
MICROPROCESSORS & MICROCONTROLLERS

LECTURE NOTES

B.TECH

(III YEAR – II SEM)

(2022-23)

Prepared by:

Mr. KDK Ajay, Asst. Professor

Department of Electronics and Communication Engineering

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956
(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015

Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India

B.Tech – Electronics and Communication Engineering (ECE) R - 20

Malla Reddy College of Engineering and Technology (Autonomous)

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
III Year B.Tech. ECE-II Sem L T/P/D C

5 -/ - /- 4
(R20A0414) MICROPROCESSORS AND MICROCONTROLLERS

OBJECTIVES:
1. To understand the basics of microprocessors and microcontrollers architectures and its

functionalities
2. To develop an in-depth understanding of the operation of microprocessors and

microcontrollers, machine language programming & interfacing techniques.
3. To design and develop Microprocessor/ microcontroller based systems for real time

applications using low level language like ALP.

UNIT -I:
8086 Architecture: Architecture of 8086, Register Organization, Programming Model, Memory
Segmentation, Physical Memory Organization, Signal descriptions of 8086- Common Function
Signals, Minimum and Maximum mode signals, Timing diagrams.
UNIT -II:
Instruction Set and Assembly Language Programming of 8086: Addressing modes, Instruction
Set, Assembler Directives, Procedures, Macros, and Simple Programs involving Logical, Branch and
Call Instructions, Sorting, Evaluating Arithmetic Expressions, String Manipulations.
UNIT -III:
I/O Interface: 8255 PPI, Various Modes of Operation and Interfacing to 8086, D/A and A/D
Converter, Stepper motor, Interfacing of DMA controller 8257 ,Memory Interfacing to 8086,
Interrupt Structure of 8086, Interrupt Vector Table, Interrupt Service Routine.
Communication Interface: Serial Communication Standards, Serial Data Transfer Schemes, 8251
USART Architecture and Interfacing.
UNIT -IV:
Introduction to Microcontrollers: Overview of 8051 Microcontroller, Architecture, I/O Ports,
Memory Organization, Addressing Modes and Instruction set of 8051, Simple Programs, memory
interfacing to 8051
UNIT -V:
8051 Real Time Control: Programming Timer Interrupts, Programming External Hardware
Interrupts, Programming the Serial Communication Interrupts, Programming 8051 Timers and
Counters.

ARM Processor : Fundamentals, Registers, current program status register, pipeline concept.

TEXT BOOKS:
1. D. V. Hall, Microprocessors and Interfacing, TMGH, 2nd Edition 2006.
2. Kenneth. J. Ayala, The 8051 Microcontroller, 3rd Ed., Cengage Learning.
3. ARM System Developer’s Guide: Designing and Optimizing System Software- Andrew N.

Sloss, Dominic Symes, Chris Wright, Elsevier Inc., 2007

B.Tech – Electronics and Communication Engineering (ECE) R - 20

Malla Reddy College of Engineering and Technology (Autonomous)

REFERENCE BOOKS:
1. Advanced Microprocessors and Peripherals – A. K. Ray and K.M. Bhurchandani, TMH, 2nd

Edition 2006.
2. The 8051Microcontrollers, Architecture and Programming and Applications -K.Uma Rao,

Andhe Pallavi, Pearson, 2009.
3. Micro Computer System 8086/8088 Family Architecture, Programming and Design - Liu

and GA Gibson, PHI, 2nd Ed.
4. Microcontrollers and Application - Ajay. V. Deshmukh, TMGH, 2005.

OUTCOMES:
After going through this course the student will be able to

1. The student will learn the internal organization of popular 8086/8051
microprocessors/microcontrollers.

2. The student will learn how to interface peripherals to microprocessors/microcontrollers.
3. The students will learn the design of microprocessors/microcontrollers-based systems

UNIT -I
8086 Architecture

 Architecture of 8086

 Register Organization

 Programming Model

 Memory addresses

 Memory Segmentation

 Physical Memory Organization

 Signal descriptions of 8086- Common Function Signals

 Minimum and Maximum mode signals

 Timing diagrams

UNIT-I

8086 Architecture
Introduction to Microprocessors

A microprocessor is a computer processor which incorporates the
functions of a computer's central processing unit (CPU) on a
single integrated circuit (IC), or at most a few integrated circuits

The microprocessor is a multipurpose, clock driven, register based,
digital-integrated circuit which accepts binary data as input, processes it
according to instructions stored in its memory, and provides results as
output. Microprocessors contain both combinational logic and sequential
digital logic. Microprocessors operate on numbers and symbols represented
in the binary numeral system.

Generation of Microprocessors:
 INTEL 4004 (1971)

 4-bit microprocessor

 4 KB main memory

 45 instructions

 PMOS technology

 was first programmable device which was used in calculators

 INTEL 8008 (1972)

 8-bit version of 4004

 16 KB main memory

 48 instructions

 PMOS technology

 Slow

 Intel 8080 (1973)

 8-bit microprocessor
 64 KB main memory
 2 microseconds clock cycle time
 500,000 instructions/sec
 10X faster than 8008
 NMOS technology
 Drawback was that it needed three power supplies.

https://en.wikipedia.org/wiki/Computer_processor
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Clock_signal
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Binary_code
https://en.wikipedia.org/wiki/Instruction_(computing)
https://en.wikipedia.org/wiki/Memory_(computing)
https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/Sequential_logic
https://en.wikipedia.org/wiki/Sequential_logic
https://en.wikipedia.org/wiki/Binary_numeral_system

 Small computers (Microcomputers) were designed in mid
1970’s
Using 8080 as CPU.

 INTEL 8086/8088

Year of introduction 1978 for 8086 and 1979 for 8088
 16-bit microprocessors
 Data bus width of 8086 is 16 bit and 8 bit for 8088
 1 MB main memory
 400 nanoseconds clock cycle time
 6 byte instruction cache for 8086 and 4 byte for 8088
 Other improvements included more registers and additional

instructions
 In 1981 IBM decided to use 8088 in its personal computer

 INTEL 80186 (1982)

 16-bit microprocessor-upgraded version of 8086
 1 MB main memory
 Contained special hardware like programmable counters,

interrupt controller etc.
 Never used in the PC
 But was ideal for systems that required a minimum of

hardware .
 INTEL 80286 (1983)

 16-bit high performance microprocessor with memory
management & protection

 16 MB main memory
 Few additional instructions to handle extra 15 MB
 Instruction execution time is as little as 250 ns
 Concentrates on the features needed to implement

MULTITASKING

 Intel 80386 (1986)
 Intel 80486 (1989)
 Pentium (1993)

 Pentium pro(1995)

 Pentium ii (1997)

 Pentium iii (1999)

 Pentium iv (2002)

 Latest is Intel i9 processor

General Architecture of Microprocessors

Buses

Register Organization of 8086

8086 has a powerful set of registers containing general purpose and
special purpose registers. All the registers of 8086 are 16-bit registers. The
general purpose registers, can be used either 8-bit registers or 16-bit
registers. The general purpose registers are either used for holding the data,
variables and intermediate results temporarily or for other purpose like
counter or for storing offset address for some particular addressing modes
etc. The special purpose registers are used as segment registers, pointers,
index registers or as offset storage registers for particular addressing
modes. Fig 1.4 shows register organization of 8086. We will categorize the
register set into four groups as follows:

General data Registers:

The registers AX, BX, CX, and DX are the general 16-bit registers.

AX Register: Accumulator register consists of two 8-bit registers AL and AH,
which can be combined together and used as a 16- bit register AX. AL in this
case contains the low-order byte of the word, and AH contains the high-
order byte. Accumulator can be used for I/O operations, rotate and string
manipulation.

BX Register: This register is mainly used as a base register. It holds the
starting base location of a memory region within a data segment. It is used
as offset storage for forming physical address in case of certain addressing
mode.

CX Register: It is used as default counter or count register in case of string
and loop instructions.

DX Register: Data register can be used as a port number in I/O operations
and implicit operand or destination in case of few instructions. In integer
32-bit multiply and divide instruction the DX register contains high-order
word of the initial or resulting number.

Segment registers:

To complete 1Mbyte memory is divided into 16 logical segments. The
complete 1Mbyte memory segmentation is as shown in fig 1.5. Each

segment contains 64Kbyte of memory. There are four segment registers.

Code segment (CS) is a 16-bit register containing address of 64 KB segment
with processor instructions. The processor uses CS segment for all accesses
to instructions referenced by instruction pointer (IP) register. CS register
cannot be changed directly. The CS register is automatically updated during
far jump, far call and far return instructions. It is used for addressing a
memory location in the code segment of the memory, where the
executable program is stored.

Stack segment (SS) is a 16-bit register containing address of 64KB segment
with program stack. By default, the processor assumes that all data
referenced by the stack pointer (SP) and base pointer (BP) registers is
located in the stack segment. SS register can be changed directly using POP
instruction. It is used for addressing stack segment of memory. The stack
segment is that segment of memory, which is used to store stack data.

Data segment (DS) is a 16-bit register containing address of 64KB segment
with program data. By default, the processor assumes that all data
referenced by general registers (AX, BX, CX, DX) and index register (SI, DI) is
located in the data segment. DS register can be changed directly using POP
and LDS instructions. It points to the data segment memory where the data

is resided.

Extra segment (ES) is a 16-bit register containing address of 64KB segment,
usually with program data. By default, the processor assumes that the DI
register references the ES segment in string manipulation instructions. ES
register can be changed directly using POP and LES instructions. It also
refers to segment which essentially is another data segment of the memory.
It also contains data.

Pointers and index registers.

The pointers contain within the particular segments. The pointers IP, BP, SP
usually contain offsets within the code, data and stack segments
respectively

Stack Pointer (SP) is a 16-bit register pointing to program stack in stack

segment.

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP
register is usually used for based, based indexed or register indirect

addressing.

Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed
and register indirect addressing, as well as a source data addresses in string

manipulation instructions.

Destination Index (DI) is a 16-bit register. DI is used for indexed, based
indexed and register indirect addressing, as well as a destination data

address in string manipulation instructions.

Flag Register:

Flags Register determines the current state of the processor. They are
modified automatically by CPU after mathematical operations, this allows to
determine the type of the result, and to determine conditions to transfer
control to other parts of the program. The 8086 flag register as shown in
the fig 1.6. 8086 has 9 active flags and they are divided into two categories:

1. Conditional Flags
2. Control Flags

Conditional flags are as follows:

Carry Flag (CY): This flag indicates an overflow condition for unsigned
integer arithmetic. It is also used in multiple-precision arithmetic.

Auxiliary Flag (AC): If an operation performed in ALU generates a
carry/barrow from lower nibble (i.e. D0 – D3) to upper nibble (i.e. D4 – D7),
the AC flag is set i.e. carry given by D3 bit to D4 is AC flag. This is not a
general-purpose flag, it is used internally by the Processor to perform Binary

to BCD conversion.

Parity Flag (PF):This flag is used to indicate the parity of result. If lower
order 8-bits of the result contains even number of 1’s, the Parity Flag is set
and for odd number of 1’s, the Parity flag is reset.

Zero Flag (ZF):It is set; if the result of arithmetic or logical operation is zero

else it is reset.

Sign Flag (SF):In sign magnitude format the sign of number is indicated by

MSB bit. If the result of operation is negative, sign flag is set.

Control Flags

Control flags are set or reset deliberately to control the operations of the
execution unit. Control flags are as follows:

Trap Flag (TF): It is used for single step control. It allows user to execute one
instruction of a program at a time for debugging. When trap flag is set,
program can be run in single step mode.

Interrupt Flag (IF):It is an interrupt enable/disable flag. If it is set, the
maskable interrupt of 8086 is enabled and if it is reset, the interrupt is
disabled. It can be set by executing instruction sit and can be cleared by
executing CLI instruction.

Direction Flag (DF):It is used in string operation. If it is set, string bytes are
accessed from higher memory address to lower memory address. When it is
reset, the string bytes are accessed from lower memory address to higher
memory address.

8086 Architecture

The 8086 is mainly divided into mainly two blocks
1. Execution Unit (EU)
2.Bus interface Unit (BIU)
Dividing the work between these two will speedup the processing

1) EXECUTION UNIT(EU)

The Execution unit tells the BIU where to fetch instructions or data
from

 decodes instructions and

 Executes instructions

The Execution unit contains:
1) Control circuitry

2) ALU

3) FLAGS

4) General purpose Registers

5) Pointer and Index Registers

Control Circuitry:
 It directs internal operations.

 A decoder in the EU translates instructions fetched from memory

Into series of actions which the EU carries out

Arithmetic Logic Unit:
16 bit ALU
Used to carry the operations

 ADD

 SUBTRACT

 XOR

 INCREMENT

 DECREMENT

 COMPLEMENT

 SHIFT BINARY NUMBERS

FLAG REGISTERS:

 A flag is a flip flop that indicates some condition produced by

execution of an instruction or controls certain operation of the EU.

 It is 16 bit

 It has nine active flags

 Divided into two types
1. Conditional flags

2. Control flags

Conditional Flags

Carry Flag (CY): This flag indicates an overflow condition for unsigned
integer arithmetic. It is also used in multiple-precision arithmetic.

Auxiliary Flag (AC): If an operation performed in ALU generates a
carry/barrow from lower nibble (i.e. D0 – D3) to upper nibble (i.e. D4 – D7),
the AC flag is set i.e. carry given by D3 bit to D4 is AC flag. This is not a
general-purpose flag, it is used internally by the Processor to perform Binary
to BCD conversion.

Parity Flag (PF):This flag is used to indicate the parity of result. If lower
order 8-bits of the result contains even number of 1’s, the Parity Flag is set
and for odd number of 1’s, the Parity flag is reset.

Zero Flag (ZF):It is set; if the result of arithmetic or logical operation is zero

else it is reset.

Sign Flag (SF):In sign magnitude format the sign of number is indicated by
MSB bit. If the result of operation is negative, sign flag is set.

Control Flags

Control flags are set or reset deliberately to control the operations of the

execution unit. Control flags are as follows:

Trap Flag (TF): It is used for single step control. It allows user to execute one
instruction of a program at a time for debugging. When trap flag is set,

program can be run in single step mode.

Interrupt Flag (IF):It is an interrupt enable/disable flag. If it is set, the
maskable interrupt of 8086 is enabled and if it is reset, the interrupt is
disabled. It can be set by executing instruction sit and can be cleared by
executing CLI instruction.

Direction Flag (DF):It is used in string operation. If it is set, string bytes are
accessed from higher memory address to lower memory address. When it is
reset, the string bytes are accessed from lower memory address to higher
memory address.

General Purpose Registers:
The 8086 general purpose registers are similar to those of earlier
generations 8080 and 8085 .It was designed in such a way that many
programs written for 8080 and 8085 could easily be translated to run on
8086.The advantage of using internal registers for the temporary storage of
data is that since data already in the EU ., it can be accessed much more
quickly than it could be accessed from external memory.
General Purpose Registers
The registers AX, BX, CX, and DX are the general 16-bit registers.
AX Register: Accumulator register consists of two 8-bit registers AL and AH,
which can be combined together and used as a 16- bit register AX. AL in this
case contains the low-order byte of the word, and AH contains the high-
order byte. Accumulator can be used for I/O operations, rotate and string
manipulation.
BX Register: This register is mainly used as a base register. It holds the
starting base location of a memory region within a data segment. It is used
as offset storage for forming physical address in case of certain addressing
mode.

