;
otherwise it is known as a read-write transaction.

The transactions bring the database from an image which existed before
the transaction occurred (called the Before Image or BFIM) to an image
which exists after the transaction occurred (called the After Image or
AFIM).

Transaction States:

There are the following six states in which a transaction may exist:

Active: The initial state when the transaction has just started execution.
Partially Committed: At any given point of time if the transaction is
executing properly, then it is going towards it COMMIT POINT. The
values generated during the execution are all stored in volatile storage.
Failed: If the transaction fails for some reason. The temporary values are
no longer

Aborted: When the ROLLBACK operation is over, the database reaches
the BFIM. The transaction is now said to have been aborted.
Committed: If no failure occurs then the transaction reaches the
COMMIT POINT. All the temporary values are written to the stable
storage and the transaction is said to have been committed.
Terminated: Either committed or aborted required, and the transaction
is set to ROLLBACK.

MRCET-ECE Introduction to DBMS

«”’ COMMITTED ™
A

/ PARTIALLY H\
COMMITTED . N L

Entry Point————=- 4 _—
e ™~
\ AC H‘LE:/T\\ B / \ \

I'| i I._ D /|
\--f//F-"leLED \I /ABURTED \I Tt
N S)

System Log

e The system maintains a log to keep track of all transaction operationsthat
affect the values of database items, as well as other transaction
information that may be needed to permit recovery from failures.

e The log is a sequential, append-only file that is kept on disk, so it is not
affected by any type of failure except for disk or catastrophic failure.

e The log file from disk is periodically backed up to archival storage (tape)to
guard against catastrophic failures.

Commit Point:

e A transaction T reaches its commit point when all its operations that
access the database have been executed successfully and the effect of
all the transaction operations on the database have been recorded in
the log.

Beyond the commit point, the transaction is said to be committed, and
its effect must be permanently recorded in the database.

Properties of Transactions

These properties are often called the ACID properties; the acronym is derived
from the first letter of each of the four properties.

Atomicity: A transaction is an atomic unit of processing; it should either be
performed in its entirety or not performed at all.

MRCET-ECE Introduction to DBMS

Consistency :A transaction should be consistency preserving, meaning that if it
is completely executed from beginning to end without interference from other
transactions, it should take the database from one consistent state to another.
Execution of a transaction in isolation (that is, with no other transaction
executing concurrently) preserves the consistency of the database.

Isolation : A transaction should appear as though it is being executed in
isolation from other transactions, even though many transactions are
executing concurrently. That is, the execution of a transaction should not be
interfered with by any other transactions executing concurrently.

Durability :The changes applied to the database by a committed transaction
must persist in the database. These changes must not be lost because of any
failure.

Concurrent Execution

Schedule: A schedule for a set of transactions must consist of all instructions of
those transactions, and must preserve the order in which the instructions
appear in each individual transaction.

They represent the chronological order in which instructions areexecuted in the
system. Depending upon how these transactions are arranged in within a
schedule, aschedule can be of two types:

1.Serial: The transactions are executed one after another, in a non-
preemptivemanner.

2.Concurrent: The transactions are executed in a preemptive, time shared
method.

Serial:- Each serial schedule consists of a sequence of instructions from
various transactions, where the instructions belonging to one single
transaction appear together in that schedule.

e |n Serial schedule, there is no question of sharing a single data item
among many transactions, because not more than a single transaction is
executing at any point of time.

However, a serial schedule is inefficient in the sense that the
transactions suffer for having a longer waiting time and response time,
as well as low amount of resource utilization.

Concurrent: In concurrent schedule, CPU time is shared among two or more

100

MRCET-ECE Introduction to DBMS

transactions in order to run them concurrently.

MRCET-ECE Introduction to DBMS

e If two transactions are running concurrently, the operating system may
execute one transaction for a little while, then perform a context switch,
execute the second transaction for some time, and then switch back to
the first transaction for some time, and so on.

Let us consider there are two transactions T1 and T2, whose instruction sets
are given as following.
T1

Read A;

A =A-100;

Write A;

Read B;

B =B+ 100;

Write B;

T2

Read A;
Temp=A*0.1;

Read C;

C=C+Temp;

Write C;

e T2isanew transaction which deposits to account C 10% of the amount
in account A.

