

LECTURE NOTES

ON

EMBEDDED SYSTEMS DESIGN

IV B. Tech I semester (R20)
(2023-24)

Faculty Member

Mr. M. Ramanjaneyulu

Associate Professor/ECE

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

IV Year B.Tech. ECE-I Sem

EMBEDDED SYSTEMS DESIGN (R20A0421)

COURSE OBJECTIVES:

For embedded systems, the course will enable the students to:

1. Understand the basics of an embedded system.

2. Program an embedded system.

3. To learn the design process of embedded system applications.

4. To understands the RTOS and inter-process communication.

5. To understand different communication interfaces.

UNIT-I INTRODUCTION TO EMBEDDED SYSTEMS

Complex systems and microprocessors-embedding computers, characteristics of embedded

computing applications, challenges in embedded computing system design, performance in

embedded computing; The embedded system design process-requirements, specification,

architecture design, designing hardware and software, components, system integration, design

example.

UNIT-II TYPICAL EMBEDDED SYSTEM

Core of the embedded system-general purpose and domain specific processors, ASICs, PLDs,

COTs; Memory-ROM, RAM, memory according to the type of interface, memory shadowing,

memory selection for embedded systems; Sensors, actuators and other components-sensors,

actuators, seven segment LED, relay, piezo buzzer, push button switch, reset circuit, brownout

protection circuit, oscillator circuit real time clock, watch dog timer.

UNIT-III EMBEDDED FIRMWARE DESIGN AND DEVELOPMENT

Embedded firmware design approaches-super loop based approach, operating system based

approach; Embedded firmware development languages-assembly language based development,

high level language based development; Programming in embedded c.

UNIT-IV RTOS BASED EMBEDDED SYSTEM DESIGN

Operating system basics, types of operating systems, tasks, process and threads, multiprocessing

and multitasking, task scheduling: non-preemptive and pre-emptive scheduling; task

communication-shared memory, message passing.

UNIT-V COMMUNICATION INTERFACE

Onboard communication interfaces-I2C, SPI, UART, 1 wire interface, parallel interface; External

communication interfaces-RS232 and RS485,USB, infrared, Bluetooth, wi-Fi, zigbee, GPRS;

Automotive networks and sensor networks.

TEXT BOOKS:

1. Computers as Components –Wayne Wolf, Morgan Kaufmann (second edition).

2. Introduction to Embedded Systems - shibu k v, Mc Graw Hill Education.

REFERENCE BOOKS:

1. Embedded System Design -frank vahid, tony grivargis, john Wiley.

2. Embedded Systems- An integrated approach - Lyla b das, Pearson education 2012.

3. Embedded Systems – Raj Kamal, TMH

4. An embedded Software Primer, David e Simon, Pearson education

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

1. Understand and design the embedded systems

2. Learn the basics of OS and RTOS

3. Understand types of memory and interfacing to external world

4. Understand embedded firmware design approaches

 ESD UNIT-1 NOTES

EMBEDDED SYSTEM DESIGN

IV YEAR ECE

UNIT-I
INTRODUCTION TO EMBEDDED SYSTEMS

 ESD UNIT-1 NOTES

1. Introduction to Embedded Systems

What is Embedded System?

An Electronic/Electro mechanical system which is designed to perform a specific function and is
a combination of both hardware and firmware (Software)

E.g. Electronic Toys, Mobile Handsets, Washing Machines, Air Conditioners, Automotive

Control Units, Set Top Box, DVD Player etc…

Embedded Systems are:


Unique in character and behavior


With specialized hardware and software

Embedded Systems Vs General Computing Systems:

General Purpose Computing System Embedded System

A system which is a combination of generic

hardware and General Purpose Operating System

for executing a variety of applications

A system which is a combination of special

purpose hardware and embedded OS for

executing a specific set of applications

Contain a General Purpose Operating System

(GPOS)

May or may not contain an operating system

for functioning

Applications are alterable (programmable) by

user (It is possible for the end user to re-install the

Operating System, and add or remove user
applications)

The firmware of the embedded system is

pre-programmed and it is non-alterable by

end-user

Performance is the key deciding factor on the

selection of the system. Always „Faster is Better‟

Application specific requirements (like

performance, power requirements, memory

usage etc) are the key deciding factors

Less/not at all tailored towards reduced operating

power requirements, options for different levels

of power management.

Highly tailored to take advantage of the

power saving modes supported by hardware

and Operating System

Response requirements are not time critical For certain category of embedded systems

like mission critical systems, the response

time requirement is highly critical

Need not be deterministic in execution behavior
Execution behavior is deterministic for

certain type of embedded systems like „Hard

Real Time‟ systems

 ESD UNIT-1 NOTES

 History of Embedded Systems:



First Recognized Modern Embedded System: Apollo Guidance Computer (AGC) developed by
Charles Stark Draper at the MIT Instrumentation Laboratory.

⚫
It has two modules

⚫
1.Command module(CM) 2.Lunar Excursion

module(LEM)

⚫
RAM size 256 , 1K ,2K words

⚫
ROM size 4K,10K,36K words

⚫
Clock frequency is 1.024MHz

⚫
5000 ,3-input RTL NOR gates are used

⚫
User interface is DSKY(display/Keyboard)


First Mass Produced Embedded System: Autonetics D-17 Guidance computer for Minuteman-I missile

Classification of Embedded Systems:



Based on Generation (March-2017)



Based on Complexity & Performance Requirements



Based on deterministic behavior



Based on Triggering

1. Embedded Systems - Classification based on

Generation

First Generation: The early embedded systems built
around 8-bit microprocessors like 8085 and Z80 and 4-bit
microcontrollers

EX. stepper motor control units, Digital Telephone Keypads etc.

Second Generation: Embedded Systems built around 16-bit microprocessors and 8 or
16-bit microcontrollers, following the first generation embedded systems

EX.SCADA, Data Acquisition Systems etc.

Third Generation: Embedded Systems built around high performance 16/32 bit

Microprocessors/controllers, Application Specific Instruction set processors like Digital

Signal Processors (DSPs), and Application Specific Integrated Circuits (ASICs).The

instruction set is complex and powerful.

EX. Robotics, industrial process control, networking etc.

https://en.wikipedia.org/wiki/Charles_Stark_Draper

 ESD UNIT-1 NOTES

Fourth Generation: Embedded Systems built around System on Chips (SoC’s), Re-

configurable processors and multicore processors. It brings high performance, tight

integration and miniaturization into the embedded device market

EX Smart phone devices, MIDs etc.

2. Embedded Systems - Classification based on Complexity & Performance



Small Scale: The embedded systems built around low performance and low cost 8 or 16
bit microprocessors/ microcontrollers. It is suitable for simple applications and where
performance is not time critical. It may or may not contain OS.



Medium Scale: Embedded Systems built around medium performance, low cost 16 or 32
bit microprocessors / microcontrollers or DSPs. These are slightly complex in hardware
and firmware. It may contain GPOS/RTOS.



Large Scale/Complex: Embedded Systems built around high performance 32 or 64 bit
RISC processors/controllers, RSoC or multi-core processors and PLD. It requires
complex hardware and software. These system may contain multiple
processors/controllers and co-units/hardware accelerators for offloading the processing
requirements from the main processor. It contains RTOS for scheduling, prioritization
and management.

3. Embedded Systems - Classification Based on deterministic behavior: It is applicable for

Real Time systems. The application/task execution behavior for an embedded system can be

either deterministic or non-deterministic

These are classified in to two types

1. Soft Real time Systems: Missing a deadline may not be critical and can be
tolerated to a certain degree

2. Hard Real time systems: Missing a program/task execution time deadline can have
catastrophic consequences (financial, human loss of life, etc.)

4. Embedded Systems - Classification Based on Triggering:

These are classified into two types

1. Event Triggered : Activities within the system (e.g., task run-times) are dynamic and
depend upon occurrence of different events .

2. Time triggered: Activities within the system follow a statically computed schedule (i.e.,

they are allocated time slots during which they can take place) and thus by nature are

predictable.

 ESD UNIT-1 NOTES

Major Application Areas of Embedded Systems:


Consumer Electronics: Camcorders, Cameras etc.



Household Appliances: Television, DVD players, washing machine, Fridge, Microwave Oven
etc.



Home Automation and Security Systems: Air conditioners, sprinklers, Intruder detection
alarms, Closed Circuit Television Cameras, Fire alarms etc.



Automotive Industry: Anti-lock breaking systems (ABS), Engine Control, Ignition Systems,
Automatic Navigation Systems etc.



Telecom: Cellular Telephones, Telephone switches, Handset Multimedia Applications etc.



Computer Peripherals: Printers, Scanners, Fax machines etc.



Computer Networking Systems: Network Routers, Switches, Hubs, Firewalls etc.



Health Care: Different Kinds of Scanners, EEG, ECG Machines etc.



Measurement & Instrumentation: Digital multi meters, Digital CROs, Logic Analyzers PLC
systems etc.



Banking & Retail: Automatic Teller Machines (ATM) and Currency counters, Point of Sales
(POS)



Card Readers: Barcode, Smart Card Readers, Hand held Devices etc.

Purpose of Embedded Systems: (DEC2016)

Each Embedded Systems is designed to serve the purpose of any one or a combination of the
following tasks.

o Data Collection/Storage/Representation

o Data Communication

o Data (Signal) Processing

o Monitoring

o Control

o Application Specific User Interface

 ESD UNIT-1 NOTES

1. Data Collection/Storage/Representation:-


Performs acquisition of data from the externalworld.


The collected data can be either analog ordigital


Data collection is usually done for storage,
nalysis, manipulation and transmission



The collected data may be stored directly in the system or may be transmitted to some
other systems or it may be processed by the system or it may be deleted instantly after
giving a meaningful representation

2. Data Communication:-

Embedded Data communication systems are deployed in applications ranging from

complex satellite communicationsystems to simple home networking systems

Embedded Data communication systems are dedicated for datacommunication

The data communication can happen through a wired interface (like Ethernet, RS-

232C/USB/IEEE1394 etc) or wireless interface (like Wi-Fi, GSM,/GPRS, Bluetooth,

ZigBee etc)

Network hubs, Routers, switches, Modems etc are typical examples for dedicated data

transmission embedded systems

3. Data (Signal) Processing:-

Embedded systems with Signal processing functionalities are employed in applications

demanding signal processing like Speech coding, synthesis, audio video codec,

transmission applications etc

Computational intensive systems

Employs Digital Signal Processors (DSPs)

 ESD UNIT-1 NOTES

4. Monitoring:-

Embedded systems coming under this

category are specifically designed for

monitoring purpose

They are used for determining the state of
some variables using input sensors

They cannot impose control over variables.

Electro Cardiogram (ECG) machine for
monitoring the heart beat of a patient is a
typical example for this

The sensors used in ECG are the different Electrodes connected to the patient‟s body

Measuring instruments like Digital CRO, Digital Multi meter, Logic Analyzer etc used in
Control & Instrumentation applications are also examples of embedded systems for
monitoring purpose

5. Control:-

Embedded systems with control

functionalities are used for imposing

control over some variables according to

the changes in input variables

Embedded system with control

functionality contains both sensors and

actuators

Sensors are connected to the input port for capturing the changes in environmental
variable or measuring variable

The actuators connected to the output port are controlled according to the changes in input

variable to put an impact on the controlling variable to bring the controlled variable to the

specified range

Air conditioner for controlling room temperature is a typical example for embedded
system with „Control‟ functionality

Air conditioner contains a room temperature sensing element (sensor) which may be a
thermistor and a handheld unit for setting up (feeding) the desired temperature

The air compressor unit acts as the actuator. The compressor is controlled according to the
current room temperature and the desired temperature set by the end user.

 ESD UNIT-1 NOTES

COMPLEX SYSTEM AND MICROPROCESSORS:

 Three main tasks or components in embedded system design:

o Selecting and integrating hardware to give computer like functionalities

o Dumping main application software generally into flash or ROM and the application

software performs concurrently the number of tasks.

o Integrating with a real time operating system (RTOS), this supervises the application

software tasks running on the hardware and organizes the accesses to system resources

according to priorities and timing constraints of tasks in the system.

Embedding Computers:

 Whirlwind, a computer designed at MIT in the late 1940s and early 1950s. Whirlwind was also the

first computer designed to support real-time operation and was originally conceived as a mechanism

for controlling an aircraft simulator. It was extremely large physically compared to today’s

computers(e.g., it contained over 4,000 vacuum tubes).

 Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by

combining thousands of transistors into a single chip. VLSI began in the 1970s. A microprocessor is

a single-chip CPU. Very large scale integration (VLSI) technology allowed us to put a complete

CPU on a single chipsince 1970s, but those CPUs were very simple.

In 1971 the first microprocessor the Intel 4004 invented by Ted Hoff, was designed for an

embeddedapplication, namely, a calculator. The calculator was not a general-purpose computer—it

merely provided basic arithmetic functions. The HP-35 was the first handheld calculator to

perform transcendental functions. It was introduced in 1972, so it used several chips to implement

the CPU,rather than a single-chip microprocessor.

 Automobile designers started making use of the microprocessor soon after single-chip CPUs

became available. The most important and sophisticated use of microprocessors in automobiles was

tocontrol the engine: determining when spark plugs fire, controlling the fuel/air mixture, and so on.

 Microprocessors are usually classified according to their word length.

o An 8-bit microcontroller is designed for low-cost applications and includes on-board

memoryand I/O devices’

6. Application Specific User Interface:-

Embedded systems which are designed for a specific
application

Contains Application Specific User interface (rather than

general standard UI) like key board, Display units etc

 ESD UNIT-1 NOTES

o 16-bit microcontroller is often used for more sophisticated applications that may require

either longer word lengths or off-chip I/O and memory;

o 32-bit RISC microprocessor offers very high performance for computation-intensive

applications.

 House Hold uses of microprocessor:

o The typical microwave oven has at least one microprocessor to control oven operation.

o Many houses have advanced thermostat systems, which change the temperature level at

various times during the day.

Characteristics of Embedded Computing Applications:

a. Complex Algorithms

b. User Interface

c. Real Time

d. Multirate

e.Manufacturing Cost

f. Power

Complex algorithms: The operations performed by the microprocessor may be very sophisticated. For example, the

microprocessor that controls an automobile engine must perform complicated filtering functions to optimize the

performance of the car while minimizing pollution and fuel utilization.

User interface: Microprocessors are frequently used to control complex user interfaces that may include

multiple menus and many options. The moving maps in Global Positioning System (GPS) navigation are

good examples of sophisticated user interfaces.

To make things more difficult, embedded computing operations must often be performed to

meet deadlines:

Real time: Many embedded computing systems have to perform in real time— if the data is not ready by a

certain deadline, the system breaks. In some cases, failure to meet a deadline is unsafe and can even endanger

lives. In other cases, missing a deadline does not create safety problems but does create unhappy customers—

missed deadlines in printers, for example, can result in scrambled pages.

➢ Multirate: Not only must operations be completed by deadlines, but many embedded computing systems

have several real-time activities going on at the same time. They may simultaneously control some

operations that run at slow rates and others that run at high rates. Multimedia applications are prime

examples of multirate behaviour. The audio and video portions of a multimedia stream run at very different

rates, but they must remain closely synchronized. Failure to meet a deadline on either the audio or video

portions spoils the perception of the entire presentation.
Costs of various sorts are also very important:

➢ Manufacturing cost: The total cost of building the system is very important in many cases.
Manufacturing cost is determined by many factors, including the type of microprocessor used, the
amount of memory required, and the types of I/O devices.

➢ Power and energy: Power consumption directly affects the cost of the hardware, since a larger
power supply may be necessary. Energy consumption affects battery life, which is important in many
applications, as well as heat consumption, which can be important even in desktop applications.

 ESD UNIT-1 NOTES

Challenges in Embedded Computing System Design:

i. How much hardware do we need?

ii. How do we meet deadlines?

iii. How do we minimize power consumption?

iv. How do we design for upgradability?

v. Does it really work?

vi. Complex testing

vii. Limited observability and controllability

viii. Restricted development environments

External constraints are one important source of difficulty in embedded system design. Let’s

consider some important problems that must be taken into account in embedded system design.

How much hardware do we need?

We have a great deal of control over the amount of computing power we apply to our problem. We cannot

only select the type of microprocessor used, but also select the amount of memory, the peripheral devices,

and more. Since we often must meet both performance deadlines and manufacturing cost constraints, the

choice of hardware is important—too little hardware and the system fails to meet its deadlines, too much

hardware and it becomes too expensive.

How do we meet deadlines?

The brute force way of meeting a deadline is to speed up the hardware so that the program runs faster.

Of course, that makes the system more expensive. It is also entirely possible that increasing the CPU

clock rate may not make enough difference to execution time, since the program’s speed may be

limited by the memory system.

How do we minimize power consumption?

In battery-powered applications, power consumption is extremely important. Even in non battery applications,

excessive power consumption can increase heat dissipation. One way to make a digital system consume less

power is to make it run more slowly, slowing down the system can obviously lead to missed deadlines.

Careful design is required to slow down the noncritical parts of the machine for power consumption while

still meeting necessary performance goals.

How do we design for upgradability?

The hardware platform may be used over several product generations or for several different versions of a

product in the same generation, with few or no changes. However, we want to be able to add features by

changing software.

Does it really work?

Reliability is always important when selling products—customers rightly expect that products they buy will

work. Reliability is especially important in some applications. If we wait until we have a running system and

try to eliminate the bugs, we will be too late—we won’t find enough bugs, it will be too expensive to fix

them, and it will take more time.

Let’s consider some ways in which the nature of embedded computing machines makes their design more

difficult.

Complex testing: Exercising an embedded system is generally more difficult than typing in some data. We

may have to run a real machine in order to generate the proper data. The timing of data is often important,

meaning that we cannot separate the testing of an embedded computer from the machine in which it is

embedded.

Limited observability and controllability: Embedded computing systems usually do not come with keyboards

and screens. This makes it more difficult to see what is going on and to affect the system’s operation. We may

be forced to watch the values of electrical signals on the microprocessor bus, for example, to know what is

going on inside the system. Moreover, in real-time applications we may not be able to easily stop the system

to see what is going on inside.

Restricted development environments: The development environments for embedded systems (the tools used

to develop software and hardware) are often much more limited than those available for PCs and

workstations.

 ESD UNIT-1 NOTES

Embedded system design process:

This section provides an overview of the embedded system design process aimed at two objectives.

First, it will give us an introduction to the various steps in embedded system design before we delve into them

in more detail. Second, it will allow us to consider the design methodology itself. A design methodology is

important for three reasons. First, it allows us to keep a scorecard on a design to ensure that we have done

everything we need to do, such as optimizing performance or performing functional tests. Second, it allows us

to develop computer-aided design tools. Developing a single program that takes in a concept for an embedded

system and emits a completed design would be a daunting task, but by first breaking the process into

manageable steps, we can work on automating (or at least semi automating) the steps one at a time. Third, a

design methodology makes it much easier for members of a design team to communicate.

The below Figure summarizes the major steps in the embedded system design process. In this top–

downview, we start with the system requirements.

Fig: Major levels of abstraction in the design process

Requirements:

Clearly, before we design a system, we must know what we are designing. The initial stages of the

design process capture this information for use in creating the architecture and components. We generally

proceed in two phases: First, we gather an informal description from the customers known as requirements,

and we refine the requirements into a specification that contains enough information to begin designing the

system architecture.

Requirements may be functional or nonfunctional. We must of course capture the basic functions of the

embedded system, but functional description is often not sufficient. Typical nonfunctional requirements

include:

■ Performance: The speed of the system is often a major consideration both for the usability of the

system and for its ultimate cost. As we have noted, performance may be a combination of soft performance

metrics such as approximate time to perform a user-level function and hard deadlines by which a particular

operation must be completed.

■ Cost: The target cost or purchase price for the system is almost always a consideration. Cost

typically has two major components: manufacturing cost includes the cost of components and

assembly; nonrecurring engineering (NRE) costs include the personnel and other costs of

designing the system.