CX Register: It is used as default counter or count register in case of string
and loop instructions.
DX Register: Data register can be used as a port number in I/O operations
and implicit operand or destination in case of few instructions. In integer
32-bit multiply and divide instruction the DX register contains high-order
word of the initial or resulting number.
2) BUS INTERFACE UNIT (BIU)

The BIU sends out
 Addresses
 Fetches instructions from memory
 Read data from ports and memory

Or
The BIU handles all transfer of data and addresses on the buses for

the Execution Unit
The Bus interface unit contains
1) Instruction Queue

2) Instruction pointer

3) Segment registers

4) Address Generator

Instruction Queue:
BIU gets upto 6 bytes of next instructions and stores them in the

instruction queue. When EU executes instructions and is ready for its next
instruction, then it simply reads the instruction from this instruction queue
resulting in increased execution speed. Fetching the next instruction while
the current instruction executes is called pipelining.(based on FIFO) .This is
much faster than sending out an addresses to the system memory and
waiting for memory to send back the next instruction byte or bytes .Here
the Queue will be dumped and then reloaded from the new Address.
Segment Register:
The 8086 20 bit addresses So it can address upto 220 in memory (1 Mbyte)
but at any instant it can address upto 4 64 KB segments. This four segments
holds the upper 16 bits of the starting address of four memory segments
that the 8086 is working with it at particular time .The BIU always inserts
zeros for the lowest 4 bits of the 20 bit starting address
Example : If the code segment register contains 348AH then the code
segment starts at 348A0H .In other words a 64Kbyte segment can be
located anywhere within 1MByte address Space but the segment will
always starts at an address with zeros in the lowest 4 bits

Stack: is a section of memory set aside to store addresses and data while
subprogram executes is often called segment base . The stack segment
register always holds the upper 16 bit starting address of program stack.
The extra segment register and data segment register is used to hold the
upper 16 bit starting addresses of two memory segments that are used for
data .
Instruction Pointer holds the 16 bit address or offset of the next code byte
within the code segment. The value contained in the Instruction Pointer
called as Offset because the value must be added to the segment base
address in CS to produce the required 20 bit address.

CS register contains the Upper 16 bit of the starting address of the

code segment in the 1 Mbyte address range the instruction pointer contains
a 16 bit offset which tells wherein that 64 Kbyte code segment the next
instruction byte has to be fetched from.
Stack Register and Stack Pointer:

Stack: is a section of memory set aside to store addresses and data
while subprogram executes is often called segment base . The stack
segment register always holds the upper 16 bit starting address of program
stack. The Stack pointer (SP) holds the 16 bit offset from the starting of the
segment to the memory location where a word was most recently stored
.The memory location where the word is stored is called as top of the stack

Pointer and Index registers:
In addition to stack pointer register EU has
Base pointer Register (BP)
Source Pointer Register(SP)
Destination Pointer Register(DP)

These three registers are used to store temporary storage of data like
general purpose registers .They hold the 16 bit offset data of the data word
in one of the segment

Programming model

How can a 20-bit address be obtained, if there are only 16-bit
registers?
However, the largest register is only 16 bits (64k); so physical addresses
have to be calculated. These calculations are done in hardware within the
microprocessor.
The 16-bit contents of segment register gives the starting/ base address of
particular segment. To address a specific memory location within a segment
we need an offset address. The offset address is also 16-bit wide and it is
provided by one of the associated pointer or index register.

To be able to program a microprocessor, one does not need to know

all of its hardware architectural features. What is important to the
programmer is being aware of the various registers within the device and to
understand their purpose, functions, operating capabilities, and limitations.

The above figure illustrates the software architecture of the 8086

microprocessor. From this diagram, we see that it includes fourteenl6-bit
internal registers: the instruction pointer (IP), four data registers (AX, BX,
CX, and DX), two pointer registers (BP and SP), two index registers (SI and

DI), four segment registers (CS, DS, SS, and ES) and status register (SR), with
nine of its bits implemented as status and control flags.

The point to note is that the beginning segment address must begin

at an address divisible by 16.Also note that the four segments need not be
defined separately. It is allowable for all four segments to completely
overlap (CS = DS = ES = SS).

Logical and Physical Address

Addresses within a segment can range from address 00000h to
address 0FFFFh. This corresponds to the 64K-bytelength of the segment. An
address within a segment is
called an offset or logical address.

 A logical address gives the displacement from the base address of the
segment to the desired location within it, as opposed to its "real" address,
which maps directly anywhere into the 1 MByte memory space. This "real"
address is called the physical address.

 What is the difference between the physical and the logical address?
The physical address is 20 bits long and corresponds to the actual binary
code output by the BIU on the address bus lines. The logical address is an
offset from location 0 of a given segment.

You should also be careful when writing addresses on paper to do so

clearly. To specify the logical address XXXX in the stack segment, use the
convention SS:XXXX, which is equal to [SS] * 16 + XXXX.

Logical address is in the form of: Base Address: Offset Offset is the

displacement of the memory location from the starting location of the
segment. To calculate the physical address of the memory, BIU uses the
following formula:

Physical Address = Base Address of Segment * 16 + Offset

Example:

The value of Data Segment Register (DS) is 2222H.

To convert this 16-bit address into 20-bit, the BIU appends 0H to the LSB (by
multiplying with 16) of the address. After appending, the starting address of
the Data Segment becomes 22220H.

Data at any location has a logical address specified as:2222H: 0016H

Where 0016H is the offset, 2222 H is the value of DS Therefore the physical
address:22220H + 0016H
: 22236 H

The following table describes the default offset values to the corresponding
memory segments.

Some of the advantages of memory segmentation in the 8086 are as

follows:

 With the help of memory segmentation a user is able to work with

registers having only 16-bits.

 The data and the user’s code can be stored separately allowing for more

flexibility.

 Also due to segmentation the logical address range is from 0000H to

FFFFH the code can be loaded at any location in the memory.

Physical memory organization:

The 8086’s 1Mbyte memory address space is divided in to two

independent 512Kbyte banks: the low (even) bank and the high (odd) bank.

Data bytes associated with an even address (0000016, 0000216, etc.) reside

in the low bank, and those with odd addresses (0000116, 0000316, etc.)

reside in the high bank.

Address bits A1 through A19 select the storage location that is to be

accessed. They are applied to both banks in parallel. A0and bank high

enable (BHE) are used as bank-select signals.

The four different cases that happen during accessing data:

Case 1: When a byte of data at an even address (such as X) is to be
accessed:

 A0 is set to logic 0 to enable the low bank of memory.

 BHE is set to logic 1 to disable the high bank.

Case 2: When a byte of data at an odd addresses (such as X+1) is to be

accessed:

 A0is set to logic 1 to disable the low bank of memory.

 BHE is set to logic 0 to enable the high bank.

Case 3: When a word of data at an even address (aligned word) is to be

accessed:

 A0 is set to logic 0 to enable the low bank of memory.

 BHE is set to logic 0 to enable the high bank.

Case 4: When a word of data at an odd address (misaligned word) is to be

accessed, then the 8086 need two bus cycles to access it:

a) During the first bus cycle, the odd byte of the word (in the high bank) is

addressed

 A0 is set to logic 1 to disable the low bank of memory

 BHE is set to logic 0 to enable the high bank.

b) During the second bus cycle, the odd byte of the word (in the low bank) is

addressed

 A0is set to logic 0 to enable the low bank of memory.

 BHE is set to logic 1 to disable the high bank.

Signal Description of 8086 Microprocessor

The 8086 Microprocessor is a 16-bit CPU available in 3 clock rates, i.e.

5, 8 and 10MHz, packaged in a 40 pin CERDIP or plastic package. The 8086

Microprocessor operates in single processor or multiprocessor

configurations to achieve high performance. The pin configuration is as

shown in fig1. Some of the pins serve a particular function in minimum

mode (single processor mode) and others function in maximum mode

(multiprocessor mode) configuration.

The 8086 signals can be categorized in three groups. The first are the

signals having common functions in minimum as well as maximum mode,

the second are the signals which have special functions in minimum mode

and third are the signals having special functions for maximum mode.

The following signal description is common for both the minimum

and maximum modes.

AD15-AD0:

These are the time multiplexed memory I/O address and data lines.
Address remains on the lines during T1 state, while the data is available on
the data bus during T2, T3, TW and T4. Here T1, T2, T3, T4 and TW are the
clock states of a machine cycle. TW is await state. These lines are active
high and float to a tristate during interrupt acknowledge and local bus hold
acknowledge cycles.
A19/S6, A18/S5, A17/S4, A16/S3:

These are the time multiplexed address and status lines. During T1,
these are the most significant address lines or memory operations. During
I/O operations, these lines are low. During memory or I/O operations, status
information is available on those lines for T2, T3, TW and T4 .The status of

the interrupt enable flag bit(displayed on S5) is updated at the beginning of
each clock cycle. The S4 and S3 combinedly indicate which segment register
is presently being used for memory accesses as shown in Table 1.1.

These lines float to tri-state off (tristated) during the local bus hold
acknowledge. The status line S6 is always low(logical). The address bits are
separated from the status bits using latches controlled by the ALE signal.

BHE/S7 (Active Low):
The bus high enable signal is used to indicate the transfer of data over the
higher order (D15-D8) data bus as shown in Table 1.2. It goes low for the
data transfers over D15-D8 and is used to derive chip selects of odd address

memory bank or peripherals. is low during T1 for read, write and
interrupt acknowledge cycles, when- ever a byte is to be transferred on the
higher byte of the data bus. The status information is available during T2,
T3 and T4. The signal is active low and is tristated during 'hold'. It is low
during T1 for the first pulse of the interrupt acknowledge cycle.

Read signal, when low, indicates the peripherals that the processor is
performing a memory or I/O read operation. is active low and shows
the state for T2, T3, TW of any read cycle. The signal remains tristated
during the 'hold acknowledge'.

READY:

This is the acknowledgement from the slow devices or memory that
they have completed the data transfer. The signal made available by the
devices is synchronized by the 8284A clock generator to provide ready input

to the 8086. The signal is active high.

INTR-Interrupt Request:

This is a level triggered input. This is sampled during the last clock
cycle of each instruction to determine the availability of the request. If any
interrupt request is pending, the processor enters the interrupt
acknowledge cycle. This can be internally masked by resetting the interrupt
enable flag. This signal is active high and internally synchronized.

TEST:

This input is examined by a 'WAIT' instruction. If the TEST input goes
low, execution will continue, else, the processor remains in an idle state.
The input is synchronized internally during each clock cycle on leading edge
of clock.

NMI-Non-maskable Interrupt:

This is an edge-triggered input which causes a Type2 interrrupt. The
NMI is not maskable internally by software. A transition from low to high
initiates the interrupt response at the end of the current instruction. This
input is internally synchronized.

RESET:

This input causes the processor to terminate the current activity and
start execution from FFFF0H. The signal is active high and must be active for
at least four clock cycles. It restarts execution when the RESET returns low.
RESET is also internally synchronized.

CLK-Clock Input:

The clock input provides the basic timing for processor operation and
bus control activity. Its an asymmetric square wave with 33% duty cycle.
The range of frequency for different 8086 versions is from 5MHz to 10MHz.

VCC :

+5V power supply for the operation of the internal circuit. GND

ground for the internal circuit.

MN/MX :

The logic level at this pin decides whether the processor is to operate
in either minimum (single processor) or maximum (multiprocessor) mode.
The following pin functions are for the minimum mode operation of 8086.

M/IO -Memory/IO:

This is a status line logically equivalent to S2 in maximum mode.
When it is low, it indicates the CPU is having an I/O operation, and when it
is high, it indicates that the CPU is having a memory operation. This line
becomes active in the previous T4 and remains active till final T4 of the
current cycle. It is tristated during local bus "hold acknowledge".

-Interrupt Acknowledge:

This signal is used as a read strobe for interrupt acknowledge cycles.
In other words, when it goes low, it means that the processor has accepted
the interrupt. It is active low during T2, T3 and TW of each interrupt
acknowledge cycle.

ALE-Address latch Enable:

This output signal indicates the availability of the valid address on the
address/data lines, and is connected to latch enable input of latches. This
signal is active high and is never tristated.

-Data Transmit/Receive:

This output is used to decide the direction of data flow through the
transreceivers (bidirectional buffers). When the processor sends out data,
this signal is high and when the processor is receiving data, this signal is low.
Logically, this is equivalent to S1 in maximum mode. Its timing is the same

as M/I/O. This is tristated during 'hold acknowledge'.

This signal indicates the availability of valid data over the
address/data lines. It is used to enable the transreceivers (bidirectional
buffers) to separate the data from the multiplexed address/data signal. It is
active from the middle ofT2 until the middle of T4 DEN is tristated during
'hold acknowledge' cycle.

HOLD, HLDA-Hold/Hold Acknowledge:

When the HOLD line goes high, it indicates to the processor that
another master is requesting the bus access. The processor, after receiving
the HOLD request, issues the hold acknowledge signal on HLDA pin, in the
middle of the next clock cycle after completing the current bus (instruction)

cycle. At the same time, the processor floats the local bus and control lines.
When the processor detects the HOLD line low, it lowers the HLDA signal.
HOLD is an asynchronous input, and it should be externally synchronized.

S2, S1, S0 -Status Lines:

These are the status lines which reflect the type of operation, being
carried out by the processor. These become active during T4 of the previous
cycle and remain active during T1 and T2 of the current bus cycle. The
status lines return to passive state during T3 of the current bus cycle so that
they may again become active for the next bus cycle during T4. Any change
in these lines during T3 indicates the starting of a new cycle, and return to
passive state indicates end of the bus cycle. These status lines are encoded
in table 1.3

 This output pin indicates that other system bus masters will be
prevented from gaining the system bus, while the signal is low.
The signal is activated by the 'LOCK' prefix instruction and remains
active until the completion of the next instruction. This floats to tri-state
off during "hold acknowledge". When the CPU is executing a critical
instruction which requires the system bus, the LOCK prefix instruction
ensures that other processors connected in the system will not gain the
control of the bus. The 8086, while executing the prefixed instruction,
asserts the bus lock signal output, which may be connected to an
external bus controller.

QS1, QS0-Queue Status:

These lines give information about the status of the codeprefetch
queue. These are active during the CLK cycle after which the queue
operation is performed. These are encoded as shown in Table 1.4.

ReQuest/Grant:

These pins are used by other local bus masters, in maximum mode, to
force the processor to release the local bus at the end of the processor's
current bus cycle. Each of the pins is bidirectional with having

higher priority than pins have internal pull-up resistors and
may be left unconnected. The request! Grant sequence is as follows:

1. A pulse one clock wide from another bus master requests the bus access
to 8086.

2. During T4 (current) or T1 (next) clock cycle, a pulse one clock wide from
8086 to the requesting master, indicates that the 8086 has allowed the local
bus to float and that it will enter the "hold acknowledge" state at next clock
cycle. The CPU's bus interface unit is likely to be disconnected from the local
bus of the system.

3. A one clock wide pulse from the another master indicates to 8086 that
the 'hold' request is about to end and the 8086 may regain control of the
local bus at the next clock cycle.

Minimum Mode 8086 System and Timings

In a minimum mode 8086 system, the microprocessor 8086 is
operated in minimum mode by strapping its MN/MX* pin to logic1. In this
mode, all the control signals are given out by the microprocessor chip itself.
There is a single microprocessor in the minimum mode system. The
remaining components in the system are latches, transreceivers, clock
generator, memory and I/O devices. Some type of chip selection logic may
be required for selecting memory or I/O devices, depending upon the

address map of the system.

Latches:

The latches are generally buffered output D-type flip-flops, like,
74LS373 or 8282. They are used for separating the valid address from the
multiplexed address/data signals and are controlled by the ALE signal

generated by 8086.

