

RTL Simulation and Synthesis with PLDs

(R22D6801)

DIGITAL NOTES

M.TECH
(I YEAR – I SEM)

(2023-24)

 Department of Electronics and Communication Engineering

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India

RTL SIMULATION AND SYNTHESIS WITH PLDS

Course Objectives:

 To learn High-Level Design Methodology and overview of design flow

 To learn the coding skills relevant to synthesis of logic circuits.

 To understand importance of libraries in synthesis flow

 To design logic to meet specifications and optimization

 To understand the design constrains related to FSM

Unit I
High-Level Design Methodology Overview: ASIC Design Flow Using Synthesis, HDL Coding, RTL Behavioral
and Gate-Level Simulation, Logic Synthesis, Design for Testability, Design Re-Use, Behavioral Synthesis &
Concepts. Design Analyzer and Design compiler, Target Library, Link Library, and Symbol Library, Cell
names, Instance names, and VHDL Libraries in the Synthesis Environment, Synthesis, Optimization and
Compile, Classic Scenarios

Unit II
VHDL/Verilog Coding for Synthesis: General HDL Coding Issues, VHDL vs. Verilog: The Language Issue,
Finite State Machines, HDL Coding Examples, Classic Scenarios.

Unit III
Links to Layout, Motivation for Links to Layout Floor planning, Link to Layout Flow Using Floorplan
Manager, Creating Wire Load Models After Back-Annotation Re-Optimizing Designs After P&R. Design for
Testability: Introduction to Test Synthesis, Test Synthesis Using Test Compiler

Unit IV
Constraining and Optimizing Designs: Synthesis Background, Clock Specification for Synthesis, Design
Compiler Timing Reports, Commonly Used Design, Compiler Commands, Strategies for Compiling Designs,
Typical Scenarios When Optimizing Designs, Guidelines for Logic Synthesis, Classic Scenarios.

Unit V
Constraining and Optimizing Designs for FSM: Finite State Machine (FSM) Synthesis, Fixing Min Delay
Violations Technology Translation, Translating Designs with Black-Box Cells, Pad Synthesis, Classic
Scenarios

Text Book
1. Kurup Pran, Taher Abbasi, Logic Synthesis using Synopsys, 2/e, Pearson Education, 2007.

References
1. VHDL for Logic Synthesis, Third Edition. Andrew Rushton. © 2011 John Wiley & Sons, Ltd. Published
2011 by John Wiley & Sons, Ltd.

2. Weng Fook Lee, VHDL Coding and Logic Synthesis with Synopsys, Academic Press, 2000
3. Morris Mano, Michael D. Ciletti, Digital Design , 4/e, Prentice Hall of India, 2008

4. Himanshu Bhatnagar, Advanced ASIC Chip Synthesis, Springer Science, 2013

Course Outcomes:

After successful completion of the course, the student will be able to

 Understand Synthesis Flow and Optimization

 Understand Synthesizable Coding Concepts

 Analyze Physical Design Concepts

 Understand Efficient Way of Giving Constrains

 Analyze Constraining and Optimizing Designs For FSM

Introduction

In today's world, faster and less costly ASIC chips are being designed at a much

quicker rate than before. ASIC designers are able to design much more efficiently

than before.Designers are constantly under pressure to come up with faster

performing designs, but with fewer resources.This has led to the development of

many EDA tools that help designers to complete a design in a much shorter time

frame. These EDA tools are based on the concept of designing ASIC components

utilizing Hardware Description Language (HDL). Today, a designer does not need

to spend much time manually drawing the circuitry involved in a design but instead

can write synthesizable HDL code. A common form of HDL code used in the

ASIC industry for synthesis is Very High-Speed Integrated Circuit Hardware

Description Language (VHDL) and Verilog.

Synthesizable VHDL can be used as a form of input in synthesis tools such as

Synopsys's Design Compiler. This new methodology of design is a great asset to

designers, as it increases both productivity and efficiency.

1)To software developers, RTL may mean register transfer language. An

example is the generation of an intermediate file format.

2)To microprocessor designers, RTL may be conceived as a pseudo-code

description , dataflow between different elements of the processor.

Unit I

High-Level Design Methodology Overview

 ASIC Design Flow Using Synthesis, HDL Coding, RTL Behavioral and

Gate-Level Simulation, Logic Synthesis, Design for Testability, Design Re-

Use, Behavioral Synthesis & Concepts. Design Analyzer and Design

compiler, Target Library, Link Library, and Symbol Library, Cell names,

Instance names, and VHDL Libraries in the Synthesis Environment,

Synthesis, Optimization and Compile, Classic Scenarios

3)To FPGA designers, RTL stands for register transfer level, a relatively

low level of abstraction .

 RTL can also be used to mean a Hardware Description Language(VHDL,

Verilog, System C), where “RTL” code is a lower level of abstraction than

“Behavioral Level” code.

Definition

The VHDL language standards committee “The register transfer level of

modeling circuits in VHDL for use with register transfer level synthesis. Register

transfer level is a level of description of a digital design in which the clocked

behavior of the design is expressly described in terms of data transfers between

storage elements in sequential logic, which may be implied, and combinatorial

logic, which may represent any computing or arithmetic logic unit logic. RTL

modelling allows design hierarchy that represents a structural description of other

RTL models.”

RTL -Register Transfer Level

Digital circuit as registers + combinational logic (the logic is the 'transfer'

between registers). This is higher level (and also a lot more convenient) than gate

level, or transistor level.

A synchronous circuit consists of two kinds of elements: registers

(Sequential logic) and combinational logic. Registers (usually implemented as D

flip flop) synchronize the circuit's operation to the edges of the clock signal, and

are the only elements in the circuit that have memory properties. Combinational

logic performs all the logical functions in the circuit and it typically consists

of logic gates.

For example, a very simple synchronous circuit is shown in the figure.

The inverter is connected from the output, Q, of a register to the register's input, D,

to create a circuit that changes its state on each rising edge of the clock, clk. In this

circuit, the combinational logic consists of the inverter.

When designing digital integrated circuits with a Hardware Description

Language (HDL), the designs are usually engineered at a higher level of

abstraction than transistor level (logic families)or logic gate level. In HDLs the

designer declares the registers (which roughly correspond to variables in computer

programming languages), and describes the combinational logic by using

constructs that are familiar from programming languages such as if-then-else and

arithmetic operations. This level is called register-transfer level. The term refers to

the fact that RTL focuses on describing the flow of signals between registers.

RTL Simulation

Register Transfer Level (RTL) simulation and verification is one of the

initial steps that was done. This step ensures that the design is logically correct and

without major timing errors. It is advantageous to perform this step, especially in

the early stages of the design, because long synthesis and place-and-route times

can be avoided when an error is discovered at this stage. This step also eliminates

all the syntax errors from your VHDL code.Synopsys simulation tools to perform

RTL verification.

Programmable logic device

A programmable logic device (PLD) is an electronic component used to

build reconfigurable digital circuits. Unlike Integrated circuits (IC) which consist

of logic gates and have a fixed function, a PLD has an undefined function at

the time of manufacture. Before the PLD can be used in a circuit it must be

programmed (reconfigured) by using a specialized program

Logic synthesis

The process of translating and mapping RTL code written in HDL (such as

Verilog or VHDL) into technology specific gate level representation is logic

synthesis.Its a process by which an RTL model of a design is automatically turned

into a transistor-level schematic netlist by a standard EDA tool.Abstract

specification of desired circuit behavior, typically at Register transfer

level (RTL), is turned into a design implementation in terms of logic gates, by

a computer program called a synthesis tool.Common examples include synthesis of

designs specified in Hardware Description Languages.Logic synthesis is one

aspect of electonic design automation.

ASIC Design Flow Using Synthesis

 Major advances in fabrication technology have made possible high

integration, large gate count ASICs. Hardware description languages and

logic synthesis have had a significant impact on the design process of these

ASICs. With the adoption of HDL-based design there has emerged a highlevel

design flow based on synthesis.The most commonly used HDLs today are VHDL

and Verilog. The desired functionality of a design is first captured in HDL code,

usually Verilog or VHDL. This step is complex, particularly for IC designers who

are accustomed to schematic capture tools. This is further compounded by the

fact that this code then must be synthesized into an optimal design which

meets the functional requirements of the initial specification. The synthesis based

ASIC design flow can be divided into the following steps:

1. Functional Specification ofthe design

2. HOL Coding in VHDL/Verilog RTL.

3. RTL/Behavioral or Functional simulation of the HOL.

4. Logic Synthesis

5. Test Insertion and ATPG.

6. Post-synthesis or gate-level simulation.

7. Floorplanning / Place and Route.

The above seven steps are usually iterative as shown in Figure. For

example, on performing a functional simulation of the source HDL code, one

might find that the code does not exactly match the desired functional

behavior. In such cases, one must return to modify the source code.

Also, after synthesis, it is possible that the netlist does not meet the timing

requirements ofthe clock. This implies that one must either modify the source

HDL, or attempt alternate synthesis strategies.Similarly, after performing place and

route, it is required to back annotate delay values to incorporate real-world

delays. This is followed by in-place optimization (lPO) of the netlist to meet

routing delays.

The functional specification is always the first step in an ASIC design

process. Designers in particular, are extremely familiar with formulating the

specifications of a design. Most often the design specification is

followed by a block level diagram of the entire ASIC. The block level

diagram of the ASIC is usually done using graphical design entry tools like

the Synopsys Simulation Graphical Environment (SGE), Composer

(Cadence) etc.

After a block level schematic capture of the design, the next step involves

HDL coding. The style of HDL coding often has a direct impact on the

results the synthesis tool delivers. A sound knowledge of the working of the

synthesis tool will help the designer write synthesizable code better. For

example, one common problem arises due to partitioning of designs.

Typically, designers partition designs based on functionality. During the

integration of different modules in synthesis, one might find a large amount of

logic in the critical path. This critical path most often traverses several

hierarchical boundaries. In a typical design team scenario, these blocks are

usually designed by different engineers, thereby compounding the problem.

 Logic synthesis provides the best results when the critical path lies in one

hierarchical block as opposed to traversing multiple hierarchical blocks. In

such situations, it is often required to modify the hierarchy in the source HDL

code and re-optimize the design or modify the design hierarchy through

Synopsys tool specific scripts.

Another coding tip is to ensure that all outputs ofsub-blocks/modules are

registered outputs. In synthesis, this helps to estimate the input delays and helps

avoid intricate time budgeting. Also, it is recommended that logic blocks such as

ROMs and random logic each be grouped into separate hierarchical blocks.

HDL Coding

HDL code can be behavioral or RTL. In the synthesis domain, the latter is

usually considered to be the synthesizable fonn of HDL code. Examples of HDL

code which infer on synthesis a D-flip flop, an AND gate are in synthesizable

RTL code format.

Example 1:

D Flip flop

VHDL Code

Verilog Code

 Example shows VHDL and Verilog code which when synthesized infers

a positive edge triggered flip flop. If one desires a negative edge triggered flip

flop, the obvious change to make would be to replace the posedge declaration

in the code with negedge in the Verilog code (or clock=' l' by clock='O' in

VHDL). While this might appear to be an obvious solution, inferring a

negative edge triggered flip flop is largely dependent on an appropriate

library cell being available.

Instead, the tool would infer a positive edge triggered flip

flop with an inverter driving the clock pin of the flip flop. One can always

instantiate a negative edge triggered flip flop (using structural HDL code)

from the ASIC vendor library to circumvent the problem.

In a larger design, which has both positive and negative edge triggered flip

flops, it is recommended that all the positive edge triggered flip flops be

grouped into a separate level of hierarchy and all the negative edge

triggered flip flops be grouped into another level ofhierarchy. This makes

the debug process and timing analysis during synthesis simpler.

Example 2

AND gate

VHDL

Verilog

 Above example infers an AND gate when synthesized. In this case, the

HDL code exactly matches the logic inferred. In general, to infer an AND gate, the

recommended coding style for synthesis is using (out = a&b;) instead of the if

statement.

RTL Behavioral and Gate-Level Simulation

 After the design has been captured in HDL, it is essential to verify that the

code matches the required functionality, prior to synthesis. We call this step

the pre-synthesis behavioral simulation of the HDL. This can be performed

by simply assigning specific values to input signals, performing simulation

runs and viewing the waveforms in a graphical simulation tool. An alternative

is to write a testbench.

The testbench can be considered as an HDL block

whose outputs provide the stimuli for the design to be simulated. In general, it

is recommended that one write a testbench for simulation to simplify the

postsynthesis simulation step. The same testbench can then be used for post

synthesis simulation and the results of the two compared.

There are two possible ways of simulating a design using a testbench as

shown in Figure. One can write a testbench where all the stimuli for the

different signals are provided in the HDL code. Then one would use a

graphical front end of a simulation tool to view the waveforms. It is also

possible to provide the stimuli for the different signals and pipe the outputs to

a file.

If one has another file of expected results, one can quite easily compare

the two files to ensure that the two match.

In order to simulate a synthesized gate-level netlist, VHDL simulation models

of the technology library cells are required. These can be of three kinds - unit

delay structural model (UDSM), full-timing structural model (FTSM), fulltiming

behavioral model (FTBM) or full-timing optimized gate-level

simulation (FTGS). While UDSM and FTSM are used for functional verification,

the FTBM is used for accurate, detailed timing verification and

FTGS library for fast, sign-off-quality timing verification.

Unit Delay Structural Model (UDSM) - In this model of a technology

library, all combinational cells have a rise/fall delay of Ins, while all

sequential cells have a rise/fall delay of 2 ns.

Full-Timing Structural Model (FTSM) - This model includes transport wire

delays and pin-to-pin delays on a zero delay functional network. Timing

constraint violations are reported as warning messages.

Full-Timing Behavioral Model (FTBM) - This delay model is used for

detailed timing verification. Transport wire delays and pin-to-pin delays are

included in this delay model.

Full-timing optimized gate-level simulation (FTGS) - These models include

transport wire delays and pin-to-pin delays in the delay model. In addition to

warning messages, the Simulator can schedule X output values for timing

constraint violations and circuit hazards. One can use the FTGS library for

fast,sign-off-quality timing verification.

 If one has the ASIC vendor library (the Synopsys .db file) for synthesis

and the Synopsys Library Compiler, the above VHDL simulation models can be

automatically created using the liban utility. The liban utility creates two files from

the ASIC vendor library in Synopsysdb (database) format. For example, given the

technology library 'hlylib.db':the liban utlity generates an encrypted VHDL

(mylib.vhd.E) containing simulation models with timing delays, and a VHDL

package(mylib_components.vhd) containing the component declarations for all the

cells in the ASIC vendor library.

Logic Synthesis

Synthesis, as referred to in present-day IC design, can be

broadly divided into logic synthesis and high-level synthesis.

 High-level synthesis is closer to what some refer to as 'behavioral synthesis':

High-level synthesis involves synthesis of logic from behavioral descriptions.

Synopsys Behavioral Compiler is specially targeted towards behavioral synthesis.

Logic synthesis on the other hand synthesizes logic from register transfer

level (RTL) descriptions. In the Synopsys domain, DC capabilities such as

arithmetic optimization, implementation selection, resource sharing, in place

optimization and critical path re-synthesis are referred to as high level

optimization. High level optimization must not be confused with behavioral

synthesis.

 The logic synthesis process consists of two steps - translation and

optimization. Translation involves transforming a HDL (RTL) description to

gates, while optimization involves selecting the optimal combination of ASIC

technology library cells to achieve the required functionality.

Design For Testability

With the increasing complexity of ASIC designs, the cost of testing designs

has become a fairly substantial component of the overall manufacturing and

maintenance cost. The cost of testing is an outcome of several cost

components such as test generation cost, testing time, automatic test

equipment cost etc.

Design for testability (DFT) techniques have been used

in recent years to reduce the cost of testing by defining testability criteria

early in the design cycle.

 The most popular DFT technique in ASIC design is the Scan Design

Technique. Scan techniques involve replacing sequential elements in the

design with equivalent scan cells. There exist different styles of scan cells. Based

on the scan style selected the design is required to meet certain design

rules. The most commonly used scan style is the multiplexed flip flop.

A muxed scan flip-flop, as the name indicates, consists of a mux and a

flipflop. The output of the mux drives the data input of the flip-flop and the

select input is controlled by the test mode pin; the inputs to the mux are the

data input and the test input as shown in the Figure. Sequential cells are

replaced by scan equivalents to achieve the primary requirement of

testability, namely, observability and controllability.

 A scan cell has two

modes of operation, namely, the normal mode and the test mode. During the

normal mode it behaves like the sequential cell it replaces, but in the test

mode the scan input is loaded into the scan cell on the active edge of the clock

transition.

 Figure. Scan chain connected to form a shift register

While on-chip testability is being increasingly adopted in ASIC

design, the extent to which it is implemented is often dependent on the target

application, the area overhead, and the required fault coverage. Hence, within

the scope of scan design, there exist two possible test methodologies :

1. Full scan

2. Partial scan

If all the sequential cells are replaced by scan cells, then it is called a Full

Scan test methodology. In this case, the Automatic Test Pattern Generation

(ATPG) algorithm is combinational.

In a Partial Scan test methodology only

some ofthe sequential cells are replaced by scan cells. In this case, the ATPG

algorithm is sequential. Also, for partial scan it is required that the decision

be made regarding which sequential cells are to be replaced by scan cells.

This critical decision is usually based on the desired fault coverage and the

available silicon area.

 Once the test methodology has been specified as either partial or full scan,

and the scan style declared, the Synopsys Test Compiler (TC) automatically

replaces the sequential cells by

scan cells. This replacement of sequential cells with scan equivalents occurs

if the target technology library has scan equivalent cells of the required scan

style, and provided no test design rule violations exist.

 It is possible that some

flip flops in the design cannot be replaced by a scan equivalent due to design

rule violations or user specified controls. In such cases, if full scan is the

adopted methodology, then all the non-scan cells are interpreted as black

boxes. This implies that all the faults associated with the black-box are

untestable and hence results in reduced overall fault coverage.

After scan insertion, the TC generates the test patterns for the design and the

fault coverage achieved is calculated. The fault coverage is calculated as a

percentage of the testable faults upon the total number of possible stuck-at-O

and stuck-at-I faults.

In general, full scan designs tend to achieve a higher

fault coverage than partial scan designs. The amount of fault coverage for a

partial scan design is related to the number of scannable registers in the

design.After ATPG, the test vectors must be formatted in one of the formats

supported by the simulator on which the test vectors are to be simulated.

Design Re-Use

Several design houses rely on re-use of large blocks of designs when

building newer versions of existing chips. In some cases, it might involve re-

targeting an existing design to a new technology library. For others, it might

involve minor tweaks to existing designs. In general, the strategy used to realize

these changes has a significant impact on the turn around time.

Design re-use is an

effective means to achieve fast turn around on complex designs. A clear

advantage in time is gained by re-use of designs from a library of parts rather

than designing from scratch. The upcoming generation of complex systems

will require a widespread availability of re-usable parts. Synthesis provides a

very efficient and flexible mechanism to build a library of re-usable

components. This is essentially the Synopsys DesignWare (DW) approach

DesignWare Component Libraries

Synopsys provides DesignWare component libraries with existing re-usable

parts. Version 3.0b of DC consists of three DesignWare libraries namely,

ALU, Advanced-Math and the Sequential families. The number of these

libraries is certain to increase with subsequent versions of the software.

Internal to the DC, these libraries are referenced as DWOI, DW02 and

DW03 respectively. In addition, there exists the generic GTECH library.

When a source HDL is read into DC, the design is converted to a netlist of

GTECH components and inferred designware parts.

 The GTECH library, like the DW libraries, is a technology independent

library that aids users develop technology independent parts. The GTECH

library called “gtech.db" contains common logic elements such as basic logic

gates and flip flops. In addition, the gtech.db also contains a half adder and a

full adder.

The DW libraries contain relatively more complex cells such as

adders, subtracters, shifters, FIFOs, counters, comparators and decoders.

These parts are parametrizable, synthesizable, testable and technology

independent making them easily usable in a HDL design flow. Moreover,

these parts have simulation models (VHDL models only, not Verilog)

provided with the libraries, thus substantially improving the time required for

both HDL coding and functional simulation. These parts serve as off-theshelf

design modules which can be used as functional sub-blocks in larger

designs. Moreover, the synthesis tool ensures that when DW parts are used,

high-level optimization features such as implementation selection, arithmetic

optimization and resource sharing are automatically turned on.

Designing Using DesignWare Components

Consider the case of a Universal Asynchronous Receiver Transmitter

(UART). The UART is used in almost all designs which involve serial to

parallel and parallel to serial data conversion, and transmitting and receiving

of data. A UART can be used in a number of designs provided it is

sufficiently flexible.

Figure . Hierarchical Overview of UART

 Figure shows a block diagram of the hierarchical overview of the UART.

The UART requires several registers capable of performing shift operations,

several counters, decoders and FIFOs, The Synopsys DesignWare libraries

have pre-existing components namely, DW03_UPDN_CTR (up down

counter), DW03_FIFO_S_DF (FIFO), DWOl_DECODE (a decoder),

DWO3_SHFT_REG (shift register) which can be used in designing a UART,

Figure. Transmitter Block of UART

 Figure shows the transmitter sub-block of the UART. The transmitter

holding register can be built using the DW03_FIFO_S_DF. The

DW03_DECODE can be used in the decode logic and the shift register

(DW03_SHFT_REG) in the transmitter shift register block. The transmitter

FSM is the only additional logic that is required to be designed.

Behavioral Synthesis & Concepts.

Design Analyzer and Design compiler

 Design Analyzer (DA) is the graphical front end of

the Synopsys synthesis tool. Design Compiler or dc_shell is the command line

interface for the same synthesis tool. In most cases, designers begin using the

graphical front end, and once they are comfortable with the commands and

the Design Compiler terminology, they prefer to use the command line

(dc_shell) interface. At that stage, the DA is generally used only to view

schematics and their critical paths. The command line interface is identified

by the following dc_shell prompt:

If the environment variable SYNOPSYS has been set to the synopsys root

directory, then typing:

should invoke the DC and show the dc_shell prompt. If not running on a

sparc, then use the corresponding architecture. A similar prompt can be seen

from the Design Analyzer command window. The command window can be

invoked from the Design Analyzer from the Setup -> Command Window

pull down menu.

When using the Design Analyzer, the command window helps the user

understand the commands executed when using the menus in the DA. The

DA, in tum, can be invoked by typing the following:

Startup Files

The DC, when invoked, reads the .synopsys_dc. setup file. The synopsys

directory tree has a system wide .synopsys_dc. setup file. This file is located

in $SYNOPSYS/admin/setup directory. In addition to this system wide file,

the user can have a local .synopsys_dc.setup file in the current working

directory or in the home directory.

 In general, the .synopsys_dc.setup file is

used to specify certain commonly used variables like the target_library,

link_library and the search_path. The .synopsys_dc. setup file in the current

working directory has the highest precedence, followed by the one in the

user's home directory and finally, the system wide file. Shown below is a sample

.synopsys_dc.setup file.

Example

DC follows the paths in the search_path variable from left to right. For

example, if a link_library file, link.db exists in the lib directory and in the

vhdl directory, then the link.db file found in the lib directory is used.

If the libraries are assigned correctly and the search_path indicates the

location of these files, then, on invoking the DA, the Setup -> Default pull down

menu should indicate the specified target, link and symbol libraries.

The target_library, link_library and search_path can be specified from the

DA, Setup --> Defaults menu. To verify the current value of any variable, use the

list <variable_name> at the dc_shell prompt as shown below.

Target Library, Link Library, and Symbol Library

 Target library is the ASIC vendor library whose cells are used to generate a

netlist for the design described in HDL during synthesis. The HDL code is

“mapped" to cells from this library.

The link library is used when a design is

already in the form of a netlist or when the source HDL has cells instantiated

from the technology library.The netlist is a design described using

technology library cells. The link library which is specified by setting the

link_library variable, indicates to the DC, the library in which the

descriptions of these cells are available.Similarly, the target_library variable

and the symbol_library variable help specify the target and symbol libraries

respectively.

Example :

Example shows a simple Verilog netlist written out by the DC. This example

should help to better understand the link library concept.

The netlist has four instances (U5, U6, U7, US) of the IVA library cell. If one

wished to read the above netlist into DC and execute a command like

report_timing, then, the link library declared by the link_library variable

must have a description for the IVA library cell. If DC is unable to find a

description for the IVA cell in the link library, the tool will be 'unable to

resolve the reference IVA".

Figure. Netlist showing instances

Symbol libraries are pictorial representations of library cells. If one wishes

to view the schematic of a design in DA, then the tool requires a symbol library

which contains actual graphic representations of all the library cells. The tool

performs a one to one mapping ofthe cells in the netlist to cells in the symbol

library, when the user attempts to view the netlist representation.

For example, on reading the above netlist into DC, followed by the link

command, the tool looks for the IVA cell in the link library to 'resolve the

reference" IVA. Once it finds IVA in the link_library, the tool then looks for the

IVA symbol in the symbol library. Viewing the schematic in the DA can be done

by double clicking on the design icon. However, the equivalent command

executed is the create_ schematic command. If it is unable to find cells in the

symbol library, DA uses the generic symbol library (generic.sdb) to create

schematics.

The technology and symbol libraries must exactly match in “case"for the

cell names and their pin names. In other words, if the pin names ofthe IVA cell in

the technology library do not match the pin names of the cell IVA in the

symbol library, the tool will not be able to use the IVA symbol. In such a

scenario, the tool uses symbols from the synopsys default generic library.

The compare_lib command in DC, is a fast check mechanism to determine

any differences between the symbol library and the technology library that might

exist.

The link mechanism can be forced to be case insensitive by setting the

following dc_shell variable to false.

 The target and link libraries are of .db extension while symbol_libraries are of

.sdb extension. Technology libraries are generated by the Synopsys Library

Compiler from .lib files. These in tum are text files created by the ASIC

vendor in Synopsys Library Compiler syntax. The ASIC vendor provides the

user with .db and the .sdb files.

Symbol libraries are created from .slib files.

Cell names, Instance names

In DC terminology, cell names and instance names are the same. For

example,if a design uses an IVA library cell, then, the tool provides it

with an instance name (or cell name) such as V6. IVA is the reference and VI

is an instance of the IVA reference, which in tum is a library cell.

VHDL Example

Verilog Exanple

 A sub design sub1 is instantiated in a hierarchical block.

When sub-designs are instantiated in higher level designs in a hierarchy, the

name of the sub-design is the reference name (sub I), while the

instance name (or cell name) is the name assigned in the HDL code of the top

level (UI in this case) design during instantiation.

 Two useful commands are report_reference and report_cell. These are

helpful when one is required to find the references and instances inferred in a

design after compile. For example, if a design comprises two library cells,

each of which is used three times, report_cell command will list all the six

instances and point to the corresponding reference, while the report_reference

command will list just two references and the number of times each reference

is used.

 The report_reference shows just one reference, while the report_cell shows

four instances or cells.

VHDL Libraries in the Synthesis Environment

The VHDL language supports libraries. That is, frequently used functions,

and component declarations are stored in packages and these packages are

analyzed into libraries. The packages are then called via the “use" clause in

VHDL. A package must be analyzed prior to being used in a another design.

The package can be a part ofthe VHDL code or a separate VHDL file.

 If the package is a separate file, then it must be analyzed prior to being used

in a design. In general, it is recommended that one maintain separate package

files and declare them using the “use" clause when required in VHDL design

files. Since Verilog does not have a configuration management mechanism

like VHDL, this is not applicable to Verilog

 Analyzing (using the analyze command) a design

described in VHDL in DC, results in an intennediate format of files with

.syn, .sim and .mra extensions. Example shows a package my_pack, a

VHDL design file that requires the my_pack package and the dc_shell script.

The synthesis tool provides a mechanism by which the user can map a design

library to a UNIX directory. Maintaining libraries is a good design practice

as it simplifies the process of managing files.

Example shows the dc_shell script that maps the States VHDL library

to the UNIX directory 'lib" in the current working directory. On executing

the analyze command, the intennediate files are placed in the “lib" directory.

This is extremely useful because it prevents the working directory from being

cluttered with files. If the analyze command was used without the -lib States

option, then by default, the intermediate files are written to the work library.

 The work library is mapped to the current working directory by default. To

over-ride this default, one must use the define_design_lib command to map

the work library to a particular unix directory. In general, it is recommended

that one create a directory called “Work" in the current working directory and

map the “work" library to it. To verify the above steps, execute the

report_design_lib command at the dc_shell prompt:

VHDL Compiler does not support configuration declarations. Hence for

synthesis one cannot have different entities in a design analyzed in different

VHDL design libraries. Since packages are made visible by the “'use"clause,

they can be analyzed into different design libraries. To analyze design entities

in different VHDL design libraries one must elaborate them individually and

link their db files. Say for example you have a top level entity “top" which

instantiates an entity ‘leaf’: Say, design entity leaf is analyzed into design

library lib1 and top into the work library. Then the entity leaf in the library

lib I must be elaborated using the following command

This shall create a db file for the design leaf which can be saved and used

when linking in the design top

Synthesis, Optimization and Compile

Synthesis is the the process of achieving an optimal gate level netlist from

HDL code. Therefore, synthesis includes both reading in the source HDL and

optimization of the code.

Optimization, on the other hand, is a step in the

synthesis process which ensures the best possible combination of library cells

which meet the functional, area and speed requirements of the target design.

Compile is the process which executes the optimization step.

 In DC, “compile" is the command which executes the optimization. After

the source VHDL or Verilog has been read into DC, on executing the compile

command, a netlist for the source HDL is generated. Before executing the

compile step, the target library must be specified, if it is not already specified

in the .synopsys_dc. setup file.

Optimization constraints must be specified

prior to compile. Compile has a number of options, including low, medium

and high map efforts. The default option is a medium effort compile. In

general, if one were merely running tests to check the logic inferred on

compile, one should use the low map effort since it takes the least run time.

The medium effort is recommended in most cases. The high map effort takes

significantly longer compile run time.

Example shows a simple dc_shell script to read in a design, compile, and

write out a netlist of the design in VHDL. The file constraints.scr must

contain timing and area constraints.

The "help" command at the dc_shell prompt as shown below:

Classic Scenarios

 Few classic scenarios faced by designers when

using DC are

Case 1: You are linking a design and DC issues one of these warnings:

Warning: Unable to resolve reference xxx in yw. (LlNK-5)

Warning: Design test has 3 unresolved references.(UID-341)

Solution: These warnings could be because of one of the following reasons.

1.The search_path variable is incorrectly specified. Check the search_path

variable to verify that the UNIX paths to the target and link library have

been specified correctly. At the prompt use the following command:

2. The reference xxx is a subdesign that is instantiated in yyy with instance

name u1.xxx does not have a db file which exists in one of the

directories in the search_path. Read in the source HDL for xxx before

reading in the HDL for yyy. If a db file already exists for reference xxx,

modify the search_path variable to include the path to the db file.

Case 2: DC issues one of these warnings when executing a report.

Warning: Can't resolve reference LDl for cell ul (UID-233)

Warning: Can't find symbol ..."

This is similar to case 1. Once again, check to see if the search_path does

include the path to the link library and the target library. If it does include the

path to the link library and target library, then check to see if an instantiated

component in the HDL does exist in the link_library, symbol_library and

target_library.Use the command shown below to verify that the LD1 library cell

exists in the technology library libA.

 If the 'find"command results in an Error message, then use the list -

libraries

command to find the exact name of the library. The library name could be

libA.db instead of libA.

Every instantiated component must be referenced to a sub-design or a library

cell.

If it is a library cell, then the target technology library or the link library

must have a description for it. If it is a sub design, then the source HDL for

the sub design must be read into DC, prior to reading in this file. If a db file

exists for this sub-design, then the search path must include a path to this db

file.

Case 3: DC issues the following error on reading in the source VHDL into

DC. The library declaration in the VHDL file is as shown below.

Solution: This Error occurs when the VHDL design library ''test'' is not

mapped to a valid unix directory. Use the following command at the dc_shell

prompt

Case 4: DC issues the following warning message when reading in a VHDL

file.

Warning: The library 'test is mapped to the directory 'lib' which is not

writable. The strict VHDL analyzer will not be able to be invoked. (HDL-213)

Solution: This error occurs when one has executed the define_design_lib test

-path ./Ilb command but there does not exist a directory lib in the specified

location, or it exists but the user does not have write permission in that

directory.

Case 5: During compile DC issues the following warning:

Warning: The cache_write directory xxx is not writable. (SYNOPT-ll)

Solution: Reading and writing to the cache is controlled by the cacheJead

and cache_write variables. Ensure that these variables point to your home

directory or to any shared cache that might exist for your design team.

Case 6: When reading in the design database (db file), DC issues the

following error. What could be the cause?

Error: db file is corrupted. (EXPT-18)

Solution: It likely that you are using different versions of Synopsys tools. In

other words, the db file was generated in version 3.1b of the DC while you

are trying to read the db file now into v3.0b. In short, db files are backward

compatible but not forward compatible. 3.Ox generated db files can be read

into subsequent versions ofthe DC like 3.lx, but not vice-versa. To check the

version of DC, use the following command:

Case 7: In DA, the schematic shows mere boxes instead of the actual

symbols for gates.

Solution: Ensure that the symbol library (.sdb file extension) for the

technology library is available and specified by the symbol_library variable.

Also, verify that the search_path variable in your .synopsys_dc. setup file includes

the path to where the symbol library file is located. After doing the

above, execute the following steps to verify:

If DA still shows boxes instead of actual symbols, it is likely that the symbol

library and the technology library do not match in case for the pin names or

cell names.

Introduction

The design issues in the coding of state machines like state encoding,

registered outputs, synchronous resets, asynchronous resets and ''fail-safe''

behavior of state machines are crucial for effective synthesis of state

machines. The design and synthesis of clocked synchronous

state machines using the DC is discussed.

Finite State Machines

 A finite state machine (FSM) consists of a current state (P) and a next state

(N), inputs (I) and outputs (0). State Machines can be classified as Mealy or Moore

Machines depending on how the outputs are generated.

Mealy Machines

A sequential state machine whose outputs depend on both the current state and the

inputs is called a Mealy machine.

Unit II

VHDL/Verilog Coding for Synthesis

 General HDL Coding Issues, VHDL vs. Verilog: The Language Issue, Finite

State Machines, HDL Coding Examples, Classic Scenarios.

Functionality can be expressed as,

 Next state (N) = function [current state (P), Inputs (I)]

 Outputs (0) =function [current state (P), Inputs (I)]

Moore machine

A Moore machine is one in which the outputs are a function of only the current

state and independent of the inputs

Functionality can be expressed as,

 Next state (N) =function [current state (P), Inputs (I)]

 Outputs (0) = function [current state (P)]

The next state logic and the output logic are purely combinational while the present

state consists of sequential memory elements (flip-flops). Each active clock

transition causes a change of state from the present state to the next state.

State Encoding

The concepts of current state and next state are vital to any state machine.

Flip flops in a state machine serve as memory elements keeping track of the

current state. Each possible state of the state machine can be assigned a unique

binary code. This is called state encoding.

At any given instant, the current state of the state machine is determined by

the binary values in the flip flops and their corresponding encoding. Thus n flip

flops will encode a maximum of 2n states. Alternatively, one can assign one flip

flop to each state. Thus n flip-flops will represent n states. This is called the One-

hot method of encoding. Since the state machine can only be in one state at a given

time, the outputs of only one of the flip flops is true and hence the name One-hot.

The use of one flip flop for each state could result in greater silicon area.

The advantage of this method lies in that no combinational logic is required

to decode the values of the current state in the state flip flops, since each state has

only one flip flop. This makes the one-hot state machine the fastest

implementation.

HDL Coding Examples

Consider a Mealy machine and its possible ways of coding the same in both

VHDL and Verilog.Consider a Mealy machine with one input (X) and one output

(Z).

When X =0, the current state of the state machine remains unchanged and output Z

remains at O.

When X =1, the state machine makes a transition from one state to the next binary

state i.e.., 00 -> 01 -> lO -> 11 -> 00...

The output Z is equal to 1, only when the state is 11 and the input X is equal to 1,

else Z is equal to 0 as shown in the state transition table and state transition

diagram.

Coding Example 1:

VHDl Example of state machine

Verilog Example of state machine

Example shows the state machine using a case statement and a wait statement. In

the event of the input X being 0, the output Z always remains 0 and no state

transition occurs. The DC interprets that the state remains unchanged, if not

mentioned. In other words, DC will maintain the current state.

Coding Example 2:

VHDl Example

Verilog example

Example shows another approach to coding the same state machine. This form of

coding tells DC that the design is a state machine without having to set the state

vectors after reading in the design. This is possible by use of the state_ vector_

attribute.The state_vector attribute on the architecture is

assigned a value which is the name of the state signal. The design has been

divided into two separate processes. The first process COMB, describes the

combinational part of the design, while the second process SYNCH,

describes the synchronous part of the design.

Registered Outputs

 Outputs when generated by combinational logic could result in glitches. To

avoid glitches in the outputs, designers infer registered outputs. Notice that in

coding example 1 the output Z is a registered output while in Example 2, the

output Z is not registered.One of the advantages of the approach shown in example

2 is that it separates the synchronous part of the design from the combinational

parts.This style of coding provides the designer complete control over the

combinational and sequential parts of the design, making the debug process less

complicated. Hence, the recommended FSM coding style for synthesis is to use

two separate processes, one for the combinational and the other for the sequential

parts of the design.

Enumerated Types and Enum_encoding

Another approach to coding FSMs in VHDL is by the use of enumerated

types with the use of the enum_encoding attribute. In this approach, one

must declare the list of all possible values of the type state (say, SO, SI, S2,

and S3 as in example 1). The values (SO, SI, S2, S3) can be either an

identifier (sequence of letters, underscores and numbers) or a character literal

('A', 'B'). The VHDL Compiler does default encoding of the enumerated

literals. That is, by default, the enumeration values are encoded into

bit_vectors, the first enumerated literal being assigned 0, the next 1 and so on

depending on the number of values. Minimum number of bits are used in the

encoding. For example, to encode four states two bits are used. To override

the default enumeration encodings, the enum_encoding attribute can be

used. The enum_encoding attribute must immediately follow the type

declaration and must be a string containing a series of vectors, one for each

enumerated literal in the type declaration. Again, the first vector corresponds

to the encoding for the first enumeration literal and so on.

Coding Example 3:

VHDL Example

Verilog Example

Coding example 3 shows the use of enumerated types with the use of the

enum_encoding attribute. The declaration, "type state is (SO, Sl, S2, S3),: defines

the list of all possible values of the type state. By default, the enumeration values

are encoded into bit_vectors, the first enumerated literal SO being assigned 0, the S

I being assigned a 1 and so on. By using the enum_encoding attribute, the encoding

of the different states is declared in the code. This approach to coding FSMs is the

recommended approach. The combinational and sequential parts are in separate

processes. Further, by the use of enum_encoding, one has control over the states

and their encodings.

One-hot Encoding

The fastest FSM implementation is the one-hot method of encoding .In DC,

the user will have to declare the FSM encoding style using the

set_fsm_encoding_style command.

Coding Example 4:

VHDL Example

Verilog Example

Coding example 4 shows the same state machine described in example 1

using both the state_vector attribute and the enum_encoding attribute.

Enum_encoding has been used such that the first flip-flop, when on, implies the

state SO, the second flip-flop implies state SI, and so on. In general, the one-hot

encoding style involves the use of one flip-flop for each state, the current state

being determined by the flip-flop which is on.

General HDL Coding Issues

 Discussed some basic issues related to HDL coding for synthesis such as

VHDL types, unwanted latches, variables and signals and priority encoding. For a

certain desired functionality, it is often possible to code HDL in a number of

different ways. However, there are several guidelines that one can follow to

develop a consistent coding style for synthesis.

VHDL Types

 It is recommended that std_logic types be used for port declarations in the

entity. This convention avoids the need for conversion functions when integrating

different levels of synthesised netlist back into the design hierarchy. The std_logic

type is declared the IEEE std_logic_1164 package. Some of the examples in this

chapter use the type 'bit" for the sake of simplicity and easy understanding.The

type 'buffer" can be used when an output must be used internally.

Once declared as a buffer, all references to the particular output port must be

declared as buffer throughout the hierarchy. This is often overlooked and one can

run into problems during integration of different blocks. For the sake of

consistency, it is recommended that one avoid the use of the type buffer.

 Coding example shows an effective way to avoid the use of buffer types

using internal signal declarations.

Signals and Variables

 During simulation, variables are updated immediately unlike signals which

require a delta time before being updated. Variables tend to simulate faster than

signals but could mask glitches that might affect the functionality of the design.

Further, variables tend to generate unexpected results during simulation.All signals

that are being read in a process when not declared in the process sensitivity list,

cause the DC to issue a warning.

Priority Encoding Structure

Coding with 'If' statements causes priority encoding logic to be inferred. In

other words, DC assumes that the first ifcondition has a greater priority than the

second and so on. To avoid this one must use 'base" statement.

Unwanted latches

 Ensure that all signals are initialized. Further, when using case statements

or nested if statements ensure that they are fully defined. A full specification will

prevent latches from being inferred.

VHDL Example

Verillog Example

 In the above example,notice that the expected result when clk is not equal

to 'I' is not specified. DC interprets this to mean that 'When clk=1 condition is not

satisfied, retain the previous value of q': Hence,latches are inferred. After reading

in the HDL, one does not have to compile the design to realize that unwanted

latches have been inferred.

Parallel Case Directives

 By definition, in VHDL, all the branches of a case statement are mutually

exclusive. This means that in VHDL a case statement will synthesize to a mux

rather than a priority encoder structure.

In Verilog, it is not the same for a case statement. The HDL Compiler interprets

the conditions of the case statement to be mutually exclusive, only if the code

explicitly implies it. Then, the case statement is parallel and will result in a mux

being synthesized.

 The case statement in example does not imply mutually exclusive conditions

because the values of inputs w and x cannot be determined. However, if only one

of the inputs is equal to 1 at a given time, then one can use the //synopsys parallel_

case directive to avoid synthesizing a priority encoder.

Full Case Directives

 VHDL requires that a case statement be exhaustive. In other words, all

combinations of the case expression must be covered. In Verilog this is not true

and it is not required to enumerate all possible combinations of the case

expression. But if all combinations are not covered, Synopsys HDL Compiler

will infer latches for the conditionally driven variables. If one does not specify all

possible branches and one or more branches can never occur, one can declare a

case statement as full case with the //synopsys full_case directive.

 Example shows a case statement which infers a latch for 'b' if the

full_case directive was not specified. The full_case and parallel_case directives

are specified after the case statement in the HDL code.

Motivation for Links to Layout Floor planning

Floor planning

A floorplanning is the process of placing blocks/macros in the chip/core

area, thereby determining the routing areas between them. Floorplan determines

the size of die and creates wire tracks for placement of standard cells. It. creates

power ground(PG) connections.

RTL-level floor planning significantly reduces the front-end to back-end

iterations and reduces total design turn-around time, with up to 10x faster synthesis

run times compared to traditional synthesis tools and 100+ million gates design

capacity to tackle the growing design sizes with ease with a compact memory

Need for floorplanning

 Today's increasingly large and complex digital integrated circuit (IC) and

system-on-chip (SoC) designs often contain tens of millions of logic gates.

Ensuring that these designs will function as required demands the use of chip-level

floorplanning.

In reality, all high-end chip designs employ some form of floorplanning

activity early in the design flow. This commences with the design being partitioned

into functional blocks, each of which are assigned very approximate gate-count

and area values based on experience with previous designs. These area values are

then used to create a rudimentary initial floorplan. Once the initial floorplan has

been determined, preliminary timing budgets and constraints are assigned to the

functional blocks, each of which is handed over to one or more RTL design

engineers.

Unit III Links to Layout

 Motivation for Links to Layout Floor planning, Link to Layout Flow Using

Floorplan Manager, Creating Wire Load Models After Back-Annotation Re-

Optimizing Designs After P&R. Design for Testability: Introduction to Test

Synthesis, Test Synthesis Using Test Compiler

In the case of conventional flows, only very crude timing and area estimates

are available at the RTL level. It is only after the physically-aware synthesis and

in-place optimization (IPO) steps have been performed — and placed gate-level

netlists are available for each functional block — that meaningful area and timing

estimates are available. In turn, it is only when meaningful area and timing

estimates are available that meaningful floorplanning activities can take place.

The end result is very expensive and time-consuming iterations. Obviously,

the most cost-effective approach — in terms of engineering resources and time-to-

market — is to start performing accurate floorplanning as early as possible in the

design cycle.

Problems with conventional flows

There are three main stages in a conventional flow .

Stage 1: First of all we have the system architects who partition the design into

functional blocks, associate estimated gate-counts and areas with these blocks, and

establish an initial floorplan with associated chip-level and block-level timing

constraints.

Stage 2: Next we have a group RTL design engineers, each of whom deals with

their own block. Each RTL block will eventually equate to around 400K gates.

Once a block of RTL has been created, InTime contends that synthesis and IPO

will take about 7 hours followed by 3 hours to perform timing analysis and

generate a timing report (about 10 hours total).

Stage 3: Finally, we have the system integrators who take all of the blocks from

the RTL engineers along with their more accurate gate-count, area, and timing

values — use these to generate a more accurate floorplan, and then use this to

perform chip-level synthesis/IPO and timing analysis.

Using implementation tools to perform these activities makes the cycle times

through conventional flows too long and problematic.

RTL floorplanning Procedure

In its simplest form, RTL floorplanning refers to the ability to take RTL that is

ready for synthesis following functional signoff, and to use this RTL to provide

gate-count, area, and timing estimations that are sufficiently accurate to perform

meaningful floorplanning analysis.

In order to satisfy the requirements for RTL floorplanning, InTime has two related

applications called Time Planner and Time Director. Time Planner is used by

system architects and system integrators to perform chip-level floorplanning and

analysis functions. Time Director is used by RTL design engineers to provide gate-

count, area, and timing estimations at the block level.

Stage 1: The flow starts as the system architect uses Time Planner to establish the

initial floorplan and to generate the associated chip and block-level timing budgets

and constraints. At this stage of the process, Time Planner will accept gate-count,

area, and timing estimates for blocks for which RTL is not yet available, and it will

generate gate-count, area, and timing predictions for blocks whose RTL is

available.

Stage 2: As for a conventional flow, the RTL design engineers create and

functionally verify the RTL corresponding to their blocks. In the conventional

flow, however, the engineers would now have to run compute-intensive and time-

consuming implementation tools that take about 10 hours per iteration in order to

obtain accurate timing information.

Stage 3: As each RTL block is completed, it is handed over to the system

integrator, who starts to create more accurate floorplan representations of the chip-

level design. By means of Time Planner, the system integrator can control the

shapes of the various blocks, ranging from simply modifying the aspect ratios of

rectangular blocks to creating more complex contours such as 'L', 'T', and 'U'-

shaped blocks.

RTL Floorplanning significantly decreases the loading on engineering

resources, dramatically reduces the chip's design cycle time, and can result in

higher-performance chips.

RTL floorplanning working

After the circuit partitioning phase, the area occupied by each block

(subcircuit) can be estimated, possible shapes of the blocks can be ascertained and

the number of terminals (pins) required by each block is known. In addition, the

netlist specifying the connections between the blocks is also available. In order to

complete the layout, we need to assign a specific shape to a block and arrange the

blocks on the layout surface and interconnect their pins according to the netlist.

The arrangement of blocks is done in two phases; Floorplanning phase, which

consists of planning and sizing of blocks and interconnect and the Placement

phase, which assign a specific location to blocks. The interconnection is completed

in the routing phase. In the placement phase, blocks are positioned on a layout

surface, in a such a fashion that no two blocks are overlapping and enough space is

left on the layout surface to complete the interconnections.

The blocks are positioned so as to minimize the total area of the layout. In

addition, the locations of pins on each block are also determined. The input to the

Floorplanning phase is a set of blocks, the area of each block, possible shapes of

each block and the number of terminals for each block and the netlist.

 If the layout of the circuit within a block has been completed then the

dimensions (shape) of the block are also known. The blocks for which the

dimensions are known are called fixed blocks and the blocks for which dimensions

are yet to be determined are called flexible blocks. Thus we need to determine an

appropriate shape for each block (if shape is not known), location of each block on

the layout surface, and determine the locations of pins on the boundary of the

blocks. The problem of assigning locations to fixed blocks on a layout surface is

called the Placement problem. If some or all of the blocks are flexible then the

problem is called the Floorplanning problem. Hence, the placement problem is a

restricted version of the floorplanning problem. If one asks for planning of the

interconnect in addition to floorplanning, then it is referred to as the chip planning

problem . Thus floorplanning is a restricted version of chip planning problem.

Link to Layout Flow Using Floorplan Manager

 Engineers like to make design decisions as early in the design process as

possible. Good decisions early on help define design parameters and eliminate

incorrect design paths. A decade ago, commercial logic-synthesis tools from

companies such as Synopsys focused on digital-chip analysis and design planning

at the gate level. Analysis at the gate level is sufficient for design complexities to

around 50,000 to 100,000 gates. Unfortunately, system-on-a-chip (SOC)

complexities reaching into the tens of millions of gates have made gate-level

design planning inadequate. Making design decisions at the RTL, before synthesis,

is desirable. However, without the structural information that is part of a gate-level

design description, it is hard to estimate design parameters, such as on-chip timing

delays, power dissipation, and chip size.

RTL simulators provide information about a chip’s speed but are more

useful for functional verification and do not give the type of design-planning

information. Designing at an RTL and a gate level are very different. RTL-design

descriptions, such as the Verilog example in Figure a, include logic operation on a

clock-cycle basis along with an implied design architecture. A logic-synthesis tool

takes the RTL description and converts the design to a gate-level description

(Figure b). Synthesis preserves the architecture and attempts to meet user-defined

constraints, such as area and timing, in the gate-level description.

The RTL design is technology-independent; it includes no process

information or information about what design library you will use to implement the

design. Logic synthesis creates a gate-level description using cell-library

information. Logic synthesis uses a targeted library, with its implicit target-process

information, to determine which library elements are available for the design and

to synthesize a circuit that meets your design constraints. Although logic-synthesis

tools have made possible an orders-of-magnitude improvement in design

productivity directly leading to SOC-design feasibility,inherent problems exist in

today’s typical logic-synthesisbased chip design, resulting from timing models

used during different design stages.

 Below figure 2 shows a typical synthesis-based design flow. When you invoke

a synthesis tool, it has no concept of the design’s physical implementation.This

model uses estimates for parasitic-interconnect and load-dependent delays that are

average values based on previous designs using this technology.

 Although statistical wire-load models may have been adequate for most

designs greater than 0.5 mm, with deepsubmicron processes at 0.35 mm and

smaller, these models are inaccurate. After you physically implement a design with

place-and-route tools, the resulting logic may have very different timing

characteristics, resulting in either a waste of silicon or a design that fails to meet

timing requirements. The former problem wastes money; the latter definitely

means redesign, resynthesis, and another place-and-route run.

 Synthesis and place-and-route iterations are expensive in time spent and in

financial cost, both in real money and in “lost-opportunity time.” Floorplanning

tools you use before or after synthesis can create better wire-load models for the

synthesis tool. These “custom wire-load models” are based on placement data that

the floorplanner creates. Because they are design-specific, custom wire-load

models are more accurate than statistical models although still not as accurate as

back-annotated parasitic data you obtain from an actual placed-and-routed chip.

RTL performance-estimation tools need to have some type of floorplanning

capability to be able to predict electrical performance with any reasonable

accuracy.

 At the RTL, you have a description of a design’s behavior.You get

structural information only after logic synthesis. True topological data comes only

after physical implementation. The design’s constraints, which include speed,

power dissipation, signal-integrity effects, and reliability, depend on process, cell-

library population, and design placement and routing. RTL estimation of these

parameters is a daunting task.

` In addition, RTL estimation helps you decide which cell library to use for

your design. You can supply information to the logic-synthesis tool that can help

achieve timing convergence and minimize synthesis and place-and-route iterations.

Finally, you can get an estimate of chip size for a specific process technology that,

along with speed and power estimates, helps you decide which chip package to use

and gives an indication of chip cost.

Back-Annotation

 Back-annotation is the process by which resistance, capacitance and delay

information after place and route are specified back into the DC. The ''set load" and

''set resistance" commands can be used to back-annotate capacitance and resistance

values. The "Standard Delay Fonnat" (SDF) is a de facto standard for back-

annotating delay values. The main motivation for developing SDF was to represent

intrinsic delays, interconnect delays, loading delays, timing checks, and timing

constraints in an abstract tool independent model.

Standard Delay Format (SDF)

 The DC can both read in SDF as well as output SDF. The SDF file written out

from the DC can be read into Synopsys VSS (and other simulation tools) for

simulation. Shown below are the steps to write SDF from DC after one has

initially read in the source VHDL.

 If we are using a Verilog simulator, then one can write out SDF without

any name changes, and the Verilog netlist from DC for simulation. Also, after

place and route, if one can generate layout delays in SDF, DC provides a

means to back-annotate the SDF information. This can be done using the

read_timing command as shown below.

 After the floorplanning is complete, and before the design is passed tophysical

layout (place and route), the design's timing behavior can be verified once more

within the synthesis environment. This time, the more accurate net parasitics

(capacitance), net delays, and cell delays are used in place of the values estimated

by DC. The estimates (provided by a floorplanner) for the wire capacitance, net

delays, and cell delays can be back-annotated into DC.

DC supports the following SDF constructs:

• INTERCONNECT and PORT for net delay

• IOPATH for cell delay

• SETUP, HOLD, SETUPHOLD for timing checks.

The DC always uses the INTERCONNECT construct for net delays in the SDF file

written out by write_timing. When reading in an SDF file, if the PORT construct is

used for net delays, it is first converted to an INTERCONNECT construct and then

annotated to the design.

 The above example shows the IOPATH, SETUP, HOLD and

INTERCONNECT constructs from an SDF file. This example shows the cell delay

for the library cell FDI having instance_name BITS_SEENJegxOx. The IOPATH

construct shows the minimum, typical and maximum delays between the pins CP

and Q as well as CP and QN. Also, the timing check constructs SETUP and HOLD

are shown.

 Users may specify which value (minimum, typical, maximum) should be

read by DC using the following dc shell variables.

Design Compiler Input/Output formats is shown below

Table 7-1. DC input/output formats and file extensions.

Design for Testability

Introduction to Test Synthesis

The ever-increasing density of ASICs, the whole-sale switch to surface-

mount technology, and the growing interest in multi-chip modules (MCM), have

resulted in testable designs becoming a greater priority. Thus far, designers have

considered testability as an issue which comes into play at the very end of the

design cycle. However, in the ASIC design flow based on synthesis, it is essential

that designers develop a test strategy and address testability issues concurrently

with other activities in the design cycle.

Logic synthesis results in a netlist which usually contains sequential non-

scan cells and other combinational gates from the technology library. The primary

objective of test synthesis is to improve the observability and controllability of the

design. In other words,one must be able to detect stuck-at-O and stuck-at-l faults in

the design.

 Scan technique is the widely used DFT technique, and more importantly, is

supported by most test synthesis tools. This technique involves replacing the

sequential non-scan cells by scan cells of the scan style chosen by the designer.

 Full Scan and Partial Scan are the two design methodologies supported by

most test tools. In a full scan methodology, all the sequential cells in the netlist are

replaced by scan cells. On the other hand, in a partial scan methodology, only some

of the sequential non-scan cells are replaced by scan cells. The choice of the non-

scan cells to be replaced by scan equivalents, is made based on area and timing

constraints required by the design.Full Scan designs in general, achieve a higher

fault coverage when compared to partial scan designs. The fault coverage of a

partial scan design is dependent on the number of non-scan sequential cells

replaced by scan cells.Further, design specific characteristics like sequential depth

and sequential feedback loops, impact the fault coverage achieved using partial

scan.

Scan Styles

The four commonly used scan styles are as follows:

1. Multiplexed Flip-flop

2. Level Sensitive Scan Design

3. Clocked Scan Cell

4. Auxiliary LSSD cell

Multiplexed Flip-flop

Figure shows a multiplexed flip-flop scan cell. Consder the multiplexed flip-flop

scan style in which this scan style is supported by most ASIC vendors. For a

multiplexed flip-flop scan style the scan ports required are the scan-in, scan-enable

and the scan-out ports. The normal clock is used in the test mode in this scan style.

Scan Insertion

Scan cells have two different modes of operation : The Normal Mode and The Scan

Mode. In the normal mode, the scan cell's functionality is same as that of the

sequential non-scan cell. In the scan mode, the scan cells are linked in the form of

a shift register.

 When scan cells are linked to form a scan chain as shown in above Figure

,all the scan cells are controllable and observable. Since shifting of data into the

scan chain is perfonned serially, it takes N clock cycles to shift in a pattern into the

scan chain, where N is the maximum length of the scan chain.Configurations with

multiple scan chains are supported by most synthesis tools.

 Scan insertion results in design overheads such as, the use of extra scan

ports, an increase in silicon area due to use of scan flops, and greater timing delays

due to the insertion of the scan cells for the sequential non-scan cells.It is possible

to reduce the port overheads by sharing the scan ports with functional ports.

 After inserting the scan logic in the design, the ATPG algorithm is used to

generate test patterns. Full scan ATPG algorithm is combinational, while the

partial scan ATPG algorithm is sequential. Test patterns can be generated in the

format supported by the simulator used to simulate the test vectors. The common

test fonnats are: VHDL, Verilog, and TSSI.

ASIC Vendor Issues

 The test strategy used for a design is almost completely dependent on the

requirements of the ASIC vendor. In other words, the requirements of the ASIC

vendor must be taken into consideration prior to deciding on the test synthesis

strategy.

Some of the critical issues which involve the ASIC vendor are

1. What scan style does the ASIC vendor support ?

ASIC vendors usually support only some scan styles and not all the available scan

styles. Most ASIC vendors support the multiplexed scan flip-flop style.

2. How many clocks are supported by the tester when in test mode? Is there a limit

on the number of wavefonns supported by the tester?

3. Is there a limit on the number of scan chains allowed ?Most ASIC vendors

impose a restriction on the number of scan chains. Is there a limit on the length

ofthe scan chain?

4. Is sharing of functional ports with test_sean_in and test_sean_out ports

supported?

5. Does the vendor require that during scan-shift all the outputs have no switching

i.e. all outputs are three-state outputs.

6. Does the vendor library support automatic pad synthesis?

7. What is the format of the test vectors required by the vendor?

8. Does the vendor accept parallel vectors or serial vectors for sign-off simulation ?

9. What is the maximum number of scan bits supported by the vendor's tester?

 The total number of scan bits is simply the number of scan vectors multiplied

by the number of flip-flops in the scan chain.

10. Do the formatted vector files require a specific naming convention ?

11. Is there a limit on the size ofthe vector files ?

Test Synthesis Using Test Compiler

Commonly Used TC commands

 The definitions of basic TC commands should help to understand the TC

flow with regard to actual dc_shell commands.

check_test: This command infers a default test protocol and performs a DRC check

by simulating the test protocol. One must execute the check_test command before

scan insertion as well as after scan insertion.

create test clock : This command is similar to the create clock command for the

DC. TC automatically infers clocks during check_test by backtracking from the

clock pins of registers. The create_test_clock command is used to specify the

waveform and clock period in the test mode.

insert_test : The insert_test command replaces the non-scan sequential cells with

scan equivalent cells and connects the scan cells to form a scan chain.

create_testyatterns : This command is used to generate the test patterns for the

specified design. The command also writes out a .vdb file in the current working

directory.

Identifying Scan Ports

 The TC uses the signal_type attribute to identify scan ports. Functional ports

can be identified as scan ports, by assigning this attribute using the set_signal_

type command. The TC creates scan ports automatically if no functional ports are

identified with the signal_type attribute. In the muxed flip-flop scan style, where

normal clock is used as test clock, one must not associate a signal_type attribute,

"test_clock" with the clock port.

Test Synthesis Flow Using the Test Compiler

 The steps involved in test synthesis using the TC are outlined.

1. Read in the HDL code of the entire design into DC. In the example

dc_shell command shown below, VHDL_FILES is a variable which can

be assigned to a number of vhdl files

2. Set your current_design to the top level and specify the test methodology and

scan-style.

3. Another simpler alternative is to use the 'Test Smart Compile" approach. In this

approach the user must specify the scan style before compile. The Test-Smart

compile is turned on by specifying both the scan style (using set_scan_style

command) and the test methodology (using set_test_methodology command)

before compile.

4. Synthesize your design after specifying area and timing constraints.

5. Specify the timing related test attributes as shown below.

6. Analyze the testability of the design prior to scan insertion using the check_test

command. A default test protocol is inferred and simulated on executing the

check_test command.

7. Save the design database in db format prior to inserting scan.

8.Set the current_design to each of the different sub-designs and specify the scan

chain allocation.

9. Set the current_design back to the top level current_design TOP_LEVEL.

10. Perform Scan Insertion using the insert_test command. The -scan_chains

options implies the number of scan chains.

11. The next phase involves testability analysis after scan insertion. Analyze

the testability of your design using the check_test command.

12. Execute ATPG on a sample fault list to check for any ATPG conflicts which

might exist. The command shown below generates test patterns for 5% of the faults

in the design:

13. The next step is the JTAG synthesis phase. Group all the core logic except,

three-state cells associated with three-state and bi-directional ports, into a separate

level of hierarchy.

The variable three_state_cell_list, is a user-defined variable which lists the

instances of three-state cells.

14. Set current_design to the TOP LEVEL ofthe design hierarchy.

15. Specify the order of the boundary scan register (BSR) cells using the

set_jtag_port_routing_order command.

16. Perform ITAG insertion with the required options. Use the –no_pads option

ifthe ASIC vendor library does not have pad cells.

17. Perform testabilty analysis after ITAG insertion using the check_test command.

18. Save the db file after JTAG synthesis.

19. Group all the JTAG logic into a separate level of hierarchy, and assign a

test_dont_fault attribute on them, to avoid being considered in the fault coverage

calculation. The design consists ofthe core instance surrounded by all the JTAG

logic and three-state buffers.

20. In order to control and specify the characteristics of the desired pad cell, use

the set_pad_type command. The DC inserts pads for all ports in the design which

have the 'port_is""pad" attribute. This attribute can be applied using the

set_port_is_pad command.

21. Execute ATPG using the following command. This creates a .vdb file which is

a binary vector file.

22. Finally, generate the test vectors in the required fonnat.

Introduction

 After a design has been described in HDL and functionally simulated, the next

step involves logic synthesis using DC. The core of the synthesis process is the

constraints specified on designs and the timing reports generated by DC.

Synthesis Background

The Design Compiler attempts to meet two basic constraints or goals for

optimization in the following order of priority

1. Optimization Constraints

2. Design Rule Constraints

Unit IV

Constraining and Optimizing Designs

Synthesis Background, Clock Specification for Synthesis, Design Compiler

Timing Reports, Commonly Used Design, Compiler Commands,

Strategies for Compiling Designs, Typical Scenarios When Optimizing

Designs, Guidelines for Logic Synthesis, Classic Scenarios.

Figure 1 shows the two types of synthesis constraints and the related dc_shell

commands. Optimization constraints are user specified constraints.The two

optimization constraints are speed and area constraints. In addition to optimization

constraints, the synthesis tool is required to meet another set of constraints called

Design Rule Constraints (DRC). DRC are constraints imposed upon the design by

requirements specified in the target ASIC vendor library.

Design Rule Constraints (DRC)

 Max_fanout, max transition, max_capacitance are the three design rule

constraints.

Consider an example

Max_fanout

Example shows the output pin of an AND gate driving the input pins of three

inverters as shown in above Figure. The input pins of each of these three gates

has a fanout_load attribute specified in the library. The sum of the fanout loads of

each of the three input pins must not exceed the Max_fanout

of the output pin of the AND gate. It is typically an integer, although each of

these fanout_load

values implies a certain standard load. One can find the fanout load on a specific

input pin of a library cell (say, AND2 in library libA) using the following

dc_shell command:

• de shell> get attribute find(pin, "libA/AND2/i") fanout load

Instead, if the library has a default fanout_load attribute set on the technology

library, we can find this value using the following command

• dc_shell > get_attribute IibA default_ fanout_load

Max transition

 Max_transition is the longest time for a transition from logic level 0 to 1, or vice-

versa, for an entire design or for a specific net in a design. To be more specific, it is

the RC time which is the product of the resistance (R) and the capacitive load (C).

In the DC terminology, max_transition can be defined as the product of rise/fall

resistance and the capacitive load on a net. When the user specifies a

max_transition constraint in addition to the one already specified in the technology

library,the more restrictive constraint will apply.

 For example, if the library has a max_transition of 5 and the user were to specify

a max_transition of 3, then the DC will try to meet a max_transition requirement

of 3.

Max_capacitance

 The max_transition design rule constraint does not provide a direct control over

the actual capacitance of nets. The max_capacitance design rule constraint was

introduced to provide a means to limit capacitance directly.This constraint behaves

similarly to max_transition, but the cost is based on the total capacitance of the net

instead of the transition time. The max_capacitance constraint is fully independent,

so one can use it in conjunction with max_transition. Max_capacitance attribute

can be specified on designs or ports. MaxJransition, maxJanout and

max_capacitance can be used to control buffering in a design.MaxJanout,

max_transition and max_capacitance constraints can be

specified using the following commands :

Optimization Constraints

 Speed and area constraints as specified by the user are the optimization

constraints. The speed constraints are specific delay constraints. One can specify

timing constraints from one specific port/pin in the design to another provided such

a timing path exists between the two specified points. In general, detailed timing

constraints help get the best results from synthesis. To specify a max delay of 0

and expect the fastest design is not the best optimization strategy. Similarly for

area, specify the expected area or a lower value than expected.

Specifying all clocks in the design using the create_clock command will constrain

all synchronous paths in the design. To constrain the asynchronous paths in the

design, one can use the max_delay and min_delay commands.

 Prior to version 3.0a of DC, max_delay and min_delay commands were

used to specify timing constraints. But with 3.0a and subsequent versions, the

recommended methodology is to use set_input_delay and set_output_delay

commands instead. Only for asynchronous paths, must one use the max_delay and

min_delay commands to specify point to point delays.

 Max_delay constraints are imposed by explicit usage of the max_delay

commands or implicitly due to clocks specified by the create_clock command.

Similarly, the min_delay constraints are imposed by explicit min_delay commands

or implicitly due to hold time requirements. However, DC fixes hold time

requirements only when specified by the fix_hold command. The optimization

script specifies constraints using the following dc_shell commands:

Cost Functions

 The synthesis tool performs optimization by minimizing cost functions –

one for design rule costs and the other for optimization costs. These cost values are

usually displayed during optimization. The optimization cost function consists of

four parts in the following order of importance:

1. Max Delay Cost

2. Min Delay Cost

3. Max power Cost

4. Max area Cost.

Max Delay Cost

 The Max Delay cost carries the greatest weight in cost calculations. It is the

sum of the products of the worst violators and the weight in each path group.In

general, all the paths constrained by a clock are grouped into one path group. Thus,

each clock in the design creates a separate path group.

 All the remaining paths are grouped into the default path group. If no clocks

are specified, then all paths default to the default path group. Since the synthesis

tool is primarily path based, it is possible to attach different weights to different

path groups. For example, consider a design with three clocks. If the weightage of

each path group was the default of 1, and if the worst violation in each group was

1,2 and 3 respectively, then the max delay cost calculation is as follows:

 Max_Delay Cost = (1 x 1) + (1 x 2) + (1 x 3) = 6.0

Min Delay Cost

 Min Delay Cost is second in priority after max delay in cost calculation. The

min delay cost calculation is independent of path groups. It is the sum of all the

worst min_delay violators. The min_delay violation is calculated as the difference

between the expected delay and the actual delay. A violation occurs when the

expected delay is greater than the actual delay. Since min_delay is unaffected by

path groups, the weightage assigned to paths has no effect on min delay

calculations.

 For example, a design with three paths with min_delay violations of 1, 2

and 3 will have a min delay cost of:

 Min_Delay = 1 + 2 + 3 = 6.0

 Max power Cost

 Max power cost is only in the case of ECL technology. It is simply the

difference between the current power and the max power specified. A violation

implies that the former exceeds the later. Synopsys recently introduced a Power

estimation capability for CMOS technology.

Max area Cost.

 Max Area cost has the least priority in cost calculation. By default, the tool

does not optimize for area once the timing constraints are met.

If explicit area constraints are specified, then DC performs area optimization.

If no explicit area constraints are specified, then area optimization occurs only if

timing constraints are not met. Since synthesis results are dependent to a large

extent on a number of factors such as

constraints, libraries and coding styles, optimization of a design is an iterative

process.

 Clock Specification for Synthesis

 Clocks and clock delays are extremely important in applying constraints

to a design. Practically all delays, particularly in synchronous designs are

dependent on the clock. DC considers all clock network delays to be ideal.

If the design has a gated clock, the tool would not consider the delay through the

gates leading to the clock, by default. One can override this default behavior by

using set_clock_skew command to obtain non-zero clock network delay.

 With the release 3.0a of Synopsys DC, the clock set up and hold check

behavior was modified. Clocks_at command was replaced by the create clock

command. Unlike earlier versions of the DC when 'time" was relative to zero,

beginning with version 3.0a, timing for sequential paths is considered relative to

clock edges. The DC automatically finds the relevant setup/hold relations by

expanding the clock waveforms.

 If one desires non single-cycle behavior, the set_multicycleyath commands

must be used. One must define each clock in the design using the create_clock

command. Clock trees are not usually synthesized using the DC.

 In the event of a hand instantiated clock tree, during synthesis, one must

place a dont_touch attribute on the clock network using the dont_touch_network

command. This command ensures that the entire clock network in the design

inherits a dont touch attribute.

Design Compiler Timing Reports

 DC reports timing delays from clocks-to-clocks. In other words, DC

reports timing from synchronous logic to synchronous logic or the logic between

sequential cells. The DC timing report, by default, lists only the worst path in

each path group. Each clock declared by the create_clock command creates a

separate path group.

 The report_timing command shows the path from primary input/clock

pin to the primary output/data pin unless internal startpoints/endpoints have been

created at pins internal to the design by the explicit usage of set_input_delay and

set_output_delay commands. When executed with the –max_paths 5 option the

report_timing command causes the tool to report the 5 worst paths in each path

group. Consider a simple example to explain timing reports generated by DC. The

effect of timing constraints such as set_input_ delay and set_output_delay on DC

timing reports is discussed.

 Let us analyze these timing reports. The report gives the point in the

design, which is usually a port or a pin of a library cell, the incremental delay

through the cell (listed in the “Incr" column), and the 'Path" delay (listed under the

'Path" column) or the delay in the path upto that point. In other words, the path

delays are calculated by adding up the incremental delays

 Consider the first path beginning at the first sequential element f_reg

and ending at the next sequential element d_reg in Figure. The rising edges of the

clock are at 0 and 5 ns. So for f_reg assuming no clock network delays (which is

the default condition), the clock rise occurs at 0 ns, the clock to Q delay of FD2

flop is 1.42, the delay through AND gate is 0.82, giving a data arrival time of 2.24

at the data pin of d_reg. The register d_reg has its first rising edge at O. At this

stage data from f_reg had not yet arrived. However,for the next rising edge at 5,

the situation is different since data from f_reg arrived at 2.24 ns. Since the rising

edge is at 5ns and the library has a setup requirement of 0.85 for FD2 flop, the

latest a signal can arrive to avoid setup time violations is 5 - 0.85 = 4.l5. This

implies that the constraint has been met with a positive slack of 1.91 ns.

 By specifying a clock period of 5 ns, we have implicitly placed a max_delay

constraint of 4.15 from clock pin of f_reg to data pin of d_reg. In the second report,

data arrives at 0 ns, and the clock requires that data arrive latest by 4.15 ns

implying that setup time is met with a slack of 4.15 ns.

Report after setting an output delay

 The timing report after setting an output delay of 2 ns on output port d using

the set_output_delay command is shown below. Data must arrive 2 ns earlier at the

output port d in order to meet timing requirements defined by flip-flops external to

the port d.

Timing Report after setting an input delay constraint

The following report was generated after specifying an input delay of 3 ns on the

input port A using the set_input_delay command. Set_input_delay is similar to

set_output_delay, except that it accounts for timing delays at the input. For

example, an input_delay of 3 ns on input port 'A', implies that relative to the rising

edge of clock, elk, there is a delay of 3 ns, due to logic or otherwise prior to the

port 'A'.

Commonly Used Design Compiler Commands

Few basic DC commands and switches and their usage are discussed.

1. dont_touch

 This is a very useful command, particularly when dealing with hierarchical

designs. After one has specified the constraints and compiled a design to achieve

the required results, it is often required that this design not be reoptimized when

used in a larger design. In such cases, one would specify a dont_touch

attribute on the instance of that design in the higher level design.

For example, say block A has been optimized to satisfaction and has been used in

another design TOP as shown in Figure.

Say the instance name of block A in TOP is ul, then the following dc_script

performs the dont_touch step:

If we place a dont_ touch on Block A then the command is

The dont_touch attribute can be removed using the remove attribute command.

2. Flattening and Structuring

 Flattening a design essentially means converting the combinational logic

into a two-level sum of products form. This is usually done to improve the speed

of the design. For a design with over 20 inputs, flattening is almost never

completed by the DC. If the number of inputs is less than ten, then flattening is

more likely to be completed.

 In the event of flattening not being completed by the DC, it simply

proceeds to the next step after issuing a message that 'flattening is too

expensive...': Thus it is not recommended that users simply read in a large netlist

and expect the synthesis tool to execute the flatten operation but instead use it

judiciously.

On flattening the above equations

Structuring on the other hand, is used to improve the area or gate count of a

design. It involves the addition of intermediate terms which are then shared by

different outputs. In this sense, it can be considered as a reverse process of

flattening.

Structuring is of two kinds, namely, timing driven and boolean structuring.

While timing driven structuring is executed by default, the latter is not.

Timing driven structuring takes into account time delays when structuring the

design, while Boolean structuring does not. Further boolean structuring results in a

2X to 4X increase in compile time. This can be very significant when dealing with

large designs.

After structuring,

Flattening and structuring can be specified using the following DC

commands.

3. Ungroup and Group

 The ungroup and group commands are used to remove and create levels of

hierarchy in a design respectively. The ungroup command, when executed, causes

the instances in the previously existing level of hierarchy to inherit the names of

the level which was ungrouped. For example, if a sub-block A in hierarchical

design TOP is ungrouped, an instance u2 previously contained in A will have the

new instance name al/u2, where al is the instance name of the reference sub-block

A. The same naming convention applies to nets in the design ungrouped. One can

recursively ungroup the different levels in a hierarchy by executing the ungroup

command with the flatten option.

 The group command is the inverse operation of ungroup. One can group

several instances in a design into a new level of hierarchy and specify the design

name (the reference name) and the instance name of this design in the level of

hierarchy above this newly created instance.

4. dont_use

When one wishes to prevent the DC from inferring certain cells in the

technology library, the “dont_use " command must be used. The cells with the

dont_use attribute are not used or ignored during optimization. For example,

place a dont_use attribute on the library cell NAND2 in library libB as shown

below:

5. prefer

The “prefer " command changes the priority of cells chosen by the Design

Compiler during technology translation. Technology translation is essentially the

process of mapping a netlist from one technology library to another. This

command assigns the prefer attribute to the specified cells. For example, one can

place a prefer attribute on the library cell IVB in library libB. This

causes the DC to infer the IVB cell each time a cell of that functionality is

required.

6. set_default_register_type

 set_defaultJegister_type command specifies the default flip flop or latch

to be used from the target library during technology translation.One can force DC

to select a particular latch or flip flop from the target library by using the same

command with a -exact option as shown below.

7. Characterize

 The characterize command is used extensively in hierarchical designs. For

example, consider a design TOP with two sub-blocks sub1 and sub2. Let us

assume that both subl and sub2 have been compiled individually and have met

their constraints. However, when instantiated in TOP, subl and sub2 have different

constraints depending on constraints on TOP and the logic surrounding subl and

sub2 in TOP.

The characterize command helps capture the constraints imposed on the sub design

by the surrounding logic.

Strategies for Compiling Designs

 The basic DC commands and the timing reports generated by DC is

discussed. What is the best approach to compiling a design is the problem. The

compile strategy adopted is very much design dependent. It is possible to follow

some general guidelines for compiling a design.

1. Capturing the entire design in one large HDL file, reading that file into DC,

specifying the following constraint,

followed by executing the miraculous compile.

2. Dividing the design into too many hierarchical sub blocks. This is the other

extreme of the strategy 1. This is not recommended for two reasons.

Firstly, managing the design with several sub-blocks can be rather cumbersome.

Secondly, optimization across hierarchical boundaries is not as effective as

optimization within a block.

Typical Scenarios when Optimizing Designs

All the different strategies that one can experiment with when optimizing design

using DC to be discussed. Assume that with just one sub-block of design and not

the entire design.

Scenario 1-- You have a design written in HDL. You have a very limited idea of

the timing requirements. You simply wish to attain the fastest possible design.

A simple strategy to realize the optimal design is to experiment first with a default,

medium effort compile, specifying absolutely no constraints before the compile

step. This should give you a feel for the timing/area performance of your block.

Then you specify your approximate timing (clocks and point to

point timing constraints, if any) requirements.

A large number is used so that DC lists all the paths that fail to meet timing

requirements in the design. If a number of paths are violated by a large margin,

then you know right away that meeting your timing is likely to be a

difficult/impossible task. On the other hand, if very few paths violate timing, then

the next step would be to execute another compile with the default medium effort.

Then, re-asses your paths in the report. If you see serious timing delays or very

little improvement over the first timing report, then one or more of these must be

attempted.

• Re-assess your code and consider alternate design partitioning.

• The technology library does not have cells to meet your timing.

• Timing requirements must be more realistic with regard to the capabilities of cells

in the technology library.

• Identify any functional false paths or multi-cycle paths that might exist and

specify them.

Scenario 2 -- You have written your source code, you know the detailed timing

requirements, from characterize or otherwise.

Assess your results. Use the group_path command to assign higher weightage to

paths which show greater violations. Use the compile_default_critical_range

variable. The final step could be an incremental compile. This is used only to make

very minimal improvements in timing, usually less than 2 ns. In general, the more

specific you can be in specifying constraints, the better the synthesis results.

Scenario 3 -- You have fairly accurate timing requirements, but your main motive

is to improve rather than merely meet the requirements. You are confident from

knowledge of your library cells and earlier compile iterations that DC can meet

timing, but your intent is to get the fastest possible design.

If constraints are already close to being met, then specify tighter constraints.

compile

You now meet timing but wish to improve upon this.

Now specify tighter constraints -- faster clock or tighter max_delay constraints for

asynchronous paths. Execute report_timing again, they should now violate your

delay constraint. Do not specify unrealistic constraints, like max_delay 0 for

instance. Instead, gradually tighten constraints.

Scenario 4 -- Area is extremely critical in your design. While you think you could

meet timing, area is an issue you would like to monitor right from the very start of

your synthesis process. Given below are some tips for effective area optimization:

• Prior to the initial compile one must try and specify very accurate constraints to

prevent DC from overkill ofnon-critical paths.

• After synthesis, execute the check_design command. Analyze the results to make

sure there is no unused logic in design. Useful details about the design such as

unconnected ports, feedthroughs, and multiple drivers are provided by this

command.

• Use the report_resources command to check implementations of resources in the

designs and also on how many resources are inferred. There might be scope for

sharing of resources by modifying the HDL

code.

• You could try ungrouping the hierarchy. Although this might improve area, it

might make place and route task extremely difficult.

• Flatten appropriate unstructured random logic blocks using the set_flatten

command on these blocks.

 In short, synthesizing a design is an iterative process which can be aided by

intuition. This intuition can be refined from extensive usage of the tool, analysis of

the results, and a fair knowledge of the capabilities of the cells in the technology

library

Guidelines for Logic Synthesis

 The guidelines suggested here are not 'hard and fast" rules for effective

synthesis. These are applicable in most cases and exceptions to these guidelines are

likely.

1. For better results from synthesis, specify accurate point to point delays for

asynchronous paths. Use the create_clock and group_path commands to

constrain synchronous paths in the design. In general, the synthesis tool is

tailored towards path optimization. Hence, it responds better to a greater

detail of constraints.

2. Try to register outputs of the different design modules. This saves the

designer from having to perform painstaking time budgeting. Constraining

different hierarchical modules becomes easier for two reasons.

The drive strength on the inputs to a block is equal to the drive strength of

the average flip flop. Secondly, the input delays are equal to the path delays

through a flip flop, given that the outputs of the driving hierarchical block

are registered.

3. Separate negative and positive edge flip-flops into separate hierarchical

blocks. In other words, avoid having both kinds of flops in the same

hierarchical module. This makes the debug process and timing analysis

during synthesis much simpler. Moreover, this can help simplify test

insertion.

4. Group finite state machines and optimize them separately. State machine

extraction and optimization process is more effective when the fsm is

isolated. The group -fsm command can be used to achieve this.

5. The recommended size of a module for synthesis is in the range 250-5000.

There are bound to be exceptions to this generalized recommendation.

6. Avoid having too many hierarchical blocks. Optimization across

hierarchical boundaries is far less effective than when the boundaries do not

exist. On the other hand having a large flat design with no hierarchy is not

the solution.

7. Try to capture logic in the critical path into a separate level of hierarchy.DC

does a better job of optimization when the critical path does not traverse

hierarchical boundaries. This can be done by ungrouping existing blocks and

re-grouping them using dc_shell scripts.

8. Compile Time: If your compile time is too long, then it is most likely due

to one of the following reasons:

• You are using high map effort. Try the default medium effort. This is the

recommended compile effort and hence is the default. The compile time for

high map effort is dependent on the machine configuration and the size of

the design.

• Your design is too large and must be broken down into smaller hierarchical

modules.

• You have declared false paths which traverse hierarchical boundaries or

any path exceptions specified in the design such as set_multicycle paths.

• You have glue logic at the top level of your design. Consider incorporating

this into hierarchical sub modules using the ungroup/group commands.

• You are trying to flatten a design which is not appropriate for flattening. In

general, use the 'flatten" switch only for random logic. For a design with

over twenty inputs, flattening is almost never completed. If the number of

inputs is less than ten, then flattening is more likely to complete.

• You have boolean optimization turned on. Again, this is appropriate only

for random logic. If you do have random logic in your design, consider

grouping it into a separate level of hierarchy and compile it separately with

the flatten or boolean structuring switch turned on.

9. For datapath logic, consider the option of instantiating logic (like gates

and muxes) or inferring them through user developed DesignWare libraries

10. Partitioning the design is extremely crucial to get the best out of

synthesis. Identify signals with large fanouts and attempt to group the

driving logic with the logic being driven into one hierarchical block.

11. It is always advisable to perform a preliminary round of synthesis and

place and route so as to identify any serious issues which may require re-

writing the HDL code.

Classic Scenarios.

Case 1 : You wish to find all the clocks defined in your design and their clock

periods within a dc_shell script file. Using this information, you then wish to

specify some constraints and attributes related to the clocks.

Solution: This can be done using the following commands

Case 2: Can one specify dont_care conditions for the condition branches of a case

statement?

Solution: A typical scenario is when one cares only about certain inputs in a

particular state but not the other inputs. DC does not support dont_cares for case

statement conditions because of simulation mismatches. In the simulation world, a

string to string matching is performed and this applies to

the dont_care conditions as well.

Case 3: The DC is unable to meet the timing for the path which is the worst

violator. However, it does not seem to improve on other paths in the design which

most certainly can be improved by merely swapping cells in those paths.

Solution : By default, DC creates a default path group and a clock group for each

clock created. The default path group contains paths that do not terminate at a

clock. Only the worst violator in each path group affects the synthesis cost

function. This can be changed by using the group_path command or modifying the

value of the compile_default_critical_range variable from the default of 0.0 to a

larger value. In general, set the compile_default_critical_range variable only in the

last compile step. In other words, set constraints and perform one or more compile

steps until the DC does not seem to improve its results. Then set this variable to a

value (usually 2 or 3) then re-compile.

Setting this to a large value can increase the compile time significantly. The

group_path command can be used to create explicitly a path group and specify the

weight and critical_range of that group. No path can exist in more than one path

group.

Case 4: A top level module has a few submodules and a hand-crafted clock

circuitry at the top level. You wish to synthesize this design to gates but leave the

clock logic at the top level intact. How does one go about accomplishing this?

Solution : The dont_touch_network command will propagate the dont_touch

attribute throughout the hierarchy for the clock network. Since this command

specifically works for clock networks, it is required that a clock object be defined

(using create_clock) before this command is used. If the intention is to only

maintain the clock logic at the top level the following script can be used to set the

dont_touch attribute on all leaf cells at the top level of the design which constitute

the clock circuitry.

Case 5: How does one find all the cells of a particular reference in a hierarchical

design? In other words, you have a hierarchical design with the FDI (flip-flop)

library cell used several times and you wish to get an actual count to identify if it is

worth requesting a special low drive cell of the same functionality.

Solution: The simplest way would be to ungroup the design from the top level and

use the report_reference command. Alternatively, if one prefers not to ungroup the

design, a script which finds all the cell instances which reference the FD1 should

accomplish the same. Then the total number of

cells in this list is counted.

Case 6: When are resource sharing decisions made - Is it during elaborate or

during compile? Which tool license is used when resource sharing decisions are

made, HDL Compiler or DC?

Solution: Resource sharing is done during the first compile and the license used is

the HDL-Compiler license. One can actually prevent an HDL Compiler license

from being used during compile. Another way to accomplish the same is to execute

the replace_synthetic command before compile. This will, however, disable the

high level optimizations that occurs during compile (including timing-driven

resource sharing). This can impact the quality of results.

Case 7: A design has an address bus 32 bits wide of which only 2 bits go into a

module. You create an extra level of hierarchy in DC using the group command

and only 2 bits of the address needed go into the newly created module. DC brings

in a1l32 bits into the module and does not connect the top 30. Is there a way to get

rid of the unused bus ports?

Solution: One can remove unused ports using the remove_port command as shown

below:

 The port name should be enclosed in quotes. However, there is a potential

problem with this approach. Once you have removed these unused ports, the top

level will not be able to link to the lower level. The reference in the top level will

still include the unused ports, but the tool will not be able to find

these ports in the lower level since you have removed them.

Case 8: In a state machine process, if a state is supposed to remain the same under

a certain condition, does the user have to explicitly write next_state < =

currentstate;Since nothing new is assigned to it shouldn't it maintain the state even

if not specified?

Solution: If you do not have the next_state < = current_state statement in the

combinational process statement, the DC will infer latches for the next_state signal

Case 9: Is there a way to control instance names inferred by DC during synthesis?

Solution: No, there is no way to control instance names except by adding pre-fixes

and suffixes. This can be achieved using the following variables:

Finite State Machine (FSM) Synthesis

Finite State Machine synthesis involves a number of steps. The steps

involved between writing the source code and generating the required state table

representation of the state machine are as follows.

First the HDL source code is mapped to cells from a target technology

library. Then the flip-flops in the design which hold the current state of the FSM

must be identified.

 The next step involves assigning specific codes to different

states. This is followed by a grouping of the state flip-flops and their

associated combinational logic into a separate level of hierarchy. Grouping

helps to isolate the FSM from the rest of the design. Once grouped into a

separate level of hierarchy, this sub-design can now be represented as a state

table.

Unit V

Constraining and Optimizing Designs for FSM

Finite State Machine (FSM) Synthesis, Fixing Min Delay Violations

Technology Translation, Translating Designs with Black-Box Cells, Pad

Synthesis, Classic Scenarios

 The script reads the VHDL code into DC, compiles the design and extracts

the state machine. The compile command maps the HDL code to target

technology library cells. At this stage, DC is unaware that the VHDL

description is a state machine. To verify if the DC understands that the design

is a state machine, the report_fsm command can be used. Identifying the state

vectors using the set_fsm_state_vector command, tells the DC that the design

is state machine. Further, setting the state vectors helps the tool differentiate

the state flip-flops from the flip-flops used for registered outputs. The DC by

default, assigns the name, signal name (ST in this example) followed by

_reg[i] (ST_reg[i] for this example), where i is the number of state vector

bits, to the state vectors. In this case, it takes the values 0 and 1 since only

two bits are essential.

 The set_fsm_encoding command allows the designer control over the state

encoding. While several encoding styles for FSMs exist, we will discuss the

auto (default encoding style) encoding styles. The encoding style

can be assigned using the set_fsm_encoding_style command. The group-fsm

command groups the state flip-flops and the associated combinational logic

into a separate level of hierarchy. On extraction, the state machine can be

written out in state table format.

Figure shows the top level design generated from the VHDL code.

Notice that there are three flip-flops.

Procedure for FSM synthesis

1. Before a state machine has been extracted and after the group command,DC

sometimes fails to group some of the surrounding logic which would then have

made the state machine logically more optimal. The cells which are grouped are

those in the transitive fan in/out of the state vector cells.After grouping, one might

find two inputs to this grouped level of hierarchy which are the opposite (inverted)

of each other. In this case, one must use the characterize -connections command

with the current_design set to the top level, so that the connection attributes are

passed on to the newly grouped level of hierarchy.

2. Once the state machine is extracted, the design can be written out in state

machine format or to the original RTL VHDL format by the following steps:

3. While the flip-flops inferred in the examples are all D-flip-flops, it is possible to

force DC to map to specific flip-flops from the target_library using the

set_register_type –flip_floP cell_name or the set_register_type-flip_floP cell_name

–exact commands.

4. When the concerned nets are inputs to the state machine,one is to set the

variable, write_name_nets_same_as_ports to true (this is false by default) before

writing the design in EDIF. Then read the EDIF back into DC and follow the steps

till extraction of the FSM. After reading in the edif file,the ports and the nets

connected to them should have same names. It is advisable to do a compare_design

between the new design read in and the old design in memory, to ensure that no

changes occurred during the write step.

5. reduce_ fsm and set_ fsm_ minimize are two commands users tend to confuse.

reduce fsm is more a command while set fsm minimize is more of a switch.

reduce_ fsm should be executed after the extract command to reduce the transition

logic between states. The set_fsm_minimize is turned on prior to compile so that

the tool infers the minimum number of states required for the fsm.

6. Last the efforts must be made to clearly partition the design into control logic

and data path elements. Reading in a large netlist and executing the extract

command is not an effective methodology.

Fixing Min Delay Violations

 Once the max_delay requirements imposed due to the setup constraints for

the sequential cells have been met, DC then attempts to fix the minimum path

delay requirements. Since the path delays are the maximum in the 'Worst case"

timing analysis or 'Worst case" operating conditions, max delay requirements must

be met in the "worst case" operating conditions.

 The minimum delay requirements are set by the hold constraints for the

sequential cells. Hold time problems are caused due to short delay paths between

registers which cause the data signal to propagate through two adjacent flip-flops

on a single clock edge. Since path delays are the shortest under 'best-case"

operating conditions, hold time problems are maximum in these conditions. Hence,

hold violations have to be fixed under these conditions.

 One approach to go about fixing both the setup and hold constraints is a

two pass compile approach. In the first pass compile, fix the setup violations under

the “Worst-case" operating conditions. Then set the operating conditions to 'best-

case" for the second pass compile. Use the 'fix_hold" command to set an attribute

'fix_hold" on the clock objects for which hold constraints have to be met. The

second pass compile should be with the compile switch "-only_design_rules"

turned on. This should fix all the hold violations in your design. Also since under

the 'best-case" operating conditions, the max_delay paths will have excessive

positive slack, hold constraints maybe fixed at the cost of setup constraints. Such a

situation can be avoided by adjusting the constraints such that the critical paths in

the design appear critical under best-case conditions.

One of the ways to achieve that is by specifying a negative uncertainty on

the clock by using the "set_clock_skew -minus_uncertainty" command. Hold time

problems will generally occur in shift register structures or scan chains. Since by

default DC treats the clock as ideal with no path delays, one must account for the

network delay by using the command ''set_clock_skew -propagated".

Technology Translation

Conversion of a design netlist from one technology library to another is

called technology translation. This powerful capability helps compare performance

across different ASIC vendor libraries. However, this utility has its limitations and

works best with combinational logic.

 Technology libraries differ in the cells they contain and in area and timing.

Hence, after technology translation, optimization must be performed on the design

to meet the original design constraints.

Technology Translation in DC

 In DC, technology translation is performed by the translate command. In

order to perform translation from one technology to another, the first requirement

is the availability of both the existing library to which the netlist has been mapped

and the target_library. Shown below are the steps involved in translating a design

top from technology libA to technology library libB.

The translate command replaces each cell in the design with the closest matching

functional cell from the target_library. In case such a matching cell is not found

then it is converted to a cell from the generic library. The dont_use, dont_touch,

set_default_register_type and the prefer command are useful commands that affect

the translation process.

Translating Designs with Black-Box Cells

 When translating designs from one library to another, the DC performs an

instance by instance functional comparison. In other words, translation requires

that a cell in the current technology library and the target technology library both

have the same functionality, if an instance of the cell is to be translated. The

translate command does not translate black-box cells during technology

translation.

 However, there exists a simple trick to translate a black box cell. Black-

box cells are cells with a function attribute which cannot currently be described in

the Synopsys Library Compiler syntax or those which do not have a function

attribute specified. Such cells have the 'b' attribute attached to them implying a

black box cell. The report_libcommand can be used to identify all the attributes

on the cells in the library as shown below:

 It is possible that the design prior to translation has one such cell instantiated

in it and the target library does contain an identical cell. Since the DC does not see

any functionality described, it is unable to translate this particular instance. A

design with black-box cells can be translated by the following steps:

1.Identify the black-box cells in your design and then find the equivalent cells in

the target_library.

2. Create a translation library for these black-box cells. For example, if your netlist

has a black-box cell 'mem"and your target_library contains an equivalent cell

'mem_new': then create a translation library which is essentially a module that

instantiates the target cell mem_new, but with the same interface as the mem cell

as shown in below Verilog example.

3. After the translation library has been created, convert the design to the db format

using the read and the write commands. You have now created a block around the

cell in the target_library with an interface similar to the interface ofthe black-box

cell in the current library netlist. Assuming that your translation library is called

translation. db, your original library orlginal.db, and your new target technology

library new.db, set the link_library variable as follows:

 Also, ensure that the search_path variable points to all the directories

containing these libraries.

4. Execute the link command to translate the black-box cells in the netlist to the

library new.db. During the link operation, the DC checks the link_library for cells

beginning with the translation.db library, followed by original.db and finally, the

new.db. On finding the mem design in translation.db, it links to the newly created

design.

 During translation, the mem cell is nothing but a sub-block with the

mem_new instantiated in it, and mem_new is a cell in the target_library new.db.

This level of hierarchy can later be removed with the ungroup command.

 If there is no exact equivalent cell in the target library, you can create a

structural model of the black box cell using primitives from the target technology

library. Then, as in the above case, create a translation library with the same

interface as the black box.

Pad Synthesis

 Adding pads to your design is an essential part of the design process. One

option is to instantiate pads after the core ofthe design has been implemented and

simulated.

 Figure shows an ASIC core with the pad cells. DC provides a means for

automatic pad insertion. However, this is entirely dependent on the ASIC vendor

library having appropriately modeled pad cells.

 A pad cell in the Synopsys library is one which has the pad_cell attribute

set to true. Also, one or more ofthe pins ofthe pad cell will have the is _pad

attribute set on them. Hence, the first step to attempting pad synthesis is to ensure

that the technology library has pad cells modeled appropriately.The following

commands can be used to determine all the pad cells in the technology library.

 If DC issues a message that it is unable to find the library libA.db, execute

the list -libraries command at the dc_shell prompt. This command should list the

UNIX file name and the actual name of the library. Having detennined the pad

cells available in the library, the next step is to find the pin on the pad cell (say

padA) that has the is_pad attribute. This can be done using the following

command.

 Having determined the pad cells available in the technology library, the

next step involves pad insertion. This is done using the insert_pads command.

However, if we wish to control the kind of pad cell inserted by the DC, this can be

achieved using the set_pad_type command. This command controls the attributes

and properties of the pad cell synthesized by DC. To provide greater control, the

set_pad_type command has a "-exact' option which helps the user explicitly

specify the pad cell to be inserted from the library.

 The insert_pads command does not bus together inputs into the same pad

using bused pad cells. Such pad cells will have to be instantiated. The DC does not

map to pad cells during the regular compile if the pad cells have required attributes.

Classic Scenarios

Case 1: We are performing trial compile runs. We do not wish that wire loads be

considered in these trial runs. Can one prevent the DC from selecting a wire_load

model for a design, or does it default to a particular wire load model?

Solution: By default, the DC automatically selects a wire_load model if not

explicitly specified using the set_wire_load command. This can be prevented by

setting the variable auto_wire_load_selection to 'false': Also, if the ASIC vendor

library has the attribute default_wire_load set to a particular wire_load model, then

the following command must be used to remove the default_wire_load attribute:

Case 2: Our design has a number of internally generated signals which drive

the enable pins of latches. For example, we have a state machine generated

signal which drives the enable pin of a latch. The output of the latch drives a

block of combinational logic, which in tum drives a primary output as shown

in below Figure. The time delay in the signal reaching the primary output is

dependent on how soon the enable signal can be generated, and the delay

through the combinational logic, after the data is latched. We wish to

constrain the entire path along the enable line to the primary output.

Figure. Combinational logic driving primary output

Solution: There is no constraints on the enable (clock) line since there are no

setup requirements on the clock pin. Consider a two step constraint approach

using the set_output_delay and the max_delay commands. The path from the

enable pin of the latch to the primary output can be constrained using the

set_output_delay command. The path to the enable pin of the latch can be

constrained using the max_delay command.

Case 3: You have a hierarchical design as shown in below Figure. The

current_design is set to TOP, the top level of your design. You execute the

report_constraints -all_violators command and find a number of

max_fanout violations. You believe that characterizing a particular subblock A and

re-compiling that block, should fix a large number of

max_fanout violations. However, after characterizing the subdesign A and

compiling A, you find that none of the fanout violations seen at the top level

were fixed.

Solution: The fanout violations seen at the top level were not fixed on

compiling the characterized sub-block because no fanout_load values were

applied to the output ports of the lower level. In other words, characterize

does not capture the fanout_load drive capability required by the output ports

E, F and G in above Figure. The values that were applied by characterize, were

load values which are not taken into account when fixing max_fanout

violations.Characterize command will capture this information if one were to use

the characterize-constraints command instead of just characterize. This will

ensure that the fanout_load values are passed down in addition to the load values

on the nets.

 The characterize command also has another useful option, namely,

connections. This is useful in a scenario where two inputs are identical

except that one of them is an inversion of the other as shown in above Figure.

Input X2 is inverted and drives Block A at pins A and B. This information is

captured when Block A is characterized with the -connections option. One

can explicitly specify that two ports are opposite of each other using the

set_opposite command.

Case 4: We wish to find all data pins of latches in your design. Is there a single

command which will accomplish this ?

Solution: This can be accomplished by the following command

Case 5: We have several instances in your design which have dont_touch attributes

placed on them. We now wish to ungroup them, but are unable to remove the

don’t_touch attribute on an instance using the remove_attribute command.

Solution: It is likely that the instance has inherited the dont_touch attribute from

its reference. If this is indeed the case, we should first remove the don’t touch

attribute from the reference. Use the remove_attribute command with the find

command as follows

Case 6: Our technology library has a default_max_fanout specified. But the DC on

synthesis does not seem to buffer your clock line accordingly.

Solution: The default_max_fanout attribute in a library does not direct DC to

buffer input ports. Since DC does not have any information on the cell driving the

input ports it does not buffer the line. We should set_max_fanout on either the

design or the input ports that we wish to buffer, and then optimize using the

following command.

Case 7: After inserting pads using the insert_pads command you find clock pads

inserted for some of the inputs.

Solution: Clock pads should normally be inserted only for the ports with a clock

object created on it. However, they might be inserted on other ports if those ports

are part of clock gating logic. If the pads are being inserted on a compiled netlist

that contains clock enable buffers, then those ports connected to the clock enable

buffers may have clock pads inserted on them also. For other regular inputs, clock

pads should not be used. This problem can be avoided by specifying the

set_pad_type -no_clock attribute on all inputs, except the clock input, prior to pad

insertion.

