

DIGITAL NOTES ON

INTRODUCTION TO DBMS

(R20A0551)

B.TECH - ECE II YEAR - II SEM

(2022-23)

Prepared

By

Dr. M. Arunkumar (Assoc. Professor)

Dr. P. Vanitha (Assoc. Professor)

Mrs. K. Vijaya Bharathi (Asst. Professor)

B.Tech (Electronics & Communication Engineering) R-20

Malla Reddy College of Engineering and Technology (MRCET)

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
II Year B.Tech. ECE- II Sem L/T/P/C

3/-/-/3

COURSE OBJECTIVES:

OPEN ELECTIVE - I
(R20A0551) INTRODUCTION TO DBMS

1) To understand the basic concepts and the applications of database systems
2) To Master the basics of SQL and construct queries using SQL
3) To understand the relational database design principles
4) To become familiar with the basic issues of transaction processing and concurrency control
5) To become familiar with database storage structures and access techniques

UNIT I:
INTRODUCTION
Database: Purpose of Database Systems, File Processing System Vs DBMS, History,
Characteristic- Three schema Architecture of a database, Functional components of a DBMS.
DBMS Languages- Database users and DBA.

UNIT II:
DATABASE DESIGN
ER Model: Objects, Attributes and its Type. Entity set and Relationship set-Design Issues of ER
model-Constraints. Keys-primary key, Super key, candidate keys. Introduction to relational
model-Tabular, Representation of Various ER Schemas. ER Diagram Notations- Goals of ER
Diagram- Weak Entity Set- Views.

UNIT III:
STRUCTURED QUERY LANGUAGE
SQL: Overview, The Form of Basic SQL Query -UNION, INTERSECT, and EXCEPT– join operations:
equi join and non equi join-Nested queries - correlated and uncorrelated- Aggregate Functions-
Null values. Views, Triggers.

UNIT IV :
DEPENDENCIES AND NORMAL FORMS
Importance of a good schema design,:- Problems encountered with bad schema designs,
Motivation for normal forms- functional dependencies, -Armstrong's axioms for FD's- Closure of
a set of FD's,- Minimal covers-Definitions of 1NF, 2NF, 3NF and BCNF- Decompositions and
desirable properties.

UNIT V:
Transactions: Transaction concept, transaction state, System log, Commit point, Desirable
Properties of a Transaction, concurrent executions, serializability, recoverability, implementation
of isolation, transaction definition in SQL, Testing for serializability, Serializability by Locks-
Locking Systems with Several Lock Modes- Concurrency Control by Timestamps, validation.

TEXT BOOKS:

1) Abraham Silberschatz, Henry F. Korth, S. Sudarshan,‖ Database System Concepts‖,
McGraw- Hill, 6th Edition , 2010.

B.Tech (Electronics & Communication Engineering) R-20

Malla Reddy College of Engineering and Technology (MRCET)

2) Fundamental of Database Systems, by Elmasri, Navathe, Somayajulu, and Gupta,
Pearson Education.

REFERENCE BOOKS:
1) Raghu Ramakrishnan, Johannes Gehrke, ―Database Management System‖, McGraw Hill.,

3rd Edition 2007.
2) Elmasri&Navathe,‖Fundamentals of Database System,‖ Addison-Wesley Publishing, 5th

Edition, 2008.
3) Date.C.J, ―An Introduction to Database‖, Addison-Wesley Pub Co, 8th Edition, 2006.
4) Peterrob, Carlos Coronel, ―Database Systems – Design, Implementation, and

Management‖, 9th Edition, Thomson Learning, 2009.

COURSE OUTCOMES:
1) Understand the basic concepts and the applications of database systems
2) Master the basics of SQL and construct queries using SQL
3) Understand the relational database design principles
4) Familiarize with the basic issues of transaction processing and concurrency control
5) Familiarize with database storage structures and access techniques

MRCET-ECE Introduction to DBMS

1

UNIT 1

INTRODUCTION

Data:
The un processed facts that can be recorded and which have implicit meaning
known as "Data".

Example:
Customer -----
1. cname.
2. cno.

3. ccity.
Information: Processed data.
Database:
A database is an organized collection of data that can be modified, retrieved, or
updated.
Data, DBMS, and applications associated with them together form the database
concept.
A database can be of any size and varying complexity. A database may be
generated and manipulated manually or it may be computerized.
It organizes the data in the form of tables, views, schemas, reports etc. For
Example, university database organizes the data about students, faculty, and
admin staff etc. which helps in efficient retrieval, insertion and deletion of data
from it.

Meta Data: It is Database definition (or) complete description of Database.

Database Management System:

A database management system (DBMS) is a collection of interrelated data and a
set of programs to access those data.
It is a software application that is used to create, access, maintain, and manage
databases. DBMS accepts the incoming data either from an application or from a
user who is manually entering it.

Purpose of Database Systems:

 The primary goal of a Database Systems is to provide a way to store and
retrieve database information that is both convenient and efficient.

 Database systems are designed to manage large bodies of information.

MRCET-ECE Introduction to DBMS

2

 Management of data involves both defining structures for storage of
information and providing mechanisms for the manipulation of
information.

 In addition, the database system must ensure the safety of the
information stored, despite system crashes or attempts at unauthorized
access.

 If data are to be shared among several users, the system must avoid
possible anomalous results.

File Processing System:

 Before the introduction of DBMS, data was stored in a computer in

operating system files.

 To allow users to manipulate the information, the system has a
number of application programs that manipulate the files, including
programs

 A typical file-processing system is supported by a conventional
operating system.

 The system stores permanent records in various files, and it needs
different application programs to extract records from, and add
records to, the appropriate files.

Disadvantages of File Processing System:

 Data redundancy and inconsistency:
 Since different programmers create the files and application

programs over a long period, the various files are likely to have
different structures and the programs may be written in several
programming languages.

 There is always possibility of duplication of data.

 Some data can be stored in two different files. This redundancy
leads to higher storage and access cost. In addition, it may lead to
data inconsistency; that is, the various copies of the same data may
no longer agree.

 Difficulty in accessing data:

 To carry out any new task a new program has to be written.
 For example, an application program may be available to generate a

list of all students, but if we are required to generate a list of
students who stay in a particular location, we need to write a new
program as this is not anticipated.

MRCET-ECE Introduction to DBMS

3

 Data isolation: As data is scattered in various files, and stored in different
file formats, writing new application programs to retrieve the appropriate
data is difficult.

MRCET-ECE Introduction to DBMS

4

 Integrity problems:

 The data values stored in the database must satisfy certain types of
consistency constraints.

 Example, bank account balance should never fall below zero.

 Developers enforce these constraints in the system by adding
appropriate code in the various application programs.

 However, when new constraints are added, it is difficult to change
the programs to enforce them.

 Atomicity problems:
 Atomicity means that operations must complete or fail as a whole

unit.

 There should not be any partial complete, especially in transactions.

 If a failure occurs data has to be restored to the consistence state
that existed prior to the failure. Example: online transactions or
reservations.

 It is difficult to ensure atomicity in a conventional file-processing
system.

 Concurrent-access anomalies.

 For the sake of overall performance of the system and faster
response, many systems allow multiple users to update the data
simultaneously.

 But if data is getting updates by two users at the same time, there
is possibility of inconsistency of data.

 To guard against this possibility, the system must maintain some
form of supervision.

 In file processing system supervision is difficult to provide because
data may be accessed by many different application programs
that are coordinated.

 Security problems.
 Access to the database must be restricted to authorized users

only.

 Not every user of the database system should be able to access all
the data.

 Since application programs are added to the file-processing
system in an ad hoc manner, enforcing such security constraints is
difficult.

Advantages of DBMS:

 Controlling of Redundancy:

MRCET-ECE Introduction to DBMS

5

 In a database system, by having a centralized database and
centralized control of data by the DBA the unnecessary duplication
of data is avoided.

 It also eliminates the extra time for processing the large volume of
data.

 It results in saving the storage space.
 Improved Data Sharing: DBMS allows a user to share the data in any

number of application programs.

 Data Integrity:
 Centralized control of the data helps in permitting the administrator

to define integrity constraints to the data in the database.

 New constraints can be enforced easily.
 Security:

 Complete authority over the operational data is provided to database
administrators (DBA).

 The DBA can define authorization checks to be carried out whenever
access to sensitive data is attempted.

 Data Consistency :
 By eliminating data redundancy, we greatly reduce the opportunities

for inconsistency.

 Also updating data values is greatly simplified when each value is
stored in one place only.

 Finally, one can avoid the wasted storage that results from redundant
data storage.

 Efficient Data Access : In a database system, the data is managed by the
DBMS and all access to the data is through the DBMS providing a key to
effective data processing.

 Data Independence :
 The dbms provides the interface between the application programs

and the data.

 Any changes in data representation will not change the way data is
provided to the application programs.

 The DBMS handles the task of transformation of data wherever
necessary.

 Reduced Application Development and Maintenance Time : DBMS
supports many important functions that are common to many
applications, accessing data stored in the DBMS, which facilitates the quick
development of application

MRCET-ECE Introduction to DBMS

6

Disadvantages of DBMS
 It is bit complex. Since it supports multiple functionality to give the user the

best, the underlying software has become complex. The designers and
developers should have thorough knowledge about the software to get the
most out of it.

 Because of its complexity and functionality, it uses large amount of
memory. It also needs large memory to run efficiently.

 DBMS system works on the centralized system, i.e.; all the users from all
over the world access this database. Hence any failure of the DBMS, will
impact all the users.

 DBMS is generalized software, i.e.; it is written work on the entire systems
rather specific one. Hence some of the application will run slow.

Difference between File System and DBMS:

Basis File System DBMS

Structure

The file system is

software that

manages and

organizes the files in a

storage medium

within a computer.

DBMS is software for

managing the database.

Data Redundancy

Redundant data can

be present in a file

system.

In DBMS there is no

redundant data.

Backup and Recovery

It doesn’t provide backup

and recovery of data if it

is lost.

It provides backup and

recovery of data even

if it is lost.

Query processing

There is no efficient

query processing in the

file system.

Efficient query

processing is there in

DBMS.

Consistency

There is less data

consistency in the file

system.

There is more data

consistency because

of the process of

normalization.

MRCET-ECE Introduction to DBMS

7

Basis File System DBMS

Complexity

It is less complex as

compared to DBMS.

It has more complexity

in handling as

compared to the file

system.

Security Constraints

File systems provide less

security in comparison to

DBMS.

DBMS has more

security mechanisms as

compared to file

systems.

Cost
It is less expensive than

DBMS.

It has a comparatively

higher cost than a file

system.

Data Independence
There is no data

independence.

In DBMS data

independence exists.

User Access
Only one user can access

data at a time.

Multiple users can

access data at a time.

Meaning

The user has to write

procedures for managing

databases

The user not required to

write procedures.

Sharing

Data is distributed in

many files. So, not easy to

share data

Due to centralized

nature sharing is easy

Data Abstraction

It give details of storage

and representation of

data

It hides the internal

details of Database

Integrity Constraints

Integrity Constraints

are difficult to

implement

Integrity constraints are

easy to implement

MRCET-ECE Introduction to DBMS

8

Example
Cobol, C++ Oracle, SQL Server

MRCET-ECE Introduction to DBMS

9

Data Abstraction:
Data Abstraction is a process of hiding unwanted or irrelevant details from the
end user. It provides a different view and helps in achieving data independence
which is used to enhance the security of data.

Levels of data abstraction:
There are mainly three levels of data abstraction:

Fig: three levels of data abstraction



 Physical level/Internal Level: The lowest level of abstraction describes
how the data are actually stored. It describes complex low-level data
structures in detail. The Database Administrators(DBA) decide how the
data has to be fragmented, where it has to be stored etc. It totally
depends on the DBA, how he/she manages the database at the physical
level.

 Conceptual Level /Logical Level: This is the intermediate level of
abstraction describes what data are stored in the database, and what
relationships exist among those data. The logical level thus describes the
entire database in terms of a small number of relatively simple structures.
This level is maintained by the database administrators.

 External Level/View Level: This is the topmost level where application
programs try to view the data. Only the data needed is shown and rest of
the details are hidden from this view. Different users will have different

MRCET-ECE Introduction to DBMS

10

view according to the authorization they have.

MRCET-ECE Introduction to DBMS

11

Example: If we take college database, at physical level student data, faculty
data, department data etc are stored in the database using data structures.
At logical level the interrelationship among different data is defined and the
data-type of data stored is also defined. At view level several views of the
database are defined and a database user sees some or all of these views.

Instances and Schemas:
 The collection of information stored in the database at a particular

moment is called an instance of the database.
 The overall design of the database is called the database

Schema. Schemas don’t change frequently.

Based on the levels of abstraction we have physical schema and logical
schema:

 The physical schema describes the database design at the physical level,

while the logical schema describes the database design at the logical

level.

 Physical schema tells how data is physically organized in database and

what type of data is stored.

 Logical schema specifies the actual data to be stored based on the

datatype of the fields and relationship among different records and

fields.

 A database may also have several schemas at the view level, sometimes

called subschemas that describe different views of the database.

 Of these, the logical schema is by far the most important, in terms of its

effect on application programs, since programmers construct

applications by using the logical schema.

 Any change in logical schema affects the view of the application.

 The physical schema is hidden beneath the logical schema, and can

usually be changed easily without affecting application programs.

 Application programs exhibit physical data independence and thus need

not be rewritten if the physical schema changes.

MRCET-ECE Introduction to DBMS

12

Data Models:

 Data model is a collection of conceptual tools for describing data, data
relationships, data semantics, and consistency constraints.

 A data model provides a way to describe the design of a database at the
physical, logical, and view levels.

The data models can be classified into four different categories:

Relational Model:
 The relational model uses a collection of tables to represent both data

and the relationships among those data.

 Each table has multiple columns, and each column has a unique name.

 Tables are also known as relations.

 The relational model is an example of a record-based model.

 Each table contains records of a particular type.

 This is the most widely used commercial data model.

Entity-Relationship Model:
 The entity-relationship (E-R) data model uses a collection of basic objects,

called entities, and relationships among these objects.

 An entity is a “thing” or “object” in the real world that is distinguishable
from other objects.

 It is the logical representation of data as objects.
 A set of attributes describe the entity. 

Example: student_id, student_name describe the student entity.

Object-Based Data Model:

 Object-oriented programming (especially in Java, C++, or C#) has become
the dominant software-development methodology.

 This led to the development of an object-oriented data model that can be
seen as extending the E-R model with notions of encapsulation, methods
(functions), and object identity.

 Here objects are data carrying its properties.
 The object-relational data model combines features of the object- oriented

data model and relational data model.

MRCET-ECE Introduction to DBMS

13

Semistructured Data Model:

 The semistructured data model permits the specification of data where

individual data items of the same type may have different sets of
attributes.

 This is in contrast to the data models mentioned earlier, where every data
item of a particular type must have the same set of attributes.

 The Extensible Markup Language (XML) is widely used to represent
semistructured data.

 This data model is useful for exchange of data between different systems.
Two different DMBS can be converted to XML and data can be exchanged in
this format. Later from XML data is imported to database.

