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SYSTEMS & SIGNAL PROCESSING
OBJECTIVES: SUBJECT CODE (R18A0463)
The main objectives of the course are:

e To understand the basic concepts of basic elementary signals and Fourier Series
representation.
e To Master the representation of signals in the frequency domain using Fourier transforms
and Discrete Fourier transform
e To learn the Mathematical and computational skills needed to understand the principal of
Linear System and digital signal processing fundamentals.
e To understand the implementation of the DFT in terms of the FFT.
e To learn the Realization of Digital Filters
UNIT I:
INTRODUCTION TO SIGNALS: Elementary Signals- Continuous Time (CT) signals, Discrete Time
(DT) signals, Classification of Signals, Basic Operations on signals.
FOURIER SERIES: Exponential Fourier Series, Dirichlet’s conditions, Complex Fourier Spectrum.
UNIT Il:
FOURIER TRANSFORMS: Fourier transform of arbitrary signal, Fourier transform of standard
signals.
Discrete Fourier Transforms: Properties of DFT. Linear Convolution of Sequences using DFT.
Computation of DFT: Over-lap Add Method, Over-lap Save Method.
UNIT il
FAST FOURIER TRANSFORMS: Fast Fourier Transforms (FFT) - Radix-2 Decimation-in-Time and
Decimation-in-Frequency FFT Algorithms, Inverse FFT.
UNIT IV:
INTRODUCTION TO LINEARSYSTEMS: Introduction to Systems, Classification of Systems,
INTRODUCTION TO DIGITAL SIGNAL PROCESSING: Introduction to Digital Signal Processing,
Linear Shift Invariant Systems, Stability, and Causality of Discrete time systems
UNIT V:

Z-TRANSFORMS: Concept of Z- Transform of a discrete sequence. Region of convergence in

Z- Transform
REALIZATION OF DIGITAL FILTERS: Realization of Digital Filters - Direct, Canonic forms.
TEXT BOOKS:

1. Signals, Systems & Communications - B.P. Lathi, BS Publications, 2003.

2. Signals and Systems — A. Anand Kumar, PHI Publications, 3™ edition.




3. Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris
G. Manolakis, Pearson Education / PHI, 2007.
4. Digital Signal ProcessingA. Anand Kumar, PHI Publications.

REFERENCE BOOKS:

Signals & Systems - Simon Haykin and Van Veen,Wiley, 2nd Edition.
Fundamentals of Signals and Systems Michel J. Robert, MGH International Edition, 2008.
Digital Signal Processing — S.Salivahanan, A.Vallavaraj and C.Gnanapriya, TMH, 2009.

4. Discrete Time Signal Processing — A. V. Oppenheim and R.W. Schaffer, PHI, 2009.
OUTCOMES:
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After completion of the course, the student would be able to:

e Understand the basic elementary signals.

e Represent signals in the frequency domain using Fourier Series, Discrete Fourier series,
Fourier transform and Discrete Fourier transform techniques.

e Understand the principle of Linear System and digital signal processing fundamentals.

e Implement DFT of any signal using FFT algorithm.

e Realize Digital Filters
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1. INTRODUCTION

Anything that carries information can be called a signal. Signals constitute an important part of
our daily life. A signal is defined as a single-valued function of one or more independent variable
which contains some information. A signal may also defined be defined as any physical quantity
that varies with time, space or any other independent variable. A signal may be represented in
time domain or frequency domain. A signal can be function of one or more independent variable.
A signal may be a function of time, temperature, pressure, distance etc. If a signal depends on
only one independent variable, it is called a one dimensional signal and If a signal depends on two

independent variable, it is called a two-dimensional signal. Examples of on1D and 2D signals are
shown in figure.

Examples of signals include:

1. A voltage signal: voltage across two points varying as a function of time.

2. A force pattern: force varying as a function of 2-dimensional space.

3. A photograph: color and intensity as a function of 2-dimensional space

4. A video signal: color and intensity as a function of 2-dimensional space andtime

Example: 1D biological signals: EEG 1D biological signals: DNA sequencing
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Figure 1.1 a) One Dimensional EEG Signal b) One Dimensional DNA Signal c)Two DimensionalSignal
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ELEMENTARY SIGNALS

There are several elementary signals which plays vital role in the study of signals and systems.
These elementary signals serve as basic building blocks for the construction of more complex
signals. Infact, these elementary signals may be used to model a large number of physical signals
which occur in nature. These elementary signals are also called standard signals.

The standard signals are:

Unit step function

Unit ramp function

Unit parabolic function
Unit impulse function
Sinusoidal function

Real exponential function

No vk wnNe

Complex exponential function, etc
1.2.1 Unit Step Function

The step function is an important signal used for analysis of many systems. The step function is
that type of elementary function which exists only for positive time and is zero for negative time.
It is equivalent to applying a signal whose amplitude suddenly changes and remains constant
forever after application.

If a step function has unity magnitude. then it is called unit step function. The
usefulness of the unit-step function lies in the fact that if we want a signal to start at r = 0, so
that it may have a value of zero for r < 0, we only need to multiply the given signal with unit
step function u(7). A unit step function is useful as a test signal because the response of the
system for a unit step reveals a great deal about how quickly the system responds (o a sudden
change in the input signal.

The continuous-time unit step function u(r) is defined as:

ll for 120

u(r) =
10 for 1 <0

From the above equation for u(r). we can observe that when the argument 7 in u(7) is
less than zero, then the unit step function is zero, and when the argument 7 in u(7) is greater
than or equal to zero, then the unit step function is unity.

The shifted unit step function u(r — a) is delined as:

1 forr2a

u(t —a)= )
0 fort<a

It is zero if the argument (1 — a) < 0 and equal to 1 if the argument (1 — a) = 0.
The graphical representations of «(r) and u(r — @) are shown in Figure 1.2[(a) and (b)].
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Figure 1.2 (a) Unit step function, (b) Delayed unit step function.

122 Unit Ramp Function

The continuous-time unit ramp function r(7) is that function which starts at + = 0 anl
increases linearly with time and is defined as:

t for t=0

0 forr<O

r(r)=

or r)=ru(r)

The unit ramp function has unit slope. It is a signal whose amplitude varies linearly.
It can be obtained by integrating the unit step function. That means, a unit step signal can Qg
obtained by differentiating the unit ramp signal.

je r(l)=ju(l)dl=jdf=l for 120
d
wu(t)=—r(r)
dr
The delayed unit ramp signal r(r — a) is given by
t—a fort=a

r(t—a)= )
for t<a

or rit—a)=U—a)u(r—a)




The graphical representations of r(7) and r(r — a) are shown in Figure 1.3/(a) and (b)].
A r(t) Ar(i—a)

Slope = 1 Slope = 1

~v

0 a

~y

0

(a) (b)
Figure 1. 3 (a) Unit ramp signal. (b) Delayed unit ramp signal.

The discrete-time unit ramp sequence 7(n) is defined as
n fornz0

r(n)=
{O for n<0

or r(n)=nu(n)
The shifted version of the discrete-time unit-ramp sequence r(n — k) is defined as

1.2.3 Unit Parabolic Function

The continuous-time unit parabolic function p(f), also called unit acceleration signal starts at

= 0, and is defined as:

2
p
\ — for 120
pl)y=42
0 for 1<0
2

[
or plr) = = u(r)

The shifted version of the unit parabolic sequence p(f — a) is given by

2
(r—a) .
——— fortza
plt—a)= 2
0 for t<a
r— a)2

or plt—a)= (—2—— u(t — a)

The graphical representations of p(r) and p(t1 — @) are shown in Figure 1.4[(a) and (b)].
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Figure 1. 4 (a) Unit parabolic signal. (b) Delayed parabolic signal.

The unit parabolic function can be obtained by integrating the unit ramp function or
double integrating the unit step function.

L]

plr) = ”u(r)rh =_[r(r):lt =Ir(11 = ’T for r=20

1.24 Unit Impulse Function

The unit impulse function is the most widely used elementary function used in the analysis of
signals and systems. The continuous-time unit impulse function (1), also called Dirac delta
function, plays an important role in signal analysis. It is defined as:

'j o) dt =1




and o(t1)=0 for t#0

5 1 fort=0
siom (1) =
s AR 0 forr#0

That is. the impulse function has zero amplitude everywhere except at 1 = 0. At 1 = 0,
the amplitude is infinity so that the area under the curve is unity. 8(7) can be represented as a

limiting case of a rectangular pulse function.
As shown in Figure 1.5(a),

1
x(t)=—u(t) —u(t — A)
A [ ]
1
()= Lt x(1)= Lt —[u(r) — u(t — A)]
A0 A-0 A
A delayed unit impulse function 8(7 — a) is defined as:
1 fort=a

o(r—a)=
0 forr#a

The graphical representations of 6(z) and &8(z — a) are shown in Figure 1.5[(b) and (¢)].
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Figure 1. § (a) &(r) as limiting case of a pulse, (b) Unit impulse. (¢) Delayed unit impulse.

If unit impulse function is assumed in the form of a pulse, then the following points

may be observed about a unit impulse function.

(i) The width of the pulse is zero. This means the pulse exists only at t = 0.

(ii) The height of the pulse goes to infinity.
(111)) The area under the pulse curve is always unity.

(iv) The height of arrow indicates the total area under the impulse.

The integral of unit impulse function is a unit step function and the derivate of unit step

function is a unit impulse function.

u(t)= I o(t) dr

-0




< d
and o(t)=—u(r)
dt

Properties of continuous-time unit impulse function

1. It is an even function of time 7, i.e. 8(1) = 6(—t)

= _[ x(1) O(t) dt = x(0); I x(1)O(t — 1) dt = x(t,)
|
3. dlar)=—48(1)
a
4. x(1)0(1—1ty)=x(ty) 0t — 1) = x(ty): x(t) d(1) = x(0) (1) = x(0)
5 x(®= j x(r)o(r—1)dr

—00

1.2.5 Sinusoidal Signal

A continuous-time sinusoidal signal in its most general form is given by

x(1)=Asin(at + @)

where
A = Amplitude
@ = Angular frequency in radians
¢ = Phase angle in radians

Figure 1.5 shows the waveform of a sinusoidal signal. A sinusoidal signal is an example of
a periodic signal. The time period of a continuous-time sinusoidal signal is given by
2r
T=—

(0]

A x(1)=A sin (w1 + 0)

AWAVNVANA
VARV ARVIRV.

[ -

b /

ely

Figure 1.5 Sinusoidal waveform.
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12.6 Real Exponential Signal

A continuous-time real exponential signal has the general form as:
x(1) = Ae™
where both A and « are real.

The parameter A is the amplitude of the exponential measured at 1 = 0. The parameter o
can be either positive or negative. Depending on the value of o, we get different
exponentials.

1. If & = 0, the signal x(7) is of constant amplitude for all times.

If @ is positive, 1.e. @ > 0, the signal x(7) is a growing exponential signal.
If e is negative, i.e. o < 0, the signal x(7) is a decaying exponential signal.

L5 B oS |

These three waveforms are shown in Figure 1. 6[(a), (b) and (c)].

x(=Ae"™ fora=0 x()=Ae™ fora>0 x(1)=Ae™ fora< (0
A A A
A A
,_,..-/ /‘ '¥_
0 r 0 r 0 t
(a) (b) (c)

Figure 1. 6 Continnous-time real exponential signals x(r) = Ae™ for (a) =0, (b) > 0, (¢) & < 0.
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12.7 Complex Exponential Signal

The complex exponential signal has a general form as

x(1) = Ae*

where A is the amplitude and § is a complex variable defined as
§ =0+ jo

Therefore, x(t) = Ae® = Ae'9 T 1" = Ao o i™

= Ae% [cos @t + j sin x|

Depending on the values of ¢ and @, we get different waveforms as shown in Figure 1.7

Wt s=0 wi §=-0 M0 ts=g
A
A / 7

¥
0 7 0 1 0 T
(a) (b) (¢)
XNk S= o jw, x(1) S=0%j0,

o>

o<(

(d) (e)

Figure 1. 7 Complex exponential signals.
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1.28 Rectangular Pulse Function
The unit rectangular pulse function [1(#/7) shown in Figure 1.16 is defined as

n(i)z l for |r15§

0 otherwise

It is an even [unction of 1.
ATl D

»

—(7/2) 0 /2 t

Figure 1.8 Rectangular pulse function.

1.3 ELEMENTARY DISCRETE-TIME SIGNALS

There are several elementary signals which play vital role in the study of signals and
systems. These elementary signals serve as basic building blocks for the construction of more
complex signals. Infact. these elementary signals may be used to model a large number of
physical signals, which occur in nature. These elementary signals are also called standard
signals.

The standard discrete-time signals are as follows:

Unit step sequence

Unit ramp sequence

Unit parabolic sequence

Unit impulse sequence
Sinusoidal sequence

Real exponential sequence
Complex exponential sequence

S

S

13




1.3.1 Unit Step Sequence

The step sequence is an important signal used for analysis of many discrete-time systems. It
exists only for positive time and is zero for negative time. It is equivalent to applying a
signal whose amplitude suddenly changes and remains constant at the sampling instants
forever after application. In between the discrete instants it is zero. If a step function has
unity magnitude, then it is called unit step function.

The usefulness of the unit-step function lies in the fact that if we want a sequence to
start at n = 0, so that it may have a value of zero for n < 0. we only need to multiply the
given sequence with unit step function u(n).

The discrete-time unit step sequence u(n) is defined as:
]‘] for n=0

uin) =
]O for n<0

The shifted version of the discrete-time unit step sequence u(n — k) is defined as:

[1 for nzk
un—k)="
[0 for n<k

It is zero if the arugment (n — k) < 0 and equal to 1 if the arugment (n — k) = 0.
The graphical representation of u(n) and u(n — k) is shown in Figure 1.3[(a) and (b)].

Auln=k)

A N S A1

_3 =T, DO, | : k k41 k+2 k+3
(a) (b)

o —®

=
O

Figure 1.3 Discrete-time (a) Unit step function (b) Shifted unit step function.

14

=y




1.3.2  Unit Ramp Sequence

The discrete-time unit ramp sequence r(n) is that sequence which starts at n = 0 and
increases linearly with time and is defined as:

]n for n>=0
r(n)=
10 for n<0

or r(n) = nu(n)
It starts at n = 0 and increases linearly with n.
The shifted version of the discrete-time unit ramp sequence r(n — k) is defined as:
» [n—k for n=k
rin—k)=
LO for n<k
or rin—k)=(n—-k) uln — k)

The graphical representation of r(n) and r(n — 2) is shown in Figure 1.4[(a) and (b)].

94 ,4
r(mn) 3 rin—-2)
2
T l “an l
—% —2 —l 1 2 3 4 n= —? 8 4 6 ;
(a) (b)

Figure 1.4 Discrete-time (a) Unit ramp sequence (b) Shifted ramp sequence.

1.3.3  Unit Parabolic Sequence

The discrete-time unit parabolic sequence p(n) is defined as:

n
[—— for n=0
p(n)=1 2

lO for n<0

15




!
or p(n)= T u(n)

—_

The shifted version of the discrete-time unit parabolic sequence p(n — k) is defined as:

-

(s 8
_ ,u for n2k (n - k>
pn—k)y=4 2 or p(n— k)—‘Tu(n—k)

[0 for n<k -

The graphical representation of p(n) and p(n — 3) is shown in Figure 1.5[(a) and (b)].

® ®
® ®
pin) pn=3)
—_—— R0 ? I B — G ’ >
32101 2 3 4 n 61 2 3 & 3 6 7 n
(a) (b)

Figure 1.5 Discretetime (a) Parabolic sequence (b) Shifted parabolic sequence.
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1.3.4  Unit Impulse Function or Unit Sample Sequence
The discrete-time unit impulse function & (n), also called unit sample sequence, is defined as:

N [1 for n=0
o(n)=
IO for n# 0

This means that the unit sample sequence is a signal that is zero everywhere, except at n = 0,
where its value is unity. It is the most widely used elementary signal used for the analysis of

signals and systems.
The shifted unit impulse function d(n — k) is defined as:

[‘l for n=k

on—k)=
10 for n#k

The graphical representation of d(n) and o(n — k) is shown in Figure 1.6[(a) and (b)].

1.3.5 Sinusoidal Sequence

The discrete-time sinusoidal sequence is given by
x(n) = A sin(n + @)

where A is the amplitude, ® is angular frequency, ¢ is phase angle in radians and n is an integer.
The period of the discrete-time sinusoidal sequence is:

2
=—m

w
where N and m are integers.
All continuous-time sinusoidal signals are periodic, but discrete-time sinusoidal
sequences may or may not be periodic depending on the value of ®.
For a discrete-time signal to be periodic, the angular frequency @ must be a rational multiple
of 2z. The graphical representation of a discrete-time sinusoidal signal is shown in Figure 1.7.

17




1 x{n) = A sin (on + @)

Wl e
e

—
—
-—
———]
—
—
—
-—
P
L —
—]
-—

=Y

Figure 1.7 Discretetime sinusoidal signal.

1.3.6 Real Exponential Sequence

The discrete-time real exponential sequence a” is defined as:
x(n) = a" for all n

Figure 1.8 illustrates different types of discrete-time exponential signals.
When a > 1, the sequence grows exponentially as shown in Figure 1.8(a).
When 0 < a < 1, the sequence decays exponentially as shown in Figure 1.8(b).
When a < 0, the sequence takes alternating signs as shown in Figure 1.8[(c) and (d)].

Mn)=a"  g>1 x(n) =a" O<a<l

il

x(n)=a" a < =1 [

N

il

!

Sy

1 6

(a
] x(n) =a” —l<a<0

Figure 1.8 Discretetime exponential signal a" for(a)a > 1 hb)0 < a <l ©a< -1{d) -1 <a <0
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1.3.7 Complex Exponential Sequence

The discrete-time complex exponential sequence is defined as:

x(n) = a”‘;’“’)()n-h;;)

= a" cos(pn + @) + ja" sin(wen + ¢)

For lal = 1, the real and imaginary parts of complex exponential sequence are sinusoidal.

For lal > 1. the amplitude of the sinusoidal sequence exponentially grows as shown in
Figure 1.9(a).

For lal < 1, the amplitude of the sinusoidal sequence exponentially decays as shown in
Figure 1.9(b).

A

x(n) = a’e’M*?  g>1

st Ty, el TT[ I TI{ IT _
o AR ITT11 I 111 -

(a)

4 x(n)

TI'{IT ?TITT *QTTTQ e?Te,

o lll [T TR N -
(b)
Figure 1.9 Complex exponential sequence x(n) — a’e“o” * @ 1or (a)a > 1 (b)a < 1.

Classification of the Signals:

Based upon their nature characteristics in the time domain, the signals may be broadly
classified as under

(a) ContinuousOtime signals

(b) Discrete —time signals

e Continuous-Time (CT) Signals: They may be de ned as continuous in time and continuous
in amplitude as shown in Figure 1.5.1. Ex: Speech, audio signals etc..

e Discrete Time (DT) Signals: Discretized in time and Continuous in amplitude. They may
also be defined as sampled version of continuous time signals. Ex: Rail track signals.

19




e Digital Signals: Discretized in time and quantized in amplitude. They may also be defined
as quantized version of discrete signals.

x(n) = x (n + No) (1.2)

Continuous Time i Discrete Time Digital Signal

2T L
\

1 T

>

y

Time . Time Time
Figure :Description of Continuous, Discrete and Digital Signals

Both Continuous, Discrete and Digital Signals may be further classified into several categories
depending upon the criteria and for its classification. Broadly the signals are classified into the
following categories

Deterministic and Random signals

Periodic and Aperiodic Signals

Even and Odd Signals

Power and Energy Signals

Causal and non causal

ok~

Continuous-time and Discrete-time Signals:

Deterministic and Random signal
A deterministic signal is a signal in which each value of the signal is fixed and can be determined
by a mathematical expression, rule, or table. Because of this the future values of the signal can be
calculated from past values with complete confidence. On the other hand, a random signal has
lot of uncertainty about its behavior. The future values of a random signal cannot be accurately
predicted and can usually only be guessed based on the averages of sets of signals.

Periodic Signals

A CT signal x(t) is said to be periodic if it satisfies the following condition
20




X (t) =x (t+ To) (2.1)
The smallest positive value of Tothat satisfies the periodicity condition Eq.(1.1), is referred as the
fundamental period of x(t). The reciprocal of fundamental period of a signal is fundamental
frequency fo.
Likewise, a DT signal x[n] is said to be periodic if it satisfies
The smallest positive value of NO that satis es the periodicity condition Eq.(1.2) is referred
to as the fundamental period of x [n].
Note: All periodic signals are ever lasting signals i.e. they start at -1 and end at +1 as shown in
below Figure.

y ()

S .U

i 4

0 2
<>
T=2

Figure : A typical periodic signal

Even and Odd Signals
Any signal can be called even signal if it satisfies x(t) = x(-t) or x(n) = x(-n). Similarly any signal can

be called odd signal if it not satisfies x(t) = x(-t) or x(n) = x(-n). Below Figure shows an example of
an even and odd signal whereas Figure 1.3 shows neither even nor odd signal.

x (1) x (1)

-1 0] 1 -1

Any signal X(t) can be expressed in terms of even component Xe(t) and odd component Xo(t).
X(t) =Xe(t)+Xo(t), Xe(t)+=(X(t) + X(-t)) / 2, Xo(t)+=(X(t) - X(-t)) / 2
Energy and Power signals

A signal x(t) (or) x(n) is called an energy signal if total energy has a non - zero finite value

21




i.,e.0<Ex<1andPavg=0

A signal is called a power signal if it has non - zero nite poweri.e.0<Px<1andE = 1.

A signal can't be both an energy and power signal simultaneously. The term instantaneous power
is reserved for the true rate of change of energy in a system. All periodic signals are power signals
and all finite durations signals are energy signals.

By = Z | [12] |2
) N A
wrr) — — E iy (rt — i) + Z BpxCrr — j).
=1 FA)
1 ol |
Pomtin — 2 Y fafu]?
. (2:\ 4 1) n:;\' ‘ [ N

A signal is referred to as a power signal if the power P, satisfies the condition

0< P <
Causal and non causal

A continuous time signal xt) is said to be causal if x(t)=0 fort<= otherwise the signal is non causal

1.5 CLASSIFICATION OF DISCRETE-TIME SIGNALS

The signals can be classified based on their nature and characteristics in the time domain.
They are broadly classified as: (i) continuous-time signals and (ii) discrete-time signals.

The signals that are defined for every instant of time are known as continuous-time
signals. The continuous-time signals are also called analog signals. They are denoted by x(f).
They are continuous in amplitude as well as in time. Most of the signals available are
continuous-time signals.

The signals that are defined only at discrete instants of time are known as discrete-time
signals. The discrete-time signals are continuous in amplitude, but discrete in time. For discrete-
time signals. the amplitude between two time instants is just not defined. For discrete-time
signals, the independent variable is time n. Since they are defined only at discrete instants of
time. they are denoted by a sequence x(nT) or simply by x(n) where n is an integer.

Figure 1.18 shows the graphical representation of discrete-time signals. The discrete-
time signals may be inherently discrete or may be discrete versions of the continuous-time
signals.
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A x(n) A
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2. =t 0 > n llllo

(a) (b)

Figure 1.18 Discrete-time signals.

Both continuous-time and discrete-time signals are further classified as follows:

Deterministic and random signals
Periodic and non-periodic signals
Energy and power signals
Causal and non-causal signals
Even and odd signals

S fh et

1.5.1 Deterministic and Random Signals

A signal exhibiting no uncertainty of its magnitude and phase at any given instant of time is
called deterministic signal. A deterministic signal can be completely represented by
mathematical equation at any time and its nature and amplitude at any time can be predicted.

Examples: Sinusoidal sequence x(n) = cos @n, Exponential sequence x(n) = &, ramp
sequence x(n) = n.

A signal characterized by uncertainty about its occurrence is called a non-deterministic
or random signal. A random signal cannot be represented by any mathematical equation. The
behaviour of such a signal is probabilistic in nature and can be analyzed only stochastically.
The pattern of such a signal is quite irregular. Its amplitude and phase at any time instant
cannot be predicted in advance. A typical example of a non-deterministic signal is thermal noise.

1.5.2 Periodic and Non-periodic Sequences

A signal which has a definite pattern and repeats itself at regular intervals of time is called a
periodic signal, and a signal which does not repeat at regular intervals of time is called a
non-periodic or aperiodic signal.

A discrete-time signal x(n) is said to be periodic if it satisfies the condition x(n) = x(n + N)
for all integers n.

The smallest value of N which satisfies the above condition is known as fundamental
period.
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If the above condition is not satisfied even for one value of n, then the discrete-time
signal is aperiodic. Sometimes aperiodic signals are said to have a period equal to infinity.
The angular frequency is given by

Fundamental period

2
w=—

N

2
N i

[0

The sum of two discrete-time periodic sequences is always periodic.
Some examples of discrete-time periodic/non-periodic signals are shown in Figure 1.19.

x(n)

4 sin 2n

ik TTIrlleITT X 11117

ll J' l’() ' 7 0 =
+—N—0»
x(n)
x(n)
HTT I1 HTTH . ] B, ;
()|<—N—> n o 0 n
(a) (b)
Figure 1.19 Lxamples of discretetime: (a) Periodic and (b) Non-periodic signals.
EXAMPLE Show that the complex exponential sequence x(n) = ¢/ is periodic only

if @wy2m is a rational number.
Solution: Given

x(n) will be periodic if

i:e:

i.e.

This is possible only if

This is true only if
where £ is an integer.