If we prepare a serial schedule, then either T1 will completely finish before T2
can begin, or T2 will completely finish before T1 can begin.

e However, if we want to create a concurrent schedule, then some
Context Switching need to be made, so that some portion of T1 will be
executed, then some portion of T2 will be executed and so on.

For example say we have prepared the following concurrent schedule.

I T2

Fead A
A= 48 100;
WWrite A

MRCET-ECE Introduction to DBMS

T1 first deducts Rs 100/- from A and writes the new value of Rs 900/-
into A. T2 reads the value of A, calculates the value of Temp to be Rs
90/- and adds the value to C. The remaining part of T1 is executed and

Rs 100/- is added to B.

If control of concurrent execution is left entirely to the operating system,
many possible schedules, they may leave the database in an inconsistent
state.

It is the job of the database system to ensure that any schedule that is
executed will leave the database in a consistent state. The concurrency-
control component of the database system carries out this task.

We can ensure consistency of the database under concurrent execution
by making sure that any schedule that is executed has the same effect as
equivalent to a serial schedule. Such schedules are called serializable
schedules.

Serializability:

When several concurrent transactions are trying to access the same dataitem,
the instructions within these concurrent transactions must be ordered in some
way so as there are no problem in accessing and releasing the shared data item.
There are two aspects of serializability which are described here:

Conflict Serializability:

Conflict Serializability deals with detecting whether the instructions are
conflicting in any way, and specifying the order in which these two
instructions will be executed in case there is any conflict.

A conflict arises if at least one (or both) of the instructions is a write
operation.

The following rules are important in Conflict Serializability:

1.

If two instructions of the two concurrent transactions are both for read
operation, then they are not in conflict, and can be allowed to take
place in any order.

. If one of the instructions wants to perform a read operation and the

other instruction wants to perform a write operation, then they are in
conflict, hence their ordering is important. If the read instruction is
performed first, then it reads the old value of the data item and after
the reading is over, the new value of the data item is written. It the
write instruction is performed first, then updates the data item with the
new value and the read instruction reads the newly updated value.

. If both the transactions are for write operation, then they are in conflict

but can be allowed to take place in any order, because the transaction

103

MRCET-ECE Introduction to DBMS

do not read the value updated by each other. However, the value that
persists in the data item after the schedule is over is the one written by
the instruction that performed the last write.

View Serializability:

e This is another type of serializability that can be derived by creating
another schedule out of an existing schedule, involving the same set of
transactions.

The idea behind view serializability is that, as long as each read
operation of a transaction reads the result of the same write operation
in both schedules, the write operations of each transaction must
produce the same results. The read operations are hence said to see the
same view in both schedules. The final write operation on each data
item is the same in both schedules, so the database state should be the
same at the end of both schedules.

View serializability is not used in practice due to its high degree of
computational complexity.

Testing for serializability

e A precedence graph (or serialization graph) is used to test a schedule
for conflict serializability.
Itis a directed graph G = (V, E) that consists of a set of nodes /vertices V
={T1, 72, ..., Tn }and a set of directed edges E={el, e2, ..., em }. There
is one node in the graph for each transaction Ti in the schedule. Each
edge ei in the graph is of the form (Tj ¥k, where Tj is the starting node
of ei and Tk is the ending node of ei.
An edge e is constructed between nodes T; to Ty if one of the
operations in Tj appears in the schedule before some conflicting
operation in T.

The Algorithm can be written as:

. Create a node T in the graph for each participating transaction in the
schedule.

. If a Transaction T; executes a read_item (X) after T; executes a write_item
(X), draw an edge from T to Tjin the graph.

. If a Transaction T; executes a write_item (X) after Ti executes a read_item
(X), draw an edge from T; to Tjin the graph.

If a Transaction T; executes a write_item (X) after T; executes a

write_item (X), draw an edge from T; to T; in the graph.

. The Schedule S is serializable if there is no cycle in the precedence

104

MRCET-ECE Introduction to DBMS

graph.