History of DBMS:

 The development of database technology can be divided into three eras

based on data model or structure: navigational, SQL/relational, and post-

relational.

 The two main early navigational data models were the hierarchical model

and the CODASYL model (network model). These were characterized by

the use of pointers to follow relationships from one record to another.

 In 1960 Charles Bachman designed the Integrated Data Store (IDS) which is

the first DBMS based on network model.

 In late 1960’s IBM developed Information Management System (IMS)

based on hierarchical model.

 Later Edgar F. Codd who worked for IBM was unhappy with the lack of

search engine in these models.

 He insisted that application should search for data by content rather than

by following links.

 In 1970 he developed relational data model. Relational systems dominated

in all large-scale data processing applications till 1990’s.

 Even till 2018 some of them were dominant like oracle, MySQl, SQL server.

 In 1980’s object-oriented model was developed. Post relational era started.

 In late 2000’s XML based NoSQl and NEW SQL databases were developed.

 NoSQL database provide mechanism for storage and reteival of data in

means other than tables. It accommodates data as key-value, document,

columnar and graph formats. Eg: mongoDB.

MRCET-ECE Introduction to DBMS

14

 New SQL database is a modern relational database developed as a
combination of relational model with advancement in scalability and
flexibility with types of data. Eg: voltDB, clustrixDB.

Database Architecture:

 Database architecture is a representation of DBMS design.
 A DBMS design depends on its architecture and architecture depends on

how users are connected to database to get their request done.

 DBMS architecture allows dividing the system into individual
components that can be independently modified.

Types of DBMS Architecture:
There are mainly three types of DBMS architecture:

 1- Tier Architecture (Single Tier Architecture)

 2- Tier Architecture

 3 - Tier Architecture 

1-Tier Architecture:

 In 1- Tier Architecture the database is directly available to the user.

 The client, server, and Database all reside on the same machine.
 But such architecture is rarely used in production. It is used for local

application development.

2- Tier Architecture:
 Basic client-server architecture where the application programs and user

interface run on the client-side and data resides on the server side.

 We can have multiple clients connected to a single server.
 The client-side application establishes a connection with the server side

communicates directly with the database at the server side.

MRCET-ECE Introduction to DBMS

15

3- Tier Architecture:
 3-Tier Architecture in DBMS is the most popular client server

architecture in DBMS in which the development and maintenance of
functional processes, logic, data access, data storage, and user interface
is done independently as separate modules.

 3-Tier architecture contains a presentation layer, an application layer,
and a database server.

 The client does not directly communicate with the server.
 The application on the client-side interacts with an application server

which further communicates with the database system.

 This intermediate layer acts as a medium for the exchange of partially
processed data between server and client.

 This type of architecture is used in the case of large web applications.

MRCET-ECE Introduction to DBMS

16

Three schema Architecture of Database:

 The three schema architecture is also called ANSI/SPARC architecture or

three-level architecture.

 The three-schema architecture divides the database into three-level
used to create a separation between the physical database and the user
application.

 This architecture hides the details of physical storage from the user.
 The framework of this type of architecture includes an external schema,

conceptual schema, internal schema and database itself.

 Mapping is used to transform the request and response between various
database levels of architecture.

 In External / Conceptual mapping, the request is transformed from
external level to conceptual schema.

 In Conceptual / Internal mapping, the request is transformed from the
conceptual to internal level.

Fig: Three schema Architecture

Internal schema:

 The internal schema is also known as a physical schema.
 It uses the physical data model to describe complex low-level data

structures in detail.

Activities of this field are:

MRCET-ECE Introduction to DBMS

17

o Storage space allocations.

MRCET-ECE Introduction to DBMS

18

 For Example: B-Trees, Hashing etc.

o Access paths.
 For Example: Specification of primary and secondary keys,

indexes, pointers and sequencing.

o Data compression and encryption techniques.

o Optimization of internal structures.
o Representation of stored fields.

Conceptual schema:

 Conceptual schema is also known as logical schema.

 This schema describes the data datatypes and the relationship among
the data stored in database.

 Internal details such as an implementation of the data structure are
hidden from this schema.

 There is only one conceptual schema per database.

External schema:

 An external schema is also known as view schema.

 At the external level, a database contains several schemas that
sometimes called as subschema.

 The subschema is used to describe the different view of the database.

 Each view schema describes the end user interaction with database
systems.

Functional Components of Database:

A database consist of following functional components:

 Hardware
 Software
 Data
 Procedures
 Database Access Language
 Users

MRCET-ECE Introduction to DBMS

19

Hardware

 The hardware is the actual computer system used for keeping and
accessing the database.

 Databases run on the range of machines from micro computers to
mainframes.

Software

 It is the main component of DBMS.

 Software is a set of programs used to manage and control the database
 It includes the database software, operating system, network software

used to share the data with other users, and the applications used to
access the data.

Procedures:
 These are general instructions that are used for managing the DBMS and

its applications.

 Procedures are generally used to take back up of the database and to
change the structure of database etc.

Data:

 It is also the most important component of the database management
system.

 The main task of DBMS is to process the data.
 Here, databases are defined, constructed, and then data is stored,

retrieved, and updated to and from the databases.

Users:

 The users are the people who control and manage the databases and
perform different types of operations on the databases in the database
management system.

MRCET-ECE Introduction to DBMS

20

There are three types of user who play different roles in DBMS:

 Application Programmers

 Database Administrators
 End-Users

Application Programmers:
The users who write the application programs in programming
languages to interact with databases are called Application
Programmers.

Database Administrators (DBA):
A person who manages the overall DBMS is called a database
administrator or simply DBA.

End-Users:
End-users are those who use the application program to interact with
DBMS.

Database Languages:
User can access, update, delete, and store data or information in the database
using database languages.

Following are different types of database languages:
1. Data Definition Language
2. Data Manipulation Language
3. Data Control Language
4. Transaction Control Language

MRCET-ECE Introduction to DBMS

21

Data Definition Language (DDL)

 Data Definition Language is used for defining the structure or schema of

the database.

 It is also used for creating tables, indexes, applying constraints, etc. in

the database.

Here are some tasks that come under DDL:

o Create: It is used to create objects in the database.

o Alter: It is used to alter the structure of the database.

o Drop: It is used to delete objects from the database.

o Truncate: It is used to remove all records from a table.

o Rename: It is used to rename an object.

o Comment: It is used to comment on the data dictionary.

Data Manipulation Language (DML)

 Data Manipulation Language is used for accessing and manipulating
data in a database.

 It handles user requests.

Here are some tasks that come under DML:

o Select: It is used to retrieve data from a database.

o Insert: It is used to insert data into a table.

o Update: It is used to update existing data within a table.

o Delete: It is used to delete all records from a table.

o Merge: It performs UPSERT operation, i.e., insert or update operations.

Data Control Language (DCL)

 Data Control Language is used to control privilege in Databases.

 To perform any operation in the database, such as for creating

tables, sequences, or views, we need privileges.

 Privileges can be set for the system or for an object.

 Tasks that come under DCL are:

MRCET-ECE Introduction to DBMS

22

o Grant: It is used to give user access privileges to a database.

o Revoke: It is used to take back permissions from the user.

Transaction Control Language (TCL)
 Transaction Control Language is used to run the changes made by

the DML statement.
 It allows statements to be grouped into logical

transactions.
Tasks that come under TCL are:

o Commit: It is used to save the transaction on the database.

o Rollback: It is used to restore the database to original since the last
Commit.

o Savepoint: It used to identify a point in transaction to which one can

later rollback.

Database Users:
 Database users are people who interact with the database

using application and interfaces provided by the DBMS.

 Database users are divided into different types based on the way

they interact with the database.

Types of users are:

Native/Naive Users:

These are the end users who use the existing application to interact with

the database. For example, users logging into gmail using login id and

password to access mails.

Application Programmer:

These are the software professionals who write application programs and
user interface. They use tools like Rapid Application Development (RAD)
for creating forms, reports and UI with minimal efforts.

Sophisticated Users:

These are analysts who interact with the database using query language like

SQL. They submit each query to a query processor whose function is to

break down DML statements into instructions to the database.

MRCET-ECE Introduction to DBMS

23

Specialized Users:

 Users who write complex programs and specialized database

applications that do not fit into the traditional data processing

framework.

 Example, expert system, knowledge based system etc.

Database Administrators (DBA)

Database Administrator is a person or a group of person who are

responsible for managing all the activities related to database system.

DBA has central control over the DBMS.

MRCET-ECE Introduction to DBMS

24

UNIT 2

DATABASE DESIGN

Entity Relationship Model (ER-Model):

Objects: The ER model describes data objects as entities, relationships, and
attributes. The ER model is very useful in mapping the meanings and interactions of
real-world enterprises onto a conceptual schema. The ER-Model also has an
associated diagrammatic representation, the E-R diagram.

Entity:
 The basic concept that the ER model represents is an entity, which is a thing

or object in the real world with an independent existence.
 For example each person in a university is an entity. An entity has a set of

properties, and the values for some set of properties may uniquely identify
an entity. For instance, a person may have a person id property whose value
uniquely identifies that person.

 An entity set is a set of entities of the same type that share the same
properties, or attributes. The set of all people who are instructors at a given
university, for example, can be defined as the entity set instructor. Similarly,
the entity set student might represent the set of all students in the university.

Attributes:
 An entity is represented by a set of attributes. Attributes are descriptive

properties possessed by each member of an entity set.

 Each entity has a value for each of its attributes. For instance, a particular
Employee entity may have the value 12121 for ID, the value Kamal for name,
the value Finance for dept name, and the value 90000 for salary.

There are five such types of attributes: Simple, Composite, Single-valued, Multi-
valued, and Derived attribute.

1. Simple attribute :
An attribute that cannot be further subdivided into components is a simple
attribute.

Example: The roll number of a student, the id number of an employee.

instructor

Emp_Id

MRCET-ECE Introduction to DBMS

25

2. Composite attribute :
An attribute that can be split into components is a composite attribute.
Example: The address can be further split into house number, street number,
city, state, country, and pin code, the name can also be split into first name
middle name, and last name.

3. Single-valued attribute :

The attribute which takes up only a single value for each entity instance is a
single-valued attribute.

Example: The gender of a student.

4. Multi-valued attribute :
The attribute which takes up more than a single value for each entity instance
is a multi-valued attribute.

Example: Phone number of a student: Landline and mobile, email id.

5. Derived attribute :

An attribute that can be derived from other attributes is derived attributes.

MRCET-ECE Introduction to DBMS

26

Example: Total and average marks of a student, age can be derived from DOB.

Key Attribute:

It is the attribute which can identify an entity uniquely in an entity set.
Example: “Roll_no” is a key attribute as it can identify any student uniquely.

Domain of Attributes
The set of possible values that an attribute can take is called the domain of the
attribute.

For example, age attribute can take only positive integer values, the attribute
day may take any value from the set {Monday, Tuesday ... Friday}. Hence this
set canbe termed as the domain of the attribute day.

RELATIONSHIPS:

Associations between entities are called relationships
Example: An employee works for an organization. Here "works for" is a relation
between the entities employee and organization.

In ER modeling, notation for relationship is given below.

A relationship set is a set of relationships of the same type. We define the
relationship set “works for” to denote the association between employee and

MRCET-ECE Introduction to DBMS

27

organization.

MRCET-ECE Introduction to DBMS

28

 The association between entity sets is referred to as participation; that is,
the entity sets E1, E2, . . . , En participate in relationship set R. A
relationship instance in an E-R schema represents an association between
the named entities in the real-world enterprise that is being modeled.

 The function that an entity plays in a relationship is called that entity’s role.
Since entity sets participating in a relationship set are generally distinct,
roles may be different if the same entity set participates in a relationship
set more than once.

Degree of a Relationship:
The degree of a relationship type is the number of participating entity types. The
n-ary relationship is the general form for degree n. Special cases are unary,
binary, and ternary, where the degree is 1, 2, and 3, respectively.

Example for unary relationship: An employee is a manager of another employee
Example for binary relationship: An employee works-for department.
Example for ternary relationship: customer purchase item from a shop keeper

Mapping cardinalities: express the number of entities to which another entity
can be associated via a relationship set.
Mapping cardinalities are most useful in describing binary relationship sets,
although they can contribute to the description of relationship sets that involve
more than two entity sets.
For a binary relationship set R between entity sets A and B, the mapping
cardinality must be one of the following:
• One-to-one: An entity in A is associated with at most one entity in B, and an
entity in B is associated with at most one entity in A.

MRCET-ECE Introduction to DBMS

29

Example:

In a particular hospital, the surgeon department has one head of department. They

both serve one-to-one relationships.

• One-to-many: An entity in A is associated with any number (zero or more) of
entities in B. An entity in B, however, can be associated with at most one entity in
A.

Example:

In a particular hospital, the surgeon department has multiple doctors. They serve

one-to-many relationships

• Many-to-one: An entity in A is associated with at most one entity in B. An entity
in B, however, can be associated with any number (zero or more) of entities in A.

MRCET-ECE Introduction to DBMS

30

Example:
In a particular hospital, multiple surgeries are done by a single surgeon. Such a
type of relationship is known as a many-to-many relationship.

• Many-to-many: An entity in A is associated with any number (zero or more) of
entities in B, and an entity in B is associated with any number (zero or more) of
entities in A.

Example:
In a particular company, multiple people work on multiple projects. They serve
many-to-many relationships.

MRCET-ECE Introduction to DBMS

31

MRCET-ECE Introduction to DBMS

32

KEYS:

 Keys are a set of attributes whose values can be used to uniquely identify

an individual entity in an entity set.

 Key is an important constraint on an entity.

 Eg: ID, Aadhar no, PAN card no etc.

Types of Keys:
Super key: is a set of one or more attributes that, taken collectively, allow us to
identify uniquely a tuple in the relation.

For example, the ID attribute of the relation instructor is sufficient to distinguish
one instructor tuple from another. The combination of ID and name is a superkey
for the relation instructor.

{ID, name}, {ID, name, address} examples of super key.

Candidate Key: The minimal attribute super keys are candidate keys.

 These are keys which cannot be further subdivided into keys to uniquely
identify an entity or a record in a relation.

 If any one of the attribute is removed from this set then we cannot
uniquely identify a record.

 Eg: {name, address}, {name, contact no}, {Id} these are candidate keys
whose values cannot be same for two different records at any time.

 

Primary Key: It is that candidate key whose value alone can be used to uniquely
identify an entity.

 These are simple attributes which do not allow duplicate values.

 They cannot take null values.
 Eg: Id

 We use the convention that the attributes that form the primary key of a
relation are underlined.

 

Secondary/Alternate key: These are the candidate keys that are not chosen as
primary key. These are used for accessing records.

Eg: {name, address}, {name, contact no}
Foreign Key: It is the attribute of an entity which is a primary key in the related
entity.

MRCET-ECE Introduction to DBMS

33

 It is used to establish mapping between two or more entities.

 Eg: In an employee relation deptno refers to the department an employee
works. But deptno is a primary key in department relation. Hence deptno
is Foreign key in employee relation.