This shows that the complex exponential sequence x(n) = e/

rational number.

x(n) = &M
x(n + N) = x(n)
‘)'/lu)()(n + N)| = (,j((‘”n

JghN e Jogn Jwpn

=

e

e PN — 1
woN = 2k
Wy, k

—— = — Rational number
2r N

1.5.3 Energy and Power Signals

“@on is periodic if @,/2r is a

Signals may also be classified as energy signals and power signals. However there are some

signals which can neither be classified as energy signals nor power signals.
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The total energy E of a discrete-time signal x(n) is defined as:

E= 2 |x(n)|2

e —es
and the average power P of a discrete-time signal x(n) is defined as:

1 N

P= Lt ——— x(n) i
Noeo 2N +1 n»z—‘:v | |
1 n—1 =
or P= NZ |x(n)|- for a digital signal with x(n) = 0 for n < 0.
n=0

A signal is said to be an energy signal if and only if its total energy E over the interval
(—oa, o) is finite (i.e., 0 < E < o). For an energy signal, average power P = 0. Non-periodic
signals which are defined over a finite time (also called time limited signals) are the
examples of energy signals. Since the energy of a periodic signal is always either zero or
infinite, any periodic signal cannot be an energy signal.

A signal is said to be a power signal, if its average power P is finite (i.e., 0 < P < ). For
a power signal. total energy E = 0. Periodic signals are the examples of power signals.
Every bounded and periodic signal is a power signal. But it is true that a power signal is not
necessarily a bounded and periodic signal.

Both energy and power signals are mutually exclusive, i.e. no signal can be both

energy signal and power signal.
The signals that do not satisfy the above properties are neither energy signals nor

power signals. For example, x(n) = u(n), x(n) = nu(n), x(n) = nu(n).

These are signals for which neither P nor E are finite. If the signals contain infinite
energy and zero power or infinite energy and infinite power, they are neither energy nor
power signals.

If the signal amplitude becomes zero as Inl — =0, it is an energy signal, and if the
signal amplitude does not become zero as Inl — =, it is a power signal.

1.5.4 Causal and Non-causal Signals

A discrete-time signal x(n) is said to be causal if x(n) = 0 for n < 0, otherwise the signal is
non-causal. A discrete-time signal x(n) is said to be anti-causal if x(n) = 0 for n > 0.

A causal signal does not exist for negative time and an anti-causal signal does not exist
for positive time. A signal which exists in positive as well as negative time is called a
non-casual signal.

u(n) is a causal signal and u(—n) an anti-causal signal, whereas x(n) = 1 for—2<n <3
is a non-causal signal.
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1.5.5 Even and Odd Signals

Any signal x(n) can be expressed as sum of even and odd components. That is
x(n) = x(n) + x,(n)

where x_.(n) is even components and x,(7n) is odd components of the signal.

Even (symmetric) signal

A discrete-time signal x(n) is said to be an even (symmetric) signal if it satisfies the condition:
x(n) = x(-n) for all n

Odd (anti-symmetric) signal

A discrete-time signal x(n) is said to be an odd (anti-symmetric) signal if it satisfies the

condition:
x(—n) = —x(n) for all n

Basic Operations on Signals

The signals may undergo several manipulation involving the independent variable or the
amplitude of the signal. The basic operation on signals are as follows:

1. Time shifting

Time reversal

Time scaling

Amplitude scaling

Signal Addition

Signal multiplication

o U s WN
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16.1 Time Shifting

Mathematically, the time shifting of a continuous-time signal x(r) can be represented by
W) =x(@-=1)

The time shifting of a signal may result in time delay or time advance. In the above

T is negative the shift is to the left and then the shifting advances the signal. An arbitrary

signal x(1), its delayed version and advanced version are shown in Figure 1.21[(a), (b)
and (¢)]. Shifting a signal in time means that a signal may be either advanced in the time axis
or delayed in the time axis.

A x(2) Ax(t=T Ax(t+D
A A A

0 6 1 0 T T+6 t T 0 -T+6 1
(a) (b) (c)

Figure 1.21 (a) Signal, (b) Its delayed version. (¢) Its time advanced version.

1.6.2 Time Reversal

The time reversal, also called time folding of a signal x(¢) can be obtained by folding the
signal about r = 0. This operation is very useful in convolution. It is denoted by x(—). It is
obtained by replacing the independent variable ¢ by (=r). Folding is also called as the

reflection of the signal about the time origin 1 = 0. Figure 1.23(a) shows an arbitrary signal
x(r), and Figure 1.23(b) shows its reflection x(-).

The signal x(=r + 3) obtained by shifting the reversed signal x(-) to the right by 3 units
(delay by 3 units) is shown in Figure 1.23(c). The signal x(=r = 3) obtained by shifting the
reversed signal x(=/) to the left by 3 units (advance by 3 units) is shown in Figure 1.23(d).
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1.6.3 Amplitude Scaling

The amplitude scaling of a continuous-time signal x(r) can be represented by

v(t) = Ax(r)
where A is a constant.

The amplitude of y(r) at any instant is equal to A times the amplitude of x(r) at that
instant, but the shape of y(r) is same as the shape of x(r). If A > 1, it is amplification and if
A < 1, it is altenuation.

Here the amplitude is rescaled. Hence the name amplitude scaling. Figure 1.35(a) shows
an arbitrary signal x(7) and Figure 1.35(b) shows y(r) = 2x(1).

4 () p V() = 2x(1)

VAAVIRVARV, '

(a) (b)

-~9v
-~v
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A x(7) A X(—1)
A A
0o 1 2 3 4 t 4+ 3 =3 = [0 1
(a) (b)
Ax(=t+3) A x(=t=3)
A A
1 0 1 2 3 1 7 6 -5 4 -3 -2 -1 |0 1
(¢) (d)

Figure 1.23 (a) An arbitrary signal x(7). (b) Time reversed signal x(-r), (¢) Time reversed

1.6.4 Time Scaling

Time scaling may be time expansion or time compression. The time scaling of a signal x(7)
can be accomplished by replacing ¢ by ar in it. Mathematically, it can be expressed as:

v(r) = x(ar)

If @> 1, it results in time compression by a factor @ and if @ < 1, it results in time
expansion by a factor a because with that transformation a point at “af’ in signal x(r) becomes
a point at ‘I’ in v(1).

Consider a signal shown in Figure 1.37(a). For a transformation y(¢) = x(2r), the time
compressed signal is as shown in Figure 1.37(b) and for a transformation v(7) = x(#/2) the
time expanded signal is as shown in Figure 1.37(c).
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4 x(1) A v(t)=x(21)

\

1 o1 2 3 11 05100 115 1
(a) (b)
A V) = x(1/2)
4
-9 |0 2 4 6 1

(c)

Figure 1.37 (a) Original signal, (b) Compressed signal. (¢) Enlarged signal.

1.6.5 Signal Addition

The sum of two continuous-time signals x,;(r) and x,(r) can be obtained by adding their values
at every instant of time. Similarly, the subtraction of one continuous-time signal x,(7) from
another signal x;(f) can be obtained by subtracting the value of x,(f) from that of x,(7) at
every instant. Consider two signals x;(¢) and x,(z) shown mn Figure 1.39[(a) and (b)].
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1+ I+ /
r 4
/
| | » 4 -
0 1 2 3 4 r 0 1 2 7
() (b)
A A
“" ’
vl ™
7
24/ 24
N\,
\\
N\
| ¥, (1) + x5(1) (4 X, () — x,(1)
0 | > 3 4 r 0 I 2 ]
(<) (d)

Figure 1.39 Addition amd sabtaction of conlinuous-time signals.

1.6.6 Signal Multiplication

The multiplication of two continuous-time signals can be performed by multiplving their
values at every instant. Two continuous-time signals x;(7) and x,(r) shown in Figure 1 40([(a)

and (b)] are multiplied as shown below to obtain x,(7) x,(r) shown in Figure 1.40(c).

ForOsr=s1 x;7) =2 and x,(1) = 1
Hence x;/(nNx,(r) =2 x1=2
Forl<:r=2 x()=landxy(t)=1+(t-1)
Hence xi(0) xo(n) = (D[l + = 1] =1+ (= 1)
A X, (D) A X(0) 4 X,(1) x5(1)
2 2 N

I

~y

0 1 2 3

Figure 1.40

~Y

0 1 2 3
(b)

Maultiplication of continuous-time signals,
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1.7 BASIC OPERATIONS ON SEQUENCES

When we process a sequence, this sequence may undergo several manipulations involving
the independent variable or the amplitude of the signal.
The basic operations on sequences are as follows:

Time shifting

Time reversal

Time scaling
Amplitude scaling
Signal addition
Signal multiplication

I b -

il

The first three operations correspond to transformation in independent variable n of a
signal. The last three operations correspond to transformation on amplitude of a signal.

1.7.1 Time Shifting

The time shifting of a signal may result in time delay or time advance. The time shifting
operation of a discrete-time signal x(n) can be represented by

v(n) = x(n — k)

This shows that the signal y(n) can be obtained by time shifting the signal x(n) by k units. If
k is positive, it is delay and the shift is to the right, and if £ is negative, it is advance and the
shift is to the left.

An arbitrary signal x(n) is shown in Figure 1.10(a). x(n — 3) which is obtained by
shifting x(n) to the right by 3 units (i.e. delay x(n) by 3 units) is shown in Figure 1.10(b).
x(n + 2) which is obtained by shifting x(n) to the left by 2 units (i.e. advancing x(n) by
2 units) is shown in Figure 1.10(c).

x(n)

-3=2-1 01 2 3 45 6 & =2 =101 23 45 6 7 i
(a) (b)

Lo
s
=
+
p b
—
—
R
S8
—a
—8
(8]
b —@
4
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1.7.2 Time Reversal

The time reversal also called time folding of a discrete-time signal x(n) can be obtained by
folding the sequence about n = 0. The time reversed signal is the reflection of the original
signal. It is obtained by replacing the independent variable n by —n. Figure 1.11(a) shows an
arbitrary discrete-time signal x(n), and its time reversed version x(—n) is shown in Figure 1.11(b).
Figure 1.11[(c) and (d)] shows the delayed and advanced versions of reversed signal x(-n).

The signal x(—n + 3) is obtained by delaying (shifting to the right) the time reversed
signal x(—n) by 3 units of time. The signal x(—n — 3) is obtained by advancing (shifting to the
left) the time reversed signal x(—n) by 3 units of time.

EXAMPLE Sketch the following signals: (a) u(n+2)u(-n+3)

Solution:
(a) Given x(n)=u(n+2)u(=n+3)

The signal u(n + 2) u(-n + 3) can be obtained by first drawing the signal u(n + 2)
as shown in Figure 1.13(a), then drawing u(-n + 3) as shown in Figure 1.13(b),
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-5 4 3-=2-1 01 2 n

(b)
3 W 3
3 ,K(—ﬂ+~) 3 _x(_qz__)
2 2
1 1
& * * & * > *—o *——o—0—>
-3 =21 0 1 2 3 4 5 n -8 =7 =6 =5 =4 =3 =2 -1 | 2 n
(©) (d)

Figure 1.11

(a) Original signal x(n) (b) Time reversed signal x(-=n) (¢) Time reversed and delayed

signal x(=n +3) (d) Time reversed and advanced signal x(~n - 3).

x,(n) x,(-n)
2 92 Original signal 292 Time reversed
Tl T] signal

—_— 9% —o—» B *—90 —o o >
=2 =1 0 1 2 3 4 R -4 =3 =2 =1 0 1 2 n

(a) (b)

3@ x(n) 30 x,(—n)
2 2 Original signal 2 2 Time reversed
lT Tl signal

L \ 4 \ * L > s 4 4 - e
-3 =2 =1 0 1 2 3 4 n -4 =3 =2 -1 0 1 2 3 =n
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Figure 1.12 Time reversal operations.




1.7.3 Amplitude Scaling

The amplitude scaling of a discrete-time signal can be represented by

v(n) = ax(n)
where a is a constant.

The amplitude of y(n) at any instant is equal to a times the amplitude of x(n) at that
instant. If @ > 1, it is amplification and if a < 1, it is attenuation. Hence the amplitude is
rescaled. Hence the name amplitude scaling.

Figure 1.15(a) shows a signal x(n) and Figure 1.15(b) shows a scaled signal y(n) = 2x(n).

o4 X

y(n) = 2x(n)

e
[—
v

(a) (b)

Figure 1.15 Plots of (a) Signal x(n) (b) y(n) = 2x(n).

1.74 Time Scaling

Time scaling may be time expansion or time compression. The time scaling of a discrete-
time signal x(n) can be accomplished by replacing n by an in it. Mathematically, it can be
expressed as:

y(n) = x(an)

When a > 1, it is time compression and when a < 1, it is time expansion.
Let x(n) be a sequence as shown in Figure 1.16(a). If a = 2, y(n) = x(2n). Then

y(0) = x(0) = 1
yi—1)=x(-2) =3
v-2)=x4)=0

W1)=x2)=3

y(2)=x(4) =0
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‘P} ¢3 23 x(Zn) ¢3
x(n)
2 2
r r
3 =2 -1 0 1 2 3 4 n 2 -1 0 1 2 n
(a) (b)
*4 p 4
3 p 3
2 x(n/2) 2
II
H 6 &5 =4 B = 49 @ I 2 3 & S5 6 7 n
(c)

Figure 1.16

Discrete-time scaling (a) Plot of x(n) (b)
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1.7.5 Signal Addition

In discrete-time domain, the sum of two signals x;(n) and x»(n) can be obtained by adding
the corresponding sample values and the subtraction of x,(n) from x,(n) can be obtained by
subtracting each sample of x,(n) from the corresponding sample of x,(n) as illustrated below.

If xn)=1{1,2,3 1,5} and x(n) ={2, 3, 4,1, -2}
Then X)) +xn)={14+42,2+3,3+41+1,5-2)=1{3,5,7.2, 3}
and xin)-xn)=4{1-2,2-3,3-41-1,5+2} ={-1,-1,-1,0, 7}

17.6 Signal Multiplication

The multiplication of two discrete-time sequences can be performed by multiplying their
values at the sampling instants as shown below.

If ) =1{1,-3,2, 4,15} and xn) = {2, -1, 3, 1.5, 2}
Then X (1) Xy () ={1 X 2,3 X~1,2 X 3,4 X 1.5,1.5 X2}
={2,3,6,6,3)
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FOURIER SERIES

INTRODUCTION:

The representation of signals over a certain interval of time in terms of the linear combination of
orthogonal functions is called Fourier series. The Fourier analysis is also sometimes called the
harmonic analysis. Fourier series is applicable only for periodic signals. It cannot be applied to
non periodic signals. A periodic signal is one which repeats itself at regular intervals of time, i.e
periodically over -o= to oo, Three important classes of Fourier series methods are available. They
are

1. Trigonometric Form
2. Exponential Form
3. Cosine Form

In the representation of signals over a certain interval of time in terms of the linear combination
of orthogonal functions, if the orthogonal functions are exponential functions, then it is called
exponential Fourier series. Similarly, in the representation of signals over a certain interval of
time in terms of the linear combination of orthogonal functions, if the orthogonal functions are
trigonometric functions, then it is called trigonometric Fourier series.

Exponential Fourier series:

The exponential Fourier series is the most widely used form of Fourier series. In this,
the function x(t) is expressed as a weighted sum of the complex exponential functions. The
complex exponential form is more general and usually more convenient and more compact. So, it

The set of complex exponential functions
{em@ot =0, +1, +2, ..
forms a closed orthogonal set over an interval (t; tp+T) where T= (2/wg) for any value of ty. and

therefore it can be used as a Fourier series. Using Euler’s identity. we can write
ejf_nwot+9n)+ e—j(nwot+€n)
Apcos(nwot +0,) = An[ - ]

Substituting this in the definition of the cosine Fourier representation. we obtain

A —
X(_T) =Ap --Zgo y 21’1 [e](nwot+9n) + e )(nmot+9n)]

=Ag +Zn=1 e [e]nwotelen 3 e—]nwote—jen]
An t g An _; t —if
= Ag Z ( jnwoe)n)+zn 1( p—inwoty—jén
=Ag +Zn N (éz_’l e]On) einwot 4 Z 2 (A“ e—]Bn) g—inwot
Letting 1n= -I\ 11 the SeCOlld 51111111131’1011 Ot the abO\ (= uation. we ha\'e
g q
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is used almost exclusively, and it finds extensive application in communication theory.

1) Obtain the exponential Fourier Series for the wave form shown in below figure

& xi{t)
’7 Al——— e
J —in - 0 T an T
————————— -A
x(t) = { A O=t=m
o —A M=t=2n
Let
t[] = 0. t[] +T =21
2 2
and Fundamental frequency mu—?ﬂ = ﬁ =1

Exponential Fourier series

. 1 T

c0—¥jﬂ x(t) dt )
= [y Adt+_—["" —Adt=0

_ 1.7 " — T )
n ?fﬂ X{_t_}E J ot dt - )
=ij“ AeInt e + = [ eIt ar
A

= [(—D* —1]—[1 — (—1)"] = -]

]21111: “3‘]1.1'[

Cc = {(_]H) for odd n

0 for evenn
Solution: The periodic waveform shown in fig with a period T= 21t can be expressed as:

2) Find the exponential Fourier series for the full wave rectified sine wave given in below figure.
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Solution: The waveform shown in fig can be expressed over one period(0 to ) as:

: 2
x(t) = A sin wt where w= 2—“ =1
T

because it 1s part of a sine wave with period = 27
x()=Asmwt 0st<smn
The full wave rectified sine wave is periodic with period T=7
Let
tg=0.tg+T=0+tt=7

2m_ 2m
and Fundamental frequency wp=—=—=2
. . . . i T n
The exponential Fourier series 1s
‘{(t) Zn——-oo C ejncoot - L C e]Znt

1T ;
where C, = an x(t)e M@t gt

1 pm ; A pm ;
—— : —j2nt 2 : —j2nt
r:fﬂ Asinte dt T[fﬂ sinte dt

A feilt—2nk_0 e—ili—2nlt_0
[ j{1—2n) —j({1—2n)

= ]2_1:
2A
T ==
m(l—4n=)

1T
C[;.:?fﬂ x(t) dt
1™ A _ArL m_ 2A
_Efﬂ Asmt{lt—;[ cos t]] -

The exponential Fourier series is given by

_ 24 jme_2A 24 (eim)
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Complex Fourier Spectrum

The Fourier spectrum of a periodic signal x(t) is a plot of its Fourier coefficients versus
frequency w. It is in two parts: (a) Amplitude spectrum and (b) phase spectrum. The plot of
the amplitude of Fourier coefficients verses frequency is known as the amplitude spectra, and
the plot of the phase of Fourier coefficients verses frequency is known as phase spectra. The
two plots together are known as Fourier frequency spectra of x(t).This type of representation
is also called frequency domain representation. The Fourier spectrum exists only at discrete
frequencies nw,, where n=0,1,2,..... Hence it is known as discrete spectrum or line spectrum.
The envelope of the spectrum depends only upon the pulse shape, but not upon the period of
repetition.

The below figure (a) represents the spectrum of a trigonometric Fourier series extending
from 0 to oo, producing a one-sided spectrum as no negative frequencies exist here. The figure
(b) represents the spectrum of a complex exponential Fourier series extending from -eotooo,
producing a two-sided spectrum. The amplitude spectrum of the exponential Fourier series is
symmetrical Fourier series is symmetrical about the vertical axis. This is true for all periodic

functions.
|A, |4 |C,|4
Aok s A, c, ACOCI
A, C, C,
A,{ (’—n [ (n
0 @ 2@, 30, 10 @ -nwy, 2ay -y ) @ 20--—-nd
(a) (b)

Fig: Complex frequency spectrum for (a) Trigonometric Fourier series and (b) complex
exponential Fourier series. If C,is a general complex number, then

Cn = |Cn| ejen& C-n = |Cn| e_jgn&(:n = |C-n|

The magnitude spectrum is symmetrical about the vertical axis passing through
the origin, and the phase spectrum is ant symmetrical about the vertical axis passing through the
origin. So the magnitude spectrum exhibits even symmetry and phase spectrum exhibits odd
symmetry. When x(t) is real , then C,=C,,, the complex conjugate of Ch.
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DISCRETE FOURIER SERIES

The Fourier series representation of a periodic discrete-time sequence is called discrete Fourier
series(DFS).Consider the discrete time signal x(n) that is periodic with period N defined by
x(n)=x(n+KN) for any integer value of k. The periodic function x(n) can be synthesized as a linear
combination of complex exponentials.

Exponential form of Discrete Fourier Series

A real periodic discrete time signal x(n) of period N can be expressed as a weighted sum of
complex exponential sequences. The exponential form of the Fourier series for a periodic discrete

time signal is given by

N-1

I o 2nINk ¢

V() = Z X(k)e!=""" for all n
Ad k=0

where the coefficients X(k) are expressed as:

N-1

- 27 IN ynk .

XAk)= Z x(n)e 1T for all k

neafl

These equations for x(n) and X(k) are called DFS synthesis and analysis pair. Hence, X(k)
and x(n) are periodic sequences.
The equivalent form for X(k) is:
N-]
X(ky= Y x(n) Wy*

n=(0)

EXAMPLE Find both the exponential of the DFS represen tation of x(n) shown in Figure
x(n)
3
2
| {
-3 =2 -1 0 1 2 3 4 5 6 7 8 n
Figure x(n) for Example

42




Solution: To determine the exponential form of the DFS, we have
W\A _ o J2mIN
Given N =4
WO =1, W) = e iCRIDI _ o irl2)
W, = cos%— jsin % =—j
Wi = (WHW) = (=) (=j) =—1
W, =(WHW)) =(=1)(=j)=j
Wi =W (W)= (=D(=1) =1

The exponential form of DES is given by

N—1 N-1
x(n) _% 3. Xkl CHIIR _lﬁz X(k)Wy™ forall n

k=0 k=0
LNZ—I X(k) ej(w())nk
N k=0 |
N-1 N-1 .
where X(k) = Z x(n) Wik = Z x(n)e /NI for all k
n=0 n=0
3
For k = 0, X(0) =Y x(mW;"" = x(0)+ x(1)+ x(2)+ X(3)=0+1+2+3=6
n=0
3 ol
For k = 1, X(1) =Y x(mW"" = x(OW, + x(DW] + x(W] + x(3)W,
n=0
= 0(1) + (D(=) + 2U=D + B)(j) = =2+ j2
3
For k = 2, X(2) = x(mW" = x(O)W,) + x(DW] + x(QW; + x(3)W,
n=0
=0+ 1=D+2(D)+3(-1)=-2
. |
For k = 3, X(3) = 3 x(mW" = x(O)W + x(OWS + X)Wy + x(3)W,
n=0

=0+1(j)+2(=1) +3(-j)=-2~j2
The complex exponential form of the Fourier series is:
' | A= 4
x(my=—> X(k)w;™
N >
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UNIT-II

FOURIER TRANSFORMS & DISCRETE FOURIER TRANSFORMS

Fourier transform of arbitrary signal,

Fourier transform of standard signals

Properties of Fourier Transform.

Discrete Fourier Transform

Properties of DFT

Linear Convolution of Sequences using DFT

Computation of DFT: Over-lap Add Method & Over-lap Save Method.
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FOURIER TRANSFORM

INTRODUCTION:

Using exponential form of Fourier series, any continuous —time periodic signal x(t) can be represented as a
linear combination of complex exponentials and the Fourier coefficients are discrete. Fourier series can
deal only with the periodic signals. This is the major drawback of Fourier series. However, all the naturally
produced signals which need processing will be in the form of non-periodic or aperiodic signals. Therefore,
the applicability of the Fourier series is limited.

Fourier Transform is a transformation technique which transforms signals from the continuous-time
domain to the corresponding frequency domain and vice versa and which applies for both periodic as well
as aperiodic signals. Fourier transform can be developed by finding the Fourier series of a periodic
function and then tending to infinity. The Fourier Transform derived in this chapter is called the
continuous-time Fourier transform (CTFT) . The Fourier Transform is an extremely useful mathematical
tool and is extensively used in the analysis of linear time —invariant (LTIl) systems, cryptography, signal
analysis, signal processing, astronomy etc. Several applications ranging from RADAR to spread spectrum
communication employ Fourier transform.

The magnitude of X(w) is given by |X (Wj = \/XF(W) X (w) 2
The phase of X(w) is given by X (w) =tan™ 12—~

The plot of |X (W)| versus w is known as amplitude spectrum and the plot of | X (W) versus w is known as

phase spectrum. The amplitude spectrum and phase spectrum together is called frequency spectrum.
EXISTANCE FOURIER TRANSFORM:

The Fourier Transform does not exist for all aperiodic functions. The conditions for function x(t) to have
Fourier Transform, called Dirichlet’s conditions are:

1. x(t) is absolutely integrable over the interval- o= to o, thatis J‘ |x(t)dt <o0 |

2.x(t) has a finite number of discontinuities in every finite time interval, Further, each of these
discontinuities must be finite.

3.x(t) has a finite number of maxima and minima in every finite time interval.

Dirichlet’s condition is a sufficient condition but necessary condition. This means, Fourier transform will
definitely exist for functions which satisfy these conditions. On the other hand, in some cases, Fourier
transform can be found with the use of impulses even for functions like step functions, sinusoidal
function, etc which do not satisfy the convergence condition.
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FOURIER TRANSFORM OF STANDARD SIGNALS

1.

Impulse Function §(t)
Givenx(t) =&(t),

_(1fort=0
8(t) = {0 fort #0
Then
X(@) =7 x(eTetdt= [ d(eTotdt=  edjwit=0 =

FT
o Fl6(t)] =1 ord(t) o1
Hence, the Fourier Transform of a unit impulse function is unity.

