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OBJECTIVES The main objectives of the course are: 

1. Learn the concepts of load line analysis and biasing techniques 

2. Learn the concepts of small signal analysis of BJT and FET 

3. To understand basic number systems codes and logical gates. 

4. To introduce the methods for simplifying Boolean expressions 

5. To outline the formal procedures for the analysis and design of combinational circuits and 

    sequential circuits 

 

UNIT‐I  

BJT Biasing:  

Transistor Biasing and Stabilization - Operating point, DC & AC load lines, Biasing - Fixed Bias, Self-
Bias, Bias Stability, Bias Compensation using Diode and Transistor amplifying action. 

Signal Low Frequency BJT Amplifiers: Transistor Hybrid model, Determination of h-parameters from 
transistor characteristics, Typical values of h- parameters in CE, CB and CC configurations 

 

UNIT‐II  

Transistor at High Frequency:  

Hybrid π model of Common Emitter transistor model and derivation of Hybrid π model elements. 

FET Amplifiers: Analysis of Common Source and Common Drain JFET Amplifiers, Comparison of 
performance with BJT Amplifiers 

 

UNIT-III  

Number System and Boolean Algebra:  

Number Systems, Base Conversion Methods, Complements of Numbers, Codes‐ Binary Codes, Binary 
Coded Decimal, Unit Distance Code, Digital Logic Gates (AND, NAND, OR, NOR, EX‐OR, EX‐NOR), 
Properties of XOR Gates, Universal Gates, Basic Theorems and Properties, Switching Functions, 
Canonical and Standard Form. 

 

UNIT‐IV  

Minimization Techniques:  

The Karnaugh Map Method, Three variables ,Prime and Essential Implications, Don’t Care Map Entries, 
Using the Maps for Simplifying, Multilevel NAND/NOR realizations. 

 

UNIT‐V  

Combinational Circuits: 

 Design procedure – Half adder, Full Adder, Half sub-tractor, Full sub-tractor, Multiplexer/De-
multiplexer Sequential circuits: Latches, Flip‐Flops-SR, JK, D, T and master slave, characteristic tables 
and equation. 

 

TEXT BOOKS: 

1. “Electronic Devices & Circuits”, Special Edition – MRCET, McGraw Hill Publications, 2017. 

2. Integrated Electronics Analog Digital Circuits, Jacob Millman and D. Halkias, McGraw Hill. 

3. Electronic Devices and Circuits, S.Salivahanan,N.Suresh kumar, McGraw Hill. 

4. M. Morris Mano, Digital Design, 3rd Edition, Prentice Hall of India Pvt. Ltd., 2003 /Pearson 
Education (Singapore) Pvt. Ltd., New Delhi, 2003. 

5. Switching and Finite Automata Theory‐ Zvi Kohavi & Niraj K. Jha, 3rd Edition, Cambridge. 
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OUTCOMES: 

After completion of the course, the student will be able to: 

1. Design the amplifiers with various biasing techniques 

2. Design single stage amplifiers using BJT and FET 

3. Understand the basic postulates of Boolean algebra and shows the correlation between Boolean 

expressions 

4. Learn the methods for simplifying Boolean expressions 

5. Understand the formal procedures for the analysis and design of combinational circuits and 

sequential circuits 

 
 



UNIT I: 
Biasing and Stabilization: 

 
Biasing and Stabilization: Operating point, the D.C Load line, Fixed bias, Collector to base bias, Self- 
bias techniques for stabilization, Stabilization factors, (s, sI ), Bias Compensation using diode and 
transistor  

 

 

TRANSISTOR BIASING AND STABILIZATION 
 

NEED FOR TRANSISTORBIASING 
 

If the o/p signal must be a faithful reproduction of the i/p signal, the transistor must be 

operated in active region. That means an operating point has to be established in this region .  To 

establish an operating point (proper values of collector current Icand collector to emitter voltage VCE) 

appropriate supply voltages and resistances must be suitably chosen in the ckt. This process of 

selecting proper supply voltages and resistance for obtaining desired operating point or Q point is 

called as biasing and the ckt used for transistor biasing is called as biasingckt. 

There are four conditions to be met by a transistor so that it acts as a faithful ampr: 
 

1) Emitter base junction must be forward biased (VBE=0.7Vfor Si, 0.2V for Ge) and collector base 

junction must be reverse biased for all levels of i/psignal. 

2) Vce voltage should not fall below VCE(sat) (0.3V for Si, 0.1V for Ge) for any part of the i/p signal. 

For VCE less than VCE(sat) the collector base junction is not probably reverse biased. 

3) The value of the signal Ic when no signal is applied should be at least equal to the max. collector 

current t due to signalalone. 

4) Max. rating of the transistor Ic(max), VCE(max) and PD(max) should not be exceeded at any value of i/p 

signal. 

Consider the fig shown in fig 2.12. If operating point is selected at A, A represents a condition when 

no bias is applied to the transistor i.e, Ic=0, VCE =0. It does not satisfy the above said conditions 

necessary for faithful amplification. 

Point C is too close to PD(max) curve of the transistor. Therefore the o/p voltage swing in the positive 

direction is limited. 

Point B is located in the middle of active region .It will allow both positive and negative half cycles 

in the o/p signal. It also provides linear gain and larger possible o/p voltages andcurrents 

Hence operating point for a transistor amplifier is selected to be in the middle of active region. 
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Fig 2.12 CE Output Characteristics 
 

DC LOADLINE 

Referring to the biasing circuit of fig 2.13 a, the values of VCC and RC are fixed and Ic and VCE are 

dependent on RB. 

Applying Kirchhoff’s voltage law to the collector circuit in fig. 2.13, we get 
 
 
 
 

 

Fig 2.13(a) CE Amplifier Circuit (b) Load line 
 

 



The straight line represented by AB in fig2.13b is called the dc load line. The coordinates of the end 

point A are obtained by substituting VCE   =0 in the above equation. Then . Therefore The 

coordinates of A are VCE =0 and . 

The coordinates of B are obtained by substituting Ic=0 in the above equation. Then Vce = Vcc. 

Therefore the coordinates of B are VCE =Vcc and Ic=0. Thus the dc load line AB can be drawn if the 

values of Rc and Vcc are known. 

As shown in the fig2.13b, the optimum POINT IS LOCATED AT THE MID POINT OF THE MIDWAY 

BETWEEN a AND b. In order to get faithful amplification, the Q point must be well within the active 

region of the transistor. 

Even though the Q point is fixed properly, it is very important to ensure that the operating point 

remains stable where it is originally fixed. If the Q point shifts nearer to either A or B, the output 

voltage and current get clipped, thereby o/p signal is distorted. 

In practice, the Q-point tends to shift its position due to any or all of the following three main 

factors. 

1) Reverse saturation current, Ico, which doubles for every 10oC raise intemperature 

2) Base emitter Voltage ,VBE, which decreases by 2.5 mV peroC 

3) Transistor current gain, hFE or β which increases withtemperature. 

If base current IB is kept constant since IB is approximately equal to Vcc/RB. If the transistor is 

replaced by another one of the same type, one cannot ensure that the new transistor will have 

identical parameters as that of the first one. Parameters such as β vary over a range. This results in the  

variation of collector current Ic for a given IB. Hence , in the o/p characteristics, the spacing between 

the curves might increase or decrease which leads to the shifting of the Q-point to a location which 

might be completelyunsatisfactory. 

AC LOADLINE 
 

After drawing the dc load line, the operating point Q is properly located at the center of the dc 

load line. This operating point is chosen under zero input signal condition of the circuit. Hence the ac 

load line should also pas through the operating point Q. The effective ac load resistance Rac, is a 

combination of RC parallel toRL i.e. ||    . So the slope of the ac load line CQD will be . 

To draw the ac load line, two end points, I.e. VCE(max) and IC(max) when the signal is applied arerequired. 

  , which locates point D on the Vce axis. 

 
, which locates the point C on the IC axis. 



By joining points c and D, ac load line CD is constructed. As RC> Rac, The dc load line is less steep than 

ac load line. 

STABILITY FACTOR(S): 
 

The rise of temperature results in increase in the value of transistor gain β and the leakage 

current Ico. So, IC also increases which results in a shift in operating point. Therefore, The biasing 

network should be provided with thermal stability. Maintenance of the operating point is specified by 

S, which indicates the degree of change in operating point due to change intemperature. 

The extent to which IC is stabilized with varying IC is measured by a stability factor S 
 

,  

 
For CEconfiguration  

Differentiate the above equation w.r.t IC , We get 

 
 

 

 

 

S should be small to have better thermal stability. 
 

Stability factor S’ and S’’: 
 

S’ is defined as the rate of change of IC with VBE, keeping IC and VBE constant. 
 

S’’ is defined as the rate of change of IC with β, keeping ICO and VBEconstant. 
 



 
 
 
 

METHODS OF TRANSISTORBIASING 
 

1) Fixed bias (basebias) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 2.14 Fixed Biasing Circuit 

 
This form of biasing is also called base bias. In the fig 4.3 shown, the single power source (for example, 

battery) is used for both collector and base of a transistor, although separate batteries can also be used. 
 

In the given circuit, 

Vcc = IBRB + Vbe 

Therefore, IB = (Vcc - Vbe)/RB 

 

Since the equation is independent of current ICR, dIB//dICR =0 and the stability 

factor is given by the equation….. reduces to 

S=1+β 
 

Sinceβisalargequantity,thisisverypoorbiasingcircuit.Thereforeinpractice 

thecircuitisnotusedfo biasing. 

For a given transistor, Vbe does not vary significantly during use. As Vcc is of fixed value, 

on selection of R the base current IB is fixed. Therefore this type is called fixed bias type ofcircuit. 

Also for given circuit, Vcc = ICRC + Vce 



Therefore, Vce = Vcc - ICRC 

 

Merits: 
 

 It is simple to shift the operating point anywhere in the active region bymerely changing 
the base resistor(RB). 

 A very small number of components arerequired. 
 

Demerits: 
 

 The collector current does not remain constant with variation in temperature orpower 
supply voltage. Therefore the operating point isunstable. 

 Changes in Vbe will change IB and thus cause RE to change. This in turn will alter the gain 
of thestage. 

 When the transistor is replaced with another one, considerable change in the value ofβ 
can be expected. Due to this change the operating point willshift. 

 

2) EMITTER-FEEDBACKBIAS: 

 
The emitter feedback bias circuit is shown in the fig 2.15. The fixed bias circuit is modified by 

attaching an external resistor to the emitter. This resistor introduces negative feedback that stabilizes 
the Q-point. From Kirchhoff's voltage law, the voltage across the base resistor is 

 

VRb = VCC - IeRe - Vbe. 
 

 

Fig 2.15 Self Biasing Circuit 
 

From Ohm's law, the base current is 



Ib = VRb / Rb. 
 

The way feedback controls the bias point is as follows. If Vbe is held constant and temperature 
increases, emitter current increases. However, a larger Ie increases the emitter voltage Ve = IeRe, which 
in turn reduces the voltage VRb across the base resistor. A lower base-resistor voltage drop reduces the 
base current, which results in less collector current because Ic = ß IB. Collector current and emitter 
current are related by Ic = α Ie with α ≈ 1, so increase in emitter current with temperature is opposed, 
and operating point is kept stable. 

 

Similarly, if the transistor is replaced by another, there may be a change in IC (corresponding to 
change in β-value, for example). By similar process as above, the change is negated and operating 
point kept stable. 

 

For the given circuit, 
 

IB = (VCC - Vbe)/(RB + (β+1)RE). 
 

Merits: 
 

The circuit has the tendency to stabilize operating point against changes in temperature and β- 
value. 

 

Demerits: 
 

 In this circuit, to keep IC independent of β the following condition must bemet: 
 

 

which is approximately the case if ( β + 1 )RE>> RB. 
 

 Asβ-valueisfixedforagiventransistor,thisrelationcanbesatisfiedeitherbykeeping RE very 
large, or making RB verylow. 

 
 If RE is of large value, high VCC is necessary. This increases cost as well as precautions 

necessary whilehandling. 
 If RB is low, a separate low voltage supply should be used in the base circuit. Using two 

supplies of different voltages isimpractical. 
 

 In addition to the above, RE causes ac feedback which reduces the voltage gain of 
theamplifier. 



3) COLLECTOR TO BASE BIAS OR COLLECTOR FEED-BACKBIAS: 

 

 
Fig 2.16 Collector to Base Biasing Circuit 

 

This configuration shown in fig 2.16 employs negative feedback to prevent thermal runaway 

and stabilize the operating point. In this form of biasing, the base resistor RBis connected to the 

collector instead of connecting it to the DC source Vcc. So any thermal runaway will induce a voltage 

drop across the RCresistor that will throttle the transistor's base current. 
 

From Kirchhoff's voltage law, the voltage across the base resistor Rbis 
 

By the Ebers–Moll model, Ic = βIb, and so 
 

 
From Ohm's law, the base current , andso 

 

 

Hence, the base current Ibis 
 

 

If Vbeis held constant and temperature increases, then the collector current Icincreases. 

However, a larger Iccauses the voltage drop across resistor Rcto increase, which in turn reduces the 



voltage across the base resistor Rb. A lower base-resistor voltage drop reduces the base current Ib, 

which results in less collector current Ic. Because an increase in collector current with temperature is 

opposed, the operating point is keptstable. 
 

Merits: 
 

 Circuit stabilizes the operating point against variations in temperature and β(i.e. 
replacement oftransistor) 

 

Demerits: 
 

 In this circuit, to keep Icindependent of β, the following condition must bemet: 
 

which is the case when 
 

 

 As β-value is fixed (and generally unknown) for a given transistor, this relation can be 
satisfied either by keeping Rcfairly large or making Rbverylow. 

 

 If Rcis large, a high Vccis necessary, which increases cost as well as precautions necessary 
whilehandling. 

 If Rbis low, the reverse bias of the collector–base region is small, which limits the range 
of collector voltage swing that leaves the transistor in activemode. 

 

 The resistor Rbcauses an AC feedback, reducing thevoltage gainof the amplifier. This 
undesirable effect is a trade-off for greaterQ-pointstability. 

 

Usage: The feedback also decreases the input impedance of the amplifier as seen from the 
base, which can be advantageous. Due to the gain reduction from feedback, this biasing form is used 
only when the trade-off for stability iswarranted. 



 
 

4) COLLECTOR –EMITTER FEEDBACKBIAS: 
 

 

Fig 2.17 Collector-Emitter Biasing Circuit 
 

The above fig 2.17shows the collector –emitter feedback bias circuit that can be obtained by 

applying both the collector feedback and emitter feedback. Here the collector feedback is provided by 

connecting a resistance RB from the collector to the base and emitter feedback is provided by 

connecting an emitter Re from emitter to ground. Both feed backs are used to control collector 

current and base current IB in the opposite direction to increase the stability as compared to the 

previous biasingcircuits. 

 

5) VOLTAGE DIVIDER BIAS OR SELF BIAS OR EMITTERBIAS 

 
The voltage divider as shown in the fig 2.18 is formed using external resistors R1 and R2. The 

voltage across R2 forward biases the emitter junction. By proper selection of resistors R1 and R2, the 

operating point of the transistor can be made independent of β. In this circuit, the voltage divider holds 

the base voltage fixed independent of base current provided the divider current is large compared to 

the base current. However, even with a fixed base voltage, collector current varies with temperature 

(for example) so an emitter resistor is added to stabilize the Q-point, similar to the above circuits with 

emitter resistor. 



 
 

Fig 2.18 Voltage Divider Biasing Circuit 
 

In this circuit the base voltage is given by: 
 
 

voltageacross 
 
 

provided . 

 
Also 

 

For the given circuit, 
 

Let the current in resistor R1 is I1 and this is divided into two parts – current through base and 

resistor R2. Since the base current is very small so for all practical purpose it is assumed that I1 also 

flows through R2, so we have 

 

Applying KVL in the circuit, we have 
 

 



 

It is apparent from above expression that the collector current is independent of ? thus the 

stability is excellent. In all practical cases the value of VBE is quite small in comparison to the V2, so it 

can be ignored in the above expression so the collector current is almost independent of the transistor 

parameters thus this arrangement provides excellent stability. 

Again applying KVL in collector circuit, we have 
 

 

 

 

The resistor RE provides stability to the circuit. If the current through the collector rises, the 

voltage across the resistor RE also rises. This will cause VCE to increase as the voltage V2 is 

independent of collector current. This decreases the base current, thus collector current increases to 

its formervalue. 

Stability factor for such circuit arrangement is given by 
 

If Req/RE is very small compared to 1, it can be ignored in the above expression thus we have 

 

Which is excellent since it is the smallest possible value for the stability. In actual practice the 

value of stability factor is around 8-10, since Req/RE cannot be ignored as compared to 1. 
 

Merits: 
 

 Unlike above circuits, only one dc supply isnecessary. 
 Operating point is almost independent of βvariation. 
 Operating point stabilized against shift intemperature. 



Demerits: 
 

 In this circuit, to keep IC independent of β the following condition must bemet: 
 

 

which is approximately the caseif  

where R1 || R2 denotes the equivalent resistance of R1 and R2 connected in parallel. 
 

 As β-value is fixed for a given transistor, this relation can be satisfied either by keeping 
RE fairly large, or making R1||R2 verylow. 

 

 If RE is of large value, high VCC is necessary. This increases cost as well as precautions 
necessary whilehandling. 

 If R1 || R2 is low, either R1 is low, or R2 is low, or both are low. A low R1 raises VB closer 
to VC, reducing the available swing in collector voltage, and limiting how large RCcan be made without 
driving the transistor out of active mode. A low R2 lowers Vbe, reducing the allowed collector current. 
Lowering both resistor values draws more current from the power supply and lowers the input 
resistance of the amplifier as seen from thebase. 

 

 AC as well as DC feedback is caused by RE, which reduces the AC voltage gain of the 
amplifier. A method to avoid AC feedback while retaining DC feedback is discussedbelow. 

 

Usage: The circuit's stability and merits as above make it widely used for linear circuits. 
 

BIAS COMPENSATION USING DIODE ANDTRANSISTOR 
 

The various biasing circuits considered use some type of negative feedback to stabilize the 
operation point. Also, diodes, thermistors and sensistors can be used to compensate for variations in 
current. 



DIODE COMPENSATION: 

 

 

 
Fig 2.19Diode Compensation Circuit 

 

The following fig 2.19 shows a transistor amplifier with a diode D connected across the base- 
emitter junction for compensation of change in collector saturation current ICO. The diode is of the 
same material as the transistor and it is reverse biased by e the emitter-base junction voltage VBE, 
allowing the diode reverse saturation current IO to flow through diode D. The base currentIB=I-IO. 

 

As long as temperature is constant, diode D operates as a resistor. As the temperature 
increases, ICO of the transistor increases. Hence, to compensate for this, the base current IB should be 
decreased. 

 

The increase in temperature will also cause the leakage current IO through D to increase and 
thereby decrease the base current IB. This is the required action to keep Ic constant. 

 

This type of bias compensation does not need a change in Ic to effect the change in IC, as both 
IO and ICO can track almost equally according to the change intemperature. 

 

THERMISTOR COMPENSATION: 
 

The following fig2.20 a thermistor RT, having a negative temperature coefficient is connected in 
parallel with R2. The resistance of thermistor decreases exponentially with increase of temperature. An 
increase of temperature will decrease the base voltage VBE, reducing IB and IC. 