Transreceivers

Transreceivers are the bidirectional buffers and some times they are
called as data amplifiers. They are required to separate the valid data from
the time multiplexed address/data signal. They are controlled by two
signals, namely, DEN* and DT/R*. The DEN* signal indicates that the valid
data is available on the data bus, while DT/R indicates the direction of data,

i.e. from or to the processor.

Memory:

The system contains memory for the monitor and users program
storage. Usually, EPROMS are used for monitor storage, while RAMs for
users program storage.

IO Devices:

A system may contain I/O devices for communication with the processor as
well as some special purpose I/O devices.

Clock Generator:

The clock generator generates the clock from the crystal oscillator
and then shapes it and divides to make it more precise so that it can be
used as an accurate timing reference for the system. The clock generator
also synchronizes some external signals with the system clock.

The general system organization is shown in above fig .Since it has 20
address lines and 16 data lines, the 8086 CPU requires three octal address
latches and two octal data buffers for the complete address and data
separation.

The working of the minimum mode configuration system can be
better described in terms of the timing diagrams rather than qualitatively
describing the operations. The opcode fetch and read cycles are similar.
Hence the timing diagram can be categorized in two parts.

1) Timing diagram for read cycle
2) Timing diagram for write cycle.

Timing diagram for Read cycle :

The read cycle begins in T1 with the assertion of the address latch
enable (ALE) signal and also M/IO* signal. During the negative going edge of
this signal, the valid address is latched on the local bus. The BHE* and
A0 signals address low, high or both bytes. From Tl to T4, the M/IO* signal
indicates a memory or I/O operation. At T2 the address is removed from the
local bus and is sent to the output. The bus is then tristated. The read (RD*)
control signal is also activated in T2 .

The read (RD) signal causes the addressed device to enable its data

bus drivers. After RD* goes low, the valid data is available on the data bus.

The addressed device will drive the READY line high, when the
processor returns the read signal to high level, the addressed device will

again tristate its bus drivers.

Timing diagram for write cycle:

A write cycle also begins with the assertion of ALE and the emission
of the address. The M/IO* signal is again asserted to indicate a memory or
I/O operation. In T2 after sending the address in Tl the processor sends the
data to be written to the addressed location. The data remains on the bus

until middle of T4 state. The WR* becomes active at the beginning of T2.

The BHE* and A0 signals are used to select the proper byte or bytes
of memory or I/O word to be read or written. The M/IO*, RD* and WR*
signals indicate the types of data transfer as specified in Table

HOLD Response Sequence

The HOLD pin is checked at the end of the each bus cycle. If it is
received active by the processor before T4 of the previous cycle or during
T1 state of the current cycle, the CPU activities HLDA in the next clock cycle
and for the succeeding bus cycles, the bus will be given to another
requesting master The control control of the bus is not regained by the
processor until the requesting master does not drop the HOLD pin low.
When the request is dropped by the requesting master, the HLDA is
dropped by the processor at the trailing edge of the next clock as shown in
fig

Maximum Mode 8086 System and Timings

In the maximum mode, the 8086 is operated by strapping the
MN/MX* pin to ground. In this mode, the processor derives the status
signals S2*, S1* and S0*. Another chip called bus controller derives the
control signals using this status information. In the maximum mode, there
may be more than one microprocessor in the system configuration. The
other components in the system are the same as in the minimum mode
system. The general system organization is as shown in the fig1.1

The basic functions of the bus controller chip IC8288, is to derive
control signals like RD* and WR* (for memory and I/O devices), DEN*,
DT/R*, ALE, etc. using the information made available by the processor on
the status lines. The bus controller chip has input lines S2*, S1* and S0* and
CLK. These inputs to 8288 are driven by the CPU. It derives the outputs ALE,
DEN*, DT/R*, MWTC*, AMWC*, IORC*, IOWC* and AIOWC*. The AEN*, IOB
and CEN pins are specially useful for multiprocessor systems. AEN* and IOB
are generally grounded. CEN pin is usually tied to +5V.

INTA* pin is used to issue two interrupt acknowledge pulses to the
interrupt controller or to an interrupting device.IORC*, IOWC* are I/O read
command and I/O write command signals respectively. These signals enable
an IO interface to read or write the data from or to the addressed port. The
MRDC*, MWTC* are memory read command and memory write command
signals respectively and may be used as memory read and write signals. All
these command signals instruct the memory to accept or send data from or
to the bus. For both of these write command signals, the advanced signals
namely AIOWC* and AMWTC* are available. They also serve the same
purpose, but are activated one clock cycle earlier than the IOWC* and
MWTC* signals, respectively. The maximum mode system is shown in fig.
1.1.

The maximum mode system timing diagrams are also divided in two
portions as read (input) and write (output) timing diagrams. The
address/data and address/status timings are similar to the minimum mode.
ALE is asserted in T1, just like minimum mode. The only difference lies in
the status signals used and the available control and advanced command
signals. The fig. 1.2 shows the maximum mode timings for the read

operation while the fig. 1.3 shows the same for the write operation.

Fig. 1.2 Memory Read Timing in Maximum Mode

Fig. 1.3 Memory Write Timing in Maximum Mode

UNIT -II
 Instruction Set and Assembly Language Programming

of 8086

 Instruction formats, Addressing modes,

 Instruction Set

 Assembler Directives,

 Procedures, Macros

 Simple Programs involving Logical

 Branch and Call Instructions

 Sorting Evaluating Arithmetic Expressions

 String Manipulations

UNIT-II
The instruction format contains two fields
 operation code / opcode

 Operand field

OPERATION CODE / OPCODE:
 It indicates the type of the operation to be performed by CPU

 Example : MOV , ADD …

OPERAND:
 The CPU executes the instruction using the information resides in these fields .

There are six general formats of instructions in 8086 instruction set.
The instruction of 8086 vary from 1to 6 bytes length
ONE BYTE INSTRUCTION:

 It is only one byte long and may have implied data or register operands.

 The least three significant 3 bits of the opcode are used for specifying register

operand if any otherwise all the 8 bits form an opcode and the operands are implied.

REGISTER TO REGISTER
 The format is 2 byte long
 The first byte of the code specifies the opcode and width
 The second byte of the code shows the register operand and R/M field
 The Register represented by REG is one of the operands . The R/M field specifies

another register or memory location .ie the other operand

REGISTER TO/FROM MEMORY WITH NO DISPLACEMENT

 The format is 2 byte long

 This is similar to the register to register format except for the MOD field is shown.

 The MOD field shows the mode of addressing

REGISTER TO/FROM MEMORY WITH DISPLACEMENT

 The format contains one or two additional bytes for displacement along with 2 bytes

Register to/from memory with no displacement.

IMMEDIATE OPERAND TO REGISTER

 The first byte as well as the 3 bits from the second byte which are used for REG field

in case of Register to register format or used for OPCODE.

 It also contains one are two bytes of data.

IMMEDIATE OPERAND TO MEMORY WITH 16 BIT DISPLACEMENTS

 It requires 5 to 6 bytes for coding

 The first two bytes contains the information regarding OPCODE,MOD and R/M fields

 The remaining 4 bytes contains 2 bytes of displacement and 2 bytes of data

ADDRESSING MODES OF 8086
According two the flow of instructions may be categorized as
1. Sequential Control flow instructions

2. Control transfer instructions

Sequential control flow instructions are the instructions which after execution
transfer control to the next instruction appearing immediately. The control transfer
instructions transfer control to some predefined address or the address somehow
specified in the instruction after their execution.
What is addressing mode?
The different ways in which a source operand is denoted in an instruction are known
as addressing mode the addressing modes for sequential control flow instructions
are

1. Immediate Addressing Mode

2. Direct Addressing mode

3. Register Addressing mode

4. Register Indirect Addressing mode

5. Indexed Addressing Mode

6. Register Relative addressing mode

7. Based indexed addressing mode

8. Relative based indexed Addressing mode

IMMEDIATE ADDRESSING MODE

The addressing mode in which the data operand is a part of the instruction itself is
known as immediate addressing mode.

Example

MOV DL, 08H
The 8-bit data (08H) given in the instruction is moved to DL

(DL) 08H

MOV AX, 0A9FH
The 16-bit data (0A9FH) given in the instruction is moved to AX register

(AX) 0A9FH

DIRECT ADDRESSING MODE

The addressing mode in which the effective address of the memory location at which
the data operand is stored is given in the instruction. The effective address (Offset) is
just a 16-bit number written directly in the instruction.

Example:MOV BX, [1354H]
MOV BL, [0400H]

The square brackets around the 1354H denote the contents of the memory location.
When executed, this instruction will copy the contents of the memory location into BX
register. This addressing mode is called direct because the displacement of the operand
from the segment base is specified directly in the instruction.

REGISTER ADDRESSING MODE

The instruction will specify the name of the register which holds the data to be operated by the

instruction. All registers except IP may be used in this mode

Example:

MOV CL, DH
The content of 8-bit register DH is moved to another 8-bit register CL

(CL) (DH)

REGISTER INDIRECT ADDRESSING MODE

This addressing mode allows data to be addressed at any memory location through an
offset address held in any of the following registers: BP, BX, DI & SI.

Example

MOV AX, [BX]; suppose the register BX contains 4895H, then the contents
 ; 4895H are moved to AX
ADD CX, {BX}

INDEXED ADDRESSING MODE

In this addressing mode, the operands offset address is found by adding the contents of
SI or DI register and 8-bit/16-bit displacements. DS and ES are the default segments for
index registers SI and DI respectively. This is the special case of the of register indirect
addressing mode.

Example

MOV BX, [SI+16], ADD AL, [DI+16]

REGISTER RELATIVE ADDRESSING MODE
In register relative Addressing, BX, BP, SI and DI is used to hold the base value for

effective address and a signed 8-bit or unsigned 16-bit displacement will be specified in
the instruction. In case of 8-bit displacement, it is sign extended to 16-bit before adding
to the base value. When BX holds the base value of EA, 20-bit physical address is
calculated from BX and DS.When BP holds the base value of EA, BP and SS is used.

Example:
MOV AX, [BX + 08H] MOV AX, 08H [BX]

BASED INDEXED ADDRESSING MODE
In this addressing mode, the offset address of the operand is computed by summing the
base register to the contents of an Index register. The default segment registers may be
ES or DS
Example:
MOV DX, [BX + SI] MOV DX, [BX][SI]

RELATIVE BASED INDEXED ADDRESSING MODE
In this addressing mode, the operands offset is computed by adding the base register
contents. An Index registers contents and 8 or 16-bit displacement.
Example
MOV AX, [BX+DI+08]
ADD CX, [BX+SI+16]

CONTROL TRANSFER INSTRUCTIONS ADDRESSING MODES /BRANCH ADDRESSING
MODE
The control transfer instructions transfer control to some predefined address or the
address somehow specified in the instruction after their execution
Examples : INT , CALL ,RET and JUMP instructions
The control transfer instruction the addressing modes depend upon whether destination
location is within the same segment or a different one .It also depends on the method of
passing the destination address to the processor
Basically there are two methods for passing control transfer instructions

1. Intersegment addressing mode

2. Intrasegment addressing mode

INTRASEGMENT ADDRESSING MODE
If the destination location is within the same segment the mode is called intrasegment
addressing mode
There are two types

1. Intrasegement direct mode

2. Intrasegment indirect mode

INTRASEGMENT DIRECT MODE:
In this mode the address to which the control is to be transferred lies within the
segment in which the control transfer instruction lies and appears directly in the
instruction as an immediate displacement value .The displacement is computed relative
to the content of the instruction pointer IP.
JMP SHORT LABEL;
is a control transfer instruction following intra segment direct mode. Here, SHORT LABEL
represents a signed displacement.
INTRASEGMENT INDIRECT MODE :
In this mode the displacement to which the control is to be transferred is in the same
segment in which the control transfer instruction lies but it is passed to the instruction
indirectly Here the branch address is found as the content of a register or a memory
location .
Example
JMP [AX]

INTERSEGMENT ADDRESSING MODE
If the destination location is in the different segment the mode is called intersegment
addressing mode
There are two types

1. Intersegment direct mode

2. Intersegment indirect mode

INTERSEGMENT DIRECT MODE:
In this mode the address to which the control is to be transferred is in a different
segment this addressing mode provides a means of branching from one code segment to
another code segment. Here the CS and IP of the destination address are specified
directly in the instruction.
Example
JMP 2000H: 3000H;
INTERSEGMENT INDIRECT MODE :
In this the address to which the control is to be transferred lies in a different segment
and it is passed to the instruction indirectly .Content of memory block containing four
bytes IP(LSB) ,IP(MSB),CS(LSB) and CS(MSB) sequentially The starting address of the
memory block may be referred using any of the addressing mode except immediate
mode .
Example
JMP [5000H];

INSTRUCTION SET OF 8086
The 8086 microprocessor supports 8 types of instructions −

 Data Transfer Instructions

 Arithmetic Instructions

 logical Instructions

 String Instructions

 Program Execution Transfer Instructions (Branch & Loop Instructions)

 Processor Control Instructions

 Iteration Control Instructions

 Interrupt Instructions

1. DATA TRANSFER INSTRUCTIONS

These instructions are used to transfer the data from the source operand to the
destination operand. Following are the list of instructions under this group −

INSTRUCTION TO TRANSFER A WORD

 MOV − Used to copy the byte or word from the provided source to the provided
destination.

 PPUSH − Used to put a word at the top of the stack.

 POP − Used to get a word from the top of the stack to the provided location.

 PUSHA − Used to put all the registers into the stack.

 POPA − Used to get words from the stack to all registers.

 XCHG − Used to exchange the data from two locations.

 XLAT − Used to translate a byte in AL using a table in the memory.

INSTRUCTIONS FOR INPUT AND OUTPUT PORT TRANSFER

 IN − Used to read a byte or word from the provided port to the accumulator.

 OUT − Used to send out a byte or word from the accumulator to the provided
port.

INSTRUCTIONS TO TRANSFER THE ADDRESS

 LEA − Used to load the address of operand into the provided register.

 LDS − Used to load DS register and other provided register from the memory

 LES − Used to load ES register and other provided register from the memory.

INSTRUCTIONS TO TRANSFER FLAG REGISTERS

 LAHF − Used to load AH with the low byte of the flag register.

 SAHF − Used to store AH register to low byte of the flag register.

 PUSHF − Used to copy the flag register at the top of the stack.

 POPF − Used to copy a word at the top of the stack to the flag register.

2. ARITHMETIC INSTRUCTIONS

These instructions are used to perform arithmetic operations like addition,
subtraction, multiplication, division, etc.

Following is the list of instructions under this group −

INSTRUCTIONS TO PERFORM ADDITION

 ADD − Used to add the provided byte to byte/word to word.

 ADC − Used to add with carry.

 INC − Used to increment the provided byte/word by 1.

 AAA − Used to adjust ASCII after addition.

 DAA − Used to adjust the decimal after the addition/subtraction operation.

INSTRUCTIONS TO PERFORM SUBTRACTION

 SUB − Used to subtract the byte from byte/word from word.

 SBB − Used to perform subtraction with borrow.

 DEC − Used to decrement the provided byte/word by 1.

 NPG − Used to negate each bit of the provided byte/word and add 1/2’s
complement.

 CMP − Used to compare 2 provided byte/word.

 AAS − Used to adjust ASCII codes after subtraction.

 DAS − Used to adjust decimal after subtraction.

INSTRUCTION TO PERFORM MULTIPLICATION

 MUL − Used to multiply unsigned byte by byte/word by word.

 IMUL − Used to multiply signed byte by byte/word by word.

 AAM − Used to adjust ASCII codes after multiplication.

INSTRUCTIONS TO PERFORM DIVISION

 DIV − Used to divide the unsigned word by byte or unsigned double word by
word.

 IDIV − Used to divide the signed word by byte or signed double word by word.