■ Physical size and weight: The physical aspects of the final system can vary greatly depending

upon the application. An industrial control system for an assembly line may be designed to fit

into a standard-size rack with no strict limitations on weight. A handheld device typically has

tight requirements on both size and weight that can ripple through the entire system design.

■ Power consumption: Power, of course, is important in battery-powered systems and is often

important in other applications as well. Power can be specified in the requirements stage in terms

of battery life—the customer is unlikely to be able to describe the allowable wattage.

A sample requirements form that can be filled out at the start of the project. We can use the form

as a checklist in considering the basic characteristics of the system. Let’s consider the entries in

the form:

■ Name: This is simple but helpful. Giving a name to the project not only simplifies talking
about it to other people but can also crystallize the purpose of the machine.

■ Purpose: This should be a brief one- or two-line description of what the system is supposed to

do. If you can’t describe the essence of your system in one or two lines, chances are that you

don’t understand it well enough.

■ Inputs and outputs: These two entries are more complex than they seem. The inputs and

outputs to the system encompass a wealth of detail:

— Types of data: Analog electronic signals? Digital data? Mechanical inputs?
— Data characteristics: Periodically arriving data, such as digital audio

samples? Occasional user inputs? How many bits per data element?

— Types of I/O devices: Buttons? Analog/digital converters? Video displays?
■ Functions: This is a more detailed description of what the system does. A good way to

approach this is to work from the inputs to the outputs: When the system receives an input, what

does it do? How do user interface inputs affect these functions? How do different functions

interact?

Performance: Many embedded computing systems spend at least some time controlling physical

devices or processing data coming from the physical world. In most of these cases, the

computations must be performed within a certain time frame. It is essential that the performance

requirements be identified early

since they must be carefully measured during implementation to ensure that the system works

properly.

■ Manufacturing cost: This includes primarily the cost of the hardware components. Even if you

don’t know exactly how much you can afford to spend on system components, you should have

some idea of the eventual cost range. Cost has a substantial influence on architecture: A machine

that is meant to

sell at $10 most likely has a very different internal structure than a $100 system.
■ Power: Similarly, you may have only a rough idea of how much power the system can
consume, but a little information can go a long way. Typically, the most important decision is

whether the machine will be battery powered or plugged into the wall. Battery-powered

machines must be much more careful about how they spend energy.

■ Physical size and weight: You should give some indication of the physical size of the system

to help guide certain architectural decisions. A desktop machine has much more flexibility in the

components used than, for example, a lapel mounted voice recorder.

GPS MODULE:

REQUIREMENTS FORM OF GPS MOVING MAP MODULE:
Name : GPS moving map

Purpose: Consumer-grade moving map for driving use

Inputs : Power button, two control buttons

Outputs : Back-lit LCD display 400 _ 600

Functions : Uses 5-receiver GPS system; three user-selectable resolutions;

always displays current latitude and longitude

Performance: Updates screen within 0.25 seconds upon movement

Manufacturing cost:$30

Power: 100mW

Physical size and weight: No more than 2” _ 6, ” 12 ounces

Specification

The specification is more precise—it serves as the contract between the customer and the

architects. As such, the specification must be carefully written so that it accurately reflects the
customer’s requirements and does so in a way that can be clearly followed during design.

The specification should be understandable enough so that someone can verify that it meets

system requirements and overall expectations of the customer.

A specification of the GPS system would include several components:

 Data received from the GPS satellite constellation.
 Map data.

 User interface.

 Operations that must be performed to satisfy customer requests.

 Background actions required to keep the system running, such as operating the GPS

receiver.

Architecture Design
The specification does not say how the system does things, only what the system does.

Describing how the system implements those functions is the purpose of the architecture. The

architecture is a plan for the overall structure of the system that will be used later to design the

components that make up the architecture. The creation of the architecture is the first phase of

what many designers think of as design.

This block diagram is still quite abstract—we have not yet specified which operations will be

performed by software running on a CPU, what will be done by special-purpose hardware, and

so on. The diagram does, however, go a long way toward describing how to implement the

functions described in the specification. We clearly see, for example, that we need to search the

topographic database and to render (i.e., draw) the results for the display. We have chosen to

separate those functions so that we can potentially do them in parallel—performing rendering

separately from searching the database may help us update the screen more fluidly.

FIG: BLOCK DIAGRAM FOR THE MOVING MAP

The hardware block diagram clearly shows that we have one central CPU surrounded by memory

and I/O devices. In particular, we have chosen to use two memories: a frame buffer for the pixels

to be displayed and a separate program/data memory for general use by the CPU. The software

block diagram fairly closely follows the system block diagram, but we have added a timer to

control when we read the buttons on the user interface and render data onto the screen. To have a

truly complete architectural description, we require more detail, such as where units in the

software block diagram will be executed in the hardware block diagram and when operations

will be performed in time.

Fig : Hardware and software architectures for the moving map.

The architectural description tells us what components we need. The component design effort

builds those components in conformance to the architecture and specification. The components

will in general include both hardware—FPGAs, boards, and so on—and software modules. Some

of the components will be ready-made. The CPU, for example, will be a standard component in

almost all cases, as will memory chips and many other components .In the moving map, the GPS

receiver is a good example of a specialized component that will nonetheless be a predesigned,

standard component. We can also make use of standard software modules.

System Integration:
Only after the components are built do we have the satisfaction of putting them together and

seeing a working system. Of course, this phase usually consists of a lot more than just plugging

everything together and standing back. Bugs are typically found during system integration, and

good planning can help us find the bugs quickly. By building up the system in phases and

running properly chosen tests, we can often find bugs more easily. If we debug only a few

modules at a time, we are more likely to uncover the simple bugs and able to easily recognize

them. Only by fixing the simple bugs early will we be able to uncover the more complex or

obscure bugs that can be identified only by giving the system a hard workout

 ESD UNIT-1 NOTES

o The modern camera is a prime example of the powerful features that can be added under

microprocessor control.

o Digital Television uses embedded processors

DESIGN EXAMPLE:

BMW 850i brake and stability control system

The BMW 850i was introduced with a sophisticated system for controlling the wheels of the car.

An antilock brake system (ABS) reduces skidding by pumping the brakes. An automatic stability control

(ASC _ T) system intervenes with the engine during maneuvering to improve the car’s stability.

These systems actively control critical systems of the car; as control systems, they require inputs from and

output to the automobile.

Let’s first look at the ABS. The purpose of an ABS is to temporarily release the brake on a wheel when it

rotates too slowly—when a wheel stops turning, the car starts skidding and becomes hard to control.

It sits between the hydraulic pump, which provides power to the brakes, and the brakesthemselves as seen

in the below diagram. The ABS system uses sensors on each wheel to measure the speed of the wheel. The

wheel speeds are used by the ABS system to determine how to vary the hydraulic fluid pressure to prevent

the wheels from skidding.

 The ASC _ T system’s job is to control the engine power and the brake to improve the car’s

stability. The ASC _ T controls four different systems: throttle, ignition timing, differential brake, and (on

automatic transmission cars) gear shifting.

 ESD UNIT-1 NOTES

SUMMARY

1. An embedded system is an electronic/electromechanical system designed to perform a

specific function and is a combination of both hardware and firmware (software).

2. A general purpose computing system is a combination of generic hardware and general

purpose operating system for executing a variety of applications, whereas an embedded

3. System is a combination of special purpose hardware and embedded OS/firmware for

executing a specific set of applications.

4. Apollo Guidance Computer (AGC) is the first recognized modern embedded system and

Autonetics D-17, the guidance computer for the Minuteman-I missile, was the first mass

produced embedded system.

5. Based on the complexity and performance requirements, embedded systems are classified

into small-scale, medium-scale and large-scale/complex.

6. The presences of embedded system vary from simple electronic system toys to complex

flight and missile control systems.

7. Embedded systems are designed to serve the purpose of any one or combination of data

collection/storage/representation, data processing, monitoring, control or application

specific user interface.

8. Wearable devices refer to embedded systems which are incorporated into accessories and
apparels. It envisions the bonding of embedded technology in our day to day lives.

OBJECTIVE QUESTIONS

1. Embedded systems are

(a) General Purpose (b) Special Purpose

2. Embedded system is

(a) An electronic system (b) A pure mechanical system

(c)An electro-mechanical system (d) (a) or (c)

3. Which of the following is not true about embedded systems?

(a) Built around specialized hardware (b) Always contain an operating system

(c)Execution behavior may be deterministic (d) All of these (e) none of these

4. Which of the following is not an example of small scale embedded system?

(a) Electronic Barbie doll (b) Simple calculator

(c) Cell Phone (d) Electronic toy car

 ESD UNIT-1 NOTES

5. The first recognized modern embedded system is

(a) Apple computer (b) Apollo Guidance Computer

(c) Calculator (d) Radio navigation system

6. The first mass produced embedded system is

(a) Minuteman-I (b) Minuteman-II

(c) Autonetics D17 (d) Apollo Guidance Computer

7. Which of the following is (are) an intended purpose of embedded systems?

(a) Data collection (b) Data processing

(c) Data communication (d) All of these (e) None of these

8. Which of the following is an example of an embedded system for data communication?

(a) USB mass storage device (b) Network router (c) Digital camera

(d)Music player (e) All of these (f) None of these

9. A digital multimeter is an example of embedded system for

(a) Data communication (b) Monitoring (c) Control

(d) All of these (e) None of these

10. Which of the following is an example of an embedded system for signal processing?

(a) Apple iPOD (b) Sandisk USB mass storage device

(c) both a and b (d) None of these

Reference Text Books:-

1. Introduction to Embedded Systems – Shibu K.V Mc Graw Hill

2. Computers as Components –Wayne Wolf-morgan Kaufmann publications

IV ECE

EMBEDDED SYSTEM DESIGN

UNIT-II
TYPICAL EMBEDDED

SYSTEM

MRCET ECE ES UNIT-2 Notes

ELEMENTS OF EMBEDDED SYSTEMS:

An embedded system is a combination of 3 things, Hardware Software Mechanical

Components and it is supposed to do one specific task only. A typical embedded system contains

a single chip controller which acts as the master brain of the system. Diagrammatically an

embedded system can be represented as follows:

FPGA/ASIC/DSP/SoC

Microprocessor/controller

Embedded

Firmware

Memory

Communication Interface

 System

I/p Ports Core
O/p Ports

(Sensors)

 (Actuators)

Other supporting

Integrated Circuits &

subsystems

Embedded System

Real World

Embedded systems are basically designed to regulate a physical variable (such

Microwave Oven) or to manipulate the state of some devices by sending some signals to the

actuators or devices connected to the output port system (such as temperature in Air

Conditioner), in response to the input signal provided by the end users or sensors which are

connected to the input ports. Hence the embedded systems can be viewed as a reactive

system.

MRCET ECE ES UNIT-2 Notes

The control is achieved by processing the information coming from the sensors and user

interfaces and controlling some actuators that regulate the physical variable.

Keyboards, push button, switches, etc. are Examples of common user interface input

devices and LEDs, LCDs, Piezoelectric buzzers, etc examples for common user interface

output devices for a typical embedded system.The requirement of type of user interface

changes from application to application based on domain.

Some embedded systems do not require any manual intervention for their operation.

They automatically sense the input parameters from real world through sensors which are

connected at input port. The sensor information is passed to the processor after signal

conditioning and digitization. The core of the system performs some predefined operations

on input data with the help of embedded firmware in the system and sends some actuating

signals to the actuator connect connected to the output port of the system.

The memory of the system is responsible for holding the code (control algorithm and

other important configuration details). There are two types of memories are used in any

embedded system. Fixed memory (ROM) is used for storing code or program. The user

cannot change the firmware in this type of memory. The most common types of memories

used in embedded systems for control algorithm storage are

OTP,PROM,UVEPROM,EEPROM and FLASH

An embedded system without code (i.e. the control algorithm) implemented memory has

all the peripherals but is not capable of making decisions depending on the situational as well

as real world changes.

Memory for implementing the code may be present on the processor or may be

implemented as a separate chip interfacing the processor

In a controller based embedded system, the controller may contain internal memory for

storing code such controllers are called Micro-controllers with on-chip ROM, eg. Atmel

AT89C51.

MRCET ECE ES UNIT-2 Notes

The Core of the Embedded Systems: The core of the embedded system falls into any one

of the following categories.


General Purpose and Domain Specific Processors

o Microprocessors

o Microcontrollers

o Digital Signal Processors


Programmable Logic Devices (PLDs)


Application Specific Integrated Circuits (ASICs)


Commercial off the shelf Components (COTS)

GENERAL PURPOSE AND DOMAIN SPECIFIC PROCESSOR:

Almost 80% of the embedded systems are processor/ controller based.

The processor may be microprocessor or a microcontroller or digital signal processor,

depending on the domain and application.

Microprocessor:

A silicon chip representing a Central Processing Unit (CPU), which is capable of

performing arithmetic as well as logical operations according to a pre-defined set of

Instructions, which is specific to the manufacturer

In general the CPU contains the Arithmetic and Logic Unit (ALU), Control Unit and

Working registers

Microprocessor is a dependant unit and it requires the combination of other hardware like

Memory, Timer Unit, and Interrupt Controller etc for proper functioning.

Intel claims the credit for developing the first Microprocessor unit Intel 4004, a 4 bit

processor which was released in Nov 1971

· Developers of microprocessors.

Intel – Intel 4004 – November 1971(4-bit)
Intel – Intel 4040.

Intel – Intel 8008 – April 1972.

Intel – Intel 8080 – April 1974(8-bit).

Motorola – Motorola 6800.

Intel – Intel 8085 – 1976.

Zilog - Z80 – July 1976

MRCET ECE ES UNIT-2 Notes

Microcontroller:


A highly integrated silicon chip containing a CPU, scratch pad RAM, Special and
General purpose Register Arrays, On Chip ROM/FLASH memory for program storage,
Timer and Interrupt control units and dedicated I/O ports


Microcontrollers can be considered as a super set of Microprocessors


Microcontroller can be general purpose (like Intel 8051, designed for generic applications
and domains) or application specific (Like Automotive AVR from Atmel Corporation.
Designed specifically for automotive applications)



Since a microcontroller contains all the necessary functional blocks for independent working,
they found greater place in the embedded domain in place of microprocessors


Microcontrollers are cheap, cost effective and are readily available in the market


Texas Instruments TMS 1000 is considered as the world‟s first microcontroller

Microprocessor Vs Microcontroller:

Microprocesso

r

Microcontrolle

r

A silicon chip representing a Central Processing Unit A microcontroller is a highly integrated chip that

(CPU), which is capable of performing arithmetic as contains a CPU, scratch pad RAM, Special and

well as logical operations according to a pre-defined set General purpose Register Arrays, On Chip

of Instructions ROM/FLASH memory for program storage, Timer

 and Interrupt control units and dedicated I/O ports

It is a dependent unit. It requires the combination of It is a self contained unit and it doesn’t require

other chips like Timers, Program and data memory external Interrupt Controller, Timer, UART etc for

chips, Interrupt controllers etc for functioning its functioning

Most of the time general purpose in design and Mostly application oriented or domain specific

operation

Doesn‟t contain a built in I/O port. The I/O Port Most of the processors contain multiple built-in I/O

functionality needs to be implemented with the help of ports which can be operated as a single 8 or 16 or 32

external Programmable Peripheral Interface Chips like bit Port or as individual port pins

8255

Targeted for high end market where performance is Targeted for embedded market where performance is

important not so critical (At present this demarcation is invalid)

Limited power saving options compared to Includes lot of power saving features

microcontrollers

MRCET ECE ES UNIT-2 Notes

General Purpose Processor (GPP) Vs Application Specific Instruction Set Processor (ASIP)



General Purpose Processor or GPP is a processor designed for general computational tasks



GPPs are produced in large volumes and targeting the general market. Due to the high
volume production, the per unit cost for a chip is low compared to ASIC or other specific
ICs



A typical general purpose processor contains an Arithmetic and Logic Unit (ALU) and Control
Unit (CU)


Application Specific Instruction Set processors (ASIPs) are processors with architecture
and instruction set optimized to specific domain/application requirements like Network
processing, Automotive, Telecom, media applications, digital signal processing, control
applications etc.



ASIPs fill the architectural spectrum between General Purpose Processors and Application
Specific Integrated Circuits (ASICs)



The need for an ASIP arises when the traditional general purpose processor are unable to meet the
increasing application needs


Some Microcontrollers (like Automotive AVR, USB AVR from Atmel), System on
Chips, Digital Signal Processors etc are examples of Application Specific Instruction Set
Processors (ASIPs)



ASIPs incorporate a processor and on-chip peripherals, demanded by the application requirement,
program and data memory

Digital Signal Processors (DSPs):

Powerful special purpose 8/16/32 bit microprocessors designed specifically to meet the

computational demands and power constraints of today's embedded audio, video, and

communications applications

Digital Signal Processors are 2 to 3 times faster than the general purpose microprocessors

in signal processing applications

DSPs implement algorithms in hardware which speeds up the execution whereas general

purpose processors implement the algorithm in firmware and the speed of execution

depends primarily on the clock for the processors

DSP can be viewed as a microchip designed for performing high speed computational

operations for „addition‟, „subtraction‟, „multiplication‟ and „division‟

MRCET ECE ES UNIT-2 Notes

A typical Digital Signal Processor incorporates the following key units


Program Memory


Data Memory


Computational Engine


I/O Unit

Audio video signal processing, telecommunication and multimedia applications are

typical examples where DSP is employed

RISC V/s CISC Processors/Controllers:

RISC CISC

Lesser no. of instructions Greater no. of Instructions

Instruction Pipelining and increased execution Generally no instruction pipelining feature

speed

Orthogonal Instruction Set (Allows each instruction Non Orthogonal Instruction Set (All instructions

to operate on any register and use any addressing are not allowed to operate on any register and

mode) use any addressing mode. It is instruction

 specific)

Operations are performed on registers only, the Operations are performed on registers or

only memory operations are load and store memory depending on the instruction

Large number of registers are available Limited no. of general purpose registers

Programmer needs to write more code to execute a . A programmer can achieve the desired

task since the instructions are simpler ones functionality with a single instruction which in

 turn provides the effect of using more simpler

 single instructions in RISC

Single, Fixed length Instructions Variable length Instructions

Less Silicon usage and pin count More silicon usage since more additional

decoder logic is required to implement the

complex instruction decoding.

With Harvard Architecture Can be Harvard or Von-Neumann Architecture

MRCET ECE ES UNIT-2 Notes

Microprocessors/controllers based on the Harvard architecture will have separate data

bus and instruction bus. This allows the data transfer and program fetching to occur

simultaneously on both buses

With Harvard architecture, the data memory can be read and written while the program

memory is being accessed. These separated data memory and code memory buses allow

one instruction to execute while the next instruction is fetched (“Pre-fetching”)

Program

Memory
 CPU Data Memory

Single shared Bus

Harvard V/s Von-Neumann Processor/Controller Architecture:

Harvard V/s Von-Neumann Processor/Controller Architecture

The terms Harvard and Von-Neumann refers to the processor architecture design.

Microprocessors/controllers based on the

common bus for fetching both instructions

stored in a common main memory

Von-Neumann architecture shares a single

and data. Program instructions and data are

I/O

CPU

Memory

Harvard Architecture Von-Neumann Architecture

Separate buses for Instruction and Data fetching Single shared bus for Instruction and Data

fetching

Easier to Pipeline, so high performance can be Low performance Compared to Harvard

achieved Architecture

Comparatively high cost Cheaper

No memory alignment problems Allows self modifying codes
†

Since data memory and program memory are Since data memory and program memory

stored physically in different locations, no are stored physically in same chip, chances

chances for accidental corruption of program for accidental corruption of program

memory memory

MRCET ECE ES UNIT-2 Notes

Big-endian V/s Little-endian processors:


Endianness specifies the order in which the data is stored in the memory by processor
operations in a multi byte system (Processors whose word size is greater than one byte).
Suppose the word length is two byte then data can be stored in memory in two different
ways

Higher order of data byte at the higher memory and lower order of data byte at

location just below the higher memory

Lower order of data byte at the higher memory and higher order of data byte at

location just below the higher memory



Little-endian means the lower-order byte of the data is stored in memory at the lowest
address, and the higher-order byte at the highest address. (The little end comes first)



Big-endian means the higher-order byte of the data is stored in memory at the lowest address,
and the lower-order byte at the highest address. (The big end comes first.)