 
 

Fig 2.20 Thermistor Compensation 
 

SENSISTOR COMPENSATION: 
In the following fig2.21 shown a sensistor Rs having a positive temperature coefficient is 

connected across R1 or RE. Rs increases with temperature. As the temperature increases, the 

equivalent resistance of the parallel combination of R1 and Rs also increases and hence VBEdecreases, 

reducing IB and Ic. This reduced Ic compensates for increased Ic caused by the increase in VBE, ICO and β 

due totemperature. 

Fig 2.21 Sensistor Compensation 



UNIT I-II 

 

Signal Low Frequency BJT Amplifiers: 

Transistor Hybrid model, Determination of h parameters from transistor characteristics, 
Typical values of h- parameters in CE, CB and CC configurations, Analysis of CE, CC, CB 
Amplifiers and CE Amplifier with emitter resistance, low frequency response of BJT Amplifiers 

 

 

BJT HYBRID MODEL 

Small signal low frequency transistor Models: 

All the transistor amplifiers are two port networks having two voltages and two currents. The positive 
directions of voltages and currents are shown in fig. 1. 

 

Fig. 3.1: Transistor as a two port Network 

A two-port network is represented by four external variables: voltage V1 and current I1 at the input port, 

and voltage V2 and current I2 at the output port, so that the two-port network can be treated as a black 

box modeled by the relationships between the four variables,V1,V2, I1,I2 . Out of four variables two can 

be selected as are independent variables and two are dependent variables.The dependent variables can 

be expressed interns of independent variables. This leads to various two port parameters out of which 

the following three are important: 

1. Impedance parameters(z-parameters) 

2. Admittance parameters(y-parameters) 

3. Hybrid parameters(h-parameters) 



z-parameters 
 

A two-port network can be described by z-parameters as 

 

 
In matrix form, the above equation can be rewritten as 

 

 

Where 

 

 
Input impedance with output port open circuited 

 

 

Reverse transfer impedance with input port open circuited 
 

 
Forward transfer impedance with output port open circuited 

 

 

Output impedance with input port open circuited 
 

Y-parameters 
 

A two-port network can be described by Y-parameters as 

 

 
In matrix form, the above equation can be rewritten as 



 

 

 

Input admittance with output port short circuited 
 

 

Reverse transfer admittance with input port short circuited 
 

 

Forward transfer admittance with output port short circuited 
 

 

Output admittance with input port short circuited 
 

Hybrid parameters (h-parameters) 
 

If the input current I1 and output voltage V2 are taken as independent variables, the dependent 
variables V1 and I2 can be written as 

 

 

Where h11, h12, h21, h22 are called as hybrid parameters. 
 
 

 

Input impedence with o/p port short circuited 



 

 

Reverse voltage transfer ratio with i/p port open circuited 
 

 

Forward voltage transfer ratio with o/p port short circuited 
 
 

 

 

output impedence with i/p port open circuited 
 

THE HYBRID MODEL FOR TWO PORT NETWORK: 
 

Based on the definition of hybrid parameters the mathematical model for two pert networks known as 
h-parameter model can be developed. The hybrid equations can be written as: 

 
 

 

(The following convenient alternative subscript notation is recommended 
by the IEEE Standards: 
i=11=input o = 22 =output 

 

f =21 = forward transfer r = 12 = reverse transfer) 
 

We may now use the four h parameters to construct a mathematical model of the device of Fig.(1). The 
hybrid circuit for any device indicated in Fig.(2). We can verify that the model of Fig.(2) satisfies above 
equations by writing Kirchhoff'svoltage and current laws for input and output ports. 



 

 
 

If these parameters are specified for a particular configuration, then suffixes e,b or c are also included, 
e.g. hfe ,h ib are h parameters of common emitter and common collector amplifiers 

 
Using two equations the generalized model of the amplifier can be drawn as shown in fig. 3.2. 

 
 

 
 

Fig.3.2:-h-parameter equivalent of Transistor 

TRANSISTOR HYBRID MODEL: 
The hybrid model for a transistor amplifier can be derived as follow: 

 

Let us consider CE configuration as show in fig. 3.3. The variables, iB, iC ,vC, and vB represent total 
instantaneous currents and voltages iB and vC can be taken as independent variables and vB, IC as 
dependent variables. 

http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-ROORKEE/BASIC-ELECTRONICS/lecturers/lecture_26/lecture26_page1.htm
http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-ROORKEE/BASIC-ELECTRONICS/lecturers/lecture_26/lecture26_page2.htm


 

 

 

Fig. 3.3 CE Transistor Amplifier 

VB = f1 (iB ,vC ) 

IC = f2 (iB ,vC). 
 

Using Taylor 's series expression, and neglecting higher order terms we obtain. 
 

 

The partial derivatives are taken keeping the collector voltage or base current constant. The Δ vB, Δ vC, Δ 
iB, Δ iC represent the small signal (incremental) base and collector current and voltage and can be 
represented as vB, iC, iB ,vC 

 



 

 

Fig. 3.4:h-parameter model of CE Configuration 
 

To determine the four h-parameters of transistor amplifier, input and output characteristic are used. 
Input characteristic depicts the relationship between input voltage and input current with output 
voltage as parameter. The output characteristic depicts the relationship between output voltage and 
output current with input current as parameter. Fig. 5, shows the output characteristics of CE 
amplifier. 

 

 

 

Fig. 3.5Transistor CE Configuration output characteristics 
 

The current increments are taken around the quiescent point Q which corresponds to iB = IB and to the 
collector voltage VCE = VC 

 

 

The value of hoe at the quiescent operating point is given by the slope of the output characteristic at 
the operating point (i.e. slope of tangent AB). 

 

http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-ROORKEE/BASIC-ELECTRONICS/lecturers/lecture_26/lecture26_page3.htm


hie is the slope of the appropriate input on fig. 3.6, at the operating point (slope of tangent EF at Q). 
 

 

Fig. 3.6 Calculation of h-parameters from output characteristics 
 

A vertical line on the input characteristic represents constant base current. The parameter hre can be 
obtained from the ratio (VB2– V B1 ) and (VC2– V C1 ) for at Q. 

 

Typical CE h-parametersof transistor 2N1573 are given below: 
 

hie = 1000 ohm. 
hre = 2.5 * 10 –4 
hfe = 50 
hoe =25 A/V 

ANALYSIS OF A TRANSISTOR AMPLIFIER USING H-PARAMETERS: 

To form a transistor amplifier it is only necessary to connect an external load and signal source as 
indicated in fig. 3.7and to bias the transistor properly. 

 
 

 

http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-ROORKEE/BASIC-ELECTRONICS/lecturers/lecture_26/lecture26_page3.htm
http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-ROORKEE/BASIC-ELECTRONICS/lecturers/lecture_27/lecture27_page1.htm


Fig. 3.7 Transistor two port Network 
 

Consider the two-port network of CE amplifier. RS is the source resistance and ZL is the load impedence 
h-parameters are assumed to be constant over the operating range. The ac equivalent circuit is shown 
in fig. 2. (Phasor notations are used assuming sinusoidal voltage input). The quantities of interest are 
the current gain, input impedence, voltage gain, and output impedence. 

 
 

 
Fig 3.8:h parameter equivalent of Transistor in CE configuration 

Current gain: 
 

For the transistor amplifier stage, Ai is defined as the ratio of output to input currents. 
 

 

Input impedence: 
 

The impedence looking into the amplifier input terminals ( 1,1' ) is the input impedance Zi 

http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-ROORKEE/BASIC-ELECTRONICS/lecturers/lecture_27/lecture27_page1.htm


Voltage gain: 
 

The ratio of output voltage to input voltage gives the gain of the transistors. 
 

 

Output Admittance: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
It is defined as 

 

Av is the voltage gain for an ideal voltage source (Rv = 0). 
 

Consider input source to be a current source IS in parallel with a resistance RS as shown in fig. 3. 
 

 
In this case, overall current gain AIS is defined as 

http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-ROORKEE/BASIC-ELECTRONICS/lecturers/lecture_27/lecture27_page2.htm


 

 

h-parameters 

To analyze multistage amplifier the h-parameters of the transistor used are obtained from manufacture 
data sheet. The manufacture data sheet usually provides h-parameter in CE configuration. These 
parameters may be converted into CC and CB values. For example fig. 4hrc in terms of CE parameter 
can be obtained as follows. 

 

 
 

Fig. 3.9 CE h-parameter model 
 

For CE transistor configuaration 

Vbe = hie Ib + hre Vce 

Ic = h fe Ib + hoe Vce 
 

The circuit can be redrawn like CC transistor configuration as shown in fig. 5. 

Vbc = hie Ib + hrc Vec 

Ic = hfe Ib + hoe Vec 

http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-ROORKEE/BASIC-ELECTRONICS/lecturers/lecture_27/lecture27_page3.htm
http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-ROORKEE/BASIC-ELECTRONICS/lecturers/lecture_27/lecture27_page3.htm


 
 

Fig 3.10 hybrid model for transistor in three different configurations 
 
 

 
Typical h-parameter values for a transistor 

 

Parameter CE CC CB 

hi 1100 Ω 1100 Ω 22 Ω 

hr 2.5 × 10-4 1 3 × 10-4 

hf 50 -51 -0.98 

ho 25 µA/V 25 µA/V 0.49 µA/V 

 

Analysis of a Transistor amplifier circuit using h-parameters 

A transistor amplifier can be constructed by connecting an external load and signal source and 

biasing the transistor properly. 



 
 

Fig.3.11 Basic Amplifier Circuit 
 
 

The two port network of Fig. 3.11 represents a transistor in any one of its configuration. It is 

assumed that h-parameters remain constant over the operating range.The input is sinusoidal and I1,V- 

1,I2 and V2 are phase quantities 

 
 
 

 

Fig. 3.12 Transistor replaced by its Hybrid Model 

 
Current Gain or Current Amplification (Ai) 

 
For transistor amplifier the current gain Ai is defined as the ratio of output current to input 

current,i.e, 

Ai =IL /I1 = -I2 / I1 

From the circuit of Fig 

I2= hf I1 + hoV2 

Substituting V2 = ILZL = -I2ZL 

I2= hf I1- I2ZL ho 



I2 + I2ZL ho = hf I1 

I2( 1+ ZL ho) = hf I1 

Ai = -I2 / I1 = - hf / ( 1+ ZL ho) 

Therefore, 

Ai = - hf / ( 1+ ZL ho) 

 
Input Impedence (Zi) 

 
In the circuitof Fig ,RSisthesignalsourceresistance.Theimpedenceseenwhenlookingintothe 

amplifier terminals (1,1’) is the amplifier input impedenceZi, 

Zi = V1 / I1 

 
From the input circuit of Fig V1 = hi I1 + hrV2 

Zi = ( hi I1 + hrV2) / I1 

= hi + hr  V2 / I1 

Substituting 

V2 = -I2 ZL = A1I1ZL 

 
Zi = hi + hr A1I1ZL / I1 

 
= hi + hr A1ZL 

Substituting for Ai 

Zi = hi - hf hr ZL / (1+ hoZL) 

 
= hi - hf hr ZL / ZL(1/ZL+ ho) 

 
Taking the Load admittance as YL =1/ ZL 

Zi = hi - hf hr / (YL + ho) 



Voltage Gain or Voltage Gain Amplification Factor(Av) 

 
The ratio of output voltage V2 to input voltage V1 give the voltage gain of the transistor i.e, 

Av = V2 / V1 

Substituting 

 
V2 = -I2 ZL = A1I1ZL 

 
Av = A1I1ZL / V1 = AiZL / Zi 

 
Output Admittance (Yo) 

 
Yo is obtained by setting VS to zero, ZL to infinity and by driving the output terminals from a generator 

V2. If the current V2 is I2 then Yo= I2/V2 with VS=0 and RL= ∞. 

From the circuit of fig 

 
I2= hf I1 + hoV2 

Dividing by V2, 

I2 / V2 = hf I1/V2 + ho 

 
With V2= 0, by KVL in input circuit, 

 
RSI1 + hi I1 + hrV2 = 0 

(RS + hi) I1 + hrV2 = 0 

Hence, I2 / V2 = -hr/ (RS + hi) 

 
= hf (-hr/( RS + hi)+ho 

Yo= ho- hf hr/( RS + hi) 

The output admittance is a function of source resistance. If the source impedence is resistive then Yo is 

real. 

Voltage Amplification Factor(Avs) taking into account the resistance (Rs) of the source 



 
 
 

Fig.   3.13 Thevenin’s Equivalent Input 

Circuit This overall voltage gain Avs is given by 

Avs = V2 / VS = V2V1 / V1VS = Av V1/ VS 

 
From the equivalent input circuit using Thevenin’s equivalent for the source shown in Fig. 5.6 

V1 = VS Zi / (Zi+ RS) 

V1 / VS = Zi / ( Zi + RS) 

 
Then, Avs =Av Zi / ( Zi + RS) 

Substituting Av = AiZL /Zi 

Avs = AiZL / ( Zi + RS) 

 
Avs = AiZL RS / ( Zi + RS) RS 

 
Avs = AisZL / RS 

 
Current Amplification (Ais) taking into account the source Resistance(RS) 

 

 
Fig. 3.14 Norton’s Equivalent Input Circuit 



The modified input circuit using Norton’s equivalent circuit for the calculation of Ais is shown in Fig. 1.7 

Overall Current Gain, Ais = -I2 / IS = - I2I1 /I1 IS = Ai I1/IS 

FromFig.1.7  I1= IS RS / (RS +Zi) 

I1 / IS = RS/ (RS + Zi) 

andhence, Ais = Ai RS / (RS +Zi) 
 
 

Operating Power Gain (AP) 

The operating power gain AP of the transistor is defined as 

AP = P2 / P1 = -V2 I2 / V1 I1 = AvAi = Ai AiZL/ Zi 

AP = Ai 
2(ZL/ Zi ) 

 
 

Small Signal analysis of a transistor amplifier 
 

Ai = - hf / ( 1+ ZL ho) Av = AiZL / Zi 

Zi = hi + hr A1ZL = hi - hf hr / (YL + ho) Avs = Av Zi / ( Zi + RS) = AiZL / ( Zi + RS) 

= AisZL / RS 

Yo= ho- hf hr/( RS + hi) = 1/ Zo Ais = Ai RS / (RS + Zi) = Avs = Ais RS/ ZL 



 

UNIT-II 
Transistor at high  Frequency Response 
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FREQUENCY RESPONSE OF AMPLIFIERS 

For any electronic circuit, the behavior of amplifiers is affected by the frequency of the 

signal on their input terminal. This characteristic is known as the frequency response. 

Frequency response is one of the most important property of amplifiers. In the frequency 

range that amplifiers have been designed for, they must deliver a constant and acceptable level of 

gain. The frequency response depends directly on the components and the architecture chosen 

for the design of the amplifier. 

 
Before defining in details the frequency response, we need to present the unit of decibel 

(dB) and the logarithmic scale related to it. When studying the frequency response, it is indeed 

more suitable to convert either the power or voltage gain into dB and to represent the frequency 

scale in a logarithmic (log) scale. 

 

If we consider an amplifier with power gain AP and voltage gain AV, the power and voltage 

gain in dB are defined by: 

While the gains in linear scale are always positive (AP,AV≥0), their equivalent in dB can 

either be positive if an amplification is being realized (AP,AV>1) or negative if the input signal is 

attenuated (AP,AV<1). 

Often,  it  is  not  the  gain AV(dB) that  is  investigated  but  rather  a  normalized 

ratio AV/AV,mid(dB)=20log(AV/AV,mid). Where AV,mid is called the midrange gain and represents the 

maximum gain of the amplifier in its frequency working range, for example 20 Hz – 20 kHz for an 

audio amplifier. 

Therefore, when AV=AV,mid, the normalized gain (written indifferently AV) is AV(dB)=0. This 

sets a 0 dB reference when the gain is maximum. It is important to note that when the power is 

divided by two, we observe that AP(dB)=10log(0.5)=-3 dB. 

The frequency at which the power drops to 50 % of its midrange value is known as 

the cutoff frequency and noted fc. Each time that the power is halved, a reduction of 3 dB of the 

normalized gain is observed. Therefore AP=-3 dB corresponds to AV,mid/2, AP=-6 dB corresponds to 

AV,mid/4 and so on … 

For this same frequency, the voltage (or current) is multiplied by a factor √2=0.7. Halving 

the voltage signal corresponds to a reduction of 6 dB and follows the same pattern as presented 

for the power gain. 
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The light blue curve is called the asymptotic representation while the dark blue curve is the real 

frequency response of the circuit. In Figure 1, two different cutoff frequencies can be 

distinguished: flc for   “low   cutoff”   and fhc for “high cutoff”.    The    quantity    fhc-flc is    called 

the bandwidth and represents the frequency range where the gain is above the -3 dB. 

 
EFFECT OF THE CAPACITORS: 

 
Let us consider a Common Emitter Amplifier (CEA) which configuration is shown in Figure 2. The 

structure around the BJT transistor consists of a voltage divider network (R1 and R2), a load (RL), 

coupling capacitors (C1 and C3) and a bypass capacitor C2. 

As capacitors have a property called reactance that is an equivalent of the resistance. The 

reactance (XC) of capacitors depends on the frequency and the value of the capacitor, as in the 

below equation 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 1 : Typical Bode graph of an amplifier 
 

 

The most common tool used to represent the frequency response of any system is 

the Bode plot. It consists of the normalized gain AV(dB) as a function of the frequency in log scale. 

A simplified Bode graph of an amplifier is shown in the Figure 1 below: 

http://www.electronics-lab.com/article/common-emitter-amplifier/
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When the frequency is low, XC tends to be high. Near DC signals, capacitors behave 

therefore as open circuits. On the other hand, when the frequency increases XC tends to zero and 

capacitors act as short circuits. 

At low input frequencies, the coupling capacitors will more likely block the signal, since 

XC1 and XC3 are higher, more voltage drop will be observed across C1 and C3. This results in a lower 

voltage gain. 

At high input frequencies the bypass capacitor C2 shortens the emitter branch to the ground and 

the voltage gain of the amplifier is AV=(RC//RL)/re with re being the small diode emitter resistance. 

When the frequencies are lower, the resistance between the emitter and the ground is no longer 

only re but RE+re and therefore the voltage gain decreases to AV=(RC//RL)/(RE+re). 

There is another type of capacitors that affect the frequency response of the amplifier and is not 

represented in Figure 2. They are known as internal transistor capacitors and represented 

in Figure 3 below : 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig 2: Common Emitter Amplifier 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 3: Internal transistor capacitors 
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ANALYSIS AT LOW FREQUENCY 
 

First of all we consider the input high-pass filter RinC1. Where Rin is the total input impedance of 
the amplifier which can be expressed as:  

 

Rin=RS+ (R1//R2//βRE) 
 

The low cutoff frequency of the input will therefore be: 
 

fcl,in=1/(2πRinC1) 
 

The same procedure can be done for the output where the output resistance is  
 

Rout=RC//RL 

 

The low cutoff frequency of the output filter is: 
fcl,out=1/(2πRoutC3) 

 

Finally, for the bypass capacitor, the resistance formula is more complex and given by  
 

Rbypass=RE//((re+(RS//βRE)/β)) 

The low cutoff frequency of the bypass structure is thus: 

 
fcl,bypass=1/(2πRbypassC2) 

 
One last thing we need to understand before plotting the Bode graph is about the slope out of the 
midrange values. The decrease of AV,mid with the frequency is called roll-off and its value for each 
simple RC filter is -20 dB/decade (dB/dec). This value means for high-pass filters (resp. low-pass 
filters) that each time the frequency is divided by 10 (resp. multiplied by 10), a decrease of -20 dB 
is observed for the gain of the amplifier. 