MRCET-ECE Introduction to DBMS

If there is no cycle in the precedence graph, it means we can construct a
serial schedule S’ which is conflict equivalent to schedule S.
Schedule S:

Time Transaction T1 Transaction T2
t1 Read(A)

t2

t3

t4 A=A+50

t5 Write(A)

Precedence graph of Schedule S

/"\
Th T2

_/

The precedence graph contains a cycle, that’s why schedule S is non-

serializable.
Schedule S2:

Time Transaction T1 Transaction T2 Transaction T3

tl Read(A)

t2 Read(B)

t3 Write(A)

t4 Write(B)

t5 Read(A)

t6 Write(A)

MRCET-ECE Introduction to DBMS

The graph for this schedule is :

)

Since the graph is acyclic, the schedule is conflict serializable.

If precedence graph is acyclic, the serializability order can be obtained by
a topological sorting of the graph.

A serializability order of the transactions can be obtained by finding a
linear order consistent with the partial order of the precedence graph.

Recoverability
e For some schedules it is easy to recover from transaction and system

failures, whereas for other schedules the recovery process can be quite
involved. In some cases, it is even not possible to recover correctly after
a failure. Hence, it is important to characterize the types of schedules for
which recovery is possible, as well as those for which recovery is
relatively simple.
Sometimes a transaction may not execute completely due to a software
issue, system crash or hardware failure. In that case, the failed
transaction has to be rollback.
But some other transaction may also have used value produced by the
failed transaction. So we also have to rollback those transactions.

T1

T1’s buffer
space

T2

T2’'s buffer
space

Database

A = 6500

Read(A);

A =6500

A = 6500

A=A- 500;

A = 6000

A = 6500

Write(A);

A = 6000

A = 6000

Read(A);

A = 6000

A =A + 1000;

A = 6000

Write(A);

A = 7000

Commit;

Failure Point

Commit;

MRCET-ECE Introduction to DBMS

A schedule where a committed transaction may have to be rolled back
during recovery is called nonrecoverable schedule.

The above table 1 shows a schedule which has two transactions. T1
reads and writes the value of A and that value is read and written by T2.
T2 commits but later on, T1 fails. Due to the failure, we have to rollback
T1. T2 should also be rollback because it reads the value written by T1,
but T2 can't be rollback because it already committed. So this type of
schedule is known as irrecoverable schedule.

Schedules in which a transaction commits only after all transactions
whose changes it reads commit are called recoverable schedules.

The commit operation of the transaction performing read operation is
delayed until the transactions performing write operations commit.

CASCADING ROLLBACKS
e Asingle transaction failure leads to a series of transaction rollbacks.

Consider the following schedule where none of the transactions has yet
committed (so the schedule is recoverable) If T10 fails, T11 and T12
must also be rolled back.

Can lead to the undoing of a significant amount of work.

TIO Tll TlZ

read (A)
read (B)
write (A)
read (A)
write (A)

Cascadeless Schedules: When a transaction is not allowed to read data until
the last transaction that has written is committed or aborted. Such schedules
are called cascadeless schedules.

TRANSACTION DEFINITION IN sQL
A transaction can be executed implicitly or explicitly.
Following commands are used to control transactions:
1. BEGIN TRANSACTION: It indicates the start point of an explicit or local
transaction.
Syntax:
BEGIN TRANSACTION transaction_name ;

108

MRCET-ECE Introduction to DBMS

2. SET TRANSACTION: Places a name on a transaction.
Syntax:
SET TRANSACTION [READ WRITE | READ ONLY J;

3. COMMIT: If everything is in order with all statements within a single
transaction, all changes are recorded together in the database is
called committed. The COMMIT command saves all the transactions to the
database since the last COMMIT or ROLLBACK command.
Syntax:

COMMIT;

4. ROLLBACK: If any error occurs with any of the SQL grouped statements, all
changes need to be aborted. The process of reversing changes is
called rollback. This command can only be used to undo transactions since
the last COMMIT or ROLLBACK command was issued.
Syntax:

ROLLBACK;

5. SAVEPOINT: creates points within the groups of transactions in which to
ROLLBACK.

A SAVEPOINT is a point in a transaction in which you can roll the transaction
back to a certain point without rolling back the entire transaction.