Design Constraints in ER Model
Participation Constraints:

 The participation of an entity set E in a relationship set R is said to be total
if every entity in E participates in at least one relationship in R.

 If only some entities in E participate in relationships in R, the participation
of entity set E in relationship R is said to be partial.

 In a one to one relationship, participation of both the sets is total whereas
in other relationships it is partial from one of the sets.

 For example, we expect every student entity to be related to at least one
faculty through the mentor relationship. Therefore the participation of
student in the relationship set mentor is total. In contrast, a faculty need
not mentor any student. Hence, it is possible that only some of the faculty
entities are related to the student entity set through the mentor
relationship, and the participation of faculty in the mentor relationship set
is therefore partial.

Total Participation is indicated by double line.

Cardinality Constraint:

 We can show minimum and maximum cardinality while showing the

relationship between two entities.

 It indicates the minimum and maximum numbers of entities from an entity

set that are associated in a relationship.

mentor
faculty student

MRCET-ECE Introduction to DBMS

34

 Eg: In mentor relation, a student must have exactly one mentor, so here

min. and max. is 1 whereas a faculty can be a mentor to 0 or more

students.

 Different notations are available for representing this.

Key Constraints:

 The constraint for keys is that no two entities can have same values for a
key.

 Primary key cannot be null.
Strong Entity: Entities which have sufficient key attributes are called Strong
entities. Strong entities have primary keys of their own.
Weak Entity: Entities which don’t have sufficient key attributes are called weak
entities.

 Entities belonging to a weak entity type are identified by the identifying
or owner entity type with which it is associated.

 The relationship associating a weak entity type to its owner is called the
identifying relationship.

 A weak entity type always has a total participation constraint (existence
dependency) with respect to its identifying relationship because a weak
entity cannot be identified without an owner entity.

 The identifying relationship is many-to-one from the weak entity set to the
identifying entity set, and the participation of the weak entity set in the
relationship is total.

 A weak entity type normally has a partial key, also known a discriminator,
which is the attribute that can uniquely identify weak entities that are
related to the same owner entity.

 Eg: The entity type DEPENDENT, related to EMPLOYEE is a weak entity.
{dependent_name, dependent_address} of the weak entity can be taken as
partial key.

 The primary key of a weak entity set is formed by the primary key of the
identifying entity set, plus the weak entity set’s discriminator.

1..1 0..*

mentor faculty student

MRCET-ECE Introduction to DBMS

35

 In the above case {emp_id, dependent_name, dependent_address} is the
primary key of Dependent entity.




 Strong Entity Weak Entity

1 Strong entity has a primary key. Weak entity has a partial key.

2 Strong entity is independent Weak entity is dependent on a
strong entity

3 Strong entity indicated by a
single rectangle.

Strong entity indicated by a
double rectangle.

4 Two strong entity’s relationship
is indicated by a single
diamond.

One strong and one weak entity
is indicated by a double
diamond.

5 Strong entity may be or may
not participate in
relationships.

Weak entity always participates
in relationships.

6 In strong entity connecting line
is a single line

In weak entity connecting line is a
double line

MRCET-ECE Introduction to DBMS

36

ER Diagram Notations:

MRCET-ECE Introduction to DBMS

37

MRCET-ECE Introduction to DBMS

38

Relational Model:

 It is the primary data model for commercial data processing applications

compared to earlier models.

 It is simple and easy to use.

 The relational model in DBMS is an abstract model used to organize and

manage the data stored in a database. 

 It was designed in 1969 by scientist Edgar F. Codd.

 Relational database stores data in the form of relations.

 Relations are represented as a collection of data in the form of tables with

rows and columns.

MRCET-ECE Introduction to DBMS

39

Relational Model Concepts:

 Relation : Two-dimensional table used to store a collection of data
elements.

 Tuple : Row of the relation, depicting a real-world entity.
 Attribute/Field : Column of the relation, depicting properties that define

the relation.
 Attribute Domain : Set of pre-defined atomic values that an attribute can

take i.e., it describes the legal values that an attribute can take.

 Degree : It is the total number of attributes present in the relation.
 Cardinality : It specifies the number of entities involved in the relation i.e.,

it is the total number of rows present in the relation.
 Relational Schema : It is the logical blueprint of the relation i.e., it describes

the design and the structure of the relation. It contains the table name, its
attributes, and their types:

TABLE_NAME(ATTRIBUTE_1 TYPE_1, ATTRIBUTE_2 TYPE_2, ...)

For our Student relation example, the relational schema will be:

STUDENT(ROLL_NUMBER INTEGER, NAME VARCHAR(20),…)
 Relational Instance : It is the collection of records present in the relation at

a given time.
 Relation Key : It is an attribute or a group of attributes that can be used to

uniquely identify an entity in a table or to determine the relationship
between two tables.

 Domain Constraint : It specifies that every attribute is bound to have a
value that lies inside a specific range of values. It is implemented with the
help of the Attribute Domain concept.

o If we set a constraint on an attribute like age>0 then its age attribute
should not accept negative values.

Constraints in Relational Model:

Relational models make use of some rules to ensure the accuracy and accessibility
of the data. These rules or constraints are known as Relational Integrity
Constraints. These constraints are checked before performing any operation like
insertion, deletion, or updation on the data present in a relational database.

These constraints include:

MRCET-ECE Introduction to DBMS

40

 Key Constraint : It states that every relation must contain an attribute or a
set of attributes (Primary Key) that can uniquely identify a tuple in that
relation. This key can never be NULL or contain the same value for two
different tuples.

 Referential Integrity Constraint : It is defined between two inter-related
tables. It works on foreign key concept. It states that if a given relation
refers to a key attribute of a different or same table, then that key must
exist in the given relation.

Advantages of using the relational model:
The advantages and reasons due to which the relational model in DBMS is widely
accepted as a standard are:

 Simple and Easy To Use - Storing data in tables is much easier to
understand and implement as compared to other storage techniques.

 Manageability - Because of the independent nature of each relation in a
relational database, it is easy to manipulate and manage. This improves the
performance of the database.

 Query capability - With the introduction of relational algebra, relational
databases provide easy access to data via high-level query language like
SQL.

 Data integrity - With the introduction and implementation of relational
constraints, the relational model can maintain data integrity in the
database.

Disadvantages of using the relational model
The main disadvantages of relational model in DBMS occur while dealing with a
huge amount of data as:

 The performance of the relational model depends upon the number of
relations present in the database.

 Hence, as the number of tables increases, the requirement of physical
memory increases.

 The structure becomes complex and there is a decrease in the response
time for the queries.

 Because of all these factors, the cost of implementing a relational database
increase.

41

MRCET-ECE Introduction to DBMS

UNIT 3

STRUCTURED QUERY LANGUAGE

What is SQL?

 SQL is Structured Query Language, which is a database language designed for the

retrieval and management of data in a relational database.

 All the RDBMS systems like MySQL, MS Access, Oracle, Sybase, Postgres, and

SQL Server use SQL as their standard database language.

Why to Use SQL?

SQL provides an interface to a relational database.

Here, are important reasons for using SQL

 It helps users to access data in the RDBMS system.

 It helps us to describe the data.

 It allows us to define the data in a database and manipulate that specific data.

 With the help of SQL commands in DBMS, we can create and drop databases and

tables.

 SQL offers us to use the function in a database, create a view, and stored procedure.

 We can set permissions on tables, procedures, and views.

History of SQL

"A Relational Model of Data for Large Shared Data Banks" was a paper which was published

by the great computer scientist "E.F. Codd" in 1970.

The IBM researchers Raymond Boyce and Donald Chamberlin originally developed the

SEQUEL (Structured English Query Language) after learning from the paper given by E.F.

Codd. They both developed the SQL at the San Jose Research laboratory of IBM Corporation

in 1970. In 1979, Relational Software, Inc. (now Oracle) introduced the first commercially

available implementation of SQL.

42

MRCET-ECE Introduction to DBMS

SQL became a standard of the American National Standards Institute (ANSI) in 1986, and of

the International Organization for Standardization (ISO) in 1987.[11] Since then, the standard

has been revised to include a larger set of features. Despite the existence of standards, most

SQL code requires at least some changes before being ported to different database systems.

New versions of the standard were published and most recently, 2016.

Types of SQL

Here are five types of widely used SQL queries.

 Data Definition Language (DDL)

 Data Manipulation Language (DML)

 Data Control Language(DCL)

 Transaction Control Language(TCL)

 Data Query Language (DQL)

All operations performed on the information in a database are run using SQL statements. A

SQL statement consists of identifiers, parameters, variables, names, data types, and

SQL reserved words.

What is DDL?

https://en.wikipedia.org/wiki/SQL#cite_note-ISO_9075%3A1987-14

43

MRCET-ECE Introduction to DBMS

Create table tablename(Columnname1 Datatype,

Columnname2 Datatype,…….., Columnnamen

Datatype);

Definition: The Language used to define the database structure or schema is called

“Data Definition Language”.

 The Commands (or) statements used to define the structure of database are:

1. CREATE

2. ALTER

3. DROP

4. TRUNCATE

5. RENAME

1. CREATE

Create command can be used to create

(i) Databases

(ii) Tables and

(iii) Views.

(i) Creating Database

Syntax:

Ex: create database MRCET_ITA;

(ii) Creating Table

Syntax:

Ex: create table Student(SRno integer(5),

create database database name;

44

MRCET-ECE Introduction to DBMS

Snamevarchar(20),

Address varchar(15));

2. ALTER Command

 The ALTER TABLE statement is used to add, delete, or modify columns in an

existing table.

 The ALTER TABLE statement is also used to add and drop various constraints on an

existing table.

1. ALTER TABLE - ADD Column

To add a column in a table, use the following syntax:

Ex: The following SQL adds an "Email" column to the

"Customers" table:

ALTERTABLE Customers

ADD Email varchar(255);

ALTER TABLE - DROP COLUMN

To delete a column in a table, use the following syntax (notice that some database systems

don't allow deleting a column):

Syntax:

Ex: The following SQL deletes the "Email" column from the "Customers" table:

ALTER TABLE table_name

ADD column_namedatatype;

ALTER TABLE table_name

DROP COLUMN column_name;

45

MRCET-ECE Introduction to DBMS

ALTERTABLE Customers

DROP COLUMN Email;

ALTER TABLE - ALTER/MODIFY COLUMN

To change the data type of a column in a table, use the following syntax:

SQL Server / MS Access:

My SQL / Oracle (prior version 10G):

Example 1: Modifying single Column

Example 2: Modifying Multiple Columns

Oracle 10G and later:

ALTER TABLE table_name

ALTER COLUMN column_namedatatype;

Ex: ALTER TABLE supplier

ALTER COLUMN supplier_nameVARCHAR(100) NOT NULL;

ALTER TABLE table_name

MODIFY COLUMN column_namedatatype;

ALTER TABLE supplier

MODIFY supplier_namechar(100) NOT NULL;

ALTER TABLE supplier

MODIFY supplier_nameVARCHAR(100) NOT NULL,

MODIFY city VARCHAR(75);

46

MRCET-ECE Introduction to DBMS

3. Drop Command

Syntax

To drop a column in an existing table, the SQL ALTER TABLE syntax is:

Example

Let's look at an example that drops (ie: deletes) a column from a table.

For example:

This SQL ALTER TABLE example will drop the column

called supplier_name from the table called supplier.

TRUNCATE:

This command used to delete all the rows from the table and free the space containing the

table.

Syntax:

 TRUNCATE TABLE table_name;

Example:

 TRUNCATE table students;

What is Data Manipulation Language?

ALTER TABLE supplier

DROP COLUMN supplier_name;

ALTER TABLE table_name

MODIFY column_namedatatype;

ALTER TABLE table_name

DROP COLUMN column_name;

47

MRCET-ECE Introduction to DBMS

Data Manipulation Language (DML) allows user to modify the database instance by

inserting, modifying, and deleting its data. It is responsible for performing all types data

modification in a database.

There are three basic constructs which allow database program and user to enter data and

information are:

Here are some important DML commands in SQL:

 INSERT

 UPDATE

 DELETE

INSERT:This statement is a SQL query. This command is used to insert data into the row of

a table.

Syntax:

For example:

 INSERT INTO students (RollNo, FIrstName, LastName) VALUES ('60', 'Tom', Erichsen');

UPDATE:

This command is used to update or modify the value of a column in the table.

Syntax:

INSERT INTO TABLE_NAME (col1, col2, col3,.... col N)

VALUES (value1, value2, value3,.... valueN);

Or

INSERT INTO TABLE_NAME

VALUES (value1, value2, value3,.... valueN);

UPDATE table_name SET [column_name1= value1,...column_nameN = valueN] [WHERE

CONDITION]

48

MRCET-ECE Introduction to DBMS

For example:

DELETE:

This command is used to remove one or more rows from a table.

Syntax:

 DELETE FROM table_name [WHERE condition];

For example:

What is DCL?

DCL (Data Control Language) includes commands like GRANT and REVOKE, which are

useful to give "rights & permissions." Other permission controls parameters of the database

system.

Examples of DCL commands:

Commands that come under DCL:

 Grant

 Revoke

Grant:

This command is use to give user access privileges to a database.

Syntax:

 GRANT SELECT, UPDATE ON MY_TABLE TO SOME_USER, ANOTHER_USER;

UPDATE students

SET FirstName = 'Jhon', LastName= 'Wick'

WHERE StudID = 3;

DELETE FROM students

WHERE FirstName = 'Jhon';

49

MRCET-ECE Introduction to DBMS

For example:

 GRANT SELECT ON Users TO'Tom'@'localhost;

Revoke:

It is useful to back permissions from the user.

Syntax:

 REVOKE privilege_nameONobject_nameFROM {user_name |PUBLIC |role_name}

For example:

 REVOKE SELECT, UPDATE ON student FROM BCA, MCA;

What is TCL?

Transaction control language or TCL commands deal with the transaction within the

database.

Commit: This command is used to save all the transactions to the database.

Syntax:

 Commit;

For example:

Rollback

Rollback command allows you to undo transactions that have not already been saved to the

database.

Syntax:

DELETE FROM Students

WHERE RollNo =25;

COMMIT;

50

MRCET-ECE Introduction to DBMS

 ROLLBACK;

Example:

SAVEPOINT

This command helps you to sets a savepoint within a transaction.

Syntax:

 SAVEPOINT SAVEPOINT_NAME;

Example:

 SAVEPOINT RollNo;

What is DQL?

Data Query Language (DQL) is used to fetch the data from the database. It uses only one

command:

SELECT:

This command helps you to select the attribute based on the condition described by the

WHERE clause.

Syntax:

For example:

DELETE FROM Students

WHERE RollNo =25;

SELECT expressions

FROM TABLES

WHERE conditions;

SELECT FirstName

FROM Student

51

MRCET-ECE Introduction to DBMS

 WHERE RollNo> 15;

TCL Commands

TCL Commands in SQL- Transaction Control Language Examples: Transaction Control

Language can be defined as the portion of a database language used for maintaining

consistency of the database and managing transactions in database. A set of SQL statements

that are co-related logically and executed on the data stored in the table is known as

transaction. In this tutorial, you will learn different TCL Commands in SQL with examples

and differences between them.

