DATABASE

MANAGEMENT SYSTEM
(DBMS)

(R-21 Autonomous)

i
oo computers
S appllcationnetwork

° DBMS -
numbersflles PLos
e 0N 3 ACL

mystema ,

management‘ :
~=records-
sccessLISEIS

attributes

o
bl
=3
5

Q

e

>

’,H i

QT 5e:
S SE
4=

afesd

7

.0
=1
2100 !
£
S
)
=

cn ::

approach

- istored’ 22

relatuonal

; bjects |,
:hierarchical!

Department of Electrical & Electronice Engineering

Malla Reddy College of Engineering & Technology

(Accredited by NBA with NAAC-A Grade, UGC-Autonomous, ISO Certified Institution)

Maisammaguda, Near Kompally, Medchal Road, Sec’bad-500 100.

SYLLABUS

(R20A0551) DATABASE MANAGEMENT
Objectives: SYSTEMS

To understand the basic concepts and the applications of
database systems
To Master the basics of SQL and construct queries using SQL

To understand the relational database design principles

To become familiar with the basic issues of transaction processing and
concurrency controlTo become familiar with database storage structures and
access techniques

UNIT I:
INTRODUCTION: Database -Purpose of Database Systems, File Processing System Vs
DBMS, History, Characteristic-Three schema Architecture of a database, Functional
components of a DBMS.DBMS Languages-Database users and DBA.
UNIT II:
DATABASE DESIGN: ER Model - Objects, Attributes and its Type. Entity set and
Relationship set-Design Issues of ER model-Constraints. Keys-primary key, super key,
candidate keys. Introduction to relational model-Tabular, Representation of Various ER
Schemas.ER Diagram Notations- Goals of ER Diagram- Weak Entity Set-Views.
UNIT II1I:
STRUCTURED QUERY LANGUAGE: SQL: Overview, The Form of Basic SQL
Query -UNION, INTERSECT, and EXCEPT- join operations: equi join and non equi
join-Nested queries - correlated and uncorrelated- Aggregate Functions- Null values.
Views, Triggers.
UNIT IV:
DEPENDENCIES AND NORMAL FORMS: Importance of a good schema design-
Problems encountered with bad schema designs, Motivation for normal forms-
functional dependencies, -Armstrong's axioms for FD's- Closure of a set of FD's,-
Minimal coversDefinitions of INF,2NF, 3NF and BCNF- Decompositions and desirable
properties -
UNIT V:
TRANSACTIONS: Transaction concept, transaction state, System log, Commit point,
Desirable Properties of a Transaction, concurrent executions, serializability,
recoverability, implementation of isolation, transaction definition in SQL, Testing for
serializability, Serializability by Locks-Locking Systems with Several Lock Modes-
Concurrency Control by Time stamps, validation.

TEXT BOOKS:
1.Abraham Silberschatz, Henry F. Korth, S. Sudarshan,| Database System Conceptsl, McGraw- Hill,
6th Edition ,2010.
2. Fundamental of Database Systems, by Elmasri, Navathe, Somayajulu, and Gupta, Pearson
Education.
REFERENCE BOOKS:
1.Raghu Ramakrishnan, Johannes Gehrke, —Database Management Systeml, McGraw Hill., 3rd
Edition2007.
2. Elmasri & Navathe Fundamentals of Database System,| Addison-Wesley Publishing,5th
Edition,2008.
3. Date.C.J, —An Introduction to Databasel, Addison-Wesley Pub Co, 8th Edition,2006.
4. Peterrob, Carlos Coronel, —Database Systems — Design, Implementation, and Managementl, 9th
Edition, Thomson Learning,2009.
URLs:

Outcomes:

« Understand the basic concepts and the applications of database systems

Master the basics of SQL and construct queries using SQL
Understand the relational database design principles
. Familiarize with the basic issues of transaction processing and concurrency control

Familiarize with database storage structures and access techniques

UNIT-1

Introduction to Database Management System

As the name suggests, the database management system consists of two parts. They are:
1. Database and
2. Management System

What is a Database?
To find out what database is, we have to start from data, which is the basic building block of any DBMS.

Data: Facts, figures, statistics etc. having no particular meaning (e.g. 1, ABC, 19 etc).

Record: Collection of related data items, e.g. in the above example the three data items had no meaning. But if we
organize them in the following way, then they collectively represent meaningful information.

Roll Name Age

1 ABC 19

Table or Relation: Collection of related records.

Roll Name Age
1 ABC 19
2 DEF 22
3 XYZ 28

The columns of this relation are called Fields, Attributes or Domains. The rows are called Tuples
or Records.
Database: Collection of related relations. Consider the following collection of tables:

T1 I2
Roll Name Age Roll Address
1 ABC 19 KOL
> DEF 22 DEL
3 XYZ 28 MUM
13 14
Roll Year — Year Hostel
1 H1
I Il H2

We now have a collection of 4 tables. They can be called a “related collection” because we can clearly find out that there are
some common attributes existing in a selected pair of tables. Because of these common attributes we may combine the
data of two or more tables together to find out the complete details of a student. Questions like “Which hostel does the
youngest student live in?” can be answered now, although

Age and Hostel attributes are in different tables.
A database in a DBMS could be viewed by lots of different people with different responsibilities.

Payroll officer needs f‘
access to staff details N

U =

Customer service advisor
needs access to
customer accounts

Sales manager needs
access to stock levels ' I
‘ ‘

Figure 1.1._E_mp ees are accessing Data through DBMS

Central database

For example, within a company there are different departments, as well as customers, who each need to seedifferent kinds
of data. Each employee in the company will have different levels of access to the database with their own customized front-
end application.

In a database, data is organized strictly in row and column format. The rows are called Tuple or Record. The data items within
one row may belong to different data types. On the other hand, the columns are often called Domain or Attribute. All the
data items within a single attribute are of the same data type.

What is Management System?

A database-management system (DBMS) is a collection of interrelated data and a set of programs to access those data. This
is a collection of related data with an implicit meaning and hence is a database. The collection of data, usually referred to
as the database, contains information relevant to an enterprise. The primary goal of a DBMS is to provide a way to store and
retrieve database information that is both convenient and efficient. By data, we mean known facts that can be recorded and
that have implicit meaning.

The management system is important because without the existence of some kind of rules and regulations it is not possible
to maintain the database. We have to select the particular attributes which should be included in a particular table; the common
attributes to create relationship between two tables; if a new record has to be inserted or deleted then which tables should
have to be handled etc. These issues must be resolved by having some kind of rules to follow in order to maintain the integrity
of the database.

Database systems are designed to manage large bodies of information. Management of data involves both defining
structures for storage of information and providing mechanisms for the manipulation of information. In addition, the database
system must ensure the safety of the information stored, despite system crashes or attempts at unauthorized access. If data
are to be shared among several users, the system must avoid possible anomalous results.

Because information is so important in most organizations, computer scientists have developed a large body of concepts and
techniques for managing data. These concepts and technique form the focus of this book. This

chapter briefly introduces the principles of database systems.

Database Management System (DBMS) and Its Applications:

A Database management system is a computerized record-keeping system. It is a repository or a container for collection of
computerized data files. The overall purpose of DBMS is to allow he users to define, store, retrieve and update the information
contained in the database on demand. Information can be anything that is of significance to an individual or
organization.

Databases touch all aspects of our lives. Some of the major areas of application are as follows:
1. Banking

2. Airlines

3. Universities

4. Manufacturing and selling

5. Human resources

Enterprise Information

o Sales: For customer, product, and purchase information.

o Accounting: For payments, receipts, account balances, assets and other accounting information.

o Human resources: For information about employees, salaries, payroll taxes, and benefits, and for generationof

paychecks.

o Manufacturing: For management of the supply chain and for tracking production of items in factories,

inventories of items in warehouses and stores, and orders for items.
Online retailers: For sales data noted above plus online order tracking, generation of recommendation lists,and
maintenance of online product evaluations.
Banking and Finance

o Banking: For customer information, accounts, loans, and banking transactions.

o Credit card transactions: For purchases on credit cards and generation of monthly statements.

o Finance: For storing information about holdings, sales, and purchases of financial instruments such as stocks and
bonds; also for storing real-time market data to enable online trading by customers and automated trading by the
firm.

« Universities: For student information, course registrations, and grades (in addition to standard enterprise information
such as human resources and accounting).

* Airlines: For reservations and schedule information. Airlines were among the first to use databases in a
geographically distributed manner.

+ Telecommunication: For keeping records of calls made, generating monthly bills, maintaining balances onprepaid
calling cards, and storing information about the communication networks.

Purpose of Database Systems

Database systems arose in response to early methods of computerized management of commercial data. Asan example of
such methods, typical of the 1960s, consider part of a university organization that, among other data, keeps information about
all instructors, students, departments, and course offerings. One way to keep the information on a computer is to store it in
operating system files. To allow users to manipulate the information, the system has a number of application programs that
manipulate the files, including programs to:

v" Add new students, instructors, and courses
v Register students for courses and generate class rosters

v" Assign grades to students, compute grade point averages (GPA), and generate transcripts

System programmers wrote these application programs to meet the needs of the university.

New application programs are added to the system as the need arises. For example, suppose that a university decides to create
a new major (say, computer science). As a result, the university creates a new department and creates new permanent
files (or adds information to existing files) to record information about all the instructors in the department, students in that
major, course offerings, degree requirements, etc. The university may have to write new application programs to deal with
rules specific to the new major. New application programs may also have to be written to handle new rules in the university.
Thus, as time goes by, the system acquires more files and more application programs.

This typical file-processing system is supported by a conventional operating system. The system stores permanent
records in various files, and it needs different application programs to extract records from, and add records to, the appropriate
files. Before database management systems (DBMSs) were introduced, organizations usually stored information in such
systems. Keeping organizational information in a file- processing system has a number of major disadvantages:

Data redundancy and inconsistency. Since different programmers create the files and application programs over a long
period, the various files are likely to have different structures and the programs may be written inseveral programming
languages. Moreover, the same information may be duplicated in several places (files).For example, if a student has a
double major (say, music and mathematics) the address and telephone number of that student may appear in a file that
consists of student records of students in the Music department and in a file that consists of student records of students in
the Mathematics department. This redundancy leads to higher storage and access cost. In addition, it may lead to data
inconsistency; that is, the various copies ofthe same data may no longer agree. For example, a changed student address
may be reflected in the Musicdepartment records but not elsewhere in the system.

Difficulty in accessing data. Suppose that one of the university clerks needs to find out the names of all students who
live within a particular postal-code area. The clerk asks the data-processing department to generate such a list. Because
the designers of the original system did not anticipate this request, there is noapplication program on hand to meet it.
There is, however, an application program to generate the list of all students.

The university clerk has now two choices: either obtain the list of all students and extract the needed information
manually or ask a programmer to write the necessary application program. Both alternatives areobviously unsatisfactory.
Suppose that such a program is written, and that, several days later, the same clerkneeds to trim that list to include only
those students who have taken at least 60 credit hours. As expected, a program to generate such a list does not exist.
Again, the clerk has the preceding two options, neither of which is satisfactory. The point here is that conventional file-
processing environments do not allow needed data to be retrieved in a convenient and efficient manner. More responsive data-
retrieval systems are required for general use.