When multiple filters are blocking the same range of frequencies, the roll-off is enhanced. In our 
example three filters are simultaneously blocking the frequencies below 35 Hz, the roll-off is 
therefore 3*(-20 dB/dec)=-60 dB/dec. 

Whereas the coupling and bypass capacitors act as high-pass filter (they block low frequencies), 

these internal capacitors behave differently. Indeed, if the frequency is low, CBC and CBE act as an 

open circuit and the transistor is not affected at all. However, if the frequency increases, more 

signal passes through them instead of going in the base branch of the transistor, therefore 

decreasing the voltage gain. The cutoff frequency of a RC filter: 
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As stated previously, it is the internal transistor capacitors that will limit the gain at high 

frequencies acting as low-pass filters. It can be shown that the equivalent circuit of Figure 2 at 

high frequency can be drawn such as presented in Figure 5 : 

We can note that the coupling capacitors are not represented since they behave as short 

circuits at high frequencies. Moreover, the emitter branch is shorten to the ground for the same 

reason applying to the bypass capacitor. 

 

The internal capacitor CBC is converted via Miller’s theorem into the equivalent Cin and 

Cout capacitors. Moreover, this theorem states that 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4 : Low frequency response of the CEA 
 
 

ANALYSIS AT HIGH FREQUENCY 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5 : Equivalent CEA at high frequency 
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Fig 6: High frequency response of the CEA 
 

By merging the two Bode graphs obtained for the low and high frequency responses 
in Figure 4 and 6, we can now plot the overall frequency response of the CEA configuration 

 
 
 
 
 
 
 
 
 
 

Fig 7: Total frequency response of the CEA 

Cin=CBC(AV,mid+1) and 

Cout=CBC(AV,mid+1)/AV,mid. 

The total input capacitance of this circuit is 

CIN=CBE+Cin ; 

The total input resistance is 

RIN=RS//R1//R2//βre. 

The numerical application to our example gives 

AV,mid=(RC//RL)/re=108, CIN=575 pF and RIN=409 Ω. 

The high cutoff frequency of the input is therefore 

fhc,in=1/(2πRINCIN)=677 kHz. 

From the output point of view, the high cutoff frequency is simply given by the filter 

(RC//RL)Cout with Cout=5.3 pF : fhc,out=1/(2π(RC//RL)Cout)=1.1 MHz. 

The information given here is summarized in a Bode plot representing the high frequency 

response of the CEA in asymptotic representation: 
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Hybrid‐pi (π) common emitter transistor model 
 

For amplifier circuits Common Emitter configuration is preferred Because for Common 
Collector (hrc < 1). For Common Collector Configuration, voltage gain Av < 1. So even by cascading 
you can't increase voltage gain. For Common Base, current gain hib < 1. So overall voltage gain is 
< 1. But for Common Emitter, hre» 1. Therefore Voltage gain can be increased by cascading 
Common Emitter stage. So Common Emitter configuration is widely used. 

 

Under reverse bias condition the capacitance at the junction is called transition or space 
charge capacitance. Under forward bias condition the capacitance is called diffusion or storage 
capacitance. At high frequencies, BJT cannot be analysed by h-parameters. 

 

Giacolleto model - hybrid π equivalent circuit 
 

Desirable features of hybrid π equivalent circuit are: 
(1) The value of components in the equivalent circuit are independent of frequencies. 
(2) The values of all the resistive components in the equivalent circuit can be determined from 
the known or Specified values of h-parameters at low frequencies. 
(3) The results obtained by using this equivalent circuit agrees with the experimental result. 

 

The components of the equivalent circuit exist in the form of π hence the name. 
 
 
 
 

 
For small signal behaviour the transistor at its input port behaves as a resistor. 

 
 
 
 
 
 

The output port is a dependent current source. 
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Because the base (B) is lightly doped all the depletion region lies entirely in the Base 
region. So, when the collector voltage is increased the depletion region in the base increases. 

 
 
 
 
 
 
 
 
 

rce --> This resistance is added to compensate for the change in IC due to change in VCE. 
 
 
 
 
 
 
 

 
The Hybrid-π or Giacoletto Model for the Common Emitter amplifier circuit (single stage) 
is as shown : 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 8 : Hybrid-π CE BJT Model 
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Analysis of this circuit gives satisfactory results at all frequencies not only at high 
frequencies but also at low frequencies. All the parameters are assumed to be independent of 
frequency. 

 

Circuit Components 
 

B' is the internal node of the base of the Transconductance amplifier. It is not physically 
accessible. 
The base spreading resistance rb'b is represented as a lumped parameter between base B and 
internal node B'. (𝑔𝑚 𝑉b′e) is a current generator. Vb'e is the input voltage across the emitter 
junction. If 𝑉b′e increases, more carriers are injected into the base of the transistor. So the 
increase in the number of carriers is α 𝑉b′e). This results in small signal current (since we are 
taking into account changes in 𝑉b′e). This effect is represented by the current generator 𝑔𝑚 𝑉b′e. 
This represents the current that results because of changes in 𝑉b′e when C is shorted to E. 

 

When the number of carriers injected into the base increase, base recombination also 
increases. So this effect is taken care of by𝑔b′e. As recombination increases, base current 
increases. Minority carrier storage in the base is represented by 𝑐𝑒 the diffusion capacitance. 

 
According to Early Effect, the change in voltage between Collector and Emitter changes 

the base width. So base width will be modulated according to the voltage between Collector and 
Emitter. When base width changes, the minority carrier concentration in base changes. Hence the 
current which is proportional to carrier concentration also changes. So 𝐼𝐸 changes and hence 𝐼𝐶 

changes. This feedback effect [𝐼𝐸 on input side, 𝐼𝐶 on output side] is taken into account by 
connecting 𝑔b𝐹c between B', and C. The conductance between Collector and 
Base is𝑔𝑐𝑒. 𝐶𝑐 represents the collector junction barrier capacitance. 

 

The High frequency model parameters of a BJT in terms of low frequency hybrid parameters is  
given below 

 Tran conductance 𝑔𝑚 = 𝐼𝐶/𝑉𝑇 

 Internal Base node to emitter resistance 𝑟𝑏𝐹𝑒 = ℎ𝑓𝑒/ 𝑔𝑚 = (ℎ𝑓𝑒*𝑉𝑇 )/ 𝐼𝐶 

 Internal Base node to collector resistance 𝑟𝑏𝐹𝑐     = (ℎ𝑟𝑒* 𝑟𝑏𝐹𝑒) / (1-ℎ𝑟𝑒 ) assuming hre << 1 it 
reduces to 𝑟𝑏𝐹𝑐    = (ℎ𝑟𝑒* 𝑟𝑏𝐹𝑒) 

 Base spreading resistance 𝑟𝑏𝑏𝐹 = ℎ𝑖𝑒 – 𝑟𝑏𝐹𝑒 = ℎ𝑖𝑒 – (ℎ𝑓𝑒* Vt )/ Ic 

 Collector to emitter resistance 𝑟𝑐𝑒 = 1 / ( ℎ𝑜𝑒 – (1+ ℎ𝑓𝑒)/ 𝑟𝑏𝐹𝑐    ) 

Variation of Hybrid Parameters with |𝑰𝑪|, |𝑽𝑪𝑬|and T 
 

1) Transconductance Amplifier or Mutual Conductance (gm): 
 

𝑔𝑚 = 𝐼𝐶/𝑉𝑇 

 
𝑔𝑚 is α 𝐼𝐶 

 
𝑉𝑇 = T/ll,600 

 
Therefore 𝑔𝑚 α 1/T 

 

𝑔𝑚 is independent of 𝑉𝐶𝐸 

Since in the active region of the transconductance, Ic is independent of 𝑉𝐶𝐸 



UNIT II-II 
FET Amplifiers: Analysis of Common Source and Common Drain JFET Amplifiers, Comparison of performance 
with BJT Amplifiers. 

BIASING FET:- 

For the proper functioning of a linear FET amplifier, it is necessary to maintain the 

operating point Q stable in the central portion of the pinch off region The Q point should be 

independent of device parameter variations and ambient temperature variations 

This can be achieved by suitably selecting the gate to source voltage VGS and drain current ID 

which is referred to as biasing 

JFET biasing circuits are very similar to BJT biasing circuits The main difference 

between JFET circuits and BJT circuits is the operation of the active components themselves 

There are mainly two types of Biasing circuits 

1) Self bias 
2) Voltage divider-bias. 

SELFBIAS 

Self bias is a JFET biasing circuit that uses a source resistor to help reverse bias the JFET gate. A self 

bias circuit is shown in the fig. Self bias is the most common type of JFET bias. This JFET must be 

operated such that gate source junction is always reverse biased. This condition requires a negative 

VGS for an N channel JFET and a positive VGS for P channel JFET. This can be achieved using the self 

bias arrangement as shown in Fig. The gate resistor RG doesn’t affect the bias because it has essentially 

no voltage drop across it, and: the gate remains at 0V .RG is necessary only to isolate an ac signal from 

ground in amplifier applications. The voltage drop across resistor RS makes gate source junction 

reverse biased. 
 



For the dc analysis coupling capacitors are open circuits. 

For the N channel FET in Fig (a) 

IS produces a voltage drop across RS and makes the source positive w.r.t ground. In any JFET circuit all 

the source current passes through the device to the drain circuit .This is due to the fact that there is no 

significant gate current. 

We can define source current as IS = ID 
 

(VG =0 because there is no gate current flowing in RG So VG across RG is zero) 

VG =0 then VS= ISRS =ID RS 

VGS = VG-VS =0-ID RS=- ID RS 
 

DC analysis of self Bias:- 
 

In the following DC analysis, the N channel J FET shown in the fig. is used for illustration. 
 

For DC analysis we can replace coupling capacitors by open circuits and we can also replace the resistor 

RG by a short circuit equivalent.:. IG = 0.The relation between ID and VGS is given by 

Id=Idss[1- ]2  

VGS for N channel JFET is =-idRs 
 

Substuting this value in the above equation 
 

Id=Idss[1- ]2 

Id=Idss[1+ ]2 

For the N-chanel FET in the above figure 



Is produces a voltage drop across Rs and makes the source positive w.r.t ground in any JFET circuit  

all the source current passes through the device to drain circuit this is due to the fact that there is no 

significant gate current. Therefore we can define source current as Is=Id and Vg=0 then 

Vs= Is Rs =IdRs 
 

Vgs=Vg-Vs=0-IdRs=-IdRs 
 

Drawing the self bias line:- 
 

Typical transfer characteristics for a self biased JFET are shown in the fig. 
 

The maximum drain current is 5mA and the gate source cut off voltage is -3V. This means the gate 

voltage has to be between 0 and -3V. 
 

 

 
Now using the equation VGS = -IDRS and assuming RS of any suitable value we can draw the self bias 

line. 

Let us assume RS = 500Ω 
 

With this Rs , we can plot two points corresponding to ID = 0 and Id = IDSS 

for ID =0 

VGS = -ID RS 
 

VGS = 0X (500.Ω) = 0V 
 

So the first point is (0 ,0) 
 

( Id, VGS) 



For ID= IDSS=5mA 
 

VGS = (-5mA) (500 Ω) = -3V 
 

So the 2nd Point will be (5mA,-3V) 
 

By plotting these two points, we can draw the straight line through the points. This line will  

intersect the transconductance curve and it is known as self bias line.The intersection point gives the 

operating point of the self bias JFET for the circuit. 

At Q point , the ID is slightly > than 2mA and VGS is slightly > -1V. The Q point for the self bias 

JFET depends on the value of Rs.If Rs is large, Q point far down on the transconductance curve ,ID is 

small, when Rs is small Q point is far up on the curve , ID is large. 

 
 

VOLTAGE DIVIDERBIAS:- 

 
 

The fig. shows N channel JFET with voltage divider bias. The voltage at the source of JFET must 

be more positive than the voltage at the gate in order to keep the gate to source junction reverse 

biased. The source voltage is 

VS = IDRS 
 

The gate voltage is set by resistors R1 and R2 as expressed by the following equation using the 

voltage divider formula. 

Vg= Vdd 

For dc analysis 



 
 

 
 

Applying KVL to the input circuit 

VG-VGS-VS =0 

:: VGS = VG-Vs=VG-ISRS 

VGS=VG-IDRS :: IS =ID 

Applying KVL to the input circuit we get 

VDS+IDRD+VS-VDD =0 

::VDS = VDD-IDRD-IDRS 

VDS = VDD-ID ( RD +RS) 

The Q point of a JFET amplifier , using the voltage divider bias is 

IDQ = IDSS[1-VGS/VP]2 

VDSQ = VDD-ID ( RD+RS ) 

COMPARISON OF MOSFET WITH JFET 
 

a. In enhancement and depletion types of MOSFET, the transverse electricfield induced 

across an insulating layer deposited on the semiconductor material controls the 

conductivity of thechannel. 

b. In the JFET the transverse electric field across the reverse biased PN junction controls the 

conductivity of thechannel. 



c. The gate leakage current in a MOSFET is of the order of 10-12A. Hence the input resistance 

of a MOSFET is very high in the order of 1010 to 1015 Ω. The gate leakage current of a JFET 

is of the order of 10-9A., and its input resistance is of the order of108Ω. 

d. TheoutputcharacteristicsoftheJFETareflatterthanthoseoftheMOSFET,andhencethe drain 

resistance of a JFET (0.1 to 1MΩ) is much higher than that of a MOSFET (1 to50kΩ). 

e. JFETs are operated only in the depletion mode. The depletion type MOSFET may be 

operated in both depletion and enhancementmode. 

f. Comparing to JFET, MOSFETs are easier tofabricate. 
 

g. Special digital CMOS circuits are available which involve near zero power dissipation and 

very low voltage and current requirements. This makes them suitable for portable 

systems. 



FET AMPLIFIERS 

INTRODUCTION 

Field Effect Transistor (FET) amplifiers provide an excellent voltage gain and high input 

impedence. Because of high input impedence and other characteristics of JFETs they are preferred over 

BJTs for certain types of applications. 

 
There are 3 basic FET circuit configurations: 

i) Common Source 

ii)Common Drain 

iii)Common Gain 

Similar to BJT CE,CC and CB circuits, only difference is in BJT large output collector current is 

controlledbysmallinputbasecurrentwhereasFETcontrolsoutputcurrentbymeansofsmallinput 

voltage. In both the cases output current is controlledvariable. 

FET amplifier circuits use voltage controlled nature of the JFET. In Pinch off region, ID depends 

only on VGS. 

Common Source (CS)Amplifier 
 

 

Fig. 5.1 (a) CS Amplifier (b) Small-signal equivalent circuit 
 
 

A simple Common Source amplifier is shown in Fig. 5.1(a) and associated small signal equivalent circuit 

using voltage-source model of FET is shown in Fig. 5.1(b) 

 
 
 

Voltage Gain 

Source resistance (RS) is used to set the Q-Point but is bypassed by CS for mid-frequency operation. 



From the small signal equivalent circuit ,the output voltage 

VO = -RDµVgs(RD + rd) 

Where Vgs = Vi , the input voltage, 

Hence, the voltage gain, 

AV = VO / Vi = -RDµ(RD + rd) 

Input Impedence 

From Fig. 5.1(b) Input Impedence is 

Zi = RG 

For voltage divider bias as in CE Amplifiers of BJT 

RG = R1║ R2 

Output Impedance 

Output impedance is the impedance measured at the output terminals with the input voltage VI = 0 

From the Fig. 5.1(b) when the input voltage Vi = 0, Vgs = 0 and hence 

µ Vgs = 0 

 
The equivalent circuit for calculating output impedence is given in Fig. 5.2. 

Output impedence Zo = rd║ RD 

Normally rd will be far greater than RD . Hence Zo ≈ RD 

 
 

Common DrainAmplifier 

A simple common drain amplifier is shown in Fig. 5.2(a) and associated small signal equivalent circuit 

using the voltage source model of FET is shown in Fig. 5.2(b).Since voltage Vgd is more easily 

determined than Vgs, the voltage source in the output circuit is expressed in terms of Vgs and 

Thevenin’s theorem. 

 

Fig. 5.2 (a)CD Amplifier (b)Small-signal equivalent circuit 

Voltage Gain 



The output voltage, 

VO = RSµVgd / (µ + 1) RS + rd 

Where Vgd = Vi the input voltage. 

Hence, the voltage gain, 

Av = VO / Vi = RSµ / (µ + 1) RS + rd 

Input Impedence 

From Fig. 5.2(b), Input Impedence Zi = RG 

Output Impedence 

From Fig. 5.2(b), Output impedence measured at the output terminals with input voltage Vi = 0 can be 

calculated from the following equivalent circuit. 

As Vi = 0: Vgd = 0: µvgd / (µ + 1) = 0 

Output Impedence 

 

ZO = rd / (µ + 1) ║RS 

When µ » 1 

ZO = ( rd / µ) ║RS = (1/gm) ║RS 

 

 
BIASING FET 

 

For the proper functioning of a linear FET amplifier, it is necessary to maintain the 

operating point Q stable in the central portion of the pinch off region The Q point should be 

independent of device parameter variations and ambient temperature variations 

This can be achieved by suitably selecting the gate to source voltage VGS and drain current ID which is 

referred to as biasing 

JFET biasing circuits are very similar to BJT biasing circuitsThe main difference between JFET 

circuits and BJT circuits is the operation of the active components themselves 

There are mainly two types of Biasing circuits 
 

1. Selfbias 
2. Voltage dividerbias. 

 
 

5.13.1. SELF BIAS:- 
 

Self bias is a JFET biasing circuit that uses a source resistor to help reverse bias the JFET gate. 



A self bias circuit is shown in the fig 5.3 
 

Self bias is the most common type of JFET bias. 
This JFET must be operated such that gate source junction is always reverse biased. 
This condition requires a negative VGS for an N channel JFET and a positive VGS for P channel JFET. 
This can be achieved using the self bias arrangement as shown in Fig 5.3. 
The gate resistor RG doesn’t affect the bias because it has essentially no voltage drop across it, and : 
the gate remains at 0V .RG is necessary only to isolate an ac signal from ground in amplifier applications. 
The voltage drop across resistor RS makes gate source junction reverse biased. 

 
 

DC analysis of self Bias:- 
 

In the following DC analysis , the N channel J FET shown in the fig5.4. is used for illustration. 
 

ForDCanalysiswecanreplacecouplingcapacitorsbyopencircuitsand we canalsoreplace the 

resistor RG by a short circuitequivalent. 