[X(w )| =1 forall w
IX( w)=0 forall w

The impulse functions with its magnitude and phase spectra are shown in below figure:

4 | X() |
xif) ; ]X((o)
0 T 0 » ,0 »
(8) (b) (c)

Similarly,

[ - ; FT .
F[S(t - to)] = J‘ S(t —_ to)eﬂ(l’tdt = e*]mtg i.e. S(t — to) PN eﬂ(;)to
Single Sided Real exponential function e atu(t)

1 fort=0

Given x(t) = e " u(t), u(t) = {0 fort <0

Then
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oD a0

X(w) = fx(t)e‘i“’tdt = [e‘atu(t)e‘i“’tdt

*L o (7(a+jw)t e_m . eo
— f e—ate—jmtdt — f e—(a+jm)tdt — - — -
—(a+jw) —(a+jw)
0 0 0
0-1 1
B —(a+jw) _a+ju)
Fleu(®)] =—— ore-tu(t) & —
at+jw atjw
1 a—jw
Now, X((L)) - atjw - (a+jw)(a—jw)
_ a—jw __ 4 . W _ 1 l_ tan‘l w
- aZ+w? aZ+w? ]a2+m2 - VaZ+w? a
X ()] . |X(@) = —tan' = forall
w)| = ——, [X(w) = —tan™ " —forallw
VaZ + o7 a
Figure shows the single-sided exponential function with its magnitude and phase spectra.
x(1) = ¢ "u(t) | X(w) | A X(w)
l/a
+7/2
7 0 o 0 o
—-m/2 +
(a) (b) (©)
Double sided real exponential function eat
Given x(t) = eIt
2 x(t) = ealtl = { e2("Y=edtfort < 0
e =e ?fort =0
= e 2Vy(—t) + e 2tu(t)
= eu(—t) + e " u(t)
X(w) = fx(t)e‘j“’tdt
e 0 o0 0 a0
— feate—]‘mtdt + J e dte—iotqe = f e(a—im}tdt + f e—(a+ju))tdt
—oo 0 —oo 0
= [Te @Tiekxqr 4 [“e-(@Hotdr = —e_(ﬂ_jm)t]m + [—e_mmn]'m
0 0 —(a-jw) Iy —(atjw) 1,
_ e~® -0 + e~ ® —e 0 1 1 2a
—(a—jw) —(a+jw)  a—jw ' atjw  al4w?
2a FT 2a
- F e_d[t] — Ore_d[t] — —
( ) a2 + w? a2 + w2

2a
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And [X(w) =0 forallw

A Two sided exponential function and its amplitude and phase spectra are shown in figures

below:

Ax(n)= et

4| X(w) |
2/a

A X(w)

A

0
(a)

4. Constant Amplitude (1)
let x(t)=1 — oo <t< o0

(b)

(c)

ey

The waveform of a constant function is shown in below figure .Let us consider a small section of
constant function, say, of duration7lf we extend the small duration to infinity, we will get back

the original function.Therefore

x(t) = t[;tm [rect (t)]

T

1 [
0 — 1 —7/2 iO 1';2 —y
(a) (b)
1 for—<t<-
Where  rect (E) - or—==t=3
t 0 elesewhere

By definition, the Fourier transform of x(t) is:

t—w

= Fixte]) = F [ Lt rect ()] = Lt Flrect (2)]

e jwt ‘E/

-t/2 tom L —jw ]_T/z

o (1/2) _giw(t/2) 2sinlfio (= )]
=Lt[‘ — ]=Lt intio())
t—w —Jw t—w w

— /2 —jotdt= Lt
Lt [o,(De

Lt {T sin [mt G)]}
t—w w (z)
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= Lt Tsa(—) 2‘]‘[[Lt “Lsa(=— )]

t—w

Using the sampling property of the delta function {1 e. [Lt /2 (%)] = S(m)}, we get

(u)) =F| Lt rect( )] =2md(w)

t—om

Signum function (sgn(t))
The signum function is denoted by sgn(t) and is defined by

fort >0

1
sgn(t) =
gn(t) {—1 fort<0

This function is not absolutely integrable. So we cannot directly find its Fourier transform.
Therefore, let us consider the function e ! sgn(t) and substitute the limit a-8 to obtain the

above sgn(t)
Given x(t) = sgn(t) =Lt e™ sgn(t) = Lt [e*u(t) — e *u(-t)
a— a—
X(w) = F[sgn(t)] = J‘jom Ltg[ e aty(t) — e u(—t)e tdt
a—

OU_DO atg—iwty(t)dt — f_w eate—imtu(_t)dt]
a—

— [J‘ e (a+]m)tdt J‘O e(a ]w)tdt]* Lt [f e (a+]m)tdt fwe—(a—jw)tdt]
d—>0 -

a—0
—(z\+jm)t —(a—jw)t
e e 1 1 1 1 2
Lt ﬂ : ] —[ , ] }=Lt I . ——.]=.——.—=_—
a—0 (L —(a+jw) 0 —(a-jw) 0 a—0 latjw a—jw Jw —Jjw jw

Flsen(t)] = —

FT 5
sgn(t)e ”

X(w)| :%and[X(co) =%forcu < Oand—%forcu >0

Figure below shows the signum function and its magnitude and phase spectra

$sg0 p X@)| \X(@)
— \ 2
o G 0 » 0 @
5 ~ —nl2
(ko) (b) e
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[6. Unit step function u(t)
The unit step function is defined by

U(t):{l fort=0
0 fort <0

since the unit step function is not absolutely integrable, we cannot directly find its Fourier

transform. So express the unit step function in terms of signum function as: u(t) =

Szsgn(®)  x(t=ult)=3[1+ sgn(®)]

X(&=Flu(®)] = F{3 [1 + sgn(®)]}

1

= F[1] + F[sgn(©)]}

We know that F[1] = 2md(w) and F[sgn(t)] = 1%
Flu(t)]= % [2716(0)) + ;%] =8 (w) + ﬁ
u(t) fj; 8 (w) +j%

o X(w)| =e= at w=0 and is equal to 0 at w=-° and w=o°

IO.S sgn(r) b x(6) = u(r) X}
05— ’ 0.5 + 0.5 sgnis) \
|
|
0 3 0 4 | @
—a/-a.s
(@) ®) ©)

7. Rectangular pulse ( Gate pulse) [] (1) or rect(z)
T T

Consider a rectangular pulse as shown in below figure. This is called a unit gate function and is
defined as
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8.

[1(t/7)

1.0

B ]

|

—1/2 0 72
x(t) = rect() = 1 (£) = {1 for |4 <2

0 otherwise

~v

Then X(do= FIx(t]] = F [IT(%)] =/, T1(5) e dt

p— ]T/2 om0 (1/2) _ giw (1/2)

e —jwt i
[0 (et dt [_,-m N —

_ T [efw (t/2) _ p—jw (7/2)] _ [sin w(1/2)
w(t/2) 2j w(t/2)

=7 sinc w(t/2)

F [H G)] =17 sinc w(t/2), that is rect(%) =11 (E) & T sinc w(t/2)

Figure shows the spectra of the gate function

b

arx I Main lobei\/‘\d’t
=2 P e o]
@

B S S N

N
p=3

R
o

— 87 _ o= _ 4 2= 2
I E 3 T T
—_I

bY

—

riangular Pulse A G)

Consider the triangular pulse as shown in below figure. It is defined as:

T z/2 +» O T/2 t
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1'/2( _‘)— (1—2%) for 0<t<%

elsewhere
T

r:/lz(t-i_z) (1+2%) for—%<t<0
w-s6)-{

ie.as x(t)=A (E): {1 - % for |f < 3

0 otherwise

Then X( 20= FIx(t)]=F [ ( )] f_oo ( ) ot gy
S ey
= fur/z (1 -~ %) e/“tdt + fOT/Z (1 - %) e Jet dt
= Jy P et de = [[F (B)erotdt + f;7 et de — [[77(2) et dt

2 . 2 ) _ ) )
= ;/ [j i e—jmt]dt_ EJ‘T/ t[ Jjwt +e—jmt]dt= J-r/ 2C08a)tdt—%forf ZtCOSwtdt

sin wt /2 4 sm wt cos wt /2 . WT 4 wT
=2 - = = smw ———m— - cos——1
w 0 2 weT 2

T

wT
1- cos—] =— [2 sin? _]
mzr [ 2 w2t 4

= if (ﬂ)z Sin(lmj%) = % sinc? (“;—T)
4

a9 = e () 000 () L sne ()

41 X(w)|

T

P il T il

—8n/t —4rit 0 4mit 8x/t

e

Figure shows the amplitude spectrum of a triangular pulse.
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Fourier Transform of Periodic Signal

The periodic functions can be analyzed using Fourier series and that non-periodic function can be
analyzed using Fourier transform. But we can find the Fourier transform of a periodic function
also. This means that the Fourier transform can be used as a universal mathematical tool in the
analysis of both non-periodic and periodic waveforms over the entire interval. Fourier transform
of periodic functions may be found using the concept of impulse function.

We know that using Fourier series , any periodic signal can be represented as a sum of complex
exponentials. Therefore, we can represent a periodic signal using the Fourier integral. Let us
consider a periodic signal x(t) with period T. Then, we can express x(t) in terms of exponential
Fourier series as:

X(t) = ¥« C, e/nwot

n=—co

The Fourier transform of x(t) is:
X(ch= FIX(t)] = F [£2y, C, €0 = X2, C, F [ 0f]
Using the frequency shifting theorem, we have
F (1670 = F [1] ey oy = 576 (00 = ni00)
X(w) =21 ¥, C, §(w — nwg)

Where Cns are the Fourier coefficients associated with x(t) and are given by

1 (T/2 Cina
C”ZFI—T/Z x(t) e /mwotdt

Thus, the Fourier transform of a periodic function consists of a train of equally spaced impulses.
These impulses are located at the harmonic frequencies of the signal and the strength of each
impulse is given as 21Cn.

Solved Problems:

1.Find the Fourier transform of the signals e3tu(t)
Solution: Given x(t) = e3tu(t)

The given signal is not absolutely integrable.
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is [ A3t —
That is f—oo e u(t) = 0o
Therefore, Fourier transform of x(t) = e3'u(t) does not exist.

2. Find the Fourier transform of the signals coswotu(t)
Solution:

Given  x(t) = coswot u(t)

elwot fa—jwot

ie. =——u(t)

2

w0 elwolye—jwpt

X(w) = Flcoswot u(t)] = [~ -

u(t) e7et dt

:% [fom e—j(U)—wU)t dt + f(]w e—]'(u:+w0)t dt]

2

1[e—i{m—mo)l e—i(m+mo)t]m

_j(m_mo) —j(UJ+UJD) 0

_1 —ef
2 [*j(mfmo) + —j(w+wg)
With impulses of strength Tt at w=w, and w=-w,

1 1

oo Vieras + md(w — w,) + M6 (w + wo)]

“X(w) =5

:—[(]“];i“z + mé(w — w,) + md(w + u)o)]

jw

B (jm)2+mg + E [T[S(w - (1)0) + T[(S(U) + (_00)]

3: Find the Fourier transform of the signals sinwot u(t)
Solution:

Given  x(t) = sinwot u(t)

elwot __ a—jwot

i.e. =—————u(t)

2]

e] (l_e jwpt

> u(t) e 1@t gt

X(w) = F[sinwot u(t)] = f_w

zzl][fom efj(mfmo)t dt _ J-ODO efi(m+u)o)t dt]
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—j(w—wy) —j(wt+wy) 1y

1 e—j(m—mn)t E—j(m+mn)t:|oo

1 —e? — ]

2 [Hj-w)  —j(wtw,)

With impulses of strength Tt at w=w, and w=-w,

1 1
jlw—wy)  jwtw,y)

X(oo)zzl]_ + 8 (w — w,) — mé(w +w0)]

l j2wge
[—Om)zﬂ,z + m8(w — w,) — mé(w + wo)]

—JZ[8(w — @) +8(w + w,)]

(VY

T oyt wl
4. Find the Fourier transform of the signals e sin5t u(t)
Solution:
Given X(t) = e sin5t u(t)

elSt_ o—i5t

x(t)=e™" (2—1) u(t)

X(h= F[et sin5t u(t)]—F[ -t (,31 i JSt) u(t)]

:%foo [e_t(ejSt _ e—j5t)u(t)] e vt dt
J —00

e[+ =5t —[1+4j(w+5)]t7®

“[Hi-5] [T+ +5)1,

_1 _ 1

2 [1+j(w—=5)] [1+j(m+5)]]

= 5 =
[1+j(w—5)][1+j(w+5)] (1+jw)? +25

[neglecting impulses]

5. Find the Fourier transform of the signals e™?'cos5t u(t)
Solution:

Given x(t) = e?tcos5t u(t)
¢ fel5t4 ISt
x(t) =e 2 (=) u()

X(p= F[e™t cos5t u(t)] = F[e‘2t ( ) u(t)]
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fj‘;[ e—Zt(ejSt — ei5t)u(t)] e vt dt

N

:%[fo"" e12H-S)t gt 4 [7 g l2H@DIE gt

1 [e—2H =51t o—[2+i(w+5)]7™
75[*[2+j(m75)] —[2+i(+5)1),

=1[ t 1 ]
2 [[14j(@-5)] [1+j(w+5)]

l[ 2(2+jw) ] _ 2+4jw

2 L(2+jw)? + 25 (2+jw)? + 25

][neglecting impulses]
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DISCRETE FOURIER TRANSFORM

INTRODUCTION

Any periodic function can be expressed in a Fourier series representation. The discrete-time
Fourier transform (DTFT) X(w) of a discrete-time sequence x(n) is a periodic continuous
function of @ with a period of 27. So it cannot be processed by a digital system. For
processing by a digital system it should be converted into discrete form. The DFT converts
the continuous function of @ to a discrete function of @. Thus, DFT allows us to perform
frequency analysis on a digital computer.

The DFT of a discrete-time signal x(n) is a finite duration discrete frequency sequence.
The DFT sequence is denoted by X(k). The DFT is obtained by sampling one period of the
Fourier transform X(@) of the signal x(n) at a finite number of frequency points. This
sampling is conventionally performed at N equally spaced points in the period 0 < @ < 27 or
at @ = 2nk/IN; 0 < k < N — 1. We can say that DFT is used for transforming discrete-time
sequence x(n) of finite length into discrete frequency sequence X(k) of finite length.

The DFT is important for two reasons. First it allows us to determine the frequency
content of a signal, that is to perform spectral analysis. The second application of the DFT is
to perform filtering operation in the frequency domain.

Let x(n) be a discrete-time sequence with Fourier transform X(®), then the DFT of x(n)
denoted by X(k) is defined as:

X(k)= X()| fork=0,1,2,...,N—1

w=(027kIN)"

The DFT of x(n) is a sequence consisting of N samples of X(k). The DFT sequence starts at
k = 0, corresponding to @ = 0, but does not include kK = N corresponding to @ = 2x (since
the sample at @ = 0 is same as the sample at @ = 27). Generally, the DFT is defined along

with number of samples and is called N-point DFT. The number of samples N for a finite
duration sequence x(n) of length L should be such that N > L.

The DTFT is nothing but the Z-transform evaluated along the unit circle centred at the
origin of the z-plane. The DFT is nothing but the Z-transform evaluated at a finite number of
equally spaced points on the unit circle centred at the origin of the z-plane.

To calculate the DFT of a sequence. it is not necessary to compute its Fourier
transform, since the DFT can be directly computed.
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DFT The N-point DFT of a finite duration sequence x(n) of length L, where N = L is
defined as:
' N-1 N-I

DFT{x(n)} = X(k) = 3, x(m)e 2"™N = ¥ x(myW*; fork=0,1,2,....N—1
n=0 n=0

IDFT The Inverse Discrete Fourier transform (IDFT) of the sequence X(k) of length N is
defined as:

| = e 1 A »
IDFT{X(k)} = x(n) =— Y, X(k)e"*™™"N = — ¥ x(kyWy™; forn=0,1,2,...,N—1
N N iz '

where Wy = 7% is called the twiddle factor.
The N-point DFT pair x(n) and X(k) is denoted as:

x(n) <—D+r> X(k)

EXAMPLE Compute the DFT of each of the following finite length sequences
considered to be of length N:

(a) x(n) = o(n)
(b) x(n) = d(n — ng), where 0 < nyg < N
() x(n)=a".0<sn<N-1

[ 1 for n even

(d) x(n) = -
[0 for n odd

Solution:
(a) Given x(7n1) = o(n)
' N=1 N
X(k) = Z x(n)e J 2N )k
n=0

N—1
~ —_— ‘f S
= E S(n)e 127Nk _ q
n=0

ie. X(k)=1forO< k<N - 1.
(b) Given x(n) = o(n — ngy)

N—1 N—|

~ N Y — J(2miN)nk }: s N = 2w INnk

X(k) = 2 x(n)e J'=74 ynk Sn— 7 ye— J2n Vri
n=0 n=0

= 2R IN Yagk e
=g 1R for O k<N -1
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(c) Given x(n) = a”

' N-1 N—1
— (2 I Yk — (2 ;
Xky= 3, atedesiot s Tag~ ke sor 05 kN ~1
n=0 n=0

1 — aNe—i2nk

- 1 — qe— /N

. [ forneven
(d) Given x(n) = - s
[O for n odd

' N—1
X (k) = 2“ x(n )6,_1'2’-—/1\')IIA
n=>0
(N/2)—1 (N/2)—1
2“ 7 \o— J2XIN)I2nk | 2’“‘ : — J(2mIN X2
— x(2n)e J(2xIN)2nk ' x(2n+ De J( NX2nt 1)k
n=>0 n=0
(N/23—1 . ) (NF2)—1
e 2 x(2me™ J(axINnk 2 : e—]-tfrkn/ N
n=>0 n=0

EXAMPLE (a) Find the 4-point DFT of x(n) = {1, —1. 2, -2} directly.
(b) Find the IDFT of X(k) = {4, 2, 0, 4} directly.
Solution:
(a) Given sequence is x(n) = {1, -1, 2, =2}. Here the DFT X(k) to be found is N =
4-point and length of the sequence L = 4. So no padding of zeros is required.
We know that the DFT {x(n)} is given by

N-1 N-1 3 o
X()= Y, x(mWit=Y x(n) e &M% =N x(m)e /D (=0,1,2,3
n=0 n=0 n=0
3
X(0)=Y x(n)e’ =x(0)+ x(D)+x(2)+x(3) =1-1+2-2=0
n=0
3 3 - : Sir
X(M =Y x(n)e 2" = x(0)+ x() e V™ + x(2) e 7 +x(3) e 1O
n=10

=1+ (=1)(0= j) + 2(=1 = jO) = 2(0 + j)

=17
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' 3 _ . .
X2)= Z x(n)e ™" = x(0) + x(1) e ™ + x(2)e 27 + x(3)e™ 3

n=0
= L=T1(=1=70)+2(1 = j0)=2(=1— jO)= 6
3
D1 = x(0)+ x(1)e 12 4 x(2)e P* + x(3)e 1O

X(3) - Z -‘.(")e-j(f*r!‘f_)n —
n=>0

=1=10+ )+ 2(=1=jO)=2(0=j)==1+j

X(k) = {0, -1 —j. 6. -1 + j}

(b) Gl X o * s, | (o
l l i l\ 1.C X II) IS rnven ')y

1 N1
‘(ll)—‘ —n 1 N=l
AXX(I\)W A 7V_I§0X(k)(,j(2)r/N)nk
i.e, x(n).__z' X(k)(,J(II/Z)nI.
l_ll

1 2 I

[4+2+0+4]=25

Il

x(1) = [ X(0)+ X(1) /™) 4 x(2)eim 4 X(3)e/Cn>]

3
Z (k)ej(n‘/2)A —

Rl
B

|
=—[4+20+/)+0+40~- j)]=1-,0.5

4

3
x(2) = > X(kye™ = Z[X(O) + X e+ X(2)e + X (3" |
k=0

[4+2(—=1+ jO)+ 0+ 4(—1+ jO)]=-0.5

ﬁ: (k)ej(};rl‘llk =

1
T4
L % [ X0+ X(D) e 1 X(2) e/ + X(3)e/ ]
PG

2(()-j)+0+4(0+j)]=l+j0.5

[4 +

|

xs(n) = {25, 1 - j0.5, - 0.5, 1 +jO.5}

60




EXAMPLE (a) Find the 4-point DFT of x(n) = {1, -2, 3, 2}.
(b) Find the IDFT of X(k) = {1, 0, 1, 0}.

Solution:
(a) Given x(n) = {1, -2, 3. 2}.
Here N = 4. L = 4. The DFT of x(n) is X(k).

N-1 3 3

X(k)= 3 xmWir=Y xn)e 0N pin)e TN, E=(,1,2,3
n=0 n=0 n=0
3

X(0)= Y, x(n)e’ = x(0) + x(1) + x(2) + x(3) =1-2+3+2=4
n=0

~
A

n=0

=1=20= ) +3(=1=jO) +2(0 + j)==2+ j4

3

X(2)= z,\'(n)e_j”"—x(O) Fx(De T 4 x(2)e 2 4 x(3)e 137

n=0
= 1=2(=1=j0) +3(1 = jO)+ 2(~1~ jO) = 4
§~ ; ) (3702 i3am (D
X(3) = Z.\'(ﬂ)e"-"3 D — x(0)+ x(e "2 4 x(e T + x3)e 1O
n=0

=1-2(0 + j) + 3(=1— jO) + 2(0 - j)=—2— j4
X(k)={4,-2+ j4,4,~2— j4}
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(b) Given X(k) = {1, 0, 1, 0}
Let the IDFT of X(k) be x(n).
N—1

1(:1)——2 X(L)w-"k__z X (k) eI CrINInk
xX(0)=— zxme ——[X(O) FX(1)+ X(2) 4 xn)]_—[l 041+0]=05
A 0

x(1)=- XX(I\) HE2k l[X(O) F X(De!™2) 4 X(2)e’” + X(3')ej(3fr!2’)]
40

| S |
=—[14+0+e" +0]l==[1+0-1+0]=0
4[ ] 4[ |

: i :
-T(?.)—%Z X(k)ejﬂ‘ [X(O) F X(D)e'™ X(7)€J X(3)ej3f!‘]
k=0

1
4
l[lvO»efz"’fO] ln»omm 0.5
P : 4

u%)——Z X(k)e! 372k ;[me XM 4 X (2)e53% + X(3)e/O |
f\ 0

1 3 ]
=—[14+0+e" +0]==[1+0-1+0]=0
4[r | 4[ ]

The IDFT of X(k) = {1, 0, 1, 0} is x(n) = {0.5, 0, 0.5, 0}.
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EXAMPLE Compute the DFT of the 3-point sequence x(n) = {2. 1,

same sequence, compute the 6-point DFT and compare the two DFTs.

Solution: The given 3-point sequence is x(n) = {2. 1, 2}, N = 3.

N-1 2
DFTx(n)=X(k)="Y, x(mWy' =Y x(n)e/**P™ [ =0,1,2
n=0 n=0

— i)k —i(4ni3
=x(0)+ x(1)e J2rB3)k Fx(2)e J4mi3)k

A
3¢ .

( 2 2w N ( 4
{  2m .. 2T n ..
=2+|cos—k— jsin—k |+ 2| cos—k— jsin
3 3 3
A - - / \ g

When £ = 0, Xk=X0=2+1+2=5
( 2 2n ) ( 7T S I.‘
When k = 1, Xk)=X(1)=2+ [cos"—f—jsin% f 2| cosi:—-—]smi,:-—w

z J 3

=24 (=0.5- j0.866)+ 2(~0.5 + j0.866)

=0.5+ j0.866
[ B A\ 8n 87
When k = 2, X(k)—X(Z).—2+~i cos—ﬂ—jsin—}r ’-f 2' cos—ﬂ—jsin—”
\ 3 3 /J \ 3 3 /

=2+ (-0.5+ j0.866)+ 2(—-0.5— j0O.866)
=0.5—- j0.866

3-point DFT of x(n)= X(k) = {5.0.5+ j0.866. 0.5 — j0.866}
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MATRIX FORMULATION OF THE DFT AND IDFT

If we let Wy = 7" the defining relations for the DFT and IDFT may be written as:

N-I

X(k)=y x(mW*, k=0,1,...,N-1
n=0
1 N-1 )

x(m)=—Y X(bWy™, n=0,12..N-1
NS

The first set of N DFT equations in N unknowns may be expressed in matrix form as:

X = Wyx
Here X and x are N x 1 matrices, and Wy is an N x N square matrix called the DFT matrix.
The full matrix form is described by

[ xo 7 Twy  wy wo e we I x© ]
X(D) Wy Wy Wy e WY x(1)
X2 =Wy Wy Wy o WYY x(@)

| X(N-1)] LW/(\)f W!(V,v-n Wf‘ R T— W{;\"“‘N'”JL-\'(N -1 |

THE IDFT FROM THE MATRIX FORM

The matrix x may be expressed in terms of the inverse of Wy as:
X = W_\'-' X

The matrix Wy' is called the IDFT matrix. We may also obtain x directly from the IDFT
relation in matrix form, where the change of index from n to k and the change in the sign of
the exponent in ¢/**¥" Jead to the conjugate transpose of Wy. We then have

-x = %[W; ]T X

; of  TTE 45T
Comparison of the two forms suggests that “’i\'l ;ﬁ[“‘\] :

This very important result shows that Wy' requires only conjugation and transposition
of Wy, an obvious computational advantage.
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USING THE DFT TO FIND THE IDFT

Both the DFT and IDFT are matrix operations and there is an inherent symmetry in the DFT
and IDFT relations. In fact. we can obtain the IDFT by finding the DFT of the conjugate
sequence and then conjugating the results and dividing by N. Mathematically,

= 'D”lx<ik)1=%lbmx” ()}

This result involves the conjugate symmetry and duality of the DFT and IDFT, and suggests
that the DFT algorithm itself can also be used to find the IDFT. In practice, this is indeed
what is done.