Syntax for Savepoint command:
SAVEPOINT SAVEPOINT_NAME;
ROLLBACK TO SAVEPOINT_NAME;

6. RELEASE SAVEPOINT:- This command is used to remove a SAVEPOINT that
you have created.

Syntax:
RELEASE SAVEPOINT SAVEPOINT_NAME

Once a SAVEPOINT has been released, you can no longer use the ROLLBACK
command to undo transactions performed since the last SAVEPOINT.

Implementation of Isolation Levels

e |[solation Levels define the degree to which a transaction can be isolated
from data modifications made by other transactions.

Transaction isolation levels are defined from following phenomena:

MRCET-ECE Introduction to DBMS

Dirty Read — A Dirty read is a situation when a transaction reads data that
has not yet been committed.

Non Repeatable read — Non Repeatable read occurs when a transaction
reads the same row twice and gets a different value each time. For example,
suppose transaction T1 reads data. Due to concurrency, another transaction
T2 updates the same data and commit, Now if transaction T1 rereads the
same data, it will retrieve a different value.

Phantom Read — Phantom Read occurs when two same queries with same
search criterion are executed, but the rows retrieved by the two, are
different.

Based on these phenomena, The SQL standard defines four isolation levels :

1. Read Uncommitted — Read Uncommitted is the lowest isolation level.
In this level, one transaction may read not yet committed changes
made by other transactions, thereby allowing dirty reads.

. Read Committed — This isolation level guarantees that any data read is
committed at the moment it is read. Thus it does not allow dirty read.
The transaction holds a read or write lock on the current row, and thus
prevents other transactions from reading, updating, or deleting it.

. Repeatable Read — This is the most restrictive isolation level. The
transaction holds read and write locks on all rows it references. Since
other transactions cannot read, update or delete these rows,
consequently it avoids non-repeatable read.

. Serializable — This is the highest isolation level. In this level concurrently
executing transactions appears to be serially executing. This level avoids
phantom reads by acquiring range locks on the search criterion apart
from read and write locks.

Concurrency Control Protocols:
Different concurrency control protocols offer different benefits forachieving
serializability and isolation of transactions. They are:

e Lock-Based Protocols

e Timestamp-Based Protocols

e Validation-Based Protocols

Lock-based Protocols

Lock Based Protocols in DBMS is a mechanism in which a transaction cannot
Read or Write the data until it acquires an appropriate lock. Lock based

110

MRCET-ECE Introduction to DBMS

protocols help to eliminate the concurrency problem in DBMS for
simultaneous transactions by locking or isolating a particular transaction to a
single user.

A data item can be locked in two modes:

1. Shared(S) lock: It is also known as a Read-only lock. In a shared lock, the
data item can only read by the transaction.

o It can be shared between the transactions because when the transaction
holds a lock, then it can't update the data on the data item.

2. Exclusive(X) lock:

o In the exclusive lock, the data item can be both reads as well as written
by the transaction.

o This lock is exclusive, and in this lock, multiple transactions do not
modify the same data simultaneously.
o Alocking protocol is a set of rules followed by all transactions while
requesting and releasing locks.
Consider the partial schedule
i

lock-x (B)
read (B)
B:= B -50
write (B)

lock-s (A)
read (A)
lock-s (B)

lock-x (A)
o Neither T3 nor T4 can make progress — executing lock-S(B) causes T4 to
wait for T3 to release its lock on B, while executing lock-X(A) causes T3
to wait for T4 to release its lock on A. Such a situation is called a
deadlock.
To handle a deadlock one of T3 or T4 must be rolled back and its locks
released.

THE TWO-PHASE LOCKING PROTOCOL

e This is a protocol which ensures conflict-serializable schedules.
This protocol requires that each transaction issue lock and unlock requests in
two phases:
1. Growing phase. A transaction may obtain locks, but may not release any
lock.
2. Shrinking phase. A transaction may release locks, but may not obtain any
new locks.