MRCET ECE ES UNIT-2 Notes

Load Store Operation & Instruction Pipelining:

The RISC processor instruction set is orthogonal and it operates on registers. The memory access

related operations are performed by the special instructions load and store. If the operand is

specified as memory location, the content of it is loaded to a register using the load instruction.

The instruction store stores data from a specified register to a specified memory location

Instruction Pipelining

The conventional instruction execution by the processor follows the fetch-decode-

execute sequence

The „fetch‟ part fetches the instruction from program memory or code memory and

the decode part decodes the instruction to generate the necessary control signals

The execute stage reads the operands, perform ALU operations and stores the result.

In conventional program execution, the fetch and decode operations are performed in

sequence

MRCET ECE ES UNIT-2 Notes

During the decode operation the memory address bus is available and if it possible to

effectively utilize it for an instruction fetch, the processing speed can be increased

In its simplest form instruction pipelining refers to the overlapped execution of

instructions

Application Specific Integrated Circuit (ASIC):

A microchip designed to perform a specific or unique application. It is used as

replacement to conventional general purpose logic chips.

ASIC integrates several functions into a single chip and thereby reduces the system

development cost

Most of the ASICs are proprietary products. As a single chip, ASIC consumes very small

area in the total system and thereby helps in the design of smaller systems with high

capabilities/functionalities.

ASICs can be pre-fabricated for a special application or it can be custom fabricated by

using the components from a re-usable „building block‟ library of components for a

particular customer application

Fabrication of ASICs requires a non-refundable initial investment (Non Recurring

Engineering (NRE) charges) for the process technology and configuration expenses

If the Non-Recurring Engineering Charges (NRE) is born by a third party and the

Application Specific Integrated Circuit (ASIC) is made openly available in the market,

the ASIC is referred as Application Specific Standard Product (ASSP)

The ASSP is marketed to multiple customers just as a general-purpose product , but to a

smaller number of customers since it is for a specific application.

MRCET ECE ES UNIT-2 Notes

Some ASICs are proprietary products , the developers are not interested in revealing the

internal details.

Programmable Logic Devices (PLDs):


Logic devices provide specific functions, including device-to-device interfacing, data
communication, signal processing, data display, timing and control operations, and
almost every other function a system must perform.


Logic devices can be classified into two broad categories - Fixed and Programmable. The
circuits in a fixed logic device are permanent, they perform one function or set of
functions - once manufactured, they cannot be changed



Programmable logic devices (PLDs) offer customers a wide range of logic capacity,
features, speed, and voltage characteristics - and these devices can be re-configured to
perform any number of functions at any time


Designers can use inexpensive software tools to quickly develop, simulate, and test their
logic designs in PLD based design. The design can be quickly programmed into a device,
and immediately tested in a live circuit



PLDs are based on re-writable memory technology and the device is reprogrammed to
change the design

Programmable Logic Devices (PLDs) – CPLDs and FPGA

Field Programmable Gate Arrays (FPGAs) and Complex Programmable Logic Devices

(CPLDs) are the two major types of programmable logic devices

FPGA:

 FPGA is an IC designed to be configured by a designer after manufacturing.

FPGAs offer the highest amount of logic density, the most features, and the highest

performance.

Logic gate is Medium to high density ranging from 1K to 500K system gates

MRCET ECE ES UNIT-2 Notes

These advanced FPGA devices also offer features such as built-in hardwired processors

(such as the IBM Power PC), substantial amounts of memory, clock management

systems, and support for many of the latest, very fast device-to-device signaling

technologies

Figure: FPGA Architecture

These advanced FPGA devices also offer features such as built-in hardwired processors,

substantial amounts of memory, clock management systems, and support for many of the

latest, very fast device-to-device signaling technologies.

FPGAs are used in a wide variety of applications ranging from data processing and

storage, to instrumentation, telecommunications, and digital signal processing

CPLD:


A complex programmable logic device (CPLD) is a programmable logic device with
complexity between that of PALs and FPGAs, and architectural features of both.

CPLDs, by contrast, offer much smaller amounts of logic - up to about 10,000 gates.

CPLDs offer very predictable timing characteristics and are therefore ideal for critical

control applications.

MRCET ECE ES UNIT-2 Notes

CPLDs such as the Xilinx CoolRunner series also require extremely low amounts of

power and are very inexpensive, making them ideal for cost-sensitive, battery-operated,

portable applications such as mobile phones and digital handheld assistants.

ADVANTAGES OF PLDs:

• PLDs offer customer much more flexibility during design cycle

• PLDSs do not require long lead times for prototype or production-the PLDs are already

on a distributor‟s self and ready for shipment

• PLDs do not require customers to pay for large NRE costs and purchase expensive mask

sets

• PLDs allow customers to order just the number of parts required when they need them.

allowing them to control inventory.

• PLDs are reprogrammable even after a piece of equipment is shipped to a customer.

• The manufacturers able to add new features or upgrade the PLD based products that are

in the field by uploading new programming file

Commercial off the Shelf Component (COTS):

A Commercial off-the-shelf (COTS) product is one which is used „as-is‟

COTS products are designed in such a way to provide easy integration and

interoperability with existing system components

MRCET ECE ES UNIT-2 Notes

Typical examples for the COTS hardware unit are Remote Controlled Toy Car control

unit including the RF Circuitry part, High performance, high frequency microwave

electronics (2 to 200 GHz), High bandwidth analog-to-digital converters, Devices and

components for operation at very high temperatures, Electro-optic IR imaging arrays,

UV/IR Detectors etc

A COTS component in turn contains a General Purpose Processor (GPP) or Application

Specific Instruction Set Processor (ASIP) or Application Specific Integrated Chip

(ASIC)/Application Specific Standard Product (ASSP) or Programmable Logic Device

(PLD)

The major advantage of using COTS is that they are readily available in the market,

cheap and a developer can cut down his/her development time to a great extend.

There is no need to design the module yourself and write the firmware .

Everything will be readily supplied by the COTs manufacturer.

MRCET ECE ES UNIT-2 Notes

The major problem faced by the end-user is that there are no operational and

manufacturing standards.

The major drawback of using COTs component in embedded design is that the

manufacturer may withdraw the product or discontinue the production of the COTs at any

time if rapid change in technology

This problem adversely affect a commercial manufacturer of the embedded system which

makes use of the specific COTs

Memory:

Memory is an important part of an embedded system. The memory used in embedded

system can be either Program Storage Memory (ROM) or Data memory (RAM)

Certain Embedded processors/controllers contain built in program memory and data

memory and this memory is known as on-chip memory

Certain Embedded processors/controllers do not contain sufficient memory inside the

chip and requires external memory called off-chip memory or external memory.

Memory – Program Storage Memory:


Stores the program instructions



Retains its contents even after the power to it is turned off. It is generally known as Non
volatile storage memory


Depending on the fabrication, erasing and programming techniques they are classified into

MRCET ECE ES UNIT-2 Notes

FLASH Code Memory

(ROM)

NVRAM

PROM Masked ROM

(OTP) (MROM)
EPROM EEPROM

1. Masked ROM (MROM):

One-time programmable memory.

Uses hardwired technology for storing data.

The device is factory programmed by masking and metallization process according to

the data provided by the end user.

The primary advantage of MROM is low cost for high volume production.

MROM is the least expensive type of solid state memory.

Different mechanisms are used for the masking process of the ROM, like


Creation of an enhancement or depletion mode transistor through channel implant



By creating the memory cell either using a standard transistor or a high threshold
transistor.



In the high threshold mode, the supply voltage required to turn ON the transistor is
above the normal ROM IC operating voltage.



This ensures that the transistor is always off and the memory cell stores always logic
0.

The limitation with MROM based firmware storage is the inability to modify the

device firmware against firmware upgrades.

The MROM is permanent in bit storage, it is not possible to alter the bit information

MRCET ECE ES UNIT-2 Notes

2. Programmable Read Only Memory (PROM) / (OTP) :

It is not pre-programmed by the manufacturer

The end user is responsible for Programming these devices.

PROM/OTP has nichrome or polysilicon wires arranged in a matrix, these wires can be

functionally viewed as fuses.

It is programmed by a PROM programmer which selectively burns the fuses according to

the bit pattern to be stored.

Fuses which are not blown/burned represents a logic “1” where as fuses which are

blown/burned represents a logic “0”.The default state is logic “1”.

OTP is widely used for commercial production of embedded systems whose proto-typed

versions are proven and the code is finalized.

It is a low cost solution for commercial production.

OTPs cannot be reprogrammed.

3. Erasable Programmable Read Only Memory (EPROM):

Erasable Programmable Read Only (EPROM) memory gives the flexibility to re-program

the same chip.

During development phase , code is subject to continuous changes and using an OTP is

not economical.

EPROM stores the bit information by charging the floating gate of an FET

Bit information is stored by using an EPROM Programmer, which applies high voltage to

charge the floating gate

EPROM contains a quartz crystal window for erasing the stored information. If the

window is exposed to Ultra violet rays for a fixed duration, the entire memory will be

erased

Even though the EPROM chip is flexible in terms of re-programmability, it needs to be

taken out of the circuit board and needs to be put in a UV eraser device for 20 to 30

minutes

MRCET ECE ES UNIT-2 Notes

4. Electrically Erasable Programmable Read Only Memory (EEPROM):

Erasable Programmable Read Only (EPROM) memory gives the flexibility to re-program

the same chip using electrical signals

The information contained in the EEPROM memory can be altered by using electrical

signals at the register/Byte level

They can be erased and reprogrammed within the circuit

These chips include a chip erase mode and in this mode they can be erased in a few

milliseconds

It provides greater flexibility for system design

The only limitation is their capacity is limited when compared with the standard ROM (A

few kilobytes).

5. Program Storage Memory – FLASH

FLASH memory is a variation of EEPROM technology.

FALSH is the latest ROM technology and is the most popular ROM technology used in

today‟s embedded designs

It combines the re-programmability of EEPROM and the high capacity of standard

ROMs

FLASH memory is organized as sectors (blocks) or pages

FLASH memory stores information in an array of floating gate MOSFET transistors

The erasing of memory can be done at sector level or page level without affecting the

other sectors or pages

Each sector/page should be erased before re-programming

The typical erasable capacity of FLASH is of the order of a few 1000 cycles.

Read-Write Memory/Random Access Memory (RAM)


RAM is the data memory or working memory of the controller/processor


RAM is volatile, meaning when the power is turned off, all the contents are destroyed

MRCET ECE ES UNIT-2 Notes


RAM is a direct access memory, meaning we can access the desired memory location
directly without the need for traversing through the entire memory locations to reach the
desired memory position (i.e. Random Access of memory location)

Read/Write

Memory (RAM)

SRAM DRAM NVRAM

1. Static RAM (SRAM):


Static RAM stores data in the form of Voltage.



They are made up of flip-flops



In typical implementation, an SRAM cell (bit) is realized using
6 transistors (or 6 MOSFETs).



Four of the transistors are used for building the latch
(flip-flop)part of the memory cell and 2 for controlling the
access.



Static RAM is the fastest form of RAM available.



SRAM is fast in operation due to its resistive networking and switching capabilities

2. Dynamic RAM (DRAM)



Dynamic RAM stores data in the form of charge. They are made up of MOS transistor gates



The advantages of DRAM are its high density and low cost compared to
SRAM


The disadvantage is that since the information is stored as charge it
gets leaked off with time and to prevent this they need to be
refreshed periodically


Special circuits called DRAM controllers are used for the refreshing operation. The refresh

MRCET ECE ES UNIT-2 Notes

operation is done periodically in milliseconds interval

MRCET ECE ES UNIT-2 Notes

SRAM Vs DRAM:

SRAM Cell DRAM Cell

Made up of 6 CMOS transistors (MOSFET) Made up of a MOSFET and a capacitor

Doesn‟t Require refreshing Requires refreshing

Low capacity (Less dense) High Capacity (Highly dense)

More expensive Less Expensive

Fast in operation. Typical access time is 10ns Slow in operation due to refresh

requirements. Typical access time is 60ns.

Write operation is faster than read operation.

3. Non Volatile RAM (NVRAM):


Random access memory with battery backup



It contains Static RAM based memory and a minute battery for providing supply to the
memory in the absence of external power supply


The memory and battery are packed together in a single package



NVRAM is used for the non volatile storage of results of operations or for setting up of flags
etc



The life span of NVRAM is expected to be around 10 years



DS1744 from Maxim/Dallas is an example for 32KB NVRAM

Memory selection for Embedded Systems:

• Selection of suitable memory is very much essential step in high performance

applications, because the challenges and limitations of the system performance are often

decided upon the type of memory architecture.

• Systems memory requirement depend primarily on the nature of the application that is

planned to run on the system.

• Memory performance and capacity requirement for low cost systems are small, whereas

memory throughput can be the most critical requirement in a complex, high performance

system.

MRCET ECE ES UNIT-2 Notes

• Following are the factors that are to be considered while selecting the memory devices,


Speed


Data storage size and capacity


Bus width


Power consumption


Cost

Embedded system requirements:


Program memory for holding control algorithm or embedded OS and the applications
designed to run on top of OS.


Data memory for holding variables and temporary data during task execution.



Memory for holding non-volatile data which are modifiable by the application.

The memory requirement for an embedded system in terms of RAM (SRAM/DRAM)

and ROM (EEPROM/FLASH/NVRAM) is solely dependent on the type of the embedded

system and applications for which it is designed.

There is no hard and fast rule for calculating the memory requirements.

Lot of factors need to be considered for selecting the type and size of memory for

embedded system.

Example: Design of Embedded based electronic Toy.

SOC or microcontroller can be selected based type(RAM &ROM) and size of on-chip

memory for the design of embedded system.

If on-chip memory is not sufficient then how much external memory need to be

interfaced.

If the ES design is RTOS based ,the RTOS requires certain amount of RAM for its

execution and ROM for storing RTOS Image.

The RTOS suppliers gives amount of run time RAM requirements and program memory

requirements for the RTOS.

Additional memory is required for executing user tasks and user applications.

MRCET ECE ES UNIT-2 Notes

On a safer side, always add a buffer value to the total estimated RAM and ROM

requirements.

A smart phone device with windows OS is typical example for embedded device requires

say 512MB RAM and 1GB ROM are minimum requirements for running the mobile

device.

And additional RAM &ROM memory is required for running user applications.

So estimate the memory requirements for install and run the user applications without

facing memory space.

Memory can be selected based on size of the memory ,data bus and address bus size of

the processor/controller.

Memory chips are available in standard sizes like 512 bytes,1KB,2KB ,4KB,8KB,16 KB

….1MB etc.

FLASH memory is the popular choice for ROM in embedded applications .

It is powerful and cost-effective solid state storage technology for mobile electronic

devices and other consumer applications.

Flash memory available in two major variants

1. NAND FLASH 2. NOR FLASH

NAND FLASH is a high density low cost non-volatile storage memory.

NOR FLASH is less dense and slightly expensive but supports Execute in place(XIP).

The XIP technology allows the execution of code memory from ROM itself without the

need for copying it to the RAM.

The EEPROM is available as either serial interface or parallel interface chip.

If the processor/controller of the device supports serial interface and the amount of data

to write and read to and from the device (Serial EEPROM) is less.

The serial EEPROM saves the address space of the total system.

The memory capacity of the serial EEPROM is expressed in bits or Kilobits.

MRCET ECE ES UNIT-2 Notes

Industrial grade memory chips are used in certain embedded devices may be operated at

extreme environmental conditions like high temperature.

Sensors & Actuators:

• Embedded system is in constant interaction with the real world

• Controlling/monitoring functions executed by the embedded system is achieved in

accordance with the changes happening to the Real World.

• The changes in the system environment or variables are detected by the sensors

connected to the input port of the embedded system.

• If the embedded system is designed for any controlling purpose, the system will produce

some changes in controlling variable to bring the controlled variable to the desired value.

• It is achieved through an actuator connected to the out port of the embedded system.

Sensor:

A transducer device which converts energy from one form to another for any

measurement or control purpose. Sensors acts as input device

Eg. Hall Effect Sensor which measures the distance between the cushion and magnet in

the Smart Running shoes from adidas

Example: IR, humidity , PIR(passive infra red) , ultrasonic , piezoelectric , smoke

sensors

MRCET ECE ES UNIT-2 Notes

Actuator:

A form of transducer device (mechanical or

electrical) which converts signals to

corresponding physical action (motion).

Actuator acts as an output device

Eg. Micro motor actuator which adjusts the

position of the cushioning element in the

Smart Running shoes from adidas

MRCET ECE ES UNIT-2 Notes

The I/O Subsystem:


The I/O subsystem of the embedded system facilitates the interaction of the
embedded system with external world



The interaction happens through the sensors and actuators connected to the
Input and output ports respectively of the embedded system


The sensors may not be directly interfaced to the Input ports, instead
they may be interfaced through signal conditioning and translating
systems like ADC, Optocouplers etc

1. I/O Devices - Light Emitting Diode (LED):

Light Emitting Diode (LED) is an output device for visual
Vcc

indication in any embedded system

R

LED can be used as an indicator for the status of various signals

or situations.

Typical examples are indicating the presence of power conditions
GND

like „Device ON‟, „Battery low‟ or „Charging of battery‟ for a

battery operated handheld embedded devices

LED is a p-n junction diode and it contains an anode and a cathode.

For proper functioning of the LED, the anode of it should be connected to +ve terminal

of the supply voltage and cathode to the –ve terminal of supply voltage

The current flowing through the LED must limited to a value below the maximum current

that it can conduct.

A resister is used in series between the power supply and the resistor to limit the current

through the LED

2. I/O Devices – 7-Segment LED Display

The 7 – segment LED display is an output device for displaying alpha numeric characters

It contains 8 light-emitting diode (LED) segments arranged in a special form. Out of the 8

LED segments, 7 are used for displaying alpha numeric characters

MRCET ECE ES UNIT-2 Notes

The LED segments are named A to G and the decimal point LED segment is named as

DP

The LED Segments A to G and DP should be lit accordingly to display numbers and

characters

The 7 – segment LED displays are available in two different configurations, namely;

Common anode and Common cathode

In the Common anode configuration, the anodes of the 8 segments are connected

commonly whereas in the Common cathode configuration, the 8 LED segments share a

common cathode line

Based on the configuration of the 7 – segment LED unit, the LED segment anode or

cathode is connected to the Port of the processor/controller in the order „A‟ segment to

the Least significant port Pin and DP segment to the most significant Port Pin.

The current flow through each of the LED segments should be limited to the maximum

value supported by the LED display unit

Anode Common Cathode LED Display

DPGF ED C B A

DP GFEDCB A

Common Anode LED Display Cathode

The typical value for the current falls within the range of 20mA

The current through each segment can be limited by connecting a current limiting resistor

to the anode or cathode of each segment

3. I/O Devices – Optocoupler

Optocoupler is a solid state device to isolate two parts of a circuit.

Optocoupler combines an LED and a photo-transistor in a single housing (package)

MRCET ECE ES UNIT-2 Notes

In electronic circuits, optocoupler is used for suppressing interference in data

communication, circuit isolation, High voltage separation, simultaneous separation and

intensification signal etc Vcc

/p interface

Optocouplers can be used in either input circuits or in output circuits

4. I/O Devices – Stepper Motor:

Stepper motor is an electro mechanical device which generates discrete

displacement (motion) in response to dc electrical signals

It differs from the normal dc motor in its operation. The dc motor produces

continuous rotation on applying dc voltage whereas a stepper motor produces discrete

rotation in response to the dc voltage applied to it

Stepper motors are widely used in industrial embedded

applications, consumer electronic products and robotics

control systems

The paper feed mechanism of a printer/fax makes use

of stepper motors for its functioning.