EXAMPLE Find the DFT of the sequence
x(n) = {1, 2, 1, 0}
Solution: The DFT X(k) of the given sequence x(n) = {1, 2, 1, 0} may be obtained by
solving the matrix product as follows. Here N = 4.
rxo] Twe w2 we wolrx] M1 1 1 117 [ 4]
X, wy Wi Wi Oowpl x| 1 =i -1 j|2 |-j2

x| (w2 wz wg willa@| (1 -t 1 -af|1] | 0

)

LX®)] |wy Wy Wy Wy |lx®] [T j -1 -jJ[0] [j2]
The result is DFT {x(n)}= X(k) = {4.-j2.0, j2}.

EXAMPLE ! Find the DFT of x(n) = {1. -1, 2, -2}.

Solution: The DFT, X(k) of the given sequence x(n) = {1, —1, 2, =2} can be determined
using matrix as shown below.

we we w® welft 1 1 171177 o0 ]

X(k)= We We W oWy |1 o=i =1 il lelej
we w2 owb owf o[l -1 1 -1 2 6
(W2 w2 wf wp| Lt -1 =jll=2] [-1+j]

DFT {x(n)} = X(k) ={0. =1 — j. 6,1+ j}
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EXAMPLE Find the 4-point DFT of x(n) = {1, -2, 3, 2}.

Solution: Given x(n) = {1, =2, 3, 2}, the 4-point DFT{x(n)} = X(k) is determined using
matrix as shown below.

1 1 111 [ 4 17
i i A D] B

DET {x(n)} = X (k) = ! J L J
1 -1 1 -1 3 4

1 g =1 =gl 8 frd=Jd
DFT {x(n)} = X(k) = {4. =2 + j4.4,-2— j4)

EXAMPLE Find the IDFT of X(k)={4, —j2. 0, j2} using DFT.

Solution: Given X(k) = {4, -2, 0, j2} .. X'(k) = {4, j2, 0, -2}

The IDFT of X(k) is determined using matrix as shown below.

To find IDFT of X(k) first find X (k). then find DFT of X'(k), then take conjugate of
DFT {X (k)} and divide by N.

1 1 1 1] 4] [4]

. -j =1 ji 72| |8
DFT{X"(h}=|] ¢ = Il J2i_
1 =1 1 =1 0 -+

3 J =3 wl=y2] |9]

IDFT [X(Kk)]= x(n) = %[4. 8.4,0] = %[4. 8.4.0]=[1.2.1.0]

EXAMPLE Find the IDFT of X(k) = {4. 2, 0, 4} using DFT.
Solution: Given X(k) = {4, 2. 0. 4}
X(k) = {4, 2,0, 4}

The IDFT of X(k) is determined using matrix as shown below.
To find IDFT of X(k), first find X"(k), then find DFT of X'(k), then take conjugate of
DFT {X'(k)} and divide by N.
L I 1 ‘Ol ey

: sy wy e i
s ap x| L W L
t =1 ¢ =t||al7] ==

LI ] =T ~jll4] |4=j2]

IDFT{X(k')}z.r(n)——-]I[lO.élf j2,=2,4- j2T" = {2.5,1~ j0.5,—-0.5,1 + jO.5}

66




EXAMPLE Find the IDFT of X(k) = {1, 0. 1., 0}.

Solution: Given X(k) = {1, 0, 1, 0}, the IDFT of X(k). i.e. x(n) is determined using matrix
as shown below.

X' (k) = {10, 1.0} = {1.0.1.0}
£ 2 3 a]l1] [=Z]
) - <t #lle] |o
DFT {X"(k)} = / P S
p s o sallafle

Lt Jj -1 -jjlo] 0]

IDFT {X(k)} = x(n) = %[DFT (X" (k)}] = %{2. 0,2.0}={0.5, 0, 0.5, 0}
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UNIT 1li

FAST FOURIER TRANSFORM
Decimation-in-Time FFT Algorithm
Decimation-in-Frequency FFT Algorithms

Decimation-in-Time Inverse FFT.
Decimation-in-Frequency Inverse FFT
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INTRODUCTION

The N-point DFT of a sequence x(n) converts the time domain N-point sequence x(n) to a
frequency domain N-point sequence X(k). The direct computation of an N-point DFT requires
N x N complex multiplications and N(N-1) complex additions. Many methods were
developed for reducing the number of calculations involved. The most popular of these is the
Fast Fourier Transform (FFT). a method developed by Cooley and Turkey. The FFT may be
defined as an algorithm (or a method) for computing the DFT efficiently (with reduced
number of calculations). The computational efficiency is achieved by adopting a divide and
conquer approach. This approach is based on the decomposition of an N-point DFT into
successively smaller DFTs and then combining them to give the total transform. Based on
this basic approach, a family of computational algorithms were developed and they are
collectively known as FFT algorithms. Basically there are two FFT algorithms; Decimation-
in-time (DIT) FFT algorithm and Decimation-in-frequency (DIF) FFT algorithm. In this
chapter, we discuss DIT FFT and DIF FFT algorithms and the computation of DFT by these
methods.

FAST FOURIER TRANSFORM

The DFT of a sequence x(n) of length N is expressed by a complex-valued sequence X(k) as

N-1 _ ,
X =Y 2, k=012 N-1

n=0

Let Wy be the complex valued phase factor, which is an Nth root of unity given by

.W'v = g i2miN
» N—1
Thus. X(k) becomes X(k) = z x(mWH* ., k=0,1,2,...N—1
n=0
) | A=l -
Similarly, IDFT is written as x(n) = N Y. X@Wr™: n=0;1,2.:N—-1
k=0
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DECIMATION IN TIME (DIT) RADIX-2 FFT

In Decimation in time (DIT) algorithm, the time domain sequence x(n) is decimated and
smaller point DFTs are computed and they are combined to get the result of N-point DFT.

In general, we can say that, in DIT algorithm the N-point DFT can be realized from
two numbers of N/2-point DFTs, the N/2-point DFT can be realized from two numbers of
N/4-point DFTs, and so on.

In DIT radix-2 FFT, the N-point time domain sequence is decimated into 2-point
sequences and the 2-point DFT for each decimated sequence is computed. From the results
of 2-point DFTs, the 4-point DFTs, from the results of 4-point DFTs. the 8-point DFTs and
so on are computed until we get N-point DFT.

For performing radix-2 FFT, the value of r should be such that, N = 2”. Here, the
decimation can be performed m times. where m = log,N. In direct computation of
N-point DFT, the total number of complex additions are N(N—1) and the total number of
complex multiplications are N°. In radix-2 FFT, the total number of complex additions are
reduced to N log,N and the total number of complex multiplications are reduced to (N/2)
log,N.

Let x(n) be an N-sample sequence, where N is a power of 2. Decimate or break this
sequence into two sequences fi(n) and f>(n) of length N/2, one composed of the even indexed
values of x(n) and the other of odd indexed values of x(n).

Let x(n) be an N-sample sequence, where N is a power of 2. Decimate or break this
sequence into two sequences f(n) and f>(n) of length N/2, one composed of the even indexed
values of x(n) and the other of odd indexed values of x(n).

Given sequence x(n): x(0), x(1), x(2), \[%—1) ..... X(N-1)

Even indexed sequence . Ji(n) =x(2n): x(0), x(2), x(4), ..., X(N = 2)
Odd indexed sequence .fz(n) =x(2n + 1): x(1), x(3), x(5), .... x(N =1)
We know that the transform X(k) of the N-point sequence x(n) is given by

N-I
Xtk)="Y, xXmiWg*; k=0,1,2:;N-1

n=0

Breaking the sum into two parts, one for the even and one for the odd indexed values, gives

N-2 N-1
X= Y xm Wi+ Y x(my Wik, k=0,1,2,...N-1
neven n odd
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When n is replaced by 2a. the even numbered samples are selected and when »n is replaced
by 2n + 1. the odd numbered samples are selected. Hence,
N N i

3

X(k) = 2 X)W 4 -2 x(2n + 1) WE@s+D

n=0 n=0

Rearranging each part of X(k) into (N/2)-point transforms using

2% 2nk o ik
ok -9 3 Y ST _j"'_\' 3
Wik =W = | e N] =[e Mé] = Wik

o _ |
and W% = WE Wi, we can write

N N

-1 ]
X(kh="Y, fimWin + Wy Y. L)W

n=0 n=0

By definition of DFT, the N/2-point DFT of fi(n) and f3(n) is given by

N N
51 il

Rk= Y f[mWg and BK)= Y f(n)Wy)
n=0 n=0

X(k)=Fk)+ WiFR(k). k=0,1,2,.. . N-1

The implementation of this equation for X(k) is shown in Figure 7.1.
This first step, in the decomposition breaks the N-point transform into two (N/2)-point
transforms and the W‘éi provides the N-point combining algebra.

The DFT of a sequence is periodic with period given by the number of points of DFT.
Hence, F (k) and F5(k) will be periodic with period N/2.

A <

F,(mg)zf,m and Fz(k+ glzg(m

K+ !
In addition, the phase factor W,S, ?) = —Ws.
Therefore, for kK > N/2, X(k) is given by

o N’ . i
X(k)zﬂ{k—?)—w_(iﬁ[k—?]

The implementation using the periodicity property is also shown in Figure .1.
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Fi(0) 1

x(0) o—| X(0) x(0) e— X(0)

*2) 1 Nr2-point X(1)  X2) &\ poine X(1)
DFT DFT

x(4) o—f X(2) x(4) o— X(2)

W(6) o— X(3) = x(6) o—| X(3)

(1) o] X@)  x(1) el X(4)

X(3) & Ny2-point X(5)  x3) e— Np2-point X(5)
DFT DFT

x(5) e— X(6)  x(5) ¢ X(6)

Fy(3) w;
X(7) o— X X7 e XN

Figure 1 Illustration of flow graph of the first stage DIT FFT algorithm for N = 8.

THE 8-POINT DFT USING RADIX-2 DIT FFT

The computation of 8-point DFT using radix-2 FFT involves three stages of computation.
Here N = 8 = 27, therefore, r = 2 and m = 3. The given 8-point sequence is decimated into
four 2-point sequences. For each 2-point sequence. the two point DFT is computed. From the
results of four 2-point DFTs, two 4-point DFTs are obtained and from the results of two
4-point DFTs, the 8-point DFT is obtained.

Let the given 8-sample sequence x(n) be {x(0), x(1), x(2). x(3), x(4), x(5), x(6), x(7)}.
The 8-samples should be decimated into sequences of two samples. Before decimation they
are arranged in bit reversed order as shown in Table 1.
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Figure

1 G,(0) 1 Fy(0) 1

X(0)

e X(1)

X(2)

X(3)

X(4)

' W, ‘
e 1 _Gz 1 2
’ 1 wﬂ 5
2 G\ /“54\1/ >Q><\ .
XS) =y ) ol : ¢ > X5)
x(3) » z , . * X(6)
1 \

x(7) * 1 = = - ®  X(7)
W ’1 W,

Hlustration of complete flow graph obtained by combining all the three stages for N = 8.

TABLE 1 Normal and bit reversed order for N = 8.

Normal order Bit reversed order
x(0) x(000) x(0) x(000)
x(1) x(001) x(4) x(100)
x(2) x(010) x(2) x(010)
x(3) x(011) x(6) x(110)
x(4) x(100) x(1) x(001)
x(5) x(101) x(5) x(101)
x(6) x(110) x(3) x(011)
x(7) x(111) x(7) x(111)

The x(n) in bit reversed order is decimated into 4 numbers of 2-point sequences as
shown below.

(1) x(0) and x(4)
(i) x(2) and x(6)
(i11) x(1) and x(5)
(iv) x(3) and x(7)

Using the decimated sequences as input, the 8-point DFT is computed. Figure 7.5 shows the
three stages of computation of an 8-point DFT.

The computation of 8-point DFT of an 8-point sequence in detail is given below. The
8-point sequence is decimated into 4-point sequences and 2-point sequences as shown below.
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X(0) —

x(4) —»

x(6) —»

x(1) —

x(5) —

x(3) —

x(7) —

! I
.‘ A4
(0) oo G,,(0)

W,
x(4)
1
x(2) i
W 120
x(6)
1
x(1)
we
x(5) & - a =l = G,,(1)

Combine
4-point
DFTs to

get 8-point
DFT

G,(0) F,(0)
Compute = > -
2-point DFT GuD | Combine 2-point R
G,,(0) DFTs to get F.(2)
Compute Gl *>|  4-point DFT S
2-point DFT | %2tl) FG)
C G5,(0) Fy(0)
-ompute = . =
2-point DFT M» Combine 2-point F1) >
Compute = 4-point DFT -
2-point DFT _Gl??(l). F3)
Figure Three stages of computation in 8-point DFT.

1 1
x(3) o———o-i—>7o G1,(0)

w) .
x(7) ._._A L=l

Figure

(a)

Gu(l)
G1,(0)
G,(1)

G.’!l(o)

622( 1 )

Fi(0)
Fy(1)
Fi(2)
F,(3)
Fy(0)
Fy(1)
Fy(2)

Fy(3)

(b)

(c)

X(0)
X(1)

X(4)
X(5)

X(6)
X(7)

X(0)
X(1)
X(2)
X(3)
X(4)
X(5)
X(6)

X(7)

(a)-(c) Flow graphs for implementation of 1st, 2nd and 3rd stages of computation.
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1 1 1 1

W =G,(1) 1 1 LN /
x(4) e— s - : - X(1)

1 1 G H""T >®<}2) 1
x(2) —— ———— -

X(2)

W I 1 G,(1) W1I 1 Nf” 1
x(6) ® - = ~» = X(3)

1 G, (0) Fy(0) w,
(1) 1 21 1 | X
X - - =

W, ' _1’”&1.{1} 1 \/fl) W, )
x3) e - - - s 5
3 e 1 1 GL0) ﬁj‘? Mi) W‘ X©)
A I Eo - *

w' Go(1) 1.-1.-"1 l Fy(3) W' / \‘
H(T) ol g I T =1 8 =l X(7)
Figure The signal flow graph or butterfly diagram for 8-point radix-2 DIT FFT.
EXAMPLE An 8-point sequence is given by x(n) = {2, 2,2, 2, 1. 1, 1, 1}.

Compute the 8-point DFT of x(n) by
(a) Radix-2 DIT FFT algorithm ,  Also sketch the magnitude and phase spectrum.

X(0) =1

X(DH=1

Figure 1 8-point DFT by DIT FFT.




Solution: (a) 8-point DFT by Radix-2 DIT FFT algorithm
The given sequence is x(n) = {x(0), x(1), x(2), x(3), x(4), x(5), x(6). x(7)}
=2 4102 202 1.1, 1,13
The given sequence in bit reversed order is
xAn) = {x(0), x(4), x(2), x(6), x(1), x(5). x(3), x(7)}
=42-1,2, 1,2, 1,2 1}

For DIT FFT. the input is in bit reversed order and the output is in normal order. The
computation of 8-point DFT of x(n), i.e. X(k) by Radix-2 DIT FFT algorithm is shown in
Figure 2.

1 1 3 1 1 6 1 1

x0)=2 e o e 12=X(0)
Wy=1 > 1 1 N4 1 \ 1 /

W(4)=1e * 1—j2.414 = X(1)
1 1 3 Wi=1 1< 0 1 1

x2)=2 e e —e 0=X(2)
Wy=1 1= 1 Wass 1 _Nj 1 .

x(6)=1 ——= - - 3 1-j0.414 = X(3)
1 1 3 1 1 6 Wy=

X(1)=2 e ~ A” ; 0=X(@)
W,=1 = 1 1 1= %=fg-ig

XS =1 27 o5l 4 f 2 1 +j0.414 = X(5)

@
L
p
§
5?:

0
! 3V /NN, e
x3)=2 e @ e (=X(6)
W= or 1 W --J/\;“”"?z' 7/ = \
XT=1 = 1 +2.414 = X(7)

Figure 2 Computation of 8-point DFT of x(n), i.e. X(k) by DIT FFT.

From Figure 2, we get the 8-point DFT of x(n) as
X(k)={12.1—j2.414,.0, 1— jO.414.0. 1 +j0.414,0. 1 +j2.414}

Magnitude and Phase Spectrum

Each element of the sequence X(k) is a complex number and they are expressed in
rectangular coordinates. If they are converted to polar coordinates. then the magnitude and
phase of each element can be obtained.

The magnitude spectrum is the plot of the magnitude of each sample of X(k) as a
function of k. The phase spectrum is the plot of phase of each sample of X(k) as a function of k.
When N-point DFT is performed on a sequence x(n) then the DFT sequence X(k) will have a
periodicity of N. Hence, in this example, the magnitude and phase spectrum will have a
periodicity of 8 as shown below.




X(k)={12.1— j2.414,0, 1— jO.414,0, 1 +j0.414,0, 1 + j2.414}
={12[0°, 2.61|=67°, 0|0°, 1.08|-22°, 0]0°, 1.08]22°, 0]0°. 2.61|67°)
= {12]0. 2.61]-0.37. 0[0°, 108~ 0.127, 0]0°. 1.08]0.12 7, 0]0°, 2.61/0.37 7}

|X )| = (12,2610, 1.08,0. 1.08,0,2.61}
[X(k) = {0, =037, 0, 0.127,0,0.127, 0, 0377}

The magnitude and phase spectrum are shown in Figures 7.34(a) and (b).

X(k)
0.37
12 ¢ |X(k)| 1‘%
N=8§
2.61 2.61| 2.61
1.08 1.08 1.08
— L 2 T o> [

012 3456738951011

(a) (b)
Figure (@) Magnitude spectrum, (b) Phase spectrum.
EXAMPLE Find the 8-point DFT by radix-2 DIT FFT algorithm.

xn) =42, 13:25:12,%,: 2 1
Solution: The given sequence is x(n) = {x(0), x(1), x(2), x(3). x(4), x(5), x(6), x(7)}
=42, 1, 2. 1,2 1,2 1}

For DIT FFT computation, the input sequence must be in bit reversed order and the output
sequence will be in normal order.
x(n) in bit reverse order is

xn) = {x(0), x(4), x(2), x(6), x(1), x(5). x(3), x(7)}
=d 3272525 Tl T}

The computation of 8-point DFT of x(n) by radix-2 DIT FFT algorithm is shown in Figure 3
From Figure 7.35, we get the 8-point DFT of x(n) as

X(k)=112,0,0,0, 4,0, 0, 0}
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x0)=2 » X(0) =12
x4)=2 ® X(1)=0
(2)=2 @ X(2)=0
x6)=2 @ X(3)=0
x(1)=1 e X(4) = 4
k‘(S) =] & X(5) =0

3)=1 e et ; 3 X(6)=0
Wl =1 >0 W = I _\w":' i / = \-
5 e 2 1 1 o —1 £ ] X(7) =0

Figure ' 3  Computation of 8-point DFT of x(n) by radix-2, DIT FFT.

DECIMATION IN FREQUENCY (DIF) RADIX-2 FFT

In decimation 1n trequency algorithm, the frequency domain sequence X(k) is decimated. In
this algorithm, the N-point time domain sequence is converted to two numbers of N/2-point

sequences. Then each N/2-point sequence is converted to two numbers of N/4-point
sequences. This process is continued until we get N/2 numbers of 2-point sequences. Finally,
the 2-point DFT of each 2-point sequence is computed. The 2-point DFTs of N/2 numbers of
2-point sequences will give N-samples, which is the N-point DFT of the time domain
sequence. Here the equations for N/2-point sequences, N/4-point sequences, etc., are obtained
by decimation of frequency domain sequences. Hence this method is called DIF.

To derive the decimation-in-frequency form of the FFT algorithm for N, a power of 2,
we can first divide the given input sequence x(n) = {x(0), x(1), x(2), x(3), x(4). x(5), x(6),
x(7) into the first half and last half of the points so that its DFT X(k) is

N

N-l 2 N-1
Xthy=Y xmWy" = Y xm) Wi + Y x(m)Wy"
n=0 =0 A=NI2

-‘V ‘NI
T-’ T_l [ N
E = Hoa+—
= ) x(a) Wy' + Y .\'(n - ﬁ]WJ\1 7 )
= = 2
n=0 =0

It is important to observe that while the above equation for X(k) contains two summations
over N/2-points, each of these summations is not an N/2-point DFT, since W,\’}k rather than

Wy appears in each of the sums.




N

o X(k)= Y Wt + Wy ( " g]‘w

n=0 n=0 ~
T

= 2 )Wyt + (=1 .\'(n+ g)w{f*}
n=0 L g VA
Bop
3 - N :

= x(n)+ (-1 )A.\'(n + T]] Wﬁ‘
n=0 L VA

Let us split X(k) into even and odd numbered samples.
For even values of k, the X(k) can be written as

> —

X(2k) = z x(n) +( —l)zk.r{ n+ %):l Wyt

x(n) + ,\'[ n+ ﬁﬂ Wors
Z 2 i
n=0 L

For odd values of k, the X(k) can be written as

5 =

: » NY] e
X2k+1)= Z -"(")""(—I)JH.\'(N + TH ‘V‘,{fkﬂ'"
n=0 L 4

== x(n) — .\'( n+ g H W§'W{‘,"2

L

n=0 L

fork=0.1.2

fork =0, 12(

A
2

The above equations for X(2k) and X(2k + 1) can be recognized as N/2-point DFTs. X(2k) is
the DFT of the sum of first half and last half of  the input sequence, i.e. of
{x(n) + x(n + N/2)} and X(2k + 1) is the DFT of the product Wy with the difference of first

half and last half of the input, i.e. of {x(n)—x(n +N/2)}Wy .

If we define new time domain sequences, u;(n) and u,(n) consisting of N/2-samples,

such that
u,(n)=x(n) +.r(n + ﬁ] forn=0,1,2, ..., ﬁ—l
2 2
- ¥l N n
and wy(n)=|x(n) — x|\ n+ 5 Wy: forn=0,1.2,...
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then the DFTs U,(k) = X(2k) and Uy(k) = X(2k + 1) can be computed by first forming the
sequences u(n) and uy(n). then computing the N/2-point DFTs of these two sequences to
obtain the even numbered output points and odd numbered output points respectively. The
procedure suggested above is illustrated in Figure for the case of an 8-point sequence.

| 1,(0)
© —e X(0)

x(0) e l ) @
N1 /1w
o ° —® X(2)
1
\/

x(1) & g
(2) N/l_)go}mt

—=e X(4)

3 X(6
x(3) l —e X(6)
x(4) — X(1)
X(3) Ni2-point —* X(3)
x(6) DFT | ¢ x(5)
x(7) * hd ® —* X(7)

Figure Flow graph of the DIF decomposition of an N-point DFT computation into two N/2-point
DFT computations N = 8.
1 1 u[(o) | 1 V“(O) 1 1

x(0)

x(1)

x(3) X(6)

X(1)

x(4)
X(5)

x(5)

X(6) X(3)

(7 X(7)

Figure Signal flow graph or butterfly diagram for the 8-point radix-2 DIF FFT algorithm.
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The computation of 2-point DFTs is done by the butterfly operation shown in Figure

1 1

x(0) « v1;(0) o . —e  X(0)
o W'
x(1) v(1) X4
1 1
x(2) V12(0) l X(2)
e 7 W,
x(3) via(1) ' X(6)
1 1
x(4) "'2|(0) L = — ® X(1)
ol W
x(5) vy(1) @ = —e X(5)
1 1
x(6) v,(0) ; X(3)
1 Wy
X(7) V(1) 2 XN
(©)
Figure (a)-(c) The first, second and third stages of computation of 8-point DFT by Radix-2 DIF

FFT.

Comparison of DIT (Decimation-in-time) and DIF (Decimation-in-frequency) algorithms

Difference between DIT and DIF

1. In DIT. the input is bit reversed while the output is in normal order. For DIF. the
reverse is true, i.e. the input is in normal order, while the output is bit reversed.
However, both DIT and DIF can go from normal to shuffled data or vice versa.

2. Considering the butterfly diagram. in DIT, the complex multiplication takes place
before the add subtract operation. while in DIF, the complex multiplication takes
place after the add subtract operation.

Similarities

1. Both algorithms require the same number of operations to compute DFT.
2. Both algorithms require bit reversal at some place during computation.

EXAMPLE An 8-point sequence is given by x(n) = {2, 2, 2, 2, 1, 1. 1, 1}.
Compute the 8-point DFT of x(n) by

(a) Radix-2 DIF FFT algorithm , Also sketch the magnitude and phase spectrum.
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8-point DFT by radix-2 DIF FFT algorithm
For DIF FFT, the input is in normal order and the output is in bit reversed order. The
computation of DFT by radix-2 DIF FFT algorithm is shown in Figure

x(0)=2 12 = X(0)

(1) =2 0=X(4)
x2)=2 0=X(2)

x3)=2 0=X(6)

x(4) = 1-72414=X(1)
x(3) =1 1 +0.414 = X(5)
x(6)=1 1-;0.414 =X(3)
WD=1 & ¥ 5 ' i 142414 =X(7)

Figure Computation of 8-point DFT of x{n) by radix-2 DIF FFT algorithm.
From Figure we observe that the 8-point DFT in bit reversed order is

'X,('k) = {X(0), X(4).X(2).X(6). X(1).X(5).X(3),X(7)}
={12.0,0,0.1—;2414.1 +;0414,. 1—,0414, 1 + ;2.414})
. The 8-point DFT in normal order is

X(k)= {X(0). X(1). X(2).X(3). X(4), X(5). X(6). X(7)}
={12.1—j2.414,0, 1—j0.414,0, 1 +j0.414,0, 1 +j2.414}

Computation of IDFT through FFT
The IDFT of an N-point sequence {X(k)}: Kk = 0. 1. .... N—1 is defined as

1 k1 ik
xmy=—2 Xkye vV =—Y XKW
N k=0 N k=0

Taking the conjugate of the above equation for x(n), we get

. 1 N-=1 _— > 1 N-1 - X
x(n)= —Z X(k) Wy" = —z X (bW
[Nk=() :l Nk:o

Taking the conjugate of the above equation for x"(n), we get

. 1 lyN-] *lr nkjl*
xmy=—1 Y X (k) Wy

N tk=o
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The term inside the square brackets in the above equation for x(n) is same as the DFT
computation of a sequence X (k) and may be computed using any FFT algorithm. So we can
say that the IDFT of X(k) can be obtained by finding the DFT of X"(k). taking the conjugate
of that DFT and dividing by N. Hence, to compute the IDFT of X(k) the following procedure
can be followed

Take conjugate of X(k), i.e. determine X' (k).