MRCET-ECE Introduction to DBMS

Initially, a transaction is in the growing phase. The transaction acquires
locks as needed.

Once the transaction releases a lock, it enters the shrinking phase, and it
can issue no more lock requests.

Transactions can be ordered according to their lock points—The pointin
the schedule where the transaction has obtained its final lock.
Cascading rollback may occur under two-phase locking. can be avoided
by a modification of two-phase locking called the strict two-phase
locking protocol.

This protocol requires not only that locking be two phase, but also that
all exclusive-mode locks taken by a transaction be held until that
transaction commits.

This requirement ensures that any data written by an uncommitted
transaction are locked in exclusive mode until the transaction commits,
preventing any other transaction from reading the data.

Another variant of two-phase locking is the rigorous two-phase locking
protocol, which requires that all locks be held until the transaction
commits.

TIMESTAMP-BASED PROTOCOLS
Another method for determining the serializability order is to select an
ordering among transactions in advance. The most common method for doing
so is to use a timestamp-ordering scheme.
e Each transaction is issued a unique timestamp, TS(Ti) when it enters the
system.
This timestamp is assigned by the database system before the
transaction Ti starts execution. If a transaction Ti has been assigned
timestamp TS(7i), and a new transaction Tj enters the system, then
TS(Ti) < TS(Tj).
There are two simple methods for implementing this scheme:
1. Use the value of the system clock as the timestamp; that is, a transaction’s
timestamp is equal to the value of the clock when the transaction enters the
system.
2. Use a logical counter that is incremented after a new timestamp has been
assigned; that is, a transaction’s timestamp is equal to the value of the
counter when the transaction enters the system.

To implement this scheme, we associate with each data item Q two timestamp
values:

MRCET-ECE Introduction to DBMS

e W-timestamp(Q) denotes the largest timestamp of any transaction that
executed write(Q) successfully.

e R-timestamp(Q) denotes the largest timestamp of any transaction that
executed read(Q) successfully.

These timestamps are updated whenever a new read(Q) or write(Q)
instruction is executed.

The timestamp-ordering protocol ensures that any conflicting read and write
operations are executed in timestamp order.

This protocol operates as follows:

1. Suppose that transaction Ti issues read(Q):

a. If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q that was
already overwritten. Hence, the read operation is rejected, and Ti is rolled
back.

b. If TS(Ti) 2 W-timestamp(Q), then the read operation is executed, and
R-timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(Ti).

2. Suppose that transaction Ti issues write(Q):

a. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was
needed previously, and the system assumed that that value would never be
produced. Hence, the system rejects the write operation and rolls Ti back.

b. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value
of Q. Hence, the system rejects this write operation and rolls Ti back.

c. Otherwise, the system executes the write operation and sets W-
timestamp(Q) to TS(Ti).

e |f a transaction Ti is rolled back by the concurrency-control scheme as
result of issuance of either a read or write operation, the system assigns
it a new timestamp and restarts it.

The modification to the timestamp-ordering protocol, called Thomas’ write
rule, is this: Suppose that transaction Ti issues write(Q).

o If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete
value of Q. Hence, this write operation can be ignored.

VALIDATION-BASED PROTOCOL

The validation protocol requires that each transaction Ti executes in two or
three different phases in its lifetime, depending on whether it is a read-only or
an update transaction. The phases are, in order:

1. Read phase. During this phase, the system executes transaction Ti. It reads
the values of the various data items and stores them in variables local to Ti. It

113

MRCET-ECE Introduction to DBMS

performs all write operations on temporary local variables, without updates of
the actual database.

2. Validation phase. The validation test (described below) is applied to
transaction Ti . This determines whether Ti is allowed to proceed to the write
phase without causing a violation of serializability. If a transaction fails the
validation test, the system aborts the transaction.

3. Write phase. If the validation test succeeds for transaction Ti, the temporary
local variables that hold the results of any write operations performed by Ti are
copied to the database. Read-only transactions omit this phase.