:. IG = 0 
 

The relation between ID and VGS is given by 

Id=Idss[1- ]2 

 

 
VGS for N channel JFET is =-id Rs 

Substuting this value in the above equation 



Id=Idss[1- ]2 

Id=Idss[1+ ]2 

For the N-chanel FET in the above figure 
 

Is produces a voltage drop across Rs and makes the source positive w.r.t ground 
 

in any JFET circuit all the source current passes through the device to drain circuit this is due to the fact 

that there is no significant gate current 

therefore we can define source current as Is=Id and Vg=0 then 

Vs= Is Rs =IdRs 

Vgs=Vg-Vs=0-IdRs=-IdRs 
 

Drawing the self bias line:- 
 

Typical transfer characteristics for a self biased JFET are shown in the figure 5.5 below: 
 

The maximum drain current is 6mA and the gate source cut off voltage is -3V. This means the gate 

voltage has to be between 0 and -3V. 

 
 
 

Now using the equation VGS = -IDRS and assuming RS of any suitable value we can draw the self bias 

line. 

Let us assume RS = 500Ω 
 

With this Rs , we can plot two points corresponding to ID = 0 and Id =IDSS 

for ID =0 

VGS = -ID RS 
 

VGS = 0X (500.Ω) = 0V 



So the first point is (0 ,0) 
 

( Id, VGS) 
 

For ID= IDSS=6mA 
 

VGS = (-6mA) (500 Ω) = -3V 
 

So the 2nd Point will be (6mA,-3V) 
 

By plotting these two points, we can draw the straight line through the points. This line will 

intersect the transconductance curve and it is known as self bias line. The intersection point gives the 

operating point of the self bias JFET for the circuit. 

At Q point , the ID is slightly > than 2mA and VGS is slightly > -1V. The Q point for the self bias 

JFET depends on the value of Rs.If Rs is large, Q point far down on the transconductance curve ,ID is 

small, when Rs is small Q point is far up on the curve , ID is large. 

 

 
5.13.2 VOLTAGE DIVIDER BIAS:- 

 
 

The fig5.6 shows N channel JFET with voltage divider bias. The voltage at the source of JFET 

must be more positive than the voltage at the gate in order to keep the gate to source junction reverse 

biased. The source voltage is 

VS = IDRS 
 

The gate voltage is set by resistors R1 and R2 as expressed by the following equation using the 

voltage divider formula. 
 

Vg= Vdd 



For dc analysis fig 5.5 
 
 

Applying KVL to the input circuit 

VG-VGS-VS =0 

:: VGS = VG-Vs=VG-ISRS 

VGS=VG-IDRS :: IS =ID 

Applying KVL to the input circuit we get 

VDS+IDRD+VS-VDD =0 

::VDS = VDD-IDRD-IDRS 

VDS = VDD-ID ( RD +RS) 

The Q point of a JFET amplifier , using the voltage divider bias is 

IDQ = IDSS[1-VGS/VP]2 

VDSQ = VDD-ID ( RD+RS ) 



UNIT III 
 

Number System and Boolean Algebra 
 

If base or radix of a number system is ‘r’, then the numbers present in that number system are 

ranging from zero to r-1. The total numbers present in that number system is ‘r’. So, we will get 

various number systems, by choosing the values of radix as greater than or equal to two. 
 

In this chapter, let us discuss about the popular number systems and how to represent a number in 

the respective number system. The following number systems are the most commonly used. 

 

 Decimal Number system 

 Binary Number system 

 Octal Number system 

 Hexadecimal Number system 

Decimal Number System 

The base or radix of Decimal number system is 10. So, the numbers ranging from 0 to 9 are used in 

this number system. The part of the number that lies to the left of the decimal pointis known as 

integer part. Similarly, the part of the number that lies to the right of the decimal point is known as 

fractional part. 

In this number system, the successive positions to the left of the decimal point having weights of 100, 

101, 102, 103 and so on. Similarly, the successive positions to the right of the decimal point having 

weights of 10-1, 10-2, 10-3 and so on. That means, each position has specific weight, which is power of 

base 10 

Example 

Consider the decimal number 1358.246. Integer part of this number is 1358 and fractional part of this 

number is 0.246. The digits 8, 5, 3 and 1 have weights of 100, 101, 102 and 103respectively. Similarly, 

the digits 2, 4 and 6 have weights of 10-1, 10-2 and 10-3 respectively. 

Mathematically, we can write it as 

1358.246 = (1 × 103) + (3 × 102) + (5 × 101) + (8 × 100) + (2 × 10-1) +(4 × 10-2) + (6 × 10-3) 

After simplifying the right hand side terms, we will get the decimal number, which is on left hand side. 

Binary Number System 

All digital circuits and systems use this binary number system. The base or radix of this number 

system is 2. So, the numbers 0 and 1 are used in this number system. 



The part of the number, which lies to the left of the binary point is known as integer part. Similarly, 

the part of the number, which lies to the right of the binary point is known as fractional part. 

In this number system, the successive positions to the left of the binary point having weights of 20, 21, 

22, 23 and so on. Similarly, the successive positions to the right of the binary point having weights of 2 - 
1, 2-2, 2-3 and so on. That means, each position has specific weight, which is power of base 2. 

Example 

Consider the binary number 1101.011. Integer part of this number is 1101 and fractional part of this 

number is 0.011. The digits 1, 0, 1 and 1 of integer part have weights of 20, 21, 22, 23respectively. 

Similarly, the digits 0, 1 and 1 of fractional part have weights of 2-1, 2-2, 2-3 respectively. 

Mathematically, we can write it as 

1101.011 = (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20) + (0 × 2-1) +(1 × 2-2) + (1 × 2-3) 

After simplifying the right hand side terms, we will get a decimal number, which is an equivalent of 

binary number on left hand side. 

Octal Number System 

The base or radix of octal number system is 8. So, the numbers ranging from 0 to 7 are used in this 

number system. The part of the number that lies to the left of the octal point is known as integer part. 

Similarly, the part of the number that lies to the right of the octal point is known as fractional part. 

In this number system, the successive positions to the left of the octal point having weights of 80, 81, 

82, 83 and so on. Similarly, the successive positions to the right of the octal point having weights of 8-1, 

8-2, 8-3 and so on. That means, each position has specific weight, which is power of base 8. 

Example 

Consider the octal number 1457.236. Integer part of this number is 1457 and fractional part of this 

number is 0.236. The digits 7, 5, 4 and 1 have weights of 80, 81, 82 and 83respectively. Similarly, the 

digits 2, 3 and 6 have weights of 8-1, 8-2, 8-3 respectively. 

Mathematically, we can write it as 

1457.236 = (1 × 83) + (4 × 82) + (5 × 81) + (7 × 80) + (2 × 8-1) +(3 × 8-2) + (6 × 8-3) 

After simplifying the right hand side terms, we will get a decimal number, which is an equivalent of 

octal number on left hand side. 

Hexadecimal Number System 

The base or radix of Hexa-decimal number system is 16. So, the numbers ranging from 0 to 9 and the 

letters from A to F are used in this number system. The decimal equivalent of Hexa-decimal digits 

from A to F are 10 to 15. 



The part of the number, which lies to the left of the hexadecimal point is known as integer part. 

Similarly, the part of the number, which lies to the right of the Hexa-decimal point is known as 

fractional part. 

In this number system, the successive positions to the left of the Hexa-decimal point having weights of 

160, 161, 162, 163 and so on. Similarly, the successive positions to the right of the Hexa-decimal point 

having weights of 16-1, 16-2, 16-3 and so on. That means, each position has specific weight, which 

is power of base 16. 

Example 

Consider the Hexa-decimal number 1A05.2C4. Integer part of this number is 1A05 and fractional part 

of this number is 0.2C4. The digits 5, 0, A and 1 have weights of 160, 161, 162 and 163respectively. 

Similarly, the digits 2, C and 4 have weights of 16-1, 16-2 and 16-3 respectively. 

Mathematically, we can write it as 

1A05.2C4 = (1 × 163) + (10 × 162) + (0 × 161) + (5 × 160) + (2 × 16-1) +(12 × 16-2) + (4 × 16-3) 

After simplifying the right hand side terms, we will get a decimal number, which is an equivalent of 

Hexa-decimal number on left hand side. 

In previous chapter, we have seen the four prominent number systems. In this chapter, let us convert 

the numbers from one number system to the other in order to find the equivalent value. 

Decimal Number to other Bases Conversion 

If the decimal number contains both integer part and fractional part, then convert both the parts of 

decimal number into other base individually. Follow these steps for converting the decimal number 

into its equivalent number of any base ‘r’. 

• Do division of integer part of decimal number and successive quotients with base ‘r’ and note 

down the remainders till the quotient is zero. Consider the remainders in reverse order to get 

the integer part of equivalent number of base ‘r’. That means, first and last remainders denote 

the least significant digit and most significant digit respectively. 

• Do multiplication of fractional part of decimal number and successive fractions with base ‘r’ 

and note down the carry till the result is zero or the desired number of equivalent digits is 

obtained. Consider the normal sequence of carry in order to get the fractional part of 

equivalent number of base ‘r’. 

Decimal to Binary Conversion 

The following two types of operations take place, while converting decimal number into its equivalent 

binary number. 

• Division of integer part and successive quotients with base 2. 

• Multiplication of fractional part and successive fractions with base 2. 



Example 

Consider the decimal number 58.25. Here, the integer part is 58 and fractional part is 0.25. 

Step 1 − Division of 58 and successive quotients with base 2. 

Operation Quotient Remainder 

58/2 29 0 (LSB) 

29/2 14 1 

14/2 7 0 

7/2 3 1 

3/2 1 1 

1/2 0 1(MSB) 

⇒(58)10 = (111010)2 

Therefore, the integer part of equivalent binary number is 111010. 

Step 2 − Multiplication of 0.25 and successive fractions with base 2. 

Operation Result Carry 

0.25 x 2 0.5 0 

0.5 x 2 1.0 1 

- 0.0 - 

⇒(.25)10 = (.01)2 

Therefore, the fractional part of equivalent binary number is .01 

⇒(58.25)10 = (111010.01)2 

Therefore, the binary equivalent of decimal number 58.25 is 111010.01. 



Decimal to Octal Conversion 

The following two types of operations take place, while converting decimal number into its equivalent 

octal number. 

• Division of integer part and successive quotients with base 8. 

• Multiplication of fractional part and successive fractions with base 8. 

Example 

Consider the decimal number 58.25. Here, the integer part is 58 and fractional part is 0.25. 

Step 1 − Division of 58 and successive quotients with base 8. 

Operation Quotient Remainder 

58/8 7 2 

7/8 0 7 

⇒(58)10 = (72)8 

Therefore, the integer part of equivalent octal number is 72. 

Step 2 − Multiplication of 0.25 and successive fractions with base 8. 

Operation Result Carry 

0.25 x 8 2.00 2 

- 0.00 - 

⇒ (.25)10 = (.2)8 

Therefore, the fractional part of equivalent octal number is .2 

⇒ (58.25)10 = (72.2)8 

Therefore, the octal equivalent of decimal number 58.25 is 72.2. 

Decimal to Hexa-Decimal Conversion 

The following two types of operations take place, while converting decimal number into its equivalent 

hexa-decimal number. 

• Division of integer part and successive quotients with base 16. 



• Multiplication of fractional part and successive fractions with base 16. 

Example 

Consider the decimal number 58.25. Here, the integer part is 58 and decimal part is 0.25. 

Step 1 − Division of 58 and successive quotients with base 16. 

Operation Quotient Remainder 

58/16 3 10=A 

3/16 0 3 

⇒ (58)10 = (3A)16 

Therefore, the integer part of equivalent Hexa-decimal number is 3A. 

Step 2 − Multiplication of 0.25 and successive fractions with base 16. 

Operation Result Carry 

0.25 x 16 4.00 4 

- 0.00 - 

⇒(.25)10 = (.4)16 

Therefore, the fractional part of equivalent Hexa-decimal number is .4. 

⇒(58.25)10 = (3A.4)16 

Therefore, the Hexa-decimal equivalent of decimal number 58.25 is 3A.4. 

Binary Number to other Bases Conversion 

The process of converting a number from binary to decimal is different to the process of converting a 

binary number to other bases. Now, let us discuss about the conversion of a binary number to 

decimal, octal and Hexa-decimal number systems one by one. 

Binary to Decimal Conversion 

For converting a binary number into its equivalent decimal number, first multiply the bits of binary 

number with the respective positional weights and then add all those products. 

Example 

Consider the binary number 1101.11. 



Mathematically, we can write it as 

(1101.11)2 = (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20) + (1 × 2-1) +(1 × 2-2) 

⇒ (1101.11)2 = 8 + 4 + 0 + 1 + 0.5 + 0.25 = 13.75 

⇒ (1101.11)2 = (13.75)10 

Therefore, the decimal equivalent of binary number 1101.11 is 13.75. 

Binary to Octal Conversion 

We know that the bases of binary and octal number systems are 2 and 8 respectively. Three bits of 

binary number is equivalent to one octal digit, since 23 = 8. 

Follow these two steps for converting a binary number into its equivalent octal number. 

• Start from the binary point and make the groups of 3 bits on both sides of binary point. If one 

or two bits are less while making the group of 3 bits, then include required number of zeros on 

extreme sides. 

• Write the octal digits corresponding to each group of 3 bits. 

Example 

Consider the binary number 101110.01101. 

Step 1 − Make the groups of 3 bits on both sides of binary point. 

101 110.011 01 

Here, on right side of binary point, the last group is having only 2 bits. So, include one zero on extreme 

side in order to make it as group of 3 bits. 

⇒ 101 110.011 010 

Step 2 − Write the octal digits corresponding to each group of 3 bits. 

⇒ (101 110.011 010)2 = (56.32)8 

Therefore, the octal equivalent of binary number 101110.01101 is 56.32. 

Binary to Hexa-Decimal Conversion 

We know that the bases of binary and Hexa-decimal number systems are 2 and 16 respectively. Four 

bits of binary number is equivalent to one Hexa-decimal digit, since 24 = 16. 

Follow these two steps for converting a binary number into its equivalent Hexa-decimal number. 

• Start from the binary point and make the groups of 4 bits on both sides of binary point. If some 

bits are less while making the group of 4 bits, then include required number of zeros on 

extreme sides. 

• Write the Hexa-decimal digits corresponding to each group of 4 bits. 

 



Example 

Consider the binary number 101110.01101 

Step 1 − Make the groups of 4 bits on both sides of binary point. 

10 1110.0110 1 

Here, the first group is having only 2 bits. So, include two zeros on extreme side in order to make it as 

group of 4 bits. Similarly, include three zeros on extreme side in order to make the last group also as 

group of 4 bits. 

⇒ 0010 1110.0110 1000 

Step 2 − Write the Hexa-decimal digits corresponding to each group of 4 bits. 

⇒ (0010 1110.0110 1000)2 = (2E.68)16 

Therefore, the Hexa-decimal equivalent of binary number 101110.01101 is (2E.68). 

Octal Number to other Bases Conversion 

The process of converting a number from octal to decimal is different to the process of converting an 

octal number to other bases. Now, let us discuss about the conversion of an octal number to decimal, 

binary and Hexa-decimal number systems one by one. 

Octal to Decimal Conversion 

For converting an octal number into its equivalent decimal number, first multiply the digits of octal 

number with the respective positional weights and then add all those products. 

Example 

Consider the octal number 145.23. 

Mathematically, we can write it as 

(145.23)8 = (1 × 82) + (4 × 81) + (5 × 80) + (2 × 8-1) + (3 × 8-2) 

⇒ (145.23)8 = 64 + 32 + 5 + 0.25 + 0.05 = 101.3 

⇒ (145.23)8 = (101.3)10 

Therefore, the decimal equivalent of octal number 145.23 is 101.3. 

Octal to Binary Conversion 

The process of converting an octal number to an equivalent binary number is just opposite to that of 

binary to octal conversion. By representing each octal digit with 3 bits, we will get the equivalent 

binary number. 

Example 

Consider the octal number 145.23. 

Represent each octal digit with 3 bits. 



(145.23)8 = (001 100 101.010 011)2 

The value doesn’t change by removing the zeros, which are on the extreme side. 

⇒ (145.23)8 = (1100101.010011)2 

Therefore, the binary equivalent of octal number 145.23 is 1100101.010011. 

Octal to Hexa-Decimal Conversion 

Follow these two steps for converting an octal number into its equivalent Hexa-decimal number. 

• Convert octal number into its equivalent binary number. 

• Convert the above binary number into its equivalent Hexa-decimal number. 

Example 

Consider the octal number 145.23 

In previous example, we got the binary equivalent of octal number 145.23 as 1100101.010011. 

By following the procedure of binary to Hexa-decimal conversion, we will get 

(1100101.010011)2 = (65.4C)16 

⇒(145.23)8 = (65.4C)16 

Therefore, the Hexa-decimal equivalent of octal number 145.23 is 65.4C. 

Hexa-Decimal Number to other Bases Conversion 

The process of converting a number from Hexa-decimal to decimal is different to the process of 

converting Hexa-decimal number into other bases. Now, let us discuss about the conversion of Hexa-

decimal number to decimal, binary and octal number systems one by one. 

Hexa-Decimal to Decimal Conversion 

For converting Hexa-decimal number into its equivalent decimal number, first multiply the digits of 

Hexa-decimal number with the respective positional weights and then add all those products. 

Example 

Consider the Hexa-decimal number 1A5.2 

Mathematically, we can write it as 

(1A5.2)16 = (1 × 162) + (10 × 161) + (5 × 160) + (2 × 16-1) 

⇒ (1A5.2)16 = 256 + 160 + 5 + 0.125 = 421.125 

⇒ (1A5.2)16 = (421.125)10 

Therefore, the decimal equivalent of Hexa-decimal number 1A5.2 is 421.125. 



Hexa-Decimal to Binary Conversion 

The process of converting Hexa-decimal number into its equivalent binary number is just opposite to 

that of binary to Hexa-decimal conversion. By representing each Hexa-decimal digit with 4 bits, we 

will get the equivalent binary number. 

Example 

Consider the Hexa-decimal number 65.4C 

Represent each Hexa-decimal digit with 4 bits. 

(65.4C)6 = (0110 0101.0100 1100)2 

The value doesn’t change by removing the zeros, which are at two extreme sides. 

⇒ (65.4C)16 = (1100101.010011)2 

Therefore, the binary equivalent of Hexa-decimal number 65.4C is 1100101.010011. 

Hexa-Decimal to Octal Conversion 

Follow these two steps for converting Hexa-decimal number into its equivalent octal number. 

• Convert Hexa-decimal number into its equivalent binary number. 

• Convert the above binary number into its equivalent octal number. 

Example 

Consider the Hexa-decimal number 65.4C 

In previous example, we got the binary equivalent of Hexa-decimal number 65.4C as 1100101.010011. 

By following the procedure of binary to octal conversion, we will get 

(1100101.010011)2 = (145.23)8 

⇒(65.4C)16 = (145.23)𝟖 

Therefore, the octal equivalent of Hexa-decimal number 65.4Cis 145.23. 

We can make the binary numbers into the following two groups − Unsigned numbers and Signed 

numbers. 

Unsigned Numbers 

Unsigned numbers contain only magnitude of the number. They don’t have any sign. That means all 

unsigned binary numbers are positive. As in decimal number system, the placing of positive sign in 

front of the number is optional for representing positive numbers. Therefore, all positive numbers 

including zero can be treated as unsigned numbers if positive sign is not assigned in front of the 

number. 