Based on the coil winding arrangements, a two phase

stepper motor is classified into



Unipolar


Bipolar

A

M

C

B D

GND

G
N

D

LED AT89C51 LED
I/p interface Port Pin

O
 Port Pin

Photo-transistor Photo-transistor

Opto-Coupler

IC MCT2M
Microcontroller Opto-Coupler

IC MCT2M

MRCET ECE ES UNIT-2 Notes


Unipolar: A unipolar stepper motor contains two windings per phase. The direction of
rotation (clockwise or anticlockwise) of a stepper motor is controlled by changing the
direction of current flow. Current in one direction flows through one coil and in the
opposite direction flows through the other coil. It is easy to shift the direction of rotation
by just switching the terminals to which the coils are connected


Bipolar: A bipolar stepper motor contains single winding per phase. For reversing the
motor rotation the current flow through the windings is reversed dynamically. It requires
complex circuitry for current flow reversal

5. The I/O Subsystem – I/O Devices – Relay:


An electro mechanical device which acts as dynamic path selectors for signals and power.



The „Relay‟ unit contains a relay coil made up of insulated wire on a metal core and a metal
armature with one or more contacts.


„Relay‟ works on electromagnetic principle.



When a voltage is applied to the relay coil, current flows through the coil, which in turn
generates a magnetic field.

 C
o
ilR

elay

C

o
i

l R

el

a y

C

o
il

R
elay

Single Pole Single Single Pole Single Single Pole Double

Throw Normally Throw Normally Throw

Open Closed


The magnetic field attracts the armature core and moves the contact point.



The movement of the contact point changes the power/signal flow path.



The Relay is normally controlled using a relay driver circuit connected to the port pin of the
processor/controller



A transistor can be used as the relay driver. The transistor can be selected depending on the
relay driving current requirements.

MRCET ECE ES UNIT-2 Notes

6. The I/O Subsystem – I/O Devices -Piezo Buzzer:

• It is a piezoelectric device for generating audio indications in embedded applications.

• A Piezo buzzer contains a piezoelectric diaphragm which produces audible sound in

response to the voltage applied to it.

• Piezoelectric buzzers are available in two types

1.Self-driving 2.External driving

• Self-driving contains are the necessary components to

generate sound at a predefined tone.

• External driving piezo Buzzers supports the generation of different tones.

• The tone can be varied by applying a variable pulse train to the piezoelectric buzzer.

• A Piezo Buzzer can be directly interfaced to the port pin of the processor/Controller.

7. The I/O Subsystem – I/O Devices – Push button switch:


Push Button switch is an input device.



Push button switch comes in two configurations, namely „Push to Make‟
and „Push to Break‟



The switch is normally in the open state and it makes a circuit contact when
it is pushed or pressed in the „Push to Make‟ configuration.


In the „Push to Break‟ configuration, the switch is

normally in the closed state and it breaks the

circuit contact when it is pushed or pressed


The push button stays in the „closed‟ (For Push
to Make type) or „open‟ (For Push to Break
type) state as long as it is kept in the pushed
state and it breaks/makes the circuit connection
when it is released.


Push button is used for generating a momentary pulse

MRCET ECE ES UNIT-2 Notes

MRCET ECE ES UNIT-2 Notes

MRCET ECE ES UNIT-2 Notes

Text Book:-

1. Introduction to Embedded Systems – Shibu K.V Mc Graw Hill

UNIT-3

EMBEDDED FIRMWARE DESIGN &

DEVELOPMENT

Embedded Systems Unit-3Notes

Introduction:

Embedded Firmware

The control algorithm (Program instructions) and or the configuration

settings that an embedded system developer dumps into the code (Program)

memory of the embedded system

It is an un-avoidable part of an embedded system.

The embedded firmware can be developed in various methods like

o Write the program in high level languages like Embedded C/C++

using an Integrated Development Environment (The IDE will contain

an editor, compiler, linker, debugger, simulator etc. IDEs are different

for different family of processors/controllers.

o Write the program in Assembly Language using the Instructions
Supported by your application’s target processor/controller

Embedded Firmware Design & Development:

The embedded firmware is responsible for controlling the various

peripherals of the embedded hardware and generating response in

accordance with the functional requirements of the product.

The embedded firmware is the master brain of the embedded system.

The embedded firmware imparts intelligence to an Embedded system.

It is a onetime process and it can happen at any stage.

The product starts functioning properly once the intelligence imparted to the

product by embedding the firmware in the hardware.

The product will continue serving the assigned task till hardware breakdown

occurs or a corruption in embedded firmware.

In case of hardware breakdown , the damaged component may need to be

replaced and for firmware corruptions the firmware should be re-loaded, to

bring back the embedded product to the normal functioning.

4

Embedded Systems Unit-3Notes

The embedded firmware is usually stored in a permanent memory (ROM)

and it is non alterable by end users.

Designing Embedded firmware requires understanding of the particular

embedded product hardware, like various component interfacing, memory

map details, I/O port details, configuration and register details of various

hardware chips used and some programming language (either low level

Assembly Language or High level language like C/C++ or a combination of

the two)

The embedded firmware development process starts with the conversion of

the firmware requirements into a program model using various modeling

tools.

The firmware design approaches for embedded product is purely dependent

on the complexity of the functions to be performed and speed of operation

required.

There exist two basic approaches for the design and implementation of

embedded firmware, namely;

 The Super loop based approach

 The Embedded Operating System based approach

The decision on which approach needs to be adopted for firmware

development is purely dependent on the complexity and system

requirements

1. Embedded firmware Design Approaches – The Super loop:

The Super loop based firmware development approach is Suitable for

applications that are not time critical and where the response time is not so

important (Embedded systems where missing deadlines are acceptable).

4

Embedded Systems Unit-3Notes

It is very similar to a conventional procedural programming where the code

is executed task by task

The tasks are executed in a never ending loop.

The task listed on top on the program code is executed first and the tasks just

below the top are executed after completing the first task

A typical super loop implementation will look like:

1. Configure the common parameters and perform initialization for

various hardware components memory, registers etc.

2. Start the first task and execute it

3. Execute the second task

4. Execute the next task

5. :

6. :

7. Execute the last defined task

8. Jump back to the first task and follow the same flow.

The ‘C’ program code for the super loop is given below

void main ()

{

Configurations ();

Initializations ();

while (1)

{

Task 1 ();

Task 2 ();

:

4

Embedded Systems Unit-3Notes

:

Task n ();

}

}

Pros:

Cons:

Doesn’t require an Operating System for task scheduling and monitoring and

free from OS related overheads

Simple and straight forward design

Reduced memory footprint

Non Real time in execution behavior (As the number of tasks increases the

frequency at which a task gets CPU time for execution also increases)

Any issues in any task execution may affect the functioning of the product

(This can be effectively tackled by using Watch Dog Timers for task

execution monitoring)

Enhancements:


Combine Super loop based technique with interrupts


Execute the tasks (like keyboard handling) which require Real time attention

as Interrupt Service routines.

2. Embedded firmware Design Approaches – Embedded OS based Approach:

The embedded device contains an Embedded Operating System which can

be one of:

 A Real Time Operating System (RTOS)

 A Customized General Purpose Operating System (GPOS)

4

Embedded Systems Unit-3Notes

The Embedded OS is responsible for scheduling the execution of user tasks

and the allocation of system resources among multiple tasks

It Involves lot of OS related overheads apart from managing and executing

user defined tasks

Microsoft® Windows XP Embedded is an example of GPOS for embedded

devices

Point of Sale (PoS) terminals, Gaming Stations, Tablet PCs etc are examples

of embedded devices running on embedded GPOSs

‘Windows CE’, ‘Windows Mobile’,‘QNX’, ‘VxWorks’, ‘ThreadX’,

‘MicroC/OS-II’, ‘Embedded Linux’, ‘Symbian’ etc are examples of RTOSs

employed in Embedded Product development

Mobile Phones, PDAs, Flight Control Systems etc are examples of

embedded devices that runs on RTOSs

Embedded firmware Development Languages/Options

Assembly Language

High Level Language

o Subset of C (Embedded C)

o Subset of C++ (Embedded C++)

o Any other high level language with supported Cross-compiler

Mix of Assembly & High level Language

o Mixing High Level Language (Like C) with Assembly Code

o Mixing Assembly code with High Level Language (Like C)

o Inline Assembly

4

Embedded Systems Unit-3Notes

1. Embedded firmware Development Languages/Options – Assembly

Language

‘Assembly Language’ is the human readable notation of ‘machine

language’

‘Machine language’ is a processor understandable language

Machine language is a binary representation and it consists of 1s and 0s

Assembly language and machine languages are processor/controller

dependent

An Assembly language program written for one processor/controller family

will not work with others

Assembly language programming is the process of writing processor specific

machine code in mnemonic form, converting the mnemonics into actual

processor instructions (machine language) and associated data using an

assembler

The general format of an assembly language instruction is an Opcode

followed by Operands

The Opcode tells the processor/controller what to do and the Operands

provide the data and information required to perform the action specified by

the opcode

It is not necessary that all opcode should have Operands following them.

Some of the Opcode implicitly contains the operand and in such situation no

operand is required. The operand may be a single operand, dual operand or

more

The 8051 Assembly Instruction

MOV A, #30

Moves decimal value 30 to the 8051 Accumulator register. Here MOV A is the

Opcode and 30 is the operand (single operand). The same instruction when written

in machine language will look like

4

Embedded Systems Unit-3Notes

01110100 00011110

The first 8 bit binary value 01110100 represents the opcode MOV A and the second

8 bit binary value 00011110 represents the operand 30.

Assembly language instructions are written one per line

A machine code program consists of a sequence of assembly language

instructions, where each statement contains a mnemonic (Opcode +

Operand)

Each line of an assembly language program is split into four fields as:

LABEL OPCODE OPERAND COMMENTS

LABEL is an optional field. A ‘LABEL’ is an identifier used extensively in

programs to reduce the reliance on programmers for remembering where

data or code is located. LABEL is commonly used for representing

A memory location, address of a program, sub-routine, code portion etc.

 The maximum length of a label differs between assemblers.

Assemblers insist strict formats for labeling. Labels are always

suffixed by a colon and begin with a valid character. Labels can

contain number from 0 to 9 and special character _ (underscore).

;###

; SUBROUTINE FOR GENERATING DELAY

; DELAY PARAMETR PASSED THROUGH REGISTER R1

; RETURN VALUE NONE,REGISTERS USED: R0, R1

;###

DELAY: MOV R0, #255 ; Load Register R0 with 255

DJNZ R1, DELAY; Decrement R1 and loop till R1= 0

RET ; Return to calling program

4

Embedded Systems Unit-3Notes

 The symbol ; represents the start of a comment. Assembler ignores the

text in a line after the ; symbol while assembling the program

 DELAY is a label for representing the start address of the memory

location where the piece of code is located in code memory

 The above piece of code can be executed by giving the label DELAY as

part of the instruction. E.g. LCALL DELAY; LMP DELAY

2. Assembly Language – Source File to Hex File Translation:

The Assembly language program written in assembly code is saved as

.asm (Assembly file) file or a .src (source) file or a format supported by

the assembler

Similar to ‘C’ and other high level language programming, it is possible

to have multiple source files called modules in assembly language

programming. Each module is represented by a ‘.asm’ or ‘.src’ file or the

assembler supported file format similar to the ‘.c’ files in C programming

The software utility called ‘Assembler’ performs the translation of

assembly code to machine code

The assemblers for different family of target machines are different. A51

Macro Assembler from Keil software is a popular assembler for the 8051

family micro controller

Figure 5: Assembly Language to machine language conversion process

4

Embedded Systems Unit-3Notes

Each source file can be assembled separately to examine the syntax errors

and incorrect assembly instructions

Assembling of each source file generates a corresponding object file. The

object file does not contain the absolute address of where the generated

code needs to be placed (a re-locatable code) on the program memory

The software program called linker/locater is responsible for assigning

absolute address to object files during the linking process

The Absolute object file created from the object files corresponding to

different source code modules contain information about the address

where each instruction needs to be placed in code memory

A software utility called ‘Object to Hex file converter’ translates the

absolute object file to corresponding hex file (binary file)

Advantages:

 1.Efficient Code Memory & Data Memory Usage (Memory Optimization):

 The developer is well aware of the target processor architecture and

memory organization, so optimized code can be written for

performing operations.

 This leads to less utilization of code memory and efficient utilization

of data memory.

 2.High Performance:

 Optimized code not only improves the code memory usage but also

improves the total system performance.

 Through effective assembly coding, optimum performance can be

achieved for target processor.

 3.Low level Hardware Access:

 Most of the code for low level programming like accessing external

device specific registers from OS kernel ,device drivers, and low level

interrupt routines, etc are making use of direct assembly coding.

4

Embedded Systems Unit-3Notes

 4.Code Reverse Engineering:

 It is the process of understanding the technology behind a product by

extracting the information from the finished product.

 It can easily be converted into assembly code using a dis-assembler

program for the target machine.

Drawbacks:

 1.High Development time:

 The developer takes lot of time to study about architecture ,memory

organization, addressing modes and instruction set of target

processor/controller.

 More lines of assembly code is required for performing a simple

action.

 2.Developer dependency:

 There is no common written rule for developing assembly language

based applications.

 3.Non portable:

 Target applications written in assembly instructions are valid only for

that particular family of processors and cannot be re-used for another

target processors/controllers.

 If the target processor/controller changes, a complete re-writing of the

application using assembly language for new target

processor/controller is required.

2. Embedded firmware Development Languages/Options – High Level

Language

The embedded firmware is written in any high level language like C, C++

A software utility called ‘cross-compiler’ converts the high level language to

target processor specific machine code

4

Embedded Systems Unit-3Notes


The cross-compilation of each module generates a corresponding object

file. The object file does not contain the absolute address of where the

generated code needs to be placed (a re-locatable code) on the program

memory


The software program called linker/locater is responsible for assigning

absolute address to object files during the linking process


The Absolute object file created from the object files corresponding to

different source code modules contain information about the address where

each instruction needs to be placed in code memory


A software utility called ‘Object to Hex file converter’ translates the

absolute object file to corresponding hex file (binary file)

Embedded firmware Development Languages/Options – High Level

Language – Source File to Hex File Translation

Machine Code

(Hex File)

Figure 6: High level language to machine language conversion process

4

Library Files

Source File 1

(.c /.c++ etc)

(Module-1)

Module

Cross-compiler

Object File 1

Source File 2

(.c /.c++ etc)

(Module-2)

Module

Cross-compiler
Object File 2

Object to Hex File

Converter

Absolute Object File
Linker/

Locator

Embedded Systems Unit-3Notes

Advantages:

Reduced Development time: Developer requires less or little

Drawbacks:

knowledge on internal hardware details and architecture of the target

processor/Controller.

Developer independency: The syntax used by most of the high level

languages are universal and a program written high level can easily

understand by a second person knowing the syntax of the language

Portability: An Application written in high level language for

particular target processor /controller can be easily be converted to

another target processor/controller specific application with little or

less effort

• The cross compilers may not be efficient in generating the optimized

target processor specific instructions.

• Target images created by such compilers may be messy and non-

optimized in terms of performance as well as code size.

• The investment required for high level language based development

tools (IDE) is high compared to Assembly Language based firmware

development tools.

Embedded firmware Development Languages/Options – Mixing of Assembly

Language with High Level Language

Embedded firmware development may require the mixing of Assembly

Language with high level language or vice versa.

Interrupt handling, Source code is already available in high level

language\Assembly Language etc are examples

4

Embedded Systems Unit-3Notes

High Level language and low level language can be mixed in three different

ways

 Mixing Assembly Language with High level language like ‘C’

 Mixing High level language like ‘C’ with Assembly Language

 In line Assembly

The passing of parameters and return values between the high level and low

level language is cross-compiler specific

1. Mixing Assembly Language with High level language like ‘C’

(Assembly Language with ‘C’):

Assembly routines are mixed with ‘C’ in situations where the entire program

is written in ‘C’ and the cross compiler in use do not have built in support

for implementing certain features like ISR.

If the programmer wants to take advantage of the speed and optimized code

offered by the machine code generated by hand written assembly rather than

cross compiler generated machine code.

For accessing certain low level hardware ,the timing specifications may be

very critical and cross compiler generated machine code may not be able to

offer the required time specifications accurately.

Writing the hardware/peripheral access routine in processor/controller

specific assembly language and invoking it from ‘C’ is the most advised

method.

Mixing ‘C’ and assembly is little complicated.

The programmer must be aware of how to pass parameters from the ‘C’

routine to assembly and values returned from assembly routine to ‘C’ and

how Assembly routine is invoked from the ‘C’ code.

4

Embedded Systems Unit-3Notes

Passing parameter to the assembly routine and returning values from the

assembly routine to the caller ‘C’ function and the method of invoking the

assembly routine from ‘C’ code is cross compiler dependent.

There is no universal written rule for purpose.

We can get this information from documentation of the cross compiler.

Different cross compilers implement these features in different ways

depending on GPRs and memory supported by target processor/controller

2. Mixing High level language like ‘C’ with Assembly Language

(‘C’ with Assembly Language)

The source code is already available in assembly language and routine

written in a high level language needs to be included to the existing code.

The entire source code is planned in Assembly code for various reasons like

optimized code, optimal performance, efficient code memory utilization and

proven expertise in handling the assembly.

The functions written in ‘C’ use parameter passing to the function and

returns values to the calling functions.

The programmer must be aware of how parameters are passed to the

function and how values returned from the function and how function is

invoked from the assembly language environment.

Passing parameter to the function and returning values from the function

using CPU registers , stack memory and fixed memory.

Its implementation is cross compiler dependent and varies across compilers.

4

Embedded Systems Unit-3Notes

3. In line Assembly:

• Inline assembly is another technique for inserting the target

processor/controller specific assembly instructions at any location of source

code written in high level language ‘C’

• Inline Assembly avoids the delay in calling an assembly routine from a ‘C’

code.

• Special keywords are used to indicate the start and end of Assembly

instructions

• E.g #pragma asm

Mov A,#13H

#pragma ensasm

• Keil C51 uses the keywords #pragma asm and #pragma endasm to indicate

a block of code written in assembly.

Text Books:

1. Introduction to Embedded Systems – Shibu K.V Mc Graw Hill

2. Embedded System Design-Raj Kamal TMH

4

ES Unit-4 Notes

EMBEDDED SYSTEM DESIGN

UNIT-IV

RTOS Based Embedded System Design

ES Unit-4 Notes

OS manages

resources and

available to

the system

makes them

the user

applications/tasks on a need basis

The primary functions of an Operating system is

 Make the system convenient to use

 Organize and manage the system resources efficiently andcorrectly

User Applications
 Application Programming

Interface (API)

Underlying Hardware

Device Driver

Interface

I/O System Management

File System Management

Time Management

Process Management

Memory Management

Operating System Basics:

 The Operating System acts as a bridge between the user applications/tasks

and the underlying system resources through a set of system functionalities

and services





























































Figure 1: The Architecture of Operating System

K
e
r
n

e
l
S

e
r
v
ic

e
s

ES Unit-4 Notes

The Kernel:

 The kernel is the core of the operating system

 It is responsible for managing the system resources and the communication

among the hardware and other system services

 Kernel acts as the abstraction layer between system resources and user

applications

 Kernel contains a set of system libraries and services.