 AAD − Used to adjust ASCII codes after division.

 CBW − Used to fill the upper byte of the word with the copies of sign bit of the
lower byte.

 CWD − Used to fill the upper word of the double word with the sign bit of the
lower word.

3. LOGICAL INSTRUCTIONS

These instructions are used to perform operations where data bits are involved,
i.e. operations like logical, shift, etc.

Following is the list of instructions under this group −

INSTRUCTIONS TO PERFORM LOGICAL OPERATION

 NOT − Used to invert each bit of a byte or word.

 AND − Used for adding each bit in a byte/word with the corresponding bit in
another byte/word.

 OR − Used to multiply each bit in a byte/word with the corresponding bit in
another byte/word.

 XOR − Used to perform Exclusive-OR operation over each bit in a byte/word with
the corresponding bit in another byte/word.

 TEST − Used to add operands to update flags, without affecting operands.

INSTRUCTIONS TO PERFORM SHIFT OPERATIONS

 SHL/SAL − Used to shift bits of a byte/word towards left and put zero(S) in LSBs.

 SHR − Used to shift bits of a byte/word towards the right and put zero(S) in
MSBs.

 SAR − Used to shift bits of a byte/word towards the right and copy the old MSB
into the new MSB.

INSTRUCTIONS TO PERFORM ROTATE OPERATIONS

 ROL − Used to rotate bits of byte/word towards the left, i.e. MSB to LSB and to
Carry Flag [CF].

 ROR − Used to rotate bits of byte/word towards the right, i.e. LSB to MSB and to
Carry Flag [CF].

 RCR − Used to rotate bits of byte/word towards the right, i.e. LSB to CF and CF to
MSB.

 RCL − Used to rotate bits of byte/word towards the left, i.e. MSB to CF and CF to
LSB.

4. STRING INSTRUCTIONS

String is a group of bytes/words and their memory is always allocated in a
sequential order.

Following is the list of instructions under this group −

 REP − Used to repeat the given instruction till CX ≠ 0.

 REPE/REPZ − Used to repeat the given instruction until CX = 0 or zero flag ZF = 1.

 REPNE/REPNZ − Used to repeat the given instruction until CX = 0 or zero flag ZF
= 1.

 MOVS/MOVSB/MOVSW − Used to move the byte/word from one string to
another.

 COMS/COMPSB/COMPSW − Used to compare two string bytes/words.

 INS/INSB/INSW − Used as an input string/byte/word from the I/O port to the
provided memory location.

 OUTS/OUTSB/OUTSW − Used as an output string/byte/word from the provided
memory location to the I/O port.

 SCAS/SCASB/SCASW − Used to scan a string and compare its byte with a byte in
AL or string word with a word in AX.

 LODS/LODSB/LODSW − Used to store the string byte into AL or string word into
AX.

5. PROGRAM EXECUTION TRANSFER INSTRUCTIONS (BRANCH AND LOOP INSTRUCTIONS)

These instructions are used to transfer/branch the instructions during an execution. It
includes the following instructions −

Instructions to transfer the instruction during an execution without any condition −

 CALL − Used to call a procedure and save their return address to the stack.

 RET − Used to return from the procedure to the main program.

 JMP − Used to jump to the provided address to proceed to the next instruction.

Instructions to transfer the instruction during an execution with some conditions −

 JA/JNBE − Used to jump if above/not below/equal instruction satisfies.

 JAE/JNB − Used to jump if above/not below instruction satisfies.

 JBE/JNA − Used to jump if below/equal/ not above instruction satisfies.

 JC − Used to jump if carry flag CF = 1

 JE/JZ − Used to jump if equal/zero flag ZF = 1

 JG/JNLE − Used to jump if greater/not less than/equal instruction satisfies.

 JGE/JNL − Used to jump if greater than/equal/not less than instruction satisfies.

 JL/JNGE − Used to jump if less than/not greater than/equal instruction satisfies.

 JLE/JNG − Used to jump if less than/equal/if not greater than instruction
satisfies.

 JNC − Used to jump if no carry flag (CF = 0)

 JNE/JNZ − Used to jump if not equal/zero flag ZF = 0

 JNO − Used to jump if no overflow flag OF = 0

 JNP/JPO − Used to jump if not parity/parity odd PF = 0

 JNS − Used to jump if not sign SF = 0

 JO − Used to jump if overflow flag OF = 1

 JP/JPE − Used to jump if parity/parity even PF = 1

 JS − Used to jump if sign flag SF = 1

6. PROCESSOR CONTROL INSTRUCTIONS

These instructions are used to control the processor action by setting/resetting the flag
values.

Following are the instructions under this group −

 STC − Used to set carry flag CF to 1

 CLC − Used to clear/reset carry flag CF to 0

 CMC − Used to put complement at the state of carry flag CF.

 STD − Used to set the direction flag DF to 1

 CLD − Used to clear/reset the direction flag DF to 0

 STI − Used to set the interrupt enable flag to 1, i.e., enable INTR input.

 CLI − Used to clear the interrupt enable flag to 0, i.e., disable INTR input.

7. ITERATION CONTROL INSTRUCTIONS

These instructions are used to execute the given instructions for number of times.
Following is the list of instructions under this group −

 LOOP − Used to loop a group of instructions until the condition satisfies, i.e., CX
= 0

 LOOPE/LOOPZ − Used to loop a group of instructions till it satisfies ZF = 1 & CX =
0

 LOOPNE/LOOPNZ − Used to loop a group of instructions till it satisfies ZF = 0 &
CX = 0

 JCXZ − Used to jump to the provided address if CX = 0

8. INTERRUPT INSTRUCTIONS

These instructions are used to call the interrupt during program execution.

 INT − Used to interrupt the program during execution and calling service
specified.

 INTO − Used to interrupt the program during execution if OF = 1

 IRET − Used to return from interrupt service to the main program

ASSEMBLER DIRECTIVES

Assembler directives are the Instructions to the Assembler, linker and loader
regarding the program being executed. also called ‘pseudo instructions. Control the
generation of machine codes and organization of the program; but no machine codes
are generated for assembler directives.
They are used to
 › specify the start and end of a program
 › attach value to variables
 › allocate storage locations to input/ output data
 › define start and end of segments, procedures, macros etc..
ASSUME

Used to tell the assembler the name of the logical segment it should use for a
specified segment. You must tell the assembler that what to assume for any segment
you use in the program.
Example
ASSUME: CODE
Tells the assembler that the instructions for the program are in segment named CODE.
DB – Defined Byte
Used to declare a byte type variable or to set aside one or more locations of type byte in
memory.
Example
PRICES DB 49H, 98H, 29H:
Declare array of 3 bytes named PRICES and initialize 3 bytes as shown.
DD – Define Double Word
Used to declare a variable of type doubleword or to reserve a memory location which
can be accessed as doubleword.
DQ – Define Quadword
Used to tell the assembler to declare the variable as 4 words of storage in memory.
DT – Define Ten Bytes
Used to tell the assembler to declare the variable which is 10 bytes in length or reserve
10 bytes of storage in memory.
DW – Define Word
Used to tell the assembler to define a variable type as word or reserve word in memory.
DUP: used to initialize several locations and to assign values to location
END – End the Program
To tell the assembler to stop fetching the instruction and end the program execution.
ENDP – it is used to end the procedure.
ENDS – used to end the segment.
EQU – EQUATE
Used to give name to some value or symbol.
EVEN – Align On Even Memory Address

Tells the assembler to increment the location counter to the next even address if it is not
already at an even address.
EXTRN
Used to tell the assembler that the name or labels following the directive are in some
other assembly module.
GLOBAL – Declares Symbols As Public Or Extrn
Used to make the symbol available to other modules.It can be used in place of EXTRN or
PUBLIC keyword.
GROUP – Group related segment

Used to tell the assembler to group the logical segments named after the
directive into one logical segment. This allows the content of all the segments to be
accessed from the same group.
INCLUDE – include source code from file

Used to tell the assembler to insert a block of source code from the named file
into the current source module. This shortens the source code.
LABEL
Used to give the name to the current value in the location counter. The LABEL directive
must be followed by a term which specifies the type you want associated with that
name.
LENGTH
Used to determine the number of items in some data such as string or array.
NAME
Used to give a specific name to a module when the programs consisting of several
modules.
OFFSET
It is an operator which tells the assembler to determine the offset or displacement of
named data item or procedure from the start of the segment which contains it.
ORG – Originate
Tells the assembler to set the location counter value.
Example, ORG 7000H sets the location counter value to point to 7000H location in
memory.

$ is often used to symbolically represent the value of the location counter. It is
used with ORG to tell the assembler to change the location according to the current
value in the location counter. E.g. ORG $+100.

UNIT -III
I/O Interface

 8255 PPI

 Various Modes of Operation and Interfacing to 8086

 D/A and A/D Converter

 Stepper motor

 Interfacing of DMA controller 8257

Interfacing with advanced devices

 Memory Interfacing to 8086

 Interrupt Structure of 8086

 Interrupt Vector Table, Interrupt Service Routine

 architecture of 8259.

Communication Interface

 Serial Communication Standards

 Serial Data Transfer Schemes

 8251 USART Architecture and Interfacing.

UNIT-3

I/O Interface

Introduction:

Any application of a microprocessor based system requires the transfer of data

between external circuitry to the microprocessor and microprocessor to the external

circuitry. User can give information to the microprocessor based system using keyboard

and user can see the result or output information from the microprocessor based system

with the help of display device. The transfer of data between keyboard and

microprocessor, and microprocessor and display device is called input/output data

transfer or I/O data transfer. This data transfer is done with the help of I/O ports.

Input port:

It is used to read data from the input device such as keyboard. The simplest form

of input port is a buffer. The input device is connected to the microprocessor through

buffer, as shown in the fig.1. This buffer is a tri-state buffer and its output is available

only when enable signal is active. When microprocessor wants to read data from the

input device (keyboard), the control signals from the microprocessor activates the buffer

by asserting enable input of the buffer. Once the buffer is enabled, data from the input

device is available on the data bus. Microprocessor reads this data by initiating read

command.

Output port:

It is used to send data to the output device such as display from the

microprocessor. The simplest form of output port is a latch. The output device is

connected to the microprocessor through latch, as shown in the fig.2. When

microprocessor wants to send data to the output device is puts the data on the data bus

and activates the clock signal of the latch, latching the data from the data bus at the

output of latch. It is then available at the output of latch for the output device.

Serial and Parallel Transmission:

In telecommunications, serial transmission is the sequential transmission of

signal elements of a group representing a character or other entity of data. Digital serial

transmissions are bits sent over a single wire, frequency or optical path sequentially.

Because it requires less signal processing and less chance for error than parallel

transmission, the transfer rate of each individual path may be faster. This can be used

over longer distances as a check digit or parity bit can be sent along it easily.

In telecommunications, parallel transmission is the simultaneous transmission of

the signal elements of a character or other entity of data. In digital communications,

parallel transmission is the simultaneous transmission of related signal elements over

two or more separate paths. Multiple electrical wires are used which can transmit

multiple bits simultaneously, which allows for higher data transfer rates than can be

achieved with serial transmission. This method is used internally within the computer,

for example the internal buses, and sometimes externally for such things as printers, The

major issue with this is "skewing" because the wires in parallel data transmission have

slightly different properties (not intentionally) so some bits may arrive before others,

which may corrupt

http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/Transmission_(telecommunications)
http://en.wikipedia.org/wiki/Signal_element
http://en.wikipedia.org/wiki/Signal_element
http://en.wikipedia.org/wiki/Character_(computing)
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Parity_bit
http://en.wikipedia.org/wiki/Parallel_transmission
http://en.wikipedia.org/wiki/Signalling_(telecommunication)
http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Digital

the message. A parity bit can help to reduce this. However, electrical wire parallel data

transmission is therefore less reliable for long distances because corrupt transmissions

are far more likely.

Interrupt driven I/O:

In this technique, a CPU automatically executes one of a collection of special

routines whenever certain condition exists within a program or a processor system.

Example CPU gives response to devices such as keyboard, sensor and other components

when they request for service. When the CPU is asked to communicate with devices, it

services the devices. Example each time you type a character on a keyboard, a keyboard

service routine is called. It transfers the character you typed from the keyboard I/O port

into the processor and then to a data buffer in memory.

The interrupt driven I/O technique allows the CPU to execute its main program

and only stop to service I/O device when it is told to do so by the I/O system as shown in

fig.3. This method provides an external asynchronous input that would inform the

processor that it should complete whatever instruction that is currently being executed

and fetch a new routine that will service the requesting device. Once this servicing is

completed, the processor would resume exactly where it left off.

An analogy to the interrupt concept is in the classroom, where the professor serves

as CPU and the students as I/O ports. The classroom scenario for this interrupt analogy

will be such that the professor is busy in writing on the blackboard and delivering his

lecture.

The student raises his finger when he wants to ask a question (student requesting for

service). The professor then completes his sentence and acknowledges student‟s

request by saying “YES” (professor acknowledges the interrupt request). After

acknowledgement from the professor, student asks the question and professor gives

answer to the question (professor services the interrupt). After that professor continues

its remaining lecture form where it was left.

PIO 8255:

The parallel input-output port chip 8255 is also called as

programmableperipheral input-output port. The Intel‟s 8255 are designed for use with

Intel‟s 8-bit, 16-bit and higher capability microprocessors. It has 24 input/output

lineswhich may be individually programmed in two groups of twelve lines each, orthree

groups of eight lines.

The two groups of I/O pins are named as Group A and Group B. Each of thesetwo

groups contains a subgroup of eight I/O lines called as 8-bit port and anothersubgroup of

four lines or a 4-bit port. Thus Group A contains an 8-bit port Aalong with a 4-bit port C

upper.

The port A lines are identified by symbols PA0-PA7 while the port C lines are

identified as PC4-PC7 similarly. Group B contains an 8-bit port B, containing lines PB0-

PB7 and a 4-bit port C with lower bits PC0-PC3. The port C upper and port C lower can be

used in combination as an 8-bit port C. Both the port Cs is assigned the same address.

Thus one may have either three 8-bit I/O ports or two 8-bit and two 4-bit I/O ports from

8255. All of these ports can function independently either as input or as output ports.

This can be achieved by programming the bits of an internal register of 8255 called as

control word register (CWR). The internal block diagram and the pin configuration of

8255 are shown in figs.

The 8-bit data bus buffer is controlled by the read/write control logic. The read/write

control logic manages all of the internal and external transfer of both data and control

words. RD, WR, A1, A0 and RESET are the inputs, provided by the microprocessor to

READ/WRITE control logic of 8255. The 8-bit, 3-state bidirectional buffer is used to

interface the 8255 internal data bus with the external system data bus. This buffer

receives or transmits data upon the execution of input or output instructions by the

microprocessor. The control words or status information is also transferred through the

buffer.

Pin Diagram of 8255A

The pin configuration of 8255 is shown in fig.

 The port A lines are identified by symbols PA0-PA7 while the port C lines are
 Identified as PC4-PC7. Similarly, Group B contains an 8-bit port B, containing

lines PB0-PB7 and a 4-bit port C with lower bits PC0- PC3. The port C upper

and port C lower can be used in combination as an 8-bit port C.

 Both the port C is assigned the same address. Thus one may have either three

8-bit I/O ports or two 8-bit and two 4-bit ports from 8255. All of these ports

can function independently either as input or as output ports. This can be

achieved by programming the bits of an internal register of 8255 called as

control word register (CWR).

The 8-bit data bus buffer is controlled by the read/write control logic. The read/write

control logic manages all of the internal and external transfers of both data and

control words.