Signed Numbers 

Signed numbers contain both sign and magnitude of the number. Generally, the sign is placed in front 

of number. So, we have to consider the positive sign for positive numbers and negative sign for 

negative numbers. Therefore, all numbers can be treated as signed numbers if the corresponding sign 

is assigned in front of the number. 

If sign bit is zero, which indicates the binary number is positive. Similarly, if sign bit is one, which 

indicates the binary number is negative. 

Representation of Un-Signed Binary Numbers 

The bits present in the un-signed binary number holds the magnitude of a number. That means, if the 

un-signed binary number contains ‘N’ bits, then all N bits represent the magnitude of the number, 

since it doesn’t have any sign bit. 

Example 

Consider the decimal number 108. The binary equivalent of this number is 1101100. This is the 

representation of unsigned binary number. 

(108)10 = (1101100)2 

It is having 7 bits. These 7 bits represent the magnitude of the number 108. 

Representation of Signed Binary Numbers 

The Most Significant Bit (MSB) of signed binary numbers is used to indicate the sign of the numbers. 

Hence, it is also called as sign bit. The positive sign is represented by placing ‘0’ in the sign bit. 

Similarly, the negative sign is represented by placing ‘1’ in the sign bit. 

If the signed binary number contains ‘N’ bits, then (N-1) bits only represent the magnitude of the 

number since one bit (MSB) is reserved for representing sign of the number. 

There are three types of representations for signed binary numbers 

• Sign-Magnitude form 

• 1’s complement form 

• 2’s complement form 

Representation of a positive number in all these 3 forms is same. But, only the representation of 

negative number will differ in each form. 

Example 

Consider the positive decimal number +108. The binary equivalent of magnitude of this number is 

1101100. These 7 bits represent the magnitude of the number 108. Since it is positive number, 

consider the sign bit as zero, which is placed on left most side of magnitude. 



(+108)10 = (01101100)2 

Therefore, the signed binary representation of positive decimal number +108 is 𝟎𝟏𝟏𝟎𝟏𝟏𝟎𝟎. So, the 

same representation is valid in sign-magnitude form, 1’s complement form and 2’s complement form 

for positive decimal number +108. 

Sign-Magnitude form 

In sign-magnitude form, the MSB is used for representing signof the number and the remaining bits 

represent the magnitudeof the number. So, just include sign bit at the left most side of unsigned 

binary number. This representation is similar to the signed decimal numbers representation. 

Example 

Consider the negative decimal number -108. The magnitude of this number is 108. We know the 

unsigned binary representation of 108 is 1101100. It is having 7 bits. All these bits represent the 

magnitude. 

Since the given number is negative, consider the sign bit as one, which is placed on left most side of 

magnitude. 

(−108)10 = (11101100)2 

Therefore, the sign-magnitude representation of -108 is 11101100. 

1’s complement form 

The 1’s complement of a number is obtained by complementing all the bits of signed binary number. 

So, 1’s complement of positive number gives a negative number. Similarly, 1’s complement of 

negative number gives a positive number. 

That means, if you perform two times 1’s complement of a binary number including sign bit, then you 

will get the original signed binary number. 

Example 

Consider the negative decimal number -108. The magnitude of this number is 108. We know the 

signed binary representation of 108 is 01101100. 

It is having 8 bits. The MSB of this number is zero, which indicates positive number. Complement of 

zero is one and vice-versa. So, replace zeros by ones and ones by zeros in order to get the negative 

number. 

(−108)10 = (10010011)2 

Therefore, the 1’s complement of (108)10 is (10010011)2. 



2’s complement form 

The 2’s complement of a binary number is obtained by adding one to the 1’s complement of signed 

binary number. So, 2’s complement of positive number gives a negative number. Similarly, 2’s 

complement of negative number gives a positive number. 

That means, if you perform two times 2’s complement of a binary number including sign bit, then you 

will get the original signed binary number. 

Example 

Consider the negative decimal number -108. 

We know the 1’s complement of (108)10 is (10010011)2 

2’s compliment of (108)10 = 1’s compliment of (108)10 + 1. 

= 10010011 + 1 

= 10010100 

Therefore, the 2’s complement of (108)10 is (10010100)2. 

In this chapter, let us discuss about the basic arithmetic operations, which can be performed on any 

two signed binary numbers using 2’s complement method. The basic arithmetic operations are 

addition and subtraction. 

Addition of two Signed Binary Numbers 

Consider the two signed binary numbers A & B, which are represented in 2’s complement form. We 

can perform the addition of these two numbers, which is similar to the addition of two unsigned 

binary numbers. But, if the resultant sum contains carry out from sign bit, then discard (ignore) it in 

order to get the correct value. 

If resultant sum is positive, you can find the magnitude of it directly. But, if the resultant sum is 

negative, then take 2’s complement of it in order to get the magnitude. 

Example 1 

Let us perform the addition of two decimal numbers +7 and +4 using 2’s complement method. 

The 2’s complement representations of +7 and +4 with 5 bits each are shown below. 

(+7)10 = (00111)2 

(+4)10 = (00100)2 

The addition of these two numbers is 

(+7)10 +(+4)10 = (00111)2+(00100)2 



⇒(+7)10 +(+4)10 = (01011)2. 

The resultant sum contains 5 bits. So, there is no carry out from sign bit. The sign bit ‘0’ indicates that 

the resultant sum is positive. So, the magnitude of sum is 11 in decimal number system. Therefore, 

addition of two positive numbers will give another positive number. 

Example 2 

Let us perform the addition of two decimal numbers -7 and -4using 2’s complement method. 

The 2’s complement representation of -7 and -4 with 5 bits each are shown below. 

(−7)10 = (11001)2 

(−4)10 = (11100)2 

The addition of these two numbers is 

(−7)10 + (−4)10 = (11001)2 + (11100)2 

⇒(−7)10 + (−4)10 = (110101)2. 

The resultant sum contains 6 bits. In this case, carry is obtained from sign bit. So, we can remove it 

Resultant sum after removing carry is (−7)10 + (−4)10 = (10101)2. 

The sign bit ‘1’ indicates that the resultant sum is negative. So, by taking 2’s complement of it we will 

get the magnitude of resultant sum as 11 in decimal number system. Therefore, addition of two 

negative numbers will give another negative number. 

Subtraction of two Signed Binary Numbers 

Consider the two signed binary numbers A & B, which are represented in 2’s complement form. We 

know that 2’s complement of positive number gives a negative number. So, whenever we have to 

subtract a number B from number A, then take 2’s complement of B and add it to A. 

So, mathematicallywe can write it as 

A - B = A + (2's complement of B) 

Similarly, if we have to subtract the number A from number B, then take 2’s complement of A and add 

it to B. So, mathematically we can write it as 

B - A = B + (2's complement of A) 

So, the subtraction of two signed binary numbers is similar to the addition of two signed binary 

numbers. But, we have to take 2’s complement of the number, which is supposed to be subtracted. 

This is the advantage of 2’s complement technique. Follow, the same rules of addition of two signed 

binary numbers. 



Example 3 

Let us perform the subtraction of two decimal numbers +7 and +4 using 2’s complement method. 

The subtraction of these two numbers is 

(+7)10 − (+4)10 = (+7)10 + (−4)10. 

The 2’s complement representation of +7 and -4 with 5 bits each are shown below. 

(+7)10 = (00111)2 

(+4)10 = (11100)2 

⇒(+7)10 + (+4)10 = (00111)2 + (11100)2 = (00011)2 

Here, the carry obtained from sign bit. So, we can remove it. The resultant sum after removing carry is 

(+7)10 + (+4)10 = (00011)2 

The sign bit ‘0’ indicates that the resultant sum is positive. So, the magnitude of it is 3 in decimal 

number system. Therefore, subtraction of two decimal numbers +7 and +4 is +3. 

Example 4 

Let us perform the subtraction of two decimal numbers +4 and +7 using 2’s complement method. 

The subtraction of these two numbers is 

(+4)10 − (+7)10 = (+4)10 + (−7)10. 

The 2’s complement representation of +4 and -7 with 5 bits each are shown below. 

(+4)10 = (00100)2 

(-7)10 = (11001)2 

⇒(+4)10 + (-7)10 = (00100)2 + (11001)2 = (11101)2 

Here, carry is not obtained from sign bit. The sign bit ‘1’ indicates that the resultant sum is negative. 

So, by taking 2’s complement of it we will get the magnitude of resultant sum as 3 in decimal number 

system. Therefore, subtraction of two decimal numbers +4 and +7 is -3. 

In the coding, when numbers or letters are represented by a specific group of symbols, it is said to be 

that number or letter is being encoded. The group of symbols is called as code. The digital data is 

represented, stored and transmitted as group of bits. This group of bits is also called as binary code. 

Binary codes can be classified into two types. 

• Weighted codes 

• Unweighted codes 



If the code has positional weights, then it is said to be weighted code. Otherwise, it is an unweighted 

code. Weighted codes can be further classified as positively weighted codes and negatively weighted 

codes. 

Binary Codes for Decimal digits 

The following table shows the various binary codes for decimal digits 0 to 9. 

 

Decimal Digit 8421 Code 2421 Code 84-2-1 Code Excess 3 Code 

0 0000 0000 0000 0011 

1 0001 0001 0111 0100 

2 0010 0010 0110 0101 

3 0011 0011 0101 0110 

4 0100 0100 0100 0111 

5 0101 1011 1011 1000 

6 0110 1100 1010 1001 

7 0111 1101 1001 1010 

8 1000 1110 1000 1011 

9 1001 1111 1111 1100 

We have 10 digits in decimal number system. To represent these 10 digits in binary, we require 

minimum of 4 bits. But, with 4 bits there will be 16 unique combinations of zeros and ones. Since, we 

have only 10 decimal digits, the other 6 combinations of zeros and ones are not required. 



8 4 2 1 code 

• The weights of this code are 8, 4, 2 and 1. 

• This code has all positive weights. So, it is a positively weighted code. 

• This code is also called as natural BCD (Binary Coded Decimal) code. 

Example 

Let us find the BCD equivalent of the decimal number 786. This number has 3 decimal digits 7, 8 and 

6. From the table, we can write the BCD (8421) codes of 7, 8 and 6 are 0111, 1000 and 0110 

respectively. 

∴ (786)10 = (011110000110)BCD 

There are 12 bits in BCD representation, since each BCD code of decimal digit has 4 bits. 

2 4 2 1 code 

• The weights of this code are 2, 4, 2 and 1. 

• This code has all positive weights. So, it is a positively weighted code. 

• It is an unnatural BCD code. Sum of weights of unnatural BCD codes is equal to 9. 

• It is a self-complementing code. Self-complementing codes provide the 9’s complement of a 

decimal number, just by interchanging 1’s and 0’s in its equivalent 2421 representation. 

Example 

Let us find the 2421 equivalent of the decimal number 786. This number has 3 decimal digits 7, 8 and 

6. From the table, we can write the 2421 codes of 7, 8 and 6 are 1101, 1110 and 1100 respectively. 

Therefore, the 2421 equivalent of the decimal number 786 is 110111101100. 

8 4 -2 -1 code 

• The weights of this code are 8, 4, -2 and -1. 

• This code has negative weights along with positive weights. So, it is a negatively weighted 

code. 

• It is an unnatural BCD code. 

• It is a self-complementing code. 

Example 

Let us find the 8 4-2-1 equivalent of the decimal number 786. This number has 3 decimal digits 7, 8 

and 6. From the table, we can write the 8 4 -2 -1 codes of 7, 8 and 6 are 1001, 1000 and 1010 

respectively. 



Therefore, the 8 4 -2 -1 equivalent of the decimal number 786 is 100110001010. 

Excess 3 code 

• This code doesn’t have any weights. So, it is an un-weighted code. 

• We will get the Excess 3 code of a decimal number by adding three (0011) to the binary 

equivalent of that decimal number. Hence, it is called as Excess 3 code. 

• It is a self-complementing code. 

Example 

Let us find the Excess 3 equivalent of the decimal number 786. This number has 3 decimal digits 7, 8 

and 6. From the table, we can write the Excess 3 codes of 7, 8 and 6 are 1010, 1011 and 1001 

respectively. 

Therefore, the Excess 3 equivalent of the decimal number 786 is 101010111001 

Gray Code 

The following table shows the 4-bit Gray codes corresponding to each 4-bit binary code. 

Decimal Number Binary Code Gray Code 

0 0000 0000 

1 0001 0001 

2 0010 0011 

3 0011 0010 

4 0100 0110 

5 0101 0111 

6 0110 0101 



7 0111 0100 

8 1000 1100 

9 1001 1101 

10 1010 1111 

11 1011 1110 

12 1100 1010 

13 1101 1011 

14 1110 1001 

15 1111 1000 

• This code doesn’t have any weights. So, it is an un-weighted code. 

• In the above table, the successive Gray codes are differed in one bit position only. Hence, this 

code is called as unit distance code. 

Binary code to Gray Code Conversion 

Follow these steps for converting a binary code into its equivalent Gray code. 

• Consider the given binary code and place a zero to the left of MSB. 

• Compare the successive two bits starting from zero. If the 2 bits are same, then the output is 

zero. Otherwise, output is one. 

• Repeat the above step till the LSB of Gray code is obtained. 

Example 

From the table, we know that the Gray code corresponding to binary code 1000 is 1100. Now, let us 

verify it by using the above procedure. 



Given, binary code is 1000. 

Step 1 − By placing zero to the left of MSB, the binary code will be 01000. 

Step 2 − By comparing successive two bits of new binary code, we will get the gray code as 1100. 

Boolean Algebra is an algebra, which deals with binary numbers & binary variables. Hence, it is also 

called as Binary Algebra or logical Algebra. A mathematician, named George Boole had developed this 

algebra in 1854. The variables used in this algebra are also called as Boolean variables. 

The range of voltages corresponding to Logic ‘High’ is represented with ‘1’ and the range of voltages 

corresponding to logic ‘Low’ is represented with ‘0’. 

Postulates and Basic Laws of Boolean Algebra 

In this section, let us discuss about the Boolean postulates and basic laws that are used in Boolean 

algebra. These are useful in minimizing Boolean functions. 

Boolean Postulates 

Consider the binary numbers 0 and 1, Boolean variable (x) and its complement (x’). Either the Boolean 

variable or complement of it is known as literal. The four possible logical OR operations among these 

literals and binary numbers are shown below. 

x + 0 = x 

x + 1 = 1 

x + x = x 

x + x’ = 1 

Similarly, the four possible logical AND operations among those literals and binary numbers are 

shown below. 

x.1 = x 

x.0 = 0 

x.x = x 

x.x’ = 0 

These are the simple Boolean postulates. We can verify these postulates easily, by substituting the 

Boolean variable with ‘0’ or ‘1’. 

Note− The complement of complement of any Boolean variable is equal to the variable itself. i.e., 

(x’)’=x. 



Basic Laws of Boolean Algebra 

Following are the three basic laws of Boolean Algebra. 

• Commutative law 

• Associative law 

• Distributive law 

Commutative Law 

If any logical operation of two Boolean variables give the same result irrespective of the order of 

those two variables, then that logical operation is said to be Commutative. The logical OR & logical 

AND operations of two Boolean variables x & y are shown below 

x + y = y + x 

x.y = y.x 

The symbol ‘+’ indicates logical OR operation. Similarly, the symbol ‘.’ indicates logical AND operation 

and it is optional to represent. Commutative law obeys for logical OR & logical AND operations. 

Associative Law 

If a logical operation of any two Boolean variables is performed first and then the same operation is 

performed with the remaining variable gives the same result, then that logical operation is said to 

be Associative. The logical OR & logical AND operations of three Boolean variables x, y & z are shown 

below. 

x + (y + z) = (x + y) + z 

x.(y.z) = (x.y).z 

Associative law obeys for logical OR & logical AND operations. 

Distributive Law 

If any logical operation can be distributed to all the terms present in the Boolean function, then that 

logical operation is said to be Distributive. The distribution of logical OR & logical AND operations of 

three Boolean variables x, y & z are shown below. 

x.(y + z) = x.y + x.z 

x + (y.z) = (x + y).(x + z) 

Distributive law obeys for logical OR and logical AND operations. 

These are the Basic laws of Boolean algebra. We can verify these laws easily, by substituting the 

Boolean variables with ‘0’ or ‘1’. 

Theorems of Boolean Algebra 



The following two theorems are used in Boolean algebra. 

• Duality theorem 

• DeMorgan’s theorem 

Duality Theorem 

This theorem states that the dual of the Boolean function is obtained by interchanging the logical AND 

operator with logical OR operator and zeros with ones. For every Boolean function, there will be a 

corresponding Dual function. 

Let us make the Boolean equations (relations) that we discussed in the section of Boolean postulates 

and basic laws into two groups. The following table shows these two groups. 

Group1 Group2 

x + 0 = x x.1 = x 

x + 1 = 1 x.0 = 0 

x + x = x x.x = x 

x + x’ = 1 x.x’ = 0 

x + y = y + x x.y = y.x 

x + (y + z) = (x + y) + z x.(y.z) = (x.y).z 

x.(y + z) = x.y + x.z x + (y.z) = (x + y).(x + z) 

In each row, there are two Boolean equations and they are dual to each other. We can verify all these 

Boolean equations of Group1 and Group2 by using duality theorem. 

DeMorgan’s Theorem 

This theorem is useful in finding the complement of Boolean function. It states that the complement 

of logical OR of at least two Boolean variables is equal to the logical AND of each complemented 

variable. 



DeMorgan’s theorem with 2 Boolean variables x and y can be represented as 

(x + y)’ = x’.y’ 

The dual of the above Boolean function is 

(x.y)’ = x’ + y’ 

Therefore, the complement of logical AND of two Boolean variables is equal to the logical OR of each 

complemented variable. Similarly, we can apply DeMorgan’s theorem for more than 2 Boolean 

variables also. 

Simplification of Boolean Functions 

Till now, we discussed the postulates, basic laws and theorems of Boolean algebra. Now, let us 

simplify some Boolean functions. 

Example 1 

Let us simplify the Boolean function, f = p’qr + pq’r + pqr’ + pqr 

We can simplify this function in two methods. 

Method 1 

Given Boolean function, f = p’qr + pq’r + pqr’ +pqr. 

Step 1 − In first and second terms r is common and in third and fourth terms pq is common. So, take 

the common terms by using Distributive law. 

⇒ f = (p’q + pq’)r + pq(r’ + r) 

Step 2 − The terms present in first parenthesis can be simplified to Ex-OR operation. The terms 

present in second parenthesis can be simplified to ‘1’ using Boolean postulate 

⇒ f = (p ⊕q)r + pq(1) 

Step 3 − The first term can’t be simplified further. But, the second term can be simplified to pq 

using Boolean postulate. 

⇒ f = (p ⊕q)r + pq 

Therefore, the simplified Boolean function is f = (p⊕q)r + pq 

Method 2 

Given Boolean function, f = p’qr + pq’r + pqr’ + pqr. 

Step 1 − Use the Boolean postulate, x + x = x. That means, the Logical OR operation with any Boolean 

variable ‘n’ times will be equal to the same variable. So, we can write the last term pqr two more 

times. 



⇒ f = p’qr + pq’r + pqr’ + pqr + pqr + pqr 

Step 2 − Use Distributive law for 1st and 4th terms, 2nd and 5th terms, 3rd and 6th terms. 