Compute the N-point DFT of X (k) using radix-2 FFT.
Take conjugate of the output sequence of FFT.
Divide the sequence obtained in step-3 by N.

= L) o =

The resultant sequence is x(n).
Thus, a single FFT algorithm serves the evaluation of both direct and inverse DFTs.

EXAMPLE Find the IDFT of the sequence
X(k)={4.1-j2.414,0,1— jO.414,0, 1 +j0.414,0, 1 +j2.414}
using DIF algorithm.

Solution: The IDFT x(n) of the given 8-point sequence X(k) can be obtained by finding
X'(k). the conjugate of X(k), finding the 8-point DFT of X'(k), using DIF algorithm to get

8x"(n). taking the conjugate of that to get 8x(n) and then dividing the result by 8 to get x(n).
For DIF algorithm, input X*(k) must be in normal order. The output will be in bit reversed
order for the given X(k).

X'(k)=1{4,1+,2.414,0,1+j0.414,0,1 —j0.414,0, 1 — j2.414}
The DFT of X'(k) using radix-2, DIF FFT algorithm is computed as shown in Figure °
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X*(0) = 4 8 = 8x*(0)
X*(1)=1+j2.414 0 = 8x*(4)
X*2)=0 8 = 8x*(2)
X*(3)=1+j0.414 VA /N i 0 = 8x*(6)
X*4)=0 8 = 8x*(1)
X*(5) = 1 —j0.414 0 = 8¥*(5)
X¥(6)=0 8 = 8x*(3)

X¥N=1-j2414 & 0= 8x*(7)

Figure Computation of 8-point DFT of X'(k) by radix-2 DIF FFT.

From the DIF FFT algorithm of Figure 7.42, we get
8x;(n)=1{8,0,8,0.8.0,8, 0}
8x,(n)={8,0.8.0,8,0,8,0} ={8.0,8.0,8,0,8.0}

.\‘(n)=]§ {8,8,8,8.0,0.0,0} ={1.1,1.1.0.0, 0, 0}

EXAMPLE Compute the IDFT of the sequence

X(k) ={7. —0.707 — j0.707, — j, 0.707 — j0.707, 1, 0.707 + j0.707, j, —0.707 + jO.707}
using DIT algorithm.

Solution: The IDFT x(n) of the given sequence X(k) can be obtained by finding X (k), the
conjugate of X(k). finding the 8-point DFT of X'(k) using radix-2 DIT FFT algorithm to get
8x(n). taking the conjugate of that to get 8x(n) and then dividing by 8 to get x(n). For DIT
FFT, the input X (k) must be in bit reverse order. The output 8x'(n) will be in normal order.
For the given X(k).

b'e (k)= 1{7,-0.707 + j0.707, j, 0.707 + j0.707, 1, 0.707 — j0.707, — j,—0.707 — j0.707}
X'(k) in bit reverse order is

X (k)=1{7, 1.j.— j.—0.707 + j0.707. 0.707 — j0.707, 0.707 + j0.707, —0.707 — j0.707}
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The 8-point DFT of X'(k) using radix-2, DIT FFT algorithm is computed as shown in

Figure
1 1 8 1 1 81 1

X50)=7 8 = 8x*(0)
X*4)=1 o 8=8x¥(1)
X*2)=j 8 = 8x*(2)
X*6) = 8 =8x*(3)
X*(1) ==0.707 + j0.707 8 = 8x*(4)
X*(5) = 0.707 —j0.707 8 = 8x*(5)
X*(3) = 0.707 + j0.707 ' 8 = 8x*(6)

SARW= 1,7 W oo

1 ! < L, - ron . —‘

X*(7) =—0.707 = j0.707 ® o e . Cl I LEL o 0= 8x*%(7)

Figure Computation of 8-point DFT of X"(k) by radix-2, DIT FFT.

From the DIT FFT algorithm of Figure 7.43. we have

8x*(n) = {8. 8, 8, 8. 8, 8, 8 0}
8x(n) = {8, 8, 8, 8, 8, 8. 8. 0}

x(n)=H1,.1

A 1 10 R i

85




UNIT IV

INTRODUCTION TO LINEAR SYSTEMS & DIGITAL SIGNAL PROCESSING

Introduction to Systems

Classification of Systems

Impulse response

Transfer function of a LTI system.

Introduction to Digital Signal Processing

Linear Shift Invariant Systems,

Stability and Causality of Discrete time systems
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INTRODUCTION TO LINEAR SYSTEMS

A system is defined as an entity that acts on an input signal and transforms it into an output
signal. A system may also be defined as a set of elements or functional blocks which are
connected together and produces an output in response to an input signal. The response or
output of the system depends on the transfer function of the system. It is a cause and effect
relation between two or more signals.

As signals, systems are also broadly classified into continuous-time and discrete-time
systems. A continuous-time system is one which transforms continuous-time input signals
into continuous-time output signals, whereas a discrete-time system is one which transforms
discrete-time input signals into discrete-time output signals.

Classification
e There are two types of systems : (i) continuous time and (ii) discrete time
systems.

e Continuous time (CT) systems handle continuous time signals. Analog filters,
amplifiers, attenuators, analog transmitters and receivers etc are examples of
continuous time systems.

e Discrete time (DT) systems handle discrete time signals. Fig. 1.6.1 (b) shows
such system. Computers, printers, microprocessors, memories, shift registers
etc are examples of discrete time systems. They operate only on discrete time

siemals
CT input Contmnuous CT output
signal —— time (CT) signal (=)
»x(t) systems y(t)
DT input Discrete DT ocutput
signal — =] tme (DT) |« signal (b)
x{n) systems y(n)

Fig. Two types of systems based on signals they handle
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Continuous as well as discrete time systems can be further classified based on
their properties. These properties are as follows :

i) Dynamicity property : Static and dynamic systems.

if) Shift invariance : Time invariant and time variant systems.

iii) Linearity property : Linecar and non-linear systems.

iv) Causality property : Causal and non-causal systems.

v) Stability property : Stable and unstable systems.

vi) Invertibility property : Inversible and non-inversible systems.

1 Static and Dynamic Systems (Systems with Memory or without

Memory)

Definition : The continuous time system is said to be static or (memoryless,
instantaneous) if its output depends upon the present input only.

The discrete time systems can also be static or dynamic. If output of the discrete
time system depends upon the present input sample only, then it is called static or
memoryless or instantaneous system. For example,

or

y(n) =

y(n) =

are the static systems
such systems do not need memory for its operation. A system is said to be dynamic if
the output depends upon the past values of input also. For example,

y(n) =

10- x(n)
15-x% (n) +10x(n)
. Here the y(n) depends only upon n" input sample. Hence

x(n)+x(n-1)
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2 Time Invariant and Time Variant Systems

Definition : A continuous time system is time invariant if the time shift in the
input signal results in corresponding time shift in the output.

Let y(t)=f[x()] i.e. y(f) is response for x(t). Then if x(t) is delayed by time #,
then output y(t) will also be delayed by the same time. i.e.,
flx(t-t)] = y(t-t) . (16.1)
The time variant system do not satisfy above relation. The time invariant systems
are also called fixed systems.

Similarly if the input/output characteristics of the discrete time system do not
change with shift of time origin, such systems are called shift invariant or time
invariant systems. Let the system has input x(n) and corresponding output y(n), ie.
y(n) = f[x(n)]. Then the system is shift invariant or time invariant if and only if,

fl[x(n-k)] = y(n-k)

3 Linear and Non-linear Systems

Definition : A system is said to be linear if it satisfies the superposition principle.

Consider the two systems defined as follows :
vi(t) = f[xi (t)]ie. x (t) is input and y, (t) is output.
and y; (1) =f[x2 (t)]i.e. x2 (t) is input and y; (t) is output.
Then the continuous time system is linear if,
flavxi®y+ a2 x2 (h]= v () +a2 y2 ()
Here a; and a; are arbitrary constants. This condition states that combined

response due to x; (f) and x; (f) together is same as the sum of individual responses
for a linear system.

Similarly, the discrete time system is said to be linear if it satisfies superposition
principle. Consider the two systems defined as follows :

vy (1) = f[xi(n)]ie. x; (n) is input and y; () is output.
ya (1) = f[x2 (n)]ie. x2(n)is input and y; (1) is output.

Then the discrete time system is linear if,

flay xi (1) + a2 x2 ()] = ay yy (1) + a2 y2 (n)
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4 Causal and Non-causal Systems

Definition : The system is said to be causal if its oulput at any time depends
upon present and past inputs only.

Le.,

v(to) = f[x(t): t <to]
Thus the output at time t;, depends on inputs before t;. The causal system is not
anticipatory. Similarly, a discrete time system is said to be causal if its output at any
instant depends upon present and past input samples only. i.e.,

v(n) = f [x(k); k< n]
Thus the output is the function of x(n), x(n-1),x(n-2),x(n-3) ... etc. For causal
system. The system is non-causal if its output depends upon future inputs also, i.e.
x(n+1), x(n+2), x(n+3) .. etc.

Normally all causal systems are physically realizable. There is no system which
can generate the output for inputs which will be available in future. Such systems are
non-causal, and they are not physically realizable.

.5 Stable and Unstable Systems

Definition : When every bounded input produces bounded output, then the system
is called Bounded Input Bounded Output (BIBO) stable.

This criteria is applicable for both the continuous time and discrete time systems.
The input is said to be bounded if there exists some finite number M, such that,

CT input : |x(t) < M, < »
DT input: |x(n) s M, <=

Similarly the output is said to be bounded if there exists some finite number M,
such that,

CT output : |y(t) < My< =
DT output: |y(n) < M, < »

If the system produces unbounded output for bounded input, then it is unstable.
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6 Invertability and Inverse Systems

Definition : A system is said to be invertible if there is unique output for every
unique input.

Fig. 1.6.3 shows this concept.

[ Y[ Inverse Final output
) ——=| Srstem | o [ x0

Fig. 1.6.3 Invertible system
If the system is invertible, there exists an inverse system. If these two systems are
cascaded as shown in figure, then final output is same as input.

If the system is denoted by H, then its inverse system is denoted by H-1. Then
cascading the two systems gives,

HH =1

Frequency Response of LTI Systems

The LTI systems form an important class in communication. The amplitude and
phase response, realizability, bandwidth, distortion during transmission of signal are
all very important concepts related to design and implementation of systems.

Frequency Response

The frequency response of the system gives the variation of magnitude and phase
of the system output with respect to frequency on application of input. We know that
the output y (t) of the system is given as,

y(t) = I x(O)h(t-t)dx
This equation gives time response of the LTI system.
The RHS of the above equation represents convolution of input signal x (t) and
impulse response h (t). By applying fourier transform to above equation,

Fly(D)] = F[ T x(t)h(l-‘t)dt:l

We know that convolution of two functions is transformed into muitiplication of
their fourier transforms. By applyving this to above equation,
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y(t) = Kx(t-t,)
Here, K = constant represents change in amplitude.

& t, = time delay in transmission of signal through a system.
By taking fourier transform of both sides of above equation

Y(f) = Fly®] = F { Kx(t-t;)}

. From the time shifting property of FT,

Y(f) = KX(f) ¢ /27110

Transfer function H (f) is given from equation 2.13.2

Putting for RHS from equation 2.13.4 in above equation,
H(f) = K ¢ /2™"0

This equation gives the transfer function for a distortionless system. It is clear
from above equation that, the magnitude of the transfer function is. ‘K’, which is
independent of frequency. That is the transfer function has constant amplitude at.all .
freauencies. The phase shift of above equation is, -

0(f) = -2nft,
(” 27”0)]\

That is the phase shift is linearly proportional to frequency. Here the phase shift
is linear at all frequencies. This can be expressed with the example.

Let there be a signal in time domain as
x(f) = cos(2nf?)
Now let the output signal be same in amplitude but shifted in time by {, seconds.
ie.

y(t) = cos[2nf(t-t,)]
This equation can also be written as,

y(t) = cos@2nft-2nft,)=cos(2nft-06(f)]
Thus phase shift of vy (t) is,

0(f) = -2=nft,
which is proportional to frequency °f".
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Response of a Linear System

Impuise Response
Convolution relates input and output of LTI sytem.

It is given as, LTI
x(t) — h(t)
y(t) = x() h(t) o
wo t)
- J’ x(t=1)h(t)dt ;
S Fig. 1 Input and output of LTI
system

Here h (t) is called impulse response of the system.
It is characteristic of a particular system. Impulse response h (t) of the system is obtained
at the output by applying unit impulse 5(t) at the input. i.e.,

when x(t) = 8,y (b)=ht)

Frequency Response

Frequency response analysis and differential equations etc. can be analyzed with the
help of Fourier representations. For example, the fourier transform X(w) gives frequency
spectrum of the signal. We know that output of the system is,

wt) = x(t)*h(t)

By convolution theorem above equation becomes
Yw) = X Hw) or Y(f) = X(f) -H(f)
and ) = IFTX(w)- Hw)}

Thus output 1(t) can be obtained by taking the inverse fourier transform of the product
X(w). Let us now study these aspects.
The convolution is given as,

| h@ x(t-v) v

y(t)

Let the input be ¢/, i.e. sinusoid. Then above equation becomes,

[ h@) eiot-0 e

y(®)

e/ ot fh(t)e“l‘”‘ dt

In the above equation the integral represents fourier transform of h(1). i.e.,
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In the above equation the integral represents fourier transform of h(1). ie.,
yt) = e¢/® Hw)

Here H(w) is the Fourier transform of /i(t). The above equation shows that output y(t)
contains the same signal as input ¢/® multiplied by H(w). This H(w) is called frequency
response of the system.

Again consider the convolution,
y) = x() « h®)
By convolution property of Fourier transform we can write above equation as,

Y@ = X H@ or Y( = X(f) -H(f)

Y () Y(f)
X ° HP =%

Hw) =

Here H(w) represent the frequency response of the LTI-CT system. These functions are
also called as system transfer functions.

imp Example .1: The impulse response of the continuous time system is given as,

1
h(t) = RC e~t/RC y(1)

Determine the frequency response and plot the magnitude phase plots.
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Solution : Take Fourier transform of the given impulse response. i.e.,

H@ = | hoeio at

1 .
= I RC e~t/RC y(f) e=1ot g

- _lc.j ~t/RC p-jot gy
0
1 " 1
= Rcl¢e 'Vwm) dt

]
n' o
—

1/RC_ 1
~ jo+l1/RC " 1+joRC

Now let us determine the magnitude and phase of H(w). Let us rearrange above
equation as,
1 1-joRC  1-joRC

H®) = 75GRE X 1-joRC = 1+ (@kC)?

_ & -~ RC
l+(cnRC)2 ]1+(mRC)2

Thus H(w) is expressed into its real and imaginary parts. Now magnitude can be
obtained as,

1 N (m RC)2
[1-1»(¢:|DRC)2]2 [l+(0)RC)2]2
1

) «Jl +((o RC)z

This is the magnitude response of the given system. And the phase response will be,

|H (mi =
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©RC) / 1 +(wRC)?)

(...
ZH(w) = tan
e 1/[1+(oRC)?

= - tan~] (wRC)

Let RC =1, then magnitude and phase response will be,

H@) = =

Fig. .2 shows the magnitude and phase response as given by above equations.
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Fig. .2 (a) Magnitude response (b) Phase response
In this figure observe that the magnitude response is symmetric but phase response is

antisymmetric. Magnitude response is monotonically decreasing. Hence this is a lowpass
filter.
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P Example 2: The system produces the output of y(t)= e~'u(t) for an input of

x(t)= e~ u(t) Determine the impulse response and frequency response of the system.
Solution : Here y(t)=e"" u(t)
and x(t) = e~ u(t)
Consider the standard Fourier transform pair,

e~ u(t) o 2 U |
a+jo

Hence fourier transforms of y(t) and x(t) will be,

and X(w) =

From equation 4.5.3 we can obtain the transfer function as,

Putting the values of X(w) and Y (w),

Putting the values of X(w) and Y (),

1/(1+jo) 2+jo
1/(2+jw) 1+jo

H(w) =

Let us multiply the numerator and denominator by 1-ja ie.,

_ 2+jo _1-jo
HO)'= e 1T
~ 2+(m)2+, -

1+(w)? . 1+(w)?

Hence magnitude of H(w) will be,
1

_ [22@?T [ (o T
JH () = {[1+(m)2] ¥ [1+(m)2] }
Simplifying the above equation we get,

4+ (0)?

|H(m] - 1+(m)2
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This is the magnitude response of the system. And the phase response will be,

£ H(w) = tan™! (-9) / 0 +(o)’] =—lan"[ m }

2+(@)*]/ 1 +(w)*] 2+(w)*

Now consider the transfer function of equation 4.4.8. i.e.,

2+jw
HE = T
Let us rearrange the above equation as,
1+jo+1 1
M 1+jo -1+1+ju)

Inverse Fourier transform of above equation becomes,
h(t) = IFT {H(w)} =8(t)+ e~" u(t)
This is the impulse response of the given system.
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INTRODUCTION TO DIGITAL SIGNAL PROCESSING

Introduction

Signals constitute an important part of our daily life. Anything that carries some information
is called a signal. A signal is defined as a single-valued function of one or more independent
variables which contain some information. A signal is also defined as a physical quantity that
varies with time, space or any other independent variable. A signal may be represented in
time domain or frequency domain. Human speech is a familiar example of a signal. Electric
current and voltage are also examples of signals. A signal can be a function of one or more
independent variables. A signal may be a function of time. temperature, position, pressure,
distance etc. If a signal depends on only one independent variable, it is called a one-
dimensional signal, and if a signal depends on two independent variables, it is called a two-
dimensional signal.

A system is defined as an entity that acts on an input signal and transforms it into an
output signal. A system is also defined as a set of elements or fundamental blocks which are
connected together and produces an output in response to an input signal. It is a cause-and-
effect relation between two or more signals. The actual physical structure of the system
determines the exact relation between the input x(n) and the output v(n), and specifies the
output for every input. Systems may be single-input and single-output systems or multi-input
and multi-output systems.

Signal processing is a method of extracting information from the signal which in turn
depends on the type of signal and the nature of information it carries. Thus signal processing
is concerned with representing signals in the mathematical terms and extracting information
by carrying out algorithmic operations on the signal. Digital signal processing has many
advantages over analog signal processing. Some of these are as follows:

Digital circuits do not depend on precise values of digital signals for their operation.
Digital circuits are less sensitive to changes in component values. They are also less sensitive
to variations in temperature, ageing and other external parameters.

In a digital processor, the signals and system coefficients are represented as binary
words. This enables one to choose any accuracy by increasing or decreasing the number of
bits in the binary word.

Digital processing of a signal facilitates the sharing of a single processor among a
number of signals by time sharing. This reduces the processing cost per signal.

Digital implementation of a system allows easy adjustment of the processor characteristics
during processing.

Linear phase characteristics can be achieved only with digital filters. Also multirate
processing is possible only in the digital domain. Digital circuits can be connected in cascade
without any loading problems, whereas this cannot be easily done with analog circuits.

Storage of digital data is very easy. Signals can be stored on various storage media such
as magnetic tapes, disks and optical disks without any loss. On the other hand, stored analog
signals deteriorate rapidly as time progresses and cannot be recovered in their original form.

Digital processing is more suited for processing very low frequency signals such as
seismic signals.
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Though the advantages are many. there are some drawbacks associated with processing
a signal in digital domain. Digital processing needs ‘pre’ and ‘post’ processing devices like
analog-to-digital and digital-to-analog converters and associated reconstruction filters. This
increases the complexity of the digital system. Also, digital techniques suffer from frequency
limitations. Digital systems are constructed using active devices which consume power
whereas analog processing algorithms can be implemented using passive devices which do
not consume power. Moreover, active devices are less reliable than passive components. But
the advantages of digital processing techniques outweigh the disadvantages in many
applications. Also the cost of DSP hardware is decreasing continuously. Consequently, the
applications of digital signal processing are increasing rapidly.

The digital signal processor may be a large programmable digital computer or a small
microprocessor programmed to perform the desired operations on the input signal. It may
also be a hardwired digital processor configured to perform a specified set of operations on
the input signal.

DSP has many applications. Some of them are: Speech processing, Communication,
Biomedical. Consumer electronics, Seismology and Image processing.

The block diagram of a DSP system is shown in Figure 1.1.

4 A/D i 15)115:1?11 X D/A -
Analog input Converter Digital | processor Digital | Converter Analog output
signal put output signal
signal signal

Figure 1.1 Block diagram of a digital signal processing system.

In this book we discuss only about discrete one-dimensional signals and consider only
single-input and single-output discrete-time systems. In this chapter. we discuss about various
basic discrete-time signals available, various operations on discrete-time signals and
classification of discrete-time signals and discrete-time systems.

CLASSIFICATION OF DISCRETE-TIME SYSTEMS

A discrete-time system is represented by a block diagram as shown in Figure 2. An
arrow entering the box is the input signal (also called excitation, source or driving function)
and an arrow leaving the box is an output signal (also called response). Generally, the input
is denoted by x(n) and the output is denoted by y(n).
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The relation between the input x(n) and the output y(n) of a system has the form:

v(n) = Operation on x(n)
Mathematically,
y(n) = Tlx(n)]

which represents that x(n) is transformed to y(n). In other words, y(n) is the transformed
version of x(n).

. , y(n
x(n) Discrete-time W)
B _
system
Input y Output

Figure 2 Block diagram of discrete-time system.

Both continuous-time and discrete-time systems are further classified as follows:

Static (memoryless) and dynamic (memory) systems
Causal and non-causal systems

Linear and non-linear systems

Time-invariant and time varying systems

Stable and unstable systems.

Invertible and non-invertible systems

FIR and IIR systems

L o -

Nk

1 Static and Dynamic Systems

A system is said to be static or memoryless if the response is due to present input alone, i.e.,

for a static or memoryless system. the output at any instant n depends only on the input

applied at that instant n but not on the past or future values of input or past values of output.
For example, the systems defined below are static or memoryless systems.

y(n) = x(n)
y(n) = 2x%(n)

In contrast, a system is said to be dynamic or memory system if the response depends upon

past or future inputs or past outputs. A summer or accumulator, a delay element is a discrete-
time system with memory.

For example, the systems defined below are dynamic or memory systems.
y(n) = x(2n)
y(n) = x(n) + x(n — 2)
v(n) + 4y(n — 1) + 4y(n — 2) = x(n)

Any discrete-time system described by a difference equation is a dynamic system.

A purely resistive electrical circuit is a static system, whereas an electric circuit having
inductors and/or capacitors is a dynamic system.
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A discrete-time LTI system is memoryless (static) if its impulse response fA(n) is zero
for n # 0. If the impulse response is not identically zero for n # 0. then the system is called
dynamic system or system with memory.

EXAMPLE 1. Find whether the following systems are dynamic or not:
(a) y(n)=x(n+2) (b) y(n) = .\3(11)
(c) v(n)=x(n—2) + x(n)

Solution:
(a) Given y(n) = x(n + 2)

The output depends on the future value of input. Therefore, the system is dynamic.

(b) Given y(n) = x%(n)
The output depends on the present value of input alone. Therefore, the system is
static.

(c) Given v(n) = x(n — 2) + x(n)

The system is described by a difference equation. Therefore. the system is dynamic.

2 Causal and Non-causal Systems
A system is said to be causal (or non-anticipative) if the output of the system at any instant
n depends only on the present and past values of the input but not on future inputs, i.e., for
a causal system. the impulse response or output does not begin before the input function is
applied, i.e., a causal system is non anticipatory.

Causal systems are real time systems. They are physically realizable.

The impulse response of a causal system is zero for n < 0, since §(n) exists only at n = 0,

i.e. h(n) =0 for n<0

The examples for causal systems are:
y(n) = nx(n)
y(n) =x(n—2) + x(n — 1) + x(n)
A system is said to be non-causal (anticipative) if the output of the system at any instant n
depends on future inputs. They are anticipatory systems. They produce an output even before
the input is given. They do not exist in real time. They are not physically realizable.
A delay element is a causal system. whereas an image processing system is a non-causal

system.
The examples for non-causal systems are:

y(n) = x(n) + x(2n)
y(n) = X(n) + 2x(n + 2)
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EXAMPLE Check whether the following systems are causal or not:

(a) '_v(n)— x(n)+ x(n—-2) (b) v(n) = x(2n)
(¢c) y(n) = sin[x(n)] (d) y(n) = x(—n)
Solution:
(a) Given '_v(n) =x(n)+x(n-2)
For n = -2 ' ¥(=2) = x(=2) + x(-4)
For n =0 ¥(0) = x(0) + x(~2)
For n =2 '_\'(2).-:.\'(2) + x(0)

For all values of n, the output depends only on the present and past inputs.
Therefore, the system is causal.

(b) Given '_v(n):x(2n)
For n = -2 '),( -2) = x(-4)
Forn =0 ¥(0)= x(0)
For n = 2 "_\’(2)= x(4)

For positive values of n, the output depends on the future values of input.
Therefore. the svstem is non-causal.

(c) Given ..V(ﬂ) = sin [x(n)]
For n = -2 Y(=2) = sin [x(-2)]
Forn=0 ¥(0) = sin [x(0)]
Forn =2 Y(2) = sin [x(2)]

For all values of n, the output depends only on the present value of input. Therefore.
the system is causal.