1. Commit Command

2. Rollback Command

3. Savepoint Command

TCL Commands in SQL- Transaction Control Language Examples

The modifications made by the DML commands are managed by using TCL commands.

Additionally, it makes the statements to grouped together into logical transactions.

TCL Commands

There are three commands that come under the TCL:

1. Commit

The main use of Commit command is to make the transaction permanent. If there is a need

for any transaction to be done in the database that transaction permanent through commit

command.

Syntax:

COMMIT;

For Example

UPDATE STUDENT SET STUDENT_NAME = ‘Maria’ WHERE STUDENT_NAME =

‘Meena’;

COMMIT;

 By using the above set of instructions, you can update the wrong student name by the

correct one and save it permanently in the database. The update transaction gets

completed when commit is used. If commit is not used, then there will be lock on

‘Meena’ record till the rollback or commit is issued.

52

MRCET-ECE Introduction to DBMS

 Now have a look at the below diagram where ‘Meena’ is updated and there is a lock

on her record. The updated value is permanently saved in the database after the use of

commit and lock is released.

2. Rollback

 Using this command, the database can be restored to the last committed state.

 Additionally, it is also used with savepoint command for jumping to a savepoint in a

transaction.

Syntax:

Rollback to savepoint-name;

For example

UPDATE STUDENT SET STUDENT_NAME = ‘Manish’ WHERE STUDENT_NAME

= ‘Meena’; ROLLBACK;

 This command is used when the user realizes that he/she has updated the wrong

information after the student name and wants to undo this update.

53

MRCET-ECE Introduction to DBMS

 The users can issues ROLLBACK command and then undo the update.

Have a look at the below tables to know better about the implementation of this command.

3. Savepoint

The main use of the Savepoint command is to save a transaction temporarily. This way users

can rollback to the point whenever it is needed.

The general syntax for the savepoint command is mentioned below:

savepointsavepoint-name;

For Example

Following is the table of a school class

Use some SQL queries on the above table and then watch the results

INSERT into CLASS VALUES (101, ‘Rahul);

Commit;

UPDATE CLASS SET NAME= ‘Tyler’ where id= 101;

54

MRCET-ECE Introduction to DBMS

SAVEPOINT A;

INSERT INTO CLASS VALUES (102, ‘Zack’);

Savepoint B;

INSERT INTO CLASS VALUES (103, ‘Bruno’)

Savepoint C;

Select * from Class;

The result will look like

Now rollback to savepoint B

Rollback to B;

SELECT * from Class;

Now rollback to savepoint A

rollback to A;

SELECT * from class;

Difference between rollback, commit and savepointtcl commands in SQL.

 Rollback Commit Savepoint

55

MRCET-ECE Introduction to DBMS

1. Database can be restored to the last

committed state

Saves modification

made by DML

Commands and it

permanently saves

the transaction.

It saves the transaction

temporarily.

2. Syntax- ROLLBACK [To

SAVEPOINT_NAME];

Syntax- COMMIT; Syntax- SAVEPOINT

[savepoint_name;]

3. Example- ROLLBACK Insert3; Example- SQL>

COMMIT;

Example- SAVEPOINT

table_create;

In relational database the data is stored as well as retrieved in the form of relations (tables).

Table 1 shows the relational database with only one relation called STUDENT which

stores ROLL_NO, NAME, ADDRESS, PHONE and AGE of students.

ROLL_NO NAME ADDRESS PHONE AGE

1

RAM

DELHI

9455123451

18

2

RAMESH

GURGAON

9652431543

18

3

SUJIT

ROHTAK

9156253131

20

4

SURESH

DELHI

9156768971

18

START TRANSACTION;

savepoint a;

update t1 set n1=18 where n1=13;

rollbackto a;

56

MRCET-ECE Introduction to DBMS

These are some important terminologies that are used in terms of relation.

Attribute: Attributes are the properties that define a relation. e.g.; ROLL_NO, NAME etc.

Tuple: Each row in the relation is known as tuple. The above relation contains 4 tuples, one

of which is shown as:

1 RAM DELHI 9455123451 18

Degree: The number of attributes in the relation is known as degree of the relation. The

STUDENT relation defined above has degree 5.

Cardinality: The number of tuples in a relation is known as cardinality. The STUDENT

relation defined above has cardinality 4.

Column: Column represents the set of values for a particular attribute. The column

ROLL_NO isextracted from relation STUDENT.

ROLL_NO

1

2

3

4

SQL Set Operations

Set operations allow the results of multiple queries to be combined into a single result set.

The Set Operators combine a similar type of data from two or more SQL database tables. It

mixes the result, which is extracted from two or more SQL queries, into a single result.

Set operators combine more than one select statement in a single query and return a specific

result set.

57

MRCET-ECE Introduction to DBMS

Set operators include UNION , INTERSECT , and EXCEPT .

UNION

In SQL the UNION clause combines the results of two SQL queries into a single table of all

matching rows. The two queries must result in the same number of columns and compatible

data types in order to unite. Any duplicate records are automatically removed unless UNION

ALL is used.

Syntax of UNION:

SELECT column1, column2.... , columnN FROM table_Name1 [WHERE conditions]

UNION

SELECT column1, column2.... , columnN FROM table_Name2 [WHERE conditions];

A simple example would be a database having tables sales2005 and sales2006 that have

identical structures but are separated because of performance considerations. A UNION

query could combine results from both tables.

Note that UNION ALL does not guarantee the order of rows. Rows from the second operand

may appear before, after, or mixed with rows from the first operand. In situations where a

specific order is desired, ORDER BY must be used.

Note that UNION ALL may be much faster than plain UNION.

sales2005

person

amount

Joe

1000

Alex

2000

Bob

5000

58

MRCET-ECE Introduction to DBMS

 sales2006

person

amount

Joe

2000

Alex

2000

Zach

35000

Executing this statement:

SELECT * FROM sales2005UNIONSELECT * FROM sales2006;

yields this result set, though the order of the rows can vary because no ORDER BY clause

was supplied:

person

amount

Joe

1000

Alex

2000

Bob

5000

Joe

2000

Zach

35000

59

MRCET-ECE Introduction to DBMS

UNION ALL gives different results, because it will not eliminate duplicates. Executing this

statement:

SELECT * FROM sales2005UNION ALLSELECT * FROM sales2006;

would give these results, again allowing variance for the lack of an ORDER BY statement:

person

amount

Joe

1000

Joe

2000

Alex

2000

Alex

2000

Bob

5000

Zach

35000

60

MRCET-ECE Introduction to DBMS

INTERSECT

The SQL INTERSECT operator takes the results of two queries and returns only rows that

appear in both result sets. For purposes of duplicate removal the INTERSECT operator does

not distinguish between NULLs.

The INTERSECT operator removes duplicate rows from the final result set. The

INTERSECT ALL operator does not remove duplicate rows from the final result set, but if a

row appears X times in the first query and Y times in the second, it will appear min(X, Y)

times in the result set.

The data type and the number of columns must be the same for each SELECT statement used

with the INTERSECT operator.

Syntax of INTERSECT

SELECT column1, column2.... , columnN FROM table_Name1 [WHERE conditions]

INTERSECT

SELECT column1, column2.... , columnN FROM table_Name2 [WHERE conditions];

Let's understand the below example which explains how to execute INTERSECT operator in

Structured Query Language:

In this example, we used two tables. Both tables have four columns Emp_Id, Emp_Name,

Emp_Salary, and Emp_City.

Employee_details1:

Emp Id Emp Name Emp Salary Emp City

201 Sanjay 25000 Delhi

202 Ajay 45000 Delhi

203 Saket 30000 Aligarh

61

MRCET-ECE Introduction to DBMS

Employee_details2:

Emp Id Emp Name Emp Salary Emp City

203 Saket 30000 Aligarh

204 Saurabh 40000 Delhi

205 Ram 30000 Kerala

201 Sanjay 25000 Delhi

Suppose, we want to see a common record of the employee from both the tables in a single

output. For this, we have to write the following query in SQL:

SELECT Emp_Name FROM Employee_details1

INTERSECT

SELECT Emp_Name FROM Employee_details2 ;

Emp Id Emp Name Emp Salary Emp City

201 Sanjay 25000 Delhi

203 Saket 30000 Aligarh

EXCEPT

The SQL EXCEPT operator takes the distinct rows of one query and returns the rows that do

not appear in a second result set. For purposes of row elimination and duplicate removal, the

EXCEPT operator does not distinguish between NULLs. The EXCEPT ALL operator does

not remove duplicates, but if a row appears X times in the first query and Y times in the

second, it will appear max(X - Y, 0) times in the result set.

Notably, the Oracle platform provides a MINUS operator which is functionally equivalent to

the SQL standard EXCEPT DISTINCT operator.

62

MRCET-ECE Introduction to DBMS

The following example EXCEPT query returns all rows from the Orders table where

Quantity is between 1 and 49, and those with a Quantity between 76 and 100.

Worded another way; the query returns all rows where the Quantity is between 1 and 100,

apart from rows where the quantity is between 50 and 75.

SELECT *FROM Orders WHERE Quantity BETWEEN 1 AND 100

EXCEPT

SELECT *FROM Orders WHERE Quantity BETWEEN 50 AND 75;

Joins

A join is a query that combines rows from two or more tables, views, based on a common

field between them.

Consider the following two tables −

Table 1 − CUSTOMERS Table

Table 2 − ORDERS Table

+ + + + + +

| ID | NAME | AGE | ADDRESS | SALARY |

+ + + + + +

|1|Ramesh|32|Ahmedabad|2000.00|

|2|Khilan|25|Delhi|1500.00|

|3|kaushik|23|Kota|2000.00|

|4|Chaitali|25|Mumbai|6500.00|

|5|Hardik|27|Bhopal|8500.00|

|6|Komal|22| MP |4500.00|

|7|Muffy|24|Indore|10000.00|

+ + + + + +

+ + + + +

|OID | DATE | CUSTOMER_ID | AMOUNT |

+ + + + +

|102|2009-10-0800:00:00|3|3000|

63

MRCET-ECE Introduction to DBMS

Now, let us join these two tables in our SELECT statement as shown below.

This would produce the following result.

+ + + + +

| ID | NAME | AGE | AMOUNT |

+ + + + +

| 3 | kaushik | 23 | 3000 |

| 3 | kaushik | 23 | 1500 |

| 2 | Khilan | 25 | 1560 |

| 4 | Chaitali | 25 | 2060 |

+ + + + +

Here, it is noticeable that the join is performed in the WHERE clause. Several operators can

be used to join tables, such as =, <, >, <>, <=, >=, !=, BETWEEN, LIKE, and NOT; they

can all be used to join tables. However, the most common operator is the equal to symbol.

SQL JOINS: EQUI JOIN and NON EQUI JOIN

The are two types of SQL JOINS - EQUI JOIN and NON EQUI JOIN

1) SQL EQUI JOIN:

The SQL EQUI JOIN is a simple SQL join uses the equal sign(=) as the comparison operator

for the condition. It has two types - SQL Outer join and SQL Inner join.

2) SQL NON EQUI JOIN :

The SQL NON EQUI JOIN is a join uses comparison operator other than the equal sign like

>, <, >=, <= with the condition.

|100|2009-10-0800:00:00|3|1500|

|101|2009-11-2000:00:00|2|1560|

|103|2008-05-2000:00:00|4|2060|

+ + + + +

SELECT ID, NAME, AGE,AMOUNT FROM CUSTOMERS, ORDERS

WHERE CUSTOMERS.ID= ORDERS.CUSTOMER_ID;

64

MRCET-ECE Introduction to DBMS

SQL EQUI JOIN : INNER JOIN and OUTER JOIN

The SQL EQUI JOIN can be classified into two types - INNER JOIN and OUTER JOIN

1. SQL INNER JOIN

This type of EQUI JOIN returns all rows from tables where the key record of one table is

equal to the key records of another table.

2. SQL OUTER JOIN

This type of EQUI JOIN returns all rows from one table and only those rows from the

secondary table where the joined condition is satisfying i.e. the columns are equal in both

tables.

In order to perform a JOIN query, the required information we need are:

a) The name of the tables

b) Name of the columns of two or more tables, based on which a condition will perform.

Syntax:

FROM table1

join_type table2

[ON (join_condition)]

ON can be replaced with WHERE

Pictorial Presentation of SQL Joins:

65

MRCET-ECE Introduction to DBMS

Let’s Consider the two tables given below.

Table name- Student:

id Name class city

3

Hina

3

Delhi

4

Megha

2

Delhi

6

Gouri

2

Delhi

Table name — Record:

id Class City

9

3

Delhi

10

2

Delhi

12

2

Delhi

66

MRCET-ECE Introduction to DBMS

EQUI JOIN :

EQUI JOIN creates a JOIN for equality or matching column(s) values of the relative tables.

EQUI JOIN also create JOIN by using JOIN with ON and then providing the names of the

columns with their relative tables to check equality using equal sign (=).

Syntax :

SELECT column_list

FROM table1, table2....

WHERE table1.column_name =

table2.column_name;

Example –

SELECT student.name, student.id, record.class, record.city

FROM student, record

WHERE student.city = record.city;

Output :

name Id class City

Hina

3

3

Delhi

Megha

4

3

Delhi

Gouri

6

3

Delhi

Hina

3

2

Delhi

Megha

4

2

Delhi

Gouri

6

2

Delhi

Hina

3

2

Delhi

67

MRCET-ECE Introduction to DBMS

name Id class City

Megha

4

2

Delhi

Gouri

6

2

Delhi

2. NON EQUI JOIN :

NON EQUI JOIN performs a JOIN using comparison operator other than equal(=) sign like

>, <, >=, <= with conditions.

Syntax:

SELECT *

FROM table_name1, table_name2

WHERE table_name1.column [>| < | >= | <=] table_name2.column;

Example –

SELECT student.name, record.id, record.city

FROM student, record

WHERE Student.id <Record.id ;

Output :

name Id city

Hina

9

Delhi

Megha

9

Delhi

Gouri

9

Delhi

Hina

10

Delhi

Megha

10

Delhi

68

MRCET-ECE Introduction to DBMS

name Id city

Gouri

10

Delhi

Hina

12

Delhi

Megha

12

Delhi

Gouri

12

Delhi

Nested Queries in SQL:

In nested queries, a query is written inside a query. The result of inner query is used in

execution of outer query. Nested Queries are also called assubqueries.

Subqueries are useful when you must execute multiple queries to solve a single problem.

Each query portion of a statement is called a query block. In the following query, the

subquery in parentheses is the inner query block:

SELECT first_name, last_name FROM employees

WHERE department_id

IN (SELECTdepartment_id FROM departments

WHERE location_id = 1800);

 The inner SELECT statement retrieves the IDs of departments with location ID 1800.

These department IDs are needed by the outer query block, which retrieves names of

employees in the departments whose IDs were supplied by the subquery.

 The structure of the SQL statement does not force the database to execute the inner

query first. For example, the database could rewrite the entire query as a join of

employees and departments, so that the subquery never executes by itself.

Subqueries can be correlated or uncorrelated.

Correlated subquery - In correlated subquery, inner query is dependent on the outer query.

Outer query needs to be executed before inner query

69

MRCET-ECE Introduction to DBMS

Non-Correlated subquery - In non-correlated query inner query does not dependent on the

outer query. They both can run separately.

Correlated Subqueries

A correlated subquery typically obtains values from its outer query before it executes. When

the subquery returns, it passes its results to the outer query.

In the following example, the subquery needs values from the addresses.state column in the

outer query:

=> SELECT name, street, city, state FROM addresses

WHERE EXISTS (SELECT * FROM states WHERE states.state = addresses.state);

This query is executed as follows:

 The query extracts and evaluates each addresses.state value in the outer subquery

records.

 Then the query—using the EXISTS predicate—checks the addresses in the inner

(correlated) subquery.

 Because it uses the EXISTS predicate, the query stops processing when it finds the

first match.

NoncorrelatedSubqueries

A noncorrelatedsubquery executes independently of the outer query. The subquery executes

first, and then passes its results to the outer query, For example:

=> SELECT name, street, city, state FROM addresses WHERE state IN (SELECT state

FROM states);

This query is executed as follows:

 Executes the subquery SELECT state FROM states (in bold).

 Passes the subquery results to the outer query.

A query's WHERE and HAVING clauses can specify noncorrelatedsubqueries if the

subquery resolves to a single row, as shown below:

70

MRCET-ECE Introduction to DBMS

In WHERE clause

=> SELECT COUNT(*) FROM SubQ1 WHERE SubQ1.a = (SELECT y from SubQ2);

In HAVING clause

=> SELECT COUNT(*) FROM SubQ1 GROUP BY SubQ1.a HAVING SubQ1.a =

(SubQ1.a & (SELECT y from SubQ2)

Aggregate functions:

Aggregate functions operate on values across rows to perform mathematical calculations such

as sum, average, counting, minimum/maximum values, standard deviation, and estimation, as

well as some non-mathematical operations.

An aggregate function takes multiple rows (actually, zero, one, or more rows) as input and

produces a single output.

Various Aggregate Functions:

1. COUNT ([DISTINCT] A): The number of (unique) values in the A column.

2. SUM ([DISTINCT] A): The sum of all (unique) values in the A column.

3. AVG ([DISTINCT] A): The average of all (unique) values in the A column.

4. MAX (A): The maximum value in the A column.

5. MIN (A): The minimum value in the A column.

Let us consider a table that contains the following data:

The aggregate function returns one output row for multiple input rows:

 selectsum(x)

selectx,yfromsimpleorderbyx,y;

+ + +

| X | Y |

| + |

| 10 | 20 |

| 20 | 44 |

| 30 | 70 |

+----+----+

71

MRCET-ECE Introduction to DBMS

Now let us understand each Aggregate function with a example:

Id Name Salary

1 A 80

2 B 40

3 C 60

4 D 70

5 E 60

6 F Null

Count():

Count(*): Returns total number of records .i.e 6.

Count(salary): Return number of Non Null values over the column salary. i.e 5.

Count(Distinct Salary): Return number of distinct Non Null values over the column salary

.i.e 4.

Sum():

sum(salary): Sum all Non Null values of Column salary i.e., 310

sum(Distinct salary): Sum of all distinct Non-Null values i.e., 250.

Avg():

Avg(salary) = Sum(salary) / count(salary) = 310/5

Avg(Distinct salary) = sum(Distinct salary) / Count(Distinct Salary) = 250/4

fromsimple;

+ +

| SUM(X) |

| |

| 60 |

+ +

72

MRCET-ECE Introduction to DBMS

Min():

Min(salary): Minimum value in the salary column except NULL i.e., 40.

Max(salary): Maximum value in the salary i.e., 80.

Aggregate Functions and NULL Values

Some aggregate functions ignore NULL values. For example, AVG calculates the average of

values 1, 5, and NULL to be 3, based on the following formula:

(1 + 5) / 2 = 3

If all of the values passed to the aggregate function are NULL, then the aggregate function

returns NULL.

Some aggregate functions can be passed more than one column. For example:

select count(col1, col2) from table1;

In these instances, the aggregate function ignores a row if any individual column is NULL.

Query the table:

Similarly, if SUM is called with an expression that references two or more columns, and if

one or more of those columns is NULL, then the expression evaluates to NULL, and the row

is ignored:

insertintot(x,y)values

(1,2),-- No NULLs.

(3,null),-- One but not all columns are NULL.

(null,6),-- One but not all columns are NULL.

(null,null);-- All columns are NULL.

selectcount(x,y)fromt;

+ +

| COUNT(X, Y) |

| |

| 1 |

+ +

selectsum(x+y)fromt;

+ +

https://docs.snowflake.com/en/sql-reference/functions/sum.html

73

MRCET-ECE Introduction to DBMS

SQL also provides a special comparison operator IS NULL to test whether a column value is

null; for example the value of y IS NULL returns true when x is 3 and IS NOT NULL

returns false.

INTRODUCTION TO VIEWS

A view is a table whose rows are not explicitly stored in the database but are computed as

needed.

Views in SQL are kind of virtual tables. A view also has rows and columns as they are in a

real table in the database. We can create a view by selecting fields from one or more tables

present in the database. A View can either have all the rows of a table or specific rows based

on certain condition.

Sample Tables:

CREATING VIEWS

StudentDetails

StudentMarks

We can create View using CREATE VIEW statement. A View can be created from a single

table or multiple tables.

| SUM(X + Y) |

| |

| 3 |

+ +

74

MRCET-ECE Introduction to DBMS

Syntax:

CREATE VIEW view_name ASSELECT column1, column2.....

FROM table_nameWHERE condition;

view_name: Name for the View

table_name: Name of the table

condition: Condition to select rows

Examples:

Creating View from a single table:

In this example we will create a View named DetailsView from the table StudentDetails.

Query:

CREATE VIEW DetailsView ASSELECT NAME, ADDRESS

FROM StudentDetailsWHERE S_ID < 5;

To see the data in the View, we can query the view in the same manner as we query a table.

SELECT * FROM DetailsView;

Output:

Creating View from multiple tables: In this example we will create a View named

MarksView from two tables StudentDetails and StudentMarks. To create a View from

multiple tables we can simply include multiple tables in the SELECT statement.

Query:

CREATE VIEW MarksView AS

SELECT StudentDetails.NAME, StudentDetails.ADDRESS, StudentMarks.MARKS

FROM StudentDetails, StudentMarks

WHERE StudentDetails.NAME = StudentMarks.NAME;

75

MRCET-ECE Introduction to DBMS

To display data of View MarksView:

SELECT * FROM MarksView;

Output:

DELETING VIEWS

SQL allows us to delete an existing View. We can delete or drop a View using the DROP

statement.

Syntax:

DROP VIEW view_name;

view_name: Name of the View which we want to delete.

For example, if we want to delete the View MarksView, we can do this as:

DROP VIEW MarksView;

UPDATING VIEWS

There are certain conditions needed to be satisfied to update a view. If any one of these

conditions is not met, then we will not be allowed to update the view.

1. The SELECT statement which is used to create the view should not include GROUP

BY clause or ORDER BY clause.

2. The SELECT statement should not have the DISTINCT keyword.

3. The View should have all NOT NULL values.

4. The view should not be created using nested queries or complex queries.

76

MRCET-ECE Introduction to DBMS

5. The view should be created from a single table. If the view is created using multiple

tables then we will not be allowed to update the view.

We can use the CREATE OR REPLACE VIEW statement to add or remove fields from a

view.

Syntax:

CREATE OR REPLACE VIEW view_name AS

SELECT column1,coulmn2,..

FROM table_name

WHERE condition;

For example, if we want to update the view MarksView and add the field AGE to this View

from StudentMarks Table, we can do this as:

CREATE OR REPLACE VIEW MarksView AS

SELECT StudentDetails.NAME, StudentDetails.ADDRESS, StudentMarks.MARKS,

StudentMarks.AGEFROM StudentDetails, StudentMarks

WHERE StudentDetails.NAME = StudentMarks.NAME;

If we fetch all the data from MarksView now as:

SELECT * FROM MarksView;

Output:

Inserting a row in a view:

We can insert a row in a View in a same way as we do in a table. We can use the INSERT

INTO statement of SQL to insert a row in a View.Syntax:

INSERT INTO view_name(column1, column2 , column3,..)

VALUES(value1, value2, value3..);

view_name: Name of the View

77

MRCET-ECE Introduction to DBMS

Example:

In the below example we will insert a new row in the View DetailsView which we have

created above in the example of “creating views from a single table”.

INSERT INTO DetailsView(NAME, ADDRESS)

VALUES("Suresh","Gurgaon");

If we fetch all the data from DetailsView now as,

SELECT * FROM DetailsView;

Output:

Deleting a row from a View:

Deleting rows from a view is also as simple as deleting rows from a table. We can use the

DELETE statement of SQL to delete rows from a view. Also deleting a row from a view

first delete the row from the actual table and the change is then reflected in the

view.Syntax:

DELETE FROM view_name

WHERE condition;

view_name:Name of view from where we want to delete rows

condition: Condition to select rows

Example:

In this example we will delete the last row from the view DetailsView which we just added

in the above example of inserting rows.

DELETE FROM DetailsView

WHERE NAME="Suresh";

78

MRCET-ECE Introduction to DBMS

If we fetch all the data from DetailsView now as,

SELECT * FROM DetailsView;

Output:

TRIGGERS

A trigger is a stored procedure that is automatically invoked by the DBMS in response to

specified changes to the database, and is typically specified by the DBA. A database that

has a set of associated triggers is called an active database. A trigger description contains

three parts:

Event: A change to the database that activates the trigger.

Condition: A query or test that is run when the trigger is activated.

Action: A procedure that is executed when the trigger is activated and its con-dition is true.

A trigger action can examine the answers to the query in the condition part of the trigger,

refer to old and new values of tuples modified by the statement activating the trigger,

execute new queries, and make changes to the database.

Syntax:

create trigger [trigger_name]

[before | after]

{insert | update | delete}

on [table_name]

[for each row]

[trigger_body]

79

MRCET-ECE Introduction to DBMS

Explanation of syntax:

1. create trigger [trigger_name]: Creates or replaces an existing trigger with the

trigger_name.

2. [before | after]: This specifies when the trigger will be executed.

3. {insert | update | delete}: This specifies the DML operation.

4. on [table_name]: This specifies the name of the table associated with the trigger.

5. [for each row]: This specifies a row-level trigger, i.e., the trigger will be executed for

each row being affected.

6. [trigger_body]: This provides the operation to be performed as trigger is fired

BEFORE and AFTER of Trigger:

BEFORE triggers run the trigger action before the triggering statement is run.

AFTER triggers run the trigger action after the triggering statement is run.

Examples of Triggers in SQL

The trigger called init count initializes a counter variable before every execution of an

INSERT statement that adds tuples to the Students relation. The trigger called incr count

increments the counter for each inserted tuple that satisfies the condition age < 18.

CREATE TRIGGER init count BEFORE INSERT ON Students /* Event */

DECLARE

count INTEGER;

BEGIN

count := 0;

END

/* Action */

CREATE TRIGGER incr count AFTER INSERT ON Students /* Event */

WHEN (new.age< 18) /* Condition; ‘new’ is just-inserted tuple */

FOR EACH ROW

BEGIN /* Action; a procedure in Oracle’s PL/SQL syntax */

80

MRCET-ECE Introduction to DBMS

count := count + 1;

END

(identifying the modified table, Students, and the kind of modifying statement, an

INSERT), and the third field is the number of inserted Students tuples with age < 18. (The

trigger in Figure 5.19 only computes the count; an additional trigger is required to insert the

appropriate tuple into the statistics table.)

CREATE TRIGGER set count AFTER INSERT ON Students /* Event */

REFERENCING NEW TABLE AS InsertedTuples

FOR EACH STATEMENT

INSERT /* Action */

INTO StatisticsTable(ModifiedTable, ModificationType, Count) SELECT

‘Students’, ‘Insert’, COUNT * FROM InsertedTuples I WHERE I.age< 18

MRCET-ECE Introduction to DBMS

81

Unit 4

DEPENDENCE AND NORMAL FORMS

Importance of a good schema design:

What is a Database Schema?
A database schema is a blueprint that represents the tables and relations of a
data set.

It is important to have a good database schema design. The reasons are:
 To avoid data redundancy which wastes memory and leads to data

inconsistency.

 To have correctness and completeness of data.

 To maintain data accuracy and integrity.

 To write simple and easy queries.



Problems that arise with bad database schema is :
 Anomalies occur whenever data is inserted, modified or deleted in case

of large database.

 This makes data integrity harder to maintain.

 Data inconsistency can occur.
 Difficulty to scale the database when future application functionality is

added.

 Performance reduces.

 Maintenance also becomes difficult.

To prevent all these problems one has to normalize the database by efficiently

organizing the data.

Normalization

 Normalization is a process of specifying and defining keys, columns,

relationships in order to create an efficient database.

Objectives of Normalization

 Normalization reduces data redundancy there by reduces the amount of

space used by database and ensures that data is stored efficiently.

 It divides large tables into many smaller tables and makes a relation

between them.

 It reduces cause of anomalies when data is manipulated.

MRCET-ECE Introduction to DBMS

82

Normalization defines rules for the relational table in the form of normal

forms.

MRCET-ECE Introduction to DBMS

83

Normal Form is a process that evaluates each relation against defined rules

and criteria. It removes multi-valued primary keys, joins, functional

dependencies etc., to improve the relational table integrity and efficiency.

Functional Dependency (FD):

 The functional dependency is a relationship that exists between two

attributes.

 It is constraint where one attribute determines the value of another one.

 It plays a vital role to find the difference between good and bad

database design.

 It typically exists between the primary key and non-key attribute within

a table.

For any relation R, attribute Y is functionally dependent on attribute X (usually
the PK), if for every valid instance of X, that value of X uniquely determines the
value of Y. This relationship is indicated by the representation below :

X→Y
 The left side of FD is known as a determinant, the right side of the

production is known as a dependent.

For example:
Assume we have an employee table with attributes: Emp_Id, Emp_Name,
Emp_Address.

 Here Emp_Id attribute can uniquely identify the Emp_Name attribute of
employee table because if we know the Emp_Id, we can tell that
employee name associated with it.

 Functional dependency can be written as:
Emp_Id → Emp_Name

 We can say that Emp_Name is functionally dependent on Emp_Id.

Types of Functional Dependencies:

There are mainly four types of Functional Dependency in DBMS:

 Multivalued Dependency

 Trivial Functional Dependency

 Non-Trivial Functional Dependency

 Transitive Dependency

MRCET-ECE Introduction to DBMS

84

Multivalued Functional Dependency

 Multivalued dependency occurs in the situation where there are
multiple independent multivalued attributes in a single table.

 In Multivalued FD, entities of the dependent set are not dependent on
each other.

In an Emp table empname and salary attributes both depend on empId for

identification. But both are independent to each other.

Emp_Id →{ Emp_Name,sal} is an example of multivalued FD.

Trivial Functional Dependency

In Trivial Functional Dependency, a dependent is always a subset of the

determinant.

i.e. If X → Y and Y is the subset of X, then it is called trivial functional

dependency.

In Emp table {Emp_Id,Emp_Name}→Emp_Name is a trivial FD as Emp_Name

is a subset of {Emp_Id,Emp_Name}.

{Emp_Id,Emp_Name}→Emp_Id is also a trivial FD.

Non-Trivial Functional Dependency

In this FD, the dependent is strictly not a subset of the determinant.

If X → Y then Y is not a subset of X

{Emp_Id,Emp_Name} set can determine the value of Emp_Address or Salary.

But Emp_Address or Salary doesn’t belong to the set or not a subset of

{Emp_Id,Emp_Name}

Hence, {Emp_Id,Emp_Name}→Sal is a non-trivial FD.

{Emp_Id,Emp_Name}→Emp_Address is also a non-trivial FD.

Transitive Functional Dependency
In transitive functional dependency, dependent is indirectly dependent on

determinant. It is formed by two functional dependencies.

MRCET-ECE Introduction to DBMS

85

If A → B and B →C then A → C

If Emp_Id identifies Dept_No of an employee and Dept_No identifies

Dept_Name then Emp_Id can indirectly identify Dept_Name according to

transitive rule.

Emp_Id → Dept_No,
Dept_No → Dept_Name then Emp_Id → Dept_Name

Armstrong’s Axioms for Functional Dependencies

 Armstrong’s Axioms are a set of rules, developed by William

W.Armstrong in 1974.

 It is used to infer all the functional dependencies on a relational

database.

 For a set of functional dependencies F, if these rules are applied

repeatedly, then they generate a closure of FDs denoted as, F+.

Armstrong’s Axioms has mainly two different sets of rules:

1. Primary Rule

2. Secondary Rule

Primary Rule:

1. Axiom of reflexivity –

If A is a set of attributes and B is subset of A, then A holds B.
If B ⊆ A then A -> B This property is trivial property.

e.g. {Emp_Id,Emp_Name}→Emp_Name

2. Axiom of augmentation –
If A holds B and C is an attribute set, then AC also holds BC. That is adding
attributes in dependencies, does not change the basic dependencies.
The augmentation is also called as a partial dependency. In augmentation, if A
determines B, then AC determines BC for any C.

if A -> B then AC -> BC
e.g. if Emp_Id→Emp_Name then

{Emp_Id,Emp_Address}→{Emp_Name,Emp_Adress}

MRCET-ECE Introduction to DBMS

86

3. Axiom of transitivity –

If A holds B and B holds C, then A also holds C. if A determines B and B determine C,

then A must also determine C.

If A → B and B →C then A → C

e.g. if Emp_Id → Dept_No, Dept_No → Dept_Name then
Emp_Id → Dept_Name

Secondary Rule:
These are derived from above axioms.
1. Union –

Union rule says, if A determines B and A determines C, then A must also
determine B and C.
If A holds B and A holds C, then A holds BC.
If A → B and A →C then A → BC

2. Decomposition –
Decomposition rule is also known as project rule. It is the reverse of union
rule. This Rule says, if A determines B and C, then A determines B and A
determines C separately.
If A holds BC and A holds B then A holds C.

If A → BC and A →B then A → C

3. Pseudo Transitivity –
In Pseudo transitive Rule, if A determines B and BC determines D, then AC
determines D.
If A holds B and BC holds D, then AC holds D.
If A → B and BC →D then AC → D

Proof:
if A -> B then AC -> BC (Axiom of augmentation)
If AC → BC and BC →D then AC → D (Axiom of Transitivity)

Closure of Functional Dependencies

 The Closure Of Functional Dependencies means the complete set of all
possible FDs that can be derived from given set of FDs using Armstrong’s
Rules.

 If F is a set of functional dependencies of relation R then a closure set of
FDs implied by F is denoted by F+.

MRCET-ECE Introduction to DBMS

87

 Closure of a set of FDs can be achieved by finding closure of a set of
attributes X.

Example 1

We are given the relation R(A, B, C, D, E). This means that the table R has five
columns: A, B, C, D, and E. We are also given the set of functional
dependencies: {A->B, B->C, C->D, D->E}.

What is {A}+?

 First, we add A to {A}+.
 What columns can be determined given A? We have A -> B, so we can

determine B. Therefore, {A}+ is now {A, B}.
 What columns can be determined given A and B? We have B -> C in the

functional dependencies, so we can determine C. Therefore, {A}+ is now
{A, B, C}.

 Now, we have A, B, and C. What other columns can we determine? Well,
we have C -> D, so we can add D to {A}+.

 Now, we have A, B, C, and D. Can we add anything else to it? Yes, since D
-> E, we can add E to {A}+.

 We have used all of the columns in R and we have all used all functional
dependencies. {A}+ = {A, B, C, D, E}.

Example 2

We have a table Course Editions. The table contains information about editions
of courses taught at a certain university.

Each year, each course can be taught by a different teacher. And each teacher
has a date of birth. With the year and the date of birth, you can determine the
age of the teacher at the time the course was taught.

Course Editions

course year teacher date_of_birth age

Databases 2019 Chris Cape 1974-10-12 45

Mathematics 2019 Daniel Parr 1985-05-17 34

Databases 2020 Jennifer Clock 1990-06-09 30

MRCET-ECE Introduction to DBMS

88

date_of_birth

Here are the functional dependencies in this table:

 course, year -> teacher
o Given the course and year, you can determine the teacher who

taught the course that year.

 teacher -> date_of_birth
o Given a teacher, you can determine the teacher’s date of birth.

 year, date_of_birth -> age
o Given the year and date of birth, you can determine the age of the

teacher at the time the course was taught.

First, consider the closure of a set {year}, denoted {year}+. The first functional
dependency course, year -> teacher requires the course in addition to the year,
so it doesn't add anything to {year}+. The functional dependency year,
date_of_birth -> age requires the date of birth in addition to the year, so it
doesn't add anything to {year}+ either.

So, {year}+ contains only one column, year, that is {year}+ = {year}.

Next, let’s look at {year, teacher}+. Given the year and teacher, what other
columns can we determine?

If we know the teacher, we also know the date of birth because of the

teacher -> functional dependency. So, date_of_birth is also in

{year, teacher}+, and we know three columns: {year, teacher, date_of_birth}.

If we know the year and date of birth, we can also determine the age. Now,
{year, teacher}+ has four columns {year, teacher, date_of_birth, age}.

We have used two of the three functional dependencies. we can’t use the
remaining dependency, course, year -> teacher because we don’t know the
course.

Now that we have used all of the dependencies I can, {year, teacher}+ =
{year, teacher, date_of_birth, age}.

Minimal Covers:
A minimal cover of a set of functional dependencies (FD) E is a minimal set of
dependencies F that is equivalent to E.

MRCET-ECE Introduction to DBMS

89

The formal definition is: A set of FD F to be minimal if it satisfies the following
conditions –

• Every dependency in F has a single attribute for its right-hand side.
• We cannot replace any dependency X->A in F with a dependency Y->A,
where Y is a proper subset of X.

• We cannot remove any dependency from F.
Canonical cover is called minimal cover which is called the minimum set of FDs.
A set of FD FC is called canonical cover of F if each FD in FC is a −

 Simple FD.

 Left reduced FD.

 Non-redundant FD.

Simple FD − X->Y is a simple FD if Y is a single attribute.
Left reduced FD − X->Y is a left reduced FD if there are no extraneous
attributes in X. {extraneous attributes: Let XA->Y then, A is a extraneous
attribute if X_>Y}

Non-redundant FD − X->Y is a Non-redundant FD if it cannot be derived from F-
{X->y}.
Example
Consider an example to find canonical cover of F.
The given functional dependencies are as follows −
A -> BC
B -> C
A -> B
AB -> C

 Minimal cover: The minimal cover is the set of FDs which are equivalent
to the given FDs.

 Canonical cover: In canonical cover, the LHS (Left Hand Side) must be
unique.

First of all, we will find the minimal cover and then the canonical cover.
First step − Convert RHS attribute into singleton attribute.
A -> B
A -> C
B -> C
A -> B
AB -> C
Second step − Remove the extra LHS attribute
Find the closure of A.
A+ = {A, B, C}

MRCET-ECE Introduction to DBMS

90

So, AB -> C can be converted into A -> C
A -> B
A -> C
B -> C
A -> B
A -> C
Third step − Remove the redundant FDs.
A -> B

A -> C
Now, we will convert the above set of FDs into canonical cover.
The canonical cover for the above set of FDs will be as follows −
A -> BC

B -> C

NORMAL FORMS

Given a relation schema, we need to decide whether it is a good design or
whether we need to decompose it into smaller relations. Such a decision must
be guided by an understanding of what problems, if any, arise from the current
schema. To provide such guidance, several normal forms have been proposed.
If a relation schema is in one of these normal forms, we know that certain
kinds of problems cannot arise.

The normal forms based on FDs:
First Normal Form (1NF):

 First Normal Form is defined in the definition of relations (tables) itself.
This rule defines that all the attributes in a relation must have atomic
domains.

 In the first normal form, only single values are permitted at the
intersection of each row and column; hence, there are no repeating
groups.

 To normalize a relation that contains a repeating group, remove the
repeating group and form two new relations.

We re-arrange the relation (table) as below, to convert it to First Normal Form.

MRCET-ECE Introduction to DBMS

91

Second Normal Form (2NF):
Before we learn about the second normal form, we need to understand the
following −

 Prime Key attribute − An attribute, which is a part of the candidate-key,
is known as a prime attribute.

 Non-prime attribute − An attribute, which is not a part of the prime-key,
is said to be a non-prime attribute.

 For the second normal form, the relation must first be in 1NF.
 The relation is automatically in 2NF if, and only if, the Prime Key

comprises a single attribute.

 If the relation has a composite Prime Key, then each non-key attribute
must be fully dependent on the entire PK and not on a subset of the PK.

 A relation is in 2NF if it has No Partial Dependency.
 Partial Dependency – If the proper subset of candidate key determines

non-prime attribute, it is called partial dependency.

We see here in Student_Project relation that the prime key attributes are
Stu_ID and Proj_ID. According to the rule, non-key attributes, i.e. Stu_Name
and Proj_Name must be dependent upon both and not on any of the prime key
attribute individually. But we find that Stu_Name can be identified by Stu_ID
and Proj_Name can be identified by Proj_ID independently. This is called
partial dependency, which is not allowed in Second Normal Form.

MRCET-ECE Introduction to DBMS

92

Third Normal Form (3NF):

To be in third normal form, the relation must be in second normal form. Also
- all transitive dependencies must be removed; a non-key attribute may not be
functionally dependent on another non-key attribute.

For any non-trivial functional dependency, X → A, then either –

 X is a superkey or,

 A is prime attribute.

Transitive dependency – If A->B and B->C are two FDs then A->C is called
transitive dependency.

We find that in the above Student_detail relation, Stu_ID is the key and only
prime key attribute. We find that City can be identified by Stu_ID as well as Zip
itself. Neither Zip is a superkey nor is City a prime attribute. Additionally,
Stu_ID → Zip → City, so there exists transitive dependency.
To bring this relation into third normal form, we break the relation into two

relations as follows –

MRCET-ECE Introduction to DBMS

93

Boyce-Codd Normal Form (BCNF):
Boyce-Codd Normal Form (BCNF) is an extension of Third Normal Form on
strict terms.
A relation is in BCNF iff in every non-trivial functional dependency X –> Y, X is a
super key.
In the above example, Stu_ID is the super-key in the relation Student_Detail
and Zip is the super-key in the relation ZipCodes. So,
Stu_ID → Stu_Name, Zip
and

Zip → City
Which confirms that both the relations are in BCNF.

Example

Consider a relation R with attributes (student, subject, teacher).

Student Teacher Subject

Jhansi P.Naresh Database

Jhansi K.Das C

Subbu P.Naresh Database

Subbu R.Prasad C

F: { (student, Teacher) -> subject

(student, subject) -> Teacher

Teacher -> subject}

Candidate keys are (student, teacher) and (student, subject).

The above relation is in 3NF [since there is no transitive dependency]. A
relation R is in BCNF if for every non-trivial FD X->Y, X must be a key.

The above relation is not in BCNF, because in the FD (teacher->subject),
teacher is not a key.

So R is divided into two relations R1(Teacher, subject) and R2(student,
Teacher).

MRCET-ECE Introduction to DBMS

94

R1

Teacher Subject

P.Naresh database

K.DAS C

R.Prasad C

R2

Student Teacher

Jhansi P.Naresh

Jhansi K.Das

Subbu P.Naresh

Subbu R.Prasad

All the anomalies which were present in R, now removed in the above two
relations.

DECOMPOSITIONS

A decomposition of a relation schema R consists of replacing the relation
schema by two (or more) relation schemas that each contain a subset of the
attributes of R and together include all attributes in R.

When a relation in the relational model is not appropriate normal form then
the decomposition of a relation is required. In a database, breaking down the
table into multiple tables termed as decomposition.

The properties of a relational decomposition are listed below :

1. Attribute Preservation: Using functional dependencies the algorithms
decompose the universal relation schema R in a set of relation schemas D = {
R1, R2, ….. Rn } relational database schema, where ‘D’ is called the
Decomposition of R.

The attributes in R will appear in at least one relation schema Ri in the
decomposition, i.e., no attribute is lost. This is called the Attribute Preservation
condition of decomposition.
2. Dependency Preservation: If each functional dependency X->Y specified in F
appears directly in one of the relation schemas Ri in the decomposition D or
could be inferred from the dependencies that appear in some Ri. This is the
Dependency Preservation.

MRCET-ECE Introduction to DBMS

95

If a relation R is decomposed into relation R1 and R2, then the dependencies of
R either must be a part of R1 or R2 or must be derivable from the combination
of functional dependencies of R1 and R2.

For example, suppose there is a relation R (A, B, C, D) with functional
dependency set (A->BC). The relational R is decomposed into R1(ABC) and
R2(AD) which is dependency preserving because FD A->BC is a part of relation
R1(ABC).

3. Lossless Join Decomposition: Lossless join property is a feature of
decomposition supported by normalization. It is the ability to ensure that any
instance of the original relation can be identified from corresponding instances
in the smaller relations.

For example: R : relation, F : set of functional dependencies on R, X, Y :
decomposition of R, A decomposition {R1, R2, …, Rn} of a relation R is called a
lossless decomposition for R if the natural join of R1, R2, …, Rn produces
exactly the relation R.
The relation is said to be lossless decomposition if natural joins of all the
decomposition give the original relation.

Decomposition is lossless if

R1 𝖴 R2 = R

R1 ∩ R2 ≠ ∅

R1 ∩ R2 = Super key of R1 or R2

1. The union of attributes of both the sub relations R1 and R2 must contain
all the attributes of original relation R.

2. The intersection of attributes of both the sub relations R1 and R2 must
not be null, i.e., there should be some attributes that are present in both
R1 and R2.

3. The intersection of attributes of both the sub relations R1 and R2 must
be the superkey of R1 or R2, or both R1 and R2.