⇒ f = qr(p’ + p) + pr(q’ + q) + pq(r’ + r) 

Step 3 − Use Boolean postulate, x + x’ = 1 for simplifying the terms present in each parenthesis. 

⇒ f = qr(1) + pr(1) + pq(1) 

Step 4 − Use Boolean postulate, x.1 = x for simplifying the above three terms. 

⇒ f = qr + pr + pq 

⇒ f = pq + qr + pr 

Therefore, the simplified Boolean function is f = pq + qr + pr. 

So, we got two different Boolean functions after simplifying the given Boolean function in each 

method. Functionally, those two Boolean functions are same. So, based on the requirement, we can 

choose one of those two Boolean functions. 

Example 2 

Let us find the complement of the Boolean function, f = p’q + pq’. 

The complement of Boolean function is f’ = (p’q + pq’)’. 

Step 1 − Use DeMorgan’s theorem, (x + y)’ = x’.y’. 

⇒ f’ = (p’q)’.(pq’)’ 

Step 2 − Use DeMorgan’s theorem, (x.y)’ = x’ + y’ 

⇒ f’ = {(p’)’ + q’}.{p’ + (q’)’} 

Step3 − Use the Boolean postulate, (x’)’=x. 

⇒ f’ = {p + q’}.{p’ + q} 

⇒ f’ = pp’ + pq + p’q’ + qq’ 

Step 4 − Use the Boolean postulate, xx’=0. 

⇒ f = 0 + pq + p’q’ + 0 

⇒ f = pq + p’q’ 

Therefore, the complement of Boolean function, p’q + pq’ is pq + p’q’. 

We will get four Boolean product terms by combining two variables x and y with logical AND 

operation. These Boolean product terms are called as min terms or standard product terms. The min 

terms are x’y’, x’y, xy’ and xy. 



Similarly, we will get four Boolean sum terms by combining two variables x and y with logical OR 

operation. These Boolean sum terms are called as Max terms or standard sum terms. The Max terms 

are x + y, x + y’, x’ + y and x’ + y’. 

The following table shows the representation of min terms and MAX terms for 2 variables. 

x y Min terms Max terms 

0 0 m0=x’y’ M0=x + y 

0 1 m1=x’y M1=x + y’ 

1 0 m2=xy’ M2=x’ + y 

1 1 m3=xy M3=x’ + y’ 

If the binary variable is ‘0’, then it is represented as complement of variable in min term and as the 

variable itself in Max term. Similarly, if the binary variable is ‘1’, then it is represented as complement 

of variable in Max term and as the variable itself in min term. 

From the above table, we can easily notice that min terms and Max terms are complement of each 

other. If there are ‘n’ Boolean variables, then there will be 2n min terms and 2n Max terms. 

Canonical SoP and PoS forms 

A truth table consists of a set of inputs and output(s). If there are ‘n’ input variables, then there will be 

2n possible combinations with zeros and ones. So the value of each output variable depends on the 

combination of input variables. So, each output variable will have ‘1’ for some combination of input 

variables and ‘0’ for some other combination of input variables. 

Therefore, we can express each output variable in following two ways. 

• Canonical SoP form 

• Canonical PoS form 

Canonical SoP form 

Canonical SoP form means Canonical Sum of Products form. In this form, each product term contains 

all literals. So, these product terms are nothing but the min terms. Hence, canonical SoP form is also 

called as sum of min terms form. 



First, identify the min terms for which, the output variable is one and then do the logical OR of those 

min terms in order to get the Boolean expression (function) corresponding to that output variable. 

This Boolean function will be in the form of sum of min terms. 

Follow the same procedure for other output variables also, if there is more than one output variable. 

Example 

Consider the following truth table. 

Inputs Output 

p q r f 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

Here, the output (f) is ‘1’ for four combinations of inputs. The corresponding min terms are p’qr, pq’r, 

pqr’, pqr. By doing logical OR of these four min terms, we will get the Boolean function of output (f). 

Therefore, the Boolean function of output is, f = p’qr + pq’r + pqr’ + pqr. This is the canonical SoP 

form of output, f. We can also represent this function in following two notations. 

f=m3+m5+m6+m7f=m3+m5+m6+m7 



f=∑m(3,5,6,7)f=∑m(3,5,6,7) 

In one equation, we represented the function as sum of respective min terms. In other equation, we 

used the symbol for summation of those min terms. 

Canonical PoS form 

Canonical PoS form means Canonical Product of Sums form. In this form, each sum term contains all 

literals. So, these sum terms are nothing but the Max terms. Hence, canonical PoS form is also called 

as product of Max terms form. 

First, identify the Max terms for which, the output variable is zero and then do the logical AND of 

those Max terms in order to get the Boolean expression (function) corresponding to that output 

variable. This Boolean function will be in the form of product of Max terms. 

Follow the same procedure for other output variables also, if there is more than one output variable. 

Example 

Consider the same truth table of previous example. Here, the output (f) is ‘0’ for four combinations of 

inputs. The corresponding Max terms are p + q + r, p + q + r’, p + q’ + r, p’ + q + r. By doing logical AND 

of these four Max terms, we will get the Boolean function of output (f). 

Therefore, the Boolean function of output is, f = (p + q + r).(p + q + r’).(p + q’ + r).(p’ + q + r). This is 

the canonical PoS formof output, f. We can also represent this function in following two notations. 

f=M0.M1.M2.M4f=M0.M1.M2.M4 

f=∏M(0,1,2,4)f=∏M(0,1,2,4) 

In one equation, we represented the function as product of respective Max terms. In other equation, 

we used the symbol for multiplication of those Max terms. 

The Boolean function, f = (p + q + r).(p + q + r’).(p + q’ + r).(p’ + q + r) is the dual of the Boolean 

function, f = p’qr + pq’r + pqr’ + pqr. 

Therefore, both canonical SoP and canonical PoS forms are Dualto each other. Functionally, these two 

forms are same. Based on the requirement, we can use one of these two forms. 

Standard SoP and PoS forms 

We discussed two canonical forms of representing the Boolean output(s). Similarly, there are two 

standard forms of representing the Boolean output(s). These are the simplified version of canonical 

forms. 

• Standard SoP form 

• Standard PoS form 



We will discuss about Logic gates in later chapters. The main advantage of standard forms is that the 

number of inputs applied to logic gates can be minimized. Sometimes, there will be reduction in the 

total number of logic gates required. 

Standard SoP form 

Standard SoP form means Standard Sum of Products form. In this form, each product term need not 

contain all literals. So, the product terms may or may not be the min terms. Therefore, the Standard 

SoP form is the simplified form of canonical SoP form. 

We will get Standard SoP form of output variable in two steps. 

• Get the canonical SoP form of output variable 

• Simplify the above Boolean function, which is in canonical SoP form. 

Follow the same procedure for other output variables also, if there is more than one output variable. 

Sometimes, it may not possible to simplify the canonical SoP form. In that case, both canonical and 

standard SoP forms are same. 

Example 

Convert the following Boolean function into Standard SoP form. 

f = p’qr + pq’r + pqr’ + pqr 

The given Boolean function is in canonical SoP form. Now, we have to simplify this Boolean function in 

order to get standard SoP form. 

Step 1 − Use the Boolean postulate, x + x = x. That means, the Logical OR operation with any Boolean 

variable ‘n’ times will be equal to the same variable. So, we can write the last term pqr two more 

times. 

⇒ f = p’qr + pq’r + pqr’ + pqr + pqr + pqr 

Step 2 − Use Distributive law for 1st and 4th terms, 2nd and 5th terms, 3rd and 6th terms. 

⇒ f = qr(p’ + p) + pr(q’ + q) + pq(r’ + r) 

Step 3 − Use Boolean postulate, x + x’ = 1 for simplifying the terms present in each parenthesis. 

⇒ f = qr(1) + pr(1) + pq(1) 

Step 4 − Use Boolean postulate, x.1 = x for simplifying above three terms. 

⇒ f = qr + pr + pq 

⇒ f = pq + qr + pr 



This is the simplified Boolean function. Therefore, the standard SoP form corresponding to given 

canonical SoP form is f = pq + qr + pr 

Standard PoS form 

Standard PoS form means Standard Product of Sums form. In this form, each sum term need not 

contain all literals. So, the sum terms may or may not be the Max terms. Therefore, the Standard PoS 

form is the simplified form of canonical PoS form. 

We will get Standard PoS form of output variable in two steps. 

• Get the canonical PoS form of output variable 

• Simplify the above Boolean function, which is in canonical PoS form. 

Follow the same procedure for other output variables also, if there is more than one output variable. 

Sometimes, it may not possible to simplify the canonical PoS form. In that case, both canonical and 

standard PoS forms are same. 

Example 

Convert the following Boolean function into Standard PoS form. 

f = (p + q + r).(p + q + r’).(p + q’ + r).(p’ + q + r) 

The given Boolean function is in canonical PoS form. Now, we have to simplify this Boolean function in 

order to get standard PoS form. 

Step 1 − Use the Boolean postulate, x.x = x. That means, the Logical AND operation with any Boolean 

variable ‘n’ times will be equal to the same variable. So, we can write the first term p+q+r two more 

times. 

⇒ f = (p + q + r).(p + q + r).(p + q + r).(p + q + r’).(p +q’ + r).(p’ + q + r) 

Step 2 − Use Distributive law, x + (y.z) = (x + y).(x + z) for 1st and 4th parenthesis, 2nd and 

5th parenthesis, 3rd and 6thparenthesis. 

⇒ f = (p + q + rr’).(p + r + qq’).(q + r + pp’) 

Step 3 − Use Boolean postulate, x.x’=0 for simplifying the terms present in each parenthesis. 

⇒ f = (p + q + 0).(p + r + 0).(q + r + 0) 

Step 4 − Use Boolean postulate, x + 0 = x for simplifying the terms present in each parenthesis 

⇒ f = (p + q).(p + r).(q + r) 

⇒ f = (p + q).(q + r).(p + r) 



This is the simplified Boolean function. Therefore, the standard PoS form corresponding to given 

canonical PoS form is f = (p + q).(q + r).(p + r). This is the dual of the Boolean function, f = pq + qr + pr. 

Therefore, both Standard SoP and Standard PoS forms are Dual to each other. 

 

Digital electronic circuits operate with voltages of two logic levelsnamely Logic Low and Logic High. 

The range of voltages corresponding to Logic Low is represented with ‘0’. Similarly, the range of 

voltages corresponding to Logic High is represented with ‘1’. 

The basic digital electronic circuit that has one or more inputs and single output is known as Logic 

gate. Hence, the Logic gates are the building blocks of any digital system. We can classify these Logic 

gates into the following three categories. 

• Basic gates 

• Universal gates 

• Special gates 

Now, let us discuss about the Logic gates come under each category one by one. 

Basic Gates 

In earlier chapters, we learnt that the Boolean functions can be represented either in sum of products 

form or in product of sums form based on the requirement. So, we can implement these Boolean 

functions by using basic gates. The basic gates are AND, OR & NOT gates. 

AND gate 

An AND gate is a digital circuit that has two or more inputs and produces an output, which is 

the logical AND of all those inputs. It is optional to represent the Logical AND with the symbol ‘.’. 

The following table shows the truth table of 2-input AND gate. 

A B Y = A.B 

0 0 0 

0 1 0 

1 0 0 

1 1 1 



Here A, B are the inputs and Y is the output of two input AND gate. If both inputs are ‘1’, then only the 

output, Y is ‘1’. For remaining combinations of inputs, the output, Y is ‘0’. 

The following figure shows the symbol of an AND gate, which is having two inputs A, B and one 

output, Y. 

 

This AND gate produces an output (Y), which is the logical ANDof two inputs A, B. Similarly, if there 

are ‘n’ inputs, then the AND gate produces an output, which is the logical AND of all those inputs. That 

means, the output of AND gate will be ‘1’, when all the inputs are ‘1’. 

OR gate 

An OR gate is a digital circuit that has two or more inputs and produces an output, which is the logical 

OR of all those inputs. This logical OR is represented with the symbol ‘+’. 

The following table shows the truth table of 2-input OR gate. 

A B Y = A + B 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

Here A, B are the inputs and Y is the output of two input OR gate. If both inputs are ‘0’, then only the 

output, Y is ‘0’. For remaining combinations of inputs, the output, Y is ‘1’. 

The following figure shows the symbol of an OR gate, which is having two inputs A, B and one output, 

Y. 



 

This OR gate produces an output (Y), which is the logical OR of two inputs A, B. Similarly, if there are 

‘n’ inputs, then the OR gate produces an output, which is the logical OR of all those inputs. That 

means, the output of an OR gate will be ‘1’, when at least one of those inputs is ‘1’. 

NOT gate 

A NOT gate is a digital circuit that has single input and single output. The output of NOT gate is 

the logical inversion of input. Hence, the NOT gate is also called as inverter. 

The following table shows the truth table of NOT gate. 

A Y = A’ 

0 1 

1 0 

Here A and Y are the input and output of NOT gate respectively. If the input, A is ‘0’, then the output, 

Y is ‘1’. Similarly, if the input, A is ‘1’, then the output, Y is ‘0’. 

The following figure shows the symbol of NOT gate, which is having one input, A and one output, Y. 

 

This NOT gate produces an output (Y), which is the complement of input, A. 

Universal gates 

NAND & NOR gates are called as universal gates. Because we can implement any Boolean function, 

which is in sum of products form by using NAND gates alone. Similarly, we can implement any 

Boolean function, which is in product of sums form by using NOR gates alone. 



NAND gate 

NAND gate is a digital circuit that has two or more inputs and produces an output, which is 

the inversion of logical AND of all those inputs. 

The following table shows the truth table of 2-input NAND gate. 

 

A B Y = (A.B)’ 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

Here A, B are the inputs and Y is the output of two input NAND gate. When both inputs are ‘1’, the 

output, Y is ‘0’. If at least one of the input is zero, then the output, Y is ‘1’. This is just opposite to that 

of two input AND gate operation. 

The following image shows the symbol of NAND gate, which is having two inputs A, B and one output, 

Y. 

 

NAND gate operation is same as that of AND gate followed by an inverter. That’s why the NAND gate 

symbol is represented like that. 

NOR gate 

NOR gate is a digital circuit that has two or more inputs and produces an output, which is 

the inversion of logical OR of all those inputs. 

The following table shows the truth table of 2-input NOR gate 



A B Y = (A+B)’ 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

Here A, B are the inputs and Y is the output. If both inputs are ‘0’, then the output, Y is ‘1’. If at least 

one of the input is ‘1’, then the output, Y is ‘0’. This is just opposite to that of two input OR gate 

operation. 

The following figure shows the symbol of NOR gate, which is having two inputs A, B and one output, 

Y. 

 

NOR gate operation is same as that of OR gate followed by an inverter. That’s why the NOR gate 

symbol is represented like that. 

Special Gates 

Ex-OR & Ex-NOR gates are called as special gates. Because, these two gates are special cases of OR & 

NOR gates. 

Ex-OR gate 

The full form of Ex-OR gate is Exclusive-OR gate. Its function is same as that of OR gate except for 

some cases, when the inputs having even number of ones. 

The following table shows the truth table of 2-input Ex-OR gate. 

A B Y = A⊕B 

0 0 0 



0 1 1 

1 0 1 

1 1 0 

Here A, B are the inputs and Y is the output of two input Ex-OR gate. The truth table of Ex-OR gate is 

same as that of OR gate for first three rows. The only modification is in the fourth row. That means, 

the output (Y) is zero instead of one, when both the inputs are one, since the inputs having even 

number of ones. 

Therefore, the output of Ex-OR gate is ‘1’, when only one of the two inputs is ‘1’. And it is zero, when 

both inputs are same. 

Below figure shows the symbol of Ex-OR gate, which is having two inputs A, B and one output, Y. 

 

Ex-OR gate operation is similar to that of OR gate, except for few combination(s) of inputs. That’s why 

the Ex-OR gate symbol is represented like that. The output of Ex-OR gate is ‘1’, when odd number of 

ones present at the inputs. Hence, the output of Ex-OR gate is also called as an odd function. 

Ex-NOR gate 

The full form of Ex-NOR gate is Exclusive-NOR gate. Its function is same as that of NOR gate except for 

some cases, when the inputs having even number of ones. 

The following table shows the truth table of 2-input Ex-NOR gate. 

A B Y = A⊙B 

0 0 1 

0 1 0 

1 0 0 



1 1 1 

Here A, B are the inputs and Y is the output. The truth table of Ex-NOR gate is same as that of NOR 

gate for first three rows. The only modification is in the fourth row. That means, the output is one 

instead of zero, when both the inputs are one. 

Therefore, the output of Ex-NOR gate is ‘1’, when both inputs are same. And it is zero, when both the 

inputs are different. 

The following figure shows the symbol of Ex-NOR gate, which is having two inputs A, B and one 

output, Y. 

 

Ex-NOR gate operation is similar to that of NOR gate, except for few combination(s) of inputs. That’s 

why the Ex-NOR gate symbol is represented like that. The output of Ex-NOR gate is ‘1’, when even 

number of ones present at the inputs. Hence, the output of Ex-NOR gate is also called as an even 

function. 

From the above truth tables of Ex-OR & Ex-NOR logic gates, we can easily notice that the Ex-NOR 

operation is just the logical inversion of Ex-OR operation. 

The maximum number of levels that are present between inputs and output is two in two level logic. 

That means, irrespective of total number of logic gates, the maximum number of Logic gates that are 

present (cascaded) between any input and output is two in two level logic. Here, the outputs of first 

level Logic gates are connected as inputs of second level Logic gate(s). 

Consider the four Logic gates AND, OR, NAND & NOR. Since, there are 4 Logic gates, we will get 16 

possible ways of realizing two level logic. Those are AND-AND, AND-OR, ANDNAND, AND-NOR, OR-

AND, OR-OR, OR-NAND, OR-NOR, NAND-AND, NAND-OR, NANDNAND, NAND-NOR, NOR-AND, NOR-

OR, NOR-NAND, NOR-NOR. 

These two level logic realizations can be classified into the following two categories. 

• Degenerative form 

• Non-degenerative form 

Degenerative Form 



If the output of two level logic realization can be obtained by using single Logic gate, then it is called 

as degenerative form. Obviously, the number of inputs of single Logic gate increases. Due to this, the 

fan-in of Logic gate increases. This is an advantage of degenerative form. 

Only 6 combinations of two level logic realizations out of 16 combinations come under degenerative 

form. Those are AND-AND, AND-NAND, OR-OR, OR-NOR, NAND-NOR, NORNAND. 

In this section, let us discuss some realizations. Assume, A, B, C & D are the inputs and Y is the output 

in each logic realization. 

AND-AND Logic 

In this logic realization, AND gates are present in both levels. Below figure shows an example for AND-

AND logic realization. 

 

We will get the outputs of first level logic gates as Y1=ABY1=AB and Y2=CDY2=CD 

These outputs, Y1Y1 and Y2Y2 are applied as inputs of AND gate that is present in second level. So, 

the output of this AND gate is 
Y=Y1Y2Y=Y1Y2 

Substitute Y1Y1 and Y2Y2 values in the above equation. 
Y=(AB)(CD)Y=(AB)(CD) 

⇒Y=ABCD⇒Y=ABCD 

Therefore, the output of this AND-AND logic realization is ABCD. This Boolean function can be 

implemented by using a 4 input AND gate. Hence, it is degenerative form. 