 For a general purpose OS, the kernel contains different services like

 Process Management

 Primary Memory Management

 File System management

 I/O System (Device) Management

 Secondary Storage Management

 Protection

 Time management

 Interrupt Handling

Kernel Space and User Space:

 The program code corresponding to the kernel applications/services are kept

in a contiguous area (OS dependent) of primary (working) memory and is

protected from the un-authorized access by user programs/applications

 The memory space at which the kernel code is located is known as ‘Kernel

Space’

ES Unit-4 Notes

 All user applications are loaded to a specific area of primary memory and

this memory area is referred as ‘User Space’

 The partitioning of memory into kernel and user space is purely Operating

System dependent

 An operating system with virtual memory support, loads the user

applications into its corresponding virtual memory space with demand

paging technique

 Most of the operating systems keep the kernel application code in main

memory and it is not swapped out into the secondary memory

Monolithic Kernel:

 All kernel services run in the kernel space

 All kernel modules run within the same memory space under a single kernel

thread

 The tight internal integration of kernel modules in monolithic kernel

architecture allows the effective

utilization of the low-level features of

the underlying system

 The major drawback of monolithic

kernel is that any error or failure in

any one of the kernel modules leads to

the crashing of the entire kernel

application

 LINUX, SOLARIS, MS-DOS kernels

are examples of monolithic kernel

Applications

Monolithic kernel with all

operating system services

running in kernel space

Figure 2: The Monolithic Kernel Model

ES Unit-4 Notes

Microkernel

 The microkernel design incorporates only the essential set of Operating

System services into the kernel

 Rest of the Operating System services are implemented in programs known

as ‘Servers’ which runs in user space

 The kernel design is highly

modular provides OS-neutral

abstraction.

 Memory management, process

Servers (kernel

services running

in user space)

Applications

management, timer systems and

interrupt handlers are examples of

essential services, which forms the part

of the microkernel

Microkernel with essential

services like memory

management, process

management, timer systemetc...

Figure 3: The Microkernel Model

 QNX, Minix 3 kernels are examples for microkernel.

Benefits of Microkernel:

1. Robustness: If a problem is encountered in any services in server can

reconfigured and re-started without the need for re-starting the entire OS.

2. Configurability: Any services , which run as ‘server’ application can be

changed without need to restart the whole system.

Types of Operating Systems:

Depending on the type of kernel and kernel services, purpose and type of

computing systems where the OS is deployed and the responsiveness to

applications, Operating Systems are classified into

1. General Purpose Operating System (GPOS):

2. Real Time Purpose Operating System (RTOS):

ES Unit-4 Notes

1. General Purpose Operating System (GPOS):

 Operating Systems, which are deployed in general computing systems

 The kernel is more generalized and contains all the required services to

execute generic applications

 Need not be deterministic in execution behavior

 May inject random delays into application software and thus cause slow

responsiveness of an application at unexpected times

 Usually deployed in computing systems where deterministic behavior is not

an important criterion

 Personal Computer/Desktop system is a typical example for a systemwhere

GPOSs are deployed.

 Windows XP/MS-DOS etc are examples of General Purpose Operating

System

2. Real Time Purpose Operating System (RTOS):

 Operating Systems, which are deployed in embedded systems demanding

real-time response

 Deterministic in execution behavior. Consumes only known amount oftime

for kernel applications

 Implements scheduling policies for executing the highest priority

task/application always

 Implements policies and rules concerning time-critical allocation of a

system’s resources

 Windows CE, QNX, VxWorks , MicroC/OS-II etc are examples of Real

Time Operating Systems (RTOS)

ES Unit-4 Notes

The Real Time Kernel: The kernel of a Real Time Operating System is referred

as Real Time kernel. In complement to the conventional OS kernel, the Real Time

kernel is highly specialized and it contains only the minimal set of services

required for running the user applications/tasks. The basic functions of a Real Time

kernel are

a) Task/Process management

b) Task/Process scheduling

c) Task/Process synchronization

d) Error/Exception handling

e) Memory Management

f) Interrupt handling

g) Time management

 Real Time Kernel Task/Process Management: Deals with setting up the

memory space for the tasks, loading the task’s code into the memory space,

allocating system resources, setting up a Task Control Block (TCB) for the task

and task/process termination/deletion. A Task Control Block (TCB) is used for

holding the information corresponding to a task. TCB usually contains the

following set of information

 Task ID: Task Identification Number

 Task State: The current state of the task. (E.g. State= ‘Ready’ for a task

which is ready to execute)

 Task Type: Task type. Indicates what is the type for this task. The task can

be a hard real time or soft real time or background task.

 Task Priority: Task priority (E.g. Task priority =1 for task with priority = 1)

 Task Context Pointer: Context pointer. Pointer for context saving

ES Unit-4 Notes

 Task Memory Pointers: Pointers to the code memory, data memory and

stack memory for the task

 Task System Resource Pointers: Pointers to system resources (semaphores,

mutex etc) used by the task

 Task Pointers: Pointers to other TCBs (TCBs for preceding, next and

waiting tasks)

 Other Parameters Other relevant task parameters

The parameters and implementation of the TCB is kernel dependent. The TCB

parameters vary across different kernels, based on the task management

implementation

 Task/Process Scheduling: Deals with sharing the CPU among various

tasks/processes. A kernel application called ‘Scheduler’ handles the task

scheduling. Scheduler is nothing but an algorithm implementation, which

performs the efficient and optimal scheduling of tasks to provide a deterministic

behavior.

Task/Process Synchronization: Deals with synchronizing the concurrent

access of a resource, which is shared across multiple tasks and the

communication between various tasks.

Error/Exception handling: Deals with registering and handling the errors

occurred/exceptions raised during the execution of tasks. Insufficient memory,

timeouts, deadlocks, deadline missing, bus error, divide by zero, unknown

instruction execution etc, are examples of errors/exceptions. Errors/Exceptions

can happen at the kernel level services or at task level. Deadlock is an example

for kernel level exception, whereas timeout is an example for a task level

exception. The OS kernel gives the information about the error in the form of a

system call (API).

ES Unit-4 Notes

Memory Management:

 The memory management function of an RTOS kernel is slightly

different compared to the General Purpose Operating Systems

 The memory allocation time increases depending on the size of the block

of memory needs to be allocated and the state of the allocated memory

block (initialized memory block consumes more allocation time than un-

initialized memory block)

 Since predictable timing and deterministic behavior are the primary focus

for an RTOS, RTOS achieves this by compromising the effectiveness of

memory allocation

 RTOS generally uses ‘block’ based memory allocation technique, instead

of the usual dynamic memory allocation techniques used by the GPOS.

 RTOS kernel uses blocks of fixed size of dynamic memory and the block

is allocated for a task on a need basis. The blocks are stored in a ‘Free

buffer Queue’.

 Most of the RTOS kernels allow tasks to access any of the memory

blocks without any memory protection to achieve predictable timing and

avoid the timing overheads

 RTOS kernels assume that the whole design is proven correct and

protection is unnecessary. Some commercial RTOS kernels allow

memory protection as optional and the kernel enters a fail-safe mode

when an illegal memory access occurs

 The memory management function of an RTOS kernel is slightly

different compared to the General Purpose Operating Systems

 A few RTOS kernels implement Virtual Memory concept for memory

allocation if the system supports secondary memory storage (like HDD

and FLASH memory).

ES Unit-4 Notes

 In the ‘block’ based memory allocation, a block of fixed memory is

always allocated for tasks on need basis and it is taken as a unit. Hence,

there will not be any memory fragmentation issues.

 The memory allocation can be implemented as constant functions and

thereby it consumes fixed amount of time for memory allocation. This

leaves the deterministic behavior of the RTOS kernel untouched.

Interrupt Handling:

 Interrupts inform the processor that an external device or an associated

task requires immediate attention of the CPU.

 Interrupts can be either Synchronous or Asynchronous.

 Interrupts which occurs in sync with the currently executing task is known

as Synchronous interrupts. Usually the software interrupts fall under the

Synchronous Interrupt category. Divide by zero, memory segmentation

error etc are examples of Synchronous interrupts.

 For synchronous interrupts, the interrupt handler runs in the same context

of the interrupting task.

 Asynchronous interrupts are interrupts, which occurs at any point of

execution of any task, and are not in sync with the currently executing

task.

 The interrupts generated by external devices (by asserting the Interrupt

line of the processor/controller to which the interrupt line of the device is

connected) connected to the processor/controller, timer overflow

interrupts, serial data reception/ transmission interrupts etc are examples

for asynchronous interrupts.

 For asynchronous interrupts, the interrupt handler is usually written as

separate task (Depends on OS Kernel implementation) and it runs in a

ES Unit-4 Notes

different context. Hence, a context switch happens while handling the

asynchronous interrupts.

 Priority levels can be assigned to the interrupts and each interrupts can be

enabled or disabled individually.

 Most of the RTOS kernel implements ‘Nested Interrupts’ architecture.

Interrupt nesting allows the pre-emption (interruption) of an Interrupt

Service Routine (ISR), servicing an interrupt, by a higher priority

interrupt.

Time Management:

 Interrupts inform the processor that an external device or an associated

task requires immediate attention of the CPU.

 Accurate time management is essential for providing precise time

reference for all applications

 The time reference to kernel is provided by a high-resolution Real Time

Clock (RTC) hardware chip (hardware timer)

 The hardware timer is programmed to interrupt the processor/controller

at a fixed rate. This timer interrupt is referred as ‘Timer tick’

 The ‘Timer tick’ is taken as the timing reference by the kernel. The

‘Timer tick’ interval may vary depending on the hardware timer. Usually

the ‘Timer tick’ varies in the microseconds range

 The time parameters for tasks are expressed as the multiples of the

‘Timer tick’

 The System time is updated based on the ‘Timer tick’

 If the System time register is 32 bits wide and the ‘Timer tick’ interval is

1microsecond, the System time register will reset in

232 * 10-6/ (24 * 60 * 60) = 49700 Days =~ 0.0497 Days = 1.19 Hours

ES Unit-4 Notes

If the ‘Timer tick’ interval is 1 millisecond, the System time register will

reset in

232 * 10-3 / (24 * 60 * 60) = 497 Days = 49.7 Days =~ 50 Days

The ‘Timer tick’ interrupt is handled by the ‘Timer Interrupt’ handler of kernel.

The ‘Timer tick’ interrupt can be utilized for implementing the following

actions.

 Save the current context (Context of the currently executing task)

 Increment the System time register by one. Generate timing error and reset

the System time register if the timer tick count is greater than the maximum

range available for System time register

 Update the timers implemented in kernel (Increment or decrement the timer

registers for each timer depending on the count direction setting for each

register. Increment registers with count direction setting = ‘count up’ and

decrement registers with count direction setting = ‘count down’)

 Activate the periodic tasks, which are in the idle state

 Invoke the scheduler and schedule the tasks again based on the scheduling

algorithm

 Delete all the terminated tasks and their associated data structures (TCBs)

 Load the context for the first task in the ready queue. Due to the re-

scheduling, the ready task might be changed to a new one from the task,

which was pre-empted by the ‘Timer Interrupt’ task

ES Unit-4 Notes

Hard Real-time System:

 A Real Time Operating Systems which strictly adheres to the timing

constraints for a task

 A Hard Real Time system must meet the deadlines for a task without any

slippage

 Missing any deadline may produce catastrophic results for Hard Real

Time Systems, including permanent data lose and irrecoverable damages

to the system/users

 Emphasize on the principle ‘A late answer is a wrong answer’

 Air bag control systems and Anti-lock Brake Systems (ABS) of vehicles

are typical examples of Hard Real Time Systems

 As a rule of thumb, Hard Real Time Systems does not implement the

virtual memory model for handling the memory. This eliminates the

delay in swapping in and out the code corresponding to the task to and

from the primary memory

 The presence of Human in the loop (HITL) for tasks introduces un-

expected delays in the task execution. Most of the Hard Real Time

Systems are automatic and does not contain a ‘human in the loop’

 Soft Real-time System:

Real Time Operating Systems that does not guarantee meeting deadlines,

but, offer the best effort to meet the deadline

Missing deadlines for tasks are acceptable if the frequency of deadline

missing is within the compliance limit of the Quality of Service(QoS)

A Soft Real Time system emphasizes on the principle ‘A late answer is an

acceptable answer, but it could have done bit faster’

Soft Real Time systems most often have a ‘human in the loop (HITL)’

ES Unit-4 Notes

Automatic Teller Machine (ATM) is a typical example of Soft Real Time

System. If the ATM takes a few seconds more than the ideal operation

time, nothing fatal happens.

An audio video play back system is another example of Soft Real Time

system. No potential damage arises if a sample comes late by fraction of a

second, for play back.

Tasks, Processes & Threads :

 In the Operating System context, a task is defined as the program in

execution and the related information maintained by the Operating

system for the program

 Task is also known as ‘Job’ in the operating systemcontext

 A program or part of it in execution is also called a ‘Process’

 The terms ‘Task’, ‘job’ and ‘Process’ refer to the same entity in the

Operating System context and most often they are usedinterchangeably

 A process requires various system resources like CPU for executing the

process, memory for storing the code corresponding to the process and

associated variables, I/O devices for information exchange etc

The structure of a Processes

 The concept of ‘Process’ leads to concurrent execution (pseudo parallelism)

of tasks and thereby the efficient utilization of the CPU and other system

resources

 Concurrent execution is achieved through the sharing of CPU among the

processes.

 A process mimics a processor in properties and holds a set of registers,

process status, a Program Counter (PC) to point to the next executable

instruction of the process, a stack for holding the local variables associated

with the process and the code corresponding to the process

ES Unit-4 Notes

Process

 A process, which inherits all

the properties of the CPU,

can be considered as a

virtual processor, awaiting

its turn to have its properties

switched into the physical

processor

Figure: 4 Structure of a Process

 When the process gets its turn, its registers and Program counter register

becomes mapped to the physical registers of the CPU

Memory organization of Processes:

 The memory occupied by the process is

segregated into three regions namely; Stack

memory, Data memory and Code memory

 The ‘Stack’ memory holds all temporary

data such as variables local to the process

 Data memory holds all global data for the

process

 The code memory contains the program

code (instructions) corresponding to the

process

Stack Memory

Stack memory grows

downwards

Data memory grows

upwards

Data Memory

Fig: 5 Memory organization of a Process

Code Memory

Stack (Stack

Pointer)

Working Registers

Status Registers

Program Counter (PC)

Code Memory

corresponding to the

Process

ES Unit-4 Notes

 On loading a process into the main memory, a specific area of memory is

allocated for the process

 The stack memory usually starts at the highest memory address from the

memory area allocated for the process (Depending on the OS kernel

implementation)

Process States & State Transition

 The creation of a process to its termination is not a single step operation

 The process traverses through a series of states during its transition from the

newly created state to the terminated state

 The cycle through which a process changes its state from ‘newly created’ to

‘execution completed’ is known as ‘Process Life Cycle’. The various states

through which a process traverses through during a Process Life Cycle

indicates the current status of the process with respect to time and also

provides information on what it is allowed to do next

Process States & State Transition:

 Created State: The state at which a process is being created is referred as

‘Created State’. The Operating System recognizes a process in the ‘Created

State’ but no resources are allocated to the process

 Ready State: The state, where a process is incepted into the memory and

awaiting the processor time for execution, is known as ‘Ready State’. At

this stage, the process is placed in the ‘Ready list’ queue maintained by the

OS

 Running State: The state where in the source code instructions

corresponding to the process is being executed is called ‘Running State’.

Running state is the state at which the process execution happens

ES Unit-4 Notes

 . Blocked State/Wait State: Refers

to a state where a running process is

temporarily suspended from

execution and does not have

immediate access to resources. The

blocked state might have invoked by

various conditions like- the process

enters a wait state for an event to

occur (E.g. Waiting for user inputs

such as keyboard input) or waiting

for getting access to a shared

resource like semaphore, mutex etc

Blocked

Created

Incepted into memory

Ready

Running

Execution Completion

Completed

Figure 6.Process states and State transition

 Completed State: A state where the process completes its execution

 The transition of a process from one state to another is known as

‘Statetransition’

 When a process changes its state from Ready to running or from

running toblocked or terminated or from blocked to running, the CPU

allocation for the process may alsochange

Threads

 A thread is the primitive that can execute code

 A thread is a single sequential flow of control within a process

 ‘Thread’ is also known as lightweight process

 A process can have many threads of execution

S
ched

uled for

E
x
ecu

tio
n

 I
nt

er
ru

pt
ed

 o
r

P
re

em
p
te

d

ES Unit-4 Notes

hread 2

nt ChildThread1

void)

/Do something

 Different threads, which are part of a

process, share the same address space;

meaning they share the data memory,

code memory and heap memory area

 Threads maintain their own thread status

(CPU register values), Program Counter

(PC) and stack

Figure 7 Memory organization of process and its associated Threads

The Concept of multithreading

Use of multiple threads to execute a process brings the following advantage.

 Better memory utilization.

Multiple threads of the same

process share the address space

for data memory. This also

reduces the complexity of inter

thread communication since

variables can be shared across the

threads.

 Since the process is split into

different threads, when one

thread enters a wait state, the

CPU can be utilized by other

Task/Process

T T

i i

((

{ {

/ /

} }

Figure 8 Process with multi-threads

 threads of the process that do not require the event, which the other thread is

waiting, for processing. This speeds up the execution of the process.

 Efficient CPU utilization. The CPU is engaged all time.

Registers Registers

Stack Stack Stack

Data Memory

Thread 1

void main (void)

{

//Create child

thread 1

CreateThread(NULL,

1000,(LPTHREAD_STA

RT_ROUTINE)

ChildThread1,NULL,

0, &dwThreadID);

//Create child

thread 2

CreateThread(NULL,

1000,(LPTHREAD_STA

RT_ROUTINE)

ChildThread2,NULL,

0, &dwThreadID);

}

Registers

hread 3

nt ChildThread2

void)

/Do something

Code Memory

ES Unit-4 Notes

Thread V/s Process

Thread Process

Thread is a single unit of execution and is part

of process.

Process is a program in execution and contains

one or more threads.

A thread does not have its own data memory

and heap memory. It shares the data memory

and heap memory with other threads of the

same process.

Process has its own code memory, data memory

and stack memory.

A thread cannot live independently; it lives

within the process.

A process contains at least one thread.

There can be multiple threads in a process.

The first thread (main thread) calls the main

function and occupies the start of the stack

memory of the process.

Threads within a process share the code, data

and heap memory. Each thread holds separate

memory area for stack (shares the total stack

memory of the process).

Threads are very inexpensive to create Processes are very expensive to create. Involves

many OS overhead.

Context switching is inexpensive and fast Context switching is complex and involves lot of

OS overhead and is comparatively slower.

If a thread expires, its stack is reclaimed by the

process.

If a process dies, the resources allocated to it are

reclaimed by the OS and all the associated

threads of the process also dies.

Advantages of Threads:

1. Better memory utilization: Multiple threads of the same process share the

address space for data memory. This also reduces the complexity of inter

thread communication since variables can be shared across the threads.

2. Efficient CPU utilization: The CPU is engaged all time.

ES Unit-4 Notes

3. Speeds up the execution of the process: The process is split into different

threads, when one thread enters a wait state, the CPU can be utilized by

other threads of the process that do not require the event, which the other

thread is waiting, for processing.

Multiprocessing & Multitasking

 The ability to execute multiple processes simultaneously is referred as

multiprocessing

 Systems which are capable of performing multiprocessing are known as

multiprocessor systems

 Multiprocessor systems possess multiple CPUs and can execute multiple

processes simultaneously

 The ability of the Operating System to have multiple programs in memory,

which are ready for execution, is referred as multiprogramming

 Multitasking refers to the ability of an operating system to hold multiple

processes in memory and switch the processor (CPU) from executing one

process to another process

 Multitasking involves ‘Context switching’, ‘Context saving’ and ‘Context

retrieval’

 Context switching refers to the switching of execution context from task to

other

 When a task/process switching happens, the current context of execution

should be saved to (Context saving) retrieve it at a later point of time when

the CPU executes the process, which is interrupted currently due to

execution switching

 During context switching, the context of the task to be executed is retrieved

from the saved context list. This is known as Context retrieval

ES Unit-4 Notes

Multitasking – Context Switching:

Process 2

Process 1









Types of Multitasking :

Depending on how the task/process execution switching act is implemented,

multitasking can is classified into

Idle

Running

Time

Figure 9 Context Switching

Multiprogramming: The ability of the Operating System to have multiple

programs in memory, which are ready for execution, is referred as

multiprogramming.