 RD,WR, A1, A0 and RESET are the inputs provided by the microprocessor to the

READ/ WRITE control logic of 8255. The 8-bit, 3-state bidirectional buffer is used to

interface the 8255 internal data bus with the external system data bus.

This buffer receives or transmits data upon the execution of input or output

instructions by the microprocessor. The control words or status information is also

transferred through the buffer.

The signal description of 8255 is briefly presented as follows:

PA7-PA0: These are eight port A lines that acts as either latched output or buffered

input lines depending upon the control word loaded into the control word register.

PC7-PC4: Upper nibble of port C lines. They may act as either output latches or input

buffers lines.
This port also can be used for generation of handshake lines in mode1 or mode2.

PC3-PC0: These are the lower port C lines; other details are the same as PC7-PC4

lines.

PB0-PB7: These are the eight port B lines which are used as latched output lines or
buffered input lines in the same way as port A.

RD: This is the input line driven by the microprocessor and should be low to indicate

read operation to 8255.

WR: This is an input line driven by the microprocessor. A low on this line indicates
write operation.

CS: This is a chip select line. If this line goes low, it enables the 8255 to respond to RD

and WR signals, otherwise RD and WR signal are neglected.
D0-D7: These are the data bus lines those carry data or control word to/from the

microprocessor.

RESET:Logic high on this line clears the control word register of 8255. All ports are
set as input ports by default after reset.

A1-A0: These are the address input lines and are driven by the microprocessor.
These lines A1-A0 with RD, WR and CS from the following operations for 8255. These

address lines are used for addressing any one of the four registers, i.e. three ports

and a control word register as given in table below.

In case of 8086 systems, if the 8255 is to be interfaced with lower order data bus,

the A0 and A1 pins of 8255 are connected with A1 and A2 respectively.

Modes of Operation of 8255

These are two basic modes of operation of 8255. I/O mode and Bit Set-Reset mode

(BSR).
In I/O mode, the 8255 ports work as programmable I/O ports, while in BSR mode only

port C (PC0-PC7) can be used to set or reset its individual port bits.
Under the I/O mode of operation, further there are three modes of operation of 8255,

so as to support different types of applications, mode 0, mode 1 and mode 2.
BSR Mode: In this mode any of the 8-bits of port C can be set or reset depending on D0

of the control word. The bit to be set or reset is selected by bit select flags D3, D2 and D1

of the CWR as given in table.

I/O Modes:

a) Mode 0 (Basic I/O mode): This mode is also called as basic input/output Mode. This

mode provides simple input and output capabilities using each of the threeports. Data

can be simply read from and written to the input and output portsrespectively, after

appropriate initialization.

The salient features of this mode are as listed below:

1. Two 8-bit ports (port A and port B) and two 4-bit ports (port C upper and lower)

are available. The two 4-bit ports can be combined used as a third 8-bit port.
2. Any port can be used as an input or output port.
3. Output ports are latched. Input ports are not latched.
4. A maximum of four ports are available so that overall 16 I/O configurations

arepossible.

All these modes can be selected by programming a register internal to 8255known as

CWR.

The control word register has two formats. The first format is valid for I/O modesof

operation, i.e. modes 0, mode 1 and mode 2 while the second format is validfor bit

set/reset (BSR) mode of operation.

These formats are shown in followingfig.

b) Mode 1: (Strobed input/output mode) In this mode the handshaking control the

input and output action of the specified port. Port C lines PC0-PC2, provide strobe

orhandshake lines for port B. This group which includes port B and PC0-PC2 is called

asgroup B for Strobed data input/output. Port C lines PC3-PC5 provides strobe lines for

portA.This group including port A and PC3-PC5 from group A. Thus port C is utilized

forgenerating handshake signals.

The salient features of mode 1 are listed as follows:

1. Two groups – group A and group B are available for strobed data transfer.
2. Each group contains one 8-bit data I/O port and one 4-bit control/data port.
3. The 8-bit data port can be either used as input and output port. The inputs

andoutputs both are latched.
4. Out of 8-bit port C, PC0-PC2 are used to generate control signals for port B

andPC3-PC5 are used to generate control signals for port A. the lines PC6, PC7

may be used as independent data lines.

The control signals for both the groups in input and output modes areexplained as

follows:

Input control signal definitions (mode 1):

• STB (Strobeinput) – If this lines falls to logic low level, the data available at 8-
bit input port is loaded into input latches.

• IBF (Input buffer full) – If this signal rises to logic 1, it indicates that data

hasbeen loaded into latches, i.e. it works as an acknowledgement. IBF is set

by a lowon STB and is reset by the rising edge of RD input.
• INTR (Interruptrequest) – This active high output signal can be used

tointerrupt the CPU whenever an input device requests the service. INTR is

set by ahigh STBpin and a high at IBF pin. INTE is an internal flag that can be

controlledby the bit set/reset mode of either PC4 (INTEA) or PC2 (INTEB) as

shown in fig.
• INTR is reset by a falling edge of RD input. Thus an external input device can

berequest the service of the processor by putting the data on the bus and

sending thestrobe signal.

Output control signal definitions (mode 1):

• OBF (Output buffer full) – This status signal, whenever falls to low,

indicatesthat CPU has written data to the specified output port. The OBF flip-

flop will beset by a rising edge of WR signal and reset by a low going edge at

the ACKinput.
• ACK (Acknowledgeinput) – ACK signal acts as an acknowledgement to begiven

by an output device. ACK signal, whenever low, informs the CPU that thedata

transferred by the CPU to the output device through the port is received

bythe output device.
• INTR (Interruptrequest) – Thus an output signal that can be used to

interruptthe CPU when an output device acknowledges the data received

from the CPU.INTR is set when ACK, OBF and INTE are 1. It is reset by a

fallingedge on WRinput. The INTEA and INTEB flags are controlled by the bit

set-reset mode ofPC6 and PC2 respectively.

c) Mode 2 (Strobed bidirectional I/O): This mode of operation of 8255 is alsocalled as

strobed bidirectional I/O. This mode of operation provides 8255 with additional features for

communicating with a peripheral device on an 8-bit databus. Handshaking signals are

provided to maintain proper data flow andsynchronization between the data transmitter

and receiver. The interruptgeneration and other functions are similar to mode 1.

In this mode, 8255 is a bidirectional 8-bit port with handshake signals. The Rdand WR signals

decide whether the 8255 is going to operate as an input port oroutput port.

The Salient features of Mode 2 of 8255 are listed as follows:

1. The single 8-bit port in group A is available.
2. The 8-bit port is bidirectional and additionally a 5-bit control port is available.
3. Three I/O lines are available at port C.(PC2 – PC0)
4. Inputs and outputs are both latched.

5. The 5-bit control port C (PC3-PC7) is used for generating / accepting

handshakesignals for the 8-bit data transfer on port A.

Control signal definitions in mode 2:

 INTR – (Interrupt request) As in mode 1, this control signal is active high and

isused to interrupt the microprocessor to ask for transfer of the next data

byteto/from it. This signal is used for input (read) as well as output (write)

operations.
 Control Signals for Output operations:
 OBF (Output buffer full) – This signal, when falls to low level, indicates that

theCPU has written data to port A.

 ACK (Acknowledge) This control input, when falls to logic low level,

Acknowledges that the previous data byte is received by the destination and

nextbyte may be sent by the processor. This signal enables the internal tristate

buffersto send the next data byte on port A.

 INTE1 (A flag associated with OBF) This can be controlled by bit set/resetmode

with PC6.

Control signals for input operations:

 STB (Strobe input)a low on this line is used to strobe in the data into the

inputLatches of 8255.

 IBF (Input buffer full) when the data is loaded into input buffer, this signal risesto

logic „1‟. This can be used as an acknowledge that the data has been receivedby

the receiver.

 The waveforms in fig show the operation in Mode 2 for output as well as

inputport.
 Note: WR must occur before ACK and STB must be activated before RD.

 The following fig shows a schematic diagram containing an 8-bit

bidirectionalport, 5-bit control port and the relation of INTR with the control

pins. Port B caneither be set to Mode 0 or 1 with port A(Group A) is in Mode

2.
 Mode 2 is not available for port B. The following fig shows the control word.
 The INTR goes high only if IBF, INTE2, STB and RD go high or OBF,
 INTE1, ACK and WR go high. The port C can be read to know the status of

theperipheral device, in terms of the control signals, using the normal

I/Oinstructions.

Interfacing Analog to Digital Data Converters:

 In most of the cases, the PIO 8255 is used for interfacing the analog to digital

converters with microprocessor.

 We have already studied 8255 interfacing with 8086 as an I/O port, in previous section.

This section we will only emphasize the interfacing techniques of analog to digital

converters with 8255.

 The analog to digital converters is treated as an input device by the microprocessor

that sends an initializing signal to the ADC to start the analogy to digital data

conversation process. The start of conversation signal is a pulse of a specific duration.

 The process of analog to digital conversion is a slow
 Process and the microprocessor have to wait for the digitaldata till the conversion is

over. After the conversion isover, the ADC sends end of conversion EOC signal toinform

themicroprocessor that the conversion is over andthe result is ready at the output

buffer of the ADC. Thesetasks of issuing an SOC pulse to ADC, reading EOC signalfrom

the ADC and reading the digital output of the ADCare carried out by the CPU using

8255 I/O ports.

 The time taken by the ADC from the active edge of SOCpulse till the active edge of EOC

signal is called as theconversion delay of the ADC.

 It may range anywhere from a few microseconds in caseof fast ADC to even a few
hundred milliseconds in case ofslow ADCs.

 The available ADC in the market use different conversiontechniques for conversion of

analog signal to digitals.Successive approximation techniques and dual

slopeintegration techniques are the most popular techniquesused in the integrated

ADC chip.
 General algorithm for ADC interfacing contains thefollowing steps:
 Ensure the stability of analog input, applied to the ADC.
 Issue start of conversion pulse to ADC
 Read end of conversion signal to mark the end ofconversion processes.
 Read digital data output of the ADC as equivalent digitaloutput.
 Analog input voltage must be constant at the input of theADC right from the start of

conversion till the end of theconversion to get correct results. This may be ensured by

asample and hold circuit which samples the analog signaland holds it constant for

specific time duration. Themicroprocessor may issue a hold signal to the sample

andhold circuit.

 If the applied input changes before the completeconversion process is over, the digital
equivalent of theanalog input calculated by the ADC may not be correct.

ADC 0808/0809:

 The analog to digital converter chips 0808 and 0809 are 8-bit CMOS,

successive approximation converters. This technique is one of the fast

techniques for analog to digital conversion. The conversion delay is 100µs at a

clock frequency of 640 KHz, which is quite low as compared to other

converters. These converters do not need any external zero or full scale

adjustments as they are already taken care of by internal circuits.

 These converters internally have a 3:8 analog multiplexer so that at a time

eight different analog conversion by using address lines - ADD A, ADD B,

ADD C, as shown. Using these address inputs, multichannel data acquisition

system can be designed using a single ADC. The CPU may drive these lines

using output port lines in case of multichannel applications. In case of

single input applications, these may be hardwired to select the proper

input.

 There are unipolar analog to digital converters, i.e. they are able to convert

only positive analog input voltage to their digital equivalent. These chips do

not contain any internal sample and hold circuit.

 If one needs a sample and hold circuit for the conversion of fast signal into

equivalent digital quantities, it has to be externally connected at each of the

analog inputs.

Fig (1) and Fig (2) show the block diagrams and pin diagrams for ADC 0808/0809.

Table.1

Analog I/P selected
Address lines

C B A

I/P 0 0 0 0

I/P 1 0 0 1

I/P 2 0 1 0

I/P 3 0 1 1

I/P 4 1 0 0

I/P 5 1 0 1

I/P 6 1 1 0

I/P 7 1 1 1

Fig.1 Block Diagram of ADC 0808/0809

Fig.2 Pin Diagram of ADC 0808/0809

Some Electrical Specifications Of The ADC 0808/0809 Are Given In Table.2.

Table.2

The Timing Diagram Of Different Signals Of Adc0808 Is Shown In Fig.3

Fig.3 Timing Diagram Of ADC 0808.

Interfacing ADC0808 with 8086

Interfacing Digital To Analog Converters:

The digital to analog converters convert binary numbers into their analog

equivalent voltages. The DAC find applications in areas like digitally controlled gains,

motor speed controls, programmable gain amplifiers, etc.

DAC0800 8-bit Digital to Analog Converter

 The DAC 0800 is a monolithic 8-bit DAC

manufactured by National Semiconductor.
 It has settling time around 100ms and can operate

on

a range of power supply voltages i.e. from 4.5V to +18V.
 Usually the supply V+ is 5V or +12V.
 The V-pin can be kept at a minimum of -12V.

Pin Diagram of DAC 0800

Interfacing DAC0800 with 8086

Ad 7523 8-Bit Multiplying DAC:

 Intersil‟s AD 7523 is a 16 pin DIP, multiplying digital to analog converter,

containing R-2R ladder(R=10KΩ) for digital to analog conversion along with

single pole double through NMOS switches to connect the digital inputs to

the ladder.

Pin Diagram of AD7523

 The supply range extends from +5V to +15V , while Vref may be anywhere

between -10V to +10V. The maximum analog output voltage will be +10V,

when all the digital inputs are at logic high state. Usually a Zener is connected

between OUT1 and OUT2 to save the DAC from negative transients.

 An operational amplifier is used as a current to voltage converter at the output

of AD 7523 to convert the current output of AD7523 to a proportional output

voltage.

111

 It also offers additional drive capability to the DAC output. An external

feedback resistor acts to control the gain. One may not connect any external

feedback resistor, if no gain control is required.

Interfacing AD7523 with 8086

Stepper Motor Interfacing:

 A stepper motor is a device used to obtain an accurate position control of

rotating shafts. It employs rotation of its shaft in terms of steps, rather than

continuous rotation as in case of AC or DC motors. To rotate the shaft of the

stepper motor, a sequence of pulses is needed to be applied to the windings of

the stepper motor, in a proper sequence.

 The number of pulses required for one complete rotation of the shaft of the

stepper motor is equal to its number of internal teeth on its rotor. The stator

teeth and the rotor teeth lock with each other to fix a position of the shaft.

 With a pulse applied to the winding input, the rotor rotates by one teeth position

or an angle x. The angle x may be calculated as:

X=3600/no. of rotor teeth

 After the rotation of the shaft through angel x, the rotor locks itself with the next
tooth in the sequence on the internal surface of stator.

 The internal schematic of a typical stepper motor with four windings is shown in

fig.1.

 The stepper motors have been designed to work with digital circuits. Binary level

pulses of 0-5V are required at its winding inputs to obtain the rotation of shafts.

The sequence of the pulses can be decided, depending upon the required motion

of the shaft.

 Fig.2 shows a typical winding arrangement of the stepper motor.
 Fig.3 shows conceptual positioning of the rotor teeth on the surface of rotor, for

a six teeth rotor.

Fig.1 Internal schematic of a four winding stepper motor

Fig.2 Winding arrangement of a stepper motor.

Fig.3 Stepper motor rotor

 The circuit for interfacing a winding Wn with an I/O port is given in fig.4. Each of

the windings of a stepper motor needs this circuit for its interfacing with the

output port. A typical stepper motor may have parameters like torque 3 Kg-cm,
operating voltage 12V, current rating 0.2 A and a step angle 1.80 i.e. 200
steps/revolution (number of rotor teeth).

 A simple schematic for rotating the shaft of a stepper motor is called a wave

scheme. In this scheme, the windings Wa, Wb, Wc and Wd are applied with the

required voltages pulses, in a cyclic fashion. By reversing the sequence of

excitation, the direction of rotation of the stepper motor shaft may be reversed.

 Table.1 shows the excitation sequences for clockwise and anticlockwise rotations.