AND-NAND Logic 

In this logic realization, AND gates are present in first level and NAND gate(s) are present in second 

level. The following figure shows an example for AND-NAND logic realization. 



 

Previously, we got the outputs of first level logic gates as Y1=ABY1=AB and Y2=CDY2=CD 

These outputs,Y1Y1 and Y2Y2 are applied as inputs of NAND gate that is present in second level. So, 

the output of this NAND gate is 
Y=(Y1Y2)′Y=(Y1Y2)′ 

Substitute Y1Y1 and Y2Y2 values in the above equation. 
Y=((AB)(CD))′Y=((AB)(CD))′ 

⇒Y=(ABCD)′⇒Y=(ABCD)′ 

Therefore, the output of this AND-NAND logic realization is (ABCD)′(ABCD)′. This Boolean function can 

be implemented by using a 4 input NAND gate. Hence, it is degenerative form. 

OR-OR Logic 

In this logic realization, OR gates are present in both levels. The following figure shows an example 

for OR-OR logic realization. 

 

We will get the outputs of first level logic gates as Y1=A+BY1=A+Band Y2=C+DY2=C+D. 



These outputs, Y1Y1 and Y2Y2 are applied as inputs of OR gate that is present in second level. So, the 

output of this OR gate is 
Y=Y1+Y2Y=Y1+Y2 

Substitute Y1Y1 and Y2Y2 values in the above equation. 
Y=(A+B)+(C+D)Y=(A+B)+(C+D) 

⇒Y=A+B+C+D⇒Y=A+B+C+D 

Therefore, the output of this OR-OR logic realization is A+B+C+D. This Boolean function can be 

implemented by using a 4 input OR gate. Hence, it is degenerative form. 

Similarly, you can verify whether the remaining realizations belong to this category or not. 

Non-degenerative Form 

If the output of two level logic realization can’t be obtained by using single logic gate, then it is called 

as non-degenerative form. 

The remaining 10 combinations of two level logic realizations come under nondegenerative form. 

Those are AND-OR, AND-NOR, OR-AND, OR-NAND, NAND-AND, NANDOR, NAND-NAND, NOR-AND, 

NOR-OR, NOR-NOR. 

Now, let us discuss some realizations. Assume, A, B, C & D are the inputs and Y is the output in each 

logic realization. 

AND-OR Logic 

In this logic realization, AND gates are present in first level and OR gate(s) are present in second level. 

Below figure shows an example for AND-OR logic realization. 

 

Previously, we got the outputs of first level logic gates as Y1=ABY1=AB and Y2=CDY2=CD. 

These outputs, Y1 and Y2 are applied as inputs of OR gate that is present in second level. So, the 

output of this OR gate is 



Y=Y1+Y2Y=Y1+Y2 

Substitute Y1Y1 and Y2Y2 values in the above equation 
Y=AB+CDY=AB+CD 

Therefore, the output of this AND-OR logic realization is AB+CD. This Boolean function is in Sum of 

Products form. Since, we can’t implement it by using single logic gate, this AND-OR logic realization is 

a non-degenerative form. 

AND-NOR Logic 

In this logic realization, AND gates are present in first level and NOR gate(s) are present in second 

level. The following figure shows an example for AND-NOR logic realization. 

 

We know the outputs of first level logic gates as Y1=ABY1=AB and Y2=CDY2=CD 

These outputs, Y1 and Y2 are applied as inputs of NOR gate that is present in second level. So, the 

output of this NOR gate is 

Y=(Y1+Y2)′Y=(Y1+Y2)′ 

Substitute Y1Y1 and Y2Y2 values in the above equation. 
Y=(AB+CD)′Y=(AB+CD)′ 

Therefore, the output of this AND-NOR logic realization is (AB+CD)′(AB+CD)′. This Boolean function is 

in AND-OR-Invert form. Since, we can’t implement it by using single logic gate, this AND-NOR logic 

realization is a non-degenerative form 

OR-AND Logic 

In this logic realization, OR gates are present in first level & AND gate(s) are present in second level. 

The following figure shows an example for OR-AND logic realization. 



 

Previously, we got the outputs of first level logic gates as Y1=A+BY1=A+B and Y2=C+DY2=C+D. 

These outputs, Y1Y1 and Y2Y2 are applied as inputs of AND gate that is present in second level. So, 

the output of this AND gate is 
Y=Y1Y2Y=Y1Y2 

Substitute Y1Y1 and Y2Y2 values in the above equation. 
Y=(A+B)(C+D)Y=(A+B)(C+D) 

Therefore, the output of this OR-AND logic realization is (A + B) (C + D). This Boolean function is 

in Product of Sums form. Since, we can’t implement it by using single logic gate, this OR-AND logic 

realization is a non-degenerative form. 

Similarly, you can verify whether the remaining realizations belong to this category or not. 

 

 

 

 

 

 

 

 

 

 

 



UNIT‐IV 

Minimization Techniques  

In previous chapters, we have simplified the Boolean functions using Boolean postulates and 

theorems. It is a time consuming process and we have to re-write the simplified expressions after 

each step. 

To overcome this difficulty, Karnaugh introduced a method for simplification of Boolean functions in 

an easy way. This method is known as Karnaugh map method or K-map method. It is a graphical 

method, which consists of 2n cells for ‘n’ variables. The adjacent cells are differed only in single bit 

position. 

K-Maps for 2 to 5 Variables 

K-Map method is most suitable for minimizing Boolean functions of 2 variables to 5 variables. Now, let 

us discuss about the K-Maps for 2 to 5 variables one by one. 

2 Variable K-Map 

The number of cells in 2 variable K-map is four, since the number of variables is two. The following 

figure shows 2 variable K-Map. 
 

 
 There is only one possibility of grouping 4 adjacent min terms.

 The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m2, m3), (m0, m2) 

and (m1, m3)}.

3 Variable K-Map 

The number of cells in 3 variable K-map is eight, since the number of variables is three. The following 

figure shows 3 variable K-Map. 
 



 There is only one possibility of grouping 8 adjacent min terms.

 The possible combinations of grouping 4 adjacent min terms are {(m0, m1, m3, m2), (m4, m5, m7, 

m6), (m0, m1, m4, m5), (m1, m3, m5, m7), (m3, m2, m7, m6) and (m2, m0, m6, m4)}.

 The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m1, m3), (m3, m2), 

(m2, m0), (m4, m5), (m5, m7), (m7, m6), (m6, m4), (m0, m4), (m1, m5), (m3, m7) and (m2, m6)}.

 If x=0, then 3 variable K-map becomes 2 variable K-map.

4 Variable K-Map 

The number of cells in 4 variable K-map is sixteen, since the number of variables is four. The following 

figure shows 4 variable K-Map. 

 

 

 
 There is only one possibility of grouping 16 adjacent min terms.

 Let R1, R2, R3 and R4 represents the min terms of first row, second row, third row and fourth 

row respectively. Similarly, C1, C2, C3 and C4 represents the min terms of first column, second 

column, third column and fourth column respectively. The possible combinations of grouping 8 

adjacent min terms are {(R1, R2), (R2, R3), (R3, R4), (R4, R1), (C1, C2), (C2, C3), (C3, C4), (C4, C1)}.

 If w=0, then 4 variable K-map becomes 3 variable K-map.

5 Variable K-Map 

The number of cells in 5 variable K-map is thirty-two, since the number of variables is 5. The following 

figure shows 5 variable K-Map. 



UNIT 5 
Combinational Circuits 

Combinational circuits consist of Logic gates. These circuits operate with binary values. The output(s) 

of combinational circuit depends on the combination of present inputs. The following figure shows 

the block diagram of combinational circuit. 
 

 

This combinational circuit has ‘n’ input variables and ‘m’ outputs. Each combination of input variables 

will affect the output(s). 

Design procedure of Combinational circuits 

 Find the required number of input variables and outputs from given specifications.

 Formulate the Truth table. If there are ‘n’ input variables, then there will be 2n possible

combinations. For each combination of input, find the output values. 

 Find the Boolean expressions for each output. If necessary, simplify those expressions.

 Implement the above Boolean expressions corresponding to each output by using Logic gates.

 In this chapter, let us discuss about the basic arithmetic circuits like Binary adder and Binary 

subtractor. These circuits can be operated with binary values 0 and 1.

 Binary Adder

 The most basic arithmetic operation is addition. The circuit, which performs the addition of two 

binary numbers is known as Binary adder. First, let us implement an adder, which performs the 

addition of two bits.

Half Adder 

 Half adder is a combinational circuit, which performs the addition of two binary numbers A and 

B are of single bit. It produces two outputs sum, S & carry, C.

 The Truth table of Half adder is shown below.



Inputs Outputs 

A B C S 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 

 When we do the addition of two bits, the resultant sum can have the values ranging from 0 to 

2 in decimal. We can represent the decimal digits 0 and 1 with single bit in binary. But, we can’t  

represent decimal digit 2 with single bit in binary. So, we require two bits for representing it in 

binary.

 Let, sum, S is the Least significant bit and carry, C is the Most significant bit of the resultant 

sum. For first three combinations of inputs, carry, C is zero and the value of S will be either zero 

or one based on the number of ones present at the inputs. But, for last combination of inputs, 

carry, C is one and sum, S is zero, since the resultant sum is two.

 From Truth table, we can directly write the Boolean functionsfor each output as

 S=A⊕BS=A⊕B 

 
 C=ABC=AB

 We can implement the above functions with 2-input Ex-OR gate & 2-input AND gate. 

The circuit diagram of Half adder is shown in the following figure.

 
 
 
 
 
 
 
 
 
 

 




 

• There is only one possibility of grouping 32 adjacent min terms. 

• There are two possibilities of grouping 16 adjacent min terms. i.e., grouping of min terms from 

m0 to m15 and m16 to m31. 

• If v=0, then 5 variable K-map becomes 4 variable K-map. 

In the above all K-maps, we used exclusively the min terms notation. Similarly, you can use exclusively 

the Max terms notation. 

Minimization of Boolean Functions using K-Maps 

If we consider the combination of inputs for which the Boolean function is ‘1’, then we will get the 

Boolean function, which is in standard sum of products form after simplifying the K-map. 

Similarly, if we consider the combination of inputs for which the Boolean function is ‘0’, then we will 

get the Boolean function, which is in standard product of sums form after simplifying the K-map. 

Follow these rules for simplifying K-maps in order to get standard sum of products form. 

• Select the respective K-map based on the number of variables present in the Boolean function. 

• If the Boolean function is given as sum of min terms form, then place the ones at respective 

min term cells in the K-map. If the Boolean function is given as sum of products form, then 

place the ones in all possible cells of K-map for which the given product terms are valid. 

• Check for the possibilities of grouping maximum number of adjacent ones. It should be powers 

of two. Start from highest power of two and upto least power of two. Highest power is equal 

to the number of variables considered in K-map and least power is zero. 

• Each grouping will give either a literal or one product term. It is known as prime implicant. The 

prime implicant is said to be essential prime implicant, if atleast single ‘1’ is not covered with 

any other groupings but only that grouping covers. 



• Note down all the prime implicants and essential prime implicants. The simplified Boolean 

function contains all essential prime implicants and only the required prime implicants. 

Note 1 − If outputs are not defined for some combination of inputs, then those output values will be 

represented with don’t care symbol ‘x’. That means, we can consider them as either ‘0’ or ‘1’. 

Note 2 − If don’t care terms also present, then place don’t cares ‘x’ in the respective cells of K-map. 

Consider only the don’t cares ‘x’ that are helpful for grouping maximum number of adjacent ones. In 

those cases, treat the don’t care value as ‘1’. 

Example 

Let us simplify the following Boolean function, f(W, X, Y, Z)= WX’Y’ + WY + W’YZ’ using K-map. 

The given Boolean function is in sum of products form. It is having 4 variables W, X, Y & Z. So, we 

require 4 variable K-map. The 4 variable K-map with ones corresponding to the given product terms 

is shown in the following figure. 

 

Here, 1s are placed in the following cells of K-map. 

• The cells, which are common to the intersection of Row 4 and columns 1 & 2 are corresponding 

to the product term, WX’Y’. 

• The cells, which are common to the intersection of Rows 3 & 4 and columns 3 & 4 are 

corresponding to the product term, WY. 

• The cells, which are common to the intersection of Rows 1 & 2 and column 4 are corresponding 

to the product term, W’YZ’. 

There are no possibilities of grouping either 16 adjacent ones or 8 adjacent ones. There are three 

possibilities of grouping 4 adjacent ones. After these three groupings, there is no single one left as 

ungrouped. So, we no need to check for grouping of 2 adjacent ones. The 4 variable K-map with these 

three groupings is shown in the following figure. 



 

Here, we got three prime implicants WX’, WY & YZ’. All these prime implicants are essential because 

of following reasons. 

• Two ones (m8 & m9) of fourth row grouping are not covered by any other groupings. Only 

fourth row grouping covers those two ones. 

• Single one (m15) of square shape grouping is not covered by any other groupings. Only the 

square shape grouping covers that one. 

• Two ones (m2 & m6) of fourth column grouping are not covered by any other groupings. Only 

fourth column grouping covers those two ones. 

Therefore, the simplified Boolean function is 

f = WX’ + WY + YZ’ 

Follow these rules for simplifying K-maps in order to get standard product of sums form. 

• Select the respective K-map based on the number of variables present in the Boolean function. 

• If the Boolean function is given as product of Max terms form, then place the zeroes at 

respective Max term cells in the K-map. If the Boolean function is given as product of sums 

form, then place the zeroes in all possible cells of K-map for which the given sum terms are 

valid. 

• Check for the possibilities of grouping maximum number of adjacent zeroes. It should be 

powers of two. Start from highest power of two and upto least power of two. Highest power is 

equal to the number of variables considered in K-map and least power is zero. 

• Each grouping will give either a literal or one sum term. It is known as prime implicant. The 

prime implicant is said to be essential prime implicant, if atleast single ‘0’ is not covered with 

any other groupings but only that grouping covers. 

• Note down all the prime implicants and essential prime implicants. The simplified Boolean 

function contains all essential prime implicants and only the required prime implicants. 



Note − If don’t care terms also present, then place don’t cares ‘x’ in the respective cells of K-map. 

Consider only the don’t cares ‘x’ that are helpful for grouping maximum number of adjacent zeroes. In 

those cases, treat the don’t care value as ‘0’. 

Example 

Let us simplify the following Boolean function, f(X,Y,Z)=∏M(0,1,2,4)f(X,Y,Z)=∏M(0,1,2,4) using K-map. 

The given Boolean function is in product of Max terms form. It is having 3 variables X, Y & Z. So, we 

require 3 variable K-map. The given Max terms are M0, M1, M2 & M4. The 3 variable K-map with 

zeroes corresponding to the given Max terms is shown in the following figure. 

 

There are no possibilities of grouping either 8 adjacent zeroes or 4 adjacent zeroes. There are three 

possibilities of grouping 2 adjacent zeroes. After these three groupings, there is no single zero left as 

ungrouped. The 3 variable K-map with these three groupings is shown in the following figure. 

 

Here, we got three prime implicants X + Y, Y + Z & Z + X. All these prime implicants 

are essential because one zero in each grouping is not covered by any other groupings except with 

their individual groupings. 

Therefore, the simplified Boolean function is 

f = (X + Y).(Y + Z).(Z + X) 

In this way, we can easily simplify the Boolean functions up to 5 variables using K-map method. For 

more than 5 variables, it is difficult to simplify the functions using K-Maps. Because, the number 

of cells in K-map gets doubled by including a new variable. 



Combinational circuits consist of Logic gates. These circuits operate with binary values. The output(s) 

of combinational circuit depends on the combination of present inputs. The following figure shows 

the block diagram of combinational circuit. 

 

This combinational circuit has ‘n’ input variables and ‘m’ outputs. Each combination of input variables 

will affect the output(s). 

Design procedure of Combinational circuits 

• Find the required number of input variables and outputs from given specifications. 

• Formulate the Truth table. If there are ‘n’ input variables, then there will be 2n possible 

combinations. For each combination of input, find the output values. 

• Find the Boolean expressions for each output. If necessary, simplify those expressions. 

• Implement the above Boolean expressions corresponding to each output by using Logic gates. 

• In this chapter, let us discuss about the basic arithmetic circuits like Binary adder and Binary 

subtractor. These circuits can be operated with binary values 0 and 1. 

• Binary Adder 

• The most basic arithmetic operation is addition. The circuit, which performs the addition of two 

binary numbers is known as Binary adder. First, let us implement an adder, which performs the 

addition of two bits. 

Half Adder 

• Half adder is a combinational circuit, which performs the addition of two binary numbers A and 

B are of single bit. It produces two outputs sum, S & carry, C. 

• The Truth table of Half adder is shown below. 

Combinational Circuits



Inputs Outputs 

A B C S 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 

• When we do the addition of two bits, the resultant sum can have the values ranging from 0 to 

2 in decimal. We can represent the decimal digits 0 and 1 with single bit in binary. But, we can’t 

represent decimal digit 2 with single bit in binary. So, we require two bits for representing it in 

binary. 

• Let, sum, S is the Least significant bit and carry, C is the Most significant bit of the resultant 

sum. For first three combinations of inputs, carry, C is zero and the value of S will be either zero 

or one based on the number of ones present at the inputs. But, for last combination of inputs, 

carry, C is one and sum, S is zero, since the resultant sum is two. 

• From Truth table, we can directly write the Boolean functionsfor each output as 

• S=A⊕BS=A⊕B 

• C=ABC=AB 

• We can implement the above functions with 2-input Ex-OR gate & 2-input AND gate. 

The circuit diagram of Half adder is shown in the following figure. 

•  



• In the above circuit, a two input Ex-OR gate & two input AND gate produces sum, S & carry, C 

respectively. Therefore, Half-adder performs the addition of two bits. 

Full Adder 

• Full adder is a combinational circuit, which performs the addition of three bits A, B and Cin. 

Where, A & B are the two parallel significant bits and Cin is the carry bit, which is generated 

from previous stage. This Full adder also produces two outputs sum, S & carry, Cout, which are 

similar to Half adder. 

• The Truth table of Full adder is shown below. 

Inputs Outputs 

A B Cin Cout S 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

• When we do the addition of three bits, the resultant sum can have the values ranging from 0 to 

3 in decimal. We can represent the decimal digits 0 and 1 with single bit in binary. But, we can’t 

represent the decimal digits 2 and 3 with single bit in binary. So, we require two bits for 

representing those two decimal digits in binary. 

• Let, sum, S is the Least significant bit and carry, Cout is the Most significant bit of resultant sum. 

It is easy to fill the values of outputs for all combinations of inputs in the truth table. Just count 



the number of ones present at the inputs and write the equivalent binary number at outputs. If 

Cin is equal to zero, then Full adder truth table is same as that of Half adder truth table. 

• We will get the following Boolean functions for each output after simplification. 

• S=A⊕B⊕CinS=A⊕B⊕Cin 

• cout=AB+(A⊕B)cincout=AB+(A⊕B)cin 

• The sum, S is equal to one, when odd number of ones present at the inputs. We know that Ex-

OR gate produces an output, which is an odd function. So, we can use either two 2input Ex-OR 

gates or one 3-input Ex-OR gate in order to produce sum, S. We can implement carry, Cout using 

two 2-input AND gates & one OR gate. The circuit diagram of Full adder is shown in the 

following figure. 