Running Idle Waits in ‘Ready’ Queue Running

dy’ Queue Waits in ‘Re Running Idle

Delay inexecution of

Process 1 happened

due to ‘Context

Switching’

Delay inexecution of

Process 2 happened

due to ‘Context

Switching’

P
ro

c
es

se
s E

x
e
cu

ti
o

n
 s

w
it

ch
es

 t
o

 P
ro

c
e

s
s

 2

(I
n

te
rr

u
p

t
o

r
S

y
st

e
m

 C
al

l)

1
.

S
av

e
 C

u
rr

en
t

c
o

n
te

x
t

in
to

 P
C

B
0

2
.

P
er

fo
rm

 o
th

er
 O

S
 o

p
er

at
io

n
s

re
la

te
d

 t
o

‘C
o

n
te

x
t

S
w

it
ch

in
g

’

3
.

R
el

o
ad

 C
o

n
te

x
t

fo
r

P
ro

c
es

s
2

 f
ro

m

P
C

B
1

E
x

e
cu

ti
o

n
 s

w
it

ch
es

 t
o

 P
ro

c
e

s
s

 1

(I
n

te
rr

u
p

t
o

r
S

y
st

e
m

 C
al

l)

1
.

S
av

e
 C

u
rr

en
t

c
o

n
te

x
t

in
to

 P
C

B
1

2
.

P
er

fo
rm

 o
th

er
 O

S
 o

p
er

at
io

n
s

re
la

te
d

 t
o

‘C
o

n
te

x
t

S
w

it
ch

in
g

’

3
.

R
el

o
ad

 C
o

n
te

x
t

fo
r

P
ro

c
es

s
1

 f
ro

m

P
C

B
0

ES Unit-4 Notes

• Co-operative Multitasking: Co-operative multitasking is the most primitive

form of multitasking in which a task/process gets a chance to execute only

when the currently executing task/process voluntarily relinquishes the CPU.

In this method, any task/process can avail the CPU as much time as it wants.

Since this type of implementation involves the mercy of the tasks each other

for getting the CPU time for execution, it is known as co-operative

multitasking. If the currently executing task is non-cooperative, the other

tasks may have to wait for a long time to get the CPU

• Preemptive Multitasking: Preemptive multitasking ensures that every

task/process gets a chance to execute. When and how much time a process

gets is dependent on the implementation of the preemptive scheduling. As

the name indicates, in preemptive multitasking, the currently running

task/process is preempted to give a chance to other tasks/process to execute.

The preemption of task may be based on time slots or task/processpriority

• Non-preemptive Multitasking: The process/task, which is currently given the

CPU time, is allowed to execute until it terminates (enters the ‘Completed’

state) or enters the ‘Blocked/Wait’ state, waiting for an I/O. The co-

operative and non-preemptive multitasking differs in their behavior when

they are in the ‘Blocked/Wait’ state. In co-operative multitasking, the

currently executing process/task need not relinquish the CPU when it enters

the ‘Blocked/Wait’ sate, waiting for an I/O, or a shared resource access or an

event to occur whereas in non-preemptive multitasking the currently

executing task relinquishes the CPU when it waits for an I/O.

Task Scheduling:

 In a multitasking system, there should be some mechanism in place to share

the CPU among the different tasks and to decide which process/task is to be

executed at a given point of time

 Determining which task/process is to be executed at a given point of time is

known as task/process scheduling

ES Unit-4 Notes

 Task scheduling forms the basis of multitasking

 Scheduling policies forms the guidelines for determining which task is to be

executed when

 The scheduling policies are implemented in an algorithm and it is run by the

kernel as a service

 The kernel service/application, which implements the scheduling algorithm,

is known as ‘Scheduler’

 The task scheduling policy can be pre-emptive, non-preemptive or co-

operative

 Depending on the scheduling policy the process scheduling decision may

take place when a process switches its state to

 ‘Ready’ state from ‘Running’ state

 ‘Blocked/Wait’ state from ‘Running’ state

 ‘Ready’ state from ‘Blocked/Wait’ state

 ‘Completed’ state

Task Scheduling - Scheduler Selection:

The selection of a scheduling criteria/algorithm should consider

• CPU Utilization: The scheduling algorithm should always make the CPU

utilization high. CPU utilization is a direct measure of how much percentage

of the CPU is being utilized.

• Throughput: This gives an indication of the number of processes executed

per unit of time. The throughput for a good scheduler should always be

higher.

• Turnaround Time: It is the amount of time taken by a process for

completing its execution. It includes the time spent by the process for

waiting for the main memory, time spent in the ready queue, time spent on

completing the I/O operations, and the time spent in execution. The

turnaround time should be a minimum for a good schedulingalgorithm.

ES Unit-4 Notes

e
c
o

Process n

 M

o
v

e
 P

r

ss
 t

o
 ‘

D
e

Q

u
e
u
e
’

v
ic

e

• Waiting Time: It is the amount of time spent by a process in the ‘Ready’

queue waiting to get the CPU time for execution. The waiting time should be

minimal for a good scheduling algorithm.

• Response Time: It is the time elapsed between the submission of a process

and the first response. For a good scheduling algorithm, the response time

should be as least as possible.

Task Scheduling - Queues

The various queues maintained by OS in association with CPU scheduling are

• Job Queue: Job queue contains all the processes in the system

• Ready Queue: Contains all the processes, which are ready for execution and

waiting for CPU to get their turn for execution. The Ready queue is empty

when there is no process ready for running.

• Device Queue: Contains the set of processes, which are waiting for an I/O

device

Task Scheduling – Task transition through various Queues

Scheduler

Job Queue

Process

Admitted Process 1

Run Process to

Completion

Ready Queue to ‘Ready’ queue Process

Move preempted process

CPU

Move I/O C ompleted Process

to ‘R eady’ queue

Device

Manager

 Process

Process 1
Process 2

Figure 10. Process TranDesviicteiQouneuethrough various queues

R
e
so

u
rc

e
 R

eq
u

es
t B

y

P
ro

ce
ss

To summarize, a good scheduling algorithm has high CPU utilization, minimum

Turn Around Time (TAT), maximum throughput and least response time.

Process 1

ES Unit-4 Notes

Non-preemptive scheduling – First Come First Served (FCFS)/First In

First Out (FIFO) Scheduling:

 Allocates CPU time to the processes based on the order in which they enters

the ‘Ready’ queue

 The first entered process is serviced first

 It is same as any real world application where queue systems are used; E.g.

Ticketing

Drawbacks:

 Favors monopoly of process. A process, which does not contain any I/O

operation, continues its execution until it finishes its task

 In general, FCFS favors CPU bound processes and I/O bound processes may

have to wait until the completion of CPU bound process, if the currently

executing process is a CPU bound process. This leads to poor device

utilization.

 The average waiting time is not minimal for FCFS scheduling algorithm

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated

completion time 10, 5, 7 milliseconds respectively enters the ready queue together

in the order P1, P2, P3. Calculate the waiting time and Turn Around Time (TAT)

for each process and the Average waiting time and Turn Around Time (Assuming

there is no I/O waiting for the processes).

Solution: The sequence of execution of the processes by the CPU is represented as

0 10 15 22

10 5 7

P3

P2

P1

ES Unit-4 Notes

Assuming the CPU is readily available at the time of arrival of P1, P1 starts

executing without any waiting in the ‘Ready’ queue. Hence the waiting time for P1

is zero.

Waiting Time for P1 = 0 ms (P1 starts executing first)

Waiting Time for P2 = 10 ms (P2 starts executing after completing P1)

Waiting Time for P3 = 15 ms (P3 starts executing after completing P1 and P2)

Average waiting time = (Waiting time for all processes) / No. of Processes

= (Waiting time for (P1+P2+P3)) / 3

= (0+10+15)/3 = 25/3 = 8.33 milliseconds

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue +

Execution Time)

Turn Around Time (TAT) for P2 = 15 ms (-Do-)

Turn Around Time (TAT) for P3 = 22 ms (-Do-)

Average Turn Around Time= (Turn Around Time for all processes) / No. of

Processes

= (Turn Around Time for (P1+P2+P3)) / 3

= (10+15+22)/3 = 47/3

= 15.66 milliseconds

Non-preemptive scheduling – Last Come First Served (LCFS)/Last In

First Out (LIFO) Scheduling:

 Allocates CPU time to the processes based on the order in which they are

entered in the ‘Ready’ queue

 The last entered process is serviced first

ES Unit-4 Notes

 LCFS scheduling is also known as Last In First Out (LIFO) where the

process, which is put last into the ‘Ready’ queue, is serviced first

Drawbacks:

 Favors monopoly of process. A process, which does not contain any I/O

operation, continues its execution until it finishes its task

 In general, LCFS favors CPU bound processes and I/O bound processes may

have to wait until the completion of CPU bound process, if the currently

executing process is a CPU bound process. This leads to poor device

utilization.

 The average waiting time is not minimal for LCFS scheduling algorithm

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated

completion time 10, 5, 7 milliseconds respectively enters the ready queue together

in the order P1, P2, P3 (Assume only P1 is present in the ‘Ready’ queue when the

scheduler picks up it and P2, P3 entered ‘Ready’ queue after that). Now a new

process P4 with estimated completion time 6ms enters the ‘Ready’ queue after 5ms

of scheduling P1. Calculate the waiting time and Turn Around Time (TAT) for

each process and the Average waiting time and Turn Around Time (Assuming

there is no I/O waiting for the processes).Assume all the processes contain only

CPU operation and no I/O operations are involved.

Solution: Initially there is only P1 available in the Ready queue and the scheduling

sequence will be P1, P3, P2. P4 enters the queue during the execution of P1 and

becomes the last process entered the ‘Ready’ queue. Now the order of execution

changes to P1, P4, P3, and P2 as given below.

ES Unit-4 Notes

P1

P4

P3

P2

0 10 16 23 28

10 6 7 5

The waiting time for all the processes are given as

Waiting Time for P1 = 0 ms (P1 starts executing first)

Waiting Time for P4 = 5 ms (P4 starts executing after completing P1. But P4

arrived after 5ms of execution of P1. Hence its waiting time = Execution start time

– Arrival Time = 10-5 = 5)

Waiting Time for P3 = 16 ms (P3 starts executing after completing P1 and P4)

Waiting Time for P2 = 23 ms (P2 starts executing after completing P1, P4 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

= (Waiting time for (P1+P4+P3+P2)) / 4

= (0 + 5 + 16 + 23)/4 = 44/4

= 11 milliseconds

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P4 = 11 ms (Time spent in Ready Queue +

Execution Time = (Execution Start Time – Arrival

Time) + Estimated Execution Time = (10-5) + 6 = 5 + 6)

Turn Around Time (TAT) for P3 = 23 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 28 ms (Time spent in Ready Queue + Execution Time)

Average Turn Around Time = (Turn Around Time for all processes) / No. of Processes

= (Turn Around Time for (P1+P4+P3+P2)) / 4

= (10+11+23+28)/4 = 72/4

= 18 milliseconds

ES Unit-4 Notes

Non-preemptive scheduling – Shortest Job First (SJF) Scheduling.

 Allocates CPU time to the processes based on the execution completion time

for tasks

 The average waiting time for a given set of processes is minimal in SJF

scheduling

 Optimal compared to other non-preemptive scheduling like FCFS

Drawbacks:

 A process whose estimated execution completion time is high may not get a

chance to execute if more and more processes with least estimated execution

time enters the ‘Ready’ queue before the process with longest estimated

execution time starts its execution

 May lead to the ‘Starvation’ of processes with high estimated completion

time

 Difficult to know in advance the next shortest process in the ‘Ready’ queue

for scheduling since new processes with different estimated execution time

keep entering the ‘Ready’ queue at any point of time.

Non-preemptive scheduling – Priority based Scheduling

 A priority, which is unique or same is associated with each task

 The priority of a task is expressed in different ways, like a priority number,

the time required to complete the execution etc.

 In number based priority assignment the priority is a number ranging from 0

to the maximum priority supported by the OS. The maximum level of

priority is OS dependent.

 Windows CE supports 256 levels of priority (0 to 255 priority numbers, with

0 being the highest priority)

ES Unit-4 Notes

 The priority is assigned to the task on creating it. It can also be changed

dynamically (If the Operating System supports this feature)

 The non-preemptive priority based scheduler sorts the ‘Ready’ queue based

on the priority and picks the process with the highest level of priority for

execution

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated

completion time 10, 5, 7 milliseconds and priorities 0, 3, 2 (0- highest priority, 3

lowest priority) respectively enters the ready queue together. Calculate the waiting

time and Turn Around Time (TAT) for each process and the Average waiting time

and Turn Around Time (Assuming there is no I/O waiting for the processes) in

priority based scheduling algorithm.

Solution: The scheduler sorts the ‘Ready’ queue based on the priority and

schedules the process with the highest priority (P1 with priority number 0) first and

the next high priority process (P3 with priority number 2) as second and so on. The

order in which the processes are scheduled for execution is represented as

P1

P3

P2

0 10 17 22

10 7 5

The waiting time for all the processes are given as

Waiting Time for P1 = 0 ms (P1 starts executing first)

Waiting Time for P3 = 10 ms (P3 starts executing after completing P1)

Waiting Time for P2 = 17 ms (P2 starts executing after completing P1 and P3)

Average waiting time = (Waiting time for all processes) / No. of Processes

= (Waiting time for (P1+P3+P2)) / 3

ES Unit-4 Notes

= (0+10+17)/3 = 27/3

= 9 milliseconds

Turn Around Time (TAT) for P1 = 10 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P3 = 17 ms (-Do-)

Turn Around Time (TAT) for P2 = 22 ms (-Do-)

Average Turn Around Time= (Turn Around Time for all processes) / No. of Processes

= (Turn Around Time for (P1+P3+P2)) / 3

= (10+17+22)/3 = 49/3

= 16.33 milliseconds

Drawbacks:

 Similar to SJF scheduling algorithm, non-preemptive priority based

algorithm also possess the drawback of ‘Starvation’ where a process whose

priority is low may not get a chance to execute if more and more processes

with higher priorities enter the ‘Ready’ queue before the process with lower

priority starts its execution.

 ‘Starvation’ can be effectively tackled in priority based non-preemptive

scheduling by dynamically raising the priority of the low priority

task/process which is under starvation (waiting in the ready queue for a

longer time for getting the CPU time)

 The technique of gradually raising the priority of processes which are

waiting in the ‘Ready’ queue as time progresses, for preventing ‘Starvation’,

is known as ‘Aging’.

ES Unit-4 Notes

Preemptive scheduling:

 Employed in systems, which implements preemptive multitasking model

 Every task in the ‘Ready’ queue gets a chance to execute. When and how

often each process gets a chance to execute (gets the CPU time) is dependent

on the type of preemptive scheduling algorithm used for scheduling the

processes

 The scheduler can preempt (stop temporarily) the currently executing

task/process and select another task from the ‘Ready’ queue forexecution

 When to pre-empt a task and which task is to be picked up from the ‘Ready’

queue for execution after preempting the current task is purely dependent on

the scheduling algorithm

 A task which is preempted by the scheduler is moved to the ‘Ready’ queue.

The act of moving a ‘Running’ process/task into the ‘Ready’ queue by the

scheduler, without the processes requesting for it is known as‘Preemption’

 Time-based preemption and priority-based preemption are the two important

approaches adopted in preemptive scheduling

Preemptive scheduling – Preemptive SJF Scheduling/ Shortest Remaining

Time (SRT):

 The non preemptive SJF scheduling algorithm sorts the ‘Ready’ queue only

after the current process completes execution or enters wait state, whereas

the preemptive SJF scheduling algorithm sorts the ‘Ready’ queue when a

new process enters the ‘Ready’ queue and checks whether the execution

time of the new process is shorter than the remaining of the total estimated

execution time of the currently executing process

 If the execution time of the new process is less, the currently executing

process is preempted and the new process is scheduled for execution

ES Unit-4 Notes

 Always compares the execution completion time (ie the remaining execution

time for the new process) of a new process entered the ‘Ready’ queue with

the remaining time for completion of the currently executing process and

schedules the process with shortest remaining time for execution.

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated

completion time 10, 5, 7 milliseconds respectively enters the ready queue together.

A new process P4 with estimated completion time 2ms enters the ‘Ready’ queue

after 2ms. Assume all the processes contain only CPU operation and no I/O

operations are involved.

Solution: At the beginning, there are only three processes (P1, P2 and P3)

available in the ‘Ready’ queue and the SRT scheduler picks up the process with the

Shortest remaining time for execution completion (In this example P2 with

remaining time 5ms) for scheduling. Now process P4 with estimated execution

completion time 2ms enters the ‘Ready’ queue after 2ms of start of execution of

P2. The processes are re-scheduled for execution in the following order

P2

P4

P2

P3

P1

0 2 4 7 14 24

2 2 3 7 10

The waiting time for all the processes are given as

Waiting Time for P2 = 0 ms + (4 -2) ms = 2ms (P2 starts executing first and is

interrupted by P4 and has to wait till the completion of

P4 to get the next CPU slot)

Waiting Time for P4 = 0 ms (P4 starts executing by preempting P2 since the

execution time for completion of P4 (2ms) is less

than that of the Remaining time for execution

completion of P2 (Here it is 3ms))

Waiting Time for P3 = 7 ms (P3 starts executing after completing P4 and P2)

ES Unit-4 Notes

Waiting Time for P1 = 14 ms (P1 starts executing after completing P4, P2 and P3)

Average waiting time = (Waiting time for all the processes) / No. of Processes

= (Waiting time for (P4+P2+P3+P1)) / 4

= (0 + 2 + 7 + 14)/4 = 23/4

= 5.75 milliseconds

Turn Around Time (TAT) for P2 = 7 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P4 = 2 ms

(Time spent in Ready Queue + Execution Time = (Execution Start Time – Arrival

Time) + Estimated Execution Time = (2-2) + 2)

Turn Around Time (TAT) for P3 = 14 ms (Time spent in Ready Queue +

Execution Time)

Turn Around Time (TAT) for P1 = 24 ms (Time spent in Ready Queue +

Execution Time)

Average Turn Around Time = (Turn Around Time for all the processes) / No. of Processes

= (Turn Around Time for (P2+P4+P3+P1)) / 4

= (7+2+14+24)/4 = 47/4

= 11.75 milliseconds

Preemptive scheduling – Round Robin (RR)

Scheduling:

Execution Switch

Process 1

Execution Switch

 Each process in the ‘Ready’ queue is

executed for a pre-defined time slot.

Process 4 Process 2

 The execution starts with picking up the first

process in the ‘Ready’ queue. It is executed for a

pre-defined time

Execution Switch

Process 3

Execution Switch

Figure 11 Round Robin Scheduling

ES Unit-4 Notes

 When the pre-defined time elapses or the process completes (before the pre-

defined time slice), the next process in the ‘Ready’ queue is selected for

execution.

 This is repeated for all the processes in the ‘Ready’ queue

 Once each process in the ‘Ready’ queue is executed for the pre-defined time

period, the scheduler comes back and picks the first process in the ‘Ready’

queue again for execution.

 Round Robin scheduling is similar to the FCFS scheduling and the only

difference is that a time slice based preemption is added to switch the

execution between the processes in the ‘Ready’ queue

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated

completion time 6, 4, 2 milliseconds respectively, enters the ready queue together

in the order P1, P2, P3. Calculate the waiting time and Turn Around Time (TAT)

for each process and the Average waiting time and Turn Around Time (Assuming

there is no I/O waiting for the processes) in RR algorithm with Time slice= 2ms.

Solution: The scheduler sorts the ‘Ready’ queue based on the FCFS policy and

picks up the first process P1 from the ‘Ready’ queue and executes it for the time

slice 2ms. When the time slice is expired, P1 is preempted and P2 is scheduled for

execution. The Time slice expires after 2ms of execution of P2. Now P2 is

preempted and P3 is picked up for execution. P3 completes its execution within the

time slice and the scheduler picks P1 again for execution for the next time slice.