Let’s see an example of a lossless join decomposition. Suppose we have the

following relation EmployeeProjectDetail as:

MRCET-ECE Introduction to DBMS

96

Employee_Code Employee_Name Employee_Email Project_Name Project_ID

101 John john@demo.com Project103 P03

101 John john@demo.com Project101 P01

102 Ryan ryan@example.com Project102 P02

103 Stephanie stephanie@abc.com Project102 P02

Employee_Code Project_ID Employee_Name Employee_Email

101 P03 John john@demo.com

101 P01 John john@demo.com

102 P04 Ryan ryan@example.com

103 P02 Stephanie stephanie@abc.com

Project_ID Project_Name

P03 Project103

P01 Project101

P04 Project104

P02 Project102

Let’s first check the EmployeeProject 𝖴 ProjectDetail:

<Employee Project Detail>

Now, we decompose this relation into EmployeeProject and ProjectDetail relations
as:

<Employee Project>

The primary key of the above relation is {Employee_Code, Project_ID}.

<Project Detail>

The primary key of the above relation is {Project_ID}.

mailto:john@demo.com
mailto:john@demo.com
mailto:ryan@example.com
mailto:stephanie@abc.com
mailto:john@demo.com
mailto:john@demo.com
mailto:ryan@example.com
mailto:stephanie@abc.com

MRCET-ECE Introduction to DBMS

97

<Employee Project 𝖴 Project Detail>

Employee_Code Project_ID Employee_Name Employee_Email Project_Name

101 P03 John john@demo.com Project103

101 P01 John john@demo.com Project101

102 P04 Ryan ryan@example.com Project104

103 P02 Stephanie stephanie@abc.com Project102

As we can see all the attributes of Employee Project and Project Detail are in
Employee Project 𝖴 Project Detail relation and it is the same as the original
relation. So the first condition holds.

Now let’s check the EmployeeProject ∩ ProjectDetail:

<EmployeeProject ∩ ProjectDetail>

Project_ID

P03

P01

P04

P02

As we can see this is not null, so the the second condition holds as well. Also
the EmployeeProject ∩ ProjectDetail = Project_Id. This is the super key of the
ProjectDetail relation, so the third condition holds as well.

Now, since all three conditions hold for our decomposition, this is a lossless
join decomposition.

4. Lack of Data Redundancy

 Lack of Data Redundancy is also known as a Repetition of Information.

 The proper decomposition should not suffer from any data redundancy.
 The lack of data redundancy property may be achieved by Normalization

process.

mailto:john@demo.com
mailto:john@demo.com
mailto:ryan@example.com
mailto:stephanie@abc.com

MRCET-ECE Introduction to DBMS

98

Unit 5
TRANSACTIONS

Transaction concept:

 Transaction refers to a collection of operations that form a single logical
unit of work. For instance, transfer of money from one account to
another is a transaction consisting of two updates, one to each account.

 A transaction includes one or more database access operations—these
can include insertion, deletion, modification (update), or retrieval
operations.

 One way of specifying the transaction boundaries is by specifying explicit
begin transaction and end transaction statements in an application
program.

 If the database operations in a transaction do not update the database
but only retrieve data, the transaction is called a read-only transaction;
otherwise it is known as a read-write transaction.

 The transactions bring the database from an image which existed before
the transaction occurred (called the Before Image or BFIM) to an image
which exists after the transaction occurred (called the After Image or
AFIM).

Transaction States:

There are the following six states in which a transaction may exist:



 Active: The initial state when the transaction has just started execution.
 Partially Committed: At any given point of time if the transaction is

executing properly, then it is going towards it COMMIT POINT. The
values generated during the execution are all stored in volatile storage.

 Failed: If the transaction fails for some reason. The temporary values are
no longer

 Aborted: When the ROLLBACK operation is over, the database reaches
the BFIM. The transaction is now said to have been aborted.

 Committed: If no failure occurs then the transaction reaches the
COMMIT POINT. All the temporary values are written to the stable
storage and the transaction is said to have been committed.

 Terminated: Either committed or aborted required, and the transaction
is set to ROLLBACK.

MRCET-ECE Introduction to DBMS

99

System Log

 The system maintains a log to keep track of all transaction operations that
affect the values of database items, as well as other transaction
information that may be needed to permit recovery from failures.

 The log is a sequential, append-only file that is kept on disk, so it is not
affected by any type of failure except for disk or catastrophic failure.

 The log file from disk is periodically backed up to archival storage (tape) to
guard against catastrophic failures.

Commit Point:

 A transaction T reaches its commit point when all its operations that
access the database have been executed successfully and the effect of
all the transaction operations on the database have been recorded in
the log.

 Beyond the commit point, the transaction is said to be committed, and
its effect must be permanently recorded in the database.





Properties of Transactions

These properties are often called the ACID properties; the acronym is derived
from the first letter of each of the four properties.

Atomicity: A transaction is an atomic unit of processing; it should either be

performed in its entirety or not performed at all.

MRCET-ECE Introduction to DBMS

100

Consistency :A transaction should be consistency preserving, meaning that if it
is completely executed from beginning to end without interference from other
transactions, it should take the database from one consistent state to another.
Execution of a transaction in isolation (that is, with no other transaction
executing concurrently) preserves the consistency of the database.

Isolation : A transaction should appear as though it is being executed in
isolation from other transactions, even though many transactions are
executing concurrently. That is, the execution of a transaction should not be
interfered with by any other transactions executing concurrently.

Durability :The changes applied to the database by a committed transaction
must persist in the database. These changes must not be lost because of any
failure.

Concurrent Execution

Schedule: A schedule for a set of transactions must consist of all instructions of
those transactions, and must preserve the order in which the instructions
appear in each individual transaction.
They represent the chronological order in which instructions are executed in the
system. Depending upon how these transactions are arranged in within a
schedule, a schedule can be of two types:

1.Serial: The transactions are executed one after another, in a non-
preemptive manner.

2.Concurrent: The transactions are executed in a preemptive, time shared
method.

Serial:- Each serial schedule consists of a sequence of instructions from
various transactions, where the instructions belonging to one single
transaction appear together in that schedule.

 In Serial schedule, there is no question of sharing a single data item
among many transactions, because not more than a single transaction is
executing at any point of time.

 However, a serial schedule is inefficient in the sense that the
transactions suffer for having a longer waiting time and response time,
as well as low amount of resource utilization.

Concurrent: In concurrent schedule, CPU time is shared among two or more

MRCET-ECE Introduction to DBMS

101

transactions in order to run them concurrently.

MRCET-ECE Introduction to DBMS

102

 If two transactions are running concurrently, the operating system may
execute one transaction for a little while, then perform a context switch,
execute the second transaction for some time, and then switch back to
the first transaction for some time, and so on.

Let us consider there are two transactions T1 and T2, whose instruction sets
are given as following.

T1
Read A;
A = A – 100;
Write A;
Read B;
B = B + 100;
Write B;
T2

Read A;
Temp = A * 0.1;
Read C;
C = C + Temp;
Write C;

 T2 is a new transaction which deposits to account C 10% of the amount
in account A.

If we prepare a serial schedule, then either T1 will completely finish before T2
can begin, or T2 will completely finish before T1 can begin.

 However, if we want to create a concurrent schedule, then some
Context Switching need to be made, so that some portion of T1 will be
executed, then some portion of T2 will be executed and so on.

For example say we have prepared the following concurrent schedule.

MRCET-ECE Introduction to DBMS

103

 T1 first deducts Rs 100/- from A and writes the new value of Rs 900/-
into A. T2 reads the value of A, calculates the value of Temp to be Rs
90/- and adds the value to C. The remaining part of T1 is executed and
Rs 100/- is added to B.

 If control of concurrent execution is left entirely to the operating system,
many possible schedules, they may leave the database in an inconsistent
state.

 It is the job of the database system to ensure that any schedule that is
executed will leave the database in a consistent state. The concurrency-
control component of the database system carries out this task.

 We can ensure consistency of the database under concurrent execution
by making sure that any schedule that is executed has the same effect as
equivalent to a serial schedule. Such schedules are called serializable
schedules.

Serializability:
When several concurrent transactions are trying to access the same data item,
the instructions within these concurrent transactions must be ordered in some
way so as there are no problem in accessing and releasing the shared data item.
There are two aspects of serializability which are described here:

Conflict Serializability:

 Conflict Serializability deals with detecting whether the instructions are
conflicting in any way, and specifying the order in which these two
instructions will be executed in case there is any conflict.

 A conflict arises if at least one (or both) of the instructions is a write
operation.

The following rules are important in Conflict Serializability:
1. If two instructions of the two concurrent transactions are both for read

operation, then they are not in conflict, and can be allowed to take
place in any order.

2. If one of the instructions wants to perform a read operation and the
other instruction wants to perform a write operation, then they are in
conflict, hence their ordering is important. If the read instruction is
performed first, then it reads the old value of the data item and after
the reading is over, the new value of the data item is written. It the
write instruction is performed first, then updates the data item with the
new value and the read instruction reads the newly updated value.

3. If both the transactions are for write operation, then they are in conflict
but can be allowed to take place in any order, because the transaction

MRCET-ECE Introduction to DBMS

104

do not read the value updated by each other. However, the value that
persists in the data item after the schedule is over is the one written by
the instruction that performed the last write.

View Serializability:

 This is another type of serializability that can be derived by creating
another schedule out of an existing schedule, involving the same set of
transactions.

 The idea behind view serializability is that, as long as each read
operation of a transaction reads the result of the same write operation
in both schedules, the write operations of each transaction must
produce the same results. The read operations are hence said to see the
same view in both schedules. The final write operation on each data
item is the same in both schedules, so the database state should be the
same at the end of both schedules.

 View serializability is not used in practice due to its high degree of
computational complexity.

Testing for serializability

 A precedence graph (or serialization graph) is used to test a schedule
for conflict serializability.

 It is a directed graph G = (V, E) that consists of a set of nodes /vertices V
= {T1, T2, … , Tn } and a set of directed edges E = {e1, e2, … , em }. There
is one node in the graph for each transaction Ti in the schedule. Each
edge ei in the graph is of the form (Tj Tk , where Tj is the starting node
of ei and Tk is the ending node of ei.

 An edge ei is constructed between nodes Tj to Tk if one of the
operations in Tj appears in the schedule before some conflicting
operation in Tk .

The Algorithm can be written as:

1. Create a node T in the graph for each participating transaction in the
schedule.

2. If a Transaction Tj executes a read_item (X) after Ti executes a write_item
(X), draw an edge from Ti to Tj in the graph.

3. If a Transaction Tj executes a write_item (X) after Ti executes a read_item
(X), draw an edge from Ti to Tj in the graph.

4. If a Transaction Tj executes a write_item (X) after Ti executes a
write_item (X), draw an edge from Ti to Tj in the graph.

5. The Schedule S is serializable if there is no cycle in the precedence

MRCET-ECE Introduction to DBMS

105

graph.

MRCET-ECE Introduction to DBMS

106

If there is no cycle in the precedence graph, it means we can construct a
serial schedule S’ which is conflict equivalent to schedule S.
Schedule S:

Time Transaction T1 Transaction T2

t1 Read(A)

t2 Read(A)

t3 Write(A)

t4 A=A+50

t5 Write(A)

Precedence graph of Schedule S

The precedence graph contains a cycle, that’s why schedule S is non-
serializable.
Schedule S2:

Time Transaction T1 Transaction T2 Transaction T3

t1 Read(A)

t2 Read(B)

t3 Write(A)

t4 Write(B)

t5 Read(A)

t6 Write(A)

MRCET-ECE Introduction to DBMS

107

The graph for this schedule is :

Since the graph is acyclic, the schedule is conflict serializable.

 If precedence graph is acyclic, the serializability order can be obtained by
a topological sorting of the graph.

 A serializability order of the transactions can be obtained by finding a
linear order consistent with the partial order of the precedence graph.

Recoverability

 For some schedules it is easy to recover from transaction and system
failures, whereas for other schedules the recovery process can be quite
involved. In some cases, it is even not possible to recover correctly after
a failure. Hence, it is important to characterize the types of schedules for
which recovery is possible, as well as those for which recovery is
relatively simple.

 Sometimes a transaction may not execute completely due to a software
issue, system crash or hardware failure. In that case, the failed
transaction has to be rollback.

 But some other transaction may also have used value produced by the
failed transaction. So we also have to rollback those transactions.

MRCET-ECE Introduction to DBMS

108

 A schedule where a committed transaction may have to be rolled back
during recovery is called nonrecoverable schedule.

 The above table 1 shows a schedule which has two transactions. T1
reads and writes the value of A and that value is read and written by T2.
T2 commits but later on, T1 fails. Due to the failure, we have to rollback
T1. T2 should also be rollback because it reads the value written by T1,
but T2 can't be rollback because it already committed. So this type of
schedule is known as irrecoverable schedule.

 Schedules in which a transaction commits only after all transactions
whose changes it reads commit are called recoverable schedules.

 The commit operation of the transaction performing read operation is
delayed until the transactions performing write operations commit.

CASCADING ROLLBACKS

 A single transaction failure leads to a series of transaction rollbacks.

 Consider the following schedule where none of the transactions has yet
committed (so the schedule is recoverable) If T10 fails, T11 and T12
must also be rolled back.

 Can lead to the undoing of a significant amount of work.

Cascadeless Schedules: When a transaction is not allowed to read data until

the last transaction that has written is committed or aborted. Such schedules

are called cascadeless schedules.

TRANSACTION DEFINITION IN SQL
A transaction can be executed implicitly or explicitly.
Following commands are used to control transactions:
1. BEGIN TRANSACTION: It indicates the start point of an explicit or local
transaction.

Syntax:
BEGIN TRANSACTION transaction_name ;

MRCET-ECE Introduction to DBMS

109

2. SET TRANSACTION: Places a name on a transaction.
Syntax:

SET TRANSACTION [READ WRITE | READ ONLY];

3. COMMIT: If everything is in order with all statements within a single
transaction, all changes are recorded together in the database is
called committed. The COMMIT command saves all the transactions to the
database since the last COMMIT or ROLLBACK command.

Syntax:
COMMIT;

4. ROLLBACK: If any error occurs with any of the SQL grouped statements, all
changes need to be aborted. The process of reversing changes is
called rollback. This command can only be used to undo transactions since
the last COMMIT or ROLLBACK command was issued.
Syntax:

ROLLBACK;

5. SAVEPOINT: creates points within the groups of transactions in which to
ROLLBACK.
A SAVEPOINT is a point in a transaction in which you can roll the transaction
back to a certain point without rolling back the entire transaction.

Syntax for Savepoint command:
SAVEPOINT SAVEPOINT_NAME;
ROLLBACK TO SAVEPOINT_NAME;

6. RELEASE SAVEPOINT:- This command is used to remove a SAVEPOINT that
you have created.

Syntax:
RELEASE SAVEPOINT SAVEPOINT_NAME

Once a SAVEPOINT has been released, you can no longer use the ROLLBACK
command to undo transactions performed since the last SAVEPOINT.

Implementation of Isolation Levels
 Isolation Levels define the degree to which a transaction can be isolated

from data modifications made by other transactions.

Transaction isolation levels are defined from following phenomena:

MRCET-ECE Introduction to DBMS

110

Dirty Read – A Dirty read is a situation when a transaction reads data that
has not yet been committed.
Non Repeatable read – Non Repeatable read occurs when a transaction
reads the same row twice and gets a different value each time. For example,
suppose transaction T1 reads data. Due to concurrency, another transaction
T2 updates the same data and commit, Now if transaction T1 rereads the
same data, it will retrieve a different value.
Phantom Read – Phantom Read occurs when two same queries with same
search criterion are executed, but the rows retrieved by the two, are
different.

Based on these phenomena, The SQL standard defines four isolation levels :

1. Read Uncommitted – Read Uncommitted is the lowest isolation level.
In this level, one transaction may read not yet committed changes
made by other transactions, thereby allowing dirty reads.

2. Read Committed – This isolation level guarantees that any data read is
committed at the moment it is read. Thus it does not allow dirty read.
The transaction holds a read or write lock on the current row, and thus
prevents other transactions from reading, updating, or deleting it.

3. Repeatable Read – This is the most restrictive isolation level. The
transaction holds read and write locks on all rows it references. Since
other transactions cannot read, update or delete these rows,
consequently it avoids non-repeatable read.

4. Serializable – This is the highest isolation level. In this level concurrently
executing transactions appears to be serially executing. This level avoids
phantom reads by acquiring range locks on the search criterion apart
from read and write locks.

Concurrency Control Protocols:
Different concurrency control protocols offer different benefits for achieving
serializability and isolation of transactions. They are:

 Lock-Based Protocols

 Timestamp-Based Protocols

 Validation-Based Protocols

Lock-based Protocols

Lock Based Protocols in DBMS is a mechanism in which a transaction cannot
Read or Write the data until it acquires an appropriate lock. Lock based

MRCET-ECE Introduction to DBMS

111

protocols help to eliminate the concurrency problem in DBMS for
simultaneous transactions by locking or isolating a particular transaction to a
single user.

A data item can be locked in two modes:
1. Shared(S) lock: It is also known as a Read-only lock. In a shared lock, the
data item can only read by the transaction.

o It can be shared between the transactions because when the transaction
holds a lock, then it can't update the data on the data item.

2. Exclusive(X) lock:

o In the exclusive lock, the data item can be both reads as well as written
by the transaction.

o This lock is exclusive, and in this lock, multiple transactions do not
modify the same data simultaneously.

o A locking protocol is a set of rules followed by all transactions while
requesting and releasing locks.

Consider the partial schedule

o Neither T3 nor T4 can make progress — executing lock-S(B) causes T4 to
wait for T3 to release its lock on B, while executing lock-X(A) causes T3
to wait for T4 to release its lock on A. Such a situation is called a
deadlock.

o To handle a deadlock one of T3 or T4 must be rolled back and its locks
released.

THE TWO-PHASE LOCKING PROTOCOL

 This is a protocol which ensures conflict-serializable schedules.
This protocol requires that each transaction issue lock and unlock requests in
two phases:
1. Growing phase. A transaction may obtain locks, but may not release any
lock.
2. Shrinking phase. A transaction may release locks, but may not obtain any
new locks.

MRCET-ECE Introduction to DBMS

112

 Initially, a transaction is in the growing phase. The transaction acquires
locks as needed.

 Once the transaction releases a lock, it enters the shrinking phase, and it
can issue no more lock requests.

 Transactions can be ordered according to their lock points—The point in
the schedule where the transaction has obtained its final lock.

 Cascading rollback may occur under two-phase locking. can be avoided
by a modification of two-phase locking called the strict two-phase
locking protocol.

 This protocol requires not only that locking be two phase, but also that
all exclusive-mode locks taken by a transaction be held until that
transaction commits.

 This requirement ensures that any data written by an uncommitted
transaction are locked in exclusive mode until the transaction commits,
preventing any other transaction from reading the data.

 Another variant of two-phase locking is the rigorous two-phase locking
protocol, which requires that all locks be held until the transaction
commits.

TIMESTAMP-BASED PROTOCOLS
Another method for determining the serializability order is to select an
ordering among transactions in advance. The most common method for doing
so is to use a timestamp-ordering scheme.

 Each transaction is issued a unique timestamp, TS(Ti) when it enters the
system.

 This timestamp is assigned by the database system before the
transaction Ti starts execution. If a transaction Ti has been assigned
timestamp TS(Ti), and a new transaction Tj enters the system, then
TS(Ti) < TS(Tj).

There are two simple methods for implementing this scheme:
1. Use the value of the system clock as the timestamp; that is, a transaction’s
timestamp is equal to the value of the clock when the transaction enters the
system.
2. Use a logical counter that is incremented after a new timestamp has been
assigned; that is, a transaction’s timestamp is equal to the value of the
counter when the transaction enters the system.

To implement this scheme, we associate with each data item Q two timestamp
values:

MRCET-ECE Introduction to DBMS

113

• W-timestamp(Q) denotes the largest timestamp of any transaction that
executed write(Q) successfully.
• R-timestamp(Q) denotes the largest timestamp of any transaction that
executed read(Q) successfully.
These timestamps are updated whenever a new read(Q) or write(Q)
instruction is executed.

The timestamp-ordering protocol ensures that any conflicting read and write
operations are executed in timestamp order.
This protocol operates as follows:
1. Suppose that transaction Ti issues read(Q):
a. If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q that was
already overwritten. Hence, the read operation is rejected, and Ti is rolled
back.
b. If TS(Ti) ≥ W-timestamp(Q), then the read operation is executed, and
R- timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(Ti).

2. Suppose that transaction Ti issues write(Q):
a. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was
needed previously, and the system assumed that that value would never be
produced. Hence, the system rejects the write operation and rolls Ti back.
b. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value
of Q. Hence, the system rejects this write operation and rolls Ti back.
c. Otherwise, the system executes the write operation and sets W-
timestamp(Q) to TS(Ti).

 If a transaction Ti is rolled back by the concurrency-control scheme as
result of issuance of either a read or write operation, the system assigns
it a new timestamp and restarts it.

The modification to the timestamp-ordering protocol, called Thomas’ write
rule, is this: Suppose that transaction Ti issues write(Q).

 If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete
value of Q. Hence, this write operation can be ignored.

VALIDATION-BASED PROTOCOL
The validation protocol requires that each transaction Ti executes in two or
three different phases in its lifetime, depending on whether it is a read-only or
an update transaction. The phases are, in order:
1. Read phase. During this phase, the system executes transaction Ti. It reads
the values of the various data items and stores them in variables local to Ti. It

MRCET-ECE Introduction to DBMS

114

performs all write operations on temporary local variables, without updates of
the actual database.
2. Validation phase. The validation test (described below) is applied to
transaction Ti . This determines whether Ti is allowed to proceed to the write
phase without causing a violation of serializability. If a transaction fails the
validation test, the system aborts the transaction.
3. Write phase. If the validation test succeeds for transaction Ti, the temporary
local variables that hold the results of any write operations performed by Ti are
copied to the database. Read-only transactions omit this phase.

To perform the validation test, we need to know when the various phases of
transactions took place. We shall, therefore, associate three different
timestamps with each transaction Ti :

1. Start(Ti), the time when Ti started its execution.
2. Validation(Ti), the time when Ti finished its read phase and started its
validation phase.

3. Finish(Ti), the time when Ti finished its write phase.

 The serializability order is determined by the timestamp-ordering
technique, using the value of the timestamp Validation(Ti).

 Thus, the value TS(Ti) = Validation(Ti) and, if TS(Tj) < TS(Tk), then any
produced schedule must be equivalent to a serial schedule in which
transaction Tj appears before transaction Tk.

The validation test for transaction Ti requires that, for all transactions Tk with
TS(Tk) < TS(Ti), one of the following two conditions must hold:

1. Finish(Tk) < Start(Ti). Since Tk completes its execution before Ti started, the
serializability order is indeed maintained.
2. The set of data itemswritten by Tk does not intersectwith the set of data
items read by Ti, and Tk completes its write phase before Ti starts its validation
phase (Start(Ti) < Finish(Tk) < Validation(Ti)). This condition ensures that the
writes of Tk and Ti do not overlap.

This validation scheme is called the optimistic concurrency-control scheme
since transactions execute optimistically, assuming they will be able to finish
execution and validate at the end.

	MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
	3/-/-/3
	UNIT I:
	UNIT II:
	UNIT III:
	UNIT IV :
	UNIT V:
	TEXT BOOKS:
	REFERENCE BOOKS:
	COURSE OUTCOMES:

	Data:
	Example:
	Information: Processed data.
	Database:
	Database Management System:
	File Processing System:
	Disadvantages of File Processing System:
	 Difficulty in accessing data:
	 Integrity problems:
	 Atomicity problems:
	 Concurrent-access anomalies.
	 Security problems.
	Advantages of DBMS:
	 Data Integrity:
	 Security:
	 Data Consistency :
	 Data Independence :
	Disadvantages of DBMS
	Instances and Schemas:
	Data Models:
	Relational Model:
	Entity-Relationship Model:
	Object-Based Data Model:
	Semistructured Data Model:
	History of DBMS:
	Database Architecture:
	Types of DBMS Architecture:
	 1- Tier Architecture (Single Tier Architecture)
	 3 - Tier Architecture
	1-Tier Architecture:
	2- Tier Architecture:
	3- Tier Architecture:
	Three schema Architecture of Database:
	Fig: Three schema Architecture
	Internal schema:
	Conceptual schema:
	External schema:
	Functional Components of Database:
	Hardware
	Software
	Procedures:
	Data:
	Users:
	Database Languages:
	Data Definition Language (DDL)
	Data Manipulation Language (DML)
	Data Control Language (DCL)
	Transaction Control Language (TCL)
	Sophisticated Users:
	Specialized Users:

	Entity Relationship Model (ER-Model):
	Entity:
	Attributes:
	1. Simple attribute :
	2. Composite attribute :
	3. Single-valued attribute :
	4. Multi-valued attribute :
	5. Derived attribute :
	Domain of Attributes
	RELATIONSHIPS:
	Degree of a Relationship:

	KEYS:
	Design Constraints in ER Model Participation Constraints:
	Cardinality Constraint:
	Key Constraints:
	identifying relationship.

	Relational Model:
	Advantages of using the relational model:
	Disadvantages of using the relational model

	What is SQL?
	Why to Use SQL?
	History of SQL
	Types of SQL
	What is DDL?
	(ii) Creating Table Syntax:
	2. ALTER Command
	Syntax:
	SQL Server / MS Access:
	Example 1: Modifying single Column
	Oracle 10G and later:
	Example
	TRUNCATE:
	Syntax: (1)
	Example:
	What is Data Manipulation Language?
	Syntax: (2)
	UPDATE:
	Syntax: (3)
	DELETE:
	Syntax: (4)
	For example:
	Examples of DCL commands:
	Grant:
	Syntax: (5)
	For example: (1)
	Revoke:
	Syntax: (6)
	For example: (2)
	What is TCL?
	Syntax: (7)
	For example: (3)
	Syntax: (8)
	Example: (1)
	Syntax: (9)
	Example: (2)
	What is DQL?
	SELECT:
	Syntax: (10)
	TCL Commands in SQL- Transaction Control Language Examples
	TCL Commands
	Syntax: (11)
	2. Rollback
	Syntax: (12)
	= ‘Meena’; ROLLBACK;
	3. Savepoint
	savepointsavepoint-name;
	Use some SQL queries on the above table and then watch the results
	SQL Set Operations
	UNION
	Syntax of UNION:
	sales2006
	INTERSECT
	Syntax of INTERSECT
	Employee_details1:
	EXCEPT
	Joins
	SQL JOINS: EQUI JOIN and NON EQUI JOIN
	1) SQL EQUI JOIN:
	2) SQL NON EQUI JOIN :
	1. SQL INNER JOIN
	2. SQL OUTER JOIN
	Syntax: (13)
	Pictorial Presentation of SQL Joins:
	Table name- Student:
	EQUI JOIN :
	Syntax :
	Example –
	Output :
	Syntax: (14)
	Example – (1)
	Output : (1)
	Correlated Subqueries
	NoncorrelatedSubqueries
	Aggregate functions:
	Various Aggregate Functions:
	Count():
	Sum():
	Avg():
	Min():
	Aggregate Functions and NULL Values
	INTRODUCTION TO VIEWS
	Sample Tables:
	Syntax: (15)
	Output:
	Output: (1)
	Syntax: (16)
	UPDATING VIEWS
	Syntax: (17)
	Output: (2)
	Example: (3)
	Output: (3)
	Example: (4)
	Output: (4)
	Syntax: (18)
	Explanation of syntax:
	BEFORE and AFTER of Trigger:
	Examples of Triggers in SQL
	Importance of a good schema design:
	What is a Database Schema?
	Normalization
	Objectives of Normalization
	Functional Dependency (FD):
	For example:
	Types of Functional Dependencies:
	 Multivalued Dependency
	 Non-Trivial Functional Dependency
	Multivalued Functional Dependency
	Trivial Functional Dependency
	Non-Trivial Functional Dependency
	Transitive Functional Dependency
	Armstrong’s Axioms for Functional Dependencies
	Primary Rule:
	2. Axiom of augmentation –
	3. Axiom of transitivity –
	Secondary Rule:
	1. Union –
	2. Decomposition –
	3. Pseudo Transitivity –
	Proof:

	Closure of Functional Dependencies
	Example 1
	Example 2
	Course Editions
	Minimal Covers:
	NORMAL FORMS
	First Normal Form (1NF):
	Second Normal Form (2NF):
	Third Normal Form (3NF):
	Boyce-Codd Normal Form (BCNF):
	Example

	DECOMPOSITIONS
	Decomposition is lossless if
	R1 ∩ R2 ≠ ∅
	Let’s first check the EmployeeProject 𝖴 ProjectDetail:
	Now let’s check the EmployeeProject ∩ ProjectDetail:
	4. Lack of Data Redundancy

	Transaction concept:
	Transaction States:
	Commit Point:
	Properties of Transactions
	Concurrent Execution
	Serializability:
	When several concurrent transactions are trying to access the same data item, the instructions within these concurrent transactions must be ordered in some way so as there are no problem in accessing and releasing the shared data item.
	Conflict Serializability:
	View Serializability:
	5. The Schedule S is serializable if there is no cycle in the precedence graph.
	Schedule S:
	Schedule S2:
	TRANSACTION DEFINITION IN SQL
	Syntax:
	Syntax: (1)
	Syntax: (2)
	Syntax: (3)
	Syntax for Savepoint command:
	Syntax: (4)
	Implementation of Isolation Levels
	Concurrency Control Protocols:
	Different concurrency control protocols offer different benefits for achieving serializability and isolation of transactions. They are:
	Lock-based Protocols
	2. Exclusive(X) lock:
	THE TWO-PHASE LOCKING PROTOCOL

	TIMESTAMP-BASED PROTOCOLS
	1. Suppose that transaction Ti issues read(Q):
	2. Suppose that transaction Ti issues write(Q):

	VALIDATION-BASED PROTOCOL