•  

• This adder is called as Full adder because for implementing one Full adder, we require two Half 

adders and one OR gate. If Cin is zero, then Full adder becomes Half adder. We can verify it 

easily from the above circuit diagram or from the Boolean functions of outputs of Full adder. 

Decoder is a combinational circuit that has ‘n’ input lines and maximum of 2n output lines. One of 

these outputs will be active High based on the combination of inputs present, when the decoder is 

enabled. That means decoder detects a particular code. The outputs of the decoder are nothing but 

the min termsof ‘n’ input variables (lines), when it is enabled. 

2 to 4 Decoder 

Let 2 to 4 Decoder has two inputs A1 & A0 and four outputs Y3, Y2, Y1 & Y0. The block diagram of 2 to 4 

decoder is shown in the following figure. 



 

One of these four outputs will be ‘1’ for each combination of inputs when enable, E is ‘1’. The Truth 

table of 2 to 4 decoder is shown below. 

Enable Inputs Outputs 

E A1 A0 Y3 Y2 Y1 Y0 

0 x x 0 0 0 0 

1 0 0 0 0 0 1 

1 0 1 0 0 1 0 

1 1 0 0 1 0 0 

1 1 1 1 0 0 0 

From Truth table, we can write the Boolean functions for each output as 

Y3=E.A1.A0Y3=E.A1.A0 

Y2=E.A1.A0′Y2=E.A1.A0′ 

Y1=E.A1′.A0Y1=E.A1′.A0 

Y0=E.A1′.A0′Y0=E.A1′.A0′ 



Each output is having one product term. So, there are four product terms in total. We can implement 

these four product terms by using four AND gates having three inputs each & two inverters. 

The circuit diagram of 2 to 4 decoder is shown in the following figure. 

 

Therefore, the outputs of 2 to 4 decoder are nothing but the min terms of two input variables A1 & A0, 

when enable, E is equal to one. If enable, E is zero, then all the outputs of decoder will be equal to 

zero. 

Similarly, 3 to 8 decoder produces eight min terms of three input variables A2, A1 & A0 and 4 to 16 

decoder produces sixteen min terms of four input variables A3, A2, A1 & A0. 

Implementation of Higher-order Decoders 

Now, let us implement the following two higher-order decoders using lower-order decoders. 

• 3 to 8 decoder 

• 4 to 16 decoder 



3 to 8 Decoder 

In this section, let us implement 3 to 8 decoder using 2 to 4 decoders. We know that 2 to 4 Decoder 

has two inputs, A1 & A0and four outputs, Y3 to Y0. Whereas, 3 to 8 Decoder has three inputs A2, A1 & 

A0 and eight outputs, Y7 to Y0. 

We can find the number of lower order decoders required for implementing higher order decoder 

using the following formula. 

Requirednumberoflowerorderdecoders=m2m1Requirednumberoflowerorderdecoders=m2m1 

Where, 

m1m1 is the number of outputs of lower order decoder. 

m2m2 is the number of outputs of higher order decoder. 

Here, m1m1 = 4 and m2m2 = 8. Substitute, these two values in the above formula. 
Requirednumberof2to4decoders=84=2Requirednumberof2to4decoders=84=2 

Therefore, we require two 2 to 4 decoders for implementing one 3 to 8 decoder. The block diagram of 

3 to 8 decoder using 2 to 4 decoders is shown in the following figure. 

 

The parallel inputs A1 & A0 are applied to each 2 to 4 decoder. The complement of input A2 is 

connected to Enable, E of lower 2 to 4 decoder in order to get the outputs, Y3 to Y0. These are 



the lower four min terms. The input, A2 is directly connected to Enable, E of upper 2 to 4 decoder in 

order to get the outputs, Y7to Y4. These are the higher four min terms. 

4 to 16 Decoder 

In this section, let us implement 4 to 16 decoder using 3 to 8 decoders. We know that 3 to 8 Decoder 

has three inputs A2, A1& A0 and eight outputs, Y7 to Y0. Whereas, 4 to 16 Decoder has four inputs A3, 

A2, A1 & A0 and sixteen outputs, Y15 to Y0 

We know the following formula for finding the number of lower order decoders required. 

Requirednumberoflowerorderdecoders=m2m1Requirednumberoflowerorderdecoders=m2m1 

Substitute, m1m1 = 8 and m2m2 = 16 in the above formula. 
Requirednumberof3to8decoders=168=2Requirednumberof3to8decoders=168=2 

Therefore, we require two 3 to 8 decoders for implementing one 4 to 16 decoder. The block 

diagram of 4 to 16 decoder using 3 to 8 decoders is shown in the following figure. 

 



The parallel inputs A2, A1 & A0 are applied to each 3 to 8 decoder. The complement of input, A3 is 

connected to Enable, E of lower 3 to 8 decoder in order to get the outputs, Y7 to Y0. These are 

the lower eight min terms. The input, A3 is directly connected to Enable, E of upper 3 to 8 decoder in 

order to get the outputs, Y15 to Y8. These are the higher eight min terms. 

An Encoder is a combinational circuit that performs the reverse operation of Decoder. It has 

maximum of 2n input lines and ‘n’ output lines. It will produce a binary code equivalent to the input, 

which is active High. Therefore, the encoder encodes 2ninput lines with ‘n’ bits. It is optional to 

represent the enable signal in encoders. 

4 to 2 Encoder 

Let 4 to 2 Encoder has four inputs Y3, Y2, Y1 & Y0 and two outputs A1 & A0. The block diagram of 4 to 2 

Encoder is shown in the following figure. 

 

At any time, only one of these 4 inputs can be ‘1’ in order to get the respective binary code at the 

output. The Truth table of 4 to 2 encoder is shown below. 

Inputs Outputs 

Y3 Y2 Y1 Y0 A1 A0 

0 0 0 1 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

1 0 0 0 1 1 



From Truth table, we can write the Boolean functions for each output as 

A1=Y3+Y2A1=Y3+Y2 

A0=Y3+Y1A0=Y3+Y1 

We can implement the above two Boolean functions by using two input OR gates. The circuit 

diagram of 4 to 2 encoder is shown in the following figure. 

 

The above circuit diagram contains two OR gates. These OR gates encode the four inputs with two bits 

Octal to Binary Encoder 

Octal to binary Encoder has eight inputs, Y7 to Y0 and three outputs A2, A1 & A0. Octal to binary 

encoder is nothing but 8 to 3 encoder. The block diagram of octal to binary Encoder is shown in the 

following figure. 

 

At any time, only one of these eight inputs can be ‘1’ in order to get the respective binary code. 

The Truth table of octal to binary encoder is shown below. 



Inputs Outputs 

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 A2 A1 A0 

0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 0 1 

0 0 0 0 0 1 0 0 0 1 0 

0 0 0 0 1 0 0 0 0 1 1 

0 0 0 1 0 0 0 0 1 0 0 

0 0 1 0 0 0 0 0 1 0 1 

0 1 0 0 0 0 0 0 1 1 0 

1 0 0 0 0 0 0 0 1 1 1 

From Truth table, we can write the Boolean functions for each output as 

A2=Y7+Y6+Y5+Y4A2=Y7+Y6+Y5+Y4 

A1=Y7+Y6+Y3+Y2A1=Y7+Y6+Y3+Y2 

A0=Y7+Y5+Y3+Y1A0=Y7+Y5+Y3+Y1 

We can implement the above Boolean functions by using four input OR gates. The circuit diagram of 

octal to binary encoder is shown in the following figure. 



 

The above circuit diagram contains three 4-input OR gates. These OR gates encode the eight inputs 

with three bits. 

Drawbacks of Encoder 

Following are the drawbacks of normal encoder. 

• There is an ambiguity, when all outputs of encoder are equal to zero. Because, it could be the 

code corresponding to the inputs, when only least significant input is one or when all inputs 

are zero. 

• If more than one input is active High, then the encoder produces an output, which may not be 

the correct code. For example, if both Y3 and Y6 are ‘1’, then the encoder produces 111 at the 

output. This is neither equivalent code corresponding to Y3, when it is ‘1’ nor the equivalent 

code corresponding to Y6, when it is ‘1’. 

Multiplexer  

is a combinational circuit that has maximum of 2ndata inputs, ‘n’ selection lines and single output line. 

One of these data inputs will be connected to the output based on the values of selection lines. 

Since there are ‘n’ selection lines, there will be 2n possible combinations of zeros and ones. So, each 

combination will select only one data input. Multiplexer is also called as Mux. 

 



4x1 Multiplexer 

4x1 Multiplexer has four data inputs I3, I2, I1 & I0, two selection lines s1 & s0 and one output Y. 

The block diagram of 4x1 Multiplexer is shown in the following figure. 

 

One of these 4 inputs will be connected to the output based on the combination of inputs present at 

these two selection lines. Truth table of 4x1 Multiplexer is shown below. 

Selection Lines Output 

S1 S0 Y 

0 0 I0 

0 1 I1 

1 0 I2 

1 1 I3 

From Truth table, we can directly write the Boolean functionfor output, Y as 

Y=S1′S0′I0+S1′S0I1+S1S0′I2+S1S0I3Y=S1′S0′I0+S1′S0I1+S1S0′I2+S1S0I3 

We can implement this Boolean function using Inverters, AND gates & OR gate. The circuit diagram of 

4x1 multiplexer is shown in the following figure. 



 

We can easily understand the operation of the above circuit. Similarly, you can implement 8x1 

Multiplexer and 16x1 multiplexer by following the same procedure. 

Implementation of Higher-order Multiplexers. 

Now, let us implement the following two higher-order Multiplexers using lower-order Multiplexers. 

• 8x1 Multiplexer 

• 16x1 Multiplexer 

8x1 Multiplexer 

In this section, let us implement 8x1 Multiplexer using 4x1 Multiplexers and 2x1 Multiplexer. We 

know that 4x1 Multiplexer has 4 data inputs, 2 selection lines and one output. Whereas, 8x1 

Multiplexer has 8 data inputs, 3 selection lines and one output. 

So, we require two 4x1 Multiplexers in first stage in order to get the 8 data inputs. Since, each 4x1 

Multiplexer produces one output, we require a 2x1 Multiplexer in second stage by considering the 

outputs of first stage as inputs and to produce the final output. 

Let the 8x1 Multiplexer has eight data inputs I7 to I0, three selection lines s2, s1 & s0 and one output Y. 

The Truth table of 8x1 Multiplexer is shown below. 



Selection Inputs Output 

S2 S1 S0 Y 

0 0 0 I0 

0 0 1 I1 

0 1 0 I2 

0 1 1 I3 

1 0 0 I4 

1 0 1 I5 

1 1 0 I6 

1 1 1 I7 

We can implement 8x1 Multiplexer using lower order Multiplexers easily by considering the above 

Truth table. The block diagramof 8x1 Multiplexer is shown in the following figure. 

 



The same selection lines, s1 & s0 are applied to both 4x1 Multiplexers. The data inputs of upper 4x1 

Multiplexer are I7 to I4 and the data inputs of lower 4x1 Multiplexer are I3 to I0. Therefore, each 4x1 

Multiplexer produces an output based on the values of selection lines, s1 & s0. 

The outputs of first stage 4x1 Multiplexers are applied as inputs of 2x1 Multiplexer that is present in 

second stage. The other selection line, s2 is applied to 2x1 Multiplexer. 

• If s2 is zero, then the output of 2x1 Multiplexer will be one of the 4 inputs I3 to I0 based on the 

values of selection lines s1 & s0. 

• If s2 is one, then the output of 2x1 Multiplexer will be one of the 4 inputs I7 to I4 based on the 

values of selection lines s1 & s0. 

Therefore, the overall combination of two 4x1 Multiplexers and one 2x1 Multiplexer performs as one 

8x1 Multiplexer. 

16x1 Multiplexer 

In this section, let us implement 16x1 Multiplexer using 8x1 Multiplexers and 2x1 Multiplexer. We 

know that 8x1 Multiplexer has 8 data inputs, 3 selection lines and one output. Whereas, 16x1 

Multiplexer has 16 data inputs, 4 selection lines and one output. 

So, we require two 8x1 Multiplexers in first stage in order to get the 16 data inputs. Since, each 8x1 

Multiplexer produces one output, we require a 2x1 Multiplexer in second stage by considering the 

outputs of first stage as inputs and to produce the final output. 

Let the 16x1 Multiplexer has sixteen data inputs I15 to I0, four selection lines s3 to s0 and one output Y. 

The Truth table of 16x1 Multiplexer is shown below. 

Selection Inputs Output 

S3 S2 S1 S0 Y 

0 0 0 0 I0 

0 0 0 1 I1 

0 0 1 0 I2 

0 0 1 1 I3 



0 1 0 0 I4 

0 1 0 1 I5 

0 1 1 0 I6 

0 1 1 1 I7 

1 0 0 0 I8 

1 0 0 1 I9 

1 0 1 0 I10 

1 0 1 1 I11 

1 1 0 0 I12 

1 1 0 1 I13 

1 1 1 0 I14 

1 1 1 1 I15 

We can implement 16x1 Multiplexer using lower order Multiplexers easily by considering the above 

Truth table. The block diagram of 16x1 Multiplexer is shown in the following figure. 



 

The same selection lines, s2, s1 & s0 are applied to both 8x1 Multiplexers. The data inputs of upper 8x1 

Multiplexer are I15 to I8 and the data inputs of lower 8x1 Multiplexer are I7 to I0. Therefore, each 8x1 

Multiplexer produces an output based on the values of selection lines, s2, s1 & s0. 

The outputs of first stage 8x1 Multiplexers are applied as inputs of 2x1 Multiplexer that is present in 

second stage. The other selection line, s3 is applied to 2x1 Multiplexer. 

• If s3 is zero, then the output of 2x1 Multiplexer will be one of the 8 inputs Is7 to I0 based on the 

values of selection lines s2, s1 & s0. 



• If s3 is one, then the output of 2x1 Multiplexer will be one of the 8 inputs I15 to I8 based on the 

values of selection lines s2, s1 & s0. 

Therefore, the overall combination of two 8x1 Multiplexers and one 2x1 Multiplexer performs as one 

16x1 Multiplexer. 

De-Multiplexer  

is a combinational circuit that performs the reverse operation of Multiplexer. It has single input, ‘n’ 

selection lines and maximum of 2n outputs. The input will be connected to one of these outputs based 

on the values of selection lines. 

Since there are ‘n’ selection lines, there will be 2n possible combinations of zeros and ones. So, each 

combination can select only one output. De-Multiplexer is also called as De-Mux. 

1x4 De-Multiplexer 

1x4 De-Multiplexer has one input I, two selection lines, s1 & s0and four outputs Y3, Y2, Y1 &Y0. 

The block diagram of 1x4 De-Multiplexer is shown in the following figure. 

 

The single input ‘I’ will be connected to one of the four outputs, Y3 to Y0 based on the values of 

selection lines s1 & s0. The Truth table of 1x4 De-Multiplexer is shown below. 

Selection Inputs Outputs 

S1 S0 Y3 Y2 Y1 Y0 



0 0 0 0 0 I 

0 1 0 0 I 0 

1 0 0 I 0 0 

1 1 I 0 0 0 

From the above Truth table, we can directly write the Boolean functions for each output as 

Y3=s1s0IY3=s1s0I 

Y2=s1s0′IY2=s1s0′I 

Y1=s1′s0IY1=s1′s0I 

Y0=s1′s0′IY0=s1′s0′I 

We can implement these Boolean functions using Inverters & 3-input AND gates. The circuit 

diagram of 1x4 De-Multiplexer is shown in the following figure. 

 

We can easily understand the operation of the above circuit. Similarly, you can implement 1x8 De-

Multiplexer and 1x16 De-Multiplexer by following the same procedure. 

Implementation of Higher-order De-Multiplexers 



Now, let us implement the following two higher-order De-Multiplexers using lower-order De-

Multiplexers. 

• 1x8 De-Multiplexer 

• 1x16 De-Multiplexer 

1x8 De-Multiplexer 

In this section, let us implement 1x8 De-Multiplexer using 1x4 De-Multiplexers and 1x2 De-

Multiplexer. We know that 1x4 De-Multiplexer has single input, two selection lines and four outputs. 

Whereas, 1x8 De-Multiplexer has single input, three selection lines and eight outputs. 

So, we require two 1x4 De-Multiplexers in second stage in order to get the final eight outputs. Since, 

the number of inputs in second stage is two, we require 1x2 DeMultiplexer in first stage so that the 

outputs of first stage will be the inputs of second stage. Input of this 1x2 De-Multiplexer will be the 

overall input of 1x8 De-Multiplexer. 

Let the 1x8 De-Multiplexer has one input I, three selection lines s2, s1 & s0 and outputs Y7 to Y0. 

The Truth table of 1x8 De-Multiplexer is shown below. 

Selection Inputs Outputs 

s2 s1 s0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 

0 0 0 0 0 0 0 0 0 0 I 

0 0 1 0 0 0 0 0 0 I 0 

0 1 0 0 0 0 0 0 I 0 0 

0 1 1 0 0 0 0 I 0 0 0 

1 0 0 0 0 0 I 0 0 0 0 

1 0 1 0 0 I 0 0 0 0 0 

1 1 0 0 I 0 0 0 0 0 0 



1 1 1 I 0 0 0 0 0 0 0 

We can implement 1x8 De-Multiplexer using lower order Multiplexers easily by considering the above 

Truth table. The block diagram of 1x8 De-Multiplexer is shown in the following figure. 

 

The common selection lines, s1 & s0 are applied to both 1x4 De-Multiplexers. The outputs of upper 

1x4 De-Multiplexer are Y7to Y4 and the outputs of lower 1x4 De-Multiplexer are Y3 to Y0. 

The other selection line, s2 is applied to 1x2 De-Multiplexer. If s2 is zero, then one of the four outputs 

of lower 1x4 De-Multiplexer will be equal to input, I based on the values of selection lines s1 & s0. 

Similarly, if s2 is one, then one of the four outputs of upper 1x4 DeMultiplexer will be equal to input, I 

based on the values of selection lines s1 & s0. 

1x16 De-Multiplexer 

In this section, let us implement 1x16 De-Multiplexer using 1x8 De-Multiplexers and 1x2 De-

Multiplexer. We know that 1x8 De-Multiplexer has single input, three selection lines and eight 

outputs. Whereas, 1x16 De-Multiplexer has single input, four selection lines and sixteen outputs. 

So, we require two 1x8 De-Multiplexers in second stage in order to get the final sixteen outputs. 

Since, the number of inputs in second stage is two, we require 1x2 DeMultiplexer in first stage so that 



the outputs of first stage will be the inputs of second stage. Input of this 1x2 De-Multiplexer will be 

the overall input of 1x16 De-Multiplexer. 

Let the 1x16 De-Multiplexer has one input I, four selection lines s3, s2, s1 & s0 and outputs Y15 to Y0. 

The block diagram of 1x16 De-Multiplexer using lower order Multiplexers is shown in the following 

figure. 

 

The common selection lines s2, s1 & s0 are applied to both 1x8 De-Multiplexers. The outputs of upper 

1x8 De-Multiplexer are Y15 to Y8 and the outputs of lower 1x8 DeMultiplexer are Y7to Y0. 
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