This procedure is repeated till all the processes are serviced. The order in which the

processes are scheduled for execution is represented as

P1

P2

P3

P1

P2

P1

0 2 4 6 8 10 12

2 2 2 2 2 2

ES Unit-4 Notes

The waiting time for all the processes are given as

Waiting Time for P1 = 0 + (6-2) + (10-8) = 0+4+2= 6ms (P1 starts executing first

and waits for two time slices to get execution back and

again 1 time slice for getting CPU time)

Waiting Time for P2 = (2-0) + (8-4) = 2+4 = 6ms (P2 starts executing after P1

executes for 1 time slice and waits for two time

slices to get the CPU time)

Waiting Time for P3 = (4 -0) = 4ms (P3 starts executing after completing the first

time slices for P1 and P2 and completes its execution in a single time slice.)

Average waiting time = (Waiting time for all the processes) / No. of Processes

= (Waiting time for (P1+P2+P3)) / 3

= (6+6+4)/3 = 16/3

= 5.33 milliseconds

Turn Around Time (TAT) for P1 = 12 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 10 ms (-Do-)

Turn Around Time (TAT) for P3 = 6 ms (-Do-)

Average Turn Around Time = (Turn Around Time for all the processes) / No. of Processes

= (Turn Around Time for (P1+P2+P3)) / 3

= (12+10+6)/3 = 28/3

= 9.33 milliseconds.

ES Unit-4 Notes

Preemptive scheduling – Priority based Scheduling

 Same as that of the non-preemptive priority based scheduling except for the

switching of execution between tasks

 In preemptive priority based scheduling, any high priority process entering

the ‘Ready’ queue is immediately scheduled for execution whereas in the

non-preemptive scheduling any high priority process entering the ‘Ready’

queue is scheduled only after the currently executing process completes its

execution or only when it voluntarily releases the CPU

 The priority of a task/process in preemptive priority based scheduling is

indicated in the same way as that of the mechanisms adopted for non-

preemptive multitasking.

EXAMPLE: Three processes with process IDs P1, P2, P3 with estimated

completion time 10, 5, 7 milliseconds and priorities 1, 3, 2 (0- highest priority, 3

lowest priority) respectively enters the ready queue together. A new process P4

with estimated completion time 6ms and priority 0 enters the ‘Ready’ queue after

5ms of start of execution of P1. Assume all the processes contain only CPU

operation and no I/O operations are involved.

Solution: At the beginning, there are only three processes (P1, P2 and P3)

available in the ‘Ready’ queue and the scheduler picks up the process with the

highest priority (In this example P1 with priority 1) for scheduling. Now process

P4 with estimated execution completion time 6ms and priority 0 enters the ‘Ready’

queue after 5ms of start of execution of P1. The processes are re-scheduled for

execution in the following order

P1

P4

P1

P3

P2

0 5 11 16

5 6 5 7

23 28

5

ES Unit-4 Notes

The waiting time for all the processes are given as

Waiting Time for P1 = 0 + (11-5) = 0+6 =6 ms (P1 starts executing first and gets

Preempted by P4 after 5ms and again gets the CPU time

after completion of P4)

Waiting Time for P4 = 0 ms (P4 starts executing immediately on entering the

‘Ready’ queue, by preempting P1)

Waiting Time for P3 = 16 ms (P3 starts executing after completing P1 and P4)

Waiting Time for P2 = 23 ms (P2 starts executing after completing P1, P4 and P3)

Average waiting time = (Waiting time for all the processes) / No. of Processes

= (Waiting time for (P1+P4+P3+P2)) / 4

= (6 + 0 + 16 + 23)/4 = 45/4

= 11.25 milliseconds

Turn Around Time (TAT) for P1 = 16 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P4 = 6ms (Time spent in Ready Queue + Execution Time

= (Execution Start Time – Arrival Time) + Estimated Execution Time = (5-5) + 6 = 0 + 6)

Turn Around Time (TAT) for P3 = 23 ms (Time spent in Ready Queue + Execution Time)

Turn Around Time (TAT) for P2 = 28 ms (Time spent in Ready Queue + Execution Time)

Average Turn Around Time= (Turn Around Time for all the processes) / No. of Processes

= (Turn Around Time for (P2+P4+P3+P1)) / 4

= (16+6+23+28)/4 = 73/4

= 18.25 milliseconds

ES Unit-4 Notes

How to chose RTOS:

The decision of an RTOS for an embedded design is very critical.

A lot of factors need to be analyzed carefully before making a decision on

the selection of an RTOS.

These factors can be either

1. Functional

2. Non-functional requirements.

1. Functional Requirements:

1. Processor support:

It is not necessary that all RTOS’s support all kinds of processor

architectures.

It is essential to ensure the processor support by the RTOS

2. Memory Requirements:

• The RTOS requires ROM memory for holding the OS files and it is

normally stored in a non-volatile memory like FLASH.

OS also requires working memory RAM for loading the OS service.

Since embedded systems are memory constrained, it is essential to evaluate

the minimal RAM and ROM requirements for the OS under consideration.

3. Real-Time Capabilities:

It is not mandatory that the OS for all embedded systems need to be Real-

Time and all embedded OS’s are ‘Real-Time’ in behavior.

The Task/process scheduling policies plays an important role in the Real-

Time behavior of an OS.

ES Unit-4 Notes

3. Kernel and Interrupt Latency:

The kernel of the OS may disable interrupts while executing certain services

and it may lead to interrupt latency.

For an embedded system whose response requirements are high, this latency

should be minimal.

5. Inter process Communication (IPC) and Task Synchronization: The

implementation of IPC and Synchronization is OS kernel dependent.

6. Modularization Support:

Most of the OS’s provide a bunch of features.

It is very useful if the OS supports modularization where in which the

developer can choose the essential modules and re-compile the OS image for

functioning.

7. Support for Networking and Communication:

The OS kernel may provide stack implementation and driver support for a

bunch of communication interfaces and networking.

Ensure that the OS under consideration provides support for all the

interfaces required by the embedded product.

8. Development Language Support:

Certain OS’s include the run time libraries required for running applications

written in languages like JAVA and C++.

The OS may include these components as built-in component, if not , check

the availability of the same from a third party.

ES Unit-4 Notes

2. Non-Functional Requirements:

1. Custom Developed or Off the Shelf:

It is possible to go for the complete development of an OS suiting the

embedded system needs or use an off the shelf, readily availableOS.

It may be possible to build the required features by customizing an open

source OS.

The decision on which to select is purely dependent on the development

cost, licensing fees for the OS, development time and availability of skilled

resources.

2. Cost:

The total cost for developing or buying the OS and maintaining it in terms of

commercial product and custom build needs to be evaluated before taking a

decision on the selection of OS.

3. Development and Debugging tools Availability:

The availability of development and debugging tools is a critical decision

making factor in the selection of an OS for embedded design.

Certain OS’s may be superior in performance, but the availability of tools

for supporting the development may be limited.

4. Ease of Use:

How easy it is to use a commercial RTOS is another important feature that

needs to be considered in the RTOS selection.

5. After Sales:

For a commercial embedded RTOS, after sales in the form of e-mail, on-call

services etc. for bug fixes, critical patch updates and support for production

issues etc. should be analyzed thoroughly.

ES Unit-4 Notes

User LevelApplications/Tasks

App1 App2 App3

Device Drivers:

• Device driver is a piece of software that acts as a bridge between the

operating system and the hardware

• The user applications talk to the OS kernel for all necessary information

exchange including communication with the hardware peripherals

• The architecture of the OS kernel will not allow direct device access from

the user application

• All the device related access should flow through the OS kernel and the OS

kernel routes it to the concerned hardware peripheral

• OS Provides interfaces in the form of Application Programming Interfaces

(APIs) for accessing the hardware

• The device driver abstracts the hardware from user applications

Operating System Services

(Kernel)

Device Drivers

Hardware

ES Unit-4 Notes

• Device drivers are responsible for initiating and managing the

communication with the hardware peripherals

• Drivers which comes as part of the Operating system image is known as

‘built-in drivers’ or ‘onboard’ drivers. Eg. NAND FLASH driver

• Drivers which needs to be installed on the fly for communicating with add-

on devices are known as ‘Installable drivers’

• For installable drivers, the driver is loaded on a need basis when the device

is present and it is unloaded when the device is removed/detached

• The ‘Device Manager service of the OS kernel is responsible for loading

and unloading the driver, managing the driver etc.

• The underlying implementation of device driver is OS kernel dependent

• The driver communicates with the kernel is dependent on the OS structure

and implementation.

• Device drivers can run on either user space or kernel space

• Device drivers which run in user space are known as user mode drivers and

the drivers which run in kernel space are known as kernel modedrivers

• User mode drivers are safer than kernel mode drivers

• If an error or exception occurs in a user mode driver, it won’t affect the

services of the kernel

• If an exception occurs in the kernel mode driver, it may lead to the kernel

crash

• The way how a device driver is written and how the interrupts are handled in

it are Operating system and target hardware specific.

• The device driver implements the following:

• Device (Hardware) Initialization and Interrupt configuration

MRCET ECE ESD UNIT-5 NOTES

• Interrupt handling and processing

• Client interfacing (Interfacing with user applications)

• The basic Interrupt configuration involves the following.

• Set the interrupt type (Edge Triggered (Rising/Falling) or Level Triggered

(Low or High)), enable the interrupts and set the interrupt priorities.

• The processor identifies an interrupt through IRQ.

• IRQs are generated by the Interrupt Controller.

• Register an Interrupt Service Routine (ISR) with an Interrupt Request (IRQ).

• When an interrupt occurs, depending on its priority, it is serviced and the

corresponding ISR is invoked

• The processing part of an interrupt is handled in an ISR

• The whole interrupt processing can be done by the ISR itself or by invoking

an Interrupt Service Thread (IST)

• The IST performs interrupt processing on behalf of the ISR

• It is always advised to use an IST for interrupt processing, to make the ISR

compact and short

Reference Books:

1. Introduction to Embedded Systems – Shibu K.V Mc Graw Hill

2. Embedded System Design-Raj Kamal TMH

MRCET ECE ESD UNIT-5 NOTES

EMBEDDED SYSTEM DESIGN
IV YEAR ECE (R18)

UNIT-V

COMMUNICATION INTERFACE

MRCET ECE ESD UNIT-5 NOTES

Communication Interface:

• Communication interface is essential for communicating with various subsystems of the

embedded system and with the external world

• The communication interface can be viewed in two different perspectives; namely;

1. Device/board level communication interface (Onboard Communication Interface)

2. Product level communication interface (External Communication Interface)

1. Device/board level communication interface (Onboard Communication Interface):

The communication channel which interconnects the various components within an

embedded product is referred as Device/board level communication interface (Onboard

Communication Interface)

 Examples: Serial interfaces like I2C, SPI, UART, 1-Wire etc and Parallel bus interface

2. Product level communication interface (External Communication Interface):

The „Product level communication interface‟ (External Communication Interface) is

responsible for data transfer between the embedded system and other devices or modules. The

external communication interface can be either wired media or wireless media and it can be a

serial or parallel interface.

 Examples for wireless communication interface: Infrared (IR), Bluetooth (BT), Wireless

LAN (Wi-Fi), Radio Frequency waves (RF), GPRS etc.

 Examples for wired interfaces: RS-232C/RS-422/RS 485, USB, Ethernet (TCP-IP), IEEE

1394 port, Parallel port etc.

MRCET ECE ESD UNIT-5 NOTES

1. Device/board level or On board communication interfaces: The

Communication channel which interconnects the various components within an embedded

product is referred as Device/board level communication interface (Onboard Communication

Interface)

These are classified into

I2C (Inter Integrated Circuit) Bus

SPI (Serial Peripheral Interface) Bus

UART (Universal Asynchronous Receiver Transmitter)

1-Wires Interface

Parallel Interface

1 I2C (Inter Integrated Circuit) Bus:

Inter Integrated Circuit Bus (I2C - Pronounced „I square C‟) is a synchronous bi-directional half

duplex (one-directional communication at a given point of time) two wire serial interface

bus.The concept of I2C bus was developed by „Philips Semiconductors‟ in the early 1980‟s. The

original intention of I2C was to provide an easy way of connection between a

microprocessor/microcontroller system and the peripheral chips in Television sets.

MRCET ECE ESD UNIT-5 NOTES

The I2C bus is comprised of two bus lines, namely; Serial Clock – SCL and Serial Data – SDA.

SCL line is responsible for generating synchronization clock pulses and SDA is

responsible for transmitting the serial data across devices.I2C bus is a shared bus system to

which many number of I2C devices can be connected. Devices connected to the I2C bus can act

as either „Master‟ device or „Slave‟ device.

The „Master‟ device is responsible for controlling the communication by

initiating/terminating data transfer, sending data and generating necessary synchronization clock

pulses.

MRCET ECE ESD UNIT-5 NOTES

Slave devices wait for the commands from the master and respond upon receiving the

commands. Master and „Slave‟ devices can act as either transmitter or receiver. Regardless

whether a master is acting as transmitter or receiver, the synchronization clock signal is

generated by the „Master‟ device only.I2C supports multi masters on the same bus.

The sequence of operation for communicating with an I2C slave device is:

1. Master device pulls the clock line (SCL) of the bus to „HIGH‟

2. Master device pulls the data line (SDA) „LOW‟, when the SCL line is at logic

„HIGH‟ (This is the „Start‟ condition for data transfer)

3. Master sends the address (7 bit or 10 bit wide) of the „Slave‟ device to which it wants to

communicate, over the SDA line.

4. Clock pulses are generated at the SCL line for synchronizing the bit reception by the

slave device.

5. The MSB of the data is always transmitted first.

6. The data in the bus is valid during the „HIGH‟ period of the clock signal

7. In normal data transfer, the data line only changes state when the clock is low.

8. Master waits for the acknowledgement bit from the slave device whose address is sent on
the bus along with the Read/Write operation command.

MRCET ECE ESD UNIT-5 NOTES

9. Slave devices connected to the bus compares the address received with the address

assigned to them

10. The Slave device with the address requested by the master device responds by sending an

acknowledge bit (Bit value =1) over the SDA line

11. Upon receiving the acknowledge bit, master sends the 8bit data to the slave device over

SDA line, if the requested operation is „Write to device‟.

12. If the requested operation is „Read from device‟, the slave device sends data to the

master over the SDA line.

13. Master waits for the acknowledgement bit from the device upon byte transfer complete

for a write operation and sends an acknowledge bit to the slave device for a read

operation

14. Master terminates the transfer by pulling the SDA line „HIGH‟ when the clock line SCL

is at logic „HIGH‟ (Indicating the „STOP‟ condition).

MRCET ECE ESD UNIT-5 NOTES

Serial Peripheral Interface (SPI) Bus:

The Serial Peripheral Interface Bus (SPI) is a synchronous bi-directional full duplex four wire

serial interface bus. The concept of SPI is introduced by Motorola.SPI is a single master multi-

slave system.



It is possible to have a system where more than one SPI device can be master, provided
the condition only one master device is active at any given point of time, is satisfied.


SPI is used to send data between Microcontrollers and small peripherals such as shift
registers, sensors, and SD cards.

SPI requires four signal lines for communication. They are:

Master Out Slave In (MOSI): Signal line carrying the data from master to slave device. It is

also known as Slave Input/Slave Data In (SI/SDI)

Master In Slave Out (MISO): Signal line carrying the data from slave to master device. It is

also known as Slave Output (SO/SDO)

MRCET ECE ESD UNIT-5 NOTES

Serial Clock (SCLK): Signal line carrying the clock signals

Slave Select (SS): Signal line for slave device select. It is an active low signal.

The master device is responsible for generating the clock signal.

Master device selects the required slave device by asserting the corresponding slave devices

slave select signal „LOW‟.

 The data out line (MISO) of all the slave devices when not selected floats at high impedance

state

 The serial data transmission through SPI Bus is fully configurable.

 SPI devices contain certain set of registers for holding these configurations.

 The Serial Peripheral Control Register holds the various configuration parameters like

master/slave selection for the device, baudrate selection for communication, clock signal

control etc.

 The status register holds the status of various conditions for transmission and reception.SPI

works on the principle of „Shift Register‟.

 The master and slave devices contain a special shift register for the data to transmit or

receive.

 The size of the shift register is device dependent. Normally it is a multiple of 8.

 During transmission from the master to slave, the data in the master‟s shift register is

shifted out to the MOSI pin and it enters the shift register of the slave device through the

MOSI pin of the slave device.

MRCET ECE ESD UNIT-5 NOTES

 At the same time the shifted out data bit from the slave device’s shift register enters the

shift register of the master device through MISO pin

I2C V/S SPI:

MRCET ECE ESD UNIT-5 NOTES

1-wire interface (protocol)

1- Wire is a device communications bus system designed by Dallas Semiconductor Corp. that

provides low-speed data, signaling, and power over a single conductor.

1-Wire is similar in concept to I²C, but with lower data rates and longer range. It is typically used

to communicate with small inexpensive devices such as digital thermometers and weather

instruments.

One distinctive feature of the bus is the possibility of using only two wires: data and ground.

To accomplish this, 1-Wire devices include an 800 pF capacitor to store charge, and to power the

device during periods when the data line isactive

There is always one master in overall charge, which may be a PC or a microcontroller.

The master initiates activity on the bus, simplifying the avoidance of collisions on the bus.

Protocols are built into the software to detect collisions. After a collision, the master retries the

required communication.

Many devices can share the same bus. Each device on the bus has a unique 64-bit serial

number. The least significant byte of the serial number is an 8-bit number that tells the type of

the device. The most significant byte is a standard (for the 1-wire bus) 8-bit CRC.

The master starts a transmission with a reset pulse, which pulls the wire to 0 volts for at least 480

µs. This resets every slave device on the bus. After that, any slave device, if present, shows that

it exists with a "presence" pulse: it holds the bus low for at least 60 µs after the master releases

the bus.

https://en.wikipedia.org/wiki/Dallas_Semiconductor
https://en.wikipedia.org/wiki/Dallas_Semiconductor
https://en.wikipedia.org/wiki/Dallas_Semiconductor
https://en.wikipedia.org/wiki/Dallas_Semiconductor
https://en.wikipedia.org/wiki/Dallas_Semiconductor
https://en.wikipedia.org/wiki/Dallas_Semiconductor
https://en.wikipedia.org/wiki/Electrical_conductor
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/Electronic_component
https://en.wikipedia.org/wiki/Thermometer
https://en.wikipedia.org/wiki/Farad
https://en.wikipedia.org/wiki/Farad
https://en.wikipedia.org/wiki/Master-slave_(technology)
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Least_significant_bit
https://en.wikipedia.org/wiki/Least_significant_bit
https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Microseconds

MRCET ECE ESD UNIT-5 NOTES

To send a "1", the bus master sends a very brief (1– 15 µs) low pulse. To send a "0", the

master sends a 60 µs low pulse.When receiving data, the master start sends a 1–15-µs 0-volt

pulse to slave each bit. If the transmitting does unit wants to send a "1", it to the nothing, and the

bus goes transmitting pulled-up voltage. If the "0", it pulls slave wants to send the data line to

ground for 60 µs.

PARALLEL COMMUNICATION:

In data transmission, parallel communication is a method of conveying multiple binary

digits (bits) simultaneously. It contrasts with communication. The communication channel is the

number of electrical conductors used at the physical layer to convey bits.

Parallel communication implies more than one such conductor. For example, an 8-bit

parallel channel will convey eight bits (or a byte) simultaneously, whereas a serial channel would

convey those same bits sequentially, one at a time. Parallel communication is and always has

been widely used within integrated circuits, in peripheral buses, and in memory devices such as

RAM.

2. Product level communication interface (External Communication

Interface): The Product level communication interface‟ (External Communication Interface) is

responsible for data transfer between the embedded system and other devices or modules

It is classified into two types

1. Wired communication interface

2. Wireless communication interface:

1. Wired communication interface: Wired communication interface is an interface used to

transfer information over a wired network.

https://en.wikipedia.org/wiki/Binary_numeral_system
https://en.wikipedia.org/wiki/Data_transmission
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Communication_channel
https://en.wikipedia.org/wiki/Communication_channel
https://en.wikipedia.org/wiki/Physical_layer
https://en.wikipedia.org/wiki/Physical_layer
https://en.wikipedia.org/wiki/Physical_layer
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/Random-access_memory

MRCET ECE ESD UNIT-5 NOTES

It is classified into following types.

1. RS-232C/RS-422/RS 485

2. USB

RS-232C:

 RS-232 C (Recommended Standard number 232, revision C from the Electronic Industry

Association) is a legacy, full duplex, wired, asynchronous serial communication interface

 RS-232 extends the UART communication signals for external data communication.

 UART uses the standard TTL/CMOS logic (Logic „High‟ corresponds to bit value 1 and

Logic „LOW‟ corresponds to bit value 0) for bit transmission whereas RS232 use the

EIA standard for bit transmission.

 As per EIA standard, a logic „0‟ is represented with voltage between +3 and +25V and a

logic „1‟ is represented with voltage between -3 and -25V.

 In EIA standard, logic „0‟ is known as „Space‟ and logic „1‟ as „Mark‟.

The RS232 interface define various handshaking and control signals for communication

apart from the „Transmit‟ and „Receive‟ signal lines for data communication

MRCET ECE ESD UNIT-5 NOTES

RS-232 supports two different types of connectors, namely; DB-9: 9-Pin connector and DB-25:

25-Pin connector.

Fig: DB-25:25-Pin connector.

Fig: DB-9:9-Pin connector.

MRCET ECE ESD UNIT-5 NOTES


RS-232 is a point-to-point communication interface and the devices involved in RS-232

communication are called „Data Terminal Equipment (DTE)‟ and „Data Communication

Equipment (DCE)‟.


If no data flow control is required, only TXD and RXD signal lines and ground line (GND)

are required for data transmission and reception.


The RXD pin of DCE should be connected to the TXD pin of DTE and vice versa for proper

data transmission.


If hardware data flow control is required for serial transmission, various control signal lines

of the RS-232 connection are used appropriately.


The control signals are implemented mainly for modem communication and some of them

may be irrelevant for other type of devices.


The Request to Send (RTS) and Clear To Send (CTS) signals co-ordinate the communication

between DTE and DCE.


Whenever the DTE has a data to send, it activates the RTS line and if the DCE is ready to

accept the data, it activates the CTS line.


The Data Terminal Ready (DTR) signal is activated by DTE when it is ready to accept data.


The Data Set Ready (DSR) is activated by DCE when it is ready for establishing a

communication link.


DTR should be in the activated state before the activation of DSR.


The Data Carrier Detect (DCD) is used by the DCE to indicate the DTE that a good signal is

MRCET ECE ESD UNIT-5 NOTES

being received.

MRCET ECE ESD UNIT-5 NOTES


Ring Indicator (RI) is a modem specific signal line for indicating an incoming call on the

telephone line.


As per the EIA standard RS-232 C supports baudrates up to 20Kbps (Upper limit 19.2Kbps).


The commonly used baudrates by devices are 300bps, 1200bps, 2400bps, 9600bps,

11.52Kbps and 19.2Kbps.


The maximum operating distance supported in RS-232 communication is 50 feet at the

highest supported baudrate.


Embedded devices contain a UART for serial communication and they generate signal levels

conforming to TTL/CMOS logic.


A level translator IC like MAX 232 from Maxim Dallas semiconductor is used for converting

the signal lines from the UART to RS-232 signal lines for communication.


On the receiving side the received data is converted back to digital logic level by a converter

IC.


Converter chips contain converters for both transmitter and receiver.


RS-232 uses single ended data transfer and supports only point-to-point communication and

not suitable for multi-drop communication.

USB (UNIVERSAL SERIAL BUS):

 External Bus Standard.

 Allows connection of peripheral devices.

 Connects Devices such as keyboards, mice, scanners, printers, joysticks, audio

devices, disks.

 Facilitates transfers of data at 480 (USB 2.0 only), 12 or 1.5 Mb/s (mega-

bits/second).

 Developed by a Special Interest Group including Intel, Microsoft, Compact, DEC,

IBM, Northern Telecom and NEC originally in 1994.

 Low-Speed: 10 – 100 kb/s

 1.5 Mb/s signaling bit rate

MRCET ECE ESD UNIT-5 NOTES

 Full-Speed: 500 kb/s – 10 Mb/s 12 Mb/s signaling bit rate

 High-Speed: 400 Mb/s

MRCET ECE ESD UNIT-5 NOTES

 480 Mb/s signaling bit rate

 NRZI with bit stuffing used

 SYNC field present for every packet

 There exist two pre-defined connectors in any USB system - Series “A” and Series “B”

Connectors.

 Series “A” cable: Connects USB devices to a hub port.

 Series “B” cable: Connects detachable devices (hot- swappable)

Bus Topology:

 Connects computer to peripheral devices.

 Ultimately intended to replace parallel and serial ports

 Tiered Star Topology

 All devices are linked to a common point referred to as the root hub.

7

 Specification allows for up to 127 (2 -1) different devices.

 Four wire cable serves as interconnect of system - power, ground and two differential

signaling lines.

 USB is a polled bus-all transactions are initiated by host.

MRCET ECE ESD UNIT-5 NOTES

USB HOST: Device that controls entire system usually a PC of some form. Processes data

arriving to and from the USB port.

USB HUB: Tests for new devices and maintains status information of child devices.Serve as

repeaters, boosting strength of up and downstream signals. Electrically isolates devices from one

another - allowing an expanded number of devices.

2.Wireless communication interface : Wireless communication interface is an interface used to

transmission of information over a distance without help of wires, cables or any other forms of

electrical conductors.

They are basically classified into following types

1. Infrared
2. Bluetooth
3. Wi-Fi
4. Zigbee

5. GPRS

INFRARED:

 Infrared is a certain region in the light spectrum

 Ranges from .7µ to 1000µ or .1mm

 Broken into near, mid, and far infrared

 One step up on the light spectrum from visible light

 Measure of heat

Most of the thermal radiation emitted by objects near room temperature is infrared. Infrared

radiation is used in industrial, scientific, and medical applications. Night-vision devices using

active near-infrared illumination allow people or animals to be observed without the observer

being detected.

https://en.wikipedia.org/wiki/Thermal_radiation

MRCET ECE ESD UNIT-5 NOTES

IR transmission:

The transmitter of an IR LED inside its circuit, which emits infrared light for every electric pulse

given to it. This pulse is generated as a button on the remote is pressed, thus completing the

circuit, providing bias to the LED.

The LED on being biased emits light of the wavelength of 940nm as a series of pulses,

corresponding to the button pressed. However since along with the IR LED many other sources

of infrared light such as us human beings, light bulbs, sun, etc, the transmitted information can be

interfered. A solution to this problem is by modulation. The transmitted signal is modulated using

a carrier frequency of 38 KHz (or any other frequency between 36 to 46 KHz). The IR LED is

made to oscillate at this frequency for the time duration of the pulse. The information or the light

signals are pulse width modulated and are contained in the 38 KHz frequency.

IR supports data rates ranging from 9600bits/second to 16Mbps

Serial infrared: 9600bps to 115.2 kbps

Medium infrared: 0.576Mbps to 1.152 Mbps

Fast infrared: 4Mbps

BLUETOOTH:

Bluetooth is a wireless technology standard for short distances (using short-wavelength UHF

band from 2.4 to 2.485 GHz)for exchanging data over radio waves in the ISM and mobile

devices, and building personal area networks (PANs).Invented by telecom vendor Ericsson in

1994, it was originally conceived as a wireless alternative to RS- 232 data cables.

https://en.wikipedia.org/wiki/Wireless
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Ericsson
https://en.wikipedia.org/wiki/RS-232
https://en.wikipedia.org/wiki/RS-232

MRCET ECE ESD UNIT-5 NOTES

Bluetooth uses a radio technology called frequency- hopping spread spectrum. Bluetooth

divides transmitted data into packets, and transmits each packet on one of 79 designated

Bluetooth channels. Each channel has a bandwidth of 1 MHz. It usually performs 800 hops per

second, with Adaptive Frequency-Hopping (AFH) enabled

Originally, Gaussian frequency-shift keying (GFSK) modulation was the only modulation

scheme available. Since the introduction of Bluetooth 2.0+EDR, π/4-DQPSK (Differential

Quadrature Phase Shift Keying) and 8DPSK modulation may also be used between compatible

devices. Bluetooth is a packet-based protocol with a master- slave structure. One master may

communicate with up to seven slaves in a piconet. All devices share the master's clock. Packet

exchange is based on the basic clock, defined by the master, which ticks at312.5 µs intervals.

A master BR/EDR Bluetooth device can communicate with a maximum of seven devices

in a piconet (an ad-hoc computer network using Bluetooth technology), though not all devices

reach this maximum. The devices can switch roles, by agreement, and the slave can become the

master (for example, a headset initiating a connection to a phone necessarily begins as master—

as initiator of the connection—but may subsequently operate as slave).

Wi-Fi:

 Wi-Fi is the name of a popular wireless networking technology that uses radio waves to

provide wireless high-speed Internet and network connections

 Wi-Fi follows the IEEE 802.11 standard

 Wi-Fi is intended for network communication and it supports Internet Protocol (IP) based

communication

 Wi-Fi based communications require an intermediate agent called Wi-Fi router/Wireless

Access point to manage the communications.

 The Wi-Fi router is responsible for restricting the access to a network, assigning IP address to

devices on the network, routing data packets to the intended devices on the network.

https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Adaptive_frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Adaptive_frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Gaussian_frequency-shift_keying
https://en.wikipedia.org/wiki/DQPSK
https://en.wikipedia.org/wiki/Packet_based
https://en.wikipedia.org/wiki/Master-slave_(technology)
https://en.wikipedia.org/wiki/Master-slave_(technology)
https://en.wikipedia.org/wiki/Piconet

MRCET ECE ESD UNIT-5 NOTES

 Wi-Fi enabled devices contain a wireless adaptor for transmitting and receiving data in

the form of radio signals through an antenna.

 Wi-Fi operates at 2.4GHZ or 5GHZ of radio spectrum and they co-exist with other ISM

band devices like Bluetooth.

 A Wi-Fi network is identified with a Service Set Identifier (SSID). A Wi-Fi device can

connect to a network by selecting the SSID of the network and by providing the

credentials if the network is security enabled

 Wi-Fi networks implements different security mechanisms for authentication and data

transfer.

 Wireless Equivalency Protocol (WEP), Wireless Protected Access (WPA) etc are some of

the security mechanisms supported by Wi-Fi networks in data communication.

ZIGBEE:

Zigbee is an IEEE 802.15.4-based specification for a suite of high- level communication

protocols used to create personal area networks with small, low-power digital radios, such as for

home automation, medical device data collection, and other low-power low-bandwidth needs,

designed for small scale projects which need wireless connection.Hence, zigbee is a low-power,

low data rate, and close proximity (i.e., personal area) wireless ad hoc network.The technology

https://en.wikipedia.org/wiki/IEEE_802.15.4
https://en.wikipedia.org/wiki/Specification_(technical_standard)
https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Digital_radio
https://en.wikipedia.org/wiki/Wireless_ad_hoc_network
https://en.wikipedia.org/wiki/Wireless_ad_hoc_network

MRCET ECE ESD UNIT-5 NOTES

defined by the zigbee specification is intended to be simpler and less expensive than other

wireless personal area networks (WPANs), such as Bluetooth or Wi-Fi . Applications include

wireless light switches, electrical meters with in-home-displays, traffic management systems, and

other consumer and industrial equipment that require short-range low- rate wireless data transfer.

Its low power consumption limits transmission distances to 10– 100 meters line-of-sight,

depending on power output and environmental characteristics. Zigbee devices can transmit data

over long distances by passing data through a mesh network of intermediate devices to reach

more distant ones.

Zigbee Coordinator: The zigbee coordinator acts as the root of the zigbee network. The ZC is

responsible for initiating the Zigbee network and it has the capability to store information about

the network.

Zigbee Router: Responsible for passing information from device to another device or to another

ZR.

Zigbee end device:End device containing zigbee functionality for data communication. It can

talk only with a ZR or ZC and doesn’t have the capability to act as a mediator for transferring

data from one device to another.

Zigbee supports an operating distance of up to 100 metres at a data rate of 20 to 250 Kbps.

https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Bluetooth
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/Line-of-sight_propagation
https://en.wikipedia.org/wiki/Mesh_networking

MRCET ECE ESD UNIT-5 NOTES

General Packet Radio Service(GPRS):

General Packet Radio Service (GPRS) is a packet oriented mobile data service on the 2G and

3G cellular communication system's global system for mobile communications (GSM).GPRS

was originally standardized by European Telecommunications Standards Institute (ETSI) GPRS

usage is typically charged based on volume of data transferred, contrasting with circuit switched

data, which is usually billed per minute of connection time. Sometimes billing time is broken

down to every third of a minute. Usage above the bundle cap is charged per megabyte, speed

limited, or disallowed.

Services offered:

 GPRS extends the GSM Packet circuit switched data capabilities and makes the

following services possible:

 SMS messaging and broadcasting

 "Always on" internet access

 Multimedia messaging service (MMS)

 Push-to-talk over cellular (PoC)

 Instant messaging and presence-wireless village Internet applications for smart devices

through wireless application protocol (WAP).

 Point-to-point (P2P) service: inter-networking with the Internet (IP).

 Point-to-multipoint (P2M) service]: point-to- multipoint multicast and point-to-multipoint

group calls.

Text Book:-

1. Introduction to Embedded Systems – Shibu K.V Mc Graw Hill

https://en.wikipedia.org/wiki/Packet_oriented
https://en.wikipedia.org/wiki/Packet_oriented
https://en.wikipedia.org/wiki/Packet_oriented
https://en.wikipedia.org/wiki/Cellular_communication
https://en.wikipedia.org/wiki/Cellular_communication
https://en.wikipedia.org/wiki/Cellular_communication
https://en.wikipedia.org/wiki/Global_System_for_Mobile_Communications
https://en.wikipedia.org/wiki/Global_System_for_Mobile_Communications
https://en.wikipedia.org/wiki/Global_System_for_Mobile_Communications
https://en.wikipedia.org/wiki/Global_System_for_Mobile_Communications
https://en.wikipedia.org/wiki/European_Telecommunications_Standards_Institute
https://en.wikipedia.org/wiki/European_Telecommunications_Standards_Institute
https://en.wikipedia.org/wiki/European_Telecommunications_Standards_Institute
https://en.wikipedia.org/wiki/Circuit_switching
https://en.wikipedia.org/wiki/Product_bundling
https://en.wikipedia.org/wiki/Product_bundling
https://en.wikipedia.org/wiki/Product_bundling
https://en.wikipedia.org/wiki/Product_bundling
https://en.wikipedia.org/wiki/Product_bundling
https://en.wikipedia.org/wiki/Product_bundling
https://en.wikipedia.org/wiki/Product_bundling
https://en.wikipedia.org/wiki/Product_bundling
https://en.wikipedia.org/wiki/SMS
https://en.wikipedia.org/wiki/Multimedia_Messaging_Service
https://en.wikipedia.org/wiki/Push-to-talk
https://en.wikipedia.org/wiki/Instant_messaging
https://en.wikipedia.org/wiki/Wireless_Village
https://en.wikipedia.org/wiki/Wireless_Village
https://en.wikipedia.org/wiki/Wireless_Village
https://en.wikipedia.org/wiki/Wireless_Application_Protocol
https://en.wikipedia.org/wiki/Wireless_Application_Protocol
https://en.wikipedia.org/wiki/Wireless_Application_Protocol
https://en.wikipedia.org/wiki/Wireless_Application_Protocol
https://en.wikipedia.org/wiki/Point-to-point_(telecommunications)
https://en.wikipedia.org/wiki/Point-to-multipoint_communication

	LECTURE NOTES
	EMBEDDED SYSTEMS DESIGN
	Faculty Member Mr. M. Ramanjaneyulu
	MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
	
	 (1)
	
	 (1)
	 (2)
	Reference Text Books:-

	UNIT-II
	
	
	Programmable Logic Devices (PLDs):

	 (1)
	
	CPLD:
	Commercial off the Shelf Component (COTS):
	Memory:
	

	 (2)
	
	 (1)
	 (2)

	 (3)
	Memory selection for Embedded Systems:

	
	
	
	 (1)
	 (2)
	 (3)
	Text Book:-
	 The Super loop based approach
	1. Embedded firmware Design Approaches – The Super loop:
	Pros:
	Enhancements:
	2. Embedded firmware Design Approaches – Embedded OS based Approach:
	 A Real Time Operating System (RTOS)
	Assembly Language High Level Language
	Mix of Assembly & High level Language
	1. Embedded firmware Development Languages/Options – Assembly Language
	LABEL OPCODE OPERAND COMMENTS
	2. Assembly Language – Source File to Hex File Translation:
	Figure 5: Assembly Language to machine language conversion process
	Advantages:
	 2.High Performance:
	 3.Low level Hardware Access:
	 4.Code Reverse Engineering:
	Drawbacks:
	 2.Developer dependency:
	 3.Non portable:
	2. Embedded firmware Development Languages/Options – High Level Language
	Embedded firmware Development Languages/Options – High Level Language – Source File to Hex File Translation
	Figure 6: High level language to machine language conversion process
	Advantages: (1)
	Drawbacks: (1)
	Embedded firmware Development Languages/Options – Mixing of Assembly Language with High Level Language
	1. Mixing Assembly Language with High level language like ‘C’ (Assembly Language with ‘C’):
	2. Mixing High level language like ‘C’ with Assembly Language (‘C’ with Assembly Language)
	3. In line Assembly:
	#pragma ensasm

	Text Books:
	2. Embedded System Design-Raj Kamal TMH

	RTOS Based Embedded System Design
	Operating System Basics:
	Kernel Space and User Space:
	Monolithic Kernel:
	Figure 2: The Monolithic Kernel Model
	Figure 3: The Microkernel Model
	Benefits of Microkernel:

	Types of Operating Systems:
	1. General Purpose Operating System (GPOS):
	2. Real Time Purpose Operating System (RTOS):
	Memory Management:
	Interrupt Handling:
	Time Management:
	Hard Real-time System:
	 Soft Real-time System:

	Tasks, Processes & Threads :
	Figure: 4 Structure of a Process
	Memory organization of Processes:
	Stack Memory
	Stack memory grows downwards

	Fig: 5 Memory organization of a Process
	Process States & State Transition
	Process States & State Transition:
	Threads
	Figure 7 Memory organization of process and its associated Threads The Concept of multithreading
	Figure 8 Process with multi-threads

	Thread V/s Process
	Advantages of Threads:
	Multiprocessing & Multitasking
	Multitasking – Context Switching:
	Types of Multitasking :

	Task Scheduling:
	Task Scheduling - Queues
	Task Scheduling – Task transition through various Queues
	Drawbacks:
	Drawbacks: (1)
	Drawbacks: (2)
	Non-preemptive scheduling – Priority based Scheduling
	Drawbacks: (3)
	Preemptive scheduling – Preemptive SJF Scheduling/ Shortest Remaining Time (SRT):
	Figure 11 Round Robin Scheduling

	How to chose RTOS:
	1. Functional Requirements:
	2. Memory Requirements:
	3. Kernel and Interrupt Latency:
	6. Modularization Support:
	8. Development Language Support:
	2. Non-Functional Requirements:
	2. Cost:
	3. Development and Debugging tools Availability:
	4. Ease of Use:
	5. After Sales:

	Device Drivers:

	COMMUNICATION INTERFACE
	1 I2C (Inter Integrated Circuit) Bus:
	Serial Peripheral Interface (SPI) Bus:
	2. Product level communication interface (External Communication
	RS-232C:
	Wi-Fi:
	Text Book:-