(d) Given y(n) = x(-n)
For n = -2 V(=2)=x(2)
Forn=10 ._\’(0)— x(0)
Forn=2 .)’(2)»—~ x(=2)

For negative values of n, the output depends on the future values of input.
Therefore. the system is non-causal.

3 Linear and Non-linear Systems
A system which obeys the principle of superposition and principle of homogeneity is called
a linear system and a system which does not obey the principle of superposition and
homogeneity is called a non-linear system.

Homogeneity property means a system which produces an output y(n) for an input x(n)
must produce an output ay(n) for an input ax(n).
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Superposition property means a system which produces an output y,(n) for an input
x,(n) and an output y,(n) for an input x,(n) must produce an output y,(n) + v,(n) for an input
xy(n) + xx(n).

Combining them we can say that a system is linear if an arbitrary input x,;(n) produces
an output y,(n) and an arbitrary input x,(n) produces an output v,(n), then the weighted sum
of inputs ax,(n) + bx,(n) where a and b are constants produces an output ay,(n) + by,(n)
which is the sum of weighted outputs.

T(ax,(n) + bx,(n)] = aTlx(n)] + bTx,5(n)]

Simply we can say that a system is linear if the output due to weighted sum of inputs is
equal to the weighted sum of outputs.

In general. if the describing equation contains square or higher order terms of input
and/or output and/or product of input/output and its difference or a constant, the system will
definitely be non-linear.

EXAMPLE Check whether the following systems are linear or not:
(a) ¥y(n)= n*x(n) (b) vw(n)= x(n)+ —
2x(n—2)
(c) v(n)=2x(n)+4 (d) ',v('n) = x(n) cos mn
' 1 N
(e) ¥(n) = Ix(n)l (H ym=— » x(n—k)
N
k=0
Solution:
(a) Given y(n) = n>x(n)

y(in)=Tlx(n)]= n?‘x(n)

Let an input x,(n) produce an output y,(n).

.y,(n) =T[x,(n)]= nle(n)
Let an input x,(n) produce an output y,(n).

.)'z(n) =T[x,(n)]= nzx2 (n)
The weighted sum of outputs is:

'a__v,(n) + by, (n)= a[nzx,(n)] + b[nzxz(n)] — n:[a.r, (n) + bx,(n)]

The output due to weighted sum of inputs is:

v3(n) = Tlax,(n) + bx,(n)] = n*[ax,(n) + bx,(n)]

vi(n)=ay,(n) + by, (n)

The weighted sum of outputs is equal to the output due to weighted sum of inputs.
The superposition principle is satisfied. Therefore, the given system is linear.

104




(b) Given y(n)= x(n)+

(c)

2x(n—2)
, 1
vin)=T[x(n)]=x(n) + —
’ [ ] 2x(n—2)
For an input x,(n_).
vw(n)=T[x,(n)]=x,(n) + —
e Lx: o) ' 2x,(n—2)
For an input x»(n),
1
() =T[x,(n)]= x,(n) + ——
¥ () = T[x2 ()] = x, R

The weighted sum of outputs is:

] ) 1 ]

av, (H) = b_\'z(’l) =a x (’1) -+ mj + b Ll’: ("7) + m‘J

b
_*.
2x,(n=2) 2x5(n-2)

= [ax;(n) + bx>(n)] +

The output due to weighted sum of inputs is:

1

va(n) = Tlax,(n)+ bx,(n)] = lax;(n) + bx,(n)] + 3lax, (n—2) + bx, (= 2)]

yai(n) # ay,(n) + by, (n)

The weighted sum of outputs is not equal to the output due to weighted sum of
inputs. The superposition principle is not satisfied. Therefore, the given system is
non-linear.

Given ; v(n)=2x(n)+ 4
v(n)=T[x(n)]=2x(n) + 4

For an input x(n),

.."1 (n)=T[x;(n)]=2x,(n)+ 4
For an input xx(n),

Vo (n) =T[x5(n)]=2x,(n)+ 4
The weighted sum of outputs is:
"’."1 (n) + by, (n) = a[2x,(n) + 4]+ b[2x,(n) + 4] = 2[ax,(n) + bx,(n)] + 4(a + b)
The output due to weighted sum of inputs is:

'y}(n) = Tlax,(n)+ bx,(n)] = 2[ax,(n) + bx,(n)]+ 4
vz(n) # ay,(n) + by, (n)

The weighted sum of outputs is not equal to the output due to weighted sum of inputs.
The superposition principle is not satisfied. Therefore, the given system is non-linear.
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(d)

(e)

Given .)'(n) = x(n)cos ®n
y(n)=T[x(n)]= x(n)cos ®n
For an input x(n),
'_v, (n)=T|[x;(n)]= x;(n)cos wn
For an input x,(n),
: ¥, (n) =T[x,(n)]= x,(n) cos wn
The weighted sum of outputs is:
.a_v, (n) + by, (n) = ax,;(n)cos @n + bx,(n) cos wn = [ax,;(n) + bx,(n)] cos wn
The output due to weighted sum of inputs is:
..\.'3('1) =Tlax,(n) + bx,(n)]=[ax,(n) + bx,(n)] cos wn
vz(n)=ay(n) + by, (n)

The weighted sum of outputs is equal to the output due to weighted sum of inputs.
The superposition principle is satisfied. Therefore, the given system is linear.

Given ; y(n) = |x(n)|

¥(n) = Tx(n)] = |x(n)|

For an input x,(n),
yi(n) =Tlx|(n)] = |x,(n)‘

For an input x,(n),

v(n) =T[x,(n)] = |x2 (n)|
The weighted sum of outputs is:

.a_\’, (n) + by,(n) = a|.x', (n)| + b|.r2(n)|
The output due to weighted sum of inputs is:
._\'3(n) =Tlax,(n) + bx,(n)] = |ax, (n) + b.1'2(11)|
.)’3(11) = ay,(n)+ by,(n)

The weighted sum of outputs is not equal to the output due to weighted sum of
inputs. The superposition principle is not satisfied. Therefore, the given system is
non-linear.

106




4 Shift-invariant and Shift-varying Systems

Time-invariance is the property of a system which makes the behaviour of the system
independent of time. This means that the behaviour of the system does not depend on the
time at which the input is applied. For discrete-time systems, the time invariance property is
called shift invariance.

A system is said to be shift-invariant if its input/output characteristics do not change
with time, i.e., if a time shift in the input results in a corresponding time shift in the output
as shown in Figure 1.23, i.e.

If Tx(n)] = y(n)
Then TNx(n — k)] = y(n — k)
A system not satisfying the above requirements is called a time-varying system (or shift-
varying system). A time-invariant system is also called a fixed system.

The time-invariance property of the given discrete-time system can be tested as
follows:

Let x(n) be the input and let x(n — k) be the input delayed by k units.
v(n) = Tx(n)] be the output for the input x(n).

x(n) y(n)

n

Y

L 1

Shift-invariant

o
[
(3]
o
(B

2
s

Y

system

x(n—k) y(in=k)

—
Y
—0
'

ol Y
—9

J

0 k k+2 0

Figure 1.23 Time-invariant system.
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y(n, k) = T{x(n — k)] = ¥(n)| ;(=x(n—t) be the output for the delayed input x(n — k).
' y(n—k)=v(n)|,_,_; be the output delayed by k units.
If y(n, k) = y(n — k)
i.e. if delayed output is equal to the output due to delayed input for all possible values of £,

then the system is time-invariant.
On the other hand, if

y(n, k) # y(n — k)

i.e. if the delayed output is not equal to the output due to delayed input, then the system is
time-variant.

If the discrete-time system is described by difference equation, the time invariance can
be found by observing the coefficients of the difference equation.

If all the coefficients of the difference equation are constants, then the system is time-
invariant. If even one of the coefficient is function of time, then the system is time-variant.

The system described by

v(n) + 3y(n — 1) + 5y(n — 2) = 2x(n)

is time-invariant system because all the coefficients are constants.
The system described by

y(n) — 2ny(n — 1) + 3)12_\*()1 —2)=x(n) +x(n-1)
is time-varying system because all the coefficients are not constant (Two are functions of
time).

The systems satisfying both linearity and time-invariant conditions are called linear,
time-invariant systems, or simply LTI systems.
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EXAMPLE . Determine whether the following systems are time-invariant or not:

(a) y(n) = x(n/2) (b) '.\*(11’)=.x‘(r1)
(c) ._v(n):.\'z(n—?.) (d) '_v(n).—.r(n')f- nx(n-2)
Solution:
(a) Given _v(n')-.r'(ﬁ‘\’
\2,
{1\

n
2)

The output due to input delayed by k units is:

yin)=T[x(n)]=x

{n \
yn,k)y=T[x(n—k)]= )’(n)L,(m R o xl I k ,
The output delayed by k units is:
. (n—k)
Yo =k)=yml,_,  =x —=|

/

wWn.k)# y(n-k)

i.e. the delayed output is not equal to the output due to delayed input. Therefore,

the system is time-variant.
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(b) Given W(m) = x(n)
y(n)=T[x(n)]= x(n)
The output due to input delayed by k units is:

._\’(n. ky=T[x(n-k)]= y(n)| =x(n-k)

x(n)=x(n—k)
The output delayed by k units is:
v(in—k)= _v('n)l,,._,,_k =x(n—k)
vin, k)= vy(n-k)
i.e. the delayed output is equal to the output due to delayed input. Therefore, the
system is time-invariant.

(¢) Given y(n)= x2(n-2)
y(n)=T[x(n)]= x2(n—-2)
The output due to input delayed by k units is:
..v(n. ky=T[x(n-k)]= y(n)|_\_“”_ N 2 (n—-2-k)
The output delaye_'d by k units is:
y(n—k)= y(n)|";"_k — .rz(n -2=k)

v(n, k)= v(n—k)

i.e. the delayed output is equal to the output due to delayed input. Therefore, the
system is time-invariant.

(d) Given y(n)= x(n) + nx(n-2)
v(n)=T[x(n)]= x(n) + nx(n-2)
The output due to input delayed by k units is:
._\'(n. k)=T[x(n-k)]= y(n)|m”:_‘m_h =x(n—-k)+mx(n—-2-k)
The output delayed by k units is:
yin—k)= .v(n)|"7_"_k =x(n=k)+(n—-k)x(n—k-2)
v(n. k) # v(in—k)

i.e. the delayed output is not equal to the output due to delayed input. Therefore,
the system is time-variant.
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EXAMPLE Show that the following systems are linear shift-invariant systems:

b J.\'(n)+ x(n—=2) fornz=0
J (b) y(n)=
lo

s

(a) w(n)= \'i

\

l\)l:

for n<0

Solution: To show that a given system is a linear time-invariant system we have to show
separately that it is linear and time-invariant.

2 n
(a) Given y(n)= \i\g
For inputs x,(n) and x>(n),
‘n)
v (n)=x, l% l

\

{
Y, (1) = x, |
\

o=

The weighted sum of outputs is:

, . n\ (n
ay,(n) + by,(n) = ax, [;J + bx, L;

) SER——

The output due to weighted sum of inputs is:

‘n ‘n\
vx(n) =Tlax,(n) + bx,(n)] = ax, i - J + bx, = ]
vz(n) = ay,(n) + by, (n)
So the system is linear.
( n A
)"(ﬂ. I\) - "‘(n)l.r(n) x(n—k) — X' ;._ k J

Wn-ky=ym)|_ _, = _‘_( n—k \1

v(n. k)# y(n—k)

So the system is shift-varying.
Hence the given system is linear but shift-varying. It is not a linear shift-invariant
system.
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[x( n)+x(n-2) fornz=0

(b) Given y(n)= 10 5 5
or n<

For inputs xy(n) and x»(n),
.y, (n)=x;(n)+x,(n-2) for nz0
Vo(n)=x,(n)+ x3(n-=2) for nz0
The weighted sum of outputs is:
.a_v,(n) + by, (n) = alx,(n) + x;(n—2)]+ b[x,(n) + x5(n—2)]
The output due to weighted sum of inputs is:
.)'3(11') =Tlax,(n) + bx,(n)] = [ax,(n) + bx,(n)] + ax;(n —=2) + bx,(n—2)
vi(n)=ay(n) + by, (n)
So the system is linear.

(k)= v(n)| =x(n—k)+ x(n—2-k)

x(n)=x(n-k)
y(n—k)= y(n)|n_”_k =x(n-k)+x(n—k-2)
y(n, k)= y(n - k)

So the system is time-invariant. Hence the given system is linear time-invariant.

5 Stable and Unstable Systems
A bounded signal is a signal whose magnitude is always a finite value, i.e. | x(n) | < M., where
M is a positive real finite number. For example a sinewave is a bounded signal. A system is
said to be bounded-input, bounded-output (BIBO) stable, if and only if every bounded input
produces a bounded output. The output of such a system does not diverge or does not grow
unreasonably large.

Let the input signal x(n) be bounded (finite), i.e.,

|x(n)|'_<Mx <eo for all n
where M, is a positive real number. If
|_v(n)|s' M, <oo

i.e. if the output y(n) is also bounded. then the system is BIBO stable. Otherwise, the system
is unstable. That is, we say that a system is unstable even if one bounded input produces an
unbounded output.

It is very important to know about the stability of the system. Stability indicates the
usefulness of the system. The stability can be found from the impulse response of the system
which is nothing but the output of the system for a unit impulse input. If the impulse
response is absolutely summable for a discrete-time system, then the system is stable.
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BIBO stability criterion

The necessary and sufficient condition for a discrete-time system to be BIBO stable is given
by the expression:

Z |h(n)|<e>o

A=—o0

where h(n) is the impulse response of the system. This is called BIBO stability criterion.

Proof: Consider a linear time-invariant system with x(n) as input and y(n) as output. The
input and output of the system are related by the convolution integral.

yn)y= 3 x(kyh(n- k)
k=ho

Taking absolute values on both sides., we have

oo

2 x(k)h(n—k)

k=—on

[y(m)| =

Using the fact that the absolute value of the sum of the product of two terms is always less
than or equal to the sum of the product of their absolute values, we have

oo

> x(kh(n- k)
k=—co

< 2 |x(k)||h(n—k)|

kiz—eo

If the input x(k) is bounded, i.e. there exists a finite number M, such that,

|x(k)| < M, <<

lvm)| < M, i |h(n— k)|

k=—co

Changing the variables by m = n — k. the output is bounded if

2 |h(_m_)| < oo

n=—o

Replacing m by n. we have

Z |h(n)| < oo

e —

which is the necessary and sufficient condition for a system to be BIBO stable.
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The conditions for a BIBO stable system are given as follows:

1. If the system transfer function is a rational function, the degree of the numerator
should not be larger than the degree of the denominator.
2. The poles of the system must lie inside the unit circle in the z-plane.
3. If a pole lies on the unit circle it must be a single order pole, i.e. no repeated pole
lies on the unit circle.
EXAMPLE Check the stability of the system defined by
(a) '_v(n) =ax(n-"1T) (b) y(n)= x(n) +%x(n 1)+ 211— x(n-2)
(¢) h(m)=a" for 0<n<ll (d) h(n)=2"u(n)
(e) 'h(n)—.u(n)
Solution:
(a) Given -.v('n)— ax(n—17)
Let x(n) = A(n)
Then "v(n) = h(n)

h(n)=ad(n-17)
h(ny=a forn=7
=0 forn#7

A system is stable if its impulse response A(n) is absolutely summable.

i.e. Z |h(n)|<c

JP=—

In this case.

o

z |h(n)|= Z ao(n—T)=a

ne—o Rm—

Hence the given system is stable if the value of a is finite.
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(b) Given v(n)= x(n)+ %x(n -1+ %x(n —-2)

Let x(n)=d(n)
Then '_\-‘( n)= h(n)
h(n)=3(n) + % o(n—1) + ic?(n —2)

A discrete-time system is stable if

z |h(n)|\m

n=—e

The given /A(n) has a value only at n = 0, n = 1 and n = 2. For all other values of
n from —eo to =, h(n) = 0.

At n =0, h(0)=46(0) + %5(0— I)+i<‘5(0— 2)=&(0) +%5(—I)+%5(—2)-—1

Atn =1, k()= +L80-1)+L 80 —2)=51) +-8(0) + L 5(=2) =+
2 4 2 4 2

' 1 i 07 1
At i =2, H2)=8(D +=8Z=D+—-8@2 ~2)=8(2)+ =81) + —5(0)=—
) ) > ) 7 . 2 2

b | =

Z |h(n)| =1+ % - %:— <oo a finite value.

N=—ca

S IO

Hence the system is stable.

(c) Given h(n)=a" for 0<n<ll

Z lh(n)l= Z la"1= Za

n=—o0 n=—on n=0

This value is finite for finite value of a. Hence the system is stable if a is finite.

(d) Given hin) = 2" u(n)

2 lh(n)l= 2 I”"u(n)l— z 2" =0

n=0
The impulse response is not absolutely summable. Hence this system is unstable.
(e) Given h(n) = u(n)

For stability,

i |h(il)| < oo

n=-e0
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In this case.

o

i |h(n)|:z 1=1+1+1+4: =00

nEe n=0

So the output is not bounded and the system is unstable.
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UNIT V

Z-TRANSFORMS & REALIZATION OF DIGITAL FILTERS

Concept of Z- Transform of a discrete sequence.
Region of convergence in Z-Transform

Inverse Z- Transform.

Solution of Difference Equations Using Z-Transform
Realization of Digital Filters - Direct and Canonic forms.
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INTRODUCTION

A linear time-invariant discrete-time system is represented by difference equations. The
direct solution of higher order difference equations is quite tedious and time consuming. So
usually they are solved by indirect methods. The Z-transform plays the same role for
discrete-time systems as that played by Laplace transform for continuous-time systems. The
Z-transform is the discrete-time counterpart of the Laplace transform. It is the Laplace
transform of the discretized version of the continuous-time signal x(f). To solve the
difference equations which are in time domain, they are converted first into algebraic
equations in z-domain using Z-transform, the algebraic equations are manipulated in z-
domain and the result obtained is converted back into time domain using inverse Z-
transform. The Z-transform has the advantage that it is a simple and systematic method and
the complete solution can be obtained in one step and the initial conditions can be introduced
in the beginning of the process itself. The Z-transform plays an important role in the analysis
and representation of discrete-time Linear Shift Invariant (LSI) systems. It is the
generalization of the Discrete-Time Fourier Transform (DTFT). The Z-transform may be
one-sided (unilateral) or two-sided (bilateral). It is the one-sided or unilateral Z-transform
that is more useful, because we mostly deal with causal sequences. Further, it is eminently
suited for solving difference equations with initial conditions.

The bilateral or two-sided Z-transform of a discrete-time signal or a sequence x(n) is
defined as:

X(z)= Z x(n) z7"  where z is a complex variable.

f=—0o

The one-sided or unilateral Z-transform is defined as:

X(@)=Y x(m) 7"
n=0
If x(n) = 0, for n < 0. the one-sided and two-sided Z-transforms are equivalent.
In the z-domain, the convolution of two time domain signals is equivalent to

multiplication of their corresponding Z-transforms. This property simplifies the analysis of
the response of an LTI system to various signals.

Region of convergence (ROC)

For any given sequence, the Z-transform may or may not converge.

The set of values of z or equivalently the set of points in z-plane, for which X(z)
converges is called the region of convergence (ROC) of X(z). In general ROC can be
R. % <R . where R _ can be as small as zero and R . can be as large as infinity.

If there is no value of 7 (i.e. no point in the z-plane) for which X(z) converges. then the
sequence x(n) is said to be having no Z-transform.

<
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RELATION BETWEEN DISCRETE-TIME FOURIER TRANSFORM (DTFT)
AND Z-TRANSFORM

The Discrete-Time Fourier Transform (DTFT) of a sequence x(n) is given by
X( ejw) or X(co'): 2 ,\'(AH) e—j(-)n
N=—rt
For the existence of DTFT. the above summation should converge, i.e. x(n) must be
absolutely summable. The Z-transform of the sequence x(n) is given by

Zxml=X@= Y, x(mz™"

H=—t0

where z is a complex variable and is given by z = re/® where r is the radius of a circle.
Advantages of Z-transform

1. The Z-transform converts the difference equations of a discrete-time system into
linear algebraic equations so that the analysis becomes easy and simple.

2. Convolution in time domain is converted into multiplication in z-domain.

3. Z-transform exists for most of the signals for which Discrete-Time Fourier
Transform (DTFT) does not exist.

4. Also since the Fourier transform is nothing but the Z-transform evaluated along the
unit circle in the z-plane, the frequency response can be determined.

X(2) = X(rejw ) = z x(n) (,.ejm i = Z [x(n) r—n] e ion
N —oo n=—so
For the existence of Z-transform. the above summation should converge, i.e. x(n) " must be

absolutely summable, i.e.
> Ix(n)r < e

s
The above equation represents the Discrete-Time Fourier Transform of a signal x(n) r™".
Hence., we can say that the Z-transform of x(n) is same as the Discrete-Time Fourier
Transform of x(n) r".

For the DTFT to exist, the discrete sequence x(n) must be absolutely summable, i.e.

Z [x(n)l< e
n=—ee

So for many sequences, the DTFT may not exist but the Z-transform may exist. When
r = 1, the DTFT is same as the Z-transform, i.e. the DTFT is nothing but the Z-transform
evaluated along the unit circle centred at the origin of the z-plane.
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-
X (™) = Z zinle """,
T ===
which is the discrete-time Fourier transform of x[n]. Therefore, DTFT is a special
case of the z-transform! Pictorially, we can view DTFT as the z-transform evaluated
on the unit circle:

A Tim
5= g Jw
w
>
Re
Figure Complex z-plane. The z-transform reduces to DTEFT for values of = on

the nnit circle.

Z-TRANSFORM AND ROC OF FINITE DURATION SEQUENCES

Finite duration sequences are sequences having a finite number of samples. Finite duration
sequences may be right-sided sequences or left-sided sequences or two-sided sequences.

1 Rightsided Sequence

A right-sided sequence is one for which x(n) = 0 for n < ny, where ng is positive or negative

but finite. The Z-transform of such a sequence is X(z)= Z x(n) z7". The ROC of the above
n=ny

series is the exterior of a cirle. If ny = 0, the resulting sequence is a causal or a positive time

sequence. For a causal or a positive finite time sequence, the ROC is entire z-plane except at

T —
<,
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EXAMPLE .1 Find the ROC and Z-transform of the causal sequence
x(n)=1{1,0,-2,3,5,4)
T
Solution: The given sequence values are:
X(0)=1, x(1)=0, x(2)=-2, x(3)=3, x(4)=5 and x(5)=4.
We know that .
X(2)= Z x(n)z™"

n=—e
For the given sample values,

=

X(2)=x0)+x(DNz '+ x@) 72+ x3) 2> + x(@D 74+ x(5)z
Zx(m]=X(2)=1-2z2+3z3+5z7*+47°

The X(z) converges for all values of z except at z = 0.

EXAMPLE 2 A finite sequence x(n) is defined as x(n) = {5, 3, -2, 0, 4, -3}. Find X(2)
and its ROC.

Solution: Given x(n) = {5, 3, 2.0, 4, -3}
x(n)=58(n)+ 30 (n—1)—28(n—2)+ 45 (n—4)—38(n—-5)

The given sequence is a right-sided sequence. So the ROC is entire z-plane except at z = 0.
Taking Z-transform on both sides of the above equation, we have

X(2)=5+371=2724 474 -377

ROC: Entire z-plane except at z = 0.
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2 Leftsided Sequence

A left-sided sequence is one for which x(n) = 0 for n = n, where n, is positive or negative,
’ 1

but finite. The Z-transform of such a sequence is X(z)= 2 x(n)z7" . The ROC of the

n=—coo
above series is the interior of a cirle. If ny < 0. the resulting sequence is anticausal sequence.
For an anticausal finite duration sequence, the ROC is entire z-plane except at z = eo.

EXAMPLE 3. Find the Z-transform and ROC of the anticausal sequence.
x(n)=1{4.2,3,-1,-2,1)
T

Solution: The given sequence values are:
xX(=5)=4, x(-4) =2, x(-3)=3, x(-2)=-1, x(-1)==2, x(0)=1
We know that

[

X(z)= Z x(n)z7"

n=—a
For the given sample values. X(z) is:

X(2)=x(=5) 2> + x(=4) 2} + x(=3) 22 + x(-2)7% + x(-1) z + x(0)
Z[.\‘(ﬂ)]—X(Z)—4:5 +272 4323 = 722=27+1

The X(z) converges for all values of z except at z = es.

3 Two-sided Sequence

A sequence that has finite duration on both the left and right sides is known as a two-sided

sequence. A two-sided sequence is one that extends from n = —co t0 7 = + <. In general, we
-1 P

can write X(z)= Z xn)z™" = Z xnz" + 2 x(n) z7". The first series converges for

N=—co ==t n=>0
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4 i
< -~

12| <R _ and the second series converges for >R .. So the ROC of such a sequence
R_< :| <R _. is a ring. For a two-sided finite duration sequence, the ROC is entire
z-plane except at 7 = 0 and z = oo.

EXAMPLE 4  Find the Z-transform and ROC of the sequence
x(n)={2,1,-3,0,4,3,2,1,5}
T

Solution: The given sequence values are:
'..\'(—4)—- 2. x(-3)=1, x(-2)==-3. x(-1)=0, x(0)=4. x(1)=3, x(2)=2, x(3)=1. x(4)=35
We know that '
X(z)= Z x(n)z™"

":—’-1
For the given sample values,
X(2)= x(~0)z* + x(-3)2° + X(=2)Z* + x(=Dz + x(0) + x(Dz " + x@)z 2 + 3z + x(d7™
=224+ 2-32+4+377 '+ 2772+ 23+ 577%

The ROC is entire z-plane except at z = 0 and 7 = ee.

Example 5. Consider the signal z[n] = a™u[n], with 0 < a < 1. The z-transform of

x[n] is o

X(z) = Zn"ufn] 5 > (az~1)".

o n=>0

Therefore, X(z) converges if 3 (az71)

that
i 1
Y B
L (’ = 1 —az"1’

)7:0

< oo. From geometric series, we know

with ROC being the set of z such that |z| > |al|

N Im

Re
Figure . Pole-zero plot and ROC of Example s
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Example 6 Consider the signal x{n]
z-transform of z[n] is

1. The

=

—a"u[—n — 1] with 0 < «a

(> €] —I
X(z) = — E a"u[-n—1]z7" = _ E az "
n=-oc N=—0%
o0
—n._n it
= — a Z :l_z a‘l_.n
n=1 5 ( )
n=lJ
Therefore, X(z) converges when |a~'z| < 1, or equivalently |z| < |a|. In this case,
, 1 1
X(z)=1- — = Fy
l—a"2 L—/az~
A LT

Figure : Pole-zero plot

Example 7. Consider the signal

Hin] = (3

X(2)

The z-transform is

and ROC of Example s
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converge, both sums in X (z) must converge. So we need both |z| > ||
|. Thus, the ROC is the set of z such that |z| > |3].

A Lim

For X(z) t
|

0
and |z| > |3

Figure . : Pole-zero plot and ROC of Example 7

EXAMPLE . 8 Find the Z-transform of the following sequences:

(a) 'u(n)—u(n—-'l) (b) 'u(—n)—u(—n—3) (c) '11(2—n)—u(—2—n)
Solution:

(a) The given sequence is:
x(m)y=un)—u(n—4)
From Figure we notice that the sequence values are:

'.x(n)z I, for0=n<3
=(0. otherwise

C

2 -1 01 2 3 4 5§ n
(a)

un—=4)

2l 0 1 2 3 4 §

2 -1 0 1 2 3 n
(c)

Figure | Sequences (a) ui(n), (b) uln — 4) and (c) uln) — uln - 4).

n

un)=un—4) ‘ ‘
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We know that

Py

.X(:,)— 2 x(n)z™"

1= —oa

Substituting the sequence values, we get
“ =)

X@D=14+z2'+z22+z2

The ROC is entire z-plane except at z = 0.

(b) The given sequence is:
x(n) = u(=n) = u(=n - 3)
From Figure |, we notice that the sequence values are:
x(n)=1, for =2<n<0

=(). otherwise

- ’ \ \ ’ ‘
ok =3 Bl B T 2nm
(a)
U(=n=—3) ‘ ‘
B AL 0 1 2
(b)
wu(=n) —u(=n—=3) ‘ I
B2 el @ F Bom
(c)
Figure Sequences (a) u(=n), (b) u(=n - 3) and (c) u(-n) = u(=n = 3).
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We know that X(z)= Z x(m)z™"
n=—cm

Substituting the sequence values, we get
X(@z)=1+z+2z°

The ROC is entire z-plane except at 7 = eo.

(c) The given sequence is:
x(m)y=u(2—n)—u(-2—n)

we notice that the sequence values are:

From Figure
x(n)=1, for-=1=n<2

=0, otherwise

Substituting the sequence values, we get
: 1 .

rd + : =

X(2)=z+1+2

The ROC is entire z-plane except at z =0 and z

w(2—n ‘ l ‘ |

-3 =2 -1 0

(a)

I8¢ w9 20
(b)

(=2 —n)

n

0
-1 0 1
(c)

ra

U(2=n)=u(=2=n)

n

o

= n) and () u(2 = n) — u(=2 - n).

Figure Sequences (@) u(2 = n), (b) u(=2
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PROPERTIES OF ROC

The ROC is a ring or disk in the z-plane centred at the origin.

The ROC cannot contain any poles.

If x(n) is an infinite duration causal sequence, the ROC is 1z | > e i.e. it is the

exterior of a circle of radius «.

If x(n) is a finite duration causal sequence (right-sided sequence), the ROC is entire

z-plane except at z = 0.

4. 1If x(n) is an infinite duration anticausal sequence, the ROC is | z1 < f3. i.e. it is the
interior of a circle of radius f3.

If x(n) is a finite duration anticausal sequence (left-sided sequence), the ROC is
entire z-plane except at z = oo,

5. 1If x(n) is a finite duration two-sided sequence, the ROC is entire z-plane except at
z=0and 7 = 0.

6. If x(n) is an infinite duration, two-sided sequence, the ROC consists of a ring in the
z-plane (ROC: & < Iz | < f3) bounded on the interior and exterior by a pole, not
containing any poles.

7. The ROC of an LTI stable system contains the unit circle.

8. The ROC must be a connected region. If X(z) is rational, then its ROC is bounded
by poles or extends up to infinity.

9. x(n) = d(n) is the only signal whose ROC is entire z-plane.

L R

Property 10. A causal discrete-time LTI system is stable if and only if all of its
poles are mnside the unit circle.

A Tm

Causal, Stable Causal,Unstable Not causal, Stable
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INVERSE Z-TRANSFORM

The process of finding the time domain signal x(n) from its Z-transform X(z) is called the
inverse Z-transform which is denoted as:

x(n) =Z7' [X(2)]
We have

X(z)= X(re’®) = 2 [x(n) r™] e 1"

n=—20

This is the DTFT of the signal x(z) r~". Hence the Inverse Discrete-Time Fourier Transform
(IDTFT) of X(re’”) must be x(n) r". Therefore, we can write

i, 1 g i3
x(n)r " = == J X(re'”)e!" dw
T

T

ie. "'"”"21_,( j X(re’)(re’”)" dow
We have .

Z= ,.ejr)
= jre’, ie. do=——
de jre’
x(n) = : J; X(@ 7" dz
- zn-j ! -~ -~ -~

Basically, there are four methods that are often used to find the inverse Z-transform.
They are:

(a) Power series method or long division method

(b) Partial fraction expansion method

(c) Complex inversion integral method (also known as the residue method)
(d) Convolution integral method

The long division method is simple, but does not give a closed form expression for the
time signal. Further, it can be used only if the ROC of the given X(z) is either of the form
[zl > e or of the form |z| < , i.e. it is useful only if the sequence x(n) is either purely
right-sided or purely left-sided. The partial fraction expansion method enables us to
determine the time signal x(n) making use of our knowledge of some basic Z-transform pairs
and Z-transform theorems. The inversion integral method requires a knowledge of the theory
of complex variables, but is quite powerful and useful. The convolution integral method uses
convolution property of Z-transforms and can be used when given X(z) can be written as the
product of two functions.
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1 Long Division Method

The Z-transform of a two-sided sequence x(n) is given by

X(z) = 2 x(m) ™"

N =—

The X(z) has both positive powers of z as well as negative powers of z. We cannot obtain a
two-sided sequence by long division. If the sequence x(n) is causal, then

X(@)= 2 )z =x0) 22+ xW) 27+ x(2) 77+

n=0

has only negative powers of z, with ROC: | z| > e
EXAMPLE Find the inverse Z-transform of

3 ) gt 5 _
X@) =z +222+ z +1=27 =37 24477

Solution: We know that

X(2)= 3, x(m)z™" =...x=3)2"+ x(=2) 2" + x(=1) 2" + x(0) + x(1) 7’

A=—on

Comparing this X(z) with the given X(z), we have
x(n)={1.2,1,1,-2,-3,4}
T
Alternatively, taking inverse Z-transform of X(z), we have
x()=8(n+3)+28(n+ 2+ 8(n+ 1) +8n)-28(n—-1)-38(n—2) + 48(n—3)
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EXAMPLE Determine the inverse Z-transform of

1

(@) X(z2)= . ; ROC; |z[>a (b) X(z)=——: ROC; |z|>a

Z—a 1—az

|

(©) X(z2)= Z ROC; |z]>1

=7

Solution:
. ) |
(a) Given X(2)= : ROC: |~ >da
L=

1 d
-—'—l—-z“'(l—az“' Y l=z'0+az
z(l=az™)

3_-3

1 20 , »
o 7 i S S/ i A SR |

- T, = s ¥
=7'vazr*+a’z f---_Za”'z"—za”’u(n—l)z X
n=1 n=0

xm=a"un-1)

5 |
(b) Given X(z)=——: ROC:; |z|>a

1—az !

7
<

By Taylor’s series expansion, we have

1 - > -2 _3 2 . I
X@)=——=1+az"' +@z7 +@77 4= Y a7 =Y d"uln)z™"

l1—az n=0 n=0
Therefore. x(n) = a" u(n)

(c) From infinite sum formula, we have

=
D, o=
k=0

l :|(z|<l
|-

Given X(z) = l = = 2 @Hr = Z 7 [Iz‘*lf-zl, ie.lzl> 1]
B k=0 k=0

Taking inverse Z-transform on both sides, we get

oo

x(n)= Z O(n— 4k)
k=0

x(n)=1, when n=4k,i.e. whennisan integer multiple of 4

=0. otherwise
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EXAMPLE Using long division. determine the inverse Z-transform of

2 &
25+ 22

X(2)= : ROC: |z|>1

=377 +4z7+1

Solution: Since ROC is Izl > 1, x(n) must be a causal sequence. For getting a causal
sequence, the N(z) and D(z) of X(z) must be put either in descending powers of z or in

ascending powers of z~' before performing long division.
In the given X(z) both N(z) and D(z) are already in descending powers of z.
4 5554 Het w1yt a3y
2-32+4z+1 | 2+ 2%
. S
5z—-4 -7
5z— 15 +2077'+ 5z
11 - 217" — 5772
11 — 33z + 4422 + 11273
127" — 4922 - 1177
127" — 3622 + 4823 + 1277
1372~ 5973 — 1274

X(@)=z"+5z2+ 11z 3+ 12774 =137 .
x(n)=1{0,1.5.11.12.-13. ...}
Writing N(z) and D(z) of X(z) in ascending powers of 7', we have

N(z) 22+ 2z B Z +2z
B2 2-377+4z+1 137 44724 %

= ) | _5
T aSTre 1 Y127 =130
1 =37+ 4724+ 273 | 7 + 272

- 3 . 4
VY -_3724+ 473 + 77

572 473 — 72
522 — 1522 + 207+ 52°
1 Ry 5"
1172 = 33774 + 4427 + 117°°
12774 4977 — 117°
1274 — 362> + 4875 + 1277

13735991277

X@D=z'+572+1123+1272 1377 -..
x(n)=1{0,1,5,11,12, =13, ...}

Observe that both the methods give the same sequence x(n).
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EXAMPLE Using long division, determine the inverse Z-transform of

,
ZH+Z+2

<1
} 2
7 —277"+3z+4

: ROC:

“

X(2)=

Solution: Since ROC is Izl < 1, x(n) must be a non-causal sequence. For getting a non-
causal sequence, the N(z) and D(z) must be put either in ascending powers of z or in
descending powers of z~' before performing long division.
’ 2 2
TAHT+2 2447

X(Z) = =
2-272+437+4 4+37-222+7

Jode ot Bl B 4
2 8 327 128 512
4432-22+2 24242
3 5
2';:—z‘olz3
2 2
__1_2'2:3__1-:3
2 2
2" 8 4 8
19 » 3.3 1.4
2% —2% t3?
19 5> 57 5 19 4 19 s
g 33 16 32
g8l 5. 21 4 19 3
32" 16 32
81 3 243 4 81 5 81
33" 198" 64 128
4”24—12935 " 8—12"
128 128

19 5 81 5 411 4
357 198 LIRS
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2 Partial Fraction Expansion Method

To find the inverse Z-transform of X(z) using partial fraction expansion method, its
denominator must be in factored form. It is similar to the partial fraction expansion method
used earlier for the inversion of Laplace transforms. However, in this case, we try to obtain
the partial fraction expansion of X(z)/z instead of X(z). This is because, the Z-transform of
time domain signals have z in their numerators. This method can be applied only if X(2)/z is
a proper rational function (i.e. the order of its denominator is greater than the order of its
numerator). If X(z)/z is not proper, then it should be written as the sum of a polynomial and
a proper function before applying this method. The disadvantage of this method is that, the
denominator must be factored. Using known Z-transform pairs and the properties of
Z-transform, the inverse Z-transform of each partial fraction can be found.
Consider a rational function X(z)/z given by
X@) b +5 2" 4 52 by

Z ' = N-2
Z 2 +air” v ar Ptay

When M < N, it is a proper function.
When M = N, it is not a proper function. so write it as:

X(2) N—M N—M-—1 N(2)
=€oT + ('|f.l ' oot Cypy + l
Z — ——————— e D(z)
polynomial

—
Proper rational function
There are two cases for the proper rational function X(z)/z.

Case 1 X(z)/z has all distinct poles.
When all the poles of X(z)/z are distinct, then X(z)/z can be expanded in the form

X(2)

Cl C') Cl\’
+ = e
b4 =B T8 Z—Py

The coefficients C,, C,, ..., Cy can be determined using the formula

X(z)

i =P

Ck'_(:_Pk) .k—l.2.....N

Case 2 X(z)/z has [-repeated poles and the remaining N-/ poles are simple. Let us say the
kth pole is repeated [ times. Then, X(z)/z can be written as:

Xo_ 6 G . Cu . Co . Cy
z z-R z-B  z-BR @-B) (z-B)
T (N-Dtemms
where Cy=(z—P) X(wZ)
< -:Pk
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1 d7 [ X(z
_I(Z_Pk), (2]

In general. Cp:= -
. | z on

If X(z) has a complex pole, then the partial fraction can be expressed as:

£

X@_ G . G
z =B z-P

where C| is complex conjugate of C; and P; is complex conjugate of P,.
In other words. complex conjugate poles result in complex conjugate coefficients in the
partial fraction expansion.

EXAMPLE 1 Find the inverse Z-transform of

=1

X(2)= = 1 —: ROC: |z|>1
3—AZ g "
-—1 -
Solution: Given X(z)= - -
3—47V+ 7% 37%—-4z+1
Z | Z

3[2— (42/3) + (1/3)] 3 (z=D[z—(1/3)]

Xz) 1 1 A _ B
z  3@-Dz-U/3)] z-1 z-0/3)

where A and B can be evaluated as follows:

A=@-E2 -1 1| 1 1 1
2 ey 3G-Dz-/3)],_, 31-(1/3) 2
pof X@|  _(,_ 1)1 1 A a __ ¥
L” 34 & |zam: % 3J3(:—l)[z—(1/3)]::|,3 3A/3)-1 2
7.4 1 T L
z 2z-1 2z-(Q1/3)
or X(:,)—lr £ = 3 ; _]:ROC: Izl > 1
2Lz=1 z=(83)]

Since ROC is Izl > 1, both the sequences must be causal. Therefore, taking inverse Z-transform.
we have

1 [ A s e 1
x(n)== u(n)—=| < | u(n) ; ROC; |z]>1
2[_ \3/ _I
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EXAMPLE 2 Find the inverse Z-transform of

Z(z-1
X(2)= (1 ) : ROC; [z2]>2
(z+1)"(z+2)
i . Z(z—1
Solution: Given X(2)= (z ). RoC: lz|>2
(z+1)" (z+2)
X(2) z=1 G ., G ¢ ., G

— — "’( =
Z @+ @E+2) 2+1l @+ D @+ Z2+2

where the constants C,, ;. C; and C; can be obtained as follows:

X(z z—1 -2-1
Cy=(2z+2) (2) = 2 = ==
& ket ¥ L. =2+
X(z z—-1 e
C_';— Z 1)2 (2) = - — l_—z
Z e @+2),, -1+2
7z) t/“— » d 3, W ¢S
e, LAl pX@) _dfz 1] _@ram-a-na| _,
z | 2 Jlacy dz\z+2)]_ (z+2)* |:::-|
1 d* X(z 1 d% (z-1
Cl-a—»r‘”“’ = 2142 \Z J
22| z o 2a?\zv2)|__
tal 3 ] 1-3%2(z+2) 3(-1+2)
_2!(1:L(z»2)3j:___l_2 z+2)* ~__|_ Clsayl —
X@) -3 3 2 3
= o i 3T
Z z2+1 (z+1* (@+1)® z+2
' 37 3z 27 3z
X)=—t ———~— -+——: ROC: Izl > 2
2+l (z+1)" (z+1) 2+

Since ROC is |z | > 2, all the above sequences must be causal. Taking inverse Z-transform

on both sides, we have
x(n) ==3(=D"u(n) + 3n(=1" u(n) = 2(n) (n—1) (=" u(n) + 3(=2)"u(n)

=[-3+3n-2n(n—-D](=D" u(n) + 3(=2)" u(n)
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EXAMPLE 3 Determine all possible signals x(n) associated with Z-transform.

o (1/4)7”"
=z -4y

Ay -~
Solution: Given X(2)= (1/14& ;
-2z 10-(/4)z7]

Multiplying the numerator and denominator with z°, we obtain

(1/4)z
[z=1/2)][z - (1/4)]

Now, X(z) has two poles, one at z = (1/2) and the other at z = 1/4 as shown in Figure 3.
The possible ROCs are:

X(2)=

(a) ROC: |z|> (b) ROC:; |z|=<

1
4

b | —

Hence there are three possible signals x(n) corresponding to these ROCs.

X(z) 1/4 C, & 1 1
Now, = — + = — w2
Z [z—=(/2)][z—=(1/4)] z—(1/2) z-—-(1/4) z-—-(1/2) z-—(1/4)
or X(2)= ; - &
z—(1/2) z-(1/4)
(a) ROC: |z >L
2

Here both the poles, i.e. z = (1/2) and z = (1/4) correspond to causal terms.

\

J un)

1N\?
— | u(n)—
2)

~

|-

X(n)=

\ \

' 1
(b) ROC: |:.|<Z
Here both the poles must correspond to anticausal terms.

n n

.\'(n)z—(%] u(—=n-—1)+ ”il u(—=n-—1)
-/ N\ /

b=

1

(c) ROC: —

: 2

Here the pole at z = (1/4) must correspond to causal term and the pole at z = (1/2)
must correspond to anticausal term.

1 Y|

uin)

1F 1
.\'(n)=—(—| u(—n-— l)—-[—
2/ 4 )
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The ROCs are shown in Figure 3.
Im (2) Im (2)
A r'y

z=plane
o At z=plane

(= (@
W A\

(@) (b)
ROC; | z] >+ ROC; | 2| <

Figure 3. ROCs for Example 3

EXAMPLE = Determine the causal signal x(n) having Z-transform

2
7 a4

[z —(12)F [z — (1/4)]

X(2)=

"
I +z z(iz+ 1)

Solution: Given X(z)= , = =
[z -2 [z = (4] [z = (2] [z — (1/4)]

4

==, we have

-~

X@) _ @ +1) A B c

= - -
z [z — 2Pz — (1] [z - Q2P [z - 1/2)] [z — (1/4)]

Taking partial fractions of

6 ~ 20 . 20
[z — (1/2)F [z — (/2] [z — (1/4)]

X(z)=6 L= % $20—2F -
[z — (12)] [z — (1/2)] [z = (1/4)]

Taking inverse Z-transform on both sides, we have the causal signal

x(n)=06n ( l ]
2

n—1 /]

£Y 1
_ . 20| =
u(n) ‘_O[ 2) u(n) + ._0[ y ] uin)
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3 Residue Method

The inverse Z-transform of X(z) can be obtained using the equation:

I

x(n) = _
2nj

q X(z) 2" ' dz

c

where ¢ is a circle in the z-plane in the ROC of X(z). The above equation can be evaluated
by finding the sum of all residues of the poles that are inside the circle ¢. Therefore,

x(n)=Y Residues of X(z)z"™" at the poles inside c

1

=Y (z-z) X@2"'|z=2

If X(z) 2" has no poles inside the contour ¢ for one or more values of n, then x(n) = 0 for
these values.

EXAMPLE Using residue method, find the inverse Z-transform of

. 14277
X(2)= —:; ROC;
1+477 +3272

-

z|>3

1+2¢” z+2) _ z2(z+2)

Solution: Given X(7)= ; —=— =
1+47 +3z° z°+4z+3 @+1(z+3)

x(n)= Z Residues of X(z)z"™" at the poles of X(z)z"™" within ¢

22+ 2"@2+2)
(z+1D(z+3) (z+1)z+3)

= Z Residues of at the poles of same within ¢

zll :, ¢ 2
x(n) = z Residues of # atpolesz=-landz=-3
(z+D(z+3)
7 (z+2) (z+3)7"(z+ 2)|
t

Z+D(z+3) _ (Z+1D)(z+3) |

={z+1D
-1

;1(—1)" u(n) 1 l(—3)” u(n)
2 2
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4 Convolution Method

The inverse Z-transform can also be determined using convolution method. In this method.
the given X(z) is splitted into X,(z) and X5(z) such that X(z) = X,(z) X,(z). Then, x,(n) and
x2(n) are obtained by taking the inverse Z-transform of X;(z) and X,(z) respectively. Then,
x(n) is obtained by performing convolution of x,(n) and x,(n) in time domain.

'z [x,(n) * x5 (m)] = X,(2) X,(2) = X(2)

x(n)=Z7'[X(2)] = Z7'[Z{x,(n) * x5 (n) }] = x; (1) * X5 (n) = Z X (k) x5 (n—k)
k=0

9

EXAMPLE Find the inverse Z-transform of X(z)= using convolution

(z-2)(z-3)
property of Z-transforms.

2

Solution: Given X(z)= =
(z-2)(z=3)
Let Xm»=xumxgm=zizz_3
; S o
x,(n):Z"[X,(z)]:Z"( ”,) =2"u(n)
{ 5 Y
x(n)=Z"'[X:(Q]=Z" I”“—3 =3"u(n)
'\\(._ /

n

x(n) * xy(n) = Y x,(k) x5 (n—k)
k=0

n
s Z 2% u(k) 3"  u(n — k)
k=0

n ('.‘)\k - 2 ntl
—le:—?ﬁ ”&~1
Py ML L 1-(2/3) |
|— PO 23 |
= 3l ]—l% =3"" y(n) = 2™ u(n)
R
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EXAMPLE Find the inverse Z-transform of X(Z)-(_v ])[Z 172 using
convolution property of Z-transforms. ) B
Solution: Given X(2)= :
(z=D[z-(1/2)]
- . Z 1
Let X(z) = X,(2) X5(2) =
' » (z-1 [z-(1/2)]
; _
=27 (X, D=Z" L_l | = u(n)
Z-1)
. 7 \ﬂ—|
and R e R T 0 X
an % M)=2"[X%@]=Z =D L2| u(n—1)

. n
xp(n) = xy(ny= "3 x(k)xy(n— k)
k=0

(

l

n—1 / 1 ya—l—k
— u(k)l ——J u(n—1—k)
k=0 V2
‘1 N rn—-l 1 \.—k.l ‘1 Vi—l p—1 rz‘ 1 \_"|—|k
_l\EJ | &=0 L_Z_,l J_l\Ef :,ULl\E/ |
(l‘-l"" [1=ta ' | (1Y Ti—amy]
2 | 1—as2)™! 2) | -1 ]
/ \*
ulr)

P | =

=2u(n) — 2|
\ s

TRANSFORM ANALYSIS OF LTI SYSTEMS
The Z-transform plays an important role in the analysis and design of discrete-time LTI systems

System Function and Impulse Response
Consider a discrete-time LTI system having an impulse response A(n) as shown in Figure
y(n)

1

_...t(n) hin)

Figure Discrete-time LTI system.

Let us say it gives an output y(n) for an input x(n). Then, we have
',\'(n)f x(n) = h(n)

Taking Z-transform on both sides, we get
Y(2)=X(z) H(2)
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where
Y(z) = Z-transform of the output v(n)
X(z) = Z-transform of the input x(n)
H(z) = Z-transform of the impulse response h(n)

Y(2)
X(z2)

H(7)=

H(z) is called the system function or the transfer function of the LTI discrete system and is
defined as:

The ratio of the Z-transform of the output sequence y(n) to the Z-transform of the input
sequence x(n) when the initial conditions are neglected.

If the input x(n) is an impulse sequence, then X(z) = 1. So ¥(z) = H(z). So the transfer
function is also defined as the Z-transform of the impulse response of the system.

The poles and zeros of the system function offer an insight into the system
characteristics. The poles of the system are defined as the values of z for which the system
function H(z) is infinity and the zeros of the system are the values of z for which the system
function H(z) is zero.

2 Relationship between Transfer Function and Difference Equation
In terms of a difference equation, an nth order discrete-time LTI system is specified as:

N M
Z a.yin—k)= Z byx(n—k)
k=0 k=0

Expanding it, we have
.ao_v(n) tayyin—D+a,y(in=2)+--+ayyv(n— N)=byx(n)+ bx(n—1) + bx(n - 2)
+ ek by x(n— M)
Taking Z-transform on both sides and neglecting the initial conditions. we obtain
Aa(,Y(z) F @iz Y (D) + a2 Y () 4 FayZ  Y(2) =boX (D) + bz X (2) + B2 2 X(2)
oot by X(2)

: — -~ -2 —N = 2 —-M
ie. Y(@) [ap+ a2~ 4 arZ7" + ot ayz V= X@[by + bz + b>z™% + <+ + by Z 9
_ M ;
: 5 ) . R
Y(2) by+ bz +bz 4 by LZbk:
— = (=()
= 2 N ¢
X(2) a+@z  va7 ¥ ayg N ;
zakz
k=0

Now, Y(z)/X(z) = H(z) is called the transfer function of the system or the system function.
The frequency response of a system is obtained by substituting z = €/ in H(2).
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3. STABILITY AND CAUSALITY

We know that the necessary and sufficient condition for a causal linear time-invariant
discrete-time system to be BIBO stable is:

©a

Z |h(n)|<oo

n=0

i.e. an LTI discrete-time system is BIBO stable if its impulse response is absolutely
summable.

We also know that for a system to be causal, its impulse response must be equal to
zero for n < 0 [i.e. i(n) = 0 for n < 0]. Alternately, if the system is causal, then the ROC for
H(z) will be outside the outermost pole.

For a causal LTI system to be stable, all the poles of H(z) must lie inside the unit circle
in the z-plane, i.e. for a causal LTI system to be stable, the ROC of the system function must
include the unit circle.

EXAMPLE Consider an LTI system with a system function H(:)—W.
=({1/72)z
Find the difference equation. Determine the stability.

Solution: Given (A S S
X@) 1-2)z"  z2-(R2)
That is Y(z)- %z"‘ Y(2)= X(2)

“~

Taking inverse Z-transform on both sides (applying the time shifting property), we get the
difference equation

1
y(n)— ;y(n —1)=x(n)

V4

The only pole of H(z) is at z = 1/2, i.e.. inside the unit cirle. So the system is stable.

L2
2
22°—3z+4

Find the difference equation and the frequency response of the system.

EXAMPLE A causal system is represented by H(z)=

Z+2
Solution: Given H(z)=—2""
27°—-3z+4
As the system is causal, H(z) is expressed in negative powers of z.
| Y(z Z+2 i
H(z)= ( ) = = — =
X(z) 2z2-3z+4 2-377'+4z7
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ie. 2Y(z)- 37" Y(2)+427°Y(2) =27 X(2) + 27X (2)
Taking inverse Z-transform on both sides, we have
’2_\'(11)— 3vin=1D+4y(n-2)=x(n=1)+2x(n-2)

which is the required difference equation.
Putting z = ¢/ in H(z), we get the frequency response H(w) of the system.

- Z+2 e’ 42
H(CU,)-—,— - = =
272°=3z+4 o 2¢/°?° — 36/ 4 4

, 2+ cose + jsin®
4+ (2cos2@w—3cos@)+ j(2sin 2@ - 3sin @)

EXAMPLE . Determine the system function of a discrete-time system described by the
difference equation

1 |
v(n) - ;_\'(n— 1)+ -S—_\'(n -2)=x(n)—=2x(n-1)

Solution: Taking Z-transform on both sides of the given difference equation. we get

[ 1= _
Ff-s% ‘Y(z>+;: Y(z)= X(2) - 22" X(z)

Hence the system function or transfer function of the given system is:

Y(z) . 1-277" 2z-2)

X@ 1-an3)'+@5z72 22 -as3)z+a/5)

H(z)=
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EXAMPLE A causal system has input x(n) and output y(n). Find the system function.
frequency response and impulse response of the system if

j N |
x(n)= 3(11)+gé(n -1 —E(S(I‘l =2)

and y(n.)—éi(n)—éb‘(n -1

Also assess the stability.

Solution: Given ..x(n) =d(n)4 %5(11 -1)- éé(rz -2)
and .y(n)—ﬁ(n)—%é(n— 1)

Taking Z-transform of the above equations. we get

1 |
X(2)=1+4 —z"——z‘3
6 6
. 5 s
and Y(:)—l—;:

The system function or the transfer function of the system is:

s H—— 1—(2/3)7”" _ z[z—=(2/3)]
X(2) ez = 16)z72 (2= (/3] [z + (1/2)]

The frequency response of the system is:

zlz = (2/3)] _ e?le’=(213)]

H(w)= =— -
[z=073)][z+ (1/2)] I~ [e/? = (1/3)][e’ + (1/2)]

By partial fraction expansion, we have
H(2) [z—(2/3)] A B =215 . _"US
4 [z-A/D)][z+1/2)] z—-@1A/3) z+{A/2) z—-(1A/3) z+(1/2)

2[  z -I*,ll— z |

H(Z)=—T CEE——
3|_:-(l/3)J 5|_Z. i (]/2)J

Taking inverse Z-transform on both sides, we get the impulse response as:

h(n)=— | % j|n u(n) +%' —]5]" u(n)

[N

Both the poles of H(z) are inside the unit circle. So the system is stable.
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REALIZATION OF DIGITAL FILTERS

INTRODUCTION

Systems may be continuous-time systems or discrete-time systems. Discrete-time systems
may be FIR (Finite Impulse Response) systems or [IR (Infinite Impulse Response) systems.
FIR systems are the systems whose impulse response has finite number of samples and 1IR
systems are systems whose impulse response has infinite number of samples. Realization of a
discrete-time system means obtaining a network corresponding to the difference equation or
transfer function of the system. In this chapter, various methods of realization of discrete-
time systems are discussed.

REALIZATION OF DISCRETE-TIME SYSTEMS

To realize a discrete-time system, the given difference equation in time domain is to be
converted into an algebraic equation in z-domain. and each term of that equation is to be
represented by a suitable element (a constant multiplier or a delay element). Then using
adders, all the elements representing various terms of the equation are to be connected to
obtain the output. The symbols of the basic elements used for constructing the block diagram
of a discrete-time system (adder, constant multiplier and unit delay element) are shown in
Figure

x,(n) > m".l(") + "'z(:) x(n) x(n) = x(n=1)
@ N X0+ XA X(z) X(2) 7X@
X;(n)
X,5(2)
(a) (b) ()
Figure (a) Adder (b) Constant multiplier and (c) Unit delay element.

Adder: An adder is used to add two or more signals. The output of adder is equal to the
sum of all incoming signals.

Constant multiplier: A constant multiplier is used to multiply the signals by a constant. The
output of the multiplier is equal to the product of the input signal and the constant of the
multiplier.

Unit delay element: A unit delay element is used to delay the signal passing through it by
one sampling time.
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SOLUTION OF DIFFERENCE EQUATIONS USING Z-TRANSFORMS

To solve the difference equation. first it is converted into algebraic equation by taking its
Z-transform. The solution is obtained in z-domain and the time domain solution is obtained
by taking its inverse Z-transform.

The system response has two components. The source free response and the forced
response. The response of the system due to input alone when the initial conditions are

neglected is called the forced response of the system. It is also called the steady state
response of the system. It represents the component of the response due to the driving force.
The response of the system due to initial conditions alone when the input is neglected is
called the free or natural response of the system. It is also called the transient response of the
system. It represents the component of the response when the driving function is made zero.
The response due to input and initial conditions considered simultaneously is called the total
response of the system.

For a stable system, the source free component always decays with time. In fact a
stable system is one whose source free component decays with time. For this reason the
source free component is also designated as the transient component and the component due
to source is called the steady state component.

When input is a unit impulse input. the response is called the impulse response of the
system and when the input is a unit step input, the response is called the step response of the
system.

EXAMPLE 1 A linear shift invariant system is described by the difference equation
' 3 1
yn)——yn—-1)+—=y(n—2)=x(n)+ x(n—1)
-+ 8
with y(-=1) = 0 and y(-2) = -1.

Find (a) the natural response of the system (b) the forced response of the system for a
step input and (c) the frequency response of the system.

Solution:
(a) The natural response is the response due to initial conditions only. So make
x(n) = 0. Then the difference equation becomes
.v(n) 3\'(/: ])+]\'(n 2)=0
’ 4- 8" -

Taking Z-transform on both sides, we have

Y(z)—% ' Y(2)+ ¥(- 1)1+ é Z2Y(@ + 7' Y(=1) + ¥(=2)] =0

ic. ¥@|1-2¢"+ 1e? -1 =0
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ie Y(2) l—;:"+l:,'3'—l=0
\ /] 8
, 1/8 1/82> 1/872
Y(2) =

T1I-G (8 -Gz +(18) [z-(/2][z—(1/4)]
The partial fraction expansion of Y(z)/z gives

Y@ _ (1/8)z _. & B _ 14 4B
2z [z—QUD][z=1D] z=Q112) z—-1/14) z—-Q1/12) z—(1/4)

1

d 3 Zz
4z—

Y(2)= — -
172) 8 z—-(1/4)

| 4

Taking inverse Z-transform on both sides, we get the natural response as:

\'(n)—l l "u(n)—l l "u(n)
S I 8| 4

(b) To find the forced response due to a step input, put x(n) = u(n). So we have
3 1
_\‘(n)—:_\'(n -1+ g_\'(n —2)=u(n)+ u(n—1)

We know that the forced response is due to input alone. So for forced response, the
initial conditions are neglected. Taking Z-transform on both sides of the above
equation and neglecting the initial conditions, we have

. 5, e 2 ¥ b4
Y@ -=7'Y(@) + l:. Yo =U@)+7 U@ =——+ bt
4 8 Z= / G |

. 3 5 Z
i.e. )’(:.)‘ et l:" =% :

T 8 z-1

z+1 22 (z+1 22(z+ 1)

Y(z)= : )

Z-D-GMA" +(1I872) (z=DIZ-Gla)z+(18)]  (z—D[z-1/2)][z - (1/4)]
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Taking partial fractions of Y(z)/z, we have

'Y(:.) Z(z+1) A' B ; C
z  (z=-D[z-UD]z-A/4)] z-1 z-1/2) z-(1/4)

16/3 6 5/3

}

=1 z—=(172) z-(1/4)

16’:"|6F: 1 s z 1

or Y(72)=— - =
3lz=1) |z=(W2)| 3[z-1/4)]

Taking the inverse Z-transform on both sides. we have the forced response for a
step input.

y(n)= Ell(ll) 6|f l\]" uin)+ éi l|n u(n)
: 3 L2/ 314

(c) The frequency response of the system H(w) is obtained by putting z = ¢/ in H(2).

Y(z Z(z+1
Here H(2)= Q) _ (z+7)

X(2) Z2-(3/4)z+(1/8)

e’ (e +1)
@Y = (3/4)e’ + (1/8)

Therefore. H(®m)=
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EXAMPLE 2 (a) Determine the free response of the system described by the difference equation
' 1 o |
)'(n)—%)'(n—l)+gy(n—2)—.\'(n) with y(-=1) =1 and y(-2) = 0

(b) Determine the forced response for an input

/ i

.\'(n):l | um
\

/

Solution:
(a) The free response, also called the natural response or transient response is the
response due to initial conditions only [i.e. make x(n) = 0].
So, the difference equation is:

5 1 :
vin)y——=vin=-1)+—v(n=-2)=0
3 5 6
Taking Z-transform on both sides, we get

§ o i g ) 4
Y(2)- =z 'Y(z)+}‘(—l)]+g[: Y(2)+ 27y (=1 + y(=2)]=0

}’(k/".)[l—éz‘ﬁl:"2 |-2+Ls120
6 6 6 6
(5/6)—(1/6)7™" 5/6[z— (1/5))z (5/6)z [z — (1/5)]
Y(:)_ = = s = —_
1—(5/6)z7 '+ (1/6)z= z°-—(5/6)z+ (1/6) [z—(1/2)][z—(1/3)]
Taking partial fractions of Y(z)/z, we have
Y(2) 5/6 [z —(1/5)] A ‘ B 3/2 B 2/3
V4 [z-A/2)]1[z-1/3)] z-(1/2) z-(1/3) z-(1/2) z-(1/3)
' 3z 2z
Y(2)=— S
2z-(1/72) 3 z-(1/3)

Taking inverse Z-transform on both sides, we get the free response of the system as:

NN

1 R n
3)

2(1) _
’“")—"3_'\5,] u(n)

i..

‘v(") =

19| W
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(b) To determine the forced response. i.e. the steady state response. the initial conditions
are to be neglected.
The given difference equation is:

18

lI u(n)
4

N 1 :
y(n)——y(n=1)+—v(n-2)=x(n)=
’ 6° 6°

Taking Z-transform on both sides and neglecting the initial conditions, we have

: 5 ] ) Z

Y(2) ==Y +=7 ¥ () =—"
6 6 YT = (1/4)
( vy F sy Z

i.e Y(D)|1—=T +—7 " |= .

, 6 | z-(1/9)

z ] 33

Y(2)= =

-4 1=516) 27 + 116) 772 [z2— (D] [z= (1/2)][z— (1/3)]

Partial fraction expansion of Y(z)/z gives

Y

Y(z) Z

., / A : B f )
z  [z=-UMDz-A3)][z-A/2)] z—-(U/4) z-(1/3) z-(1/2)
) 3 8 : 6
z—=(1/4) z-(1/3) z-(1/2)
Multiplying both sides by z, we get
¥()=3—— =B 46—

3 A o “~ , .
z—-(1/4) z-(1/3) z-(1/2)
Taking inverse Z-transform on both sides. the forced response of the system is:

yvA

/ 1 A ] A
u(n)—Sl;] u(n)+6(;] un)
/ L By ~ J

/ \

-"('”—‘3{%
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EXAMPLE 1 Construct the block diagram for the discrete-time systems whose input-
output relations are described by the following difference equations:

(a) '.v(n) =0.7x(n)+ 0.3x(n—1)
(b) ._\’(11) =0.5y(n—1)+0.8x(n) + 04x(n—1)

Solution: .
(a) Given y(n)=0.7x(n) + 03x(n—1)

The system may be realized by using the difference equation directly or by using
the Z-transformed version of that. The individual terms of the given difference
equation are 0.7x(n) and 0.3x(n— 1). They are represented by the basic elements as
shown in Figure

Alternatively
Taking Z-transform on both sides of the given difference equation, we have

Y(z) = 0.7X(2) + 0.3z77'X(2)

The individual terms of the above equation are: 0.7X(z) and 0.3z7'X(2).
They are represented by the basic elements as shown in Figure

x(n) I X(2)

-1

X(2) 0.7X(z) 1X(2) 0.3z7'X(2)
x(n) 0.7x(n) x(n—1) 0.3x(n-1)
(a) (b)
Figure Block diagram representation of (a) 0.7X(z) and (b) 0.3z7'X(z).

The input to the system is X(z) [or x(n)] and the output of the system is Y(z) [or
v(n)]. The above elements are connected as shown in Figure to get the output
Y(z) [or y(m)].

J@ % 0IX@ ¥(2)
x(n) I | = 0.7x(n) y(n)
=Xz | 0.377'X(2)
S 0‘3
=1 | =7 03x(n-1)
Figure Realization of system described by y(n) = 0.7x(n) + 0.3x{n-1).
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STRUCTURES FOR REALIZATION OF IIR SYSTEMS

IIR systems are systems whose impulse response has infinite number of samples. They are
designed by using all the samples of the infinite duration impulse response. The convolution
formula for IIR systems is given by

Y=y hk) x(n—k)
k=0

Since this weighted sum involves the present and all the past input samples, we can say that
the IIR system has an infinite memory.

A system whose output y(n) at time n depends on the present input and any number of
past values of input and output is called a recursive system. The past outputs are

yin—1), y(n=2), y(n-3). ...
Hence, for recursive system. the output y(n) is given by
-y(n) =Fly(n—1),y(n—2), ....¥y(n—N), x(n), x(n —1), .... x(n — M)]

In recursive system, in order to compute y(n,), we need to compute all the previous values
¥(0), y(1). ¥(2), ..., y(ng — 1) before calculating y(n,). Hence, output of recursive system has
to be computed in order [y(0), y(1), ¥(2), ... ].

Transfer function of IR system

In general, an IIR system is described by the difference equation

N M
==Y ayn-k+ Y bxin—k)
k=1 k=0

i.e. in general. IIR systems are those in which the output at any instant of time depends not
only on the present and past inputs but also on the past outputs. Hence, in general, an IIR
system is of recursive type.

On taking Z-transform of the above equation for y(n), we get

N M
Y@ =-Y az*Y@+ Y bz *X@)
k=1 k=0
' N M
ie. Y@+ Y Y@ =Y hztX@
k=1 k=0

The system function or the transfer function of the IIR system is:

M
Z biz* ; ’ »
k=0 by + 627 + b7 + -+ by’
=H(z)= : = : A

N —1 v,
iz 1+aqz +a->z
I + E a,z 5 : =
k=1

Y(2)
X(z)

N

+ e+ ANZ
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The above equations for ¥(z) and H(z) can be viewed as a computational procedure (or
algorithm) to determine the output sequence y(n) from the input sequence x(n). The
computations in the above equation can be arranged into various equivalent sets of difference
equations with each set of equations defining a computational procedure or algorithm for
implementing the system.

For each set of equations, we can construct a block diagram consisting of delays,
adders and multipliers. Such block diagrams are referred to as realization of the system or
equivalently as structure for realizing the system.

The main advantage of re-arranging the sets of difference equations (i.e. the main
criteria for selecting a particular structure) is to reduce the computational complexity,
memory requirements and finite word length effects in computations.

So the factors that influence the choice of structure for realization of LTI system are:
computational complexity, memory requirements and finite word length effects in
computations.

Computational complexity refers to the number of arithmetic operations required to
compute the output value y(n) for the system.

Memory requirements refer to the number of memory locations required to store the
system parameters, past inputs and outputs and any intermediate computed values.

Finite-word-length effects or finite precision effects refer to the quantization effects that
are inherent in any digital implementation of the system either in hardware or in software.

Although the above three factors play a major role in influencing our choice of the
realization of the system, other factors such as whether the structure lends itself to parallel
processing or whether the computations can be pipelined may play a role in selecting a
specific structure.

The different types of structures for realizing IIR systems are:

1. Direct form-I structure 2. Direct form-II structure
3. Transposed form structure 4. Cascade form structure
5. Parallel form structure 6. Lattice structure

7. Ladder structure

1 Direct Form-l Structure

Direct form-I realization of an IIR system is nothing. but the direct implementation of the
difference equation or transfer function. It is the simplest and most straight forward
realization structure available.
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The difference equation governing the behaviour of an IIR system is

N M
yy=—-Y ayn-k+ Y bxin—k)
k=1 k=0

i.e. ._v(n') = —ayn—-1)—a,yn—2)—--—ayyn—N)+b,x(n) + bx(n—1) + - + by, x(n — M)

On taking the Z-transform of the above equation for y(n), we get

Y(2) = —a,27'Y(2) - a,277Y (@) = — ay 7Y (2) + by X(2) + bz X(2) + -+ by 77 X(2)

The equation for Y(z) [or y(n)] can be directly represented by a block diagram as
shown in Figure 4.6 and this structure is called Direct form-I structure. This structure uses
separate delays (z”') for input and output samples. Hence, for realizing this structure more
memory is required. The direct form structure provides a direct relation between time domain
and z-domain equations.

The structure shown in Figure 4.6 is called a non-canonical structure because the
number of delay elements used is more than the order of the difference equation.

If the IR system is more complex, that is of higher order, then introduce an
intermediate variable W(z) so that

‘ M
W@ =Y bz X(2) = b X(2) + b7 X(2) + -+ + by 27 X(2)
k=0

M
or w(n) = E byx(n—k)=byx(n) + bx(n—1)+ -+« + by x(n —m)
k=0

Y(z)= —a,z7'Y(2) —(1.21‘2)’(2) —-+ W(2)

or 4_\'(;1) = —aqy(n—-1)—a,y(n—2)—--+w(n)

So, the direct form-I structure is in two parts. The first part contains only zeros [that is, the
input components either x(a) or X(z)] and the second part contains only poles [that is, the
output components either y(n) or ¥(z)]. In direct form-I, the zeros are realized first and poles
are realized second.

Limitations of direct form-I

e Since the number of delay elements used in direct form-I is more than (double) the
order of the difference equation, it is not effective.
It lacks hardware flexibility.
There are chances of instability due to the quantization noise.
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X(z Wiz Y(z
0( ) = » b, + @) :Q (=)
x(n) o) 2 ¥(n)
-~ z—l
X(2) b ) r'Y(z)
an—1) : T y(n—1)
4
- —~—!
X(2) ) Q)
xin—2)1 ! vin=2)
i 1 1 i
| ! ! |
i |
i i
! I 1 I
: - . :
¥ v
1 ol
Z,.--(M-l :'X(Z.) Z-('\H 'Y(ii)

xln—(M-=1)]

r»}

VX(z)
x(n—M)

Figure .

yln=(N=1)]

VY(2)
yin=~N)

/A

Direct form+ structure.

2 Direct Form-ll Structure

The Direct form-II structure is an alternative to direct form-I structure. It is more
advantageous to use direct form-II technique than direct form-I, because it uses less number
of delay elements than the direct form-I structure.

In direct form-II, an intermediate variable is introduced and the given transfer function
is split into two. one containing only poles and the other containing only zeros. The poles
[that is. the oufput components y(n) or Y(z) which is the denominator part of the transfer
function] are realized first and the zeros [that is, the input components either x(n) or X(z).
which is the numerator part of the transfer function] second.

If the coefficient of the present output sample v(n) or the non-delay constant at
denominator is non unity. then transform it to unity. The systematic procedure is given as
follows:
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Consider the general difference equation governing an [IR system

N M
yim=-=Y ayn-k)+ Y bxn—k)
k=1 k=0
i.e. '_\'(n)= —ayn—1)—-a,yn-2)-a;y(n—-3)—---—ayy(n—N)

.+ byx(n) + byx(in—=1)+ byx(n—2) + - + by x(n — M)
On taking Z-transform of the above equation and neglecting initial conditions. we get
Y(2) = —az7'Y(2) = a7 Y (D) = —ay 2" Y (2) + by X(2) + B2 X(2) + - + by 77V X(2)

ie.  Y()+ @77 'Y(2) + a:272Y (@) + - +ayz Y (@) = b X(2) + Bz X(D) + -+ + bz M X(2)

ie. Y@l + a,z" + az:'2 + et aNz‘N] =X(2)[by + b,:," + b,_x,:;'2 + ot b,,-:"“]
‘e Y(z) by +bzt + b2 + by
o = 1 N

X(2) 1+ @77 +a,3 +--+ay7”

Y@ _ Y@ W@
X(z) W) X

W@
X(2) 1437 +@&7 0+ +ayg "

Y(2)
W(z)

and {

=by + bz + bz + o+ by

On cross multiplying the above equations, we get
'W(:«,) + 4,77 WD) + @z W(Z2) + - +ayz " W(2) = X(2)
W(2)=X(@)- 77" W(2) — a7 W(2) = —ayz " W(z)
and Y(2)= bW (2) + biz7'W(2) + b2 W(2) + - + by 7 W(2)

The realization of an IIR system represented by these equations in direct form-II is shown in
Figure

Advantage of the direct form-ll over the direct form-1

The number of delay elements used in direct form-II is less than that of direct form-1.

Limitations of direct form-Il

e [t also lacks hardware flexibility
e There are chances of instability due to the quantization noise
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Figure

Wiz) >_’< ¥(z)
by, +>—>

Oy . }
W) L~

Direct form-l structure of lIR system for M = N.
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Since the number of delay elements used in direct form-II is the same as that of the
order of the difference equation, direct form-1I is called a canonical structure.
The comparison of direct form-I and direct form-II structures is given in Table .1

TABLE . 1

Comparison of direct form-l and direct form-ll structures

Direct form-I structure

Direct form-I1 structure

This realization uses separate delays (memory)
for both the input and output signal samples.

For the (M — 1)th or (N— 1)th order TIR system.
direct form-I requires M + N — | multipliers,
M + N—2 adders and M + N —2 delays.

It is also called non-canonical, because it
requires more number of delays.

It is not efficient in terms of memory require-
ments compared to direct form-II.

Direct form-I can be viewed as two linear
time-invariant systems in cascade. The first
one is non-recursive and the second one
recursive.

This realization uses a single delay (memory)
for both the input and output signal samples.

For the (M — 1)th or (N — I)th order 1IR system,
direct form-IT requires M + N — 1 multipliers,
M+ N -2 adders and max [(M-1), (N-1)]
delays.

It is called canonical, because it requires a
minimum number of delays.

It is more efficient in terms of memory require-
ments.

Direct form-II can also be viewed as two linear
time-invariant systems in cascade. The first
one is recursive and the second one non-
recursive.
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Conversion of direct form-I structure to direct form-Il structure

The direct form-I structure can be converted to direct form-II structure by considering the
direct form-I structure as cascade of two systems H(z) and H,(z) as shown in Figure : (a).
By linearity property, the order of cascading can be interchanged as shown in Figure i(b).

x(n)
.—

(a)

EXAMPLE Find the digital network in direct form-I for the system
described by the difference equation

() =2x(n) +0.3x(n—1) + 0.5x(n =2) = 0.7 ¥(n—1) = 0.9 y(n - 2)
Solution: Given difference equation is:

() =2x(n) +0.3x(n—1)+0.5x(n =2) = 0.7 ¥(n—1) =09 y(n - 2)
Taking Z-transform on both sides, we have

Y(2)=2X(2) + 03727 ' X(2) + 0.5 X(2) - 0.727'Y(2) - 0.9272Y(2)
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Y(z) +0.727'Y(2) + 0.9772Y(2) = 2X(2) + 0377 X(2) + 0.5:2X(2)

ie. Y(2[1+0.7z7" +09z72]1=X(2)[2 + 03z +0.527%]

~

Y(z) 2+037z" 40577

H(z)= = : -
X(z) 1+07z7 4097~
w Y(2) _ Y@ W() _2+03" +05;~
X@ W@ X@ 1+077" +09z2
(). _f — and Y@ 54037 +0572
X(z) 1407z +097° W(z)
Cross multiplying the above equations, we get
W(z) +0.727'W(z) + 0.927°W(z) = X(2)
ie. W) =X(2)-0.7z"'W(2) - 09z7°W(z)
and Y(z) =2W(z) + 0.377'W(z) + 0.5 °W(2)

o +) o +)

X(2) 2 5 > Y(z
N N | v
ESS 251
X >—»<D C+><—< 7 Y(2)
A A
Z—l :—l
72X(z) > 0.5 0.9 | 2Y(2)
Figure Direct form structure
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5 W(z) >
X2 e /+> j 2 ' +>; »Y(z2)

%
o )

\
-0.9 0.3
*W(2)
Figure Direct form-ll structure (b)
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