To perform the validation test, we need to know when the various phases of
transactions took place. We shall, therefore, associate three different
timestamps with each transaction Ti :

1. Start(7i), the time when Ti started its execution.

2. Validation(7i), the time when Ti finished its read phase and started its
validation phase.

3. Finish(Tj), the time when Ti finished its write phase.

e The serializability order is determined by the timestamp-ordering
technique, using the value of the timestamp Validation(Ti).

e Thus, the value TS(Ti) = Validation(Ti) and, if TS(7j) < TS(Tk), then any
produced schedule must be equivalent to a serial schedule in which
transaction Tj appears before transaction Tk.

The validation test for transaction Ti requires that, for all transactions Tk with
TS(Tk) < TS(Ti), one of the following two conditions must hold:

1. Finish(Tk) < Start(Ti). Since Tk completes its execution before Ti started, the
serializability order is indeed maintained.

2. The set of data itemswritten by Tk does not intersectwith the set of data
items read by Ti, and Tk completes its write phase before Ti starts its validation
phase (Start(Ti) < Finish(Tk) < Validation(Ti)). This condition ensures that the
writes of Tk and Ti do not overlap.

This validation scheme is called the optimistic concurrency-control scheme
since transactions execute optimistically, assuming they will be able to finish
execution and validate at the end.

	MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
	3/-/-/3
	UNIT I:
	UNIT II:
	UNIT III:
	UNIT IV :
	UNIT V:
	TEXT BOOKS:
	REFERENCE BOOKS:
	COURSE OUTCOMES:

	Data:
	Example:
	Information: Processed data.
	Database:
	Database Management System:
	File Processing System:
	Disadvantages of File Processing System:
	 Difficulty in accessing data:
	 Integrity problems:
	 Atomicity problems:
	 Concurrent-access anomalies.
	 Security problems.
	Advantages of DBMS:
	 Data Integrity:
	 Security:
	 Data Consistency :
	 Data Independence :
	Disadvantages of DBMS
	Instances and Schemas:
	Data Models:
	Relational Model:
	Entity-Relationship Model:
	Object-Based Data Model:
	Semistructured Data Model:
	History of DBMS:
	Database Architecture:
	Types of DBMS Architecture:
	 1- Tier Architecture (Single Tier Architecture)
	 3 - Tier Architecture
	1-Tier Architecture:
	2- Tier Architecture:
	3- Tier Architecture:
	Three schema Architecture of Database:
	Fig: Three schema Architecture
	Internal schema:
	Conceptual schema:
	External schema:
	Functional Components of Database:
	Hardware
	Software
	Procedures:
	Data:
	Users:
	Database Languages:
	Data Definition Language (DDL)
	Data Manipulation Language (DML)
	Data Control Language (DCL)
	Transaction Control Language (TCL)
	Sophisticated Users:
	Specialized Users:

	Entity Relationship Model (ER-Model):
	Entity:
	Attributes:
	1. Simple attribute :
	2. Composite attribute :
	3. Single-valued attribute :
	4. Multi-valued attribute :
	5. Derived attribute :
	Domain of Attributes
	RELATIONSHIPS:
	Degree of a Relationship:

	KEYS:
	Design Constraints in ER Model Participation Constraints:
	Cardinality Constraint:
	Key Constraints:
	identifying relationship.

	Relational Model:
	Advantages of using the relational model:
	Disadvantages of using the relational model