Another popular scheme for rotation of a stepper motor shaft applies pulses to

two successive windings at a time but these are shifted only by one position at a

time. This scheme for rotation of stepper motor shaft is shown in table2.

Fig.4 interfacing stepper motor winding.

Table.1 Excitation sequence of a stepper motor using wave switching scheme.

 Motion step A B C D

 1 1 0 0 0

 2 0 1 0 0

Clock wise

 3 0 0 1 0

 4 0 0 0 1

 5 1 0 0 0

 1 1 0 0 0

Anticlock

2 0 0 0 1

3 0 0 1 0

wise

4 0 1 0 0

 5 1 0 0 0

Table.2 An alternative scheme for rotating stepper motor shaft

Motion step A B C D

 1 0 0 1 1

 2 0 1 1 0

Clock wise 3 1 1 0 0

 4 1 0 0 1

 5 0 0 1 1

 1 0 0 1 1

Anticlock
2 1 0 0 1

3 1 1 0 0

wise

4 0 1 1 0

 5 0 0 0 0

Keyboard Interfacing

 In most keyboards, the key switches are connected in a matrix of Rows and Columns.

 Getting meaningful data from a keyboard requires three major tasks:

1. D e t e c t a k e y p r e s s

2. D e b o u n c e t h e k e y p r e s s .

3. Encode the keypress (produce a standard code for the pressed key).

Logic „0‟ is read by the microprocessor when the key is pressed.

Key Debounce:

Whenever a mechanical push-bottom is pressed or released once,the mechanical

components of the key do not change the positionsmoothly; rather it generates a

transient response. These may be interpreted as the multiple pressures and responded

accordingly.

 The rows of the matrix are connected to four output Port lines, &columns are

connected to four input Port lines.
 When no keys are pressed, the column lines are held high by the pull-up resistors

connected to +5v.
 Pressing a key connects a row & a column.
 To detect if any key is pressed is to output 0‟s to all rows & then check columns

to see it a pressed key has connected a low (zero) to a column.
 Once the columns are found to be all high, the program enters another loop,

which waits until a low appears on one of the columns i.e indicating a key press.
 A simple 20/10 msec delay is executed to debounce task.
 After the debounce time, another check is made to see if the key is still pressed.

If the columns are now all high, then no key is pressed & the initial detection was

caused by a noise pulse.
 To avoid this problem, two schemes are suggested:

1. Use of Bistablemultivibrator at the output of the key to debounce it.
2. The microprocessor has to wait for the transient period (at least for 10

ms), so that the transient response settles down and reaches a steady

state.

 If any of the columns are low now, then the assumption is made that it was a

valid key press.

 The final task is to determine the row & column of the pressed key &convert this

information to Hex-code for the pressed key.

 The 4-bit code from I/P port & the 4-bit code from O/P port (row &column) are
converted to Hex-code.

Interfacing 4x4 keyboard

Display Interface

Interfacing multiplexed 7-segment display

Interfacing with Advanced devices

4.1 MEMORY AND I/O INTERFACING

(Ref: Interfacing through Microprocessors by K. Subba Rao, Hi-tech publishers, P. 163-166)

4.1.1 I/O Interface
Any application of a microprocessor system requires the

transfer of data between microprocessor and external environment and also with in the
microprocessor. This is known as Input/Output. There are three different ways that the data transfer
can take place. They are

(1) Program controlled I/O
(2) Interrupt Program Controlled I/O
(3) Hardware controlled I/O

In program controlled I/O data transfer scheme the transfer of
data is completely under the control of the microprocessor program. In this case an I/O operation
takes place only when an I/O transfer instruction is executed.

In an interrupt program controlled I/O an external device
indicates directly to the microprocessor its readiness to transfer data by a signal at an interrupt input
of the microprocessor. When microprocessor receives this signal the control is transferred to ISS
(Interrupt service subroutine) which performs the data transfer.

Hardware controlled I/O is also known as direct memory
access DMA. In this case the data transfer takes place directly between an I/O device and memory but
not through microprocessors. Microprocessor only initializes the process of data transfer by indicating
the starting address and the number of words to be transferred.

The instruction .set of any microprocessor contains
instructions that transfer information to an I/O device and to read information from an I/O device. In
8086 we have IN, OUT instructions for this purpose. OUT instruction transfers information to an I/O
device where as IN instruction is used to read information from an I/O device. Both the instructions
perform the data transfer using accumulator AL or AX. The I/O address is stored in register DX.

The port number is specified along with IN or OUT instruction.
The external I/O interface decodes to find the address of the I/O device. The 8 bit fixed port number

appears on address bus A0 - A7 with A8 - A15 all zeros. The address connections above A15 are

undefined for an I/O instruction. The 16 bit variable port number appears on address connections A0 -

A15. The above notation indicates that first 256 I/O port addresses 00 to FF are accessed by both the
fixed and variable I/O instructions. The I/O addresses from 0000 to FFFF are accessed by the variable
I/O address.

I/O devices can be interfaced to the microprocessors using
two methods. They are I/O mapped I/O and memory mapped I/O. The I/O mapped I/O is also known
as isolated I/O or direct I/O. In I/O mapped I/O the IN and OUT instructions transfer data between the
accumulator or memory and I/O device. In memory mapped I/O the instruction that refers memory
can perform the data transfer.

I/O mapped I/O is the most commonly used I/O transfer technique. In this method I/O locations are
placed separately from memory. The addresses for isolated I/O devices are separate from memory.
Using this method user can use the entire memory. This method allows data transfer only by using

instructions IN, OUT. The pins M/ IO and W/R are used to indicate I/O read or an I/O write operations.
The signals on these lines indicate that the address on the address bus is for I/O devices.

Memory mapped I/O does not use the IN, OUT instruction it
uses only the instruction that transfers data between microprocessor and memory. A memory
mapped I/O device is treated as memory location. The disadvantage in this system is the overall
memory is reduced. The advantage of this system is that any memory transfer instruction can be used
for data transfer and control signals like I/O read and I/O write are not necessary which simplify the
hardware.

4.1.2 Memory interfacing
Memory is an integral part of a microcomputer system. There

are two main types of memory.
(i) Read only memory (ROM): As the name indicates this memory is available only for

reading purpose. The various types available under this category are PROM, EPROM,
EEPROM which contain system software and permanent system data.

(ii) Random Access memory (RAM): This is also known as Read Write Memory. It is a volatile
memory. RAM contains temporary data and software programs generally for different
applications.

While executing particular task it is necessary to access
memory to get instruction codes and data stored in memory. Microprocessor initiates the necessary
signals when read or write operation is to be performed. Memory device also requires some signals to
perform read and write operations using various registers. To do the above job it is necessary to have
a device and a circuit, which performs this task is known as interfacing device and as this is involved
with memory it-is known as memory interfacing device. The basic concepts of memory interfacing
involve three different tasks. The microprocessor should be able to read from or write into the
specified register. To do this it must be able to select the required chip, identify the required register
and it must enable the appropriate buffers.

Any memory device must contain address lines and Input,

output lines, selection input, control input to perform read or write operation. All memory devices
have address inputs that select memory location with in the memory device. These lines are labeled as

AO AN. The number of address lines indicates the total memory capacity of the memory device. A

1K memory requires 10 address lines A0-A9. Similarly a 1MB requires 20 lines A0-A19 (in the case of
8086). The memory devices may have separate I/O lines or a common set of bidirectional I/O lines.
Using these lines data can be transferred in either direction. Whenever output buffer is activated the
operation is read whenever input buffers are activated the operation is write. These lines are labelled

as I/O,......... I/On or DODn. The size of a memory location is dependent upon the number of

data bits. If the number of data lines are eight D0 - D7 then 8 bits or 1 byte of data can be stored in

each location. Similarly if numbers of data bits are 16 (D0 - D15) then the memory size is 2 bytes. For
example 2K x 8 indicates there are 2048 memory locations and each memory location can store 8 bits
of data.

Memory devices may contain one or more inputs which are

used to select the memory device or to enable the memory device. This pin is denoted by CS (Chip

select) or CE (Chip enable). When this pin is at logic '0' then only the memory device performs a read
or a write operation. If this pin is at logic ‘1’ the memory chip is disabled. If there are more than one

CS input then all these pins must be activated to perform read or write operation.

All memory devices will have one or more control inputs.

When ROM is used we find OE output enable pin which allows data to flow out of the output data

pins. To perform this task both CS and OE must be active. A RAM contains one or two control inputs.

They are R / W or RD and WR . If there is only one input R/ W then it performs read

operation when R/ W pin is at logic 1. If it is at logic 0 it performs write operation. Note that this is
possible only when CS is also active.

4.4 Memory Interface using RAMS, EPROMS and EEPROMS

(Ref: Advanced Microprocessors and Peripherals by A.K. Ray & K.M. Bhurchandi, McGraw-Hill, 2nd Edition.P.158-
164)

Semiconductor Memory Interfacing:
Semiconductor memories are of two types, viz. RAM (Random Access Memory) and ROM (Read Only
Memory).

Static RAM Interfacing:
The semiconductor RAMs are of broadly two types-static RAM and dynamic RAM. The

semiconductor memories are organised as two dimensional arrays of memory locations. For example,
4K x 8 or 4K byte memory contains 4096 locations, where each location contains 8-bit data and only
one of the 4096 locations can be selected at a time. Obviously, for addressing 4K bytes of memory,
twelve address lines are required. In general, to address a memory location out of N memory locations

, we will require at least n bits of address, i.e. n address lines where n = Log2 N. Thus if the
microprocessor has n address lines, then it is able to address at the most N locations of memory,

where 2n = N. However, if out of N locations only P memory locations are to be interfaced, then the
least significant p address lines out of the available n lines can be directly connected from the
microprocessor to the memory chip while the remaining (n-p) higher order address lines may be used
for address decoding (as inputs to the chip selection logic). The memory address depends upon the
hardware circuit used for decoding the chip select (CS). The output of the decoding circuit is

connected with the CS pin of the memory chip. The general procedure of static memory interfacing
with 8086 is briefly described as follows:

1. Arrange the available memory chips so as to obtain 16-bit data bus width. The upper 8-bit
bank is called ‘odd address memory bank’ and the lower 8-bit bank is called ‘even address memory
bank’.

2. Connect available memory address lines of memory chips with those of the microprocessor

and also connect the memory RD and WR inputs to the corresponding processor control signals.
Connect the 16-bit data bus of the memory bank with that of the microprocessor 8086.

3. The remaining address lines of the microprocessor, BHE and A0 are used for decoding the

required chip select signals for the odd and even memory banks. CS of memory is derived from the
O/P of the decoding circuit.

As a good and efficient interfacing practice, the address map of the system should be
continuous as far as possible, i.e. there should be no windows in the map. A memory location should
have a single address corresponding to it, i.e. absolute decoding should be preferred, and minimum
hardware should be used for decoding. In a number of cases, linear decoding may be used to minimise
the required hardware.Let us now consider a few example problems on memory interfacing with
8086.

SERIAL COMMUNICATION STANDARDS
(Ref: Interfacing through Microprocessors by K. Subba Rao, Hi-tech publishers, P. 250-260)

Most of devices are parallel in nature. These devices transfer data simultaneously on data
lines. But parallel data transfer process is very complicated and expensive. Hence in some situations
the serial I/O mode is used where one bit is transferred over a single line at a time. In this type of
transmission parallel word is converted into a stream of serial bits which is known as parallel to serial
conversion. The rate of transmission in serial mode is BAUD, i.e., bits per second. The serial data
transmission involves starting, end of transmission, error verification bits along with the data. Any
serial I/O involves the following concepts.

(a) Interfacing requirements (b) Alphanumeric codes (c) Transmission format (d) Error checks in data
communication (e) Data communication over lines (f) Standards in serial I/O

The microprocessor has to identify the port address to perform read or write operation. Serial
I/O uses only one data line, chip select, read, write control signals.

Data transfer takes place using ASCII code (American standard code for Information
Interchange) which is 7 bit code with 128 combinations. The data can be transmitted by taking various
parameters into consideration such as synchronization or asynchronization, direction of data flow
speed, errors, medium of data transmission etc. In synchronous transmission both transmitter and
receiver operate, in synchronous to each other.

Synchronization used for high speed operations. In asynchronous data transmission data is
transmitted between Start and Stop bits with logic 1 as mark logic 0 as space. In asynchronous we get
around 11 bits for data transmission one start, 8 bits of data, 2 stop bits. A synchronous data
transmission is used for less than 20 Kbits /second transmission.

DIFFERENCE BETWEEN SYNCHRONOUS AND ASYNCHRONOUS TRANSMISSION

5.2 UNIVERSAL SYNCHRONOUS/ASYNCHRONOUS
RECEIVER/TRANSMITTER (USART)

The 8251A is Universal Synchronous/Asynchronous Receiver/Transmitter (USART) designed
for the data communication with Intel's family of microprocessor such as 8085, 8086 and 8088. Like
other I/O devices in a microcomputer system, its functional configuration is programmed by the
system's software for maximum flexibility. The USART accepts data characters from the CPU in the
parallel format and converts them into continuous serial data stream for transmission.
Simultaneously, it can receive serial data streams arid convert them into parallel data characters for
the CPU. The CPU can read the complete status of USART at any time, these includes data
transmission errors, control signals etc.

Fig. 5.7 Block diagram of 8251

Fig. 5.7 shows the block diagram of 8251 A. The block diagram shows all the elements of a
programmable chip; it includes the interfacing signals, the control register and the status register. The
functions of various blocks are described below:

(A) Data bus buffer: This 3-state, bidirectional buffer is used to interface the 8251A to the system data
bus. Data is transmitted or received by the buffer upon execution of input and output instruction of
the CPU Command words and status information are also transferred through the data bus buffer. The
command, status and data in and data out are separate 8-bit registers to provide double buffering.

The functional block accepts inputs form the control bus and generates control signals for
overall device operation. It contains the control word register and command word register that store
the various control formats for the device functional definition.

For example
If Baud rate equals 220 Baud
TXC equals 220 Hz in the 1x mode.
TXC equals 3.52 KHz in the 16x mode.

TXC equals 14.08 KHz in the 64x mode.

The falling edge of TXC shifts the serial data out of the

8251A.

INTERFACING STANDARDS
(Ref: Interfacing through Microprocessors by K. Subba Rao, Hi-tech publishers, P. 266)

Serial I/O is used to interface various devices or for connecting various equipment to the
system. Common understanding is necessary among various manufacturers such that a standard
notation is followed for interfacing these components. These standards may be provided by IEEE or by
any standard professional organisation. The serial I/O standards must specify clearly voltage levels,
speed of data transfer, length of cables etc. In serial I/O data can be transmitted as either current or
voltage 20 mA or 60 mA current loops are used if data is transmitted using current. Current flow takes
place when the system is at logic 1. The current flow is stopped when the system is at logic 0. In the
current loop method the signals are relatively noise-free and they are best suited for long distance
transmission.

RS-232 is developed long before which is used for communication between terminals and
modems. Using RS-232C data can be transmitted as voltage. The data terminals equipment and data
communication equipment are used to communicate using RS-232C cable. RS-232C is not compatible
with TTL logic and cannot be used for long distance transmission.

RS-232C Serial Data Standard

(Ref: Microprocessors and interfacing by Douglas V. Hall, 2nd edition, TMH, P.494-495)

OVERVIEW
Modems were developed so that terminals could use phone lines to communicate with

distant computers. As we stated earlier, modems and other devices used to send serial data are often
referred to as data communication equipment or DCE. The terminals or computers that are sending or
receiving the data are referred to as data terminal equipment or DTE. In response to the need for
signal and handshake standards between DTE and DCE, the Electronic Industries Association (EIA)
developed EIA standard RS-232C. This standard describes the function of 25 signal and handshake pins
for serial-data transfer. It also describes the voltage levels, impedance levels, rise and fall times,
maximum bit rate, and maximum capacitance for these signal lines.