Data isolation. Because data are scattered in various files, and files may be in different formats, writing newapplication
programs to retrieve the appropriate data is difficult.

Integrity problems. The data values stored in the database must satisfy certain types of consistency constraints.
Suppose the university maintains an account for each department, and records the balance amount in each account.
Suppose also that the university requires that the account balance of a departmentmay never fall below zero. Developers
enforce these constraints in the system by adding appropriate code inthe various application programs. However, when
new constraints are added, it is difficult to change the programs to enforce them. The problem is compounded when
constraints involve several data items from different files.

Atomicity problems. A computer system, like any other device, is subject to failure. In many applications, it is crucial that, if
a failure occurs, the data be restored to the consistent state that existed prior to the failure.

Consider a program to transfer $500 from the account balance of department A to the account balance of department B.
If a system failure occurs during the execution of the program, it is possible that the $500 wasremoved from the balance
of department A but was not credited to the balance of department B, resulting in an inconsistent database state. Clearly, it is
essential to database consistency that either both the credit and debit occur, or that neither occur.

That is, the funds transfer must be atomic—it must happen in its entirety or not at all. It is difficult to ensure atomicity
in a conventional file-processing system.

Concurrent-access anomalies. For the sake of overall performance of the system and faster response, many systems allow
multiple users to update the data simultaneously. Indeed, today, the largest Internet retailers may have millions of
accesses per day to their data by shoppers. In such an environment, interaction of concurrent updates is possible and may
result in inconsistent data. Consider department A, with an account balance of $10,000. If two department clerks debit the
account balance (by say $500 and $100, respectively) of department A at almost exactly the same time, the result of the
concurrent executions may leave the budget in an incorrect (or inconsistent) state. Suppose that the programs executing on
behalf of each withdrawal read the old balance, reduce that value by the amount being withdrawn, and write the result
back. If the two programsrun concurrently, they may both read the value $10,000, and write back $9500 and $9900,
respectively. Depending on which one writes the value last, the account balance of department A may contain either $9500
or $9900, rather than the correct value of $9400. To guard against this possibility, the system must maintain some form
of supervision.

But supervision is difficult to provide because data may be accessed by many different application programsthat have
not been coordinated previously.

As another example, suppose a registration program maintains a count of students registered for a course, inorder to
enforce limits on the number of students registered. When a student registers, the program reads thecurrent count for the
courses, verifies that the count is not already at the limit, adds one to the count, and stores the count back in the database.
Suppose two students register concurrently, with the count at (say) 39. The two program executions may both read the value
39, and both would then write back 40, leading to an incorrect increase of only 1, even though two students successfully
registered for the course and the count should be 41. Furthermore, suppose the course registration limit was 40; in the above
case both students would be able toregister, leading to a violation of the limit of 40 students.

Security problems. Not every user of the database system should be able to access all the data. For example, in a university,
payroll personnel need to see only that part of the database that has financial information. They do not need access to
information about academic records. But, since application programs are added to thefile-processing system in an ad hoc
manner, enforcing such security constraints is difficult.

These difficulties, among others, prompted the development of database systems. In what follows, we shall see the concepts
and algorithms that enable database systems to solve the problems with file-processing systems.

Advantages of DBMS:

Controlling of Redundancy: Data redundancy refers to the duplication of data (i.e storing same data multiple times). In a
database system, by having a centralized database and centralized control of data by the DBA the unnecessary duplication of
data is avoided. It also eliminates the extra time for processing the large volume of data. It results in saving the storage
space.

Improved Data Sharing : DBMS allows a user to share the data in any number of application programs.

Data Integrity : Integrity means that the data in the database is accurate. Centralized control of the data helps in permitting
the administrator to define integrity constraints to the data in the database. For example: in customer database we can
can enforce an integrity that it must accept the customer only from Noida and Meerut city.

Security : Having complete authority over the operational data, enables the DBA in ensuring that the only mean of
access to the database is through proper channels. The DBA can define authorization checks to becarried out whenever
access to sensitive data is attempted.

Data Consistency: By eliminating data redundancy, we greatly reduce the opportunities for inconsistency. For example: is a
customer address is stored only once, we cannot have disagreement on the stored values. Also updating data values is greatly
simplified when each value is stored in one place only. Finally, we avoid the wasted storage that results from redundant
data storage.

Efficient Data Access: In a database system, the data is managed by the DBMS and all access to the data is through the DBMS
providing a key to effective data processing

Enforcements of Standards: With the centralized of data, DBA can establish and enforce the data standards which may
include the naming conventions, data quality standards etc.

Data Independence: Ina database system, the database management system provides the interface between the application
programs and the data. When changes are made to the data representation, the meta data obtained by the DBMS is changed
but the DBMS is continuing to provide the data to application program in the previously used way. The DBMs handles the task
of transformation of data wherever necessary.

Reduced Application Development and Maintenance Time: DBMS supports many important functions that are common
to many applications, accessing data stored in the DBMS, which facilitates the quick development of application.
Disadvantages of DBMS

1) Itisbitcomplex. Since it supports multiple functionality to give the user the best, the underlying softwarehas become
complex. The designers and developers should have thorough knowledge about the software to get the most out of
it.

2) Because of its complexity and functionality, it uses large amount of memory. It also needs large memory to run
efficiently.

3) DBMS system works on the centralized system, i.e.; all the users from all over the world access this database. Hence
any failure of the DBMS, will impact all the users.

4) DBMS is generalized software, i.e.; it is written work on the entire systems rather specific one. Hence some of the
application will run slow.

File Processing System Vs DBMS:

Difference between File System and DBMS:

Basis File System DBMS

The file system is software that manages and

organizes the files in a storage medium within a DBMS is software for
Structure computer. managing the database.
Data In DBMS there is no

Redundancy Redundant data can be present in a file system. redundant data.

Basis File System DBMS

It provides backup and

Backup and It doesn’t provide backup and recovery of data if ~ recovery of data even if it
Recovery it is lost. is lost.

Query There is no efficient query processing in the file Efficient query processing
processing system. is there in DBMS.

There is more data
consistency because of the
Consistency There is less data consistency in the file system. process of normalization.

It has more complexity in
handling as compared to
Complexity It is less complex as compared to DBMS. the file system.

DBMS has more security
Security File systems provide less security in comparison mechanisms as compared
Constraints to DBMS. to file systems.

It has a comparatively
higher cost than a file

Cost It is less expensive than DBMS. system.
Data In DBMS data
Independence There is no data independence. independence exists.

Multiple users can access
User Access Only one user can access data at a time. data at a time

History:
Data is a collection of facts and figures. The data collection was increasing day to day and they needed
to be stored in a device or a software which is safer.

Charles Bachman was the first person to develop the Integrated Data Store (IDS) which was based on
network data model for which he was inaugurated with the Turing Award (The most prestigious award
which is equivalent to Nobel prize in the field of Computer Science.). It was developed in early 1960’s.

In the late 1960’s, IBM (International Business Machines Corporation) developed the Integrated
Management Systems which is the standard database system used till date in many places. It was
developed based on the hierarchical database model. It was during the year 1970 that the relational
database model was developed by Edgar Codd. Many of the database models we use today are relational
based. It was considered the standardized database model from then.

The relational model was still in use by many people in the market.Later during the same decade
(1980°’s), IBM developed the Structured Query Language (SQL) as a part of R project. It was declared
as a standard language for the queries by ISO and ANSI. The Transaction Management Systems for
processing transactions was also developed by James Gray for which he was felicitated the Turing
Award.

Further, there were many other models with rich features like complex queries, datatypes to insert
images and many others. The Internet Age has perhaps influenced the data models much more. Data
models were developed using object oriented programming features, embedding with scripting

https://www.geeksforgeeks.org/relational-model-in-dbms/
https://www.geeksforgeeks.org/relational-model-in-dbms/
https://www.geeksforgeeks.org/structured-query-language/

languages like Hyper Text Markup Language (HTML) for queries. With humongous data being
available online, DBMS is gaining more significance day by day.
View of Data

A database system is a collection of interrelated data and a set of programs that allow users to access and modify these
data. A major purpose of a database system is to provide users with an abstract view of the data. That is, the system hides
certain details of how the data are stored and maintained.

Data Abstraction
For the system to be usable, it must retrieve data efficiently. The need for efficiency has led designers to usecomplex data
structures to represent data in the database. Since many database-system users are not computer trained, developers hide
the complexity from users through several levels of abstraction, to simplifyusers’ interactions with the system:

Users
External External External External
Schema View View View
Conceptual Conceptual
Schema View
Internal Internal
Schema View
m
€
DIS
K

Figure 1.2 : Levels of Abstraction in a DBMS

« Physical level (or Internal View / Schema): The lowest level of abstraction describes how the data are actually stored.
The physical level describes complex low-level data structures in detail.

« Logical level (or Conceptual View / Schema): The next-higher level of abstraction describes what data are stored in the
database, and what relationships exist among those data. The logical level thus describes the entire database in terms of
a small number of relatively simple structures. Although implementation of the simple structures at the logical level may
involve complex physical-level structures, the user of the logical level does not need to be aware of this complexity. This is
referred to as physical data independence. Databaseadministrators, who must decide what information to keep in the
database, use the logical level of abstraction.

* View level (or External View / Schema): The highest level of abstraction describes only part of the entiredatabase.
Even though the logical level uses simpler structures, complexity remains because of the variety ofinformation stored in
a large database. Many users of the database system do not need all this information; instead, they need to access only a
part of the database. The view level of abstraction exists to simplify theirinteraction with the system. The system may
provide many views for the same database. Figure 1.2 shows the relationship among the three levels of abstraction.

An analogy to the concept of data types in programming languages may clarify the distinction among levels of abstraction.
Many high-level programming languages support the notion of a structured type. For example, we may describe a record as
follows:

type instructor = record

https://www.geeksforgeeks.org/html-introduction/

ID : char (5);

name : char (20);

dept name : char (20);

salary : numeric (8,2);
end,;

This code defines a new record type called instructor with four fields. Each field has a name and a type associated with
it. A university organization may have several such record types, including

* department, with fields dept_name, building, and budget
* course, with fields course_id, title, dept_name, and credits
* student, with fields ID, name, dept_name, and tot_cred

At the physical level, an instructor, department, or student record can be described as a block of consecutivestorage
locations. The compiler hides this level of detail from programmers. Similarly, the database system hides many of the
lowest-level storage details from database programmers. Database administrators, on theother hand, may be aware of
certain details of the physical organization of the data.

Atthe logical level, each such record is described by a type definition, as in the previous code segment, and the interrelationship
of these record types is defined as well. Programmers using a programming language work at this level of abstraction.
Similarly, database administrators usually work at this level of abstraction.

Finally, at the view level, computer users see a set of application programs that hide details of the data types.At the view
level, several views of the database are defined, and a database user sees some or all of these views. In addition

to hiding details of the logical level of the database, the views also provide a security mechanism to prevent users from
accessing certain parts of the database. For example, clerks in the university registrar office can see only that part of the
database that has information about students; they cannot access information about salaries of instructors.

Instances and Schemas

Databases change over time as information is inserted and deleted. The collection of information stored in the database at a
particular moment is called an instance of the database. The overall design of the database iscalled the database schema.
Schemas are changed infrequently, if at all. The concept of database schemasand instances can be understood by analogy
to a program written in a programming language. A database schema corresponds to the variable declarations (along with
associated type definitions) in a program.

Each variable has a particular value at a given instant. The values of the variables in a program at a point in time
correspond to an instance of a database schema. Database systems have several schemas, partitionedaccording to the
levels of abstraction. The physical schema describes the database design at the physical level, while the logical schema
describes the database design at the logical level. A database may also have several schemas at the view level, sometimes
called subschemas, which describe different views of the database. Of these, the logical schema is by far the most
important, in terms of its effect on application programs, since programmers construct applications by using the logical
schema. The physical schema is hidden beneath the logical schema, and can usually be changed easily without affecting
application programs. Application programs are said to exhibit physical data independence if they do not depend on the
physicalschema, and thus need not be rewritten if the physical schema changes.

Data Models
Underlying the structure of a database is the data model: a collection of conceptual tools for describing data, data
relationships, data semantics, and consistency constraints. A data model provides a way to describe the design of a database

at the physical, logical, and view levels.

The data models can be classified into four different categories:

* Relational Model. The relational model uses a collection of tables to represent both data and the relationships among
those data. Each table has multiple columns, and each column has a unique name. Tables are also known as relations. The
relational model is an example of a record-hased model.

Record-hased models are so named because the database is structured in fixed-format records of several types. Each
table contains records of a particular type. Each record type defines a fixed number of fields, or attributes. The columns
of the table correspond to the attributes of the record type. The relational data model is the most widely used data model, and
a vast majority of current database systems are based on the relational model.

Entity-Relationship Model. The entity-relationship (E-R) data model uses a collection of basic objects, called
entities, and relationships among these objects.

An entity is a “thing” or “object” in the real world that is distinguishable from other objects. The entity-
relationship model is widely used in database design.

Object-Based Data Model. Object-oriented programming (especially in Java, C++, or C#) has become the dominant
software-development methodology. This led to the development of an object-oriented data modelthat can be seen as
extending the E-R model with notions of encapsulation, methods (functions), and objectidentity. The object-relational
data model combines features of the object-oriented data model and relationaldata model.

Semi-structured Data Model. The semi-structured data model permits the specification of data where individual data
items of the same type may have different sets of attributes. This is in contrast to the data models mentioned earlier, where
every data item of a particular type must have the same set of attributes. The Extensible Markup Language (XML) is widely
used to represent semi-structured data.

Historically, the network data model and the hierarchical data model preceded the relational data model. These models
were tied closely to the underlying implementation, and complicated the task of modeling data. As a result they are used
little now, except in old database code that is still in service in some places.

Database Languages

A database system provides a data-definition language to specify the database

schema and a data-manipulation language to express database queries and updates. In practice, the data- definition and
data-manipulation languages are not

two separate languages; instead they simply form parts of a single database language, such as the

widely used SQL language.

Data-Manipulation Language

A data-manipulation language (DML) is a language that enables users to access or manipulate data asorganized by
the appropriate data model. The types of access are:

* Retrieval of information stored in the database

* Insertion of new information into the database

* Deletion of information from the database

* Modification of information stored in the database

There are basically two types:

* Procedural DMLs require a user to specify what data are needed and how to get those data.

* Declarative DMLs (also referred to as nonprocedural DMLS) require a user to specify what data are needed
without specifying how to get those data.

Declarative DMLSs are usually easier to learn and use than are procedural DMLs. However, since a user doesnot have to
specify how to get the data, the database system has to figure out an efficient means of accessing

data. A query is a statement requesting the retrieval of information. The portion of a DML that involves information
retrieval is called a query language. Although technically incorrect, it is common practice to use the terms query language
and data-manipulation language synonymously.

Data-Definition Language (DDL)

We specify a database schema by a set of definitions expressed by a special language called a data-definition language (DDL).
The DDL is also used to specify additional properties of the data.

We specify the storage structure and access methods used by the database system by a set of statements in a special type of
DDL called a data storage and definition language. These statements define the implementation details of the database
schemas, which are usually hidden from the users.

The data values stored in the database must satisfy certain consistency constraints.

For example, suppose the university requires that the account balance of a department must never be negative. The DDL
provides facilities to specify such constraints. The database system checks these constraints everytime the database is
updated. In general, a constraint can be an arbitrary predicate pertaining to the database. However, arbitrary predicates may
be costly to test. Thus, database systems implement integrity constraintsthat can be tested with minimal overhead.

+ Domain Constraints. A domain of possible values must be associated with every attribute (for example, integer types,
character types, date/time types). Declaring an attribute to be of a particular domain acts as a constraint on the values
that it can take. Domain constraints are the most elementary form of integrity constraint. They are tested easily by the
system whenever a new data item is entered into the database.

* Referential Integrity. There are cases where we wish to ensure that a value that appears in one relation for a given set of
attributes also appears in a certain set of attributes in another relation (referential integrity). For example, the department
listed for each course must be one that actually exists. More precisely, the dept name value in a course record must appear
in the dept name attribute of some record of the department relation.

Database modifications can cause violations of referential integrity. When a referential-integrity constraint is violated,

the normal procedure is to reject the action that caused the violation.

« Assertions. An assertion is any condition that the database must always satisfy. Domain constraints and referential-
integrity constraints are special forms of assertions. However, there are many constraints that wecannot express by using
only these special forms. For example, “Every department must have at least five courses offered every semester” must be
expressed as an assertion. When an assertion is created, the system tests it for validity. If the assertion is valid, then any future
modification to the database is allowed only if it does not cause that assertion to be violated.

« Authorization. We may want to differentiate among the users as far as the type of access they are permitted on various
data values in the database. These differentiations are expressed in terms of authorization, the most common being:
read authorization, which allows reading, but not modification, of data; insert authorization, which allows insertion of
new data, but not modification of existing data; update authorization, which allows modification, but not deletion, of data;
and delete authorization, which allows deletion of data.\WWe may assign the user all, none, or a combination of these types
of authorization.

The DDL, just like any other programming language, gets as input some instructions (Statements) and generates some
output. The output of the DDL is placed in the data dictionary,which contains metadata—that is, data about data. The
data dictionary is considered to be a special type of table that can only be accessedand updated by the database system
itself (not a regular user). The database system consults the data dictionary before reading or modifying actual data.

Data Dictionary

We can define a data dictionary as a DBMS component that stores the definition of data characteristics and relationships.
You may recall that such “data about data” were labeled metadata. The DBMS data dictionaryprovides the DBMS with
its self describing characteristic. In effect, the data dictionary resembles and X-ray ofthe company’s entire data set, and is
a crucial element in the data administration function.

The two main types of data dictionary exist, integrated and stand alone. An integrated data dictionary is included with
the DBMS. For example, all relational DBMSs include a built in data dictionary or system catalog that is frequently
accessed and updated by the RDBMS. Other DBMSs especially older types, do not have abuilt in data dictionary instead
the DBA may use third party stand alone data dictionary systems.

Data dictionaries can also be classified as active or passive. An active data dictionary is automatically updated by the DBMS
with every database access, thereby keeping its access information up-to-date. A passive datadictionary is not updated
automatically and usually requires a batch process to be run. Data dictionary access information is normally used by the
DBMS for query optimization purpose.

The data dictionary’s main function is to store the description of all objects that interact with the database. Integrated
data dictionaries tend to limit their metadata to the data managed by the DBMS. Stand alone datadictionary systems are
more usually more flexible and allow the DBA to describe and manage all the organization’s data, whether or not they are
computerized. Whatever the data dictionary’s format, its existence provides database designers and end users with a much
improved ability to communicate. In addition, the data dictionary is the tool that helps the DBA to resolve data conflicts.
Although, there is no standard format for the information stored in the data dictionary several features are common. For
example, the data dictionary typically stores descriptions of all:

+ Data elements that are define in all tables of all databases. Specifically the data dictionary stores the name, datatypes,
display formats, internal storage formats, and validation rules. The data dictionary tells where an element is used, by
whom it is used and so on.

* Tables define in all databases. For example, the data dictionary is likely to store the name of the table creator, the
date of creation access authorizations, the number of columns, and so on.

* Indexes define for each database tables. For each index the DBMS stores at least the index name the attributes used,
the location, specific index characteristics and the creation date.

* Define databases: who created each database, the date of creation where the database is located, who the DBA is and so
on.

* End users and The Administrators of the data base

* Programs that access the database including screen formats, report formats application formats, SQL queries and
S0 on.

* Access authorization for all users of all databases.

+ Relationships among data elements which elements are involved: whether the relationship are mandatory or optional,
the connectivity and cardinality and so on.

Database Administrators and Database Users

A primary goal of a database system is to retrieve information from and store new information in the database. People who
work with a database can be categorized as database users or database administrators.

Database Users and User Interfaces

There are four different types of database-system users, differentiated by the way they expect to interact withthe system.
Different types of user interfaces have been designed for the different types of users.

Naive users are unsophisticated users who interact with the system by invoking one of the application programs that
have been written previously. For example, a bank teller who needs to transfer $50 from account A to account B invokes a
program called transfer. This program asks the teller for the amount of money to betransferred, the account from which the
money is to be transferred, and the account to which the money is to be transferred.

As another example, consider a user who wishes to find her account balance over the World Wide Web. Such
a user may access a form, where she enters her account number. An application program at the Web server
then retrieves the account balance, using the given account number, and passes this information back to
the user.The typical user interface for naive users is a forms interface, where the user can fill in appropriate
fields of the form. Naive users may also simply read reports generated from the database.

Application programmers are computer professionals who write application programs. Application
programmers can choose from many tools to develop user interfaces. Rapid application development (RAD)
tools are tools that enable an application programmer to construct forms and reports without writing a
program. There are also special types of programming languages that combine imperative control
structures (for example, for loops, while loops and if-then-else statements) with statements of the data
manipulation language. These languages, sometimes called fourth-generation languages, often include
special features to facilitate the generation of forms and the display of data on the screen. Most major
commercial database systems include a fourth generation language.

Sophisticated users interact with the system without writing programs. Instead, they form their requests
in adatabase query language. They submit each such query to a query processor, whose function is to
break down DML statements into instructions that the storage manager understands. Analysts who submit
queries to explore data in the database fall in this category.

Online analytical processing (OLAP) tools simplify analysts’ tasks by letting them view summaries of data
in different ways. For instance, an analyst can see total sales by region (for example, North, South, East,
and West), or by product, or by a combination of region and product (that is, total sales of each product
in each region). The tools also permit the analyst to select specific regions, look at data in more detail
(for example, sales by city within a region) or look at the data in less detail (for example, aggregate
products together by category).

Another class of tools for analysts is data mining tools, which help them find certain kinds of patterns in
data. Specialized users are sophisticated users who write specialized database applications that do not fit into
the traditional data-processing framework.

Among these applications are computer-aided design systems, knowledge base and expert systems, systems
that store data with complex data types (for example, graphics data and audio data), and environment-
modeling systems.

Database Architecture:

We are now in a position to provide a single picture (Figure 1.3) of the various components of a database
system and the connections among them.

The architecture of a database system is greatly influenced by the underlying computer system on which
thedatabase system runs. Database systems can be centralized, or client-server, where one server
machine executes work on behalf of multiple client machines. Database systems can also be designed to
exploit parallel computer architectures. Distributed databases span multiple geographically separated
machines.

Storage managser .

-

e o s - ———————— ————— —— — —— ————

disk storage

[data dictionary]

datas —I statistical data I

Figure 1.3: Database System Architecture

A database system is partitioned into modules that deal with each of the responsibilities of the overall system. The functional
components of a database system can be broadly divided into the storage manager and the query processor components.
The storage manager is important because databases typically require a large amount of storage space. The query processor is
important because it helps the database system simplify and facilitate access to data.

It is the job of the database system to translate updates and queries written in a nonprocedural language, at the logical level,
into an efficient sequence of operations at the physical level.

Database applications are usually partitioned into two or three parts, as in Figure 1.4. In a two-tier architecture, the
application resides at the client machine, where it invokes database system functionality at the server machine through
query language statements. Application program interface standards like ODBC and JDBCare used for interaction
between the client and the server. In contrast, in a three-tier architecture, the client machine acts as merely a front end

and does not contain any direct database calls. Instead, the client end communicates with an application server, usually
through a forms interface.

The application server in turn communicates with a database system to access data. The business logic of the application, which
says what actions to carry out under what conditions, is embedded in the application server, instead of being distributed across
multiple clients. Three-tier applications are more appropriate for large applications, and for applications that run on the
WorldWideWeb.

'/ \ / \
| | ‘ ‘
: user : user {
: client : p— |
| | |
I | I
! | |

A | S : |
| application | | | application client | |
v L \ /

network network

application server

|

database system

database system

server

|
|
I
|
|
|
I
|
!

o ———— o —— —

(a) Two-tier architecture (b) Three-tier architecture

Figure 1.4: Two-tier and three-tier architectures.

Query Processor:
The query processor components include
DDL interpreter, which interprets DDL statements and records the definitions in the data dictionary.
DML compiler, which translates DML statements in a query language into an evaluation plan
consisting of low-level instructions that the query evaluation engine understands.
A query can usually be translated into any of a number of alternative evaluation plans that all give the
same result. The DML compiler also performs query optimization, that is, it picks the lowest cost

evaluation plan from among the alternatives.
Query evaluation engine, which executes low-level instructions generated by the DML compiler.

Storage Manager:

A storage manager is a program module that provides the interface between the lowlevel data stored in the
database and the application programs and queries submitted to the system. The storage manager is
responsible for the interaction with the file manager. The raw data are stored on the disk using the file system,
which is usually provided by a conventional operating system. The storage manager translates the various
DML statements into low-level file-system commands. Thus, the storage manager is responsible for
storing, retrieving, and updating data in the database.

The storage manager components include:

Authorization and integrity manager, which tests for the satisfaction of integrity constraints and
checks the authority of users to access data.

Transaction manager, which ensures that the database remains in a consistent (correct) state
despitesystem failures, and that concurrent transaction executions proceed without conflicting.

File manager, which manages the allocation of space on disk storage and the data structures used
to represent information stored on disk.

Buffer manager, which is responsible for fetching data from disk storage into main memory, and
deciding what data to cache in main memory. The buffer manager is a critical part of the database
system, since it enables the database to handle data sizes that are much larger than the size of main memory.

Transaction Manager:

A transaction is a collection of operations that performs a single logical function in a database application.
Each transaction is a unit of both atomicity and consistency. Thus, we require that transactions do not
violateany database-consistency constraints. That is, if the database was consistent when a transaction
started, thedatabase must be consistent when the transaction successfully terminates. Transaction -
manager ensures that the database remains in a consistent (correct) state despite system failures (e.g.,
power failures and operating system crashes) and transaction failures.

UNIT 11

DATABASE DESIGN

Conceptual Database Design - Entity Relationship(ER) Modeling:

Database Design Techniques
1. ER Modeling (Top down Approach)
2. Normalization (Bottom Up approach)

What is ER Modeling?

A graphical technique for understanding and organizing the data independent of the actual database
implementation

We need to be familiar with the following terms to go further.

Entity

Any thing that has an independent existence and about which we collect data. It is also known as entity type. In ER
modeling, notation for entity is given below.

Entity instance
Entity instance is a particular member of the entity type.Example

for entity instance : A particular employee Regular Entity

An entity which has its own key attribute is a regular entity.

Example for regular entity : Employee.

Weak entity

An entity which depends on other entity for its existence and doesn't have any key attribute of its own is a weak
entity.

Example for a weak entity : In a parent/child relationship, a parent is considered as a strong entity and the child is a weak
entity.

In ER modeling, notation for weak entity is given below.

Attributes
Properties/characteristics which describe entities are called attributes.In ER
modeling, notation for attribute is given below.

Domain of Attributes

The set of possible values that an attribute can take is called the domain of the attribute. For example, the attribute day may
take any value from the set {Monday, Tuesday ... Friday}. Hence this set can be termed as the domain of the attribute
day.

Key attribute
The attribute (or combination of attributes) which is unique for every entity instance is called key attribute.

E.g the employee_id of an employee, pan_card_number of a person etc.If the key attribute consists of two or more
attributes in combination, it is called a composite key.

In ER modeling, notation for key attribute is given below.

Simple attribute

If an attribute cannot be divided into simpler components, it is a simple attribute. Example for

simple attribute : employee_id of an employee.

Composite attribute

If an attribute can be split into components, it is called a composite attribute.

Example for composite attribute : Name of the employee which can be split into First_name, Middle_name, and Last_name.

Single valued Attributes:
If an attribute can take only a single value for each entity instance, it is a single valued attribute. example for

single valued attribute : age of a student. It can take only one value for a particular student. Multi-valued
Attributes
If an attribute can take more than one value for each entity instance, it is a multi-valued attribute. Multi-valued

example for multi valued attribute : telephone number of an employee, a particular employee may have multiple telephone
numbers.

In ER modeling, notation for multi-valued attribute is given below.

Stored Attribute
An attribute which need to be stored permanently is a stored attributeExample
for stored attribute : name of a student
Derived Attribute
An attribute which can be calculated or derived based on other attributes is a derived attribute.
Example for derived attribute : age of employee which can be calculated from date of birth and current date. In ER
modeling, notation for derived attribute is given below.

Relationships
Associations between entities are called relationships

Example : An employee works for an organization. Here "works for" is a relation between the entities employee and
organization.

In ER modeling, notation for relationship is given below.

Relationship

However in ER Modeling, To connect a weak Entity with others, you should use a weak relationship notation as
given below

Relationship

Degree of a Relationship

Degree of a relationship is the number of entity types involved. The n-ary relationship is the general form for
degree n. Special cases are unary, binary, and ternary ,where the degree is 1, 2, and 3, respectively.

Example for unary relationship : An employee ia a manager of another employeeExample for binary relationship :
An employee works-for department.

Example for ternary relationship : customer purchase item from a shop keeper
Cardinality of a Relationship

Relationship cardinalities specify how many of each entity type is allowed. Relationships can have four possible
connectivities as given below.

1. One to one (1:1) relationship

2. One to many (1:N) relationship
3. Many to one (M:1) relationship
4. Many to many (M:N) relationship

The minimum and maximum values of this connectivity is called the cardinality of the relationship

Example for Cardinality - One-to-One (1:1)
Employee is assigned with a parking space.

Employee Parking Space

One employee is assigned with only one parking space and one parking space is assigned to only one
employee. Hence it is a 1:1 relationship and cardinality is One-To-One (1:1)

In ER modeling, this can be mentioned using notations as given below

Assigned

Employee With

Parking Space

Example for Cardinality - One-to-Many (1:N)
Organization has employees

Organization Employee

One organization can have many employees , but one employee works in only one organization. Hence it
is @ 1:N relationship and cardinality is One-To-Many (1:N)

In ER modeling, this can be mentioned using notations as given below

Organization T

Example for Cardinality - Many-to-One (M :1)
It is the reverse of the One to Many relationship. employee works in organization

Employee organization

One employee works in only one organization But one organization can have many employees. Hence
it is a M:1 relationship and cardinality is Many-to-One (M :1)

In ER modeling, this can be mentioned using notations as given below.

L 0

Cardinality - Many-to-Many (M:N)

Students enrolls for courses

Student Course

One student can enroll for many courses and one course can be enrolled by many students. Hence it is a M:N
relationship and cardinality is Many-to-Many (M:N)

In ER modeling, this can be mentioned using notations as given below

Student —— Course
M N

Relationship Participation
1. Total

In total participation, every entity instance will be connected through the relationship to another instance of
the other participating entity types

2. Partial
Example for relationship participation
Consider the relationship - Employee is head of the department.

Here all employees will not be the head of the department. Only one employee will be the head of the
department. In other words, only few instances of employee entity participate in the above relationship.
So employee entity's participation is partial in the said relationship.

However each department will be headed by some employee. So department entity's participation is total in
the said relationship.

Advantages and Disadvantages of ER Modeling (Merits and Demerits of ER Modeling)
Advantages

1. ER Modeling is simple and easily understandable. It is represented in business users language and it
can be understood by non-technical specialist.

2. Intuitive and helps in Physical Database creation.

3. Can be generalized and specialized based on needs.

4. Can help in database design.

5. Gives a higher level description of the system.

Disadvantages

1. Physical design derived from E-R Model may have some amount of ambiguities or inconsistency.
2. Sometime diagrams may lead to misinterpretations

Relational Model

The relational model is today the primary data model for commercial data processing applications. It attained
its primary position because of its simplicity, which eases the job of the programmer, compared to earlier
data models such as the network model or the hierarchical model. In this, we first study the fundamentals
of the relational model. A substantial theory exists for relational databases.

Structure of Relational Databases:

A relational database consists of a collection of tables, each of which is assigned a unique name. For example,
consider the instructor table of Figure:1.5, which stores information about instructors. The table has four
column headers: 1D, name, dept name, and salary. Each row of this table records information about an
instructor, consisting of the instructor’s 1D, name, dept name, and salary. Similarly, the course table of
Figure 1.6 storesinformation about courses, consisting of a course id, title, dept name, and credits, for
each course. Note that each instructor is identified by the value of the column ID, while each course is

identified by the value of the column course id.

Figure 1.7 shows a third table, prereqg, which stores the prerequisite courses for each course. The table has two
columns, course id and prereq id. Each row consists of a pair of course identifiers such that the second

course is a prerequisite for the first course.

Thus, a row in the prereq table indicates that two courses are related in the sense that one course is a
prerequisite for the other. As another example, we consider the table instructor, a row in the table can be
thought of as representing the relationship between a specified 1D and the corresponding values for

name,dept name,and salary value

o Hame dept_name salary
10101 | Srinivasan | Comp. Sci. | 65000
12121 W Finance QOO0
15151 Mozart MMusic 40000
22222 | Einstein Physics Q5000
32343 | El 5aid History aO000
33456 | Gold Physics S7000
45565 | Katz Comp. Sci. | 75000
58583 | Califeri History 62000
76543 | Singh Finance S0000
Je766 | Crick Biclogy S2000
83821 Brandt Comp. Sci. | 92000
Q53345 | Kim Elec. Eng. S0000

In general, a row in a table represents a relationship among a set of values. Since a table is a collection of such
relationships, there is a close correspondence between the concept of table and the mathematical concept of
relation, from which the relational data model takes its name. In mathematical terminology, a tuple is simply
asequence (or list) of values. A relationship between n values is represented mathematically by an n-tuple of

Figure 1.5: The instructor relation (2.1)

values, i.e., a tuple with n values, which corresponds to a row in a table.

coursedd title dept_narme credits
BIO-101 | Intro. to Biology Biology 4
BIO-301 | Cenetics Biology 4
BIO-399 | Computational Biology Biclogy 3
C5-101 Intro. to Computer Science | Comp. Sci. -
C5-190 Game Design Comp. 5ci. 4
(5315 Robotics Comp. 5ci. 3
C5-319 Image Processing, Comp. 5ci. 3
C5-M7 Database System Concepts | Comp. 5ci. 3
EE-151 Intro. b0 Digital Systems Elec. Eng. 3
FIMN-201 | Investment Banking Finance 3
HIS-351 | World History History 3
MU-199 | Music Video Production Music 3
PHY-101 | Physical Principles Physics -

Figure: 1.6: The course relation (2.2)

coursedd prereqid
E |‘-_:|| I;l l‘- |
BIO-399 [BIO-101
C5-190 | C5-1M
C5-315 | C5-1M
5319 | 5101
C5-347 | C5-1
EE-181 PHY-101

Figure: 1.7: The prereq relation. (2.3)

Thus, in the relational model the term relation is used to refer to a table, while the term tuple is used to
refer toa row. Similarly, the term attribute refers to a column of a table.

Examining Figure 1.5, we can see that the relation instructor has four attributes:
ID, name, dept name, and salary.

We use the term relation instance to refer to a specific instance of a relation, i.e., containing a specific
set ofrows. The instance of instructor shown in Figure 1.5 has 12 tuples, corresponding to 12 instructors.

In this topic, we shall be using a number of different relations to illustrate the various concepts underlying the relational data
model. These relations represent part of a university. They do not include all the data an actualuniversity database would
contain, in order to simplify our presentation.

The order in which tuples appear in a relation is irrelevant, since a relation is a set of tuples. Thus, whether the tuples
of a relation are listed in sorted order, as in Figure 1.5, or are unsorted, as in Figure 1.8, does not matter; the
relations in the two figures are the same, since both contain the same set of tuples. For ease of exposition,we
will mostly show the relations sorted by their first attribute. For each attribute of a relation, there is a set of
permitted values, called the domain of that attribute. Thus, the domain of the salary attribute of the instructor
relation is the set of all possible salary values, while the domain of the name attribute is the set of all possible
instructor names.

We require that, for all relations r, the domains of all attributes of r be atomic. A domain is atomic if elements of
the domain are considered to be indivisible units.

D name depiname | salary
22222 | Einstein Physics Q5000
12121 | Wu Finance Q0000
32343 | El Said History 60000
45565 | Katz Comp. Sci. | 75000
08345 | Kim Elec. Eng. | 80000
76766 | Crick Biology 72000
10101 | Srinivasan | Comp. 5ci. | 65000
SBLE3 | Califieri History 62000
83821 | Brandt Comp. Sci. | 92000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
76543 | Singh Finance 80000

Figure: 1.8: Unsorted display of the instructor relation. (2-4)

For example, suppose the table instructor had an attribute phone number, which can store a set of phone
numbers corresponding to the instructor. Then the domain of phone number would not be atomic, since an
element of the domain is a set of phone numbers, and it has subparts, namely the individual phone numbers

in the set.

The important issue is not what the domain itself is, but rather how we use domain elements in our database.
Suppose now that the phone number attribute stores a single phone number. Even then, if we split the value
from the phone number attribute into a country code, an area code and a local number, we would be treating it
as a nonatomic value. If we treat each phone number as a single indivisible unit, then the attribute phone
number would have an atomic domain.

The null value is a special value that signifies that the value is unknown or does not exist. For example,
suppose as hefore that we include the attribute phone number in the instructor relation. It may be that an
instructor does not have a phone number at all, or that the telephone number is unlisted. We would then
have to use the nullvalue to signify that the value is unknown or does not exist. We shall see later that null
values cause a number of difficulties when we access or update the database, and thus should be eliminated
If at all possible. We shall assume null values are absent initially.

Database Schema

When we talk about a database, we must differentiate between the database schema, which is the logical
design of the database, and the database instance, which is a snapshot of the data in the database at a
given

instant in time. The concept of a relation corresponds to the programming-language notion of a variable,
whilethe concept of a relation schema corresponds to the programming-language notion of type definition.

In general, a relation schema consists of a list of attributes and their corresponding domains. The concept
of arelation instance corresponds to the programming-language notion of a value of a variable. The value of a
given variable may change with time;

dept_name building budget

Biology Watson Q0000
Comp. 5ci. | Taylor 100000
Elec. Eng. | Taylor 85000
Finance Painter 120000
History Fainter 50000
Music Packard 80000
Physics Watson 70000

Figure 1.9: The department relation.(2-5)

similarly the contents of a relation instance may change with time as the relation is updated. In contrast,
the schema of a relation does not generally change. Although it is important to know the difference
between a relation schema and a relation instance, we often use the same name, such as instructor, to
refer to both the schema and the instance. Where required, we explicitly refer to the schema or to the instance,
for example “the instructor schema,” or “an instance of the instructor relation.” However, where it is
clear whether we mean theschema or the instance, we simply use the relation name.

Consider the department relation of Figure 1.9. The schema for that relation is
department (dept name, building, budget)

Note that the attribute dept name appears in both the instructor schema and the department schema. This
duplication is not a coincidence. Rather, using common attributes in relation schemas is one way of
relating tuples of distinct relations.

For example, suppose we wish to find the information about all the instructors who work in the Watson
building. We look first at the department relation to find the dept name of all the departments housed in Watson.
Then, for each such department, we look in the instructor relation to find the information about the
instructor associatedwith the corresponding dept name.

Let us continue with our university database example. Each course in a university may be offered multiple

times, across different semesters, or even within a semester.We need a relation to describe each individual

offering, or section, of the class. The schema is
section (course id, sec id, semester, year, building, room number, time slot id)

Figure 1.10 shows a sample instance of the section relation. We need a relation to describe the
association between instructors and the class sections that they teach. The relation schema to describe this

association is

teaches (1D, cou

rse id, sec id, semester, year)

coursedd | secad semester | wear | building room_number timeslofid
BIO-101 1 Summer | 2009 | Painter 514 B
BIO-301 1 Summer | 2010 | Painter 514 A
C5-101 1 Fall 2009 | Packard 101 H
C5101 1 Spring 2010 | Packard 1M F
C5-190 1 Spring 2009 | Taylor 328 E
C5-190 2 Spring 2000 | Taylor 3128 A
C5-315 1 Spring 2010 | Wakson 120 D
C5-319 1 Spring 2010 | Wakson 100 B
C5-319 2 Spring 2010 | Taylor 3128 C
C5-47 1 Fall 2000 | Taylor 3128 A
EE-1581 1 Spring 2000 | Taylor 3128 C
FIN-201 1 Spring 2010 | Packard 1M B
HIS-351 1 Spring 2010 | Painker 514 C
MU-194 1 Spring 2010 | Packard 1M1 D
PHY-101 1 Fall 2009 | Watson 100 A
Figure 1.10: The section relation.(2-6)

Figure 1.11 shows a sample instance of the teaches relation. As you can imagine, there are many more relations
maintained in a real university database. In addition to those relations we have listed already, instructor,
department, course, section, prereq, and teaches,we use the following relations in this text:

45565 | C5-1M
45565 | C5-319
76766 | BIO-101
76766 | BIO-201

ID courseid secid | semester | year
10101 | €510 Fall 2009
10101 | C5-315 Spring 2010
10101 | C5-347 Fall 2009
12121 | FIN-201 Spring 2010
15151 | MU-199 Spring 2010
22272 | PHY-101 Fall 2009
32343 | HIS-3R1 Spring 2010

Spring 2010
Spring 2010
Summer | 2009
Summer | 2010

= fed] = b b b b b b b b b b

83821 | Cs-190 Spring | 2009
83821 | Cs-190 Spring | 2009
83821 | Cs-319 Spring | 2010
08345 | EE-181 Spring | 2000
Figure: 1.11: The teaches relation.(2-7)

« student (ID, name, dept name, tot cred)
* advisor (s id, i id)
« takes (ID, course id, sec id, semester, year, grade)
« classroom (building, room number, capacity)

« time slot (time slot id, day, start time, end time)

Keys

We must have a way to specify how tuples within a given relation are distinguished. This is expressed in
termsof their attributes. That is, the values of the attribute values of a tuple must be such that they can
uniquely identify the tuple. In other words, no two tuples in a relation are allowed to have exactly the
same value for allattributes.

Asuperkey is a set of one or more attributes that, taken collectively, allow us to identify uniquely a tuple
in therelation. For example, the 1D attribute of the relation instructor is sufficient to distinguish one instructor
tuple from another. Thus, ID is a superkey. The name attribute of instructor, on the other hand, is not a
superkey, because several instructors might have the same name. Formally, let R denote the set of
attribukes in the schlema of relation r. If we say that a subset K of R is a superkey for r, we are restricting
consideration to instances of relations r in which no two distinct tuples have the same values on all
attributes in K. That is, if t1 and t2 are inrand t1 = t2, then t1.K = t2.K.

A superkey may contain extraneous attributes. For example, the combination of ID and name is a superkey
for the relation instructor. If K is a superkey, then so is any superset of K. We are often interested in
superkeys forwhich no proper subset is a superkey. Such minimal superkeys are called candidate keys.

It is possible that several distinct sets of attributes could serve as a candidate key. Suppose that a
combination of name and dept name is sufficient to distinguish among members of the instructor relation.
Then, both {ID} and

{name, dept name} are candidate keys. Although the attributes ID and name together can distinguish instructor
tuples, their combination, {ID, name}, does not form a candidate key, since the attribute 1D alone is a candidate
key.

We shall use the term primary key to denote a candidate key that is chosen by the database designer as
theprincipal means of identifying tuples within a relation. A key (whether primary, candidate, or super) is
a property of the entire relation, rather than of the individual tuples. Any two individual tuples in the
relation are prohibitedfrom having the same value on the key attributes at the same time. The designation
of a key represents a constraint in the real-world enterprise being modeled.

Primary keys must be chosen with care. As we noted, the name of a person is obviously not sufficient, because
there may be many people with the same name. In the United States, the social-security number attribute
of aperson would be a candidate key. Since non-U.S. residents usually do not have social-security
numbers, international enterprises must generate their own unique identifiers.

An alternative is to use some unique combination of other attributes as a key. The primary key should be chosen
such that its attribute values are never, or very rarely, changed. For instance, the address field of a person
should not be part of the primary key, since it is likely to change. Social-security numbers, on the other hand,
are guaranteed never to change. Unique identifiers generated by enterprises generally do not change, except if
two enterprises merge; in such a case the same identifier may have been issued by both enterprises, and
a reallocation of identifiers may be required to make sure they are unique.

It is customary to list the primary key attributes of a relation schema before the other attributes; for example,
the dept name attribute of department is listed first, since it is the primary key. Primary key attributes
are also underlined. A relation, say r1, may include among its attributes the primary key of another

relation, say r2. Thisattribute is called a foreign key from r1, referencing r2.

The relation r1 is also called the referencing relation of the foreign key dependency, and r2 is called
thereferenced relation of the foreign key. For example, the attribute dept name in instructor is a foreign
key frominstructor, referencing department, since dept name is the primary key of department. In any
database instance, given any tuple, say ta, from the instructor relation, there must be some tuple, say tb, in
the department relationsuch that the value of the dept name attribute of ta is the same as the value of the
primary key, dept name, of t.

Now consider the section and teaches relations. It would be reasonable to require that if a section exists
for acourse, it must be taught by at least one instructor; however, it could possibly be taught by more
than one instructor. To enforce this constraint, we would require that if a particular (course id, sec id,
semester, year) combination appears in section, then the same combination must appear in teaches. However,
this set of values does not form a primary key for teaches, since more than one instructor may teach one
such section. As a result, we cannot declare a foreign key constraint from section to teaches (although we can
define a foreign key constraint in the other direction, from teaches to section).

The constraint from section to teaches is an example of a referential integrity constraint; a referential
integrity constraint requires that the values appearing in specified attributes of any tuple in the referencing
relation alsoappear in specified attributes of at least one tuple in the referenced relation.

Schema Diagrams

A database schema, along with primary key and foreign key dependencies, can be depicted by
schemadiagrams. Figure 1.12 shows the schema diagram for our university organization. Each relation
appears as ahox, with the relation name at the top in blue, and the attributes listed inside the box. Primary
key attributes are shown underlined. Foreign key dependencies appear as arrows from the foreign key
attributes of the referencing relation to the primary key of the referenced relation.

Schema Diagram for University Database

student
takes
» 1D <
I_D _I, name
course_ic .
TR dept_name
2 "—"1 tot_cred
scniester —
year
- S."I"l"l.’
section course
M course id e —3 course id department advisor
> f##!‘ [— title dept_name s_id
——» semester > dept_name —> building i_d
year [credits S =
—1 building time_slot budget
| room_pno —| time slot id
time_slot_id day
start_tine
end_tinme
prereq instructor
classroom L course id D >
L building namme
Ly room no dept_name
capacity salary

Referential integrity constraints other than foreign key constraints are not shown explicitly in schema
diagrams. We will study a different diagrammatic representation called the entity-relationship diagram.

Introduction to relational model-Tabular, Representation of Various ER Schemas
What is an ER diagram?

An Entity Relationship Diagram (ERD) is a visual representation of different entities
within a system and how they relate to each other. For example, the elements writer,
novel, and a consumer may be described using ER diagrams the following way:

ER DIAGRAM FOR STUDENT ENROLLMENT SYSTEM

Fname Date of
Enroiimen
\ - /////\\ -
e < i > I

.
T~

N
,/" \\\
k '/'
~—_ = V4
| Lecture

% |

Subject co
:
‘ |
"y [
|

|
|
|
|
|

Gl a0 \\\ —
L_Fir Lecturer _4—./\Lec\urgs //>—4< um [—
— i
= \ .\\

Specific objectives of an ER diagram are to provide: A unified view of the entities,
attributes, and relationships that comprise the overall data structure of the database.

Weak entity set in ER Diagram:

An entity type should have a key attribute which uniquely identifies each entity in the
entity set, but there exists some entity type for which key attribute can’t be defined. These
are called Weak Entity type.

The entity sets which do not have sufficient attributes to form a primary key are known
as weak entity sets and the entity sets which have a primary key are known as strong entity

sets.

https://creately.com/diagram/example/h98ohk101/high%20school
https://www.geeksforgeeks.org/dbms-keys-candidate-super-primary-alternate-and-foreign/

As the weak entities do not have any primary key, they cannot be identified on their own,
so they depend on some other entity (known as owner entity). The weak entities have
total participation constraint (existence dependency) in its identifying relationship with
owner identity. Weak entity types have partial keys. Partial Keys are set of attributes with
the help of which the tuples of the weak entities can be distinguished and identified.

Note — Weak entity always has total participation but Strong entity may not have total
participation.

Weak entity is depend on strong entity to ensure the existence of weak entity. Like strong
entity, weak entity does not have any primary key, It has partial discriminator key. Weak
entity is represented by double rectangle. The relation between one strong and one weak
entity is represented by double diamond.

/'\ //'\ /\\\

/’\
L-name> L-date
Cid c name (\ /)

\ / Weak Entity
\ e
Customer | — Loan

|

Strong Entity

Weak entities are represented with double rectangular box in the ER Diagram and
the identifying relationships are represented with double diamond. Partial Key
attributes are represented with dotted lines.

Employee Dependants

https://www.geeksforgeeks.org/database-management-system-er-model/
https://www.geeksforgeeks.org/difference-between-strong-and-weak-entity/
https://www.geeksforgeeks.org/difference-between-strong-and-weak-entity/

Example-1:

In the below ER Diagram, ‘Payment’ is the weak entity. ‘Loan Payment’ is the identifying
relationship and ‘Payment Number’ is the partial key. Primary Key of the Loan along
with the partial key would be used to identify the records.

Loan pumber Amount @ent number @

0ff1cer 0an Pa === | Paynent
Views in SQL
o Views in SQL are considered as a virtual table. A view also contains rows and
columns.
o To create the view, we can select the fields from one or more tables present in the
database.
o A view can either have specific rows based on certain condition or all the rows of a
table.
Sample table:
Student_Detail
STU_ID NAME ADDRESS
1 Stephan Delhi
2 Kathrin Noida
3 David Ghaziabad

4 Alina Gurugram

Student_Marks

STU_ID NAME MARKS AGE
1 Stephan 97 19
2 Kathrin 86 21
3 David 74 18
4 Alina 90 20
5 John 96 18

1. Creating view

A view can be created using the CREATE VIEW statement. We can create a view from a single
table or multiple tables.

Syntax:

CREATE VIEW view_name AS
SELECT column1, column2.....
FROM table_name
WHERE condition;

2. Creating View from a single table

In this example, we create a View named DetailsView from the table Student_Detail.
Query:

CREATE VIEW DetailsView AS
SELECT NAME, ADDRESS
FROM Student_Details
WHERE STU_ID < 4;

Just like table query, we can query the view to view the data.
SELECT * FROM DetailsView;

Output:
NAME ADDRESS
Stephan Delhi
Kathrin Noida

David Ghaziabad

3. Creating View from multiple tables

View from multiple tables can be created by simply include multiple tables in the SELECT

statement.

In the given example, a view is created named MarksView from two tables Student_Detail and

Student_Marks.

Query:

CREATE VIEW MarksView AS

SELECT Student_Detail. NAME, Student_Detail. ADDRESS, Student_Marks.MARKS

FROM Student_Detail, Student_Mark
WHERE Student_Detail. NAME = Student_Marks.NAME;
To display data of View MarksView:

SELECT * FROM MarksView:

NAME ADDEESS
Stephan Delhi
Kathrin Noida
David Ghaziabad
Alina Gurugram

4. Deleting View

A view can be deleted using the Drop View statement.
Syntax

DROP VIEW view_name;

Example:

If we want to delete the View MarksView, we can do this as:

DROP VIEW MarksView;

86

74

90

UNIT 111
STRUCTURED QUERY LANGUAGE

Types of SQL Commands

here are five types of SQL commands: DDL, DML, DCL, TCL, and DQL.

SOL Command

] |

DDL DML DCL TCL

— Create — Insert — Grant — Commit

— Drop — Update — Revoke — Rollback

— Alter — Delete — Save
point

— Truncate

Data Definition Language (DDL)

DQL

— Select

o DDL changes the structure of the table like creating a table, deleting a table, altering a table, etc.

o All the command of DDL are auto-committed that means it permanently save all the changes in the

database.

Here are some commands that come under DDL:

o CREATE
o ALTER

o DROP
o TRUNCATE

a. CREATE It is used to create a new table in the database.

Syntax:

CREATE TABLE TABLE_NAME (COLUMN_NAME DATATYPES].....]);
Example:
CREATE TABLE EMPLOYEE(Name VARCHAR2(20), Email VARCHAR2(100), DOB DATE);

b. DROP: It is used to delete both the structure and record stored in the table.

Syntax

DROP TABLE table_name;

Example

DROP TABLE EMPLOYEE;

c. ALTER: It is used to alter the structure of the database. This change could be either to modify
the characteristics of an existing attribute or probably to add a new attribute.

Syntax:
To add a new column in the table
. ALTER TABLE table_name ADD column_name COLUMN-definition;

To modify existing column in the table:

. ALTER TABLE table_name MODIFY (column_definitions....);

EXAMPLE

. ALTER TABLE STU_DETAILS ADD(ADDRESS VARCHARZ2(20));
. ALTER TABLE STU_DETAILS MODIFY (NAME VARCHAR2(20));

d. TRUNCATE: It is used to delete all the rows from the table and free the space containing the table.

Syntax:

. TRUNCATE TABLE table_name;

Example:

. TRUNCATE TABLE EMPLOYEE;

2. Data Manipulation Language

NN =

2.
3.

o DML commands are used to modify the database. It is responsible for all form of changes in the

database.

o The command of DML is not auto-committed that means it can't permanently save all the changes

in the database. They can be rollback.

Here are some commands that come under DML:

o INSERT
o UPDATE
o DELETE

a. INSERT: The INSERT statement is a SQL query. It is used to insert data into the row of a table.

Syntax:

1. INSERT INTO TABLE_NAME
2. (col1, col2, col3,.... col N)
3. VALUES (valuel, value2, values, valueN);

Or

INSERT INTO TABLE_NAME
VALUES (value1, value2, value3, valueN);

For example:

INSERT INTO javatpoint (Author, Subject) VALUES ("Sonoo", "DBMS");

b. UPDATE: This command is used to update or modify the value of a column in the table.
Syntax:

UPDATE table_name SET [column_name1= valueT,..column_nameN = valueN] [WHERE CONDITION]

For example:

UPDATE students
SET User_Name = 'Sonoo'
WHERE Student_Id = '3’

c. DELETE: It is used to remove one or more row from a table.
Syntax:
DELETE FROM table_name [WHERE condition];

For example:

1. DELETE FROM javatpoint
2. WHERE Author="Sonoo";
3. Data Control Language

DCL commands are used to grant and take back authority from any database user.

Here are some commands that come under DCL:

o Grant

o Revoke
a. Grant: It is used to give user access privileges to a database.
Example
1. GRANT SELECT, UPDATE ON MY_TABLE TO SOME_USER, ANOTHER_USER;
b. Revoke: It is used to take back permissions from the user.

Example

1. REVOKE SELECT, UPDATE ON MY_TABLE FROM USERT1, USERZ2;
4. Transaction Control Language

TCL commands can only use with DML commands like INSERT, DELETE and UPDATE only.

These operations are automatically committed in the database that's why they cannot be used
while creating tables or dropping them.

Here are some commands that come under TCL:

o COMMIT
o ROLLBACK
o SAVEPOINT

a. Commit: Commit command is used to save all the transactions to the database.
Syntax:
1. COMMIT;

Example:

1. DELETE FROM CUSTOMERS
2. WHERE AGE = 25;
COMMIT;

b. Rollback: Rollback command is used to undo transactions that have not already been saved to
the database.

Syntax:

ROLLBACK;

Example:

DELETE FROM CUSTOMERS
2. WHERE AGE = 25;
3. ROLLBACK;

c. SAVEPOINT: It is used to roll the transaction back to a certain point without rolling back the
entire transaction.

Syntax:

1. SAVEPOINT SAVEPOINT_NAME;
5. Data Query Language

DQL is used to fetch the data from the database.

It uses only one command:

o SELECT

a. SELECT: This is the same as the projection operation of relational algebra. It is used to select
the attribute based on the condition described by WHERE clause.

Syntax:

SELECT expressions
FROM TABLES
WHERE conditions;

For example:

SELECT emp_name
FROM employee
WHERE age > 20;
UNION, INTERSECT, and EXCEPT:
1. UNION, UNION ALL
2. INTERSECT
3. EXCEPT

Create Table

. CREATE TABLE Speakers

(
Name VARCHAR(25),

)

. CREATE TABLE Authors

(
Name VARCHAR(25),

1
2
3
4.
5.
6
7
8
9.)

Insert data into the table

1. INSERT INTO Speakers VALUES ('Sachin')
2. INSERT INTO Speakers VALUES ('Rahul')
3. INSERT INTO Speakers VALUES ('Kamplesh')
4. INSERT INTO Speakers VALUES ('Chirag')
5.
6. INSERT INTO Authors VALUES ('Sachin')
7. INSERT INTO Authors VALUES ('Rahul')
8. INSERT INTO Authors VALUES ('Pratik')
9. INSERT INTO Authors VALUES ('Rajesh"')
10. INSERT INTO Authors VALUES ('Anil')
Speakers
[Resus
1
2
3 Kamplesh
4 Chirag
Authors

= Resuls

N [g —

UNION

Union is used to combine the results of two queries into a single result set of all matching rows. Both the
gueries must result in the same number of columns and compatible data types in order to unite. All
duplicate records are removed automatically unless UNION ALL is used.

Generally, it can be useful in the applications where tables aren't perfectly normalized, for example, a
data warehouse application.

Syntax

{ <query_specification> | (<query_expression>) }
{ UNION | UNION ALL}

{ <query_specification> | (<query_expression>) }
Example-1

You want to invite all the Speakers and Authors for the annual conference. Hence, how will you prepare
the invitation list?

select name from Speakers
union

select name from Authors
. order by name

A wWN R

Output

T et

Rajesh
Sachin

= N e W R =

As you can see here, the default order is ascending order and you have to use in the last query instead
of both queries.

UNION ALL

It will not remove duplicate records. It can be faster than UNION.
Example-2

You want to give a prize to all the Speakers and Authors at the annual conference. Hence, how will you
prepare the prize list?

1. select name, 'Speaker' as 'Role' from Speakers
2. union all
3. select name, 'Author' as 'Role' from Authors
4. order by name

Output

I Results
Rale

i Author

f Speaker

Kamplesh Speaker
Pratik Author
Rahul Austhor
Rahul Speaker
Rajesh Author
Sachin Speaker
Sachin Authar

D00 =] N e Lo R

INTERSECT

It is used to take the result of two queries and returns the only those rows which are common in both
result sets. It removes duplicate records from the final result set.

Syntax

{ <query_specification> | (<query_expression>) }
{ EXCEPT | INTERSECT }

{ <query_specification> | (<query_expression>) }

Example-3

You want the list of people who are Speakers and they are also Authors. Hence, how will you prepare
such a list?

1. select name from Speakers
2. intersect
3. select name from Authors
4. order by name

Output

53 Fouts [Mossoges

EXCEPT

It is used to take the distinct records of two one query and returns the only those rows which do not
appear in the second result set.

Syntax

{ <query_specification> | (<query_expression>) }
{ EXCEPT | INTERSECT }
{ <query_specification> | (<query_expression>) }

Example-4

You want the list of people who are only Speakers and they are not Authors. Hence, how will you prepare
such a list?

select name from Speakers
. except

select name from Authors
. order by name

A wWwNR

Output

Example-5

You want the list of people who are only Authors and they are not Speakers. Hence, how will you prepare
such a list?

select name from Authors
. except

select name from Speakers
order by name

A WN PR

Output

3 Feats

1t Ani
Pratik:
3 Rajesh

Basic Rules on Set Operations

e Result sets of all the queries must be the same number of columns.

e In all result sets the data type of each of the columns must be well matched and compatible with
the data type of its corresponding columns in another result set.

e For sorting the result, the ORDER BY clause can be applied to the last query.

Difference between UNION, UNION
ALL, INTERSECT, and EXCEPT
Operators

UNION UNION ALL

INTERSECT EXCEPT
Summary

Now | believe you understand the key important things about UNION, UNION ALL, INTERSECT,
EXCEPT in MS SQL.

UNION combines results from both tables.

UNION ALL combines two or more result sets into a single set, including all duplicate rows.
INTERSECT takes the rows from both the result sets which are common in both.

EXCEPT takes the rows from the first result data but does not in the second result set.

EQUI Join and NON EQUI Join:
Example —
Let’s Consider the two tables given below.

Table name — Student
In this table, you have I'd, name, class and city are the fields.
Select * from Student;

id name class city

3 Hina 3 Delhi
4 Megha 2 Delhi
6 Gouri 2 Delhi

Table name — Record

In this table, you have I'd, class and city are the fields.

Select * from Record;

Id class city

9 3 Delhi

10 2 Delhi

12 2 Delhi
1. EQUI JOIN :

EQUI JOIN creates a JOIN for equality or matching column(s) values of the relative
tables. EQUI JOIN also create JOIN by using JOIN with ON and then providing the
names of the columns with their relative tables to check equality using equal sign (=).

Syntax :
SELECT column_list

FROM tablel, table2....
WHERE tablel.column_name =
table2.column_name;

Example —
SELECT student.name, student.id, record.class, record.city

FROM student, record
WHERE student.city = record.city;
Or

Syntax :
SELECT column_list

FROM tablel
JOIN table2
[ON (join_condition)]

Example —
SELECT student.name, student.id, record.class, record.city

FROM student

JOIN record

ON student.city = record.city;
Output :

Name Id class City

Hina 3 3 Delhi

Megha 4 3 Delhi

Name Id class City

Gouri 6 3 Delhi
Hina 3 2 Delhi
Megha 4 2 Delhi
Gouri 6 2 Delhi
Hina 3 2 Delhi
Megha 4 2 Delhi
Gouri 6 2 Delhi

2. NON EQUI JOIN :
NON EQUI JOIN performs a JOIN using comparison operator other than equal(=)
sign like >, <, >=, <= with conditions.

Syntax:
SELECT *

FROM table_namel, table_name2

WHERE table namel.column [> | < | »>= | <=] table_name2.column;

Example —
SELECT student.name, record.id, record.city

FROM student, record
WHERE Student.id < Record.id ;

Output :
name id City
Hina 9 Delhi
Megha 9 Delhi
Gouri 9 Delhi
Hina 10 Delhi
Megha 10 Delhi

Gouri 10 Delhi

name id City

Hina 12 Delhi
Megha 12 Delhi
Gouri 12 Delhi

NESTED QUERIES:

A nested query is a query that has another query embedded within it. The embedded query is
called a subquery.

A subquery typically appears within the WHERE clause of a query. It can sometimes appear in
the FROM clause or HAVING clause.

Example
Let’s learn about nested queries with the help of an example.
Find the names of employee who have regno=103

The query is as follows -

select E.ename from employee E where E.eid IN (select S.eid from salary S
where S.regno=103);

Student table

The student table is created as follows —

create table student (id number (10), name varchar2(20),classID number (10),
marks wvarchar2 (20)) ;

Insert into student values (1, 'pinky',3,2.4);
Insert into student wvalues (2, 'bob',3,1.44);
Insert into student wvalues (3, 'Jam',1,3.24);
Insert into student values (4, 'lucky',2,2.67);
Insert into student wvalues (5, 'ram',2,4.56);

select * from student;

Output

You will get the following output -
Id Name classID Marks
1 Pinky 3 2.4

2 Bob 3 1.44

Id
3 Jam
4 Lucky
5 Ram

Name

teacher table

classID

The teacher table is created as follows -

Example

Marks

3.24

2.67

4.56

Create table teacher (id number (10),
, classID number (10),

varchar2 (10)
Insert into
Insert into
Insert into

Insert into

teacher
teacher
teacher

teacher

name varchar (20), subject
salary number (30));

values (1, ’bhanu’,’ computer’,3,5000) ;

values (2, "rekha', "science',1,5000) ;

values (3, 'siri', 'social',NULL, 4500) ;

values (4, 'kittu', 'mathsr',2,5500) ;

select * from teacher;

Subject
Computer 3
Science 1
Social NULL
Maths 2

Output
You will get the following output -
Id Name
1 Bhanu
2 Rekha
3 Siri
4 Kittu
Class table

The class table is created as follows -

classID

5000

5000

4500

5500

Salary

Example

Create table class (id number (10), grade number (10), teacherID number (10),
noofstudents number (10)) ;

insert into class wvalues(1,8,2,20);
insert into class wvalues(2,9,3,40);
insert into class wvalues (3,10,1,38);

select * from class;

Output
You will get the following output -
Id Grade teacherID No.ofstudents
1 8 2 20
2 9 3 40
3 10 1 38

Now let’s work on nested queries

Example 1

Select AVG(noofstudents) from class where teacherID IN(

Select i1id from teacher

Where subject=’"science’ OR subject="maths’);

Output

You will get the following output -

20.0

Example 2

SELECT * FROM student
WHERE classID = (
SELECT id
FROM class
WHERE noofstudents = (
SELECT MAX (noofstudents)

FROM class));

Output

You will get the following output -

4|1lucky |2|2.67
5] ram |2]14.56

Subqueries can be categorized as correlated or uncorrelated:

« A correlated subquery refers to one or more columns from outside of the subquery.
(The columns are typically referenced inside the WHERE clause of the subquery.) A
correlated subquery can be thought of as a filter on the table that it refers to, as if the
subquery were evaluated on each row of the table in the outer query.

« Anuncorrelated subquery has no such external column references. It is an independent
query, the results of which are returned to and used by the outer query once (not per
row).

For example:

select cl, c2
from tablel where cl = (select max(x) from table?);

select cl, c2
from tablel where cl = (select x from table2 where y = tablel.c2);

Scalar vs. Non-scalar Subqueries

Subqueries can also be categorized as scalar or non-scalar:

« A scalar subguery returns a single value (one column of one row). If no rows
qualify to be returned, the subquery returns NULL.

« A non-scalar subquery returns 0, 1, or multiple rows, each of which may contain 1
or multiple columns. For each column, if there is no value to return, the subquery
returns NULL. If no rows qualify to be returned, the subquery returns 0 rows (not
NULLS).

Differences Between Correlated and Non-Correlated
Subgueries

The following query demonstrates an uncorrelated subquery in a WHERE clause. The
subquery gets the per capita GDP of Brazil, and the outer query selects all the jobs (in any
country) that pay less than the per-capita GDP of Brazil. The subquery is uncorrelated
because the value that it returns does not depend upon any column of the outer query. The
subquery only needs to be called once during the entire execution of the outer query.

https://docs.snowflake.com/en/sql-reference/constructs/where.html

select p.name, p.annual wage, p.country
from pay as p
where p.annual wage < (select per capita gdp
from international gdp
where name = 'Brazil');

The next query demonstrates a correlated subquery in a WHERE clause. The query lists
jobs where the annual pay of the job is less than the per-capita GDP in that country. This
subquery is correlated because it is called once for each row in the outer query and is
passed a value, p.country (country name), from the row.

select p.name, p.annual wage, p.country
from pay as p
where p.annual wage < (select max(per capita_ gdp)
from international gdp i
where p.country = i.name);

Aggregate Functions:

1. COUNT FUNCTION

o COUNT function is used to Count the number of rows in a database table. It can work on both

numeric and non-numeric data types.

o COUNT function uses the COUNT(*) that returns the count of all the rows in a specified table.
COUNT(*) considers duplicate and Null.

Syntax

COUNT(*)
or
COUNT([ALL|DISTINCT] expression)

Sample table:

PRODUCT_MAST

PRODUCT COMPANY QTY RATE COST

https://docs.snowflake.com/en/sql-reference/constructs/where.html

[tem1 Com1 2 10 20

[tem2 Com?2 3 25 75
ltem3 Com1 2 30 60
ltem4 Com3 5 10 50
[tem5 Com2 2 20 40
[tem6 Cpm1 3 25 75
ltem7 Com1 5 30 150
[tem8 Com1 3 10 30
[tem9 Com2 2 25 50
Item10 Com3 4 30 120

Example: COUNT()

SELECT COUNT(*)
FROM PRODUCT_MAST;

Output:

[
(@)

Example: COUNT with WHERE

SELECT COUNT(*)
FROM PRODUCT_MAST;
WHERE RATE>=20;

Output:

|

Example: COUNT() with DISTINCT

SELECT COUNT(DISTINCT COMPANY)
FROM PRODUCT_MAST;

Output:

|

Example: COUNT() with GROUP BY

SELECT COMPANY, COUNT(*)

FROM PRODUCT_MAST
GROUP BY COMPANY;

Output:

Coml 5
Com2]

Com3 2

Example: COUNT() with HAVING

SELECT COMPANY, COUNT(*)
FROM PRODUCT_MAST
GROUP BY COMPANY
HAVING COUNT(*)>2;

Output:
Coml)
Com?2 3

2. SUM Function

Sum function is used to calculate the sum of all selected columns. It works on numeric fields only.

SUM([ALL|DISTINCT] expression)

Example: SUM()

SELECT SUM(COST)
FROM PRODUCT_MAST;

Output:

670

Example: SUM() with WHERE

SELECT SUM(COST)
FROM PRODUCT_MAST
WHERE QTY>3;

Output:

320

Example: SUM() with GROUP BY

SELECT SUM(COST)
FROM PRODUCT_MAST
WHERE QTY>3

GROUP BY COMPANY;

Output:
Coml 150
Com?2 170

Example: SUM() with HAVING

SELECT COMPANY, SUM(COST)
FROM PRODUCT_MAST
GROUP BY COMPANY

HAVING SUM(COST)>=170;

Output:
Coml 335
Com3 170

3. AVG function

The AVG function is used to calculate the average value of the numeric type. AVG function returns
the average of all non-Null values.

Syntax

AVG()
or
AVG([ALL|DISTINCT] expression)

Example:

SELECT AVG(COST)
FROM PRODUCT_MAST;

Output:

4. MAX Function

MAX function is used to find the maximum value of a certain column. This function determines
the largest value of all selected values of a column.

Syntax

MAX()

or

MAX([ALL|DISTINCT] expression)

Example:

SELECT MAX(RATE)

FROM PRODUCT_MAST;
5. MIN Function

MIN function is used to find the minimum value of a certain column. This function determines the
smallest value of all selected values of a column.

Syntax

MIN(Q)
or
MIN([ALL|DISTINCT] expression)

Example:

SELECT MIN(RATE)
FROM PRODUCT_MAST;

Output:
VIEWS:
In SQL, a view is a virtual table based on the result-set of an SQL statement. A view contains

rows and columns, just like a real table. The fields in a view are fields from one or more real tables
in the database.

SQL CREATE VIEW Statement

In SQL, a view is a virtual table based on the result-set of an SQL statement.

A view contains rows and columns, just like a real table. The fields in a view are fields
from one or more real tables in the database.

You can add SQL statements and functions to a view and present the data as if the data
were coming from one single table.

A view is created with the crReaTE viEw statement.

CREATE VIEW Syntax

CREATE VIEW view_name AS
SELECT columnl, column2,

FROM table_name
WHERE condition;

Note: A view always shows up-to-date data! The database engine recreates the view,
every time a user queries it.

SQL CREATE VIEW Examples

The following SQL creates a view that shows all customers from Brazil:

Example
CREATE VIEW [Brazil Customers] AS
SELECT CustomerName, ContactName

FROM Customers
WHERE Country = 'Brazil’;

SQL Updating a View

A view can be updated with the crREATE OR REPLACE VIEW statement.

SQL CREATE OR REPLACE VIEW Syntax
CREATE OR REPLACE VIEW view _name AS
SELECT columnl, column2,

FROM table name
WHERE condition;

The following SQL adds the "City" column to the "Brazil Customers" view:

Example

CREATE OR REPLACE VIEW [Brazil Customers] AS
SELECT CustomerName, ContactName, City

FROM Customers

WHERE Country = 'Brazil';

SQL Dropping a View

A view is deleted with the pror vIEW statement.

SQL DROP VIEW Syntax

DROP VIEW view_name;

The following SQL drops the "Brazil Customers" view:

Example

DROP VIEW [Brazil Customers];

Triggers:

Trigger: A trigger is a stored procedure in database which automatically invokes whenever a
special event in the database occurs. For example, a trigger can be invoked when a row is inserted
into a specified table or when certain table columns are being updated.

Syntax:

create trigger [trigger_name]

[before | after]

{insert | update | delete}
on [table name]

[for each row]
[trigger_body]

Explanation of syntax:

1. create trigger [trigger_name]: Creates or replaces an existing trigger with the
trigger_name.

[before | after]: This specifies when the trigger will be executed.

{insert | update | delete}: This specifies the DML operation.

on [table_name]: This specifies the name of the table associated with the trigger.
[for each row]: This specifies a row-level trigger, i.e., the trigger will be executed for
each row being affected.

6. [trigger_body]: This provides the operation to be performed as trigger is fired
BEFORE and AFTER of Trigger:

BEFORE triggers run the trigger action before the triggering statement is run.
AFTER triggers run the trigger action after the triggering statement is run.

Example:

Given Student Report Database, in which student marks assessment is recorded. In
such schema, create a trigger so that the total and average of specified marks is
automatically inserted whenever a record is insert.

Here, as trigger will invoke before record is inserted so, BEFORE Tag can be used.

akrwn

Suppose the database Schema —
mysql> desc Student;

Hmmmmm-- fmmmmmmmmemaaa AR Hm-n-- TR T +
| Field | Type | Null | Key | Default | Extra |
Hmmmmm-- fmmmmmmmmemaaa AR Hm-n-- TR Hmmmmmmmmmee—aaas +
tid	int(4)	NOo	PRI	NULL	auto_increment
name	varchar(30)	YES		NULL	
subjl	int(2)	YES		NULL	
subj2	int(2)	YES		NULL	
subj3	int(2)	YES		NULL	

| total | int(3) | YES | | NULL | |
| per | int(3) | YES | | NULL | |
e e +------ +----- e e et +
7 rows in set (©.00 sec)

SQL Trigger to problem statement.

create trigger stud_marks

before INSERT

on

Student

for each row

set Student.total = Student.subjl + Student.subj2 + Student.subj3,
Student.per = Student.total * 60 / 100;

Above SQL statement will create a trigger in the student database in which whenever
subjects marks are entered, before inserting this data into the database, trigger will
compute those two values and insert with the entered values. i.e.,

mysql> insert into Student values(©, "ABCDE", 20, 20, 20, 0, 0);
Query OK, 1 row affected (0.09 sec)

mysql> select * from Student;

1 row in set (0.00 sec)

	(R-21 Autonomous)
	Malla Reddy College of Engineering & Technology
	UNIT-1
	Advantages of DBMS:

	Difference between File System and DBMS:
	Instances and Schemas
	Database Administrators and Database Users
	Relational Model
	Keys
	Schema Diagrams

	Views in SQL
	Sample table:
	1. Creating view
	2. Creating View from a single table
	3. Creating View from multiple tables
	4. Deleting View
	Types of SQL Commands
	Data Definition Language (DDL)
	2. Data Manipulation Language
	3. Data Control Language
	4. Transaction Control Language
	5. Data Query Language

	UNION
	UNION ALL
	INTERSECT
	EXCEPT
	Basic Rules on Set Operations
	Difference between UNION, UNION ALL, INTERSECT, and EXCEPT Operators
	Summary
	Example
	Student table
	Output
	teacher table
	Example (1)
	Output (1)
	Class table
	Example (2)
	Output (2)
	Example 1
	Output (3)
	Example 2
	Output (4)
	Scalar vs. Non-scalar Subqueries

	Differences Between Correlated and Non-Correlated Subqueries
	1. COUNT FUNCTION
	2. SUM Function
	3. AVG function
	4. MAX Function
	5. MIN Function

	SQL CREATE VIEW Statement
	CREATE VIEW Syntax

	SQL CREATE VIEW Examples
	Example

	SQL Updating a View
	SQL CREATE OR REPLACE VIEW Syntax
	Example

	SQL Dropping a View
	SQL DROP VIEW Syntax
	Example