	What is SQL?
	Why to Use SQL?
	History of SQL
	Types of SQL
	What is DDL?
	(ii) Creating Table Syntax:
	2. ALTER Command
	Syntax:
	SQL Server / MS Access:
	Example 1: Modifying single Column
	Oracle 10G and later:
	Example
	TRUNCATE:
	Syntax: (1)
	Example:
	What is Data Manipulation Language?
	Syntax: (2)
	UPDATE:
	Syntax: (3)
	DELETE:
	Syntax: (4)
	For example:
	Examples of DCL commands:
	Grant:
	Syntax: (5)
	For example: (1)
	Revoke:
	Syntax: (6)
	For example: (2)
	What is TCL?
	Syntax: (7)
	For example: (3)
	Syntax: (8)
	Example: (1)
	Syntax: (9)
	Example: (2)
	What is DQL?
	SELECT:
	Syntax: (10)
	TCL Commands in SQL- Transaction Control Language Examples
	TCL Commands
	Syntax: (11)
	2. Rollback
	Syntax: (12)
	= ‘Meena’; ROLLBACK;
	3. Savepoint
	savepointsavepoint-name;
	Use some SQL queries on the above table and then watch the results
	SQL Set Operations
	UNION
	Syntax of UNION:
	sales2006
	INTERSECT
	Syntax of INTERSECT
	Employee_details1:
	EXCEPT
	Joins
	SQL JOINS: EQUI JOIN and NON EQUI JOIN
	1) SQL EQUI JOIN:
	2) SQL NON EQUI JOIN :
	1. SQL INNER JOIN
	2. SQL OUTER JOIN
	Syntax: (13)
	Pictorial Presentation of SQL Joins:
	Table name- Student:
	EQUI JOIN :
	Syntax :
	Example –
	Output :
	Syntax: (14)
	Example – (1)
	Output : (1)
	Correlated Subqueries
	NoncorrelatedSubqueries
	Aggregate functions:
	Various Aggregate Functions:
	Count():
	Sum():
	Avg():
	Min():
	Aggregate Functions and NULL Values
	INTRODUCTION TO VIEWS
	Sample Tables:
	Syntax: (15)
	Output:
	Output: (1)
	Syntax: (16)
	UPDATING VIEWS
	Syntax: (17)
	Output: (2)
	Example: (3)
	Output: (3)
	Example: (4)
	Output: (4)
	Syntax: (18)
	Explanation of syntax:
	BEFORE and AFTER of Trigger:
	Examples of Triggers in SQL
	Importance of a good schema design:
	What is a Database Schema?
	Normalization
	Objectives of Normalization
	Functional Dependency (FD):
	For example:
	Types of Functional Dependencies:
	 Multivalued Dependency
	 Non-Trivial Functional Dependency
	Multivalued Functional Dependency
	Trivial Functional Dependency
	Non-Trivial Functional Dependency
	Transitive Functional Dependency
	Armstrong’s Axioms for Functional Dependencies
	Primary Rule:
	2. Axiom of augmentation –
	3. Axiom of transitivity –
	Secondary Rule:
	1. Union –
	2. Decomposition –
	3. Pseudo Transitivity –
	Proof:

	Closure of Functional Dependencies
	Example 1
	Example 2
	Course Editions
	Minimal Covers:
	NORMAL FORMS
	First Normal Form (1NF):
	Second Normal Form (2NF):
	Third Normal Form (3NF):
	Boyce-Codd Normal Form (BCNF):
	Example

	DECOMPOSITIONS
	Decomposition is lossless if
	R1 ∩ R2 ≠ ∅
	Let’s first check the EmployeeProject 𝖴 ProjectDetail:
	Now let’s check the EmployeeProject ∩ ProjectDetail:
	4. Lack of Data Redundancy

	Transaction concept:
	Transaction States:
	Commit Point:
	Properties of Transactions
	Concurrent Execution
	Serializability:
	When several concurrent transactions are trying to access the same data item, the instructions within these concurrent transactions must be ordered in some way so as there are no problem in accessing and releasing the shared data item.
	Conflict Serializability:
	View Serializability:
	5. The Schedule S is serializable if there is no cycle in the precedence graph.
	Schedule S:
	Schedule S2:
	TRANSACTION DEFINITION IN SQL
	Syntax:
	Syntax: (1)
	Syntax: (2)
	Syntax: (3)
	Syntax for Savepoint command:
	Syntax: (4)
	Implementation of Isolation Levels
	Concurrency Control Protocols:
	Different concurrency control protocols offer different benefits for achieving serializability and isolation of transactions. They are:
	Lock-based Protocols
	2. Exclusive(X) lock:
	THE TWO-PHASE LOCKING PROTOCOL

	TIMESTAMP-BASED PROTOCOLS
	1. Suppose that transaction Ti issues read(Q):
	2. Suppose that transaction Ti issues write(Q):

	VALIDATION-BASED PROTOCOL