RS-232C specifies 25 signal pins, and it specifies that the DTE connector should be a male and
the DCE connector should be a female. A specific connector is not given, but the most commonly used
connectors are the DB-25P male shown in Figure 14-7a. For systems where many of the 25 pins are
not needed, a 9-pin DIN connector such as the DE-9P male connector shown in Figure 14-7b is used.

The voltage levels for all RS-232C signals are as follows. A logic high, or mark, is a voltage
between -3V and -15 V under load (-25 V no load). A logic low or space is a voltage between +3 V and
+15 V under load (+ 25 V no load). Voltages such as ±12 V are commonly used.

RS-232C to TTL INTERFACING
Obviously a USART such as the 8251A is not directly compatible with RS-232C signal levels. The

standard way to interface between RS-232C and TTL levels is with MCI488 quad TTL-to-RS-232C
drivers and MCI489 quad RS-232C-to-TTL receivers shown in Figure 14-8.

The MCI488s require + and - supplies, but the MCI489s require only+ 5 V. Note the capacitor
to ground on the outputs of the MCI488 drivers is to reduce cross talk between adjacent wires, the
rise and fall times for RS-232C signals are limited to 30 V/µs.

RS-232C SIGNAL DEFINITIONS

Figure 14-9 shows the signal names, signal direction, and a brief description for each of the 25
pins denned for RS-232C. For most applications only a few of these pins are used.
Note that the signal direction is specified with respect to the DGE, this convention is part of the
standard. Note that there is both a chassis ground (pin 1) and a signal ground (pin 7). To prevent large
ac-induced ground currents in the signal ground, these two should be connected together only at the
power supply in the terminal or the computer.

The TxD, RxD, and handshake signals shown with common names in Figure 14-9 are the ones most often
used for simple systems. These signals control what is called the primary or forward communications
channel of the modem. Some modems allow communication over a secondary or backward channel,
which operates in the reverse direction from the forward channel and at a much lower baud rate. Pins
12, 13, 14, 16, and 19 are the data and handshake lines for this backward channel. Pins 15, 17, 21, and
24 are used for synchronous data communication.

UNIT -IV

Introduction to Microcontrollers:

 Overview of 8051 Microcontroller

 Architecture

 I/O Ports

 Memory Organization

 Addressing Modes and Instruction set of 8051

 Simple Programs

 memory interfacing to 8051

The necessary tools for a microprocessor/controller:

• CPU: Central Processing Unit
• I/O: Input /Output
• Bus: Address bus & Data bus
• Memory: RAM & ROM
• Timer
• Interrupt
• Serial Port
• Parallel Port
•

Microprocessors:

General-purpose microprocessor :

• CPU for Computers
• No RAM, ROM, I/O on CPU chip itself
• Example：Intel’s x86, Motorola’s 680x0

Microcontroller :

• A smaller computer
• On-chip RAM, ROM, I/O ports...
• Example：Motorola’s 6811, Intel’s 8051, Zilog’s Z8 and PIC 16X

•

Microprocessor vs. Microcontroller :

8051 Microcontroller Hardware:

The 8051 microcontroller actually includes a whole family of microcontrollers

that have numbers ranging from 8031 to 8751 and are available in N-Channel

Metal Oxide Silicon (NMOS) and Complementary Metal Oxide Silicon (CMOS)

construction in a variety of

housed in a 40-pin DIP, and direct the investigation of a particular type to the

data books.

The block diagram of the 8051 in Figure 2. la shows all of the features unique to

microcontrollers:

1. Internal ROM and RAM

2. I/O ports with programmable pins

3. Timers and counters

4. Serial data communication

The figure also shows the usual CPU components: program counter, ALU,

working registers, and clock circuits.'

The 8051 architecture consists of these specific features:

 Eight-bit CPU with registers A (the accumulator) and B

 Sixteen-bit program counter (PC) and data pointer (DPTR)

 Eight-bit program status word (PSW)

 Eight-bit stack pointer (SP)

 Internal ROM or EPROM (8751) of 0 (8031) to 4K (8051)

 Internal RAM of 128 bytes:

 Four register banks, each containing eight registers

 Sixteen bytes, which may be addressed at the bit level

 Eighty bytes of general-purpose data memory

 Thirty-two input/output pins arranged as four 8-bit ports: PO-P3

 Two 16-bit timer/counters: TO and Tl

 Full duplex serial data receiver/transmitter: SBUF

 Control registers: TCON, TMOD, SCON, PCON, IP, and IE

 Two external and three internal interrupt sources

 Oscillator and clock circuits

The programming model of the 8051 in Figure 2. Ib shows the 8051 as a

collection of 8- and 16-bit registers and 8-bit memory locations. These registers

and memory locations can be made to operate using the software instructions that

are incorporated as part of the design. The program instructions have to do with

the control of the registers and digital data paths that are physically contained

inside the 8051, as well as memory locations that are physically located outside

the 8051.

The model is complicated by the number of special-purpose registers that must be

present to make a microcomputer a microcontroller. A cursory inspection of the

model is recommended for the first-time viewer; return to the model as needed

while progressing through the remainder of the text.

Most of the registers have a specific function; those that do occupy an individual

block with a symbolic name, such as A or THO or PC. Others, which are

generally indistinguishable from each other, are grouped in a larger block, such

as internal ROM or RAM memory.

Each register, with the exception of the program counter, has an internal 1-byte

address assigned to it. Some registers (marked with an asterisk * in Figure 2.1b)

are both byte and bit addressable. That is, the entire byte of data at such register

addresses may be read or altered, or individual bits may be read or altered.

Software instructions are generally able to specify a register by its address, its

symbolic name, or both. A pinout of the 8051 packaged in a 40-pin DIP is shown

in Figure 2.2 with the full and abbreviated names of the signals for each pin. It is

important to note that many of the pins are used for more than one function (the

alternate functions are shown in parentheses in Figure 2.2). Not all of the possible

8051 features may be used at the same time.

Programming instructions or physical pin connections determine the use of any

multifunction pins. For example, port 3 bit 0 (abbreviated P3.0) may be used as a

general purpose I/O pin, or as an input (RXD) to SBUF, the serial data receiver

register. The system designer decides which of these two functions is to be used

and designs the hardware and software affecting that pin accordingly.

Program Counter and Data Pointer

The 8051 contains two 16-bit registers: the program counter (PC) and the data

pointer (DPTR). Each is used to hold the address of a byte in memory.

Program instruction bytes are fetched from locations in memory that are

addressed by the PC. Program ROM may be on the chip at addresses OOOOh to

OFFFh, external to the chip for addresses that exceed OFFFh, or totally external

for all addresses from OOOOh to FFFFh. The PC is automatically incremented

after every instruction byte is fetched and may also be altered by certain

instructions. The PC is the only register that does not have an internal address.

The DPTR register is made up of two 8-bit registers, named DPH and DPL, that

are

used to furnish memory addresses for internal and external code access and

external data access. The DPTR is under the control of program instructions and

can be specified by its 16-bit name, DPTR, or by each individual byte name,

DPH and DPL. DPTR does not have a single internal address; DPH and DPL are

each assigned an address.

A and B CPU Registers

The 8051 contains 34 general-purpose, or working, registers. Two of these,

registers A and B, comprise the mathematical core of the 8051 central processing

unit (CPU). The other 32 are arranged as part of internal RAM in four banks,

BO-B3, of eight registers each, named RO to R7.

The A (accumulator) register is the most versatile of the two CPU registers and is

used for many operations, including addition, subtraction, integer multiplication

and division, and Boolean bit manipulations. The A register is also used for all

data transfers between the 8051 and any external memory. The B register is used

with the A register for multiplication and division operations and has no other

function other than as a location where data may be stored.

Flags and the Program Status Word (PSW):

Flags are I -bit registers provided to store the results of certain program

instructions. Other instructions can test the condition of the flags and make

decisions based upon the flag states. In order that the flags may be conveniently

addressed, they are grouped inside the program status word (PSW) and the power

control (PCON) registers.

The 8051 has four math flags that respond automatically to the outcomes of math

operations and three general-purpose user flags that can be set to I or cleared to 0

by the programmer as desired. The math flags include carry (C), auxiliary carry

(AC), overflow (OV), and parity (P). User flags are named FO, GFO, and GF1;

they are general-purpose flags that may be used by the programmer to record

some event in the program. Note that all of the flags can be set and cleared by the

programmer at will. The math flags, however, are also affected by math

operations.

The program status word is shown in Figure 2.4. The PSW contains the math

flags,

user program flag FO, and the register select bits that identify which of the four

generalpurpose register banks is currently in use by the program. The remaining

two user flags, GFO and GFl, are stored in PCON, which is shown in Figure

2.13.

Detailed descriptions of the math flag operations will be discussed in chapters

that

cover the opcodes that affect the flags. The user flags can be set or cleared using

data move instructions covered in Chapter 3.

Internal Memory:

A functioning computer must have memory for program code bytes, commonly

in ROM, and RAM memory for variable data that can be altered as the program

runs. The 8051 has internal RAM and ROM memory for these functions.

Additional memory can be added externally using suitable circuits.

Unlike microcontrollers with Von Neumann architectures, which can use a single

memory address for either program code or data, but not for both, the 8051 has a

Harvard architecture, which uses the same address, in different memories, for

code and data. Internal circuitry accesses the correct memory based upon the

nature of the operation in progress.

Internal RAM:

The 128-byte internal RAM, which is shown generally in Figure 2.1 and in detail

in Figure 2.5, is organized into three distinct areas:

1. Thirty-two bytes from address OOh to I Fh that make up 32 working registers

organized as four banks of eight registers each. The four register banks are

numbered 0 to 3 and are made up of eight registers named RO to R7. Each

register

can be addressed by name (when its bank is selected) or by its RAM address.

Thus RO of bank 3 is RO (if bank 3 is currently selected) or address 18h

(whether

bank 3 is selected or not). Bits RSO and RSI in the PSW determine which bank

of registers is currently in use at any time when the program is running.

Register banks not selected can be used as general-purpose RAM. Bank 0 is

selected upon reset.

2. A Wf-addressable area of 16 bytes occupies RAM byte addresses 20h to 2Fh,

forming a total of 128 addressable bits. An addressable bit may be specified by

its bit address of OOh to 7Fh, or 8 bits may form any byte address from 20h to

2Fh. Thus, for example, bit address 4Fh is also bit 7 of byte address 29h.

Addressable bits are useful when the program need only remember a binary event

(switch on, light off, etc.). Internal RAM is in short supply as it is, so why use a

byte when a bit will do?

3. A general-purpose RAM area above the bit area, from 30h to 7Fh,

addressable as bytes.

PortO:

Port 0 pins may serve as inputs, outputs, or, when used together, as a bi-

directional loworder address and data bus for external memory. For example,

when a pin is to be used as an input, a 1 must be written to the corresponding port

0 latch by the program, thus turning both of the output transistors off, which in

turn causes the pin to "float" in a highimpedance state, and the pin is essentially

connected to the input buffer.

When used as an output, the pin latches that are programmed to a 0 will turn on

the

lower FET, grounding the pin. All latches that are programmed to a 1 still float;

thus,external pullup resistors will be needed to supply a logic high when using

port 0 as an output.

When port 0 is used as an address bus to external memory, internal control

signals

switch the address lines to the gates of the Field Effect Transistories (FETs). A

logic I on an address bit will turn the upper FET on and the lower FET off to

provide a logic high at the pin. When the address bit is a zero, the lower FET is

on and the upper FET off to

provide a logic low at the pin. After the address has been formed and latched into

external circuits by the Address Latch Enable (ALE) pulse, the bus is turned

around to become a data bus. Port 0 now reads data from the external memory

and must be configured as an input, so a logic 1 is automatically written by

internal control logic to all port 0 latches.

Port l

Port 1 pins have no dual functions. Therefore, the output latch is connected

directly to the gate of the lower FET, which has an FET circuit labeled "Internal

FET Pull up" as an active pull up load.

Used as an input, a 1 is written to the latch, turning the lower FET off; the pin

and the input to the pin buffer are pulled high by the FET load. An external

circuit can overcome the high impedance pull up and drive the pin low to input a

0 or leave the input high for a 1.

If used as an output, the latches containing a I can drive the input of an external

circuit high through the pull up. If a 0 is written to the latch, the lower FET is on,

the pull up is off, and the pin can drive the input of the external circuit low.

To aid in speeding up switching times when the pin is used as an output, the

internal FET pull up has another FET in parallel with it. The second FET is

turned on for two oscillator time periods during a low-to-high transition on the

pin, as shown in Figure 2.7.

This arrangement provides a low impedance path to the positive voltage supply to

help reduce rise times in charging any parasitic capacitances in the external

circuitry.

Port 2

Port 2 may be used as an input/output port similar in operation to port 1. The

alternate use of port 2 is to supply a high-order address byte in conjunction with

the port 0 low-order byte to address external memory.

Port 2 pins are momentarily changed by the address control signals when

supplying the high byte of a 16-bit address. Port 2 latches remain stable when

external memory is addressed, as they do not have to be turned around (set to 1)

for data input as is the case for port 0.

Port3

Port 3 is an input/output port similar to port I. The input and output functions can

be programmed under the control of the P3 latches or under the control of various

other special function registers. The port 3 alternate uses are shown in the

following table:-

Unlike ports 0 and 2, which can have external addressing functions and change

all

eight port bits when in alternate use, each pin of port 3 may be individually

programmed to be used either as I/O or as one of the alternate functions.

External Memory

The system designer is not limited by the amount of internal RAM and ROM

available on chip. Two separate external memory spaces are made available by

the 16-bit PC and DPTR and by different control pins for enabling external ROM

and RAM chips. Internal control circuitry accesses the correct physical memory,

depending upon the machine cycle state and the op code being executed.

There are several reasons for adding external memory, particularly program

memory, when applying the 8051 in a system. When the project is in the

prototype stage, the expense—in time and money—of having a masked internal

ROM made for each program "try" is prohibitive.

To alleviate this problem, the manufacturers make available an EPROM version,

the 8751, which has 4K of on-chip EPROM that may be programmed and erased

as needed as the program is developed. The resulting circuit board layout will be

identical to one that uses a factory-programmed 8051. The only drawbacks to the

8751 are the specialized EPROM programmers that must be used to program the

non-standard 40-pin part, and the limit of "only" 4096 bytes of program code.

The 8751 solution works well if the program will fit into 4K bytes.

Unfortunately, many times, particularly if the program is written in a high-level

language, the program size exceeds 4K bytes, and an external program memory is

needed. Again, the manufacturers provide a version for the job, the ROMIess

8031. The EA pin is grounded when using the 8031, and all program code is

contained in an external EPROM that may be as large as 64K bytes and that can

be programmed using standard EPROM programmers.

External RAM, which is accessed by the DPTR, may also be needed when 128

bytes of internal data storage is not sufficient. External RAM, up to 64K bytes,

may also be added to any chip in the 8051 family.

Connecting External Memory

Figure 2.8 shows the connections between an 8031 and an external memory

configuration consisting of I6K bytes of EPROM and 8K bytes of static RAM.

The 8051 accesses external RAM whenever certain program instructions are

executed. External ROM is accessed whenever the EA (external access) pin is

connected to ground or when the PC contains an address higher than the last

address in the internal 4K bytes ROM (OFFFh). 8051 designs can thus use

internal and external ROM automatically; the 8031, having no internal ROM,

must have EA grounded.

Figure 2.9 shows the timing associated with an external memory access cycle.

During any memory access cycle, port 0 is time multiplexed. That is, it first

provides the lower byte of the 16-bit memory address, then acts as a bidirectional

data bus to write or read a byte of memory data. Port 2 provides the high byte of

the memory address during the entire memory read/write cycle.

The lower address byte from port 0 must be latched into an external register to

save

the byte. Address byte save is accomplished by the ALE clock pulse that provides

the correct timing for the '373 type data latch. The port 0 pins then become free to

serve as a data bus.

If the memory access is for a byte of program code in the ROM, the PSEN

(program store enable) pin will go low to enable the ROM to place a byte of

program code on the data bus. If the access is for a RAM byte, the WR (write) or

RD (read) pins will go low, enabling data to flow between the RAM and the data

bus.

The ROM may be expanded to 64K by using a 27512 type EPROM and

connecting the remaining port 2 upper address lines AI4-A15 to the chip.

At this time the largest static RAMs available are 32K in size; RAM can be

expanded to 64K by using two 32K RAMs that are connected through address

A14 of port 2. The

first 32K RAM (OOOOh-7FFFh) can then be enabled when AI5 of port 2 is low,

and the second 32K RAM (SOOOh-FFFFh) when A15 is high, by using an

inverter.

Note that the WR and RD signals are alternate uses for port 3 pins 16 and 17.

Also,

port 0 is used for the lower address byte and data; port 2 is used for upper address

bits. The use of external memory consumes many of the port pins, leaving only

port 1 and parts of port 3 for general I/O.

8051 INSTRUCTION SET

8051 has about 111 instructions. These can be grouped into the following categories

 Arithmetic Instructions

 Logical Instructions

 Data Transfer instructions

 Boolean Variable Instructions

 Program Branching Instructions

The following nomenclatures for register, data, address and variables are used while write

instructions

 A: Accumulator

 B: "B" register

 C: Carry bit

 Rn: Register R0 - R7 of the currently selected register bank

 Direct: 8-bit internal direct address for data. The data could be in lower 128bytes of
RAM (00 - 7FH) or it could be in the special function register (80 - FFH).

 @Ri: 8-bit external or internal RAM address available in register R0 or R1. This is used
for indirect addressing mode.

 #data8: Immediate 8-bit data available in the instruction.

 #data16: Immediate 16-bit data available in the instruction.

 Addr11: 11-bit destination address for short absolute jump. Used by instructions AJMP
& ACALL. Jump range is 2 kbyte (one page).

 Addr16: 16-bit destination address for long call or long jump.

 Rel: 2's complement 8-bit offset (one - byte) used for short jump (SJMP) and all
conditional jumps.

 bit: Directly addressed bit in internal RAM or SFR

 Some Simple Instructions:

 MOV dest,source ; dest = source

 MOV A,#72H ;A=72H

 MOV R4,#62H ;R4=62H

 MOV B,0F9H ;B=the content of F9’th byte of RAM

 MOV DPTR,#7634H

 MOV DPL,#34H

 MOV DPH,#76H

 MOV P1,A ;mov A to port 1

 Note 1:

 MOV A,#72H ≠ MOV A,72H

 After instruction “MOV A,72H ” the content of 72’th byte of RAM will replace

 in Accumulator.

 Note 2:

 MOV A,R3 ≡ MOV A,3

 ADD A, Source ;A=A+SOURCE

 ADD A,#6 ;A=A+6

 ADD A,R6 ;A=A+R6

 ADD A,6 ;A=A+[6] or A=A+R6

 ADD A,0F3H ;A=A+[0F3H]

 SUBB A, Source ;A=A-SOURCE-C

 SUBB A,#6 ;A=A-6

 SUBB A,R6 ;A=A+R6

 MUl & Div:

• MUL AB ;B|A = A*B

 MOV A,#25H

 MOV B,#65H

 MUL AB ;25H*65H=0E99

 ;B=0EH, A=99H

• DIV AB ;A = A/B, B = A mod B

MOV A,#25

 MOV B,#10

 DIV AB ;A=2, B=5

SETB bit ; bit=1

CLR bit ; bit=0

SETB C ; CY=1

SETB P0.0 ;bit 0 from port 0 =1

SETB P3.7 ;bit 7 from port 3 =1

SETB ACC.2 ;bit 2 from ACCUMULATOR =1

SETB 05 ;set high D5 of RAM loc. 20h

Note:

CLR instruction is as same as

SETB i.e.:

CLR C ;CY=0

But following instruction is only for CLR:

CLR A ;A=0

DEC byte ;byte=byte-1

INC byte ;byte=byte+1

INC R7

DEC A

DEC 40H ; [40]=[40]-1

ANL - ORL – XRL

Bitwise Logical Operations:

AND, OR, XOR

EXAMPLE:

MOV R5,#89H

ANL R5,#08H

CPL A ;1’s complement

Example:

 MOV A,#55H ;A=01010101 B

L01: CPL A

 MOV P1,A

 ACALL DELAY

 SJMP L01

UNIT-V

8051 Real Time Control:

 Programming Timer Interrupts

 Programming External Hardware

 Interrupts

 Programming the Serial Communication Interrupts

 Programming 8051 Timers and Counters

ARM Processor:

 Fundamentals

 Registers

 current program status register,

 pipeline

 Interrupt and the vector table

Interrupts:

1. Enabling and Disabling Interrupts
2. Interrupt Priority

3. Writing the ISR (Interrupt Service Routine)

Interrupt Enable (IE) Register :

• EA : Global enable/disable.

• --- : Undefined.

• ET2 :Enable Timer 2 interrupt.
• ES :Enable Serial port interrupt.

• ET1 :Enable Timer 1 interrupt.
• EX1 :Enable External 1 interrupt.

• ET0 : Enable Timer 0 interrupt.

• EX0 : Enable External 0 interrupt.

Interrupt Vectors:

Peripheral Control Registers

PCON (Power Control)

The PCON or Power Control register, as the name suggests is used to control the 8051

Microcontroller’s Power Modes and is located at 87H of the SFR Memory Space. Using two bits

in the PCON Register, the microcontroller can be set to Idle Mode and Power Down Mode.

During Idle Mode, the Microcontroller will stop the Clock Signal to the ALU (CPU) but it is

given to other peripherals like Timer, Serial, Interrupts, etc. In order to terminate the Idle Mode,

you have to use an Interrupt or Hardware Reset.

In the Power Down Mode, the oscillator will be stopped and the power will be reduced to 2V. To

terminate the Power Down Mode, you have to use the Hardware Reset.

Apart from these two, the PCON Register can also be used for few additional purposes. The

SMOD Bit in the PCON Register is used to control the Baud Rate of the Serial Port.

There are two general purpose Flag Bits in the PCON Register, which can be used by the

programmer during execution.

SCON (Serial Control)

The Serial Control or SCON SFR is used to control the 8051 Microcontroller’s Serial Port. It is

located as an address of 98H. Using SCON, you can control the Operation Modes of the Serial

Port, Baud Rate of the Serial Port and Send or Receive Data using Serial Port.

SCON Register also consists of bits that are automatically SET when a byte of data is transmitted

or received.

TCON (Timer Control)

Timer Control or TCON Register is used to start or stop the Timers of 8051 Microcontroller. It

also contains bits to indicate if the Timers has overflowed. The TCON SFR also consists of

Interrupt related bits.

TMOD (Timer Mode)

The TMOD or Timer Mode register or SFR is used to set the Operating Modes of the Timers T0

and T1. The lower four bits are used to configure Timer0 and the higher four bits are used to

configure Timer1.

The Gatex bit is used to operate the Timerx with respect to the INTx pin or regardless of the

INTx pin.

GATE1 = 1 ==> Timer1 is operated only if INT1 is SET.

GATE1 = 0 ==> Timer1 is operates irrespective of INT1 pin.

GATE0 = 1 ==> Timer0 is operated only if INT0 is SET.

GATE0 = 0 ==> Timer0 is operates irrespective of INT0 pin.

The C/Tx bit is used selects the source of pulses for the Timer to count.

C/T1 = 1 ==> Timer1 counts pulses from Pin T1 (P3.5) (Counter Mode)

C/T1 = 0 ==> Timer1 counts pulses from internal oscillator (Timer Mode)

C/T0 = 1 ==> Timer0 counts pulses from Pin T0 (P3.4) (Counter Mode)

C/T0 = 0 ==> Timer0 counts pulses from internal oscillator (Timer Mode)

TxM0
TxM1 Mode

Description

0
0 0

13-bit Timer Mode (THx – 8-bit and TLx – 5-bit)

0
1 1

16-bit Timer Mode

1
0 2

8-bit Auto Reload Timer Mode

1
1 3

Two 8-bit Timer Mode or Split Timer Mode

IP (Interrupt Priority)

The IP or Interrupt Priority Register is used to set the priority of the interrupt as High or Low. If

a bit is CLEARED, the corresponding interrupt is assigned low priority and if the bit is SET, the

interrupt is assigned high priority.

Peripheral Data Registers

SBUF (Serial Data Buffer)

The Serial Buffer or SBUF register is used to hold the serial data while transmission or

reception.

ARM processor

An ARM processor is one of a family of CPUs based on the RISC (reduced instruction set

computer) architecture developed by Advanced RISC Machines (ARM).

ARM makes 32-bit and 64-bit RISC multi-core processors. RISC processors are designed to

perform a smaller number of types of computer instructions so that they can operate at a higher

speed, performing more millions of instructions per second (MIPS). By stripping out unneeded

instructions and optimizing pathways, RISC processors provide outstanding performance at a

fraction of the power demand of CISC (complex instruction set computing) devices.

ARM processors are extensively used in consumer electronic devices such

as smartphones, tablets, multimedia players and other mobile devices, such as wearables.

Because of their reduced instruction set, they require fewer transistors, which enables a smaller

die size for the integrated circuitry (IC). The ARM processor’s smaller size, reduced complexity

and lower power consumption makes them suitable for increasingly miniaturized devices.

ARM processor features include:

 Load/store architecture.

 An orthogonal instruction set.

 Mostly single-cycle execution.

 Enhanced power-saving design.

 64 and 32-bit execution states for scalable high performance.

 Hardware virtualization support.

The simplified design of ARM processors enables more efficient multi-core processing and

easier coding for developers. While they don't have the same raw compute throughput as the

products of x86 market leader Intel, ARM processors sometimes exceed the performance of Intel

processors for applications that exist on both architectures.

https://whatis.techtarget.com/definition/processor
https://search400.techtarget.com/definition/RISC
https://searchdatacenter.techtarget.com/definition/64-bit-processor
https://searchdatacenter.techtarget.com/definition/multi-core-processor
https://whatis.techtarget.com/definition/microprocessor-logic-chip
https://whatis.techtarget.com/definition/instruction
https://searchitoperations.techtarget.com/definition/MIPS-million-instructions-per-second
https://whatis.techtarget.com/definition/CISC-complex-instruction-set-computer-or-computing
https://searchmobilecomputing.techtarget.com/definition/smartphone
https://searchmobilecomputing.techtarget.com/definition/tablet-PC
https://internetofthingsagenda.techtarget.com/definition/wearable-computer
https://whatis.techtarget.com/definition/instruction-set
https://whatis.techtarget.com/definition/transistor
https://whatis.techtarget.com/definition/integrated-circuit-IC
https://searchstorage.techtarget.com/definition/orthogonal
https://searchservervirtualization.techtarget.com/definition/hardware-virtualization
https://searchnetworking.techtarget.com/definition/throughput
https://searchwindowsserver.techtarget.com/definition/x86

The head-to-head competition between the vendors is increasing as ARM is finding its way into

full size notebooks. Microsoft, for example, offers ARM-based versions of Surface computers.

The cleaner code base of Windows RT versus x86 versions may be also partially responsible --

Windows RT is more streamlined because it doesn’t have to support a number of legacy

hardwares.

ARM is also moving into the server market, a move that represents a large change in direction

and a hedging of bets on performance-per-watt over raw compute power. AMD offers 8-core

versions of ARM processors for its Opteron series of processors. ARM serversrepresent an

important shift in server-based computing. A traditional x86-class server with 12, 16, 24 or more

cores increases performance by scaling up the speed and sophistication of each processor, using

brute force speed and power to handle demanding computing workloads.

In comparison, an ARM server uses perhaps hundreds of smaller, less sophisticated, low-power

processors that share processing tasks among that large number instead of just a few higher-

capacity processors. This approach is sometimes referred to as “scaling out,” in contrast with the

“scaling up” of x86-based servers.

ARM registers

ARM processors provide general-purpose and special-purpose registers. Some additional

registers are available in privileged execution modes.

In all ARM processors, the following registers are available and accessible in any processor

mode:

 13 general-purpose registers R0-R12.

 One Stack Pointer (SP).

 One Link Register (LR).

 One Program Counter (PC).

 One Application Program Status Register (APSR).

ARM processors, with the exception of ARMv6-M and ARMv7-M based processors, have a

total of 37 registers, with 3 additional registers if the Security Extensions are implemented, and

in ARMv7-A only, 3 more if the Virtualization Extensions are implemented. The registers are

arranged in partially overlapping banks. There is a different register bank for each processor

mode. The banked registers give rapid context switching for dealing with processor exceptions

and privileged operations.

https://whatis.techtarget.com/definition/Windows-RT
https://searchdatacenter.techtarget.com/definition/advanced-RISC-machine-ARM
https://searchdatacenter.techtarget.com/definition/scalability

The additional registers that are available in privileged software execution, with the exception of

ARMv6-M and ARMv7-M, are:

 Two Supervisor mode registers for banked SP and LR.

 Two Abort mode registers for banked SP and LR.

 Two Undefined mode registers for banked SP and LR.

 Two Interrupt mode registers for banked SP and LR.

 Seven FIQ mode registers for banked R8-R12, SP and LR.

 Two Monitor mode registers for banked SP and LR. These are only present if the Security

Extensions are implemented.

 Two Hyp mode registers for banked SP, and to hold the return address from Hyp mode. These

are only present if the Virtualization Extensions are implemented.

 One Saved Program Status Register (SPSR) for each exception mode.

Current Program Status Register

The Current Program Status Register (CPSR) holds the same program status flags as the APSR,

and some additional information.

The CPSR holds:

 The APSR flags.

 The processor mode.

 The interrupt disable flags.

 The instruction set state (ARM, Thumb, ThumbEE, or Jazelle®).

 The endianness state (on ARMv4T and later).

 The execution state bits for the IT block (on ARMv6T2 and later).

The execution state bits control conditional execution in the IT block.

Only the APSR flags are accessible in all modes. ARM deprecates using an MSR instruction to

change the endianness bit (E) of the CPSR, in any mode. SETEND is the preferred instruction to

write to the E bit.

The execution state bits for the IT block (IT[1:0]), Jazelle bit (J), and Thumb bit (T) can be

accessed by MRSonly in Debug state.

The instruction pipeline

The ARM uses a pipeline to increase the speed of the flow of instructions to the processor. This

allows several operations to take place simultaneously, and the processing, and memory systems

to operate continuously.

A three-stage pipeline is used, so instructions are executed in three stages:

 Fetch

 Decode

 Execute.

During normal operation, while one instruction is being executed, its successor is being decoded,

and a third instruction is being fetched from memory.

	Prepared by:
	Department of Electronics and Communication Engineering
	MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
	5 -/ - /- 4 (R20A0414) MICROPROCESSORS AND MICROCONTROLLERS
	UNIT -I:
	UNIT -II:
	UNIT -III:
	UNIT -IV:
	UNIT -V:
	TEXT BOOKS:
	REFERENCE BOOKS:
	OUTCOMES:

