

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution – UGC, Govt.of India)

Recognizes under 2(f) and 12(B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE –Accredited by NBA & NAAC-"A" Grade-ISO 9001:2015 Certified)

MATHEMATICS-II

B.Tech – I Year – II Semester

DEPARTMENT OF HUMANITIES AND SCIENCES

INDEX

UNIT-I: Solutions of Algebraic and Transcendental	Equations,
Interpolation	1-41
UNIT-II: Numerical Methods	42-103
UNIT-III: Beta and Gamma Functions	104-122
UNIT W. Double and Triple Integrals	102 141
UNIT-IV: Double and Triple Integrals	123-141
UNIT-V : Vector Calculus	142-191

(R18A0022)Mathematics-II

Objectives:

- 1. The aim of numerical methods is to provide systematic methods for solving problems in a numerical form using the given initial data and also used to find the roots of an equation.
- 2. To learn the concepts curve fitting, numerical integration and numerical solutions of first order ordinary differential equations.
- 3. Evaluation of improper integrals using Beta and Gamma functions.
- 4. Evaluation of multiple integrals.
- 5. In many engineering fields the physical quantities involved are vector valued functions. Hence the vector calculus aims at basic properties of vector valued functions and their applications to line, surface and volume integrals.

UNIT – I: Solutions of algebraic and transcendental equations, Interpolation

Solution of algebraic and transcendental equations: Introduction, Bisection Method, Method of false position, Newton Raphson method and their graphical interpretations.

Interpolation: Introduction, errors in polynomial interpolation, Finite differences - Forward differences, backward differences, central differences. Newton's formulae for interpolation, Gauss's central difference formulae. Interpolation with unevenly spaced points - Lagrange's Interpolation.

UNIT – II: Numerical Methods

Numerical integration: Generalized quadrature - Trapezoidal rule, Simpson's $1/3^{rd}$ and Simpson's $3/8^{th}$ rules.

Numerical solution of ordinary differential equations: Solution by Taylor's series method, Euler's method, Euler's method, Runge-Kutta fourth order method.

Curve fitting: Fitting a straight line, second degree curve, exponential curve, power curve by method of least squares.

Unit III: Beta and Gamma functions

Introduction of improper integrals- Beta and Gamma functions - Relation between them, their properties, Evaluation of improper integrals using Beta and Gamma functions.

Unit IV: Double and Triple Integrals

Double and triple integrals (Cartesian and polar), change of order of integration in double integrals, Change of variables (Cartesian to polar).

Unit V: Vector Calculus

Introduction, Scalar point function and vector point function, Directional derivative, Gradient, Divergence, Curl and their related properties, Laplacian operator, Line integral - Work done, Surface integrals, Volume integral. Vector integral theorem-Green's Theorem, Stoke's theorem and Gauss's Divergence Theorems (Statement & their Verification).

TEXT BOOKS:

i) Higher Engineering Mathematics by B V Ramana ., Tata McGraw Hill.

ii) Higher Engineering Mathematics by B.S. Grewal, Khanna Publishers.

iii) Mathematical Methods by S.R.K Iyenger, R.K.Jain, Narosa Publishers.

REFERENCE BOOKS:

i) Advanced Engineering Mathematics by Kreyszig, John Wiley & Sons.

ii) Advanced Engineering Mathematics by Michael Greenberg –Pearson publishers.

iii) Introductory Methods of Numerical Analysis by S.S. Sastry, PHI

Course Outcomes: After learning the contents of this paper the student will be able to

- 1. Find the roots of algebraic, non algebraic equations and predict the value at an intermediate point from a given discrete data.
- 2. Find the most appropriate relation of the data variables using curve fitting and this method of data analysis helps engineers to understand the system for better interpretation and decision making.
- 3. Find a numerical solution for a given differential equation.
- 4. Evaluate multiple integrals and to have a basic understanding of Beta and Gamma functions.
- 5. Evaluate the line, surface, volume integrals and converting them from one to another using vector integral theorems.

UNIT-I

SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS, INTERPOLATION

INTRODUCTION

Using mathematical modeling, most of the problems in engineering and physical and economical sciences can be formulated in terms of system of linear or non linear equations, ordinary or partial differential equations or Integral equations. In majority of the cases, the solutions to these problems in analytical form are non-existent or difficult or not amenable for direct interpretation. In all such problems, numerical analysis provides approximate solutions are practical and amenable for analysis. Numerical analysis does not strive for exactness. Instaed, it yields approximations with specified degree of accuracy. The early disadvantages of the several numbers of computations involved has been removed through high speed computation using computers, giving results which are accurate, reliable and fast. Numerical approch is not only a science but also an 'art' because the choice of 'appropriate' procedure which 'best' suits to a given problem yields 'good' solutions.

Solution of algebraic and transcendental equations

Introduction:

Polynomial function: A function f(x) is said to be a polynomial function of nth degree, if

f(x) is a polynomial in x. i.e. $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$

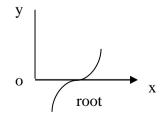
where $a_0 \neq 0$, the co-efficients a_0, a_1, \dots, a_n are real constants and n is a non-negative integer.

Algebraic function: A function which is a sum (or) difference (or) product of two polynomials is called an algebraic function. Otherwise, the function is called a transcendental (or) non-algebraic function.

Eg:
$$f(x) = x^3 - 4x^2 + 5x - 2$$
 is a algebraic equation
Eg: $f(x) = x\cos x - e^x = 0$ is a Transcondental equation

Root of an equation: A number α is called a root of an equation f(x)=0 if $f(\alpha)=0$. We also say that α is a zero of the function.

Graphical view of a root of an equation:



The roots of an equation are the points where the graph y = f(x) cuts the x-axis.

INTERPOLATION

Methods to find the roots of an equation f(x) = 0:

1. Direct methods: We know the solution of the polynomial equations such as linear equation ax + b = 0, and quadratic equation $ax^2 + bx + c = 0$, using direct methods or analytical methods. Analytical methods for the solution of cubic and biquadratic equations are also available.But we are unable to find roots of higher order (above fourth order) algebraic equations and also transcendental euations.So, we go for Numerical methods i.e Iterative methods.

2. Iterative methods: The following are some iteravative methods to find an approximate root of an equation

- (1) Bisection Method
- (2) Regula- Falsi Method
- (3) Newton Raphson method

Intermediate value theorem: If *f* is a real-valued continuous function on the interval [a, b], and *u* is a number between f(a) and f(b), then there is a $c \in [a, b]$ such that f(c) = u.

Bisection method or Half-interval method:

Bisection method is a simple iteration method to find an approximate root of an equation. Suppose that given equation of the form is f(x) = 0.

In this method first we choose two points x_0, x_1 such that $f(x_0)$ and $f(x_1)$ will have opposite signs (i.e $f(x_0), f(x_1) < 0$) then the root lies in interval (x_0, x_1) . Now we bisect this interval at x_2 , if $f(x_2) = 0$ then x_2 is a root of an equation otherwise the root lies in (x_0, x_2) or (x_2, x_1) accordingly $f(x_0), f(x_2) < 0$ and $f(x_2), f(x_1) < 0$.

Assume that $f(x_0)$, $f(x_2) < 0$ then the root lies in interval (x_0, x_2) , now we bisect this interval at x_3 , if $f(x_3) = 0$ then x_3 is a root of an equation otherwise the root lies in (x_0, x_3) or (x_3, x_2) accordingly $f(x_0)$. $f(x_3) < 0$ and $f(x_3)$. $f(x_2) < 0$.

We continue this procedure till the root is found to the desired accuracy.

PROBLEMS

1. Using bisection method, find the negative root of $x^3 - 4x + 9 = 0$ SOL: Givenf(x)= $x^3 - 4x + 9$ f(-1)=-1+4+9=12>0 f(-2)=-8+8+9=9>0

f(-3)=-27+12+9=-6<0

Since f(-2)>0 and f(-3)<0 therefore root lies in interval $(-2,-3)=(x_0, x_1)$ Bisect this interval to get next approximation x_2

i.e $x_2 = \frac{-2-3}{2} = -2.5$, f(-2.5) > 0

DEPARTMENT OF HUMANITIES & SCIENCES MRCET (EAMCET CODE: MLRD)

INTERPOLATION

Since f(-2)>0 f(-2.5)>0 f(-3)<0 therefore root lies in (-2.5,-3) Bisect this interval to get next approximation x_3 i.e $x_3 = \frac{-2.5-3}{2} = -2.75$, f(-2.75) < 0Since f(-2.5)>0 f(-2.75)<0 f(-3)<0 therefore root lies in (-2.5,-2.75) Bisect this interval to get next approximation x_4 *i.e* $x_4 = \frac{-2.5-2.75}{2} = -2.625$, f(-2.625) < 0

Since f(-2.5)>0 f(-2.625)>0 f(-2.75)<0 therefore root lies in (-2.625,-2.75) Bisect this interval to get next approximation x_5 i.e $x_5 = \frac{-2.625 - 2.75}{2} = -2.6875$, f(-2.6875) < 0

Since f(-2.625)>0 f(-2.6875)>0 f(-2.75)<0 therefore root lies in (-2.6875,-2.75) Bisect this interval to get next approximation x_6 i.e $x_6 = \frac{-2.6875 - 2.75}{2} = -2.7187$, f(-2.7187) < 0

We continue this procedure till the root is found to the desired accuracy. (stop the procedure when two successive approximations are same up to four decamal places)

2). Find a root of the equation x³ - x - 1 = 0 using the bisection method in 5 - stages
Sol. Given f(x) = x³ - x - 1
f(1) = -1 < 0
f(2) = 5 > 0
∴One root lies between 1 and 2
Now see f(1) is near to 0 than f(2). So root is near to 1
so again find f(1.1), f(1.2).....

Till one is + ve and another – ve. Clearly f(1.1)<0, f(1.2)<0 f(1.3)=-0.103<0 f(1.4)=0.344>0Since f(1.3)<0 and f(1.4)>0 therefore root lies in interval $(1.3,1.4)=(x_0, x_1)$ Bisect this interval to get next approximation x_2

i.e.
$$x_2 = \frac{1}{2}(1.3+1.4) = 1.35$$

here f(2) = 5 > 0

Since $f(1.3)<0 \ f(1.35) > 0 \ f(1.4)>0$ therefore root lies in (1.3,1.35) Bisect this interval to get next approximation x_3 i.e $x_3 = \frac{1.3+1.35}{2} = 1.325$, f(1.325) = 0.0012 > 0

DEPARTMENT OF HUMANITIES & SCIENCES MRCET (EAMCET CODE: MLRD)

Since f(1.3)<0 f(1.325)>0 f(1.35)>0 therefore root lies in (1.3,1.325)

Continuing like above upto two iterations nearly same upto three decimals, we get Therefore, Approximate root is 1.32.

3) Find a root of an equation $3x = e^x$ using bisection method. Sol

Let
$$f(x) = 3x - e^{x}$$

$$f(1) = 0.281718 > 0$$

$$f(2) = -1.389056 < 0$$

Since f(1)>0 and f(2)<0 therefore root lies in interval $(1,2)=(x_0, x_1)$ Bisect this interval to get next approximation x_2

i.e
$$x_2 = \frac{x_0 + x_1}{2} = 1.5 f(1.5) > 0$$

Since f(1)>0 f(1.5)>0 f(2)<0 therefore root lies in (1.5,2)

Bisect this interval to get next approximation x_3

i.e
$$x_3 = \frac{1.5+2}{2} = 1.75$$
 $f(x_3) = f(1.75) < 0$

Since f(1.5)>0 f(1.75)<0 f(2)<0 therefore root lies in (1.5,1.75) Bisect this interval to get next approximation x_4 *i.e* $x_4 = \frac{1.5+1.75}{2} = 1.625$, f(1.625) = 1.666 > 0Continuing like above up to 12 iterations we get

$$x_{11} = 1.512323$$

and
 $x_{11} = 1.512208$

 $x_{12} = 1.512208$

Therfore we got two successive iterations same up to three decimal places Therefore, Approximate root is 1.512.

4. Find a root of an equation $x \log_{10} x = 1.2$ using bisection method which lies between 2 and 3

Sol:

Given $f(x) = x \log_{10} x - 1.2$ f(1)=-1.2<0 f(2)=-0.59<0 f(3)=0.23>0Since f(2)>0 and f(3)<0 therefore root lies in interval $(2,3)=(x_0, x_1)$ Bisect this interval to get next approximation x_2

i.e
$$x_2 = \frac{2+3}{2} = 2.5$$

Here $f(2.5) < 0$

Since f(2)<0 f(2.5)<0 f(3)>0 therefore root lies in (2.5,3) Bisect this interval to get next approximation x_3

DEPARTMENT OF HUMANITIES & SCIENCES MRCET (EAMCET CODE: MLRD)

INTERPOLATION

i.e $x_3 = \frac{2.5+3}{2} = 2.75$ Here $f(x_3) = f(2.75) > 0$ Continuing like above , we get $x_9 = 2.7453 x_{10} = 2.7406$ Therefore, Approximate root is 2.741. 5. Find a root of an equation $x = \cos x$ using bisection method. SOL: Given fx) = x - cos(x) $f(0) = 0 - \cos 0 = -1 < 0$ $f(1) = 1 - \cos 1 = 0.4597 > 0$ then one root must be lies between in (0, 1)Here f(1) value is near to zero so f(0.9) = 0.2784 > 0f(0.8) = 0.1033 > 0f(0.7) = -0.0648 < 0Since f(0.7) < 0 and f(8) > 0 therefore root lies in interval $(0.7, 0.8) = (x_0, x_1)$ Bisect this interval to get next approximation x_2 i.e , $x_2 = \frac{x_0 + x_1}{2} = \frac{0.7 + 0.8}{2} = 0.75$ f(0.75) = 0.0183 > 0Since f(0.7) < 0 f(0.75) > 0 f(0.8) > 0 therefore root lies in (0.7,0.75)

Bisect this interval to get next approximation x_3

i.e
$$x_3 = \frac{x_2 + x_0}{2} = \frac{0.7 + 0.75}{2} = 0.725$$
 $f(0.725) = -0.0235 < 0$

Since f(0.7)<0 f(0.725) < 0 f(0.75)>0 therefore root lies in (0.725,0.75) Bisect this interval to get next approximation x_4

$$i.e x_4 = \frac{x_2 + x_3}{2} = \frac{0.725 + 0.75}{2} = 0.7375$$
 $f(0.7375) = -0.0027 < 0$
Since $f(0.725) < 0$ $f(0.7375) < 0$ $f(0.75) > 0$ therefore root lies in (0.7375,0.75)
Bisect this interval to get next approximation x_5

i.e
$$x_5 = \frac{x_2 + x_4}{2} = \frac{0.7375 + 0.75}{2} = 0.7425$$
 $f(0.7425) = 0.0057 > 0$

We continue this procedure till the root is found to the desired accuracy. (stop the procedure when two successive approximations are same up to four decamal places)

The required approximate root = 0.7392.

6. Find a root of an equation 3x = cosx + 1 using bisection method. SOL:Given f(x) = 3x - cosx - 1

$$f(0) = -2 < 0$$

$$f(1) = 1.4597 > 0$$

$$f(0.5) = -0.3776 < 0$$

Since f(0.5)<0 and f(1)>0 therefore root lies in interval $(0.5,1)=(x_0, x_1)$ Bisect this interval to get next approximation x_2

i.e $x_2 = \frac{x_0 + x_1}{2} = \frac{0.5 + 1}{2} = 0.75$ f(0.75) = 0.5183 > 0Since f(0.5) < 0 f(0.75) > 0 f(1) > 0 therefore root lies in (0.5,0.75)

INTERPOLATION

Bisect this interval to get next approximation x_3

i. $e_{x_3} = \frac{x_2 + x_0}{2} = \frac{0.5 + 0.75}{2} = 0.625$ f(0.625) = 0.06403 > 0Since f(0.5) < 0 f(0.625) > 0 f(0.75) > 0 therefore root lies in (0.5, 0.625)Bisect this interval to get next approximation x_4 *i.* $e_{x_4} = \frac{x_0 + x_3}{2} = \frac{0.5 + 0.625}{2} = 0.5625$ f(0.5625) = -0.1584 < 0Since f(0.5) < 0 f(0.5625) < 0 f(0.625) > 0 therefore root lies in (0.5625, 0.625)Bisect this interval to get next approximation x_5 *i.* $e_{x_5} = \frac{x_3 + x_4}{2} = \frac{0.5625 + 0.625}{2} = 0.59375$ f(0.59375) = -0.0475 < 0We continue this procedure till the root is found to the desired accuracy. (stop the procedure when two successive approximations are same up to four decamal places) Therefore, Approximate root is 0.61. **7.Find the real root of the equation x^3-5x+1=0 by bisection method.**

Sol: given that $f(x) = x^3 - 5x + 1$ f(0)=1 > 0, f(1)= -3 < 0Hence the root lies between 0 and 1 Let the initial approximation be $x_0 = \frac{0+1}{2} = 0.5$ f(0.5)= -1.375 < 0since f(0) > 0 and f(0.5) < 0therefore the root lies between 0 and 0.5 The second approximation $x_1 = \frac{0+0.5}{2} = 0.25$ f(0.25)= -0.234 < 0since f(0) > 0 f(0.25) < 0 f(0.5) < 0therefore the root lies between 0 and 0.25 the third approximation $x_2 = \frac{0+0.25}{2} = 0.125$

Now f(0.125)=0.3749 > 0 f(0) > 0 f(0.125)>0 f(0.25) < 0

therefore the root lies between 0 and 0.125

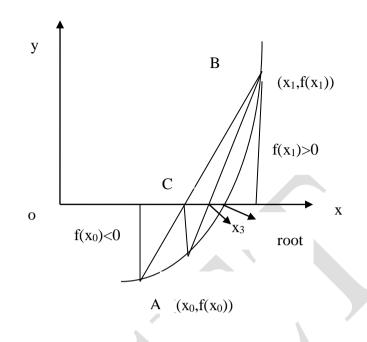
continue this procedure till the desired occurucy is obtained.

False Position Method (Regula – Falsi Method)

Using False position method we find the approximate root of the given equation f(x)=0 in in this method first we choose two initial approximate values x_0 and x_1 such that $f(x_0)$ and $f(x_1)$ will have opposite signs i.e $f(x_0) \cdot f(x_1) < 0$. Therefore the root lies in interaval (x_0, x_0)

Here two cases occur (i) $f(x_0) < 0$, $f(x_1) > 0$ (ii) $f(x_0) > 0$, $f(x_1) < 0$

FIGURE OF CASE (I)



At the point C where the line AB crosses the x – axis, where f(x) = 0 ie, y = 0 substitute y = 0 in equation (1), then we get

$$x = x_0 - \frac{x_1 - x_0}{f(x_1) - f(x_0)} f(x_0) \to (2)$$

x is given by (2) serves as an approximated value of the root, when the interval in which it lies is small. If the new value of x is taken as x_2 then (2) becomes

Now we decide whether the root lies between

 x_0 and x_2 (or) x_2 and x_1

In the above graph clearly $f(x_2) < 0$ Therefore root lies between x_1 and x_2

We name that interval as (x_1, x_2)

The next approximation is given by
$$x_3 = \frac{x_1 f(x_2) - x_2 f(x_1)}{f(x_2) - f(x_1)}$$

DEPARTMENT OF HUMANITIES & SCIENCES MRCET (EAMCET CODE: MLRD)

INTERPOLATION

This will in general, be nearest to the exact root. We continue this procedure till the root is found to the desired accuracy.

The iteration process based on (3) is known as the method of false position The successive intervals where the root lies, in the above procedure are named as

$$(x_0, x_1), (x_1, x_2), (x_2, x_3)$$
 etc

Where $x_i < x_{i+1}$ and $f(x_0)$, $f(x_{i+1})$ are of opposite signs.

Also
$$x_{i+1} = \frac{x_{i-1}f(x_i) - x_if(x_{i-1})}{f(x_i) - f(x_{i-1})}$$

CASE(II) $f(x_0) > 0, f(x_1) < 0$

Repeate same procedure as case(i).

PROBLEMS:

1. Find an approximate root of the equation f(x) = log x - cos x by using Regula-Falsi method.

Sol: Given equation is f(x) = logx - cosxf(1) = log1 - cos1 = -0.5403 < 0f(2) = log2 - cos2 = 1.1093 > 0

Since f(1) < 0 and f(2) > 0 Therefore the root lies in interval $(1,2) = (x_0, x_1)$ Since $f(x_0) = -0.5403 < 0$ and $f(x_1) = 1.1093 > 0$ The next approximation to the root is given by

$$x_2 = \frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_1) - f(x_0)} = 1.3275$$

$$f(x_2) = f(1.3275) = 0.04239 > 0$$

Since $f(x_0) = -0.5403 < 0$, $f(x_2) = 0.04239 > 0$, $f(x_1) = 1.1093 > 0$

Therefore the root lies in interval $(x_0, x_2) = (1, 1.3275)$ The next approximation is

$$x_3 = \frac{x_0 f(x_2) - x_2 f(x_0)}{f(x_2) - f(x_0)} = 1.3035$$

Continue the procedure until the successive approximations are same up to four decimal places

2. Find an approximate root of the equation $f(x) = e^x sinx - 1 = 0$ by using Regula-Falsi method.

Sol: Given equation is $f(x) = e^x sinx - 1 = 0$

$$f(0) = -1 < 0$$

$$f(1) = 1.2873 > 0$$

Since f(0) < 0 and f(1) > 0Therefore the root lies in interval $(0,1) = (x_0, x_1)$ $f(x_0) = -1 < 0$ and $f(x_1) = 1.2873 > 0$

DEPARTMENT OF HUMANITIES & SCIENCES MRCET (EAMCET CODE: MLRD)

INTERPOLATION

The next approximation to the root is given by

$$x_2 = \frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_1) - f(x_0)} = 0.4372$$

 $f(x_2) = f(0.4372) = -0.3444 < 0$

 $f(x_1) = 1.2873 > 0$ and $f(x_2) = -0.3444 < 0$

Therefore the root lies in interval $(0.4372,1) = (x_1, x_2)$ The next approximation is

$$x_3 = \frac{x_1 f(x_2) - x_2 f(x_1)}{f(x_2) - f(x_1)} = 0.556$$

Continue the procedure until the successive approximations are same up to four decimal places

3. Find an approximate root of the equation $f(x) = 2x - \log_{10} x - 7 = 0$ by using Regula-Falsi method.

Sol: Given equation is $f(x) = 2x - log_{10}^x - 7 = 0$

$$f(1) = -5 < 0$$

$$f(2) = -3.3010 < 0$$

$$f(3) = -1.4771 < 0$$

$$f(4) = 0.3979 > 0$$

Since f(3) < 0 and f(4) > 0Therefore the root lies in interval $(3,4) = (x_0, x_1)$ $f(x_0) = -1.4771 < 0$ and $f(x_1) = 0.3979 > 0$ The next approximation to the root is given by

$$x_2 = \frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_1) - f(x_0)} = 3.7878$$

 $f(x_2) = -0.0028 < 0$ $f(x_1) = 0.3979 > 0$ and $f(x_2) = -0.0228 < 0$

Therefore the root lies in interval $(3.7878,4) = (x_2, x_1)$ The next approximation is

$$x_3 = \frac{x_2 f(x_1) - x_1 f(x_2)}{f(x_1) - f(x_2)} = 3.7893$$

Continue the procedure until the successive approximations are same up to four decimal places

4. Find a root of an equation $3x = e^x$ using False position method.

Sol. Let $f(x) = 3x - e^x$

Then $\frac{f(0) = -1, f(0.1) = -0.8, \dots}{f(0.6) = -0.0221192 < 0, f(0.7) = 0.086247 > 0}$

Since f(0.6). f(0.7) < 0 and these values are near to zero

Therefore the root lies in the interval $(0.6, 0.7) = (x_0, x_1)$ By False position method

The next approximation to the root is given by

INTERPOLATION

$$x_{2} = \frac{x_{0}f(x_{1}) - x_{1}f(x_{0})}{f(x_{1}) - f(x_{0})} = 3.7878$$
$$= \frac{0.6f(0.7) - 0.7f(0.6)}{f(0.7) - f(0.6)}$$
$$= 0.620451$$
Since $f(x_{0}) < 0$ $f(x_{2}) = f(0.620451) = 0.001587 > 0$ $f(x_{1}) > 0$ Therefore the root lies in the interval $(0.6, 0.620451) = (x_{0}, x_{2})$ The next approximation to the root is given by

$$x_3 = \frac{x_0 f(x_2) - x_2 f(x_0)}{f(x_2) - f(x_0)}$$

$$\frac{0.6f(0.620451) - 0.620451f(0.6)}{f(0.620451) - f(0.6)}$$

f (0.619083)=0.000025>0

 \therefore The Approximate root is 0.6190

5. Find the root of $x \log_{10} x - 1$. 2 = 0 using Regula falsi method. Sol:

 $f(x) = x \log_{10} x - 1.2$

Here

f(2)=-0.59<0,

f(3)=0.23>0

Since f(2)<0 and f(3)>0 the root lies in the interval $(2,3) = (x_0, x_1)$ The next approximation to the root is given by

$$x_2 = \frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_1) - f(x_0)}$$

$$\frac{2f(3)-3f(2)}{f(3)-f(2)}$$

Since $f(x_0) < 0$ $f(x_2) = f(2.7195) = -0.0184 < 0$ $f(x_1) > 0$ Therefore the root lies in the interval $(2.7195,3) = (x_2, x_1)$ The next approximation to the root is given by

$$x_{3} = \frac{x_{2}f(x_{1}) - x_{1}f(x_{2})}{f(x_{1}) - f(x_{2})}$$
$$= \frac{2.7195 f(3) - 3f(2.7195)}{f(3) - f(2.7195)}$$
$$= 2.7403$$

f(2.7403)=-0.000302<0

Clearly f(2.7403) is nearly equal to zero up to 3 decimal places *The Approximate Root is* 2.740

6. By using Regula - Falsi method, find an approximate root of the equation $x^4 - x - 10 = 0$ that lies between 1.8 and 2. Carry out three approximations Sol.

Let us take $f(x) = x^4 - x - 10$ and $x_0 = 1.8, x_1 = 2$ Then $f(x_0) = f(1.8) = -1.3 < 0$ and $f(x_1) = f(2) = 4 > 0$

Since $f(x_0)$ and $f(x_1)$ are of opposite signs, the equation f(x) = 0 has a root between x_0 and x_1

The first order approximation of this root is

$$x_{2} = x_{0} - \frac{x_{1} - x_{0}}{f(x_{1}) - f(x_{0})} f(x_{0})$$

= 1.8 - $\frac{2 - 1.8}{4 + 1.3} \times (-1.3)$
= 1.849

We find that $f(x_2) = -0.161$ so that $f(x_2)$ and $f(x_1)$ are of opposite signs. Hence the root lies between x_2 and x_1 and the second order approximation of the root is

$$x_{3} = x_{2} - \left[\frac{x_{1} - x_{2}}{f(x_{1}) - f(x_{2})}\right] \cdot f(x_{2})$$
$$= 1.8490 - \left[\frac{2 - 1.849}{0.159}\right] \times (-0.159)$$
$$= 1.8548$$

We find that $f(x_3) = f(1.8548)$ = -0.019

So that $f(x_3)$ and $f(x_2)$ are of the same sign. Hence, the root does not lie between x_2 and x_3 . But $f(x_3)$ and $f(x_1)$ are of opposite signs. So the root lies between x_3 and x_1 and the third order approximate value of the root is $x_4 = x_3 - \left[\frac{x_1 - x_3}{f(x_1) - f(x_3)}\right] f(x_3)$ = $1.8548 - \frac{2 - 1.8548}{4 + 0.019} \times (-0.019)$

Therefore, approximate root is 1.8557

NEWTON RAPHSON METHOD:

The Newton- Raphson method is a powerful and eligant method to find the root of an equation. This method is generally used to improve the results obtained by the previous methods.

Let x_0 be an approximate root of f(x) = 0 and let $x_1 = x_0 + h$ be the correct root which implies that $f(x_1) = 0$. We use Taylor's theorem and expand $f(x_1) = f(x_0 + h) = 0$

INTERPOLATION

$$\Rightarrow f(x_0) + hf^1(x_0) = 0$$
$$\Rightarrow h = -\frac{f(x_0)}{f^1(x_0)}$$

Substituting this in x_1 , we get

$$x_1 = x_0 - \frac{f(x_0)}{f^1(x_0)}$$

 $\therefore x_1$ is a better approximation than x_0

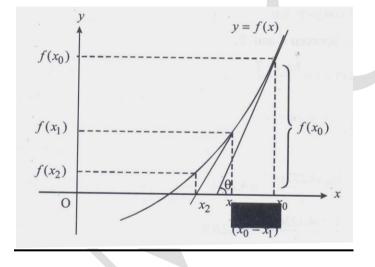
Successive approximations are given by

$$x_2, x_3, \dots, x_{n+1}$$
 where $x_{i+1} = x_i - \frac{f(x_i)}{f^1(x_i)}$

GEOMETRICAL INTERPRETATION

From below diagram $\tan \theta = \frac{opp}{adj} = \frac{f(x_0)}{x_0 - x_1}$(1) But slope $= \tan \theta = f^I(x_0)$ (2) From (1) and (2) we have

$$x_1 = x_0 - \frac{f(x_0)}{f^1(x_0)}$$



PROBLEMS

- 1. Using Newton Raphson method
 - a) Find square root of a number
 - b) Find reciprocal of a number
- Sol. a) Square root:

Let $f(x) = x^2 - N = 0$, where N is the number whose square root is to be found. The solution to f(x) is then $x = \sqrt{N}$

Here f'(x) = 2x

By Newton-Raphson technique

INTERPOLATION

$$x_{i+1} = x_i - \frac{f(x_i)}{f^1(x_i)} = x_i - \frac{x_i^2 - N}{2x_i}$$
$$\Rightarrow x_{i+1} = \frac{1}{2} \left[x_i + \frac{N}{x_i} \right]$$

Using the above iteration formula the square root of any number N can be found to any desired accuracy. For example, we will find the square root of N = 24. Let the initial approximation be $x_0 = 4.8$

$$x_{1} = \frac{1}{2} \left(4.8 + \frac{24}{4.8} \right) = \frac{1}{2} \left(\frac{23.04 + 24}{4.8} \right) = \frac{47.04}{9.6} = 4.9$$
$$x_{2} = \frac{1}{2} \left(4.9 + \frac{24}{4.9} \right) = \frac{1}{2} \left(\frac{24.01 + 24}{4.9} \right) = \frac{48.01}{9.8} = 4.898$$
$$x_{3} = \frac{1}{2} \left(4.898 + \frac{24}{4.898} \right) = \frac{1}{2} \left(\frac{23.9904 + 24}{4.898} \right) = \frac{47.9904}{9.796} = 4.898$$

Since $x_2 = x_3$, there fore the solution to $f(x) = x^2 - 24 = 0$ is 4.898. That means, the square root of 24 is 4.898

b) Reciprocal:

:. The reciprocal of Let $f(x) = \frac{1}{x} - N = 0$ where N is the number whose reciprocal is to be

found

The solution to f(x) is then $=\frac{1}{N}$. Also, $f'(x) = \frac{-1}{x^2}$

To find the solution for f(x) = 0, apply Newton – Raphson method

$$x_{i+1} = x_i - \frac{\left(\frac{1}{x_i} - N\right)}{-1/x_i^2} = x_i(2 - x_i N)$$

For example, the calculation of reciprocal of 22 is as follows Assume the initial approximation be $x_0 = 0.045$

$$\therefore x_{1} = 0.045(2 - 0.045 \times 22)$$

$$= 0.045(2 - 0.99)$$

$$= 0.0454(1.01) = 0.0454$$

$$x_{2} = 0.0454(2 - 0.0454 \times 22)$$

$$= 0.0454(2 - 0.9988)$$

$$= 0.0454(1.0012) = 0.04545$$

$$x_{3} = 0.04545(2 - 0.04545 \times 22)$$

$$= 0.04545(1.0001) = 0.04545$$

$$x_{4} = 0.04545(2 - 0.04545 \times 22)$$

$$= 0.04545(2 - 0.99998)$$

$$= 0.04545(1.00002)$$

$$= 0.0454509$$
Descinct of 22 is 0.04545

∴Reciprocal of 22 is 0.04545

INTERPOLATION

- 2. Find by Newton's method, the real root of the equation $xe^x = cosx$ correct to three decimal places.
- Sol. Let $cosx xe^x = f(x)$

Then
$$f(0) = 1 > 0$$
, $f(0.5) = 0.053 > 0f(0.6) = -0.267 < 0$

So root of f(x) lies between 0.5 and 0.6

Here f(0.5) value is near to zero.

f(1) is near to zero. So we take $x_0 = 0.5$ and $f^1(x) = -\sin x - (x+1)e^x$

: By Newton Raphson method, we have

$$x_{i+1} = x_i - \frac{f(x_i)}{f^1(x_i)}$$

First approximation is given by

$$x_{1} = x_{0} - \frac{f(x_{0})}{f^{1}(x_{0})}$$
$$= 0.5 - \frac{0.53222}{-2.952507} = 0.68026$$

The second approximation is given by

$$x_{2} = x_{1} - \frac{f(x_{1})}{f^{1}(x_{1})}$$
$$= 0.68026 - \frac{0.56569}{-3.94648}$$
$$= 0.536920$$

$$\therefore$$
 Continue like above we have $x_3 = 0.51809$ $x_4 = 0.517757$

Approximate Root = 0.517

3. Find a root of an equation $e^x \sin x = 1$ using Newton Raphson method Sol : $f(x) = e^x \sin x - 1$

f(0)=-1<0

f(0.1)=-0.8<0

f(0.5)=-0.209561<0

f(0.6)=0.028846>0

Since f(0.5)<0 and f(0.6)>0 the root lies in the interval(0.5,0.6)

but f(0.6) value is near to zero.

So choose $x_0 = 0.6$

and

First

 $f^{I}(\mathbf{x}) = (\cos x + \sin x)e^{x}$

By applying Newton Raphson method, we have

$$x_{i+1} = x_i - \frac{f(x_i)}{f^1(x_i)} \quad \text{for i=0,1,2....}$$

approximation $x_1 = x_0 - \frac{f(x_0)}{f^1(x_0)}$

$$=0.6 - \frac{0.028846}{2.532705} = 0.58861$$

DEPARTMENT OF HUMANITIES & SCIENCES MRCET (EAMCET CODE: MLRD) 14

INTERPOLATION

The second approximation $x_2 = x_1 - \frac{f(x_1)}{f^1(x_1)}$

$$= 0.588611 - \frac{0.000196}{2.498513}$$
$$= 0.588533$$

: Approximate Root is 0.588

4.Find a root of an equation $x + \log_{10} x = 2$ using Newton raphson method. SOL:

Given $f(x) = x + log_{10}x - 2$

Here

f(1)=-1<0

f(2)=0.301>0

Since f(1) < 0 and f(2) > 0 the root lies in the interval (1,2)

Here f(2) is near to zero

So f(1.9)=0.1788>0; f(1.8)=0.0553>0

Since f(1.8) is near to zero

Choose $x_0 = 1.8$ then

$$f^I(x) = 1 + \frac{\log_{10} e}{x}$$

By Newton Raphson method, we have

$$x_{i+1} = x_i - \frac{f(x_i)}{f^1(x_i)}$$
 for i=0,1,2....

$$x_1 = x_0 - \frac{f^I(x_0)}{f(x_0)} = 1.8 - \frac{0.0555}{1.2412} = 1.7552$$

Now f(1.7552)=-0.00013 and $f^{I}(1.7552) = 1.2473$

$$x_2 = x_1 - \frac{f^I(x_1)}{f(x_1)} = 1.7555$$

Now f(1.7555) =-0.00000012 Hence Approximate root is **1.7555(coorect to 4 decimal places)**

5. Using Newton – Raphson method

a) Derive formula for cube root of a number

b) Find cube root of 15.

SOL: Let $f(x) = x^3 = N$ where N is the real number whose root to be found. Solution to f(x) is then $x^3 = N$ $f'(x) = 3x^2$

Newton Raphson formula to find $X_{i+1} = X_i - \frac{f(X_i)}{f(X_i)} = X_i - \frac{X^3 - N}{3X^2}$

Here
$$f(2) = -7 < 0$$
 and $f(2.5) = 0.625 > 0$

so one root lies between (2,2.5)

take initial approx value is $x_0 = 2$

using Newton Raphson formula $X_{i+1} = X_i - \frac{f(X_i)}{f'(X_i)}$

$$X_1 = 2 - \frac{(2)^3 - 15}{3(2)^2} = 2.58333$$

INTERPOLATION

$$X_{2} = 2.58333 - \frac{(2.58333)^{3} - 15}{3(2.58333)^{2}} = 2.47144$$
$$X_{3} = 2.47144 - \frac{(2.47144)^{3} - 15}{3(2.47144)^{2}} = 2.46622$$
$$X_{4} = 2.46622 - \frac{(2.46622)^{3} - 15}{3(2.46622)^{2}} = 2.46621$$

 $\therefore x_8 \cong x_9 = 2.466221$ (upto 4 decimal places) is the required approximate root.

6.Find a real root of the equation $3x = \cos x + 1$ Using Newton Raphson method.

 $f(x) = 3 x - \cos x - 1$ f(0) = -2 < 0f(1) = 1.4597 > 0 \therefore The root lies between 0 and 1. Let $x_0 = 1$ using Newton Raphson formula, we have $x_{i+1} = x_i - \frac{f(x_i)}{f^1(x_i)}$ for i=0,1,2.... $f'(\mathbf{x}) = 3 + \sin x$ $f'(1) = 3 + \sin 1 = 3.8414$ First approximate root $x_1 = x_0 - \frac{f^I(x_0)}{f(x_0)} = 1 - \frac{0.4597}{3.8414}$ =0.8804f(0.8804) = 2.6412 - 0.6368 - 1 = 1.0044And f'(0.8804) = 3.7709Second approximation is $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 1 - \frac{1.0044}{3.7709} = 0.8804 - 0.2663 = 0.6141$ f(0.6141) = 1.8423 - 0.8172 - 1 = 0.0251and f'(0.0251) = 3.5762Third approximation is $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 0.6141 - \frac{0.0251}{3.5762} = 0.6141 - 0.007 = 0.6071$ $\therefore f(0.6071) = 1.8213 - 0.8213 - 1 = 0$ Hence Required Root is 0.6071 7. Find the root between 0 and 1 of the equation $x^3-6x+4 = 0$ correct to five decimal places. Sol: Let $f(x) = x^3 - 6x + 4$ f(0) = 4 > 0 and f(1) = -1 < 0Therefore the root lies between 0 and 1. Let the root is nearer to 1. So, $x_0=1$ $f'(x) = 3x^2-6$, f'(1) = -3The first approximation to the required root is

INTERPOLATION

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = \frac{2}{3} = 0.666666$$

Second approximation is given by

$$\mathbf{x}_2 = \mathbf{x}_1 - \frac{f(x_1)}{f'(x_1)} = 0.73015$$

Third approximation is given by

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 0.73204$$

Fourth approximation is given by

$$\mathbf{x}_4 = \mathbf{x}_3 - \frac{f(x_3)}{f'(x_3)} = 0.73205$$

The root is 0.73205 correct to five decimal places

ORDER OF CONVERGENCE

The deviation from the approximate root with actual root is called **ERROR.** Error at n^{th} , $(n+1)^{th}$ iterations are

 $e_n = x_n - \alpha$; $e_{n+1} = x_{n+1} - \alpha$

If $e_{n+1} \le k e_n^p$ then the method is said to be of order 'p'. NOTE:

1. The method converges very fast if 'k' is very very small and 'p' is large.

2. Regula falsi and iteration methods converge Linearly.

1. Show Bisection method converges LINEARLY.

Sol: Choose initial approximations a, b such that f(a).f(b)<0And let first approximation be x_1

Distance between a and $x_1 = x_1 - a = \frac{a+b}{2} - a = \frac{b-a}{2}$ Distance between b and $x_1 = b - x_1 = b - \frac{a+b}{2} = \frac{b-a}{2}$

Here say root α lies between a and x_1 or b and x_1

$$|x_1 - \alpha| \leq \frac{\nu}{2}$$

After n iterations, we get

$$\begin{aligned} |x_{n} - \alpha| &\leq \frac{b-a}{2^{n}} \\ |x_{n+1} - \alpha| &\leq \frac{1}{2} \frac{b-a}{2^{n}} \\ e_{n+1} &\leq \frac{1}{2} e_{n}^{1} \quad \therefore Bisection \ method \ converges \ linearly \end{aligned}$$

2. Show Newton Raphson method converges Quadratically

Sol: Let x_r be the actual root and x_i , x_{i+1} are ith, (i+1)th iterations in NRM. Then

$$x_{i+1} = x_i - \frac{f(x_i)}{f^1(x_i)}$$
$$x_{i+1} f^1(x_i) = x_i f^1(x_i) - f(x_i)$$

INTERPOLATION

 $f(x_i) = f^1(x_i)(x_i - x_{i+1})....(1)$

Taylor's theorem around $x=x_r$

Is given by $f(x_r)=f(x_i+h)$

$$= f(x_i) + (xr - xi) f^{1}(x_i) + \frac{(xr - xi)^2}{2} f^{II}(x_i) + \cdots \dots (2)$$

Neglecting higher order terms and sub (1) in (2) ,we get

$$0 = f[i](x_r - x_{i+1}) + (xr - xi) f^1(x_i) + \frac{(xr - xi)^2}{2} f^{II}(x_i)$$

Solving

$$e_{i+1} = -1/2 \left(\frac{f^{II}(x_i)}{f^{I}(x_i)}\right) e_i^2$$
 Where p=2 and k==-1/2 $\left(\frac{f^{II}(x_i)}{f^{I}(x_i)}\right)$

INTERPOLATION

Introduction:

If we consider the statement y = f(x); $x_0 \le x \le x_n$ we understand that we can find the value of y, corresponding to every value of x in the range $x_0 \le x \le x_n$. If the function f(x) is single valued and continuous and is known explicitly then the values of f(x) for certain values of x like x_0, x_1, \dots, x_n can be calculated. The problem now is if we are given the set of tabular values

x:	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	 x _n
<i>y</i> :	\mathcal{Y}_0	y_1	<i>y</i> ₂	 \mathcal{Y}_n

Satisfying the relation y = f(x) and the explicit definition of f(x) is not known, it is possible to find a simple function say $\phi(x)$ such that f(x) and $\phi(x)$ agree at the set of tabulated points. This process to finding $\phi(x)$ is called interpolation. If $\phi(x)$ is a polynomial then the process is called polynomial interpolation and $\phi(x)$ is called interpolating polynomial. In our study we are concerned with polynomial interpolation

OR

Let $x_0, x_1 - - -x_n$ be the values x and $y_0, y_1, y_2, -- -, y_n$ be the values of y and y = f(x) be a unknown function. The process to find the value of the unknown function y = f(x) when the given value of x and the value of x lies within the limits $x_0 to x_n$ is called interpolation

Extrapolation:

Let $\bar{x_0}, x_1 - - - x_n$ be the values x and $y_0, y_1, y_2, -- -, y_n$ be the values of y and y=f(x) be a unknown function .The process to find the value of the unknown function y=f(x) when the given value of x and the value of x lies outside the range of x_0 to x_n is called Extrapolation Note: If the differences of x values are equal in the given data then it is called equal spaced points otherwise it is called unequal spaced points

Note:

- i) Suppose a given value of x is nearer to starting value of x then we use Newton's forward interpolation formula.
- ii) Suppose a given value of x is nearer to ending value of x then we use Newton's backward interpolation formula.
- iii) Suppose a given value of x is nearer to middle value of x then we use Gauss interpolation formula.
- iv) Suppose the given data has unequal spaced points then we use Lagrange's interpolation formula

DEPARTMENT OF HUMANITIES & SCIENCES MRCET (EAMCET CODE: MLRD) 19

Finite Differences:

Finite differences play a fundamental role in the study of differential calculus, which is an essential part of numerical applied mathematics, the following are the finite differences.

1. Forward Differences 2. Backward Differences 3. Central Differences

1.Forward Differences: The Forward Difference operator is denoted by Δ , The forward differences are usually arranged in tabular columns as shown in the following table called a Forward difference table

Values	Values of	First differences	Second	Third differences	Fourth differences
of x	у	(Δ)	differences	(Δ ³)	(Δ^4)
			(Δ ²)		
X _o	<i>Y</i> ₀				
		$\Delta y_0 = y_1 - y_0$			
<i>x</i> ₁	<i>y</i> ₁		$\Delta^2 y_0 = \Delta y_1 - y_0$		
		$\Delta y_1 = y_2 - y_1$		$\Delta^3 y_0 = \Delta^2 y_1 - \Delta^2 y_0$	
<i>x</i> ₂	<i>y</i> ₂		$\Delta^2 y_1 = \Delta y_2 - \Delta y_1$		$\Delta^4 y_0 = \Delta^3 y_1 - \Delta^3 y_0$
		$\Delta y_2 = y_3 - y_2$		$\Delta^3 y_1 = \Delta^2 y_2 - \Delta^2 y_1$	
<i>x</i> ₃	<i>y</i> ₃		$\Delta^2 y_2 = \Delta y_3 - \Delta y_3$	2	
<i>x</i> ₄	<i>Y</i> ₄	$\Delta y_3 = y_4 - y_3$			

2. Backward Differences: The Backward Difference operator is denoted by ∇ and the

backward difference table is

Х	У	∇y	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
X0	yo	∇u			
X 1	y 1	∇y_1	$\nabla^2 y_2$		
X2	y 2	∇y_2	$ abla^2 \mathbf{y}_2$ $ abla^2 \mathbf{y}_3$	$\nabla^3 y_3$	$ abla^4 y_4$
		∇y_3		$ abla^3 y_4$	
X3	y 3	∇y_4	$\nabla^2 y_4$		
X 4	y 4	• 94			

3.Central Difference Table: The central difference operator is denoted by δ and the central Difference table is

Х	Y	δy	$\delta^2 y$	$\delta^3 y$	$\delta^4 y$
X0	y0				
X 1	V1	$\delta y_{1/2}$	$\delta^2 y_1$		
	y 1	δy _{3/2}		$\delta^3 y_{3/2}$	
X ₂	y 2		$\delta^2 y_2$		$\delta^4 y_4$
X3	y 3	$\delta y_{5/2}$	$\delta^2 y_3$	$\delta^3 y_{5/2}$	
43	73	$\delta y_{7/2}$	U y 5		
X 4	y 4				

Symbolic Relations and Separation of symbols:

We will define more operators and symbols in addition to Δ , ∇ and δ already defined and establish difference formulae by Symbolic methods

Definition:- The averaging operator μ is defined by the equation $\mu y_r = \frac{1}{2} [y_{r+1/2} + y_{r-1/2}]$

Definition:- The shift operator E is defined by the equation $Ey_r = y_{r+1}$. This shows that the effect of E is to shift the functional value y_r to the next higher value y_{r+1} . A second operation with E gives $E^2 y_r = E(Ey_r) = E(y_{r+1}) = y_{r+2}$

Generalizing $E^n y^r = y_{r+n}$

INTERPOLATION

Definition:-

Inverse operator E^{-1} is defined as $E^{-1}y_r = y_{r-1}$

In general $E^{-n}y_n = y_{r-n}$

Definition :-

The operator D is defined as $Dy(x) = \frac{d}{dx}[y(x)]$

Relationship Between operators:

i) Relation between Δ and E

Proof: We have $\Delta y_0 = y_1 - y_0$

$$= Ey_0 - y_0 = (E - 1)y_0$$
$$\Rightarrow \Delta \cong E - 1(or)E = 1 + \Delta$$

ii) $\nabla \equiv 1 - E^{-1}$

Pf: We have $\nabla y_1 = y_1 - y_0$ $\nabla y_1 = y_1 - E^{-1}y_1$ $\nabla y_1 = (1 - E^{-1})y_1$ $\nabla \equiv 1 - E^{-1}$

iii)
$$\delta = E^{1/2} - E^{-1/2}$$

Pf : We have
$$\delta y_{\frac{1}{2}} = y_1 - y_0$$

$$= E^{\frac{1}{2}} y_{\frac{1}{2}} - E^{-\frac{1}{2}} y_{\frac{1}{2}}$$
$$\delta y_{\frac{1}{2}} = (E^{\frac{1}{2}} - E^{-\frac{1}{2}}) y_{\frac{1}{2}}$$
$$\delta = E^{1/2} - E^{-1/2}$$

iv)
$$\mu = \frac{1}{2} \left(E^{1/2} + E^{-1/2} \right)$$

Pf: we have
$$\mu y_r = \frac{1}{2} (y_{r+\frac{1}{2}} + y_{r-\frac{1}{2}})$$

 $\mu y_r = \frac{1}{2} (E^{\frac{1}{2}} y_r + E^{-\frac{1}{2}} y_r)$
 $\mu y_r = \frac{1}{2} (E^{\frac{1}{2}} + E^{-\frac{1}{2}}) y_r$
 $\mu = \frac{1}{2} (E^{\frac{1}{2}} + E^{-\frac{1}{2}})$
v) $\mu^2 = 1 + \frac{1}{4} \delta^2$

INTERPOLATION

Pf: L.H.S = $\mu^2 = \left[\frac{1}{2} \left(E^{\frac{1}{2}} + E^{-\frac{1}{2}}\right)\right]^2$ $=\frac{1}{4}(E+E^{-1}+2)$ $=\frac{1}{4}\left[\left(E^{\frac{1}{2}}-E^{-\frac{1}{2}}\right)^{2}+4\right]$ $=\frac{1}{4}(\delta^{2}+4)=R.H.S$ vi). Prove that $\Delta = \frac{1}{2}\delta^2 + \delta \sqrt{1 + \frac{1}{4}\delta^2}$ Pf: Let R.H.S = $\frac{1}{2}\delta^2 + \delta \sqrt{1 + \frac{1}{4}\delta^2}$ $=\frac{1}{2}\delta[\delta+2\sqrt{1+\frac{1}{4}\delta^2}]$ $=\frac{1}{2}\delta[\delta+\sqrt{4+\delta^2}]$ $=\frac{1}{2}\delta[(E^{\frac{1}{2}}-E^{-\frac{1}{2}})+\sqrt{4+(E^{\frac{1}{2}}-E^{-\frac{1}{2}})^2}$ $=\frac{1}{2}\delta[(E^{\frac{1}{2}}-E^{-\frac{1}{2}})+\sqrt{(E^{\frac{1}{2}}+E^{-\frac{1}{2}})^{2}}$ $= \frac{1}{2} \delta \left[(E^{\frac{1}{2}} - E^{-\frac{1}{2}}) + (E^{\frac{1}{2}} + E^{-\frac{1}{2}}) \right]$ $=\frac{1}{2}\delta.2.E^{\frac{1}{2}}$ $=\delta E^{\frac{1}{2}}$ $= (E^{\frac{1}{2}} - E^{-\frac{1}{2}}) \cdot E^{\frac{1}{2}}$ $= E - 1 = \Delta = R.H.S.$

vii) Relation between the Operators D and E

Using Taylor's series we have, $y(x+h) = y(x) + hy^{1}(x) + \frac{h^{2}}{2!}y^{11}(x) + \frac{h^{3}}{3!}y^{111}(x) + \dots$

This can be written in symbolic form

$$Ey_{x} = \left[1 + hD + \frac{h^{2}D^{2}}{2!} + \frac{h^{3}D^{3}}{3!} + \dots - 1\right]y_{x} = e^{hD}.y_{x}$$
$$E = e^{hd}$$

• If f(x) is a polynomial of degree *n* and the values of *x* are equally spaced then $\Delta^n f(x)$ is a constant

Note:

1. As $\Delta^n f(x)$ is a constant, it follows that $\Delta^{n+1} f(x) = 0, \Delta^{n+2} f(x) = 0, \dots$

DEPARTMENT OF HUMANITIES & SCIENCES MRCET (EAMCET CODE: MLRD) 23

INTERPOLATION

2. The converse of above result is also true. That is, if $\Delta^n f(x)$ is tabulated at equal spaced intervals and is a constant, then the function f(x) is a polynomial of degree n

3. $\Delta^2 f(x) = \Delta(\Delta(f(x)))$

Problems :

1.Evaluate

 $(i)\Delta\cos x$ (ii) $\Delta^2 \sin(px+q)$ (iii) $\Delta^n e^{ax+b}$

(iv). If the interval of difference is unity then prove that

$$\Delta[x(x+1)(x+2)(x+3) = 4(x+1(x+2)(x+3))$$

Sol: Let h be the interval of differencing

$$(i)\Delta\cos x = \cos(x+h) - \cos x$$

= $-2\sin\left(x+\frac{h}{2}\right)\sin\frac{h}{2}$
 $(ii)\Delta\sin(px+q) = \sin\left[p(x+h)+q\right] - \sin(px+q)$
= $2\cos\left(px+q+\frac{ph}{2}\right)\sin\frac{ph}{2}$
= $2\sin\frac{ph}{2}\sin\left(\frac{\pi}{2}+px+q+\frac{ph}{2}\right)$
 $\Delta^{2}\sin(px+q) = 2\sin\frac{ph}{2}\Delta\left[\sin\left[px+q+\frac{1}{2}(\pi+ph)\right]\right]$

$$= \left[2\sin\frac{ph}{2}\right]^2 \sin\left[px+q+\frac{1}{2}(\pi+ph)\right]$$

 $(iii) \Delta e^{ax+b} = e^{a(x+h)+b} - e^{ax+b}$

$$= e^{(ax+b)}(e^{ah-1})$$
$$\Delta^2 e^{ax+b} = \Delta[\Delta(e^{ax+b})] = \Delta[(e^{ah} - 1)(e^{ax+b})]$$
$$= (e^{ah} - 1)^2 \Delta(e^{ax+b})$$
$$= (e^{ah} - 1)^2 e^{ax+b}$$

Proceeding on, we get $\Delta^n \left(e^{ax+b} \right) = \left(e^{ah} - 1 \right)^n e^{ax+b}$

iv) Let f(x) = x(x+1)(x+2)(x+3)

given h = 1

we know that $\Delta f(x) = f(x+h) - f(x)$

DEPARTMENT OF HUMANITIES & SCIENCES MRCET (EAMCET CODE: MLRD) 24

INTERPOLATION

$$\Delta[x(x+1)(x+2)(x+3)] = (x+1)(x+2)(x+3)(x+4))$$

-x(x+1)(x+2)(x+3)
= (x+1)(x+2)(x+3)[x+4-x]
= **4**(x+1)(x+2)(x+3)

2. Find the missing term in the following data

x	0	1	2	3	4
У	1	3	9	-	81

Why this value is not equal to 3^3 . Explain

Solution: Consider $\Delta^4 y_0 = 0$

 $\Rightarrow y_4 - 4y_3 + 6y_2 - 4y_1 + y_0 = 0$

Substitute given values, we get

$$81 - 4y_3 + 54 - 12 + 1 = 0 \implies y_3 = 31$$

From the given data we can conclude that the given function is $y = 3^x$. To find y_3 ,

we have to assume that y is a polynomial function, which is not so. Thus we are not

getting $y = 3^3 = 27$

Equally Spaced : If the differences of x values are equal in the given data then it is called equal spaced points otherwise it is called unequal spaced points

Newton's Forward Interpolation Formula: Given the set of (n + 1) values $(x_0, y_0), (x_1, y_1), - -x_n, y_n)$ of x and y. It is required to find a polynomial of nth degree $y_n(x)$ such that y and $y_n(x)$ agree at the tabular points with x's equidistant (i.e.) $x_i = x_0+ih$ (i = 0, 1, 2....n) then the Newton's forward interpolation formula is given by

$$y = f(x) = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!}\Delta^3 y_0 + \dots + \frac{p(p-1)(p-2)-\dots-(p-(n-1))}{n!}\Delta^n y_0$$

where $p = \frac{x - x_0}{h}$

Note : this formula is used when value of *x* is located near beginning of tabular values Problems :

1.Find the melting point of the alloy containing 54% of lead, using appropriate interpolation formula

Percentage of lead(p)	50	60	70	80
Temperature $(Q^{\circ}c)$	205	225	248	274

INTERPOLATION

Solution: The difference table is

х	У	Δ	Δ^2	Δ^3
50	205			
		20	•	
60	225		3	
		23		• 0
70	248		3	
		26		
80	274			

Let temperature = f(x)

We have
$$x = 54, x_0 = 50, h = 10$$
 $p = \frac{x - x_0}{h} = 0.4$

By Newton's forward interpolation formula

$$f(x) = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!}\Delta^3 y_0 + \dots - \dots$$

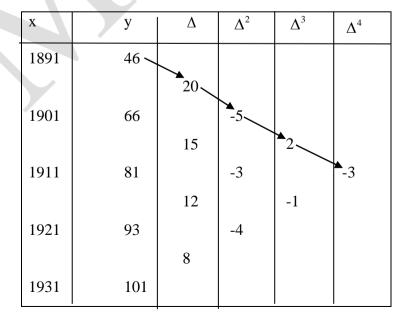
$$f(54) = 205 + 0.4(20) + \frac{0.4(0.4-1)}{2!}(3) + \frac{(0.4)(0.4-1)(0.4-2)}{3!}(0)$$

$$= 205 + 8 - 0.36 = 212.64. \text{ Melting point} = 212.64$$

2. The population of a town in the decimal census was given below. Estimate the population for the 1895

Year x	1891	1901	1911	1921	1931
Populationin thousands	46	66	81	93	101

Solution: The forward difference table is



INTERPOLATION

$$46 + (0.4)(20) + \frac{(0.4)(0.4 - 1)}{6} - (-5) + \frac{(0.4 - 1)(0.4)(0.4 - 2)}{6}(2)$$

given $h = 10, x_0 = 1891, x = 1985$ then p = 2/5 = 0.4

By Newton's forward interpolation formula

$$f(x) = y_0 + p\Delta y_0 + \frac{p(p+1)}{2!}\Delta^2 y_0 + \frac{p(p+1)(p+2)}{3!}\Delta^3 y_0 + \dots + \frac{p(p+1)(p+2)}{24}(-3)$$
=54.45 thousands

3. Find y (1.6) using Newton's Forward difference formula from the table

-1.41

	X	[1		1.4		1.8	2.2
	у	,	3.	49	4.8	2	5.96	6.5
X		у		Δ	AV	Δ	2 y	$\Delta^3 y$

Solution: The difference table is

Let	x = 1	l.6 , x₀=	1, h=1.4	-1=0.4, p	$=\frac{x-x_0}{h}=$	<u>3</u> 2

1.33

1.14

0.54

3.49

4.82

5.96

6.5

1 1.4

1.8

2.2

Using Newton's forward difference formula, we have

-0.81

-0.60

$$f(x) = y_0 + p\Delta y_0 + \frac{p(p+1)}{2!}\Delta^2 y_0 + \frac{p(p+1)(p+2)}{3!}\Delta^3 y_0 + \dots - \dots - m$$

$$f(1.6) = 3.49 + 3/2(1.33) + \frac{\frac{35}{22}}{2}(-0.81) + \frac{\frac{357}{222}}{6}(-1.41)$$

4.Find the cubic polynomial which takes the following values

X	0	1	2	3
Y=f(x)	1	2	1	10

Hence evaluate f(4).

Sol: The forward difference table is given by

DEPARTMENT OF HUMANITIES & SCIENCES MRCET (EAMCET CODE: MLRD) 27

INTERPOLATION

X	У	Δy	$\Delta^2 y$	$\Delta^3 y$
0	1			
1	2	1		
•	-		-2	
2	1	-1	10	12
		9		
3	10			
) -=x ; h=	1			

 $^{3}y_{0}$

$$P = \frac{x - 0}{h} = x$$
; h=

Using newton's forward interpolation formula, we get

$$Y = y_0 + \frac{x}{1} \Delta y_0 + \frac{x(x-1)}{1.2} \Delta^2 y_0 + \frac{x(x-1)(x-2)}{1.2.3} \Delta^2 y_0 + \frac{x(x-1)($$

Which is the required polynomial. To compute f(4), we take $x_n=3$, x=4

So that
$$p = \frac{x - x_n}{h} = 1$$

Using Newton's backward interpolation formula, we get

$$Y_{4} = y_{3} + p \nabla y_{3} + \frac{p(p+1)}{1.2} \nabla^{2} y_{3} + \frac{p(p+1)(p+2)}{1.2.3} \nabla^{3} y_{3}$$

= 10+9+10+12
= 41

Which is the same value as that obtained by substituting x=4 in the cubic polynomial $2x^3-7x^2+6x+1$.

Newton's Backward Interpolation Formula: Given the set of (n + 1) values $(x_0, y_0), (x_1, y_1), - -x_n, y_n)$ of x and y. It is required to find a polynomial of nth degree $y_n(x)$ such that y and $y_n(x)$ agree at the tabular points with x's equidistant (i.e.) $x_i = x_0+ih$ (i = 0, 1, 2....n) then the Newton's backward interpolation formula is given by

$$y_n(x) = y_n + p \nabla y_n + \frac{p(p+1)}{2!} \nabla^2 y_n + \dots + \frac{p(p+1) - \dots - [p+(n-1)]}{n!} \nabla^n y_0$$

Where $p = \frac{x - x_n}{h}$

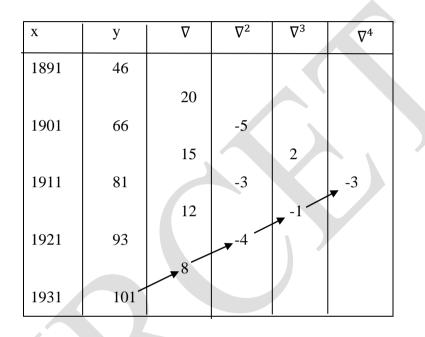
Note : This formula is used when value of x is located near end of tabular values Problems :

INTERPOLATION

1. The population of a town in the decimal census was given below. Estimate the population for the 1925

Year x	1891	1901	1911	1921	1931
Population in	46	66	81	93	101
thousands	10	00		~~	101

Solution : The backward difference table is



given
$$h = 10, x_n = 1931, x = 1925$$
 then $p = \frac{x - x_n}{h} = \frac{1925 - 1931}{10} = -0.6$

By Newton's backward interpolation formula

$$y_n(x) = y_n + p \nabla y_n + \frac{p(p+1)}{2!} \nabla^2 y_n + - + \frac{p(p+1)\dots[p+(n-1)]}{n!} \nabla^n y_0$$

$$\therefore f(1925) = 101 + (-0.6)(8) + \frac{(-0.6)(0.4)}{2}(-4)$$

$$+ \frac{(-0.6)(0.4)(1.4)}{6}(-1) + \frac{(-0.6)(0.4)(1.4)(2.4)}{24}(-3)$$

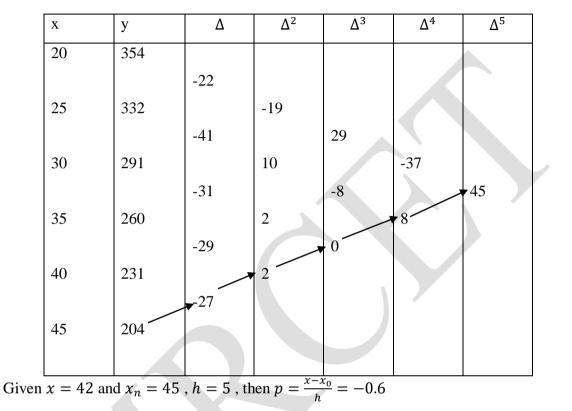
$$= 96.21$$

2.Find y(42) from the following data. Using Newton's interpolation formula

INTERPOLATION

x	20	25	30	35	40	45
у	354	332	291	260	231	204

Solution: since x=42 is located near end of the tabular values therefore we use NBIF the backward difference table is



We know that NBIF

$$y_{n}(x) = y_{n} + p\nabla y_{n} + \frac{p(p+1)}{2!}\nabla^{2}y_{n} + \frac{p(p+1)(p+2)}{3!}\nabla^{3}y_{n} + \frac{p(p+1)(p+2)(p+3)}{4!}\nabla^{4}y_{n} + \frac{p(p+1)(p+2)(p+3)(p+4)}{5!}\nabla^{5}y_{n}$$

$$y(42) = 204 + (-0.6)(-27) + \frac{(-0.6)(-0.6+1)}{2}(2) + 0 + \frac{(-0.6)(-0.6+1)(-0.6+2)(-0.6+3)}{24}(8) + \frac{(-0.6)(-0.6+1)(-0.6+2)(-0.6+3)(-0.6+4)}{120}(45)$$

=234.44

Central Difference Interpolation: The middle part of the forward difference table is

INTERPOLATION

X	У	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$	
<i>X</i> _4	<i>Y</i> ₋₄						
		Δy_{-4}	$\Delta^2 y_{-4}$				
<i>x</i> ₋₃	<i>Y</i> ₋₃						
		Δy_{-3}	$\Delta^2 y_{-3}$	$\Delta^3 y_{-4}$	$\Delta^4 y_{-4}$	$\Delta^5 y_{-4}$	
<i>x</i> ₋₂	\mathcal{Y}_{-2}		2	2		E	
r	v	Δy_{-2}	$\Delta^2 y_{-2}$	$\Delta^3 y_{-3}$	$\Delta^4 y_{-3}$	$\Delta^5 y_{-3}$	
<i>x</i> ₋₁	${\mathcal Y}_{-1}$	Δy_{-1}	$\Delta^2 y_{-1}$	$\Delta^3 y_{-2}$	$\Delta^4 y_{-2}$	$\Delta^5 y_{-2}$	
<i>x</i> ₀	${\mathcal{Y}}_0$	Δy_{-1}	Δy_{-1}	Δy_{-2}	Δy_{-2}	Δy_{-2}	
	Ŭ	Δy_0	$\Delta^2 y_0$	$\Delta^3 y_{-1}$	$\Delta^4 y_{-1}$	$\Delta^5 y_{-1}$	
<i>x</i> ₁	\mathcal{Y}_1					-	
		Δy_1	$\Delta^2 y_1$	$\Delta^3 y_0$	$\Delta^4 y_0$		
<i>x</i> ₂	<i>Y</i> ₂						
		Δy_2	$\Delta^2 y_2$	$\Delta^3 y_1$			
<i>x</i> ₃	<i>Y</i> ₃						
		Δy_3					
X_4	<i>Y</i> ₄						

1.Gauss's forward Interpolation Formula: Given the set of (n + 1) values $(x_0, y_0), (x_1, y_1), - -x_n, y_n)$ of x and y. It is required to find a polynomial of nth degree $y_n(x)$ such that y and $y_n(x)$ agree at the tabular points with x's equidistant (i.e.) $x_i = x_0+ih$ (i = 0, 1, 2....n) then the **Gauus Forward interpolation formula** is given by

$$y_n(x) = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_{-1} + \frac{p(p-1)(p+1)}{3!}\Delta^3 y_{-1} + \frac{p(p-1)(p+1)(p-2)}{4!}\Delta^4 y_{-2} + \dots + \dots$$

Where $p = \frac{x - x_0}{h}$

Note:- We observe from the difference table that

$$\Delta y_0 = \delta y_{1/2}, \Delta^2 y_{-1} = \delta^2 y_0, \Delta^3 y_{-1} = \delta^3 y_{1/2}, \Delta^4 y_{-2} = \delta^4 y_0 \text{ and so on. Accordingly the}$$

formula (4) can be rewritten in the notation of central diffe

INTERPOLATION

$$y_{p} = [y_{0} + p\delta y_{1/2} + \frac{p(p-1)}{2!}\delta^{2}y_{0} + \frac{(p+1)p(p-1)}{3!}\delta^{3}y_{1/2} + \frac{(p+1)(p-1)p(p-2)}{4!}\delta^{4}y_{0} + \dots]$$

2.Gauss's Backward Interpolation formula: Given the set of (n + 1) values $(x_0, y_0), (x_1, y_1), - -x_n, y_n)$ of x and y. It is required to find a polynomial of nth degree $y_n(x)$ such that y and $y_n(x)$ agree at the tabular points with x's equidistant (i.e.) $x_i = x_0 + ih$ (i = 0, 1, 2, ..., n) then the **Gauus Backward interpolation formula** is given by

$$y = y_0 + p\Delta y_{-1} + \frac{p(p+1)}{2!}\Delta^2 y_{-1} + \frac{p(p+1)(p-1)}{3!}\Delta^3 y_{-2} + \frac{p(p+1)(p-1)(p+2)}{4!}\Delta^4 y_{-2} + \dots$$

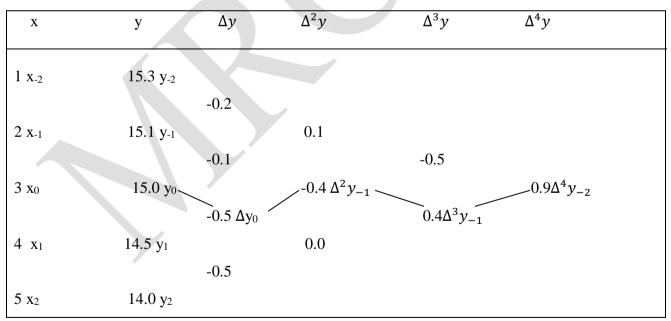
Note: Gauss forward and Backward formulae used when x is located middle of the tabular values

Problems :

1. Use Gauss Forward interpolation formula to find f(3.3) from the following table

x	1	2	3	4	5
y = f(x)	15.30	15.10	15.00	14.50	14.00

Solution: the difference table is



Given x=3.3 , x₀=3 ,h=1 hence $p = \frac{x-x_0}{h} = 0.3$ We know that Gauss forward interpolation formula is

INTERPOLATION

$$y_{p} = [y_{0} + p(\Delta y_{0}) + \frac{p(p-1)}{2!} \Delta^{2} y_{-1} + \frac{(p+1)p(p-1)}{3!} \Delta^{3} y_{-1} + \frac{(p+1)(p-1)p(p-2)}{4!} (\Delta^{4} y_{-2}) + - - -] \rightarrow (4)$$

=15+(0.3)(0.5)+ $\frac{(0.3)(0.3-1)}{2} (-0.4) + \frac{(0.3)(0.09-1)}{6} (0.4) + \frac{(0.3)(0.09-1)(0.3-2)}{24} (0.9)$
=14.9

2. Find f (2.5) using following Table

X	1	2	3	4
У	1	8	27	64

Solution: The difference table is

Х	у	Δy	$\Delta^2 y$	$\Delta^3 y$
1	1			
	0	7	10	
2	8	19	12	
3	27	19	18	6
5	27	37	10	
4	64			

$$h = 1$$

$$P = \frac{X - X_0}{h} = \frac{2.5 - 2}{1} = 0.5$$

Using Gauss Forward interpolation formula,

$$=8+(0.5)19+\frac{(0.5)(-0.5)}{2}(12)+\frac{(0.5-1)(0.5)(1.5+1)}{6}(6)$$

$$= 15.625$$

3. Use Gauss forward interpolation formulae to find f(3.3) from the following

X	1	2	3	4	5
у	15.30	15.10	15.00	14.50	14.00
Solution					

Х	у	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
1 2 3 4 5	15.30 15.10 15.00 14.50 14.00	-0.20 -0.10 -0.50 -0.50	0.10 -0.40 0.00	-0.50 0.40	0.90

INTERPOLATION

$$P = \frac{3.3 - 3}{1} = 0.3$$

= 15 + (0.3)(-0.5) + $\frac{(0.3)(-0.4)(-0.7)}{2}$ + (0.3)(0.4) $\frac{(-0.7)(1.3)}{6}$
+ $\frac{(0.3)(-0.7)(1.3)(-1.3)}{24}$ (-0.9) = 14.8604925 = 14.9

4. Find f(2.36) from the following table

x:	1.6	1.8	2.0	2.2	2.4	2.6
y:	4.95	6.05	7.39	9.03	11.02	13.46

Solution:

X	У	Δ	Δ^2	Δ^3	Δ^4	Δ^5
1.6	4.95	1.1	0.24			
1.8	6.05	1.34	0.3	0.06	-0.01	
2.0	7.39	1.64	_0.35_	0.05		0.06
2.2 x_0	9.03 y ₀ —	-1.99	0.45	-0.1	-0.05	
2.4	11.02	2.44	0.45			
2.6	13.46					

here we have x = 2.36, $x_0 = 2.2$, h = 0.2, $p = \frac{x - x_0}{h} = 0.8$

$$y_{p} = [y_{0} + p(\Delta y_{0}) + \frac{p(p-1)}{2!} \Delta^{2} y_{-1} + \frac{(p+1)p(p-1)}{3!} \Delta^{3} y_{-1} + \frac{(p+1)(p-1)p(p-2)}{4!} (\Delta^{4} y_{-2}) + \dots] \rightarrow (4)$$

Substituting all above values in the formula then

$$f(2.36) = 9.03 + (0.8)(1.99) + \frac{(0.8)(0.8-1)}{2}(0.35) + \frac{(0.8+1)(0.8)(0.8-1)}{6}(0.1) + \frac{(0.8+1)(0.8)(0.8-1)(0.8-2)}{24}(0.05)$$

=10.02

5. Find f(22) from the following table using Gauss forward formula

DEPARTMENT OF HUMANITIES & SCIENCES MRCET (EAMCET CODE: MLRD) 34

INTERPOLATION

x	20	25	30	35	40	45
у	354	332	291	260	231	204

Solution : the middle part of the difference table is

Х	У	Δ	Δ^2	Δ^3	Δ^4	Δ^5
$20x_0$	354y ₀	-22				
25	332		-19			
		-41		29		
30	291		10		-37	
		-31		-8		45
35	260		2		8	
		-29		0		
40	231		2			
		-27				
45	204					

Given
$$x = 22$$
 and $x_0 = 20$, $h = 5$, then $p = \frac{x - x_0}{h} = 0.4$

The Gauss forward formula is

 $y = y_0 + p\Delta y_0$

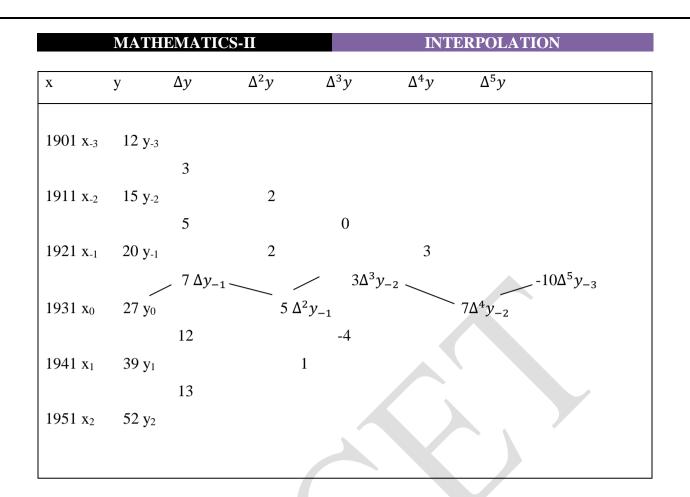
$$= 354 + (0.4)(-22)$$

= 345.2

6. Find by Gauss's Backward interpolating formula the value of y at x=1936, using the following table.

X	1901	1911	1921	1931	1941	1951
У	12	15	20	27	39	52

Solution: The difference table is



Given x=1936 and let x₀ =1931 and h=10 then $p = \frac{x - x_0}{h} = 0.5$

$$y = y_{0} + p\Delta y_{-1} + \frac{(p+1)p}{2!}\Delta^{2}y_{-1} + \frac{(p+1)p(p-1)}{3!}\Delta^{3}y_{-2} + \frac{(p+1)p(p-1)(p-2)}{4!}\Delta^{4}y_{-2} + - - -$$

=27+(0.5)(7)+ $\frac{0.5)(0.5+1)}{2}$ (5) + $\frac{(0.5)(1.5)(-0.5)}{6}$ (3) + $\frac{(0.5)(1.5)(-0.5)(-1.5)}{24}$ (-7) + $\frac{(0.5)(1.5)(-0.5)(-1.5)(2.5)}{120}$ (-10)
=32.345

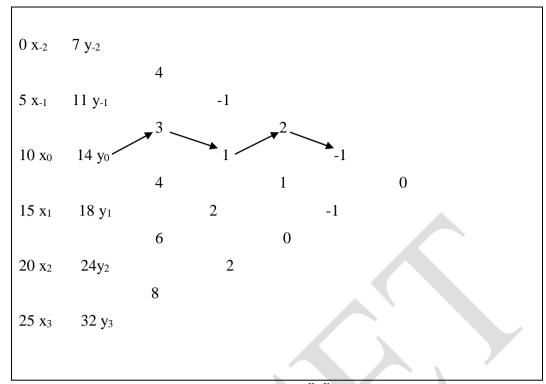
7. Using Gauss back ward difference formula, find y(8) from the following table

x	0	5	10	15	20	25
у	7	11	14	18	24	32

Solution: The difference table is

xy
$$\Delta y$$
 $\Delta^2 y$ $\Delta^3 y$ $\Delta^4 y$ $\Delta^5 y$

INTERPOLATION



Given x=8 and let $x_0 = 10$ and h=5 then $p = \frac{x - x_0}{h} = -0.4$

By Gauss backward interpolation formula we have

$$y = y_0 + p\Delta y_{-1} + \frac{(p+1)p}{2!}\Delta^2 y_{-1} + \frac{(p+1)p(p-1)}{3!}\Delta^3 y_{-2} + \frac{(p+1)p(p-1)(p-2)}{4!}\Delta^4 y_{-2} + - \frac{(p+1)p(p-1)(p-2)}{4!}\Delta^4 y_{-2} + - \frac{(-0.4)(-0.4+1)(-0.4+1)}{2}(1) + \frac{(-0.4)(-0.4+1)(-0.4-1)}{6}(2) + \frac{(-0.4)(-0.4+1)(-0.4-1)(-0.4-2)}{24}(-1) = 12.704$$

Lagrange's Interpolation Formula: Let f(x) be continuous and differentiable (n+1) times in the interval (a, b). Given the (n+1) points $as(x_0, y_0), (x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ where values of x not necessarily be equally spaced then the interpolating polynomial of degree 'n' say f(x) is given by

$$f(x) = \frac{(x-x_1)(x-x_2)\dots(x-x_n)}{(x_0-x_1)(x_0-x_2)\dots(x_0-x_n)} f(x_0) + \frac{(x-x_0)(x-x_2)\dots(x-x_n)}{(x_1-x_0)(x_1-x_2)\dots(x_1-x_n)} f(x_1) + \frac{(x-x_0)(x-x_1)(x-x_2)\dots(x_1-x_n)}{(x_2-x_0)(x_2-x_1)\dots(x_2-x_n)} f(x_2) + \dots + \frac{(x-x_0)(x-x_1)\dots(x-x_{n-1})}{(x_n-x_0)(x_n-x_1)\dots(x_n-x_{n-1})} f(x_n)$$

Note: This formula is used when values of *x* are unequally spaced and equally spaced

PROBLEMS

1. Using Lagrange formula, calculate f(3) from the following table

	X	0	1	2	4	5	6	
	f(x)	1	14	15	5	6	19	
Given $x_0 = 0, x_1 = 1, x_2 = 2, x_3 = 4, x_4 = 5, x_5 = 6$								

Solution:

$$f(x_0) = 1, f(x_1) = 14, f(x_2) = 15, f(x_3) = 5, f(x_4) = 6, f(x_5) = 19$$

From Lagrange's interpolation formula

$$f(x) = \frac{(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)(x_0-x_4)(x_0-x_5)} f(x_0) + \frac{(x-x_0)(x-x_2)(x-x_3)(x-x_4)(x-x_5)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)(x_1-x_4)(x_1-x_5)} f(x_1) + \frac{(x-x_0)(x-x_1)(x-x_3)(x-x_4)(x-x_5)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)(x_2-x_4)(x_2-x_5)} f(x_2)$$

$$\frac{(x-x_0)(x-x_1)(x-x_2)(x-x_3)(x-x_4)}{(x_5-x_0)(x_5-x_1)(x_5-x_2)(x_5-x_3)(x_5-x_4)}f(x_5)$$

Here x = 3 then

$$f(3) = \frac{(3-1)(3-2)(3-4)(3-5)(3-6)}{(0-1)(0-2)(0-4)(0-5)(0-6)} \times 1 + \frac{(3-0)(3-2)(3-4)(3-5)(3-6)}{(1-0)(1-2)(1-4)(1-5)(1-6)} \times 14 + \frac{(3-0)(3-1)(3-4)(3-5)(3-6)}{(2-0)(2-1)(2-4)(2-5)(2-6)} \times 15 + \frac{(3-0)(3-1)(3-2)(3-5)(3-6)}{(4-0)(4-1)(4-2)(4-5)(4-6)} \times 5 + \frac{(3-0)(3-1)(3-2)(3-4)(3-6)}{(5-0)(5-1)(5-2)(5-4)(5-6)} \times 6 + \frac{(3-0)(3-1)(3-2)(3-4)(3-5)}{(6-0)(6-1)(6-2)(6-4)(6-5)} \times 19$$
$$= \frac{12}{240} - \frac{18}{60} \times 14 + \frac{36}{48} \times 15 + \frac{36}{48} \times 5 - \frac{18}{60} \times 6 + \frac{12}{40} \times 19$$
$$= 0.05 - 4.2 + 11.25 + 3.75 - 1.8 + 0.95 = 10$$
$$f(x_3) = 10$$

2. Find f(3.5) using Lagrange method of 2^{nd} and 3^{rd} order degree polynomials.

INTERPOLATION

x	1	2	3	4
f(x)	1	2	9	28

Sol:

By Lagrange's interpolation formula For n = 4, we have

$$f(x) = \frac{(x-x_{1})(x-x_{2})(x-x_{3})}{(x_{0}-x_{3})(x_{0}-x_{3})}f(x_{0}) + \frac{(x-x_{0})(x-x_{2})(x-x_{3})}{(x_{1}-x_{0})(x_{1}-x_{2})(x_{1}-x_{3})}f(x_{1}) + \frac{(x-x_{0})(x-x_{1})(x-x_{3})}{(x_{2}-x_{0})(x_{2}-x_{1})(x_{2}-x_{3})}f(x_{2}) + \frac{(x-x_{0})(x-x_{1})(x-x_{2})}{(x_{3}-x_{0})(x_{3}-x_{1})(x_{3}-x_{2})}f(x_{3}) + \frac{(x-x_{0})(x-x_{1})(x-x_{2})}{(x_{3}-x_{0})(x_{3}-x_{1})(x_{3}-x_{2})}f(x_{3}) + \frac{(3.5-1)(3.5-3)(3.5-4)}{(2-1)(2-3)(2-4)}(2) + \frac{(3.5-1)(3.5-2)(3.5-4)}{(3-1)(3-2)(3-4)}(9) + \frac{(3.5-1)(3.5-2)(3.5-3)}{(4-1)(4-2)(4-3)}(28) = -0.0625 + (-0.625) + 8.4375 + 8.75 = -16.625$$

$$Now f(x) = \frac{(x-2)(x-3)(x-4)}{-6}(9) + \frac{(x-1)(x-2)(x-3)}{-6}(28) = \frac{(x^{2}-5x+6)(x-4)}{-6} + (x^{2}-4x+3)(x-4) + \frac{(x^{2}-3x+2)(x-4)}{-2}(9) + \frac{(x^{2}-3x+2)(x-3)}{-6}(28) = \frac{x^{3}-9x^{2}+26x-24}{-6} + x^{3}-8x^{2}+19x-12 + \frac{x^{3}-7x^{2}+14x-8}{-2}(9) + \frac{x^{3}-6x^{2}+11x-6}{6}(28) = \frac{-x^{3}-9x^{2}+26x-24+6x^{3}-48x^{2}+114x-72-27x^{3}+189x^{2}-378x+216+308x+28x^{3}-168x^{2}-168x^{$$

3. Find f (4) use Lagrange's interpolation formulae.

$$f(x) = \frac{(x - x_2)(x - x_3)(x - x_4)}{(x_1 - x_2)(x_1 - x_3)(x_1 - x_4)} y_1 + \frac{(x - x_1)(x - x_3)(x - x_4)}{(x_2 - x_1)(x_2 - x_3)(x_2 - x_4)}$$
Solution:

$$Y_{2} + \frac{(x - x_{1})(x - x_{2})(x - x_{4})}{(x_{3} - x_{1})(x_{3} - x_{2})(x_{3} - x_{4})} y_{3} + \frac{(x - x_{1})(x - x_{2})(x - x_{3})}{(x_{4} - x_{1})(x_{4} - x_{2})(x_{4} - x_{3})} Y_{4}$$
Where $x = 4, x_{1} = 0, x_{2} = 2, x_{3} = 3, x_{4} = 6$

$$= \frac{(4 - 2)(4 - 3)(4 - 6)}{(-2)(-3)(-6)} \times (-4) + \frac{(4)(1)(-2)}{2(-1)(-4)} \times (2) + \frac{4 \times 2 \times (-2)}{3 \times 1 \times 3(-3)} \times 14$$

$$= \frac{4(2)(1)}{6(4)(3)} \times 158$$

$$= \frac{-4}{9}(-2) + \frac{224}{9} + \frac{158}{9} = \frac{-4 - 18 + 224 + 158}{9}$$

$$= 40$$

4. The following are the measurements T made on curverecorded by the oscilograph representing a change of current I due to a change in condn s of anelectric current

Т	1.2	2	2.5	3
Ι	1.36	0.58	0.34	0.2

Solution:

Since data is unequispaced, we use Lagrange's interpolation

$$y = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} y_0 + \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} y_1 + \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} y_2 + \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)} y_3$$

$$y = \frac{(1.6-1.2)(1.6-2)(1.6-3)}{(1.6-1.2)(1.6-2)(1.6-3)}(1.36) + \frac{(1.6-1.2)(1.6-2.5)(1.6-3)}{(2-1.2)(2-2.5)(1.6-3)}(0.58) + \frac{(1.6-1.2)(1.6-2)(1.6-3)}{(1.6-1.2)(1.6-2)(1.6-3)}(0.34) + \frac{(1.6-1.2)(1.6-2)(1.6-2.5)}{(1.6-1.2)(1.6-2)(1.6-2.5)}(0.2)$$

=0.8947 \therefore I = 0.8947

5. Find the parabola passing through points (0,1), (1,3) and(3,55) using Lagrange's Interpolation Formula.

х	0	1	3
у	1	3	55

Solution: Given Lagrange's interpolation formula is

DEPARTMENT OF HUMANITIES & SCIENCES MRCET (EAMCET CODE: MLRD) 40

INTERPOLATION

$$y = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} y_0 + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} y_1$$

+ $\frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} y_2$
$$y = \frac{(x - 1)(x - 3)}{(0 - 1)(0 - 3)} + \frac{(x - 0)(x - 3)}{(1 - 0)(1 - 3)} (3)$$

+ $\frac{(x - 0)(x - 1)}{(3 - 0)(3 - 1)} (55)$
= $\frac{1}{6} [48x^2 - 36x + 6]$
= $8x^2 - 6x + 1$

6. A Curve passes through the points (0,18),(1,10),(3,-18) and (6,90). Find the slope of the curve at x = 2.

Х	0	1	3	6			
у	18	10	-18	90			

Solution: Given data is

Since data is unequispaced, we use Lagrange's interpolation

$$y = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} y_0 + \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} y_1 + \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} y_2 + \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)} y_3$$

$$y = \frac{(x-1)(x-3)(x-6)}{(0-1)(0-3)(0-6)} 18 + \frac{(x-0)(x-3)(x-6)}{(1-0)(1-3)(1-6)} 10$$

+ $\frac{(x)(x-1)(x-6)}{(3-0)(3-1)(3-6)} (-18) + \frac{(x)(x-1)(x-3)}{(6)(6-1)(6-3)} 90$
 $y = \frac{(x-1)(x-3)(x-6)}{(0-1)(0-3)(0-6)} 18 + \frac{(x-0)(x-3)(x-6)}{(1-0)(1-3)(1-6)} 10$
+ $\frac{(x)(x-1)(x-6)}{(3-0)(3-1)(3-6)} (-18) + \frac{(x)(x-1)(x-3)}{(6)(6-1)(6-3)} 90$
= $2x^3 - 10x^2 + 18$
 $\therefore \frac{dy}{dx} = 6x^2 - 20x$
 \therefore Slope of curve at $x = 2$ is $6(2)^2 - 20(2) = -16$

UNIT-II

NUMERICAL METHODS

Numerical Integration

Introduction :

The process of evaluating a definite integral from a set of tabulated values of the integrand f(x), which is not known explicitly is called Numerical Integration.

Newton –Cote's Quadrature Formula:

We want to find Definite integral form $\int_{a}^{b} f(x)dx$, where f(x) is unknown explicitly, then We replace f(x) with interpolating polynomial.

Here we replace with Newton Forward Interpolation formula

Divide the interval (a, b) into n sub intervals of width h so that

$$a = x_{0} < x_{1} = x_{0} + h \dots < x_{n} = x_{n} + h = b \text{ Then}$$

$$y_{n}(x) = y_{0} + p\Delta y_{0} + \frac{p(p-1)}{2!} \Delta^{2} y_{0} + \dots + \frac{p(p-1)(p-2)\dots(p-(n-1))}{n!} \Delta^{n} y_{0}$$
Where $p = \frac{x-x_{0}}{h} \quad hdp = dx \quad a \ t \ x = x_{0} \Rightarrow \quad p = 0 \ and \ x = x_{n} \Rightarrow p = n$

$$\therefore \int_{a}^{b} f(x) dx = \int_{x_{0}}^{x_{n}} y_{n}(x) dx = h \int_{x_{0}}^{x_{n}} (y_{0} + p\Delta y_{0} + \frac{p(p-1)}{2!} \Delta^{2} y_{0} + \dots) dp$$

$$= h \int_{0}^{n} (y_{0} + p\Delta y_{0} + \frac{p(p-1)}{2!} \Delta^{2} y_{0} + \dots) dp$$

$$= nh \left[y_{0} + \frac{n}{2} \Delta y_{0} + \frac{n}{12} (2n-3) \Delta^{2} y_{0} + \frac{n}{24} (n-2)^{2} \Delta^{3} y_{0} + \dots \right]$$

This is Newton Cotes Quadrature Formula.

Derive Trapezoidal Rule for numerical integration of $\int_a^b f(x) dx$

I.TRAPEZOIDAL RULE:

Sub n=1 in Newton Cotes Quadrature formula and taking the curve y = f(x) passing through (x_0, y_0) and (x_1, y_1) as a straight line so that differences of order higher than first become zero(i.e., Δ^2 , Δ^3 etc become zero) (n=number of intervals)

$$\int_{x_0}^{x_1} f(x) dx = h[_{y_0} + \frac{1}{2}\Delta y_0] = \frac{h}{2} [y_0 + y_1]....(i)$$

Similarly we get

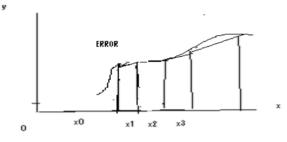
NUMERICAL METHODS

$$\int_{x_1}^{x_2} f(x) dx = \frac{h}{2} [y_1 + y_2]$$
(ii)

Adding above we get

$$\int_{x_0}^{x_n} y dx = \frac{h}{2} [(y_0 + y_n) + 2(y_1 + y_2 + - - - + y_{n-1})]$$
$$\int_{x_0}^{x_n} y dx = \frac{h}{2} [(sum \ of \ the \ Ist \ \& \ last \ oridinates) + 2(sum \ of \ the \ remaining \ ord.)]$$

Geometrical interpretation of Trapezoidal Rule:



Here trapezoidal rule denotes sum of areas of above trapeziums.

Derive Simpson's 1/3 Rule for numerical integration of $\int_a^b f(x) dx$

Δ

II. Simpson's 1/3 Rule (n=2)

sub n=2 in Newton Cotes Quadrature_Formula and taking the curve y = f(x) passing through $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) as a parabola so that differences of order higher than second become zero(i.e., $\Delta^3, \Delta^4 etc$ become zero)

$$\int_{x_0}^{x_2} f(x) dx = 2h[y_0 + \Delta y_0 + \frac{1}{6} \Delta^2 y_0]$$

We know $E = 1 + \Delta$

then
$$\int_{x_0}^{x_2} f(x) dx = \frac{h}{3} [y_0 + 4y_1 + y_2]$$

Similarly $\int_{x_2}^{x_4} f(x) dx = 2h[y_2 + 4y_3 + y_4]$

and so on $\int_{x_{n-2}}^{x_n} f(x) dx = \frac{h}{3} [y_{n-2} + 4y_{n-1} + y_n]$ Adding

44

$$\int_{x_0}^{x_n} y dx = \frac{h}{3} [(y_0 + y_n) + 4(y_1 + y_2 + ... + y_{n-1}) + 2(y_2 + y_4 + ... + y_{n-2})]$$

$$\int_{x_0}^{x_n} y dx = \frac{h}{3} [(sum \ of \ the \ first \ and \ last \ oridinates) + 4(sum \ of \ the \ odd \ ordinates)$$

This is known as Simpson's 1/3 Rule (or) Simply Simpson's Rule. .

III. Simpson's 3 / 8 Rule

 $\int_{x_0}^{x_n} y dx = \frac{3h}{8} [(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + ... + y_{n-1}) + 2(y_3 + y_6 + ... + y_{n-3})]$ Note:

Note: -

- 1. Trapezoidal Rule is applicable for any number of subintervals
- 2. Simpson's 1/3 rule is applicable when the number of subintervals must be even
- 3. Simpson's $\frac{3}{8}$ rule is applicable when the number of subintervals must be multiple of 3

Compare Trapezoidal Rule and Simpson's 1/3 rule

In trapezoidal rule we take n=1(no of subintervals) between every two points we are taking a straight line(LINEAR) where as in simpsons rule n=2 means we are taking a parabola so error is less compare to trapezoidalrule.

PROBLEMS

1. Evaluate
$$\int_0^{\pi} \frac{\sin x}{x} dx$$
 by using trapezoidal and simpson's 1/3 rules taking n=6

SOL:
$$h = \frac{b-a}{n} = \frac{\pi}{6}$$

Here $\frac{\sin 0}{0} = 1$ since $\lim_{x \to 0} \frac{\sin x}{x} = 1$

X	0	$\frac{\pi}{6}$	$\frac{2\pi}{6}$	$\frac{3\pi}{6}$	$\frac{4\pi}{6}$	$\frac{5\pi}{6}$	π
sinx	0	0.5	0.866	1	0.866	0.5	0
Sinx/x	1	0.9549	0.8270	0.6366	0.4135	0.1910	0

i) Trapezoidal rule :

 $\int_0^1 \frac{1}{1+x} dx = \frac{h}{2} \left[(\text{sum of first and last ordinates}) + 2(\text{sum of the remaining ordinates}) \right]$ $= \frac{\pi}{12} \left[(1+0) + 2(0.827+0.4135+0.9549+0.6366+0.1910) \right] = 1.8446$

ii) Simpson's 1/3 rule:

 $\int_0^1 \frac{1}{1+x} dx = \frac{h}{3} \left[(sum \ of \ the \ Ist \ \& \ last \ oridinates) + 4 (sum \ of \ the \ odd \ ordinates) + 4 \right]$

2(sum of the remaining even ordinates)]

$$=\frac{\pi}{18}[(1+0)+2(0.827+0.4135)+4(0.9549+0.6366+0.1910)] = 1.852$$

2. Evaluate $\int_0^1 \frac{1}{1+x} dx$ by using trapezoidal, simpson's 1/3, Simpson's 3/8 rules.

SOL: We want to use above 3 rules so take n=6

$$h = \frac{b-a}{n} = \frac{1-0}{6} = \frac{1}{6}$$

i) Trapezoidal rule :

 $\int_0^1 \frac{1}{1+x} dx = \frac{h}{2} [(\text{sum of first and last ordinates}) + 2(\text{sum of the remaining ordinates})]$

$$=\frac{1}{2}[(1+0.5)+2(0.8571+0.5454+0.75+0.6+0.6666)] = 0.69485$$

ii) Simpson's 1/3 rule:

 $\int_{0}^{1} \frac{1}{1+x} dx = \frac{h}{3} \left[(sum \ of \ the \ first \ and \ last \ oridinates) + 4 (sum \ of \ the \ odd \ ordinates) + 4 (sum \ of \ the \ odd \ odd$

2(sum of the remaining even ordinates)]

$$=\frac{1}{18}\left[(1+0.5)+2(0.75+0.6)+4(0.8571+0.6666+0.5454)\right]=0.693$$

iii) Simpson's 1/3 rule:

$$\int_0^1 \frac{1}{1+x} dx = \frac{3h}{8} [(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + ... + y_{n-1}) + 2(y_3 + y_6 + ... + y_{n-3})]$$

= $\frac{1}{16} [(1+0.5)+2(0.6666)+3(0.8571+0.75+0.6+0.5454)] = 0.6932$

3. Evaluate $\int_{4}^{5.2} \log x \, dx$ by using trapezoidal, simpson's 1/3, Simpsons 3/8 rules from

X	4	4.2	4.4	4.6	4.8	5	5.2
logx	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6487
	<i>y</i> ₀	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	y_5	<i>y</i> ₆

SOL: Here h=4.2-4=0.2

i) Trapezoidal rule :

 $\int_{4}^{5.2} log x \, dx = \frac{h}{2} [(sum of first and last ordinates) + 2(sum of the remaining ordinates)]$

Х	0	1/6	2/6	3/6	4/6	5/6	6/6
$y = \frac{1}{1+x}$	1	0.8571	0.75	0.6666	0.6	0.5454	0.5
172	${\mathcal Y}_0$	y_1	y_2	<i>y</i> ₃	y_4	${\mathcal Y}_5$	y_6

DEPARTMENT OF HUMANITIES & SCIENCES OMRCET (EAMCET CODE: MLRD)

45

NUMERICAL METHODS

$$=\frac{0.2}{2}[(1.3863+1.6487)+2(1.4351+1.4816+1.5261+1.5686+1.6094)] = 1.8277$$

ii) Simpson's 1/3 rule:

 $\int_{0}^{1} \frac{1}{1+x} dx = \frac{h}{3} [(sum \ of \ the \ first \ and \ last \ oridinates) + 4(sum \ of \ the \ odd \ ordinates) + 4(sum \ odd \ odd$

2(sum of the remaining even ordinates)]

$$=\frac{0.2}{2}[(1.3863+1.6487)+2(1.4816+1.5686)+4(1.4351+1.5261+1.6094)] = 1.8279$$

iii) Simpson's 3/8 rule:

$$\int_{0}^{1} \frac{1}{1+x} dx = \frac{3h}{8} [(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + ... + y_{n-1}) + 2(y_3 + y_6 + ... + y_{n-3})]$$

= $\frac{0.6}{18} [(1.3863 + 1.6487) + 2(1.5261) + 3(1.4351 + 1.4816 + 1.5686 + 1.6094)] = 1.8278$

4. The velocity v (m/sec) of a particle at distance S(m) from a point on its path given by following table

					40		
v	47	58	64	65	61	52	38

Estimate the time taken to travel 60 meters by Simpsons 1/3 and 3/8 rules.

SOL: Let $v = \frac{dv}{dt}$ be the velocity of particle at any time 't'

Then $dt = \frac{ds}{v}$ Integrating on both sides with limits 0 to 60

Then
$$t = \int_0^{60} \frac{1}{v} \, \mathrm{ds}$$

S	0	10	20	30	40	50	60
v	47	58	64	65	61	52	38
1/v	0.0212	0.0172	0.0156	0.0153	0.0163	0.0192	0.0263

I) Simpson's $\frac{1}{3}$ rule:

$$\int_{0}^{60} \frac{1}{v} \, ds = \frac{h}{3} \begin{bmatrix} (sum \ of \ the \ first \ and \ last \ oridinates) \\ +4(sum \ of \ the \ odd \ ordinates) \\ +2(sum \ of \ the \ remaining \ even \ ordinates) \end{bmatrix}$$

 $=\frac{10}{3}[(0.0212+0.0263)+2(0.0156+0.0163)+4(0.0172+0.0153+0.0192)]=1.0603 \text{ sec}$

ii) Simpson's $\frac{3}{8}$ rule:

$$t = \int_0^{60} \frac{1}{v} \, \mathrm{ds} = \frac{3h}{8} \left[(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + . + y_{n-1}) + +2(y_3 + y_6 + . + y_{n-3}) \right]$$

= $\frac{30}{8} \left[(0.0212 + 0.0263) + 2(0.0153) + 3(0.0172 + 0.0163 + 0.0192) \right] = 0.8857 \, \mathrm{sec}$

5.Evaluate $\int_0^{\pi/2} e^{\sin x} dx$ correct to four decimals places by Simpsons 3/8rule SOL: Here $h = \frac{\pi}{12}$

X	0	$\frac{\pi}{12}$	$\frac{2\pi}{12}$	$\frac{3\pi}{12}$	$\frac{4\pi}{12}$	$\frac{5\pi}{12}$	$\frac{\pi}{2}$
У	1	1.2954	1.6487	2.0281	2.3774	2.6272	2.718

Simpson's $\frac{3}{8}$ rule:

$$t = \int_{0}^{60} \frac{1}{v} \, ds = \frac{3h}{8} \left[(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + . + y_{n-1}) + +2(y_3 + y_6 + . + y_{n-3}) \right]$$

= $\frac{3\pi}{96} \left[(1 + 2.718) + 2(2.0281) + 3(1.2954 + 1.6487 + 2.3774 + 2.6272) = 3.1015 \right]$
6. Evaluate $\int_{0}^{1} \frac{1}{1 + x^2} \, dx$ using Simpson's 3/8 rule

Ans. Divide the interval into 6 sub intervals & tabulate the values of $f(x_i) = \frac{1}{1+x^2}$ as

follows

x _i		1/6		3/6	4/6	5/6	6/6
$f(x_i)$	1	0.9729	0.90	0.80	0.69231	0.59016	0.5

Here h=1/6

Using Simpson's rule

$$I = \int_0^1 \frac{1}{1+x^2} dx = \frac{3h}{8} [(y_0 + y_6) + 3(y_1 + y_2 + y_4 + y_5) + 2y_3]$$

= $\frac{3}{8.6} [(1.0 + 0.50) + 3(0.9729 + 0.90 + 0.69231 + 0.59016) + 2(0.80)]$
= $\frac{1}{16} (12.5662) = 0.785395 \cong 0.7854$

7. Find the value of $\int_{0}^{1} \frac{1}{1+x^{2}} dx$, taking 5 sub internals & by using Trapezoidal rule.

$$f(x) = \frac{1}{1+x^2}, n = 5, a = 0, b = 1$$

$$\therefore h = \frac{b-a}{n} = \frac{1-0}{5} = 0.2$$

Sol:

Construct a table of values of
$$x_i \& y_i = f(x_i)$$
 as follows

DEPARTMENT OF HUMANITIES & SCIENCES ©MRCET (EAMCET CODE: MLRD) 47

NUMERICAL METHODS

48

x _i	0.0	0.2	0.4	0.6	0.8	1.0
y_i	1.00	0.961538	0.832069	0.735294	0.609755	0.50

Using Trapezoidal rule we get

$$I = \int_{0}^{1} \frac{1}{1+x^{2}} dx = \frac{0.2}{2} \Big[(1.0+0.50) + 2(0.961538+0.832069+0.735294+0.609759) \Big]^{-1} \Big]$$

= 0.783734

.

8. Find the area bounded by the curve f(x) = y and x-axis from x = 7.47 to x = 7.52

x _i	7.47	7.48	7.49	7.50	7.51	7.52
<i>Y</i> _i	1.93	1.95	1.98	2.01	2.03	2.06

<u>Sol: -</u> Here h = 0.01

Area formed by the curve y = f(x) and x – axis from x = 7.47 to x = 7.52 is

$$Area = \int_{7.47}^{7.52} f(x) dx$$

Applying Trapezoidal rule we get

$$Area = \int_{7.47}^{7.52} f(x) dx = \frac{h}{2} \Big[(y_0 + y_5) + 2(y_1 + y_2 + y_3 + y_4) \Big]$$
$$= \frac{0.01}{2} \Big[(1.93 + 2.06) + 2(1.95 + 1.98 + 2.01 + 2.03) \Big]$$
$$= 0.0996$$

9.Find $\int_{0}^{1} x^{3} dx$ with 5 sub intervals by Trapezoidal rule

Sol: - Here
$$a = 0, b = 1, n = 5 \& y = f(x) = x^3$$

:
$$h = \frac{b-a}{n} = \frac{1-0}{5} = 0.2$$

The values of x & y are tabulated below

X	0.2	0.4	0.6	0.8	1
У	0.008	0.064	0.216	0.512	1

By Trapezoidal rule

$$\int_0^1 x^3 dx = \frac{h}{2} [(y_0 + y_4) + 2(y_1 + y_2 + y_3)]$$

= $\frac{0.2}{2} [(0.008 + 1) + 2(0.064 + 0.216 + 0.512)]$
= $0.2592 \approx 0.26$

DEPARTMENT OF HUMANITIES & SCIENCES OMRCET (EAMCET CODE: MLRD)

10. Evaluate $\int_{0}^{\pi} t \sin t dt$ using Trapezoidal rule

<u>Sol</u>:- Divide the interval $(0, \pi)$ in to 6 parts each of width $h = \frac{\pi}{6}$

The values of $f(t) = t \sin t$ are given below

t	0	$\pi/6$	$2\pi/6$	$3\pi/6$	$4\pi/6$	$5\pi/6$	π
f(t) = y	0	0.2618	0.9069	1.5708	1.8138	1.309	0
	\mathcal{Y}_0	y_1	y_2	<i>Y</i> ₃	${\mathcal Y}_4$	<i>y</i> ₅	${\mathcal{Y}}_6$

By Trapezoidal rule

$$\int_{0}^{\pi} t \sin t dt = \frac{h}{2} \Big[(y_0 + y_6) + 2(y_1 + y_2 + y_3 + y_4 + y_5) \Big]$$
$$= \frac{\pi}{12} \Big[(0 + 0) + 2(0.2618 + 0.9069 + 1.5708 + 1.8138 + 1.309) \Big]$$
$$= \frac{\pi}{12} (11.7246)$$
$$= 3.0695 \cong 3.07$$

11. Find the value of $\int_{1}^{2} \frac{dx}{x}$ by Simpson's 1/3 rule. Hence obtain approx. value of $log_{e}2$

Sol:- Divide the interval (1,2) in to 8(even) parts each of width h = 0.125

Х	1	1.125	1.25	1.375	1.5	1.625	1.75	1.875	2
$v = \frac{1}{2}$	1	0.8888	0.8	0.7272	0.6666	0.6153	0.5714	0.5333	0.5
x	<i>y</i> ₀	<i>Y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>Y</i> ₅	<i>Y</i> ₆	<i>Y</i> ₇	<i>Y</i> ₈

By Simpson's 1/3 rule

$$\int_{1}^{2} \frac{dx}{x} = \frac{h}{3} [(y_0 + y_8) + 4(y_1 + y_3 + y_5 + y_7) + 2(y_2 + y_4 + y_6)]$$

= $\frac{0.125}{3} [(1+0.5) + 4(0.8888 + 0.7272 + 0.6153 + 0.5333) + 2(0.8 + 0.66666 + 0.5714)]$
= $\frac{0.125}{3} [1.5 + 11.0584 + 4.076] = \frac{0.125}{3} [16.6344] = 0.6931$

By actual integration,

 $\int_{1}^{2} \frac{dx}{x} = \left[\log x\right]_{1}^{2} = \log 2 - \log 1 = \log 2$

Hence $\log 2 = 0.6931$, correct to four decimal places

12. A rocket is launched from the ground. Its acceleration is registered during the first 80 seconds and is given in the table below. Using Simpson's 1/3 rule, find the velocity of the rocket at t = 80 seconds

49

NUMERICAL METHODS

t (sec)	0	10	20	30	40	50	60	70	80
$f(cm/\sec^2)$	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67

<u>Sol</u>:- We know that the rate of velocity is acceleration I.e., $f = \frac{\partial v}{\partial t}$

 \therefore Velocity of the rocket at t = 80 sec is given

$$v = \int_0^{80} f dt$$

= $\frac{10}{3} [(30 + 50.67) + 4(31.63 + 35.47 + 40.33 + 46.69)2(33.34 + 37.75 + 43.25)]$
= $\frac{10}{3} [80.67 + 616.48 + 228.68] = \frac{10}{3} (925.83) = 3086.1$

13. A river is soft wide. The depth 'd' in feet at a distance x ft from one bank is given by the table

									80
у	0	4	7	9	12	15	14	8	3

Find approximately the area of cross-section

Sol:- Here $h = 10, y_0 = 0, y_1 = 4, y_2 = 7, y_3 = 9, y_4 = 12, y_5 = 15, y_6 = 14, y_7 = 8 \& y_8 = 3$

Area of cross section = $\int_{0}^{80} y dx$

Area =
$$\frac{h}{3} [(y_0 + y_8) + 4(y_1 + y_3 + y_5 + y_7) + 2(y_2 + y_4 + y_6)]$$

= $\frac{10}{3} [(0+3) + 4(4+9+15+8) + 2(7+12+14)]$
= $\frac{10}{3} [3+144+66]$
= 710sq.ft

14. Evaluate $\int_{1}^{\pi} \sin x \, dx$ by dividing the interval $(0, \pi)$ in to 8 sub intervals & using

Simpson's 1/3 rule

Sol: - Given $a = 0, b = \pi, n = 8 \& f(x) = \sin x$

$$\therefore h = \frac{b-a}{n} = \frac{\pi - 0}{8} = \pi / 8$$

Tabulate the values of $\sin x$ as follows

x _i	0	$\pi/8$	$\pi/4$	$3\pi/8$	$\pi/2$	$5\pi/8$	$6\pi/8$	$7\pi/8$	π
sin x _i	0	0.38	0.71	0.92	1	0.92	0.710	0.38	0

Simpson's 1/3 rule for n = 8 is

50

$$I = \int_{a}^{b} f(x) dx = \frac{h}{3} \Big[(y_0 + y_8) + 4 (y_1 + y_3 + y_5 + y_7) + 2 (y_2 + y_4 + y_6) \Big]$$

= $\frac{\pi}{8.3} \Big[(0+0) + 4 (0.38 + 0.92 + 0.92 + 0.38) + 2 (0.71 + 1.0 + 0.71) \Big]$
= 1.99

15. Find the area bounded by the curve $y = e^{-x^2/2}$, x axis between x = 0 & x = 3 by using Simpson's 3/8 rule

Sol:- Divide the interval (0,3) in to 6 sub intervals

$$\therefore h = \frac{3-0}{6} = 0.5$$

The values of $y_i = e^{-x^2/2}$ are tabulated as follows

x _i		0.5				2.5	3.0
$y(x_i)$	1.0	1.33	1.649	3.080	7.389	22.760	90.017

By Simpson's 3/8 rule we get

$$I = \int_{0}^{1} e^{-x^{2}/2} dx = \frac{3h}{8} [(y_{0} + y_{6}) + 3(y_{1} + y_{2} + y_{4} + y_{5}) + 2y_{3}]$$

= $\frac{3(0.5)}{8} [(1.00 + 90.017) + 3(1.33 + 1.649 + 7.389 + 22.760) + 2(3.080)]$
= 36.8551

Numerical solutions of ordinary differential equations

The important methods of solving ordinary differential equations of first order numerically are as follows

- 1) Taylor's series method
- 2) Euler's method
- 3) Modified Euler's method of successive approximations
- 4) Runge- Kutta method

To describe various numerical methods for the solution of ordinary differential equations, we consider the general 1st order differential equation.

 $\frac{dy}{dx} = f(x,y)$ -----(1) with the initial condition $y(x_0)=y_0$

The methods will yield the solution in one of the two forms:

- i) A series for y in terms of powers of x, from which the values of y can be obtained by direct substitution.
- ii) A set of tabulated values of y corresponding to different values of x

The methods of Taylor belong to class (i)

The methods of Euler, Runge - Kutta method, belong to class (ii)

TAYLOR'S SERIES METHOD

To find the numerical solution of the differential equation $\frac{dy}{dx} = f(x, y) \rightarrow (1)$

With the initial condition $y(x_0) = y_0 \rightarrow (2)$

y(x) Can be expanded about the point x_0 in a Taylor's series in powers of $(x - x_0)$ as $y(x) = y(x_0) + \frac{(x - x_0)}{1!} y'(x_0) + \frac{(x - x_0)^2}{2!} y''(x_0) + ... + \frac{(x - x_0)^n}{n!} y^n(x_0) + ... \to (3)$

In equation (3), $y(x_0)$ is known from initial condition equation. The remaining coefficients $y'(x_0), y''(x_0), \dots, y^n(x_0)$ etc are obtained by successively differentiating equation (1) and evaluating at x_0 . Substituting these values in equation, y(x) at any point can be calculated from equation. Provided $h = x - x_0$ is small.

When $x_0 = 0$, then Taylor's series equation can be written as

$$y(x) = y(0) + x.y'(0) + \frac{x^2}{2!}y''(0) + \dots + \frac{x^n}{n!}y^n(0) + \dots \rightarrow (4)$$

Note: We know that the Taylor's expansion of y(x) about the point x_0 in a power of

$$(x - x_0)$$
 is.

$$y(x) = y(x_0) + \frac{(x - x_0)}{1!} y'(x_0) + \frac{(x - x_0)^2}{2!} y''(x_0) + \frac{(x - x_0)^3}{3!} y'''(x_0) + \dots \rightarrow (1) \quad \text{Or}$$
$$y(x) = y_0 + \frac{(x - x_0)}{1!} y' + \frac{(x - x_0)^2}{2!} y'' + \frac{(x - x_0)^3}{3!} y''' + \dots$$

If we let $x - x_0 = h$. (i.e. $x = x_0 + h = x_1$) we can write the Taylor's series as

$$\mathbf{y}(\mathbf{x}) = \mathbf{y}(\mathbf{x}_1) = \mathbf{y}_0 + \frac{h}{1!} y' + \frac{h^2}{2!} y'' + \frac{h^3}{3!} y''' + \frac{h^4}{4!} y'''' + \dots$$

i.e.
$$\mathbf{y_1} = \mathbf{y_0} + \frac{h}{1!} \mathbf{y'_0} + \frac{h^2}{2!} \mathbf{y''_0} + \frac{h^3}{3!} \mathbf{y''_0} + \frac{h^4}{4!} \mathbf{y'_0} + \dots$$
 $\rightarrow (2)$

Similarly expanding y(x) in a Taylor's series about $x = x_1$. We will get.

$$\mathbf{y}_{2} = y_{1} + \frac{h}{1!} y_{1}' + \frac{h^{2}}{2!} y_{1}'' + \frac{h^{3}}{3!} y_{1}''' + \frac{h^{4}}{4!} y_{1}^{(4)} + \dots$$

Similarly expanding y(x) in a Taylor's series about $x = x_2$ We will get.

In general, Taylor's expansion of y(x) at a point $x = x_n$ is

Merits and Demerits of Taylor series method:

In this method taking h very small and taking upto order h⁴ terms we get less error but finding derivatives may be complicate in some of the problems

PROBLEMS:

.

1. Solve
$$\frac{dy}{dx} = xy + 1$$
 and y(0) = 1 using Taylor's series method and compute y(0.1).

SOL:. Given that
$$\frac{dy}{dx} - 1 = xy$$
 and $y(0) = 1$

Here
$$\frac{dy}{dx} = 1 + xy$$
 and $y_0 = 1$, $x_0 = 0$.

DEPARTMENT OF HUMANITIES & SCIENCES ©MRCET (EAMCET CODE: MLRD) 53

NUMERICAL METHODS

Differentiating repeatedly w.r.t 'x' and evaluating at $x_0 = 0$

$$y'(x) = 1 + xy,$$
 $y'(0) = 1 + 0(1) = 1.$
 $y''(x) = x. y' + y,$ $y''(0) = 0 + 1 = 1$
 $y'''(x) = x. y'' + y' + y'$ $y'''(0) = 0.(1) + 2(1) = 2$

The Taylor series for f(x) about $x_0 = 0$ is

$$y(x) = y(0) + x_y'(0) + \frac{x^2}{2!}y''(0) + \frac{x^3}{3!}y'''(0)$$
 (Neglecting higher order terms)

Substituting the values of y(0), y'(0), y''(0),

y(x) = 1 + x +
$$\frac{x^2}{2}$$
 + $\frac{x^3}{6}$ (2)
y(x) = 1 + x + $\frac{x^2}{2}$ + $\frac{x^3}{3}$ →(1)

Now put x = 0.1 in equ (1),

$$y(0.1) = 1 + 0.1 + \frac{(0.1)^2}{2} + \frac{(0.1)^3}{3}.$$
$$= 1 + 0.1 + 0.005 + 0.000333 = 1.105$$

2. Solve the equation $\frac{dy}{dx} = x - y^2$ with the conditions y(0) = 1 and y'(0) = 1. Find y(0.2)

and y(0.4) using Taylor's series method.

SOL: Given that $y' = x - y^2$, y(0) = 1 Here $y_0 = 1$, $x_0 = 0$ Differentiating repeatedly w.r.t 'x' and evaluating at x=0

$$y'(x) = x - y^{2}, y'(0) = 0 - y(0)^{2} = 0 - 1 = -1$$

$$y''(x) = 1 - 2y \cdot y', y''(0) = 1 - 2 \cdot y(0) y'(0) = 1 - 2(-1) = 3$$

$$y'''(x) = 1 - 2yy' - 2(y')^{2}, y'(0) = -2 \cdot y(0) \cdot y''(0) - 2 \cdot (y'(0))^{2} = -6 - 2 = -8$$

The Taylor's series for f(x) about $x_0 = 0$ is

$$y(x) = y(0) + \frac{x}{1!}y'(0) + \frac{x^2}{2!}y''(0) + \frac{x^3}{3!}y'''(0)$$
 (Neglecting higher order terms)

NUMERICAL METHODS

Substituting the value of y (0), y' (0), y'' (0),....

)

y(x) = 1 - x +
$$\frac{3}{2}x^2 - \frac{8}{6}x^3$$

y(x) = 1 - x + $\frac{3}{2}x^2 - \frac{4}{3}x^3$ →(1)

Now put x = 0.1 in (1)

$$y(0.1) = 1 - 0.1 + \frac{3}{2}(0.1)^2 + \frac{4}{3}(0.1)^3 = 0.9138$$

Similarly put x = 0.2 in (1)

 $y(0.2) = 1 - 0.2 + \frac{3}{2}(0.2)^2 - \frac{4}{3}(0.2)^3 = 0.8516.$

3. Tabulate y(0.1), y(0.2) and y(0.3) using Taylor's series method given that $y' = y^2 + x$

and
$$y(0) = 1$$
.
Sol: Given $y' = y^2 + x$ (1),
 $y(0) = 1$ (2)

Here $x_0 = 0$, $y_0 = 1$. Take h = 0.1 then $x_1 = x_0 + h = 0.1$, $x_2 = 0.2$, $x_3 = 0.3$

Differentiating (1) w.r.t 'x', we get

$$y'' = 2y \cdot y' + 1 \qquad \Rightarrow (3)$$

$$y''' = 2[y \cdot y' + (y')^{2}] \qquad \Rightarrow (4)$$

$$y^{(iv)} = 2[y \cdot y''' + y'y'' + 2y' y''] = 2[y \cdot y''' + 3 y' y''] \qquad \Rightarrow (5)$$

Put $x_{0} = 0, y_{0} = 1$ in (1), (3), (4) and (5), we get

$$y'_{0} = (1)^{2} + 0 = 1$$

$$y''_{0} = 2(1) (1) + 1 = 3,$$

$$y''_{0} = 2((1) (3) + (1)^{2}) = 8$$

$$y''_{0} = 2[(1)(8) + 3(1)(3)] = 34$$

Take $h = 0.1$.

<u>Step1</u>: By Taylor's series expansion, we have

 $\mathbf{y}(\mathbf{x}_1) = \mathbf{y}_1 = \mathbf{y}_0 + \frac{\mathbf{h}}{1!} \, \mathbf{y}_0' + \frac{\mathbf{h}^2}{2!} \, \mathbf{y}_0'' + \frac{\mathbf{h}^3}{3!} \, \mathbf{y}_0''' + \frac{\mathbf{h}^4}{4!} \, \mathbf{y}_0^{(iv)} + \dots \quad \mathbf{i}(6)$

DEPARTMENT OF HUMANITIES & SCIENCES ©MRCET (EAMCET CODE: MLRD)

NUMERICAL METHODS

on substituting the values of y_0, y', y'' etc in (6),we get

$$y(0.1) = y_1 = 1 + (0.1)(1) + \frac{(0.1)^2}{2}(3) + \frac{(0.1)^3}{6}(8) + \frac{(0.1)^4}{24}(34) + \dots$$

$$= 1 + 0.1 + 0.015 + 0.001333 + 0.000416 \implies y_1 = 1.116749$$

<u>Step2</u>: Let us find y(0.2), we start with (x_1, y_1) as the starting values

Here
$$x_1 = x_0 + h = 0 + 0.1 = 0.1$$
 and $y_1 = 1.116749$

Putting these values in (1),(3),(4) and (5), we get

$$y_1' = y_1^2 + x_1 = (1.116749)^2 + 0.1 = 1.3471283$$

$$y_1'' = 2y_1y_1' + 1 = 2(10116749) (1.3471283) + 1 = 4.0088$$

$$y_1''' = 2(y_1y_1'' + (y_1')^2) = 2((1.116749) (4.0088) + (1.3471283)^2] = 12.5831$$

$$y_1^{(4)} = 2y_1y_1''' + 6y_1'y_1'' = 2(1.116749) (12.5831) + 6(1.3471283) (4.0088) = 60.50653$$

By Taylor's expansion

$$\mathbf{y}(\mathbf{x}_{2}) = \mathbf{y}_{2} = \mathbf{y}_{1} + \frac{\mathbf{h}}{1!}\mathbf{y}_{1}' + \frac{\mathbf{h}^{2}}{2!}\mathbf{y}_{1}'' + \frac{\mathbf{h}^{3}}{3!}\mathbf{y}_{1}''' + \frac{\mathbf{h}^{4}}{4!}\mathbf{y}_{1}^{(i\nu)} + \dots$$
$$\mathbf{y}(0.2) = \mathbf{y}_{2} = 1.116749 + (0.1)(1.3471283) + \frac{(0.1)^{2}}{2}(4.0088) + \frac{(0.1)^{3}}{6}(12.5831) + \frac{(0.1)^{4}}{24}(60.50653)$$

$$y_2 = 1.116749 + 0.13471283 + 0.020044 + 0.002097 + 0.000252 = 1.27385$$

$$y(0.2) = 1.27385$$

<u>Step3</u>: Let us find y(0.3), we start with (x_2, y_2) as the starting value.

Here $x_2 = x_1 + h = 0.1 + 0.1 = 0.2$ and $y_2 = 1.27385$

Putting these values of x_2 and y_2 in eq (1), (3), (4) and (5), we get

$$y'_{2} = y_{2}^{2} + x_{2} = (1.27385)^{2} + 0.2 = 1.82269$$

$$y''_{2} = 2y_{2}y'_{2} + 1 = 2(1.27385) (1.82269) + 1 = 5.64366$$

$$y'''_{2} = 2[y_{2}y''_{2} + (y'_{2})^{2}] = 2[(1.27385) (5.64366) + (1.82269)^{2}]$$

$$= 14.37835 + 6.64439 = 21.02274$$

$$y'^{(4)}_{2} = 2y_{2} + y'''_{2} + 6y'_{2}y''_{2} = 2(1.27385) (21.00274) + 6(1.82269) (5.64366)$$

$$= 53.559635 + 61.719856 = 115.27949$$

DEPARTMENT OF HUMANITIES & SCIENCES ©MRCET (EAMCET CODE: MLRD)

By Taylor's expansion,

$$y(\mathbf{x}_3) = \mathbf{y}_3 = \mathbf{y}_2 + \frac{h}{h_1} \mathbf{y}_2' + \frac{h^2}{2!} \mathbf{y}_2'' + \frac{h^3}{3!} \mathbf{y}_2''' + \frac{h^4}{4!} \mathbf{y}_2^{(tv)} + \dots$$

$$y(0.3) = \mathbf{y}_3 = \mathbf{1}_{27} 2385 + (0.1)(1.82269) + \frac{(0.1)^2}{2} (5.64366) + \frac{(0.1)^3}{6} (21.02274) + \frac{(0.1)^4}{24} (115.27949)$$

$$= 1.27385 + 0.182269 + 0.02821 + 0.0035037 + 0.00048033 = 1.48831$$

$$y(0.3) = 1.48831$$
**4. Solve y' = x² - y, y(0) = 1 using Taylor's series method and evaluate y(0.1), y(0.2), y(0.3)
and y(0.4) (correct to 4 decimal places)
Sol: Given y' = x² - y $\rightarrow (1)$ and $y(0) = 1 \rightarrow (2)$
Here $x_0 = 0, y_0 = 1$
Differentiating (1) w.r.t 'x', we get
 $y'' = 2x - y' \rightarrow (3)$
 $y''' = 2 - y'' \rightarrow (4)$
 $y(^{(v)}) = -y''' \rightarrow (5)$
put $x_0 = 0, y_0 = 1$ in (1), (3), (4) and (5), we get
 $y'_0 = x_0^2 - y_0 = 0 - 1 = -1$,
 $y'_0 = 2x_0 - y'_0 = 2(0) - (-1) = 1$
 $y''_0 = 2x_0 - y'_0 = 2(0) - (-1) = 1$
 $y''_0 = 2x_0 - y'_0 = 2(-1) = 1$,
 $y'_0 = y_0''' = -1$ Take $h = 0.1$
Step1: by Taylor's series expansion
 $y(\mathbf{x}_1) = \mathbf{y}_1 = \mathbf{y}_0 + \frac{h}{1!} \mathbf{y}_0' + \frac{h^2}{2!} \mathbf{y}_0'' + \frac{h^3}{3!} \mathbf{y}_0''' + \frac{h^4}{4!} \mathbf{y}_0^{(iv)} + \dots \rightarrow (6)$
On substituting the values of y_0, y'_0' , y''_0 etc in (6), we get**

$$y(0.1) = y_1 = 1 + (0.1)(-1) + \frac{(0.1)^2}{2}(1) + \frac{(0.1)^3}{6}(1) + \frac{(0.1)^4}{24}(-1) + \dots$$
$$= 1 - 0.1 + 0.005 + 0.01666 - 0.0000416 + \dots$$
$$= 0.905125 \ge 0.9051 \text{ (4 decimal place).}$$

Step2: Let us find y(0.2) we start with (x_1, y_1) as the starting values

 DEPARTMENT OF HUMANITIES & SCIENCES
 ©MRCET (EAMCET CODE: MLRD)
 57

NUMERICAL METHODS

Here $x = x_0 + h = 0 + 0.1 = 0.1$ and $y_1 = 0.905125$,

Putting these values of x_1 and y_1 in (1), (3), (4) and (5), we get

$$y'_{1} = x_{1}^{2} - y_{1} = (0.1)^{2} - 0.905125 = -0.895125$$

$$y''_{1} = 2x_{1} - y'_{1} = 2(0.1) - (-0.895125) = 1.095125,$$

$$y'''_{1} = 2 - y''_{1} = 2 - 1.095125 = 0.904875,$$

$$y'_{1}^{(iv)} = -y'''_{1} = -0.904875,$$

By Taylor's series expansion,

$$y(x_{2}) = y_{2} = y_{1} + \frac{h}{1!}y'_{1} + \frac{h^{2}}{2!}y''_{1} + \frac{h^{3}}{3!}y'''_{1} + \frac{h^{4}}{4!}y'_{1}^{(iv)} + \dots$$

$$y(0.2) = y_2 = 0.905125 + (0.1)(-0.895125) + \frac{(0.1)^2}{2}(1.09125) + \frac{(0.1)^3}{6}(0.904875) + \frac{(0.1)^4}{24}(0.904875) + \dots$$

$$y(0.2) = y_2 = 0.905125 - 0.0895125 + 0.00547562 + 0.000150812 - 0.00000377$$

 $= 0.8212351 \ge 0.8212$ (4 decimal places)

Step3: Let us find y(0.3), we start with (x_2, y_2) as the starting value

Here $x_2 = x_1 + h = 0.1 + 0.1 = 0.2$ and $y_2 = 0.8212351$

Putting these values of x_2 and y_2 in (1),(3),(4), and (5) we get

$$\mathbf{y'_2} = x_2^2 - \mathbf{y_2} = (0.2)^2 - 0.8212351 = 0.04 - 0.8212351 = -0.7812351$$

$$y_2''=2x_2 - y_2' = 2(0.2) + (0.7812351) = 1.1812351,$$

$$y_2^{\prime\prime\prime} = 2 - y_2^{\prime\prime} = 2 - 1.1812351 = 0.818765,$$

$$\mathbf{y_2^{(4)}} = - \mathbf{y_2^{\prime\prime\prime}} = -0.818765,$$

By Taylor's series expansion,

 $y(x_3) = y_3 = y_2 + \frac{h}{1!}y_2' + \frac{h^2}{2!}y_2'' + \frac{h^3}{3!}y_2''' + + \frac{h^4}{4!}y_2^{(iv)} + \dots$ $y(0.3) = y_3 = 0.\ 8212351 + (0.1)(-0.7812351) + \frac{(0.1)^2}{2}(1.1812351) + \frac{(0.1)^3}{6}(0.818765) + \frac{(0.1)^4}{24}(-0.818765) + \dots$

 $y(0.3) = y_3 = 0.8212351 - 0.07812351 + 0.005906 + 0.000136 - 0.0000034$

 $= 0.749150 \simeq 0.7492$ (4 decimal places)

Step4: Let us find y(0.4), we start with (x_3, y_3) as the starting value

Here $x_3 = x_2 + h = 0.2 + 0.1 = 0.3$ and $y_3 = 0.749150$

Putting these values of x_3 and y_3 in (1),(3),(4), and (5) we get

$$y'_3 = x_3^2 - y_3 = (0.3)^2 - 0.749150 = -0.65915,$$

$$y_3'' = 2x_3 - y_3' = 2(0.3) + (0.65915) = 1.25915,$$

$$y_3^{\prime\prime\prime} = 2 - y_3^{\prime\prime} = 2 - 1.25915 = 0.74085,$$

$$y_3^{(iv)} = -y_3^{\prime\prime\prime} = -0.74085,$$

By Taylor's series expansion,

$$y(x_4) = y_4 = y_3 + \frac{h}{1!}y'_3 + \frac{h^2}{2!}y''_3 + \frac{h^3}{3!}y''_3 + \frac{h^4}{4!}y_3^{(iv)} + \dots$$
$$y(0.4) = y_4 = 0.749150 + (0.1)(-0.65915) + \frac{(0.1)^2}{2}(1.25915) + \frac{(0.1)^3}{6}(0.74085) + \dots$$

$$\frac{(0.1)^4}{24}(0.74085)+\dots$$

 $y(0.4) = y_4 = 0.749150 - 0.065915 + 0.0062926 + 0.000123475 - 0.0000030$

 $= 0.6896514 \ge 0.6897$ (4 decimal places)

5. Using Taylor's expansion evaluate the integral of $y' - 2y = 3e^x$, y(0) = 0, at

a) x = 0.1, 0.2, 0.3 b) Compare the numerical solution obtained with exact solution.

Sol: Given equation can be written as $2y + 3e^x = y'$, y(0) = 0

Differentiating repeatedly w.r.t to'x' and evaluating at x = 0

$$y'(x) = 2y + 3e^{x}, y'(0) = 2y(0) + 3e^{0} = 2(0) + 3(1) = 3$$

$$y''(x) = 2y' + 3e^{x}, y''(0) = 2y'(0) + 3e^{0} = 2(3) + 3 = 9$$

$$y'''(x) = 2.y''(x) + 3e^{x}, y'''(0) = 2y''(0) + 3e^{0} = 2(9) + 3 = 21$$

$$y^{iv}(x) = 2.y'''(x) + 3e^{x}, y^{iv}(0) = 2(21) + 3e^{0} = 45$$

$$y^{v}(x) = 2.y^{iv} + 3e^{x}, y^{v}(0) = 2(45) + 3e^{0} = 90 + 3 = 93$$

In general, $y^{(n+1)}(x) = 2.y^{(n)}(x) + 3e^x$ or $y^{(n+1)}(0) = 2.y^{(n)}(0) + 3e^0$

The Taylor's series expansion of y(x) about $x_0 = 0$ is

$$y(x) = y(0) + xy'(0) + \frac{x^2}{2!}y''(0) + \frac{x^3}{3!}y'''(0) + \frac{x^4}{4!}y^{i\nu}(0) + \frac{x^5}{5!}y^{\nu}(0) + \cdots$$

Substituting the values of $y(0), y'(0), y''(0), y'''(0), \dots$

$$y(x) = 0 + 3x + \frac{9}{2}x^2 + \frac{21}{6}x^3 + \frac{45}{24}x^4 + \frac{93}{120}x^5 + \dots$$

$$y(x) = 3x + \frac{9}{2}x^2 + \frac{7}{2}x^3 + \frac{15}{8}x^4 + \frac{31}{40}x^5 + \dots \rightarrow (1)$$

Now put x = 0.1 in equation

$$y(0.1) = 3(0.1) + \frac{9}{2}(0.1)^2 + \frac{7}{2}(0.1)^3 + \frac{15}{8}(0.1)^4 + \frac{31}{40}(0.1)^5 = 0.34869$$

Now put x = 0.2 in equation

$$y(0.2) = 3(0.2) + \frac{9}{2}(0.2)^2 + \frac{7}{2}(0.2)^3 + \frac{15}{8}(0.2)^4 + \frac{31}{40}(0.2)^5 = 0.811244$$

Now put x = 0.3 in equation(1)

$$y(0.3) = 3(0.3) + \frac{9}{2}(0.3)^2 + \frac{7}{2}(0.3)^3 + \frac{15}{8}(0.3)^4 + \frac{31}{40}(0.3)^5 = 1.41657075$$

Analytical Solution:

The exact solution of the equation $\frac{dy}{dx} = 2y + 3e^x$ with y(0) = 0 can be found as follows

$$\frac{dy}{dx} - 2y = 3e^x$$
 This is a linear in y.

Here $P = -2, Q = 3e^x$

 $I.F = e^{\int p(x)dx} = e^{\int -2xdx} = e^{-2x}$

General solution is $y \cdot e^{-2x} = \int 3e^x \cdot e^{-2x} dx + c = -3e^{-x} + c$

$$\therefore y = -3e^x + ce^{2x} \text{ Where } x = 0, y = 0 \quad 0 = -3 + c \Longrightarrow c = 3$$

The particular solution is $y = 3e^{2x} - 3e^x$ or $y(x) = 3e^{2x} - 3e^x$

Put x = 0.1 in the above particular solution,

$$y = 3.e^{0.2} - 3e^{0.1} = 0.34869$$

60

NUMERICAL METHODS

Similarly put x = 0.2

$$y = 3e^{0.4} - 3e^{0.2} = 0.811265$$

put x = 0.3 $y = 3e^{0.6} - 3e^{0.3} = 1.416577$

6. Using Taylor's series method, solve the equation $\frac{dy}{dx} = x^2 + y^2$ for x = 0.4 given that

y = 0 when x = 0

Sol: Given equation is $\frac{dy}{dx} = x^2 + y^2$ and y = 0 when x = 0 i.e. y(0) = 0

Here $y_0 = 0$, $x_0 = 0$

Differentiating repeatedly w.r.t 'x' and evaluating at x=0

$$y'(x) = x^2 + y^2, y'(0) = 0 + y^2(0) = 0 + 0 = 0$$

$$y''(x) = 2x + y' \cdot 2y, y''(0) = 2(0) + y'(0)2, y = 0$$

$$y'''(x) = 2 + 2yy'' + 2y' \cdot y', y'''(0) = 2 + 2 \cdot y(0) \cdot y'(0) + 2 \cdot y'(0)^{2} = 2$$

$$y^{(4)}(x) = 2 \cdot yy''' + 2 \cdot y'', y' + 4 \cdot y'' \cdot y', y'(0) = 0$$

The Taylor's series for f(x) about $x_0 = 0$ is

$$y(x) = y(0) + xy'(0) + \frac{x^2}{2!}y''(0) + \frac{x^3}{3!}y'''(0) + \frac{x^4}{4!}y''''(0) + \dots$$

Substituting the values of $y(0), y'(0), y''(0), \dots$

$$y(x) = 0 + x(0) + 0 + \frac{2x^3}{3!} + 0 + \dots = \frac{x^3}{3} + (\text{Higher order terms are neglected})$$

$$\therefore y(0.4) = \frac{(0.4)^3}{3} = \frac{0.064}{3} = 0.02133$$

7. Find y (0.1), y (0.2), z(0.1), z(0.2) given $\frac{dy}{dx} = x + y$, $\frac{dz}{dx} = x - y^2$ and y(0) = 2, z(0) = 1 by

Using Taylor's series method

SOL: Given y' = x + z, take $x_0 = 0$, $y_0 = 2$, h=0.1 We have to find $y_1 = y(0.1)$ and $y_2 = y(0.2)$

Now y' = x+z, y'' = 1+z', y''' = z'....(I)

NUMERICAL METHODS

Given $z' = x - y^2$ take $x_0 = 0$, $z_0 = 1$, h = 0.1we have to find $z_1 = z(0.1)$ and $z_2 = z(0.2)$ now $z' = x - y^2$, z' = 1 - 2y, y', $y''' = -2 [y, y'' + (y')^2]$ (II) By Taylor's series for y_1 and z_1 , we have $y(x) = y_0 + hy'_0 + \frac{h^2}{2!}y''_0 + \frac{h^3}{3!}y''_0$ (neglecting higher order terms)....(1) $z(x) = z_0 + hz'_0 + \frac{h^2}{2!} z''_0 + \frac{h^3}{3!} z'''_0$ (neglecting higher order terms).....(2) From (I) and (II), we get $y_0 = 2$ $z_0 = 1$ $y_0' = x_0 + z_0 = 0 + 1 = 1$ $z_0' = x_0 - y_0^2 = -4$ $y_0'' = 1 + z_0' = 1 + x_0 - y_0^2 = 1 + 0 - 4 = -3$; $z_0'' = 1 - 2y_0$. $y_0' = 1 - 2(2)1 = -3$ $z_0''' = -2[y_0, y_0'' + (y_0')^2] = 10$ $y_0'''=z_0''=-3$ Substituting these values in (1) and(2) $y_1 = y(0.1) = 2 + (0.1)1 + \frac{0.01}{2}(-3) + \frac{0.001}{6}(-3) = 2.0845.$ $z_1 = z(0.1) = 1 + (0.1)(-4) + \frac{0.01}{2}(-3) + \frac{0.001}{6}(10) = 0.5867.$ Similarly By Taylor's series for y_2, z_2 are $y_2 = y_1 + h_1 y'_1 + \frac{h^2}{2!} y''_1 + \frac{h^3}{3!} y'''_1 \dots (3)$ Now we have y₁=2.01845; $Z_1 = 1$: $y'_1 = x_1 + z_1 = 0.1 + 0.5867 = 0.6867$ $z_1' = x_1 - y_1^2 = -4.2451$ $y_1''=1+z_1'=1+x_1-y_1^2=-3.2451$; $z_1''=1-2y_1.y_1'=-1.8628$ $y_1^{\prime\prime\prime} = z_1^{\prime\prime} = -1.8628$ $z_1''' = -2 [y_1, yy_1'' + (y_1)^2] = 12.5856$

Substituting in (3) and (4).We get

62

NUMERICAL METHODS

$$\mathbf{y}_{2} = \mathbf{y}(\mathbf{0.2}) = 2.0845 + (0.1)(0.6867) + \frac{0.01}{2}(-3.2451) + \frac{0.001}{6}(-1.8628) = 2.1367.$$

$$\mathbf{z}_{2} = \mathbf{z}(0.2) = 0.5867 + (0.1)(-4.2451) + \frac{0.01}{2}(-1.8628) + \frac{0.001}{6}(12.5856) = 0.15497.$$

EULER'S METHOD:

It is the simplest one-step method and it is less accurate. Hence it has a limited application.

Consider the differential equation $\frac{dy}{dx} = f(x,y) \rightarrow (1)$ With $y(x_0) = y_0 \rightarrow (2)$

Consider the first two terms of the Taylor's expansion of y(x) at $x = x_0$

 $y(x) = y(x_0) + (x - x_0) y'(x_0)$ \rightarrow (3)

from equation (1) $y'(x_0) = f(x_0, y(x_0)) = f(x_0, y_0)$

Substituting in equation (3)

$$\therefore y(x) = y(x_0) + (x - x_0) f(x_0, y_0) At x = x_1, y(x_1) = y(x_0) + (x_1 - x_0) f(x_0, y_0)$$

 $\therefore y_1 = y_0 + h f(x_0, y_0)$ where $h = x_1 - x_0$

Similarly at $x = x_2$, $y_2 = y_1 + h f(x_1, y_1)$

Proceeding as above, $y_{n+1} = y_n + h f(x_n, y_n)$

This is known as Euler's Method

From the fig,

 $\operatorname{Tan}\alpha = \frac{opp}{adj} = \frac{opp}{h}$

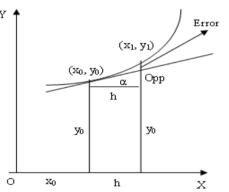
Implies opp = h Tan α

But Tan α =slope at $(x_0, y_0) = \frac{dy}{dx} at(x_0, y_0) = f(x_0, y_0)$

 \therefore opp=h f(x_0, y_0)

Hence $y_1 = y_0 + opp$ implies $y_1 = y_0 + h f(x_0, y_0)$ [NEGLECTING ERROR]

We remove that error by using EULER'S MODIFIED METHOD.



64

PROBLEMS:

1. Using Euler's method, solve for y at x = 2 from $\frac{dy}{dx} = 3x^2 + 1$, y(1) = 2, taking step size (i) h = 0.5 and (ii) h=0.25Here $f(x,y) = 3x^2 + 1$, $x_0 = 1, y_0 = 2$ Sol: Euler's algorithm is $y_{n+1} = y_n + h f(x_n, y_n), n = 0, 1, 2, 3, ...$ \rightarrow (1) (i) h = 0.5 $\therefore x_1 = x_0 + h = 1 + 0.5 = 1.5$ Taking n = 0 in (1), we have $x_2 = x_1 + h = 1.5 + 0.5 = 2$ $y_1 = y_0 + h f(x_0, y_0)$ i.e. $y_1 = y(1.5) = 2 + (0.5) f(1,2) = 2 + (0.5) (3 + 1) = 2 + (0.5)(4) = 4$ Here $x_1 = x_0 + h = 1 + 0.5 = 1.5$ \therefore y(1.5) = 4 = y₁ Taking n = 1 in (1), we have $y_2 = y_1 + h f(x_1, y_1)$ i.e. $y(x_2) = y_2 = 4 + (0.5) f(1.5,4) = 4 + (0.5)[3(1.5)^2 + 1] = 7.875$ Here $x_2 = x_4 + h = 1.5 + 0.5 = 2$ \therefore y(2) = 7.875 (ii) h = 0.25 \therefore x₁ = 1.25, x₂ = 1.50, x₃ = 1.75, x₄ = 2 Taking n = 0 in (1), we have $y_1 = y_0 + h f(x_0, y_0)$ i.e. $y(x_1) = y_1 = 2 + (0.25) f(1,2) = 2 + (0.25) (3 + 1) = 3$ $y(x_2) = y_2 = y_1 + h f(x_1, y_1)$ i.e. $y(x_2) = y_2 = 3 + (0.25) f(1.25,3) = 3 + (0.25)[3(1.25)^2 + 1] = 5.42188$ Here $x_2 = x_1 + h = 1.25 + 0.25 = 1.5$

NUMERICAL METHODS

++y(1.5) = 5.42188

Taking n = 2 in (1), we have

i.e. $y(x_3) = y_3 = y_2 + h f(x_2, y_2)$ = 5.42188 + (0.25) f(1.5,5.42188) = 5.42188 + (0.25) [3(1.5)² + 1]= 7.35938

Here $x_3 = x_2 + h = 1.5 + 0.25 = 1.75$

∴ y(1.75) =7. 35938

Taking n = 4 in (1), we have

 $y(x_4) = y_4 = y_3 + h f(x_3, y_3)$

i.e. $y(x_4) = y_4 = 7.35938 + (0.25) f(1.75, 7.35938)$

 $= 7.35938 + (0.25)[3(1.75)^2 + 1] = 9.90626$

Note that the difference in values of y(2) in both cases (i.e. when h = 0.5 and when h = 0.25). The accuracy is improved significantly when h is reduced to 0.25 (Exact solution of the equation is $y = x^3 + x$ and with this $y(2) = y_2 = 10$.

2. Solve by Euler's method, $y'(x_0) = x + y$, y(0) = 1 and find y(0.3) taking step size h = 0.1. compare the result obtained by this method with the result obtained by analytical solution

Sol: Here f(x,y) = x+y, $x_0 = 0$, $y_0 = 1$

Euler's algorithm is $y_{n+1} = y_n + h f(x_n, y_n), n = 0, 1, 2, 3, \dots$ \rightarrow (1)

Given h = 0.5 $\therefore x_1 = x_0 + h = 0 + 0.1 = 0.1$

Taking n = 0 in (1), we have $x_2 = x_1 + h = 0.1 + 0.1 = 0.2$

 $y_1 = y_0 + h f(x_0, y_0)$

i.e. $y_1 = y(0.1) = 1 + (0.1) f(0,1) = 1.1$

 \therefore y(0.1) = 1.1

Here $x_2 = x_1 + h = 0.1 + 0.1 = 0.2$

NUMERICAL METHODS

Taking n = 1 in (1), we have $y_2 = y_1 + h f(x_1, y_1)$

i.e. $y(x_2) = y_2 = 1.1 + (0.1) f(0.1.1.1) = 1.22$

Similarly we get $y_3 = y(0.3) = 1.362$

Analytical solution:

The exact solution of $\frac{dy}{dx} = x + y$, y(0)=1 can be found as follows.

The equation can be written as $\frac{dy}{dx} - y = x$

This is a linear equation in y [i.e, $\frac{dy}{dx} + p.y = Q$]

then p = -1, Q = x. $I.F = e^{\int pdx} = e^{\int (-1)dx} = e^{-x}$ General solution is y. I.F= $\int QXI.Fdx + c$

 $y.e^{-x} = \int x.e^{-x}dx + c$

$$y.e^{-x} = -e^{-x}(x+1)+c. \text{ or } y = -(x+1)+ce^{+x}$$

when x = 0, y = 1 i.e, 1 = -(0+1) + c or c = 2

Hence the particular solution of the equation is

 $y = -(x+1) + 2e^x = 2e^x - x - 1.$

Particular solution is $y = 2e^x - (x + 1)$

Hence y(0.1) = 1.11034, y(0.2) = 1.3428, y(0.3) = 1.5997

We shall tabulate the result as follows

X	0	0.1	0.2	0.3
Euler y	1	1.1	1.22	1.362
Exact y	1	1.11034	1.3428	1.5997

The value of y deviate from the exact value as x increases. This indicate that the method is not accurate

3. Given $y' = x^2 - y$, y(0) = 1 find correct to four decimal places the value of y (0,1),

by using Euler's method.

Sol: We have $f(x, y) = x^2 - y$ $x_0 = 0; y_0 = 1$ and h=0.1

By Euler's algorithm

 $y_{n+1} = y_n + h f(x_n, y_n) \qquad \rightarrow (1)$

 \therefore From (1), for n = 0, we have

$$y_1 = y_0 + h f(x_0, y_0) = 1 + (0.1)f(0, 1) = 1 + 0.1(0-1) = 0.9$$

 $\therefore y_1 = 0.9$

4. Use Euler's method of find y(0.1),y(0.2) given $y' = (x^3 + xy^2)e^{-x}, y(0) = 1$

Sol: Given $y' = (x^3 + xy^2)e^{-x}, y(0) = 1$

Consider h = 0.1

Here $f(x,y) = (x^3+xy^2)e^{-x}$, $x_0 = 0$, $y_0 = 1$, $x_1=x_0+h=0$. 1, $x_2=x_1+h=0.2$

Euler's algorithm is $y_{n+1} = y_n + h f(x_n, y_n) \rightarrow (1)$

 \therefore From (1), for n = 0, we have

$$y_1 = y_0 + h f(x_0, y_0) = y_0 + h(x_0^3 + x_0^2)e^{-x_0} = 1 + (0.1)(0) = 1$$

$$\therefore y(0.1) = 1$$

Again $x_2=x_1+h=0.2$

 \therefore From (1), for n = 1, we have

$$y_2 = y_1 + h f(x_1, y_1) = y_{1+} h(x_1^3 + x_1y_1^2)e^{-x_2}$$

$$= 1 + (0.1)[(0.1)^3 + (0.1)(1)^2] = 1.0091$$

 $\therefore y(0.2) = 1.0091$

5. Given that $\frac{dy}{dx} = xy$, y(0) = 1 determine y(0.1), using Euler's method.

Sol: The given differentiating equation is $\frac{dy}{dx} = xy$, y(0) = 1

a=0, b=0.1

Here f(x,y) = xy, $x_0 = 0$ and $y_0 = 1$

NUMERICAL METHODS

Since h is not given much better accuracy is obtained by breaking up the interval (0,0.1) in to five steps.

i.e. h =
$$\frac{b-a}{5} = \frac{0.1}{5} = 0.02$$

Euler's algorithm is $y_{n+1} = y_n + h f(x_n, y_n)$ \rightarrow (1)

 \therefore From (1) for n = 0, we have

$$y_1 = y_0 + h f(x_0, y_0) = 1 + (0.02) f(0,1) = 1 + (0.02) (0) = 1$$

Next we have $x_1 = x_0 + h = 0 + 0.02 = 0.02$

 \therefore From (1), for n = 1, we have

$$y_2 = y_1 + h f(x_1, y_1) = 1 + (0.02) f(0.02, 1) = 1 + (0.02) (0.02) = 1.0004$$

Next we have $x_2 = x_1 + h = 0.02 + 0.02 = 0.04$

 \therefore From (1), for n = 2, we have

$$y_3 = y_2 + h f(x_2, y_2) = 1.004 + (0.02) (0.04) (1.000) = 1.0012$$

Next we have $x_3 = x_2 + h = 0.04 + 0.02 = 0.06$

 \therefore From (1), for n = 3, we have

$$y_4 = y_3 + h f(x_3, y_3) = 1.0012 + (0.02) (0.06) (1.00012) = 1.0024.$$

Next we have $x_4 = x_3 + h = 0.06 + 0.02 = 0.08$

 \therefore From (1), for n = 4, we have

 $y_5 = y_4 + h f(x_4, y_4) = 1.0024 + (0.02) (0.08) (1.00024) = 1.0040.$

Next we have $x_5 = x_4 + h = 0.08 + 0.02 = 0.1$

When $x = x_5$, $y \cong y_5$

 \therefore y = 1.0040 when x = 0.1

6. Given that $\frac{dy}{dx} = 3x^2 + y$, y(0) = 4. Find y(0.25) and y(0.5) using Euler's method Sol: Given $\frac{dy}{dx} = 3x^2 + y$ and y(1) = 2. Here $f(x,y) = 3x^2 + y$, $x_0 = (1)$, $y_0 = 4$ Consider h = 0.25

NUMERICAL METHODS

Euler's algorithm is $y_{n+1} = y_n + h f(x_n, y_n) \rightarrow (1)$

 \therefore From (1), for n = 0, we have

 $y_1 = y_0 + h f(x_0, y_0) = 2 + (0.25)[0 + 4] = 2 + 1 = 3$

Next we have $x_1 = x_0 + h = 0 + 0.25 = 0.25$

When $x = x_1$, $y_1 \simeq y$

 \therefore y = 3 when x = 0.25

 \therefore From (1), for n = 1, we have

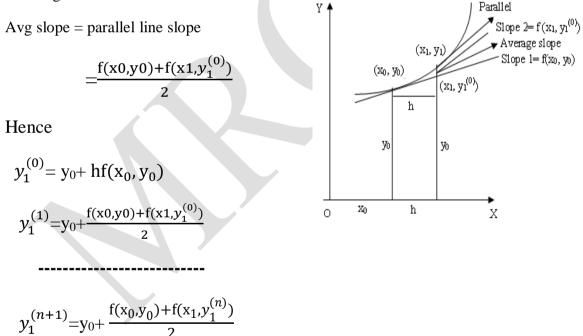
 $y_2 = y_1 + h f(x_1, y_1) = 3 + (0.25)[3.(0.25)^2 + 3] = 3.7968$

Next we have $x_2 = x_1 + h = 0.25 + 0.25 = 0.5$

When $x = x_2$, $y \ge y_2$. $\therefore y = 3.7968$ when x = 0.5.

MODIFIED EULER'S METHOD

From fig



Continue till any two consecutive iterations nearly same upto three or four decimal places.

To find $y_2, y_3, ...,$

The formula is given by
$$y_{k+1}^{(i)} = y_k + h/2 \left[f(x_k, y_k) + f(x_{k+1}, y_{k+1}^{(i-1)}) \right], i = 1, 2 \dots and k = 0, 1 \dots \dots$$

Working rule for Modified Euler's method

$$y_{k+1}^{(i)} = y_k + h/2 \left[f(x_k, y_k) + f(x_{k+1}, y_{k+1}^{(i-1)}) \right], i = 1, 2 \dots and k = 0, 1 \dots \dots$$

ii) When i = 1 y_{k+1}^{0} can be calculated from Euler's method

iii) K=0, 1..... gives number of iteration. i = 1, 2...

gives number of times, a particular iteration k is repeated

Suppose consider dy/dx = f(x, y) - (1) with $y(x_0) = y_0 - (2)$

To find y $(x_1) = y_1$ at $x = x_1 = x_0 + h$

Now take k=0 in modified Euler's method

.....We get
$$y_1^{(1)} = y_0 + h/2 \left[f(x_0, y_0) + f(x_1, y_1^{(i-1)}) \right]$$
....(3)

Taking i=1, 2, 3...k+1 in eqn (3), we get

$$y_{0}^{(0)} = y_{0} + h[f(x_{0}, y_{0})] \text{ (By Euler's method)}$$
$$y_{1}^{(1)} = y_{0} + h/2 \Big[f(x_{0}, y_{0}) + f(x_{1}, y_{1}^{(0)}) \Big]$$
$$y_{1}^{(2)} = y_{0} + h/2 \Big[f(x_{0}, y_{0}) + f(x_{1}, y_{1}^{(1)}) \Big]$$

$$y_1^{(k+1)} = y_0 + h / 2 \left[f(x_0, y_0) + f(x_1, y_1^{(k)}) \right]$$

If two successive values of $y_1^{(k)}$, $y_1^{(k+1)}$ are sufficiently close to one another, we will take the common valueas $y_1 = y(x_2) = y(x_1 + h)$

Now we have $\frac{dy}{dx} = f(x, y)$ with $y = y_1$ at $x = x_1$ to get $y_2 = y(x_2) = y(x_1 + h)$ Now we have $\frac{dy}{dx} = f(x, y)$ with y = y, at x = x To get $y_2 = y(x_2) = y(x_1 + h)$

We use the above procedure again

PROBLEMS

1. Using modified Euler's method find the approximate value of x when x = 0.3

given that dy/dx = x + y and y(0) = 1

sol: Given dy/dx = x + y and y(0) = 1

DEPARTMENT OF HUMANITIES & SCIENCES ©MRCET (EAMCET CODE: MLRD)

NUMERICAL METHODS

71

Here $f(x, y) = x + y, x_0 = 0$, and $y_0 = 1$

Take h = 0.1 which is sufficiently small

Here $x_0 = 0, x_1 = x_0 + h = 0.1, x_2 = x_1 + h = 0.2, x_3 = x_2 + h = 0.3$

The formula for modified Euler's method is given by

$$y_{k+1}^{(i)} = y_k + h/2 \left[f(x_k + y_k) + f(x_{k+1}, y_{k+1}^{(i-1)}) \right] \to (1)$$

Step1: To find $y_1 = y(x_1) = y(0.1)$

Taking k = 0 in eqn(1)

$$y_1^{(i)} = y_0 + \frac{h}{2} \Big[f(x_0 + y_0) + f(x_1, y_1^{(i-1)}) \Big] \to (2)$$

when i = 1 in eqn (2) $y_1^{(1)} = y_0 + \frac{h}{2} \left[f(x_0 + y_0) + f(x_1, y_1^{(0)}) \right]$

First apply Euler's method to calculate $y_1^{(0)} = y_1$

$$\therefore y_1^{(0)} = y_0 + h f(x_0, y_0)$$
$$= 1 + (0.1)f(0,1) = 1 + (0.1)(0+1)$$
$$= 1 + (0.1) = 1.10$$

Now $[x_0 = 0, y_0 = 1, x_1 = 0.1, y_1(0) = 1.10]$

$$\therefore y_1^{(1)} = y_0 + 0.1/2 \left[f(x_0, y_0) + f(x_1, y_1^{(0)}) \right]$$
$$= 1 + 0.1/2 [f(0,1) + f(0.1, 1.10)]$$
$$= 1 + 0.1/2 [(0+1) + (0.1+1.10)] = 1.11$$

When i=2 in eqn (2)

$$y_1^{(2)} = y_0 + h/2 \left[f(x_0, y_0) + f(x_1, y_1^{(1)}) \right]$$

= 1+0.1/2[f(0.1)+f(0.1,1.11)]
= 1 + 0.1/2[(0+1)+(0.1+1.11)]= 1.1105
$$y_1^{(3)} = y_0 + h/2 \left[f(x_0, y_0) + f(x_1, y_1^{(2)}) \right]$$

= 1+0.1/2[f(0,1)+f(0.1, 1.1105)]

NUMERICAL METHODS

= 1+0.1/2[(0+1)+(0.1+1.1105)] = 1.1105

Since $y_1^{(2)} = y_1^{(3)}$

 $\therefore y_1 = 1.1105$

Step:2 To find $y_2 = y(x_2) = y(0.2)$

Taking k = 1 in eqn (1), we get

$$y_2^{(i)} = y_1 + h/2 \left[f(x_1, y_1) + f(x_2, y_2^{(i-1)}) \right] \rightarrow (3) \text{ where } i = 1, 2, 3, 4, \dots$$

For i = 1

$$y_2^{(1)} = y_1 + h/2 \left[f(x_1, y_1) + f(x_2, y_2^{(0)}) \right]$$

 $y_2^{(0)}$ is to be calculate from Euler's method

$$y_{2}^{(0)} = y_{1} + h f(x_{1}, y_{1})$$

$$= 1.1105 + (0.1) f(0.1, 1.1105)$$

$$= 1.1105 + (0.1)[0.1 + 1.1105] = 1.2316$$

$$\therefore y_{2}^{(1)} = 1.1105 + 0.1/2 [f(0.1, 1.1105) + f(0.2, 1.2316)]$$

$$= 1.1105 + 0.1/2 [0.1 + 1.1105 + 0.2 + 1.2316] = 1.2426$$

$$y_{2}^{(2)} = y_{1} + h/2 [f(x_{1}, y_{1}) + f(x_{2}y_{2}^{(1)})]$$

$$= 1.1105 + 0.1/2 [f(0.1, 1.1105), f(0.2 \cdot 1.2426)]$$

$$= 1.1105 + 0.1/2 [f(0.1, 1.1105) + 1.4426]$$

$$y_2^{(3)} = y_1 + h / 2 \left[f(x_1, y_1) + f(x_2 y_2^{(2)}) \right]$$

= 1.1105 + 0.1(1.3266) = 1.2432

= 1.1105 + 0.1/2[f(0.1, 1.1105) + f(0.2, 1.2432)]

= 1.1105 + 0.1/2[1.2105 + 1.4432)]

NUMERICAL METHODS

$$= 1.1105 + 0.1(1.3268) = 1.2432$$

Since
$$y_2^{(3)} = y_2^{(3)}$$

Hence $y_2 = 1.2432$

Step:3 To find $y_3 = y(x_3) = y y(0.3)$

Taking k = 2 in eqn (1) we get

$$y_3^{(1)} = y_2 + h/2 \left[f(x_2, y_2) + f(x_3, y_3^{(i-1)}) \right] \rightarrow (4)$$

For i = 1, $y_3^{(1)} = y_2 + h/2 \left[f(x_2, y_2) + f(x_3, y_3^{(0)}) \right]$

 $y_3^{(0)}$ is to be evaluated from Euler's method .

$$y_{3}^{(0)} = y_{2} + h f(x_{2}, y_{2})$$

$$= 1.2432 + (0.1) f(0.2, 1.2432)$$

$$= 1.2432 + (0.1)(1.4432) = 1.3875$$

$$\therefore y_{3}^{(1)} = 1.2432 + \frac{0.1}{2} [f(0.2, 1.2432) + f(0.3, 1.3875)]$$

$$= 1.2432 + 0.1/2 [1.4432 + 1.6875]$$

$$= 1.2432 + 0.1/2 [1.4432 + 1.6875]$$

$$= 1.2432 + 0.1/2 [1.4432 + (0.3 + 1.3997)]$$

$$= 1.2432 + 0.1/2 [1.4432 + (0.3 + 1.3997)]$$

$$= 1.2432 + (0.1) (1.575) = 1.4003$$

$$y_{3}^{(3)} = y_{2} + h/2 \Big[f(x_{2}, y_{2}) + f(x_{3}, y_{3}^{(1)}) \Big]$$

$$= 1.2432 + 0.1/2 [f(0.2, 1.2432) + f(0.3, 1.4003)]$$

NUMERICAL METHODS

MATHEMATICS - II

= 1.2432 + 0.1(1.5718) = 1.4004

$$y_3^{(4)} = y_2 + h/2 \left[f(x_2, y_2) + f(x_3, y_3^{(3)}) \right]$$

= 1.2432 + 0.1/2[1.4432+1.7004]

$$= 1.2432 + (0.1)(1.5718) = 1.4004$$

Since $y_3^{(3)} = y_3^{(4)}$

Hence $y_3 = 1.4004$

 \therefore The value of y at x = 0.3 is 1.4004

2. Using Modified Euler's method find y(0.2) y(0.4) with h=0.2, given that $\frac{dy}{dx} = x + \sin y$, y(0)=1

SOL: f(x, y) = x + siny $x_0 = 0; y_0 = 1$ and h=0.2

Here $x_0 = 0, x_1 = x_0 + h = 0.1, x_2 = x_1 + h = 0.2, x_3 = x_2 + h = 0.3$

 $x_1 = x_0 + h = 0.2;$ $x_2 = x_1 + h = 0.4$

The formula for modified Euler's method is given by

$$y_{k+1}^{(i)} = y_k + h/2 \left[f(x_k + y_k) + f(x_{k+1}, y_{k+1}^{(i-1)}) \right] \to (1)$$

<u>Step1</u>: To find $y_1 = y(x_1) = y(0.2)$

Euler's modified method is given by

$$y_1^{(1)} = y_0 + h/2 \left[f(x_0, y_0) + f(x_1, y_1^{(0)}) \right]$$
 (k=0 , i=1)

First apply Euler's method to calculate $y_1^{(0)} = y_1$

$$\therefore y_1^{(0)} = y_0 + h f(x_0, y_0)$$

= 1+(0.2)f(0,1)=1+(0.2)(0+sin1)
= 1.163

Now $\left[x_0 = 0, y_0 = 1, x_1 = 0.2, y_1^{(0)} = 1.163\right]$ $\therefore \qquad y_1^{(1)} = 1 + 0.2/2 [f(0,1) + f(0.2, 1.163)]$

74

NUMERICAL METHODS

= 1+0.1/2[1+1.163]

= 1.1916

When i=2 in eqn (2)

$$y_{1}^{(2)} = y_{0} + h / 2 \left[f(x_{0}, y_{0}) + f(x_{1}, y_{1}^{(1)}) \right]$$

= 1+0.2/2[f(0.1)+f(0.2, 1.1916)]
= 1.2038
$$y_{1}^{(3)} = y_{0} + h / 2 \left[f(x_{0}, y_{0}) + f(x_{1}, y_{1}^{(2)}) \right]$$

= 1+0.2/2[f(0,1)+f(0.2, 1.2038)]
= 1.2045

Since $y_1^{(2)} = y_1^{(1)}$

 $\therefore y_1 = 1.204$

<u>Step:2</u> To find $y_2 = y(x_2) = y(0.4)$

Taking k = 1 in eqn (1), we get

$$y_2^{(i)} = y_1 + h/2 \left[f(x_1, y_1) + f(x_2, y_2^{(i-1)}) \right] \rightarrow (3) \text{ where } i = 1, 2, 3, 4, \dots$$

For i = 1,
$$y_2^{(1)} = y_1 + h/2 \left[f(x_1, y_1) + f(x_2, y_2^{(0)}) \right]$$

 $y_2^{(0)}$ is to be calculate from Euler's method

$$y_2^{(0)} = y_1 + h f(x_1, y_1)$$

= 1.204 + (0.2) f(0.2, 1.204)
= 1.4313
$$y_2^{(1)} = 1.204 + 0.1[1.1337 + 1.4313]$$

= 1.4611

$$y_2^{(2)} = y_1 + h/2 \left[f(x_1, y_1) + f(x_2 y_2^{(1)}) \right]$$

NUMERICAL METHODS

= 1.204 + 0.1/2[f(0.2, 1.204), f(0.4.1.416)]

$$= 1.462$$

$$y_2^{(3)} = y_1 + h/2 \left[f(x_1, y_1) + f(x_2 y_2^{(2)}) \right]$$

$$= 1.204 + 0.1/2[f(0.2, 1.204) + f(0.4, 1.462)] = 1.464$$

Since $y_2^{(3)} = y_2^{(3)}$

Hence $y_2 = 1.46$

3. Using modified Euler's method find the approximate value of x when x = 0.3

given that $\frac{dy}{dx} = x - y$ and y(0) = 1Sol: Given $\frac{dy}{dx} = x - y$ and y(0) = 1

Here f(x,y) = x - y, $x_0 = 0$ and $y_0 = 1$

Take h = 0.1

Here $x_0 = 0, x_1 = x_0 + h = 0.1, x_2 = x_1 + h = 0.2, x_3 = x_2 + h = 0.3$

Step1: To find $y_1 = y(x_1) = y(0.1)$

First apply Euler's method to calculate $y_1^{(0)} = y_1$

$$y_1^{(0)} = y_0 + h f(x_0, y_0)$$

= 1+(0.1)(0-1)
= 1-(0.1)
= 0.9
Now $\left[x_0 = 0, y_0 = 1, x_1 = 0.1, y_1^{(0)} = 0.9\right]$
 $y_1^{(1)} = y_0 + h/2 \left[f(x_0, y_0) + f(x_1, y_1^{(0)})\right]$
= 1+0.1/2[-1 - 0.8]

DEPARTMENT OF HUMANITIES & SCIENCES OMRCET (EAMCET CODE: MLRD)

76

NUMERICAL METHODS

77

$$y_1^{(2)} = y_0 + h/2 \Big[f(x_0, y_0) + f(x_1, y_1^{(1)}) \Big]$$

= 1+0.1/2[-1 + (0.1-0.91)]
= 1+0.1/2[-1.81]
= 1-0.0905
= 0.9095
$$y_1^{(3)} = y_0 + h/2 \Big[f(x_0, y_0) + f(x_1, y_1^{(2)}) \Big]$$

= 1+0.1/2[-1+(0.1-0.9095)]
= 1+0.1/2[-1.8095]
= 1-0.090475
= 0.909525

Since $y_1^{(2)} = y_1^{(3)}$

$$\therefore y_1 = 0.9095$$

Step:2 To find $y_2 = y(x_2) = y(0.2)$

 $y_2^{(0)}$ is to be calculate from Euler's method

$$y_2^{(0)} = y_1 + h f(x_1, y_1)$$

= 0.9095+(0.1)(-0.8095)
= 0.82855
$$y_2^{(1)} = y_1 + h/2 \Big[f(x_1, y_1) + f(x_2, y_2^{(0)}) \Big]$$

= 0.9095+0.1/2[-0.8095-0.62855]
= 0.9095-0.0719
= 0.8376

$$y_2^{(2)} = y_1 + h/2 \left[f(x_1, y_1) + f(x_2 y_2^{(1)}) \right]$$

NUMERICAL METHODS

$$= 0.9095 + 0.1/2[-0.8095 - 0.6376]$$

= 0.9095 - 0.075355
= 0.837145
$$y_2^{(3)} = y_1 + h/2 \Big[f(x_1, y_1) + f(x_2 y_2^{(2)}) \Big]$$

= 0.9095 + 0.1/2[-10446645]
= 0.9095 - 0.07233
= 0.83716
Since $y_2^{(3)} = y_2^{(3)}$

Hence $y_2 = 0.8371$

Step:3 To find $y_3 = y(x_3) = y(0.3)$

 $y_3^{(0)}$ is to be evaluated from Euler's method

$$y_3^{(0)} = y_2 + h f(x_2, y_2)$$

= 0.8371+0.1(-0.6371) = 0.7734

$$y_3^{(1)} = y_2 + h/2 \left[f(x_2, y_2) + f(x_3, y_3^{(0)}) \right]$$

$$= 0.8371 + 0.1/2[-0.6371 - 0.4734]$$

$$= 0.8371 - 0.0555 = 0.7816$$

$$y_3^{(2)} = y_2 + h/2 \left[f(x_2, y_2) + f(x_3, y_3^{(1)}) \right]$$

$$= 0.8371 + 0.1/2[-1.1187]$$

$$= 0.8371 - 0.056 = 0.7811$$

NUMERICAL METHODS

$$y_{3}^{(3)} = y_{2} + h/2 \Big[f(x_{2}, y_{2}) + f(x_{3}, y_{3}^{(2)}) \Big]$$

= 0.8371+ 0.1/2[-1.1182]
= 0.8371-0.05591 = 0.7812
$$y_{3}^{(4)} = y_{2} + h/2 \Big[f(x_{2}, y_{2}) + f(x_{3}, y_{3}^{(3)}) \Big]$$

= 0.8371-0.0559 = 0.7812
Since $y_{3}^{(3)} = y_{3}^{(4)}$

Hence $y_3 = 0.7812$

 \therefore The value of y at x = 0.3 is 0.7812

Runge-Kutta Methods

I.First order R-K Method

EULER'S METHOD is the R-K method of the first order.

II. Second order R-K Method

$$y_{i+1} = y_i + \frac{1}{2} (K_1 + K_2),$$

Where $K_1 = h(x_i, y_i)$

 $K_2 = h (x_i+h, y_i+k_1)$

For i= 0,1,2-----

NOTE: EULER'S MODIFIED METHOD IS R-K METHOD OF SECOND ORDER

III. Third order R-K Formula

$$y_{i+1} = y_i + \frac{1}{6} (K_1 + 4K_2 + K_3),$$

Where $K_1 = h(x_i, y_i)$

NUMERICAL METHODS

 $K_2 = h (x_i+h/2, y_0+k_1/2)$

 $K_3 = h (x_i+h, y_i+2k_2-k_1)$ For i=0,1,2-----

IV. Fourth order R-K Formula

 $y_{i+1} = y_i + \frac{1}{6} (K_1 + 2K_2 + 2K_3 + K_4),$

Where $K_1 = h(x_i, y_i)$

 $K_2 = h (x_i + h/2, y_i + k_1/2)$

 $K_3 = h (x_i + h/2, y_i + k_2/2)$

 $K_4 = h (x_i + h, y_i + k_3)$

For i= 0,1,2-----

> Advantages of Runge kutta method Over Taylor series method.

In RK METHOD no need to find derivatives where as we find derivatives in taylors method. Sometimes it may be complicate to find derivative of some function, sowe go for RK Method at that time.

PROBLEMS:

1. solve
$$\frac{dy}{dx} = xy$$
 using R-K method for x=0.2,0.4 given y(0) =1, y`(0)-0 taking h = 0.2

SOL: Given $\frac{dy}{dx} = xy$; y(0) = 1.

Here f(x, y) = xy, $x_0 = 0$, $y_0=1$ and h = 0.2

 \therefore $x_1 = x_0 + h = 0 + 0.2 = 0.2$, $x_2 = x_1 + h = 0.2 + 0.2 = 0.4$

By 4th order R-K method, we have

$$y_1 = y_0 + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

Where $k_1 = h f(x_0, y_0) = (0.2)f(0, 1) = 0$

NUMERICAL METHODS

$$k_{2} = h f (x_{0} + \frac{h}{2}, y_{0} + \frac{k_{1}}{2}) = (0.2)[f(0.1, 1)] = (0.2)(0.1) = 0.02$$

$$k_{3} = h f((x_{0} + \frac{h}{2}, y_{0} + \frac{k_{2}}{2}) = (0.2)f(0.1, 1.01) = 0.202$$

$$k_{4} = h f(x_{0} + h, y_{0} + k_{3}) = (0.2)f(0.2, 1.202) = 0.04808$$

Hence $y_1 = 1 + \frac{1}{6} (0 + 0.04808 + 2(0.02 + 0.202) = 1.08201$

Step2: To find
$$y(0.4) = y_2$$

Here
$$x_1 = 0.2$$
, $y_1 = 1.08201$ and $h = 0.2$

Again by 4th order R-K method, we have

$$\therefore \quad y_2 = y_1 + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

Where $k_1 = h f(x_1, y_1) = (0.2)[f(0.2, 1.08201)] = 0.04328$

$$k_2 = hf(x_1 + \frac{h}{2}, y_1 + \frac{k_1}{2}) = 0.2(f(0.3, 1.10364)) = 0.0662$$

$$k_3 = hf(x_1 + \frac{h}{2}, y_1 + \frac{k_2}{2}) = (0.2)[f(0.3, 1.1151)] = 0.0669$$

$$k_4 = h f(x_1+h, y_1+k_3) = (0.2)[f(0.4, 1.1489)] = 0.0919$$

$$y_2=1.082+\frac{1}{6}(0.04328+0.0919+2(0.0662+0.0669)=1.14889)$$

2. Solve the following using R-K fourth method y' = y - x, y(0) = 2, h = 0.2 Find y(0.2).

SOL: Given
$$\frac{dy}{dx} = y - x$$
; $y(0) = 2$

Here f(x, y) = y-x, $x_0 = 0$, $y_0=2$ and h = 0.2

$$\therefore$$
 $x_1 = x_0 + h = 0 + 0.2 = 0.2.$

By 4th order R-K method, we have

$$y_1 = y_0 + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

Where $k_1 = h f(x_0, y_0) = (0.2)f(0,2) = 0.2(0.2-0) = 0.4$

DEPARTMENT OF HUMANITIES & SCIENCES ©MRCET (EAMCET CODE: MLRD)

NUMERICAL METHODS

$$k_{2} = h f (x_{0} + \frac{h}{2}, y_{0} + \frac{k_{1}}{2})$$

$$= (0.2)[f(0.1, 2.2)] = (0.2)(2.2 - 0.1) = 0.422$$

$$k_{3} = h f((x_{0} + \frac{h}{2}, y_{0} + \frac{k_{2}}{2}))$$

$$= (0.2)f (0.1, 2.21) = 0.2(2.21 - 0.1) = 0.422$$

$$k_{4} = h f(x_{0} + h, y_{0} + k_{3})$$

$$= (0.2)f(0.2, 2.422) = 0.4444$$

Hence $y_1 = 2 + \frac{1}{6} [0.4 + 0.4444 + 2(0.42 + 0.422)]$

 $\therefore y(0.2) = 2.4214$

3. Using Runge-Kutta method of second order, find y(2.5) from $\frac{dy}{dx} = \frac{x+y}{x}$, y(2)=2,

taking h = 0.25.

Sol: Given $\frac{dy}{dx} = \frac{x+y}{x}$, y(2) = 2.

Here $f(x, y) = \frac{x + y}{x}$, $x_0 = 2$, $y_0=2$ and h = 0.25

:. $x_1 = x_0 + h = 2 + 0.25 = 2.25$, $x_2 = x_1 + h = 2.25 + 0.25 = 2.5$

By R-K method of second order,

$$y_{i+1} = y_i + 1/2 (k_1 + k_2), k_1 = hf(x_i, y_i), k_2 = hf(x_i + h, y_i + k_1), i = 0, 1 \dots \rightarrow (1)$$

Step -1:- To find $y(x_1)$ i.e y(2.25) by second order R - K method taking i=0 in eqn(i)

We have
$$y_1 = y_0 + \frac{1}{2}(k_1 + k_2)$$

Where $k_1 = hf(x_0, y_0)$, $k_{2=} hf(x_0+h, y_0+k_1)$

$$f(x_0,y_0)=f(2,2)=2+2/2=2$$

k1=hf (x0,y0)=0.25(2)=0.5

NUMERICAL METHODS

 $k_2 = hf(x_0+h,y_0+k_1) = (0.25)f(2.25,2.5)$

=(0.25)(2.25+2.5/2.25)=0.528

 \therefore y₁=y(2.25)=2+1/2(0.5+0.528)=2.514

Step2:

To find $y(x_2)$ i.e., y(2.5)

i=1 in (1)

x₁=2.25,y₁=2.514,and h=0.25

 $y_2 = y_1 + 1/2(k_1 + k_2)$

where $k_1 = h f((x_1, y_1) = (0.25)f(2.25, 2.514)$

=(0.25)[2.25+2.514/2.25]=0.5293

$$k_2 = hf(x_1 + h, y_1 + k_1)$$

=(0.25)[2.5+2.514+0.5293/2.5]=0.55433

 $y_2 = y$ (2.5)=2.514+1/2(0.5293+0.55433)=3.0558

 \therefore y =3.0558 when x = 2.5

4. Obtain the values of y at x=0.1,0.2 using R-K method of

(i)second order (ii)third order (iii)fourth order for the differential equation y' + y = 0, y(0)=1

Sol: Given $\frac{dy}{dx}$ = -y, y(0)=1

 $f(x,y) = -y, x_0 = 0, y_0 = 1$

Here f(x,y) = -y, $x_0 = 0$, $y_0 = 1$ take h = 0.1

 $\therefore \ x_1 = x_0 + h = 0.1, \ x_2 = x_1 + h = 0.2$

NUMERICAL METHODS

Second order:

step1: To find $y(x_1)$ i.e y(0.1) or y_1

by second-order R-K method, we have

$$y_1 = y_0 + \frac{1}{2}(k_1 + k_2)$$

where $k_1 = hf(x_0, y_0) = (0.1) f(0, 1) = (0.1)(-1) = -0.1$

 $k_2 = hf(x_0+h, y_0+k_1) = (0.1) f(0.1, 1-0.1) = (0.1)(-0.9) = -0.09$

$$y_1 = y(0.1) = 1 + \frac{1}{2} (-0.1 - 0.09) = 1 - 0.095 = 0.905$$

 \therefore y =0.905 when x=0.1

Step2:

To find y_2 i.e $y(x_2)$ i.e y(0.2)

Here $x_1 = 0.1$, $y_1 = 0.905$ and h=0.1

By second-order R-K method, we have

$$y_2 = y(x_2) = y_1 + \frac{1}{2}(k_1 + k_2)$$

Where $k_1 = h f(x_1, y_1) = (0.1)f(0.1, 0.905) = (0.1)(-0.905) = -0.0905$

 $k_{2} = h f(x_{1} + h, y_{1} + k_{1}) = (0.1) f(0.2, 0.905 - 0.0905)$ = (0.1) f(0.2, 0.8145) = (0.1)(-0.8145)= -0.08145

$$y_2 = y(0.2) = 0.905 + \frac{1}{2} (-0.0905 - 0.08145)$$

(ii) Third order

Step1: To find y_1 i.e $y(x_1) = y(0.1)$

NUMERICAL METHODS

By Third order Runge - Kutta method

$$y_{1=} y_0 + \frac{1}{6} (k_1 + 4k_2 + k_3)$$

where $k_1 = h f(x_0, y_0) = (0.1) f(0,1) = (0.1) (-1) = -0.1$

 $k_{2} = h f (x_{0} + h / 2, y_{0} + k_{1} / 2) = (0.1) f (0.1 / 2, 1 - 0.1 / 2) = (0.1) f (0.05, 0.95)$ = (0.1)(-0.95) = -0.095

and $k_3 = h f((x_0+h, y_0+2k_2-k_1))$

=(0.1)[f(0.1,1+2(-0.095)+0.1)] = -0.905

Hence $y_1 = 1 + \frac{1}{6} (-0.1 + 4(-0.095) - 0.09) = 1 + 1/6 (-0.57) = 0.905$

 $y_1=0.905$ i.e y(0.1)=0.905

Step2: To find y_2 , i.e $y(x_2) = y(0.2)$

Here $x_1=0.1, y_1=0.905$ and h = 0.1

Again by 3rd order R-K method

$$y_2 = y_1 + \frac{1}{6} (k_1 + 4k_2 + k_3)$$

Where $k_1 = h f(x_1, y_1) = (0.1)f(0.1, 0.905) = -0.0905$

 $k_2 = h f (x_1+h/2, y_1+k_1/2) = (0.1)f(0.1+0.05, 0.905 - 0.04525) = (0.1) f (0.15, 0.85975)$

 $k_3 = h f((x_1+h, y_1+2k_2-k_1)=(0.1)f(0.2, 0.905+2(0.085975)+0.0905=-0.082355)$

$$y_2 = 0.905 + \frac{1}{c} (-0.0905 + 4(-0.085975) - 0.082355) = 0.818874$$

 \therefore y = 0.905 when x = 0.1 and y =0.818874 when x =0.2

iii) Fourth order:

step1: $x_0=0, y_0=1, h=0.1$ To find y_1 i.e $y(x_1)=y(0.1)$

DEPARTMENT OF HUMANITIES & SCIENCES ©MRCET (EAMCET CODE: MLRD)

NUMERICAL METHODS

By 4th order R-K method, we have

$$y_{1} = y_{0} + \frac{1}{6} (k_{1} + 2k_{2} + 2k_{3} + k_{4})$$
Where $k_{1} = h f(x_{0}, y_{0}) = (0.1)f(0, 1) = -0.1$

$$k_{2} = h f (x_{0} + h/2, y_{0} + \frac{k_{1}}{2}) = (0.1)[f (0.05, 0.95)] = (0.1)(-0.95) = -0.095$$

$$k_{3} = h f((x_{0} + h/2, y_{0} + k_{2}/2) = (0.1)f (0.1/2, 1 - 0.095/2) = (0.1)(-0.9525) = -0.09525$$

$$k_{4} = h f(x_{0} + h, y_{0} + k_{3}) = (0.1) [f (0.05, 1 - 0.09525)] = (0.1)f (0.05, 0.90475) = -0.090475$$
Hence $y_{1} = 1 + \frac{1}{6} (-0.1 + 2(-0.095) + 2(0.09525) - 0.090475)$

$$= 1 + \frac{1}{6} (-0.570975) = 1 - 0.0951625 = 0.9048375$$

Step2: To find y_2 , *i.e.*, $y(x_2) = y(0.2)$, $y_1 = 0.9048375$, *i.e.*, y(0.1) = 0.9048375

Here $x_1 = 0.1$, $y_1 = 0.9048375$ and h = 0.1

Again by 4th order R-K method, we have

 $y_2 = y_1 + 1/6(k_1 + 2k_2 + 2k_3 + k_4)$

Where $k_1 = h f(x_1, y_1) = (0.1) [f(0.1, 0.9048375)] = -0.09048375$

 $k_2 = hf (x_1+h/2, y_1+k_1/2) = (0.1)[f(0.1 + 0.1/2, 0.9048375 - 0.09048375 /2)] = -0.08595956$

 $k_3=hf(x_1+h/2, y_1+k_2/2)=(0.1)[f(0.15,0.8618577)]=-0.08618577$

 $k_4 = h f(x_1+h,y_1+k_3) = (0.1)[f(0.2,0.8186517)] = -0.08186517$

Hence $y_2 = 0.9048375 + \frac{1}{6} (-0.09048375 - 2(0.08595956) - 2(0.08618577) - 0.08186517)$

=0.9048375 - 0.0861065 = 0.818731

y = 0.9048375 when x =0.1 and y =0.818731 where x = 0.2

5. Apply the 4th order R-K method to find an approximate value of y when x=0.2 in steps of 0.1, given that $y' = x^2+y^2$, y (1) = 1.5

Sol. Given $y' = x^2 + y^2$, and y(1) = 1.5

DEPARTMENT OF HUMANITIES & SCIENCES OMRCET (EAMCET CODE: MLRD)

86

NUMERICAL METHODS

Here $f(x,y) = x^2 + y^2$, $y_0 = 1.5$ and $x_0 = 1,h=0.1$

So that $x_1=1.1$ and $x_2=1.2$

Step1: To find $y_{1 i.e.} y(x_1)$

by 4th order R-K method we have

$$y_1 = y_0 + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

 $k_1 = hf(x_0, y_0) = (0.1)f(1, 1.5) = (0.1)[1^2 + (1.5)^2] = 0.325$

 $k_2 = hf(x_0+h/2, y_0+k_1/2) = (0.1) \left[f(1+0.05, 1.5+\frac{0.325}{2}) \right] = 0.3866$

 $k_3 = hf((x_0 + h/2, y_0 + k_2/2) = (0.1)f(1.05, 1.5 + 0.3866/2) = (0.1)[(1.05)^2 + (1.6933)^2] = 0.39698$

 $k_4 = hf(x_0+h, y_0+k_3) = (0.1)f(1.05, 1.89698) = 0.48085$

Hence

$$y_1 = 1.5 + \frac{1}{6} \Big[0.325 + 2 \big(0.3866 \big) + 2 \big(0.39698 \big) + 0.48085 \Big]$$

= 1.8955

Step2: To find y₂, i.e., $y(x_2) = y(1.2)$

Here x₁=0.1,y₁=1.8955 and h=0.1

by 4th order R-K method we have

$$y_2 = y_1 + \frac{1}{6} \left(k_1 + 2k_2 + 2k_3 + k_4 \right)$$

 $k_1 = hf(x_1, y_1) = (0.1)f(1.10, 1.8955) = (0.1)[(1.10)^2 + (1.8955)^2] = 0.48029$

 $k_2 = hf(x_1+h/2, y_1+k_1/2) = (0.1)f(1.1+\frac{0.1}{2}, 1.8937+\frac{0.4796}{2}) = 0.58834$

 $k_3 = hf((x_1 + h/2, y_1 + k_2/2) = (0.1)f(1.15, 1.8937 + \frac{0.58834}{2}) = (0.1)[(1.15)^2 + (2.189675)^2] = 0.611715$

 $k_4 = hf(x_1+h, y_1+k_3) = (0.1)f(1.2, 1.8937+0.610728) = 0.77261$

DEPARTMENT OF HUMANITIES & SCIENCES ©MRCET (EAMCET CODE: MLRD)

NUMERICAL METHODS

Hence $y_2=1.8955+1/6(0.48029+2(0.58834)+2(0.611715)+0.7726)=2.5043$

 \therefore y =2.5043 where x=0.2

6. Use R-K method, to approximate y when x=0.2 given that y' = x+y, y(0)=1

Sol: Here f(x,y) = x + y, $y_0 = 1$, $x_0 = 0$

Since h is not given for better approximation of y

Take h=0.1

 $\therefore x_1 = 0.1, x_2 = 0.2$

Step1 To find y_1 i.e $y(x_1) = y(0.1)$

By R-K method, we have

$$y_1 = y_0 + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

Where $k_1 = hf(x_0, y_0) = (0.1)f(0, 1) = (0.1)(1) = 0.1$

 $k_2 = hf(x_0+h/2, y_0+k_1/2) = (0.1)[f(0.05, 1.05)] = 0.11$

 $k_3 = hf((x_0+h/2,y_0+k_2/2) = (0.1)[f(0.05,1+0.11/2)] = (0.1)[(0.05) + (1.055)] = 0.1105$

 $k_4 = h f (x_0 + h, y_0 + k_3) = (0.1)[f(0.1, 1.1105)] = (0.1)[0.1 + 1.1105] = 0.12105$

Hence $\therefore y_1 = y(0.1) = 1 + \frac{1}{6}(0.1 + 0.22 + 0.2210 + 0.12105)$

y = 1.11034

Step2: To find y_2 i.e $y(x_2) = y(0.2)$

Here x₁=0.1, y₁=1.11034 and h=0.1

Again By R-K method, we have

 $y_2 = y_1 + 1/6(k_1 + 2k_2 + 2k_3 + k_4)$

 $k_1 = h f(x_1, y_1) = (0.1)[f(0.1, 1.11034)] = (0.1) [1.21034] = 0.121034$

NUMERICAL METHODS

 $k_2 = h f (x_1 + h/2, y_1 + k_1/2) = (0.1)[f(0.1 + 0.1/2, 1.11034 + 0.121034/2)] = 0.1320857$

 $k_3 = h f((x_1+h/2,y_1+k_2/2) = (0.1)[f(0.15,1.11034 + 0.1320857/2)] = 0.1326382$

 $k_4 = h f(x_1 + h, y_1 + k_3) = (0.1) [f(0.2, 1.11034 + 0.1326382)] = (0.1)(0.2 + 1.2429783) = 0.1442978$

Hence $y_2=1.11034 + \frac{1}{6}(0.121034 + 0.2641714 + 0.2652764 + 0.1442978)$

=1.11034+0.1324631 =1.242803

y = 1.242803 when x = 0.2

7. Compute y(0.1) and y(0.2) by R-K method of 4th order for the D.E. $y' = xy+y^2$, y(0)=1

Sol. Given $y' = xy+y^2$ and y(0)=1

Here
$$f(x,y) = xy+y^2$$
, $y_0 = 1$ and $x_0 = 0$, $h=0.1$

So that $x_1=0.1$ and $x_2=0.2$

Step1: To find $y_1 = y(x_1) = y(0.1)$

by 4th order R-K method we have

$$y_1 = y_0 + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

 $k_1 = hf(x_0, y_0) = (0.1)f(0, 1) = (0.1)[0+1] = 0.1$

 $k_2 = hf(x_0+h/2,y_0+k_1/2) = (0.1)[f(0.05, 1.05)] = 0.1155$

 $k_3=hf((x_0+h/2,y_0+k_2/2)=(0.1)f(0.05, 1.05775)=0.11217$

 $k_4 = hf(x_0+h, y_0+k_3) = (0.1)f(0.1, 1.11217) = 0.1248$

Hence $y_1 = y(0.1) = y_0 + \frac{1}{6} [k_1 + 2k_2 + 2k_3 + k_4]$

$$=1+\frac{1}{c}[0.1+0.0231+0.22434+0.1248]$$

Step2: To find $y_2 = y(x_2) = y(0.2)$

NUMERICAL METHODS

Here x₁=0.1,y₁=1.1133 and h=0.1

by 4th order R-K method we have

$$y_2 = y_1 + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

 $k_1 = hf(x_1, y_1) = (0.1)f(0.1, 1.1133) = 0.1351$

 $k_2 = hf(x_1+h/2, y_1+k_1/2) = (0.1)f(0.15, 1.18085) = 0.1571$

 $k_3=hf((x_1+h/2,y_1+k_2/2)=(0.1)f(0.15, 1.19185)=0.1599$

 $k_4 = hf(x_1+h, y_1+k_3) = (0.1)f(0.2, 1.2732) = 1.1876$

Hence
$$y_2 = y(0.2) = y_1 + \frac{1}{6} [k_1 + 2k_2 + 2k_3 + k_4]$$

$$= 1.1133 + 1/6(0.1351 + 0.3142 + 0.3198 + 0.1876)$$

= 1.2728

8. Find y(0.1) and y(0.2) by R-K method of 4th order for the D.E. $y' = x^2 - y$ and y(0)=1

Sol. Given $y' = x^2 - y$ and y(0)=1

Here $f(x,y) = x^2 - y$, $y_0 = 1$ and $x_0 = 0$, h = 0.1

So that $x_1=0.1$ and $x_2=0.2$

Step1: To find $y_1 = y(x_1) = y(0.1)$

by 4th order R-K method we have

 $y_1 = y_0 + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$

 $k_1 = hf(x_0, y_0) = (0.1)f(0, 1) = (0.1)[0-1] = -0.1$

 $k_2 = hf(x_0+h/2,y_0+k_1/2)=(0.1)[f(0.05,0.95)]=-0.09475$

 $k_3 = hf((x_0+h/2, y_0+k_2/2)=(0.1)f(0.05, 0.952625)=-0.095$

 $k_4=hf(x_0+h,y_0+k_3)=(0.1)f(0.1, 0.905)=-0.0895$

NUMERICAL METHODS

Hence $y_1 = y(0.1) = y_0 + \frac{1}{6} [k_1 + 2k_2 + 2k_3 + k_4]$

$$= 1 + \frac{1}{6} [-0.1 - 0.1895 - 0.19 - 0.0895] = 0.9052$$

Step2: To find $y_2 = y(x_2) = y(0.2)$

Here x₁=0.1,y₁=0.9052 and h=0.1

by 4th order R-K method we have

$$y_2 = y_1 + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

 $k_1 = hf(x_1, y_1) = (0.1)f(0.1, 0.9052) = -0.08952$

 $k_2 = hf(x_1+h/2,y_1+k_1/2) = (0.1)f(0.15, 0.86044) = -0.08379$

 $k_3=hf((x_1+h/2,y_1+k_2/2)=(0.1)f(0.15, 0.8633)=-0.0841$

 $k_4 = hf(x_1+h, y_1+k_3) = (0.1)f(0.2, 0.8211) = -0.07811$

Hence $y_2 = y(0.2) = y_1 + \frac{1}{6} [k_1 + 2k_2 + 2k_3 + k_4]$

 $= 0.9052 + \frac{1}{6} \left(-0.08952 - 0.16758 - 0.1682 - 0.07811 \right) = 0.8213$

92

CURVE FITTING

Method of Least Squares:

Suppose that a data is given in two variables x & y the problem of finding an analytical expression of the form y = f(x) which fits the given data is called curve fitting.

Let $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ be the observed set of values in an experiment and y = f(x) be the given relation x & y, Let E_1, E_2, \dots, E_x are the error of approximations then we have

 $E_{1} = y_{1} - f(x_{1})$ $E_{2} = y_{2} - f(x_{2})$ $E_{3} = y_{3} - f(x_{3})$

 $E_n = y_n - f(x_n)$ Where $f(x_1), f(x_2), \dots, f(x_n)$ are called the expected values of y corresponding to $x = x_1, x = x_2, \dots, x = x_n$

 y_1, y_2, \dots, y_n are called the observed values of y corresponding to $x = x_1, x = x_2, \dots, x = x_n$ the differences E_1, E_2, \dots, E_n between expected values of y and observed values of y are called the errors, of all curves approximating a given set of points, the curve for which $E = E_1^2 + E_2^2 + \dots + E_n^2$ is a minimum is called the best fitting curve (or) the least square curve, This is called the method of least squares (or) principles of least squares

I. FITTING OF A STRAIGHT LINE:-

Let the straight line be $y = a + bx \rightarrow (1)$

Let the straight line (1) passes through the data points

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$
 i.e., $(x_i, y_i), i = 1, 2, \dots, n$

So we have $y_i = a + bx_i \rightarrow (2)$

The error between the observed values and expected values of $y = y_i$ is defined as

 $E_i = y_i - (a + bx_i), i = 1, 2 \dots n \rightarrow (3)$

The sum of squares of these errors is

$$E = \sum_{i=1}^{n} E_1^2 = \sum_{i=1}^{n} [y_i - (a + bx_i)]^2 \text{ Now for E to be minimum}$$
$$\frac{\partial E}{\partial a} = 0; \frac{\partial E}{\partial b} = 0$$

These equations will give normal equations

$$\sum_{i=1}^{n} y_i = na + b \sum_{i=1}^{n} x_i$$
$$\sum_{i=1}^{n} x_i y_i = a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} x_i^2$$

The normal equations can also be written as

$$\sum y = na + b\sum x$$
$$\sum xy = a\sum x + b\sum x^{2}$$

Solving these equation for a, b substituting in (1) we get required line of best fit to the given data.

II. NON LINEAR CURVE FITTING

1. PARABOLA:-

Let the equation of the parabola is $y = a + bx + cx^2$ (1)

The parabola (1) passes through the data points

$$(x_1, y_1), (x_2, y_2) \dots \dots \dots (x_n, y_n), i.e., (x_1, y_1); i = 1, 2 \dots n$$

We have $y_i = a + bx_i + cx_i^2 \rightarrow (2)$

The error E_i between the observed an expected value of $y = y_i$ is defined as

$$E_i = y_i - (a + bx_i + cx_i^2), i = 1, 2, 3 \dots \dots n \to (3)$$

The sum of the squares of these errors is

$$E = \sum_{i=1}^{n} E_1^2 = \sum_{i=1}^{n} (y_i - a - bx_i - cx_i^2)^2 \to (4)$$

for E to be minimum, we have

 $\frac{\partial E}{\partial a} = 0, \frac{\partial E}{\partial b} = 0, \frac{\partial E}{\partial c} = 0$

The normal equations can also be written as

$$\Sigma y = na + b\Sigma x + c\Sigma x^{2}$$
$$\Sigma x y = a\Sigma x + b\Sigma x^{2} + c\Sigma x^{3}$$
$$\Sigma x^{2} y = a\Sigma x^{2} + b\Sigma x^{3} + c\Sigma x^{4}$$

Solving these equations for a, b, c and satisfying (1) we get required parabola of best fit

2. POWER CURVE:-

The power curve is given by $y = ax^b \rightarrow (1)$

Taking logarithms on both sides $log_{10}y = log_{10}a + b log_{10}x$

DEPARTMENT OF HUMANITIES & SCIENCES ©MRCET (EAMCET CODE: MLRD)

NUMERICAL METHODS

(or) $Y = A + bX \rightarrow (2)$ where $Y = log_{10}y$, $A = log_{10}a$ and $X = log_{10}x$

Equation (2) is a linear equation in X & Y

 \therefore The normal equations are given by

$$\Sigma Y = nA + b\Sigma X$$
$$\Sigma X Y = A\Sigma X + b\Sigma x^{2}$$

From these equations, the values A and b can be calculated then a = antilog (A) substitute a & b in (1) to get the required curve of best fit.

3. EXPONENTIAL CURVE: (1) $y = ae^{bx}$ (2) $y = ab^{x}$

1.
$$y = ae^{bx} \rightarrow (1)$$

Taking logarithms on both sides $log_{10}y = log_{10} + bxlog_{10}e$

$$(or)Y = A + BX \rightarrow (2)$$
 Where $Y = log_{10}y$, $A = log_{10}a$, $B = blog_{10}e$ & $X = x$

Equation (2) is a linear equation in X and Y

So the normal equation are given by

$$\Sigma Y = nA + B\Sigma X$$
$$\Sigma X Y = A\Sigma X + B\Sigma X^{2}$$

Solving the equation for A & B, we can find

$$a = anti \log A \& b = \frac{B}{\log_{10} e}$$

Substituting the values of a and b so obtained in (1) we get

The curve of best fit to the given data.

2.
$$y = ab^x \rightarrow (1)$$

Taking log on both sides $log_{10}y = log_{10}a + xlog_{10}b$

$$(or) Y = A + BX \rightarrow (2)$$

Where $Y = log_{10}y, A = log_{10}a, B = blog_{10}b \& x = X$

The normal equation (2) are given by

$$\Sigma Y = nA + B\Sigma X$$
$$\Sigma X Y = A\Sigma X + B\Sigma X^{2}$$

Solving these equations for A and B we can find $a = anti \log A, b = anti \log B$ Substituting a and b in (1)

Problems:

1. By the method of least squares, find the straight line that best fits the following data

x	1	2	3	4	5
у	14	27	40	55	68

Solution: The values of Σx , Σy , Σx^2 and $\overline{\Sigma xy}$ are calculated as follows

x _i	y_i	x_i^2	$x_i y_i$
1	14	1	14
2	27	4	54
3	40	9	120
4	55	16	220
5	68	25	340

$$\Sigma x_i = 15; \Sigma y_i = 204; \Sigma x_i^2 = 55 \text{ and } \Sigma x_i \Sigma y_i = 748$$

The normal equations are

 $\Sigma y = na + b\Sigma x \rightarrow (1) \quad \Sigma xy = a\Sigma x + b\Sigma x^2 \rightarrow (2)$

Solving we get a = 0, b = 13.6

Substituting these values a & b we get

 $y = 0 + 13.6x \Rightarrow y = 13.6x$

2. Fit a straight line y=a+bx from data

X	0	1	2	3	4
У	1	1.8	3.3	4.5	6.3

Solution: Let the required straight line be y=a+bx...(1)

	~			
Х	У	x ²	ху	
0	1	0	0	
1	1.8	1	1.8	
2	3.3	4	6.6	
3	4.5	9	13.5	
4	6.3	16	25.2	
$\sum x = 10$	$\sum y = 16.9$	$\sum x^2 = 30$	∑xy = 47.1	

Normal equations are

$$\sum y = na + b\sum x$$
$$\sum xy = a\sum x + b\sum x^{2}$$

Substitute in above we get

NUMERICAL METHODS

5a+10b=16.9

10a+30b=47.1

Solving we get a=0.72; b=1.33.

 \therefore The straight line is y = 0.72 + 1.33x

X	0	5	10	15	20
у	7	-11	16	20	26

3. Fit a straight line y = a + bx from data

Solution: Let the required straight line be y = a + bx...(1)

X	у	x ²	ху
0	7	0	0
5	-11	25	-55
10	16	100	160
15	20	225	300
20	26	400	520
$\sum X = 50$	∑ y ==58	$\sum x^2 = 750$	∑ xy =925

Normal equations are

$$\sum y = na + b\sum x$$
$$\sum xy = a\sum x + b\sum x^{2}$$

Substitute in above we get

5a+50b=58

50a+750b=925

Solving we get a=-2; b=1.36.

 \therefore The straight line is y = -2 + 1.36x

4. Fit a straight line y=a+bx from data

X	0	5	10	15	20	25
У	12	15	17	22	24	30

Solution: Let the required straight line be y=a+bx...(1)

NUMERICAL METHODS

X	У	x ²	ху
0	12	0	0
5	15	25	75
10	17	100	170
15	22	225	330
20	24	400	480
25	30	625	750
$\sum x = 75$	∑ y=120	$\sum x^2 = 1375$	$\sum xy = 1805$

Normal equations are

$$\sum y = na + b\sum x$$
$$\sum xy = a\sum x + b\sum x^{2}$$

Substitute in above we get

6a + 75b = 58

75a+1375b=1805

Solving we get a=11.2862; b=0.6971.

 \therefore The straight line is y = 11.2862 + 0.6971x

5. Fit a straight line and a parabola to the following data and find out which one is most appropriate. Give your reason for the conclusion

X	1	2	3	4	5
у	4	3	6	7	11

Solution: Let the required straight line be y=a+bx...(1)

Х	у	x ²	x ³	x ⁴	ху	x ² y
1	4	1	1	1	4	4
2	3	4	8	16	6	12
3	6	9	27	81	18	54
4	7	16	64	256	28	112
5	11	25	125	625	55	275
∑x=15	∑ <i>y</i> =31	$\sum x^2 = 55$	$\sum x^3 = 225$	$\sum x^4 = 979$	$\sum xy = 111$	$\sum x^2 y = 457$

97

NUMERICAL METHODS

Normal equations for fitting a straight line are

$$\sum y = na + b\sum x$$
$$\sum xy = a\sum x + b\sum x^{2}$$

Substitute in above we get

5a+15b=31

15a+55b=111

Solving we get a=0.8; b=1.8.

 \therefore The straight line is y = 0.8 + 1.8x

Let the required parabola be $y=a+bx+cx^2...(2)$

Normal equations for fitting a parabola are

$$\Sigma y = na + b\Sigma x + c\Sigma x^{2}$$
$$\Sigma xy = a\Sigma x + b\Sigma x^{2} + c\Sigma x^{3}$$
$$\Sigma x^{2} y = a\Sigma x^{2} + b\Sigma x^{3} + c\Sigma x^{4}$$

Substituting values, we get

5a+15b+55c =31

15a+55b+225c = 111

55a+225b+979c =457

Solving we get a=4.7998;b=-1.6284;c=0.5714

∴The parabola fit is 4.7998x²-1.6284x+0.5714

Conclusion: Clearly parabola fit is best fit because error is near to ZERO than linear fit.

У	Error of linear fit	Error parabola fit
	E=y-f(x)	E=y-g(x)
4	1.4	0.2572
3	-1.4	-0.8286
6	-0.2	0.9428
7	-1	-0.4286
11	1.2	0.0572

NUMERICAL METHODS

6. Fit a second degree parabola to the following data

X	0	1	2	3	4
У	1	5	10	22	38

Solution: Equation of parabola $y = a + bx + cx^2 \rightarrow (1)$

Normal equations

 $\Sigma y = na + b\Sigma x + c\Sigma x^2$

 $\Sigma x y = a \Sigma x + b \Sigma x^2 + c \Sigma x^3$

$$\Sigma x^2 y = a\Sigma x^2 + b\Sigma x^3 + c\Sigma x^4 \quad \rightarrow (2)$$

x	у	ху	x^2	x^2y	x^3	x^4
0	1	0	0	0	0	0
1	5	5	1	5	1	1
2	10	20	4	40	8	16
3	22	66	9	198	27	81
4	38	152	16	608	64	256
$\sum \mathbf{x} = 10$	$\sum y = 76$	∑xy=243	$\sum x^2 = 30$	$\sum x^2 y = 851$	$\Sigma x^3 = 100$	$\Sigma x^4 = 354$

Normal equations

76 = 5a + 10b + 30c243 = 10a + 30b + 100c851 = 30a + 100b + 354c

Solving a = 1.42, b = 0.26, c = 2.221

Substitute in (1) \Rightarrow y = 1.42 + 0.26x + 2.221x²

7. Fit a second degree parabola to the following data:

X	0	1	2	3	4
f(x)	1	1.8	1.3	2.5	6.3

Solution:

Let the equation of the parabola be $Y = a + b x + c x^2$ -----(1)

The normal equations are given by $\Sigma y = na + b\Sigma x + c\Sigma x^2$

$$\Sigma xy = a\Sigma x + b\Sigma x^{2} + c\Sigma x^{3} - \dots (2)$$

$$\Sigma x^{2} v = a\Sigma x^{2} + b\Sigma x^{3} + c\Sigma x^{4}$$

NUMERICAL METHODS

X	У	<i>x</i> ²	<i>x</i> ³	<i>x</i> ⁴	ху	x^2y
0	1.0	0	0	0	0	0
1	1.8	1	1	1	1.8	1.8
2	1.3	4	8	16	2.6	5.2
3	2.5	9	27	81	7.5	22.5
4	6.3	16	64	256	25.2	100.8
$\sum x = 10$	$\sum y = 12.9$	$\sum x^2 = 30$	$\sum x^3 = 100$	$\sum x^4 = 354$	$\sum xy = 37.1$	$\sum x^2 y = 130.3$

Since there are 5 pairs of values so n=5 substituting the above values in (2) we get

$$12.9 = 5a + 10b + 30c$$

$$37.1 = 10a + 30b + 100c$$

$$130.3 = 30a + 100b + 354c$$

Solving the above equations we get a = 14.2, b = -1.07, c = 0.55

Substituting the above values in (1) $y = 14.2-1.07x + 0.55x^2$

Which is the required equation of the parabola.

8. Fit a parabola $y = a + bx + cx^2$ to the data given below

x:	1	2	3	4	5
у:	10	12	8	10	14

Solution: Let the equation of the parabola be $Y = a + b x + c x^2$ -----(1) The normal equations are given by $\Sigma y = na + b\Sigma x + c\Sigma x^2$

$$\Sigma x y = a\Sigma x + b\Sigma x^2 + c\Sigma x^3 - \dots (2)$$

$$\Sigma x^2 y = a\Sigma x^2 + b\Sigma x^3 + c\Sigma x^4$$

Х	у	<i>x</i> ²	<i>x</i> ³	<i>x</i> ⁴	ху	x^2y
1	10	1	1	1	10	10
2	12	4	8	16	24	48
3	8	9	27	81	24	72
4	10	16	64	256	40	160
5	14	25	125	625	70	350
∑x=15	$\sum y = 54$	$\sum x^2 = 55$	$\sum x^3 = 225$	$\sum x^4 = 979$	∑xy=168	$\sum x^2 y = 640$

Since there are 5 pairs of values so n=5 substituting the above values in (2) we get

54 = 5a + 15b + 55c

168 = 15a + 55b + 225c

NUMERICAL METHODS

MATHEMATICS - II

640 = 55a + 225b + 979c

Solving the above equations we get a =14, b =-3.6857, c = 0.7142 substituting the above values in (1) $y = 14-3.6857x + 0.7142x^2$ which is the required equation of the parabola.

9. Fit a parabola of the form $y = ax^2 + bx + c$

x:	1	2	3	4	5	6	7
y:	2.3	5.2	9.7	16.5	29.4	35.5	54.4

Solution: Let the equation of the parabola be $y = ax^2 + bx + c$ -----(1)

The normal equations are given by

$$\Sigma y = na + b\Sigma x + c\Sigma x^{2}$$

$$\Sigma x y = a\Sigma x + b\Sigma x^{2} + c\Sigma x^{3} - \dots - (2)$$

$$\Sigma x^{2} v = a\Sigma x^{2} + b\Sigma x^{3} + c\Sigma x^{4}$$

Table for calculations:

X	у	<i>x</i> ²	<i>x</i> ³	x ⁴	ху	x^2y
1	2.3	1	1	1	2.3	2.3
2	5.2	4	8	16	10.4	20.8
3	9.7	9	27	81	29.1	87.3
4	16.5	16	64	256	66	264
5	29.4	25	125	625	147	735
6	35.5	36	216	1296	213	1278
7	54.4	49	343	2401	380.8	2665.6
28	153	140	784	4676	848.6	5053

Since there are 5 pairs of values so n=5 substituting the above values in (2) we get

153 = 7a + 28b + 140c

$$848.6 = 28a + 140b + 784c$$

$$5053 = 140a + 784b + 4676c$$

Solving the above equations we get a =2.3705, b =-1.0924, c = 1.1928 substituting the above values in (1) $y = 1.1928 x^2 - 1.0924 x + 2.3705$ which is the required equation of the parabola.

10. Fit a curve $y = ax^b$ to the following data

X	1	2	3	4	5	6
У	2.98	4.26	5.21	6.10	6.80	7.50

Sol:- Let the equation of the curve be $y = ax^b \rightarrow (1)$

Taking log on both sides $\log y = \log a + b \log x$

(or) $Y = A + bX \longrightarrow (2)$ Where $Y = \log y, A = \log a, X = \log x$

The Normal Equations are $\Sigma Y = nA + b\Sigma X$

$$\Sigma XY = A\Sigma X + b\Sigma X^2 \quad \longrightarrow (3)$$

x	$X = \log x$	у	$Y = \log y$	XY	X ²
1	0	2.98	0.4742	0	0
2	0.3010	4.26	0.6294	0.1894	0.0906
3	0.4771	5.21	0.7168	0.3420	0.2276
4	0.6021	6.10	0.7853	0.4728	0.3625
5	0.6990	6.80	0.8325	0.5819	0.4886
	$\Sigma X = 2.8574$		$\Sigma Y = 4.3133$	$\Sigma XY = 2.2671$	$\Sigma X^2 = 1.7749$

4.3313=6A+208574b and 2.2671=2.8574A+1.7749b

Solving A=0.4739, b=0.5143

A=anti log (A) =2.978

$$\therefore v = 2.978 x^{0.5143}$$

11. Fit a curve $y = ab^x$

X	2	3	4	5	6
у	144	172.8	207.4	248.8	298.5

Solution: Let the curve to be fitted is $y = ab^x$

Taking log on both sides $\log y = \log a + x \log b \rightarrow (1)$

$$Y = A + xB \longrightarrow (2)$$
$$Y = \log y, A = \log a, B = \log b$$
$$\Sigma Y = nA + B\Sigma x$$

NUMERICAL METHODS

NUMERICAL METHODS

_					
	xy	$Y = \log y$	<i>x</i> ²	У	x
	4.3168	2.1584	4	144.0	2
	6.7125	2.2375	9	172.8	3
Substituting	9.2672	2.3168	16	207.4	4
these values	11.9795	2.3959	25	248.8	5
the normal	14.8494	2.4749	36	298.5	6
equations are				•	

 $\Sigma xY = A\Sigma x + b\Sigma x^2 \longrightarrow (3)$

ese values e normal equations are

11.5835 = 5A + 20B

47.1254 = 20A + 90B

Soving A and B, taking antilogarithms

a=100, b=1.2

Substituting in (1), the equation of the curve is $y = 100(1.2)^x$

= 36.744 Square units

UNIT -III

BETA AND GAMMA FUNCTIONS

Gamma Function: [In Mathematics, the Gamma Function (Represented by the capital Greek Letter Γ) is an extension of the factorial function, with its argument shifted down by 1, to real and complex number]

Def: The definite integral $\int_0^\infty e^{-x} x^{n-1} dx$ is called the Gamma function and is denoted by $\Gamma(n)$ and read as "Gamma n". The integral converges only for n>0

Thus, $\Gamma(n) = \int_0^\infty e^{-x} x^{n-1} dx$ where n>0

Gamma function is also called Eulerian integral of the second kind.

Note: The integral $\int_0^\infty e^{-x} x^{n-1} dx$ does not converge if n ≤ 0

Properties of Gamma Function:

1. To show that $\Gamma(1) = \mathbf{1}$

Sol. By the def of Gamma function; we have

$$\Gamma(n) = \int_0^\infty e^{-x} x^{n-1} dx$$

$$\therefore \Gamma(1) = \int_0^\infty e^{-x} x^{1-1} dx = \int_0^\infty e^{-x} x^0 dx = \int_0^\infty e^{-x} dx = \left[\frac{e^{-x}}{-1}\right]_0^\infty$$

$$= -[e^{-\infty} - e^0] = -[0 - 1] = 1$$

 $\therefore \Gamma(1) = 1$

2. To show that $\Gamma(n) = (n-1)\Gamma(n-1)$ where n>1.

Sol. By the def of Gamma function; we have

$$\Gamma(n) = \int_0^\infty e^{-x} x^{n-1} dx$$

= $\left[x^{n-1} \frac{e^{-x}}{(-1)} \right]_0^\infty - \int_0^\infty (n-1) x^{n-2} \left(\frac{e^{-x}}{-1} \right) dx$ (Integrate by parts)
= $\frac{lt}{x \to \infty} \frac{x^{n-1}}{e^x} + 0 + (n-1) \int_0^\infty e^{-x} x^{n-2} dx$
= $(n-1) \int_0^\infty e^{-x} x^{n-2} dx$ ($\therefore \frac{lt}{n \to \infty} \frac{x^{n-1}}{e^x} = 0$ for $n > 1$)
= $(n-1) \Gamma(n-1)$

DEPARTMENT OF HUMANITIES & SCIENCES ©MRCET (EAMCET CODE: MLRD) 104

 $\therefore \Gamma(n) = (n-1)\Gamma(n-1)$

Note: 1. $\Gamma(n+1) = n\Gamma(n)$

2. If n is a +ve fraction then we can write.

$$\Gamma(n) = (n-1)(n-2)...(n-r)\Gamma(n-r)$$
 Where $(n-r) > 0$

If n is a non-negative integer, then $\Gamma(n+1) = n!$ 3.

`

Proof: From property II, We have.

$$\Gamma(n+1) = n\Gamma(n) = n(n-1)\Gamma(n-1) \text{ (by property II again)}$$

= $n(n-1)(n-2)\Gamma(n-2)$ (by property II again)
= $n(n-1)(n-2)(n-3)\Gamma(n-3)$
= $n(n-1)(n-2)(n-3)\dots .3.2.1 \Gamma(1)$
= $n(n-1)(n-2)(n-3)\dots .3.2.1 \because \Gamma(1) = 1$
= $n!$
 $\therefore \Gamma(n+1) = n! (n = 0, 1, 2 \dots ...)$

This shows that the Gamma function can be regarded as a generalization of the elementary factorial function.

Problems :

1. Solve Γ

Sol.
$$\Gamma(\frac{9}{2}) = \left(\frac{9}{2} - 1\right) \Gamma\left(\frac{9}{2} - 1\right) = \frac{7}{2} \Gamma\left(\frac{7}{2}\right) = \frac{7}{2} \left(\frac{7}{2} - 1\right) \Gamma\left(\frac{7}{2} - 1\right)$$

$$= \frac{7}{2} \cdot \frac{5}{2} \cdot \Gamma\left(\frac{5}{2}\right) = \frac{7}{2} \cdot \frac{5}{2} \cdot \left(\frac{5}{2} - 1\right) \Gamma\left(\frac{5}{2} - 1\right)$$
$$= \frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \Gamma\left(\frac{3}{2}\right) = \frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \left(\frac{3}{2} - 1\right) \Gamma\left(\frac{3}{2} - 1\right)$$
$$= \frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \Gamma\left(\frac{1}{2}\right)$$

MATHEMATICS -II

2. Solve $\Gamma\left(\frac{13}{3}\right)$ **Sol:** $\Gamma(\frac{13}{3}) = \frac{10}{3} \cdot \frac{7}{3} \cdot \frac{4}{3} \cdot \frac{1}{3} \cdot \Gamma(\frac{1}{3})$ Note: When n is a –ve fraction We have $\Gamma(n+1) = n\Gamma(n)$ $\Gamma(n) = \frac{\Gamma(n+1)}{n}$ **3.** Compute $\Gamma\left(\frac{-1}{2}\right)$ **Sol.** We have $\Gamma(n) = \frac{\Gamma(n+1)}{n}$ Put $n = \left(\frac{-1}{2}\right)$ $\Gamma\left(\frac{-1}{2}\right) = \frac{\Gamma\left(\frac{1}{2}\right)}{-1} = -2\sqrt{\pi}$ 4. Compute $\Gamma\left(\frac{-5}{2}\right)$ **Sol.** We have $\Gamma(n) = \frac{\Gamma(n+1)}{n}$ 12 $\Gamma\left(\frac{-5}{2}\right) = \frac{\Gamma\left(\frac{-3}{2}\right)}{\frac{-5}{2}} = \frac{-2}{5}\Gamma\left(\frac{-3}{2}\right)$ $= \frac{-2}{5} \cdot \frac{\Gamma\left(\frac{-3}{2}+1\right)}{\frac{-3}{2}} = \frac{2^2}{5 \cdot 3} \Gamma\left(-\frac{1}{2}\right)$ $=\frac{2^2}{15}\cdot\frac{\Gamma\left(-\frac{1}{2}+1\right)}{\frac{-1}{2}}=\frac{-2^3}{15}\Gamma\left(\frac{1}{2}\right)=\frac{-2^3}{15}\sqrt{\pi} =\frac{-8}{15}\cdot\sqrt{\pi}$

Beta Function:

Def: The definite integral $\int_0^1 x^{m-1}(1-x)^{n-1} dx$ is called the Beta function and is denoted by $\beta(m, n)$ and read as "Beta m, n". The above integral converges for m > 0, n > 0

Thus,
$$\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$$
, where $m > 0, n > 0$

Beta function is also called Eulerian integral of the first kind.

Properties of Beta Function:

(i). Symmetry of Beta function; i.e.,
$$\beta(m, n) = \beta(n, m)$$

Proof: By the def, we have

$$\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$$

$$put (1-x) = y \text{ so that } dx = -dy$$
When $x=1 \Rightarrow y=0$

$$x=0 \Rightarrow y=1$$

$$\therefore \beta(m,n) = \int_1^0 (1-y)^{m-1} (-dy)$$

$$= \int_0^1 y^{n-1} (1-y)^{m-1} dy$$

$$= \int_0^1 x^{n-1} (1-x)^{m-1} dx$$

$$\therefore \beta(m,n) = \beta(n,m)$$

$$\therefore \beta(m,n) = \beta(n,m)$$

Aliter : We know that $\beta(m,n) = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$

From properties of definite integrals, we have

$$\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx$$

$$\therefore \beta(m,n) = \int_{0}^{1} (1-x)^{m-1} [1-(1-x)]^{n-1} dx$$
$$= \int_{0}^{1} (1-x)^{m-1} x^{n-1} dx$$
$$= \int_{0}^{1} x^{n-1} (1-x)^{m-1} dx = \beta(n,m)$$

MATHEMATICS -II

$$\therefore \beta(m,n) = \beta(n,m)$$

(ii). Prove that
$$\beta(m,n) = 2 \int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$$

Proof: By the def, we have

$$\beta(m,n) = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$$

Put $x = \sin^2 \theta$ so that $dx = 2\sin\theta\cos\theta d\theta$

$$\Rightarrow dx = \sin 2\theta d\theta$$

When $x = 1 \Rightarrow \theta = \frac{\pi}{2}$ and $x = 0 \Rightarrow \theta = 0$

$$\therefore \beta(m,n) = \int_{0}^{\pi/2} (\sin^2 \theta)^{m-1} (\cos^2 \theta)^{n-1} 2\sin \theta \cos \theta d\theta$$

$$=2\int_{0}^{\frac{\pi}{2}}\sin^{2m-2}\theta\cos^{2n-2}\theta\sin\theta\cos\theta\,d\theta$$

$$=2\int_{0}^{\pi/2}\sin^{2m-1}\theta\cos^{2n-1}\theta\ d\theta$$

$$\therefore \beta(m,n) = 2 \int_{0}^{2} \sin^{2m-1}\theta \cos^{2n-1}\theta \, d\theta$$

Note: $\int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta = \frac{1}{2}\beta(m,n)$

(iii) Prove that $\beta(m,n) = \beta(m+1,n) + \beta(m,n+1)$

Proof: By the def, we have

$$\beta(m+1,n) + \beta(m,n+1) = \int_{0}^{1} x^{m} (1-x)^{n-1} dx + \int_{0}^{1} x^{m-1} (1-x)^{n} dx$$
$$= \int_{0}^{1} \left[x^{m} (1-x)^{n-1} + x^{m-1} (1-x)^{n} \right] dx$$
$$= \int_{0}^{1} x^{m-1} (1-x)^{n-1} \left[x + (1-x) \right] dx$$

$$= \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx = \beta(m,n)$$

Hence
$$\beta(m,n) = \beta(m+1,n) + \beta(m,n+1)$$

(iv). If m and n are positive integers, then $\beta(m,n) = \frac{(m-1)!(n-1)!}{(m+n-1)!}$

Proof: By the def, we have

$$\beta(m,n) = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx \quad \dots \quad (1)$$

$$= \left[x^{m-1} \frac{(1-x)^{n}}{n(-1)} \right]_{0}^{1} - \int_{0}^{1} \frac{(1-x)^{n}}{n(-1)} (m-1) x^{m-2} dx \qquad \text{(Integration by parts)}$$

$$= \frac{m-1}{n} \int_{0}^{1} x^{m-2} (1-x)^{n} dx = \frac{m-1}{n} \beta(m-1,n+1) \dots \dots \dots \dots (2)$$

Now we have to find $\beta(m-1, n+1)$

To obtain this put m=m-1 and n=n+1 in equation. (1), we have

$$\beta(m-1, n+1) = \frac{m-2}{n+1}\beta(m-2, n+2)$$

From Equation. (2)

$$\beta(m,n) = \frac{m-1}{n} \cdot \frac{m-2}{n+1} \beta(m-2, n+2) \dots (3)$$

Changing m to m-2 and n to n+2, from (1) we have

$$\beta(m-2, n+2) = \frac{m-3}{n+2}\beta(m-3, n+3)$$

From Equation (3), we have

$$\beta(m,n) = \frac{m-1}{n} \cdot \frac{m-2}{n+1} \cdot \frac{m-3}{n+2} \beta(m-3,n+3) \dots (4)$$

Proceeding like this, we get

$$\beta(m,n) = \frac{(m-1)(m-2)(m-3)\dots[m-(m-1)]}{n(n+1)(n+2)\dots(n+m-2)}\beta[m-(m-1),n+(m-1)]$$
$$= \frac{(m-1)(m-2)(m-3)\dots(n+m-2)}{n(n+1)(n+2)\dots(n+m-2)}\beta(1,n+m-1)\dots(5)$$

MATHEMATICS -II

But
$$\beta(1, n+m-1) = \int_0^1 x^0 (1-x)^{n+m-2} dx = \int_0^1 (1-x)^{n+m-2} dx$$

$$= \left[\frac{(1-x)^{n+m-1}}{(n+m-1)(-1)}\right]_0^1 = \frac{-1}{n+m-1}(0-1) = \frac{1}{n+m-1}$$

From equation (5), we have

$$\beta(m,n) = \frac{(m-1)(m-2)(m-3)\dots(n+1)}{n(n+1)(n+2)\dots(n+m-2)(n+m-1)} = \frac{(m-1)!}{n(n+1)(n+2)\dots(n+m-2)(n+m-1)}$$

Multiplying the numerator and denominator by (n-1)!, we have

$$\beta(m,n) = \frac{(m-1)!(n-1)!}{(n+m-1)(n+m-2)...(n+2)(n+1)n(n-1)!} = \frac{(m-1)!(n-1)!}{(n+m-1)!}$$

$$\therefore \beta(m,n) = \frac{(m-1)!(n-1)!}{(n+m-1)!}$$

Note 1: Putting m=1 in
$$\beta(m,n) = \frac{(m-1)!(n-1)!}{(n+m-1)!}$$
, we have

$$\beta(1,n) = \frac{(n-1)!}{n!} = \frac{1}{n!}$$

2: By putting n=1, we get $\beta(m,1) = \frac{1}{m}$

Other forms of Beta Function:

1. Show that

$$\beta(m,n) = \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx = \int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} dx(or) \int_{0}^{\infty} \frac{y^{n-1}}{(1+y)^{m+n}} dy(or) \beta(p,q) = \int_{0}^{\infty} \frac{y^{q-1}}{(1+y)^{p+q}} dy$$
Proof: By the def, we have

$$\beta(m,n) = \int_{0}^{1} x^{m-1} (1+x)^{n-1} dx \dots (1)$$
Put $x = \frac{1}{1+y}$ so that $dx = \frac{-dy}{(1+y)^{2}}$
when $x = 0 \Rightarrow y \to \infty$ and $x = 1 \Rightarrow y = 0$
From equation (1), we have

$$\beta(m,n) = \int_{\infty}^{0} \left(\frac{1}{1+y}\right)^{m-1} \left(1 - \frac{1}{1+y}\right)^{n-1} \cdot \frac{-dy}{(1+y)^{2}}$$

MATHEMATICS -II

$$= \int_{0}^{\infty} \frac{1}{(1+y)^{m-1}} \cdot \frac{y^{n-1}}{(1+y)^{n-1}} \cdot \frac{dy}{(1+y)^2}$$
$$= \int_{0}^{\infty} \frac{y^{n-1}}{(1+y)^{m-1+n+1+2}} \, dy = \int_{0}^{\infty} \frac{y^{n-1}}{(1+y)^{m+n}} \, dy$$

:.
$$\beta(m,n) = \int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} dx$$
(2)

Again since Beta function is symmetrical in m and n, we also have

$$\beta(m,n) = \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx$$
 (3)

Hence
$$\beta(m,n) = \int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} dx = \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx$$

2. To show
$$\beta(m,n) = \int_{0}^{1} \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx$$

Proof: We have

Now consider $\int_{1}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx$

Put
$$x = \frac{1}{y}$$
 so that $dx = -\frac{1}{y^2} dy$,

When
$$x=1 \Rightarrow y=1$$
 and $x \to \infty \Rightarrow y=0$

$$\therefore \int_{1}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx = \int_{1}^{0} \frac{\left(\frac{1}{y}\right)}{(1+\frac{1}{y})^{m+n}} \left(-\frac{1}{y^{2}}\right) dy$$
$$= \int_{0}^{1} \frac{\frac{1}{y^{m-1}}}{(1+y)^{m+n}} \cdot \frac{1}{y^{2}} dx = \int_{0}^{1} \frac{1}{y^{m-1}} \frac{y^{m+n}}{(1+y)^{m+n}} \frac{1}{y^{2}} dy$$
$$= \int_{0}^{1} \frac{y^{m+n-m+1-2}}{(1+y)^{m+n}} dy = \int_{0}^{1} \frac{y^{n-1}}{(1+y)^{m+n}} dy = \int_{0}^{1} \frac{x^{n-1}}{(1+x)^{m+n}} dx$$

Hence Equation (1) becomes

$$\beta(\mathbf{m},\mathbf{n}) = \int_{0}^{1} \frac{x^{m-1}}{(1+x)^{m+n}} d\mathbf{x} + \int_{0}^{1} \frac{x^{n-1}}{(1+x)^{m+n}} d\mathbf{x}$$

$$\therefore \beta(\mathbf{m},\mathbf{n}) = \int_{0}^{1} \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} d\mathbf{x}$$

BETA AND GAMMA FUNCTIONS

Put
$$x = \frac{y}{y+a}$$

 $dx = (1+a) \left[\frac{(y+a)1 - y(1+0)}{(y+a)^2} \right] dy = \frac{a(1+a)}{(y+a)^2} dy$
When $x=0 \implies y=0$ and $x=1 \implies y=1$

Now equation (1) becomes

$$\beta(m,n) = \int_0^1 \frac{(1+a)^{m-1} y^{m-1}}{(y+a)^{m-1}} \left(1 - \frac{(1+a)y}{y+a}\right)^{n-1} \frac{a(1+a)}{(y+a)^2} dy$$

$$= \int_0^1 \frac{(1+a)^{m-1} y^{m-1}}{(y+a)^{m-1}} \left(\frac{y+a-y-ay}{y+a}\right)^{n-1} \frac{a(1+a)}{(y+a)^2} dy$$

$$= \int_0^1 \frac{a(1+a)^m y^{m-1}}{(y+a)^{m-1+n-1+2}} (a-ay)^{n-1} dy$$

$$= \int_0^1 \frac{a(1+a)^m y^{m-1}}{(y+a)^{m+n}} a^{n-1} (1-y)^{n-1} dy$$

MATHEMATICS -II

$$= a^{n} (1+a)^{m} \int_{0}^{1} \frac{y^{m-1} (1-y)^{n-1}}{(y+a)^{m+n}} dy = a^{n} (1+a)^{m} \int_{0}^{1} \frac{x^{m-1} (1-x)^{n-1}}{(x+a)^{m+n}} dx$$

$$\therefore \int_{0}^{1} \frac{x^{m-1} (1-x)^{n-1}}{(x+a)^{m+n}} dx = \frac{\beta(m,n)}{a^{n} (1+a)^{m}}$$

5. To show $\int_{b}^{a} (x-b)^{m-1} (a-x)^{n-1} dx = (a-b)^{m+n-1} \beta(m,n), m > 0, n > 0.$

Proof: We have

5.

$$\beta(\mathbf{m},\mathbf{n}) = \int_{0}^{1} x^{m-1} (1-x)^{n-1}$$
Put $x = \frac{y-b}{a-b}$ so that $dx = \frac{dy}{a-b}$
When $x = 0 \Rightarrow y = b$ and $x = 1 \Rightarrow y = a$
 $\therefore \beta(\mathbf{m},\mathbf{n}) = \int_{b}^{a} \left(\frac{y-b}{a-b}\right)^{m-1} \left[1 - \left(\frac{y-b}{a-b}\right)\right]^{n-1} \frac{dy}{a-b}$
 $= \int_{b}^{a} \frac{(y-b)^{m-1}}{(a-b)^{m-1}} \cdot \frac{(a-b-y+b)^{n-1}}{(a-b)^{n-1}} \frac{dy}{a-b}$
 $= \int_{b}^{a} \frac{(y-b)^{m-1}(a-y)^{n-1}}{(a-b)^{m-1+n-1+1}} dy = \int_{b}^{a} \frac{(x-b)^{m-1}(a-x)^{n-1}}{(a-b)^{m+n-1}} dx$
 $\therefore \int_{b}^{a} \frac{(x-b)^{m-1}(a-x)^{n-1}}{(a-b)^{m+n-1}} dx = (a-b)^{m+n-1} \beta(m,n)$

PROBLEMS

1. S.T
$$\int_{0}^{\frac{\pi}{2}} \sin^{m} \theta \cos^{n} \theta d\theta = \frac{1}{2} \beta \left(\frac{m+1}{2}, \frac{n+1}{2} \right)$$

Sol: $\int_{0}^{\frac{\pi}{2}} \sin^{m} \theta \cos^{n} \theta d\theta = \int_{0}^{\frac{\pi}{2}} \sin^{m-1} \theta \cos^{n-1} \theta (\sin \theta \cos \theta) d\theta$
$$= \int_{0}^{\frac{\pi}{2}} (\sin^{2} \theta)^{\frac{m-1}{2}} (\cos^{2} \theta)^{\frac{n-1}{2}} (\sin \theta \cos \theta) d\theta$$

Dut $\sin^{2} \theta$ = we at lett $\sin \theta \cos \theta d\theta = \frac{dx}{2}$

Put $\sin^2 \theta = x$ so that $\sin \theta \cos \theta \, d\theta = \frac{1}{2}$

$$\therefore \int_{0}^{\frac{\pi}{2}} \sin^{m} \theta \cos^{n} \theta d\theta = \frac{1}{2} \int_{0}^{1} x^{\frac{m-1}{2}} (1-x)^{\frac{n-1}{2}} dx$$
$$= \frac{1}{2} \int_{0}^{1} x^{\left(\frac{m+1}{2}\right)-1} (1-x)^{\left(\frac{n+1}{2}\right)-1} dx = \frac{1}{2} \beta \left(\frac{m+1}{2}, \frac{n+1}{2}\right)$$

MATHEMATICS -II

Aliter: We have
$$\int_{0}^{\frac{\pi}{2}} \sin^{2m-1} \theta \cos^{2n-1} \theta d\theta = \frac{1}{2} \beta(m,n)$$
......(1)
Put $p = 2m - 1, q = 2n - 1$ so that $m = \frac{p+1}{2}$ and $n = \frac{q+1}{2}$.
Then (1) becomes $\int_{0}^{\frac{\pi}{2}} \sin^{n} \theta \cos^{q} \theta d\theta = \frac{1}{2} \beta\left(\frac{p+1}{2}, \frac{q+1}{2}\right)$
or $\int_{0}^{\frac{\pi}{2}} \sin^{n} \theta \cos^{q} \theta d\theta = \frac{1}{2} \beta\left(\frac{m+1}{2}, \frac{n+1}{2}\right)$
2. Solve $\int_{0}^{1} \frac{x}{\sqrt{1-x^{2}}} dx$
Sol: Put $x^{2} = y$ so that $dx = \frac{dy}{2x} = \frac{1}{2} y^{\frac{1}{2}} dy$
 $when $x = 0 \Rightarrow y = 0, and x = 1 \Rightarrow y = 1$
 $\therefore \int_{0}^{1} \frac{x}{\sqrt{1-x^{2}}} dx = \int_{0}^{1} \frac{y^{\frac{1}{2}}}{\sqrt{1-y}} \frac{1}{2} y^{\frac{1}{2}} dy$
 $= \frac{1}{2} \int_{0}^{1} y^{0} (1-y)^{\frac{1}{2}} dy = \frac{1}{2} \int_{0}^{1} y^{1-1} (1-y)^{\frac{1}{2}-1} dy = \frac{1}{2} \beta\left(1,\frac{1}{2}\right)$
3. Solve $\int_{0}^{3} \frac{dx}{\sqrt{9-x^{2}}}$
Sol: Put $x^{2} = 9y$ so that $dx = \frac{3}{2}, y^{\frac{1}{2}} dy$
 $= \frac{3}{2} \int_{0}^{1} y^{\frac{1}{2}} \frac{1}{4} (1-y)^{\frac{1}{2}} dy = \frac{1}{2} \beta\left(\frac{1}{2}, \frac{1}{2}\right)$
4. S.T $\int_{0}^{1} x^{m} (1-x^{n})^{p} dx = \frac{1}{n} \beta\left(\frac{m+1}{n}, p+1\right)$
Sol: Put $x^{n} = y$ so that $dx = \frac{1}{n} y^{\frac{1}{n}} dy$
 $\therefore \int_{0}^{1} x^{m} (1-x^{n})^{p} dx = \frac{1}{n} y^{\frac{1}{n}} dy$
 $\therefore \int_{0}^{1} x^{m} (1-x^{n})^{p} dx = \frac{1}{n} y^{\frac{1}{n}} dy$
 $\therefore \int_{0}^{1} x^{m} (1-x^{n})^{n} dx = \frac{1}{n} y^{\frac{1}{n}} dy$
 $= \frac{1}{n} \int_{0}^{1} y^{\frac{m+n}{n}} (1-y)^{p} dy = \frac{1}{n} \int_{0}^{1} y^{\frac{m+1}{n}} (1-y)^{(p+1)-1} dy = \frac{1}{n} \beta\left(\frac{m+1}{n}, p+1\right)$$

We have $\beta(m,n) = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$ Sol: Put $x = \frac{1+y}{2}$ so that $dx = \frac{1}{2}dy$ $\therefore \beta(m,n) = \int \frac{(1+y)^{m-1}}{2^{m-1}} \left(1 - \frac{1+y}{2}\right)^{n-1} \cdot \frac{1}{2} dy$ $=\int_{-1}^{1} \frac{(1+y)^{m-1}(1-y)^{n-1}}{2^{m+n-1}} dy = \frac{1}{2^{m+n-1}} \int_{-1}^{1} (1+x)^{m-1} (1-x)^{n-1} dx$ $\therefore \int (1+x)^{m-1} (1-x)^{n-1} dx = 2^{m+n-1} \beta(m,n)$ 6. **P.T** $\int \frac{xdx}{\sqrt{1-x^5}} = \frac{1}{5}\beta\left(\frac{2}{5},\frac{1}{2}\right)$ Put $x^5 = y \Rightarrow x = y^{\frac{1}{5}}$ so that $dx = \frac{1}{5}y^{\frac{1}{5}-1}dy = \frac{1}{5}y^{-\frac{4}{5}}dy$ Sol: When $x=0 \Rightarrow y=0$, and $x=1 \Rightarrow y=1$ $\therefore \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^5}} = \int_{0}^{1} \frac{y^{\frac{1}{5}}}{\sqrt{1 - y}} \cdot \frac{1}{5} y^{\frac{-4}{5}} dy = \frac{1}{5} \int_{0}^{1} \frac{x dx}{y^{\frac{-1}{5}}} (1 - y)^{\frac{-1}{2}} dy$ $=\frac{1}{5}\int_{0}^{1} y^{\frac{2}{5}-1}(1-y)^{\frac{1}{2}-1} dy = \frac{1}{5}\beta\left(\frac{2}{5},\frac{1}{5}\right)$ Evaluate $\int_{0}^{1} \frac{x^2 dx}{\sqrt{1-x^5}}$ in terms of Beta function 7. Put $x^5 = y \Longrightarrow x = y^{\frac{1}{5}}$ so that $dx = \frac{1}{5}y^{-\frac{4}{5}}dy$ Sol: When $x = 0 \Longrightarrow y = 0$, and $x = 1 \Longrightarrow y = 1$ $\therefore \int_{0}^{1} \frac{x^2 dx}{\sqrt{1-x^5}} = \int_{0}^{1} \frac{y^{\frac{2}{5}}}{\sqrt{1-x^5}} \frac{1}{5} y^{\frac{-4}{5}} dy = \frac{1}{5} \int_{0}^{1} y^{\frac{-2}{5}} (1-y)^{\frac{-1}{2}} dy$ $=\frac{1}{5}\int_{0}^{1} y^{\frac{3}{5}-1}(1-y)^{\frac{1}{2}-1} dy = \frac{1}{5}\beta\left(\frac{3}{5},\frac{1}{2}\right)$ 8. S.T $\int_{a}^{b} (x-a)^{m} (b-x)^{n} dx = (b-a)^{m+n+1} \beta(m+1, n+1)$ Put $x = a + (b-a)y(or)\left[x = \frac{y-a}{b-a}\right]$ so that dx = (b-a)dySol: When $x = a \Rightarrow y = 0$, and $x = b \Rightarrow y = 1$ $\therefore \int_{a}^{b} (x-a)^{m} (b-x)^{n} dx = \int_{a}^{b} [(b-a)y]^{m} [b-a-(b-a)y]^{n} (b-a) dy$ $= \int_{a}^{b} (b-a)^{m} y^{m} (b-a)^{n} (1-y)^{n} (b-a) dy$

MATHEMATICS -II

$$= (b-a)^{m+n+1} \int_{0}^{b} y^{m} (1-y)^{n} dy$$

$$= (b-a)^{m+n+1} \int_{0}^{b} y^{(m+1)-1} (1-y)^{(n+1)-1} dy$$

$$= (b-a)^{m+n+1} \beta(m+1,n+1)$$
9. S.T $\int_{0}^{\pi} \frac{x^{m-1}}{(x+a)^{m+n}} dx = a^{-n} \beta(m,n)$
Sol: We have $\beta(m,n) = \int_{0}^{\pi} \frac{x^{m-1}}{(1+x)^{m+n}} dx$
Put $x = \frac{y}{a}$ so that $dx = \frac{dy}{a}$

$$\therefore \beta(m,n) = \int_{0}^{\pi} \frac{y^{m-1}}{a^{m-1}(1+\frac{y}{a})^{m+n}} \frac{d}{a} = \frac{1}{a^{m}} \int_{0}^{m} \frac{y^{m-1}, a^{m+n}}{(x+a)^{m+n}} dy$$

$$= a^{n} \int_{0}^{\infty} \frac{x^{m-1}}{(x+a)^{m+n}} dx$$
Hence $\int_{0}^{\pi} \frac{x^{m-1}}{(x+a)^{m+n}} dx = a^{-n} \beta(m,n)$
Relation between β and Γ function
Prove that $\beta(m,n) = \int_{0}^{\pi} \frac{r^{m-1}}{r(m+n)}$, m>0, n>0
Proof: By the def of Γ -function
 $\Gamma(m) = \int_{0}^{\pi} e^{-x^{2}} x^{m-1} dx$
When $x = 0 \Rightarrow t = 0$ and $x = \infty \Rightarrow t = \infty$

$$\therefore \Gamma(m) = \int_{0}^{\pi} e^{-x^{2}} x^{2m-1} dt$$

$$\therefore \Gamma(m) = 2\int_{0}^{\pi} e^{-x^{2}} x^{2m-1} dx$$
Similarly,
 $\Gamma(n) = 2\int_{0}^{\pi} e^{-y^{2}} y^{2n-1} dy$

MATHEMATICS -II

$$\therefore \Gamma(m)\Gamma(n) = 4\int_{0}^{\pi} e^{-x^{2}} x^{2m-1} dx \int_{0}^{\pi} e^{-y^{2}} y^{2n-1} dy$$

$$= 4\int_{0}^{\pi} \int_{0}^{\pi} e^{-(x^{2}+y^{2})} x^{2m-1} y^{2n-1} dx dy$$
Transforming to polar coordinates
$$x = r\cos\theta, y = r\sin\theta and dxdy = rdrd\theta$$
r is varies from 0 to ∞ and θ is varies from 0 to $\frac{\pi}{2}$

$$\Gamma(m)\Gamma(n) = 4\int_{0}^{\pi} \int_{0}^{\pi} e^{-r^{2}} r^{2m-1} \cos^{2m-1}\theta r^{2n-1} \sin^{2n-1}\theta r dr d\theta$$

$$= 4\int_{0}^{\pi} \int_{0}^{\pi} e^{-r^{2}} r^{2(m+n)-1} \cos^{2m-1}\theta \sin^{2n-1}\theta dr d\theta$$

$$= 2\int_{0}^{\pi} e^{-r^{2}} r^{2(m+n)-1} dr \cdot 2\int_{0}^{\pi} \cos^{2m-1}\theta \sin^{2n-1}\theta d\theta$$

$$= 2\int_{0}^{\pi} e^{-r^{2}} r^{2(m+n)-1} dr \cdot 2\int_{0}^{\pi} \cos^{2m-1}\theta \sin^{2n-1}\theta d\theta$$

$$= 2\int_{0}^{\pi} e^{-r^{2}} r^{2(m+n)-1} dr \cdot 2\int_{0}^{\pi} \cos^{2m-1}\theta \sin^{2n-1}\theta d\theta$$

$$= 2\int_{0}^{\pi} e^{-r^{2}} r^{2(m+n)-1} dr \cdot 2\int_{0}^{\pi} \cos^{2m-1}\theta \sin^{2n-1}\theta d\theta$$

$$= \Gamma(m+n), \beta(m, n)$$

$$\therefore \beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
Problems:
1. S.T $\Gamma(\frac{1}{2}) = \sqrt{\pi}$
Sol: We know that $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}, m>0, n>0$
Taking m=n= $\frac{1}{2}$, we have $\beta(\frac{1}{2}, \frac{1}{2}) = \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{1}{2}+\frac{1}{2})} = [\Gamma(\frac{1}{2})]^{2} \dots (1)[\because \Gamma(1)=1]$
But $\beta(\frac{1}{2}, \frac{1}{2}) = \int_{0}^{\pi} \frac{1}{x^{1-1}}(1-x)^{\frac{1}{2}-1} dx = \int_{0}^{\pi} \frac{1}{x^{1-1}}(1-x)^{\frac{1}{2}} dx$
Put $x = \sin^{2}\theta$ so that dx=2sin $\theta \cos \theta d\theta = 2\int_{0}^{\pi} d\theta = 2[\theta]_{0}^{\frac{\pi}{2}}$

$$= 2[\frac{\pi}{2}-0] = \pi$$
From Equation (1) $[\Gamma(\frac{1}{2})]^{2} = \pi \Rightarrow \Gamma(\frac{1}{2}) = \sqrt{\pi}$

MATHEMATICS -II

2. To show that
$$\int_{0}^{\infty} e^{-x^{2}} dx = \frac{\sqrt{\pi}}{2}$$

Sol: We have $\Gamma(n) = \int_{0}^{\infty} e^{-x^{2}} x^{n-1} dx$
Taking $n = \frac{1}{2}$, we have $\Gamma(\frac{1}{2}) = \int_{0}^{\infty} e^{-x} x^{\frac{-1}{2}} dx$
Put $x = t^{2}$ so that $dx = 2tdt$
When $x = 0 \Rightarrow t = 0$ and $x = \infty \Rightarrow t = \infty$
 $\therefore \Gamma(\frac{1}{2}) = \int_{0}^{\infty} e^{-t^{2}} (t^{2})^{-\frac{1}{2}} 2tdt = 2\int_{0}^{\infty} e^{-t^{2}} dt$
 $(or) 2\int_{0}^{\infty} e^{-x^{2}} dx = \Gamma(\frac{1}{2})$
 $\Rightarrow \int_{0}^{\infty} e^{-x^{2}} dx = \sqrt{\pi}$
2. $\int_{-\infty}^{\infty} e^{-x^{2}} dx = \sqrt{\pi}$
3. $\Gamma(n)$ is defined when $n > 0$
4. $\Gamma(n)$ is defined when $n > 0$
4. $\Gamma(n)$ is not defined when $n = 0$ and 'n' is a negative integer
3. PT. $\Gamma(n)\Gamma(n-1) = \frac{\pi}{\sin n\pi}$
Proof: We know that $\beta(m,n) = \int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} dx$
Also we have $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$
 $\therefore \int_{0}^{\pi} \frac{x^{n-1}}{(1+x)^{m+n}} dx = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$
Taking $m+n=1$ so that $m=1-n$, we get
 $\int_{0}^{\infty} \frac{x^{n-1}}{1+x} dx = \frac{\Gamma(1-n)\Gamma(m)}{\Gamma(1)}$ $\therefore \Gamma(1) = 1$

(or)
$$\Gamma(n)\Gamma(1-n) = \int_{0}^{\infty} \frac{x^{n-1}}{1+x} dx$$
.....(1)

4.

5.

We have
$$\int_{0}^{\pi} \frac{x^{2m}}{1+x^{2m}} dx = \frac{\pi}{2n} \cos ec \frac{(2m+1)\pi}{2n}$$
 Where m>0, n>0 and n>m
Put $x^{2n} = t$ and $\frac{2m+1}{2n} = s$, we have
 $\int_{0}^{\pi} \frac{t^{2m'_{2n}} y^{1/_{2n}}}{(2n)(1+t)t} dt = \frac{\pi}{2n} \cos ec s\pi$
 $(or) \frac{1}{2n} \int_{0}^{\pi} \frac{t^{2m'_{2n}-1}}{1+t} dt = \frac{\pi}{2n} \cos ec s\pi$
 $(or) \int_{0}^{\pi} \frac{t^{2m'_{2n}}}{1+t} dt = \pi \cos ec s\pi$
 $(or) \int_{0}^{\pi} \frac{t^{n+1}}{1+t} dt = \frac{\pi}{\sin s\pi}$
 $(or) \int_{0}^{\pi} \frac{t^{n+1}}{1+x} dx = \frac{\pi}{\sin s\pi}$
 $(or) \int_{0}^{\pi} \frac{t^{n+1}}{1+x} dx = \frac{\pi}{\sin n\pi}$(2)
From equation (1) and (2) we have $\Gamma(n)\Gamma(1-n) = \frac{\pi}{\sin n\pi}$
4. S.T. $\Gamma(n) = \int_{0}^{1} (\log \frac{1}{\sqrt{x}})^{n+1} dx, n > 0$
Sol: We have $\Gamma(n) = \int_{0}^{\pi} e^{-rx}x^{n+1}dx$(1)
Putting $x = \log \frac{1}{y} = -\log y$
 $(or) y = e^{-s} \operatorname{sothat} dy = -e^{-s} dx$
 $dx = -\frac{1}{y} dy$
Equation (1) becomes
 $\Gamma(n) = -\int_{0}^{1} (\log \frac{1}{\sqrt{y}})^{n+1} dx = \int_{0}^{1} (\log \frac{1}{\sqrt{y}})^{n+1} dx$
5. Evaluate i. $\int_{0}^{1} x^{4} (1-x)^{2} dx$ ii. $\int_{0}^{2} x(8-x^{2})^{\frac{1}{2}} dx$
Sol. (i). $\int_{0}^{1} x^{4} (1-x)^{2} dx = \int_{0}^{1} x^{5-1} (1-x)^{5-1} dx = \beta(5,3)$

BETA AND GAMMA FUNCTIONS

$$=\frac{\Gamma(5)\Gamma(3)}{\Gamma(5+3)} = \frac{\Gamma(5)\Gamma(3)}{\Gamma(8)} = \frac{4!2!}{7!} = \frac{4!2}{7\times6\times5\times4!} = \frac{1}{105}$$
(ii). Let $x^3 = 8y \Rightarrow x = 2y^{\frac{1}{3}} \Rightarrow dx = \frac{2}{3}, y^{\frac{2}{3}} dy$
When $x = 0 \Rightarrow y = 0$ and $x = 2 \Rightarrow y = 1$
 $\therefore \int_{0}^{2} x(8-x^{3})^{\frac{1}{3}} dx = \int_{0}^{1} 2y^{\frac{1}{3}}(8-8y)^{\frac{1}{3}}, \frac{2}{3}y^{\frac{2}{3}} dy$
 $= \frac{8}{3}\int_{0}^{1} y^{\frac{-1}{3}}(1-y)^{\frac{-1}{3}} dy = \frac{8}{3}\int_{0}^{1} y^{\frac{2}{3}-1}(1-y)^{\frac{3}{3}-1} dy$
 $= \frac{8}{3}\beta\left(\frac{2}{3},\frac{4}{3}\right)$ [$\because \Gamma(n)\Gamma(1-n) = \frac{\pi}{\sin n\pi}$]
 $= \frac{8}{9}\frac{\pi}{\sin(\frac{\pi}{3})} = \frac{16\pi}{9\sqrt{3}}$
6. Evaluate $\int_{0}^{\frac{\pi}{3}} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta = \frac{1}{2}\beta(m,n).....(1)$
Put $2m-1=5\Rightarrow m=3$ and $2n-1=\frac{7}{2}\Rightarrow n=\frac{9}{4}$
 \therefore Equation (1) becomes
 $\frac{\pi}{2}\int_{0}^{\frac{\pi}{3}} \sin^{5}\theta \cos^{\frac{7}{2}}\theta d\theta = \frac{1}{2}\beta\left(3,\frac{9}{4}\right) = \frac{1}{2}\cdot\frac{\Gamma(3)\Gamma(\frac{9}{4})}{\Gamma(2+\frac{9}{4})}$
 $= \frac{1}{2}\cdot\frac{\Gamma(3)\Gamma(\frac{9}{4})}{\Gamma(2+\frac{4}{4})} = \frac{1}{2}\cdot\frac{2!\Gamma(\frac{9}{4})}{\Gamma(2+\frac{4})}$
 $= \frac{\Gamma(\frac{9}{4})}{\frac{1}{1\frac{7}{4}}\cdot\frac{13}{4}\cdot\frac{9}{4}}\Gamma(\frac{9}{4})} = \frac{64}{1989}$
7. Evaluate (i). $\int_{0}^{\pi} 3^{-4x^{2}} dx$
Sol. Since $3 = e^{\frac{8}{3}}$

 $\therefore 3^{-4x^2} = e^{-4x^2 \log 3}$

MATHEMATICS -II

$$\int_{0}^{\infty} 3^{-4x^{2}} dx = \int_{0}^{\infty} e^{-4x^{2} \log 3} dx$$
Put $2x\sqrt{\log 3} = y$ so that $dx = \frac{dy}{2\sqrt{\log 3}}$
 $\therefore \int_{0}^{\infty} 3^{-4x^{2}} dx = \int_{0}^{\infty} e^{-y^{2}} \frac{dy}{2\sqrt{\log 3}} = \frac{1}{2\sqrt{\log 3}} \cdot \int_{0}^{\infty} e^{-y^{2}} dy$
 $= \frac{1}{2\sqrt{\log 3}} \cdot \frac{\sqrt{\pi}}{2} = \frac{\sqrt{\pi}}{4\sqrt{\log 3}} = \sqrt{\frac{\pi}{16\log 3}}$
8. When n is a +ve integer. P.T. $2^{n} \Gamma\left(n + \frac{1}{2}\right) = 1.3.5...(2n-1)$

Sol. We know that
$$\Gamma(n+1) = n\Gamma(n)$$
......(1)

$$\therefore \Gamma\left(n+\frac{1}{2}\right) = \Gamma\left(n-\frac{1}{2}+1\right) = \left(n-\frac{1}{2}\right)\Gamma\left(n-\frac{1}{2}\right)$$

$$= \left(n-\frac{1}{2}\right)\Gamma\left(n-\frac{3}{2}+1\right) = \left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)\Gamma\left(n-\frac{3}{2}\right)$$

$$= \left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)\left(n-\frac{5}{2}\right)\Gamma\left(n-\frac{5}{2}\right)$$

$$= \frac{2n-1}{2}\cdot\frac{2n-3}{2}\cdot\frac{2n-5}{2}\cdot\Gamma\left(\frac{2n-5}{2}\right)$$

$$= \frac{2n-1}{2}\cdot\frac{2n-3}{2}\cdot\frac{2n-5}{2}\cdots\frac{3}{2}\cdot\frac{1}{2}\Gamma\left(\frac{1}{2}\right)$$

$$= \frac{(2n-1)(2n-3)(2n-5)\dots 3.1}{2^{n}}\cdot\sqrt{\pi}$$

$$\therefore 2^{n}\Gamma\left(n+\frac{1}{2}\right) = (2n-1)(2n-3)(2n-5)\dots 1\sqrt{\pi}$$

9. P.T. $2^{2n-1}\Gamma(n).\Gamma\left(n+\frac{1}{2}\right) = \Gamma(2n)\sqrt{\pi}$

Sol. By def, we have $\beta(m,n) = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$ $(or) \int_{0}^{1} x^{n-1} (1-x)^{m-1} dx = \beta(n,m) = \frac{\Gamma(n).\Gamma(m)}{\Gamma(n+m)}.....(1)$

Put
$$x = \sin^2 \theta$$
 so that $dx = 2\sin\theta\cos\theta d\theta$
From equation (1) $\int_{0}^{\frac{\pi}{2}} \sin^{2n-2}\cos^{2m-2}(2\sin\theta\cos\theta)d\theta = \frac{\Gamma(n).\Gamma(m)}{\Gamma(n+m)}$

$$(or)\int_{0}^{\frac{\pi}{2}}\sin^{2n-1}\theta\cos^{2m-1}\theta\,d\theta = \frac{\Gamma(n).\Gamma(m)}{2\Gamma(n+m)}....(2)$$

Putting $m = \frac{1}{2}$ in equation(2), we get

. \

Now putting m=n in equation (2), we get

$$\int_{0}^{\frac{\pi}{2}} \sin^{2n-1}\theta \cos^{2n-1}\theta d\theta = \frac{\left(\Gamma(n)\right)^{2}}{2\Gamma(2n)}$$

$$(or)\frac{\left(\Gamma(n)\right)^{2}}{2\Gamma(2n)} = \frac{1}{2^{2n-1}} \int_{0}^{\frac{\pi}{2}} \left(2\sin\theta\cos\theta\right)^{2n-1}\theta d\theta = \frac{1}{2^{2n-1}} \int_{0}^{\frac{\pi}{2}} \sin^{2n-1}2\theta d\theta$$

$$= \frac{1}{2^{2n-1}} \cdot \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin^{2n-1}\varphi d\varphi (put 2\theta = \varphi) = \frac{1}{2^{2n}} 2\int_{0}^{\frac{\pi}{2}} \sin^{2n-1}\varphi d\phi$$

$$(\Gamma(n))^{2} = 1 - \sqrt{\pi} - \Gamma(n)$$

$$= \frac{(\Gamma(n))}{2\Gamma(2n)} = \frac{1}{2^{2n-1}} \cdot \frac{\sqrt{\pi}}{2} \cdot \frac{\Gamma(n)}{\Gamma\left(n+\frac{1}{2}\right)}$$

$$\Rightarrow 2^{2n-1}\Gamma(n)\Gamma\left(n+\frac{1}{2}\right) = \sqrt{\pi}.\Gamma(2n)$$

UNIT-IV

DOUBLE AND TRIPLE INTEGRALS

Double Integral:

I. When y_1, y_2 are functions of x and x_1 and x_2 are constants. f(x, y) is first integrated with respect to y keeping 'x' fixed between limits y_1, y_2 and then the resulting expression is integrated with respect to 'x' within the limits x_1, x_2 i.e.,

$$\iint_{R} f(x, y) dx dy = \int_{x=x_{1}}^{x=x_{2}} \int_{y=\phi_{1}(x)}^{y=\phi_{2}(x)} f(x, y) dy dx$$

II. When x_1, x_2 are functions of y and y_1, y_2 are constants, f(x, y) is first integrated with respect to 'x' keeping 'y' fixed, within the limits x_1, x_2 and then resulting expression is integrated with respect to y between the limits y_1 , y_2 i.e.,

$$\iint_{R} f(x, y) dx dy = \int_{y=y_1}^{y=y_2} \int_{x=\phi_1(y)}^{x=\phi_2(y)} f(x, y) dx dy$$

III. When x_1, x_2, y_1, y_2 are all constants. Then

$$\iint_{R} f(x, y) dx dy = \int_{y_{1}}^{y_{2}} \int_{x_{1}}^{x_{2}} f(x, y) dx dy = \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} f(x, y) dy dx$$

It can be used in any order

PROBLEMS:

Evaluate $\int xy^2 dx dy$ 1.

S

ol.
$$\int_{1}^{2} \left[\int_{1}^{3} xy^{2} dx \right] dy = \int_{1}^{2} \left[y^{2} \cdot \frac{x^{2}}{2} \right]_{1}^{3} dy = \int_{1}^{2} \frac{y^{2}}{2} dy [9-1]$$
$$= \frac{8}{2} \int_{1}^{2} y^{2} dy = 4 \cdot \int_{1}^{2} y^{2} dy$$
$$= 4 \cdot \left[\frac{y^{3}}{3} \right]_{1}^{2} = \frac{4}{3} [8-1] = \frac{4 \cdot 7}{3} = \frac{28}{3}$$

2. **Evaluate**
$$\int_{0}^{\infty} \int_{0}^{1} y \, dy \, dx$$

Sol.
$$\int_{x=0}^{2} \int_{y=0}^{x} y \, dy \, dx = \int_{x=0}^{2} \left[\int_{y=0}^{x} y \, dy \right] dx$$
$$= \int_{x=0}^{2} \left[\frac{y^{2}}{2} \right]_{0}^{x} dx = \int_{x=0}^{2} \frac{1}{2} \left(x^{2} - 0 \right) dx = \frac{1}{2} \int_{x=0}^{2} x^{2} dx = \frac{1}{2} \left[\frac{x^{3}}{3} \right]_{0}^{2} = \frac{1}{6} (8 - 0) = \frac{8}{6} = \frac{4}{3}$$
3. Evaluate
$$\int_{0}^{5} \int_{0}^{x^{2}} x \left(x^{2} + y^{2} \right) dx \, dy$$

DOUBLE AND TRIPLE INTEGRALS

MATHEMATICS -II

Sol.
$$\int_{x=0}^{5} \int_{y=0}^{x^{2}} x(x^{2} + y^{2}) dy dx = \int_{x=0}^{5} \left[x^{3}y + \frac{xy^{2}}{3} \right]_{y=0}^{y=0} dx$$
$$= \int_{x=0}^{5} \left[x^{3}x^{2} + \frac{x(x^{2})^{3}}{3} \right] dx = \int_{x=0}^{5} \left[x^{5} + \frac{x^{7}}{3} \right] dx = \left[\frac{x^{6}}{4} + \frac{1}{3} \cdot \frac{x^{6}}{8} \right]_{0}^{5}$$
$$= \frac{5^{6}}{6} + \frac{5^{6}}{24}$$
4. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1+x^{2}}} \frac{dy dx}{1+x^{2} + y^{2}}$
Sol: $\int_{0}^{1} \int_{0}^{\sqrt{1+x^{2}}} \frac{dy dx}{1+x^{2} + y^{2}} = \int_{x=0}^{1} \left[\int_{y=0}^{\sqrt{1+x^{2}}} \frac{1}{(1+x^{2}) + y^{2}} dy \right] dx$
$$= \int_{x=0}^{1} \left[\int_{y=0}^{\sqrt{1+x^{2}}} \frac{1}{(\sqrt{1+x^{2}})^{2} + y^{2}} dy \right] dx$$
$$= \int_{x=0}^{1} \frac{1}{\sqrt{1+x^{2}}} \left[Tan^{-1} \frac{y}{\sqrt{1+x^{2}}} \right]_{y=0}^{\sqrt{1+x^{2}}} dx \quad [y; \int \frac{1}{x^{2} + a^{2}} dx = \frac{1}{a} \tan^{-1}(\sqrt[x]{a})]$$
$$= \int_{x=0}^{1} \frac{1}{\sqrt{1+x^{2}}} \left[Tan^{-1} - Tan^{-1} 0 \right] dx \quad or \quad \frac{\pi}{4} (\sinh^{-1}x)_{0} = \frac{\pi}{4} (\sinh^{-1} 1)$$
$$= \frac{\pi}{4} \int_{x=0}^{1} \frac{1}{\sqrt{1+x^{2}}} \left[Tan^{-1} - Tan^{-1} 0 \right] dx \quad or \quad \frac{\pi}{4} (\sinh^{-1}x)_{0} = \frac{\pi}{4} (\sinh^{-1} 1)$$
$$= \frac{\pi}{4} \log(1 + \sqrt{2})$$

5. Evaluate $\int_{0}^{\infty} e^{-(x^{2} + y^{2})} dx dy = \int_{0}^{\infty} e^{-y^{2}} \left[\int_{0}^{\infty} e^{-x^{2}} dx \right] dy$
$$= \int_{0}^{\infty} e^{-(x^{2} + y^{2})} dx dy = \int_{0}^{\infty} e^{-y^{2}} \frac{\sqrt{\pi}}{2} dy \quad \because \int_{0}^{\infty} e^{-x^{3}} dx = \frac{\sqrt{\pi}}{2}$$
$$= \frac{\sqrt{\pi}}{2} \int_{0}^{\infty} e^{-x^{2}} dy = \frac{\sqrt{\pi}}{2} \cdot \frac{\sqrt{\pi}}{2} = \frac{\pi}{4}$$

Atter: $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2} + y^{2})} dx dy = \int_{x=0}^{\frac{\pi}{2}} e^{-y^{2}} r^{2} r^{2}$

O(0.0)

Let us draw the

parabola v=x

MATHEMATICS -II

$$= \int_{0}^{\pi/2} \left[\frac{e^{-r^2}}{-2} \right]_{0}^{\infty} d\theta = \int_{0}^{\pi/2} \left[\frac{0-1}{-2} \right] d\theta$$

$$=\frac{1}{2}(\theta)_{0}^{\pi/2}=\frac{1}{2}(\pi/2-0)=\frac{\pi}{4}$$

6. Evaluate $\iint xy(x+y)dxdy$ over the region R bounded by $y = x^2$ and y = x

Sol: $y = x^2$ is a parabola through (0, 0) symmetric about y-axis y = x is a straight line through (0, 0) with slope1.

Let us find their points of intersection solving $y = x^2$, y = x we get

$$x^2 = x \Rightarrow x = 0,1$$
 Hence $y = 0,1$

... The points of intersection of the curves are (0, 0), (1, 1) Consider $\iint_{D} xy(x+y)dxdy$

For the evaluation of the integral, we first integrate with respect to y from $y = x^2$ to y = x and then with respect to x from x=0 to x=1

$$\int_{x=0}^{1} \left[\int_{y=x^{2}}^{x} xy(x+y) dy \right] dx = \int_{x=0}^{1} \left[\int_{y=x^{2}}^{x} (x^{2}y+xy^{2}) dy \right] dx$$
$$= \int_{x=0}^{1} \left(x^{2} \frac{y^{2}}{2} + \frac{xy^{3}}{3} \right)_{y=x^{2}}^{x} dx$$
$$= \int_{x=0}^{1} \left(\frac{x^{4}}{2} + \frac{x^{4}}{3} - \frac{x^{6}}{2} - \frac{x^{7}}{3} \right) dx$$
$$= \int_{x=0}^{1} \left(\frac{5x^{4}}{6} - \frac{x^{6}}{2} - \frac{x^{7}}{3} \right) dx = \left(\frac{5}{6} \cdot \frac{x^{5}}{5} - \frac{x^{7}}{14} - \frac{x^{8}}{24} \right)_{0}^{1}$$
$$= \frac{1}{6} - \frac{1}{14} - \frac{1}{24} = \frac{28 - 12 - 7}{168} = \frac{28 - 19}{168} = \frac{9}{168} = \frac{3}{56}$$

7. Evaluate $\iint_{R} xydxdy$ where R is the region bounded by x-axis and x = 2a and the curve $x^2 = 4ay$.

Sol: The line x = 2a and the parabola $x^2 = 4ay$ intersect at B(2a, a)

 $\therefore \text{The given integral} = \iint_{R} xy \ dx \ dy$

DEPARTMENT OF HUMANITIES & SCIENCES OMRCET (EAMCET CC

Sol.

Let us fix 'y', for a fixed 'y', x varies from $2\sqrt{ay}$ to 2a. Then y varies from 0 to a

Hence the given integral can also be written as

$$\int_{y=0}^{a} \int_{x=2\sqrt{ay}}^{x=2a} xy \, dx \, dy = \int_{y=0}^{a} \left[\int_{x=2\sqrt{ay}}^{x=2a} x \, dx \right] y \, dy$$
$$= \int_{y=0}^{a} \left[\frac{x^2}{2} \right]_{x=2\sqrt{ay}}^{2a} y \, dy$$
$$= \int_{y=0}^{a} \left[2a^2 - 2ay \right] y \, dy$$
$$= \left[\frac{2a^2y^2}{2} - \frac{2ay^3}{3} \right]_{0}^{a}$$
$$= a^4 - \frac{2a^4}{3} = \frac{3a^4 - 2a^4}{3} = \frac{a^4}{3}$$
8. Evaluate $\int_{0}^{1} \int_{0}^{\frac{\pi}{2}} r \sin \theta \, d\theta \, dr$ Sol. $\int_{r=0}^{1} r \left[\int_{\theta=0}^{\frac{\pi}{2}} \sin \theta \, d\theta \right] dr = \int_{r=0}^{1} r \left(-\cos \theta \right)_{\theta=0}^{\frac{\pi}{2}} dr$

 $= \int_{r=0}^{1} -r\left(\cos\frac{\pi}{2} - \cos 0\right) dr$ $= \int_{r=0}^{1} -r\left(0 - 1\right) dr = \int_{0}^{1} r dr = \left(\frac{r^{2}}{2}\right)_{0}^{1} = \frac{1}{2} - 0 = \frac{1}{2}$

9. Evaluate $\iint (x^2 + y^2) dx dy$ in the positive quadrant for which $x + y \le 1$

Sol.

$$\iint_{R} (x^{2} + y^{2}) dx dy = \int_{x=0}^{1} dx \int_{y=0}^{y=1-x} (x^{2} + y^{2}) dy$$

$$= \int_{x=0}^{1} \left(x^{2}y + \frac{y^{3}}{3} \right)_{0}^{1-x} dx$$

$$= \int_{x=0}^{1} \left(x^{2} - x^{3} + \frac{1}{3} (1-x)^{3} \right) dx$$

$$= \left[\frac{x^{3}}{3} - \frac{x^{4}}{4} - \frac{1}{12} (1-x)^{4} \right]_{0}^{1} = \frac{1}{3} - \frac{1}{4} - 0 + \frac{1}{12} = \frac{1}{6}$$

8. Evaluate $\iint (x^2 + y^2) dx dy$ over the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Sol.

Given ellipse is
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$i.e., \frac{y^2}{b^2} = 1 - \frac{x^2}{a^2} = \frac{1}{a^2} \left(a^2 - x^2 \right) (or) y^2 = \frac{b^2}{a^2} \left(a^2 - x^2 \right)$$

$$\therefore y = \pm \frac{b}{a} \sqrt{a^2 - x^2}$$

Hence the region of integration R can be expressed as

$$-a \le x \le a, \frac{-b}{a}\sqrt{a^2 - x^2} \le y \le \frac{b}{a}\sqrt{a^2 - x^2}$$

$$\therefore \iint_{R} (x^2 + y^2) dx dy = \int_{x=-a}^{a} \int_{y=-b_a}^{b_a'\sqrt{a^2 - x^2}} (x^2 + y^2) dx dy$$
$$= 2\int_{x=-a}^{a} \int_{y=0}^{b_a'\sqrt{a^2 - x^2}} (x^2 + y^2) dx dy = 2\int_{-a}^{a} \left(x^2 y + \frac{y^3}{3}\right)_{0}^{b_a'\sqrt{a^2 - x^2}}$$
$$= 2\int_{-a}^{a} \left[x^2 \cdot \frac{b}{a}\sqrt{a^2 - x^2} + \frac{b^3}{3a^3}(a^2 - x^2)^{\frac{3}{2}}\right] dx$$
$$= 4\int_{0}^{a} \left[\frac{b}{a}x^2\sqrt{a^2 - x^2} + \frac{b^3}{3a^3}(a^2 - x^2)^{\frac{3}{2}}\right] dx$$

Changing Cartesian to polar co-ordinates $put \quad x = a \sin \theta \Rightarrow dx = a \cos \theta d\theta$

$$\frac{x}{a} = \sin\theta \Rightarrow \theta = \sin^{-1}\frac{x}{a}$$
If $x \to 0$, Then $\theta \to 0$ and if $x \to a$, Then $\theta \to \frac{\pi}{2}$

$$= 4 \int_0^{\pi/2} \left[\frac{b}{a} a^2 \sin^2 \theta a \cos \theta + \frac{b^3}{3a^3} a^3 \cos^3 \theta \right] a \cos \theta d\theta$$

$$= 4 \int_0^{\pi/2} \left[a^3 b \sin^2 \theta \cos^2 \theta + \frac{ab^3}{3} \cos^4 \theta \right] d\theta = 4 \left[a^3 b \cdot \frac{1}{4} \frac{1}{2} \cdot \frac{\pi}{2} + \frac{ab^3}{3} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} \right]$$

$$\left[\because \int_0^{\pi/2} \sin^m \theta \cos^n \theta d\theta = \frac{n-1}{m+n} \cdot \frac{n-3}{m+n-2} \dots \frac{\frac{1}{2} \cdot \frac{\pi}{2}}{m} \right]$$

DOUBLE AND TRIPLE INTEGRALS

 $\theta = \pi/2$

θ=0

 $r=4\sin\theta$ $r=2\sin\theta$

MATHEMATICS -II

$$=\frac{4\pi}{16}\left(a^{3}b+ab^{3}\right)$$
$$=\frac{\pi ab}{4}\left(a^{2}+b^{2}\right)$$

Double integrals in polar co-ordinates:

1. Evaluate
$$\int_{0}^{\frac{\pi}{4}} \int_{0}^{a\sin\theta} \frac{rdrd\theta}{\sqrt{a^{2} - r^{2}}}$$
Sol.
$$\int_{0}^{\frac{\pi}{4}} \int_{0}^{a\sin\theta} \frac{rdrd\theta}{\sqrt{a^{2} - r^{2}}} = \int_{0}^{\frac{\pi}{4}} \left\{ \int_{0}^{a\sin\theta} \frac{r}{\sqrt{a^{2} - r^{2}}} dr \right\} d\theta = -\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \left\{ \int_{0}^{a\sin\theta} \frac{-2r}{\sqrt{a^{2} - r^{2}}} dr \right\} d\theta$$

$$= \frac{-1}{2} \int_{0}^{\frac{\pi}{4}} 2\left(\sqrt{a^{2} - r^{2}}\right)_{0}^{a\sin\theta} d\theta = (-1) \int_{0}^{\frac{\pi}{4}} 2\left[\sqrt{a^{2} - a^{2} \sin^{2}\theta} - \sqrt{a^{2} - 0}\right] d\theta$$

$$= (-a) \int_{0}^{\frac{\pi}{4}} (\cos\theta - 1) d\theta = (-a) (\sin\theta - \theta)_{0}^{\frac{\pi}{4}}$$

$$= (-a) \left[\left[\sin\frac{\pi}{4} - \frac{\pi}{4} \right] - (0 - 0) \right]$$

$$= (-a) \left[\frac{1}{\sqrt{2}} - \frac{\pi}{4} \right] = 2 \left[\frac{\pi}{4} - \frac{1}{\sqrt{2}} \right]$$

2. Evaluate $\iint r^3 dr d\theta$ over the area included between the circles $r = 2 \sin \theta$ and $r = 4 \sin \theta$

Sol: The region of integration R is shown shaded .Here r varies from $P(r = 2 \sin \theta)$ to $Q(r = 4 \sin \theta)$ and to cover the whole region varies θ from 0 to π

$$\therefore \iint r^3 dr d\theta = \int_0^\pi \int_{r=2\sin\theta}^{4\sin\theta} r^3 dr d\theta$$

$$= \int_0^\pi \left\{ \int_{r=2\sin\theta}^{4\sin\theta} r^3 dr \right\} d\theta$$

$$= \int_0^\pi \left(\frac{r^4}{4} \right)_{2\sin\theta}^{4\sin\theta} d\theta$$

$$= \frac{1}{4} \int_0^\pi (256\sin^4\theta - 16\sin^4\theta) d\theta$$

$$= 60 \int_0^\pi \sin^4\theta \ d\theta$$

$$\left[\because \int_0^{2a} f(x) dx = 2 \int_0^a f(x) dx, \text{ if } f(2a-x) = f(x) \right]$$

$$_{=}60 \times 2 \int_{0}^{\pi/2} \sin^{4}\theta \ d\theta = 120 \times \frac{3 \times 1}{4 \times 2} \cdot \frac{\pi}{2} = \frac{45\pi}{2}$$

Change of order of Integration:

- 1. Change the order of Integration and evaluate $\int_{x=0}^{4a} \int_{y=x^2/4a}^{2\sqrt{ax}} dy dx$
- Sol. In the given integral for a fixed x, y varies from $\frac{x^2}{4a}$ to $2\sqrt{ax}$ and then x varies from 0 to 4a.

Let us draw the curves
$$y = \frac{x^2}{4a}$$
 and $y = 2\sqrt{ax}$

The region of integration is the shaded region in diagram.

The given integral is
$$= \int_{x=0}^{4a} \int_{y=x^2/4a}^{2\sqrt{ax}} dy dx$$

Changing the order of integration, we must fix y first, for a fixed y, x varies from y^2

to $\sqrt{4ay}$ and then y varies from 0 to 4a. Hence the integral is equal to

$$\int_{y=0}^{4a} \int_{x=y^{2}/4a}^{2\sqrt{ay}} dx \, dy = \int_{y=0}^{4a} \left[\int_{x=y^{2}/4a}^{2\sqrt{ay}} dx \right] dy$$

$$= \int_{y=0}^{4a} \left[x \right]_{x=y^{2}/4a}^{2\sqrt{ay}} dy = \int_{y=0}^{4a} \left[2\sqrt{ay} - \frac{y^{2}}{4a} \right] dy$$

$$= \left[2\sqrt{a} \cdot \frac{y^{3/2}}{3/2} - \frac{1}{4a} \cdot \frac{y^{3}}{3} \right]_{0}^{4a}$$

$$= \frac{4}{3} \cdot \sqrt{a} \cdot 4a \sqrt{4a} - \frac{1}{12a} \cdot 64a^{3} = \frac{32}{3}a^{2} - \frac{16}{3}a^{2} = \frac{16}{3}a^{2}$$

2. Change the order of integration and evaluate
$$= \int_{0}^{a} \int_{\frac{x}{a}}^{\frac{x}{a}} (x^{2} + y^{2}) dx dy$$

Sol. In the given integral for a fixed *x*, *y* varies from $\frac{x}{a}$ to $\sqrt{\frac{x}{a}}$ and then *x* varies from 0 to *a*

Y

4a

O(0,0)

Hence we shall draw the curves
$$y = \frac{x}{a}$$
 and $y = \sqrt{\frac{x}{a}}$

i.e.
$$ay = x$$
 and $ay^2 = x$

We get $ay = ay^2$

$$\Rightarrow ay - ay^2 = 0 \Rightarrow ay(1 - y) = 0 \Rightarrow y = 0, y = 1$$

The shaded region is the region of integration. The given integral is

$$\int_{x=0}^{a} \int_{y=\frac{x}{a}}^{y=\sqrt{x}} (x^{2} + y^{2}) dx \, dy$$

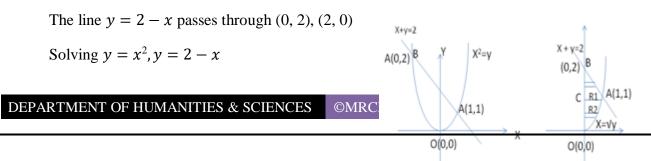
Changing the order of integration, we must fix y first. For a fixed y, x varies from ay^2 to ay and then y varies from 0 to 1.

Hence the given integral, after change of the order of integration becomes

$$\int_{y=0}^{1} \int_{x=ay^{2}}^{ay} (x^{2} + y^{2}) dx \, dy = \int_{y=0}^{1} \left[\int_{x=ay^{2}}^{ay} (x^{2} + y^{2}) \, dx \right] dy$$
$$= \int_{y=0}^{1} \left(\frac{x^{3}}{3} + xy^{2} \right)_{x=ay^{2}}^{ay} \, dy$$
$$= \int_{y=0}^{1} \left(\frac{a^{3}y^{3}}{3} + ay^{3} - \frac{a^{3}y^{6}}{3} - ay^{4} \right) dy$$
$$= \left(\frac{a^{3}y^{4}}{12} + \frac{ay^{4}}{4} - \frac{a^{3}y^{7}}{21} - \frac{ay^{5}}{5} \right)_{y=0}^{1}$$
$$= \frac{a^{3}}{12} + \frac{a}{4} - \frac{a^{3}}{21} - \frac{a}{5} = \frac{a^{3}}{28} + \frac{a}{20}$$

3. Change the order of integration in $\int_{0}^{1} \int_{x^2}^{2-x} xy dx dy$ and hence evaluate the double integral.

Sol. In the given integral for a fixed x, y varies from x^2 to 2 - x and then x varies from 0 to 1. Hence we shall draw the curves $y = x^2$ and y = 2 - x.



DOUBLE AND TRIPLE INTEGRALS

MATHEMATICS -II

Then we get, $x^2 = 2 - x \Rightarrow x^2 + x - 2 = 0 \Rightarrow x^2 + 2x - x - 2 = 0$ $\Rightarrow x(x+2) - 1(x+2) = 0 \Rightarrow (x-1)(x+2) = 0 \Rightarrow x = 1, -2$ If x = 1, y = 1

If
$$x = -2$$
, $y = 4$

Hence the points of intersection of the curves are (-2, 4)(1, 1)

The Shaded region in the diagram is the region of intersection.

Changing the order of integration, we must fix y, for the region within OACO for a fixed y, x varies from 0 to \sqrt{y}

Then y varies from 0 to 1

For the region within CABC, for a fixed y, x varies from 0 to 2 - y, then y varies from 1 to 2

Hence
$$\int_{0}^{1} \int_{x^{2}}^{2-x} xy \, dy \, dx = \iint_{OACO} xy \, dx \, dy + \iint_{CABC} xy \, dx \, dy$$
$$= \int_{y=0}^{1} \left[\int_{x=0}^{\sqrt{y}} x \, dx \right] y \, dy + \int_{y=1}^{2} \left[\int_{x=0}^{2-y} x \, dx \right] y \, dy$$
$$= \int_{y=0}^{1} \left(\frac{x^{2}}{2} \right)_{x=0}^{\sqrt{y}} y \, dy + \int_{y=1}^{2} \left(\frac{x^{2}}{2} \right)_{x=0}^{2-y} y \, dy$$
$$= \int_{y=0}^{1} \frac{y}{2} \cdot y \, dy + \int_{y=1}^{2} \frac{(2-y)^{2}}{2} y \, dy$$
$$= \frac{1}{2} \int_{y=0}^{1} y^{2} \, dy + \frac{1}{2} \cdot \int_{y=1}^{2} (4y - 4y^{2} + y^{3}) \, dy$$
$$= \frac{1}{2} \cdot \left[\frac{y^{3}}{3} \right]_{0}^{1} + \frac{1}{2} \cdot \left[\frac{4y^{2}}{2} - \frac{4y^{3}}{3} + \frac{y^{4}}{4} \right]_{1}^{2}$$
$$= \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2} \left[2 \cdot 4 - 2 \cdot 1 - \frac{4}{3} (8 - 1) + \frac{1}{4} (16 - 1) \right]$$
$$= \frac{1}{6} + \frac{1}{2} \left[6 - \frac{28}{3} + \frac{15}{4} \right] = \frac{1}{6} + \frac{1}{2} \left[\frac{72 - 112 + 45}{12} \right]$$
$$= \frac{1}{6} + \frac{1}{2} \left[\frac{5}{12} \right] = \frac{4 + 5}{24} = \frac{9}{24} = \frac{3}{8}$$

Y=1

/2=1

MATHEMATICS -II

4. Change of the order of integration
$$\int_0^1 \int_0^{\sqrt{1-x^2}} y^2 dx dy$$

Sol: Now limits are y = 0 to 1 and x = 0 to $\sqrt{1-y^2}$

$$put y = \sin \theta$$

$$\sqrt{1 - y^2} = \cos \theta$$

$$dy = \cos \theta d\theta$$

$$= \int_0^1 y^2 \sqrt{1 - y^2} dy$$

$$= \int_0^{\frac{\pi}{2}} \sin^2 \theta \cos^2 \theta d\theta = \int_0^{\frac{\pi}{2}} \sin^2 \theta d\theta - \int_0^{\frac{\pi}{2}} \sin^4 \theta d\theta$$

$$= \frac{1}{2} \left(\frac{\pi}{2}\right) - \frac{3}{4} \cdot \frac{1}{2} \left(\frac{\pi}{2}\right) = \frac{\pi}{16}$$

Change of variables:

The variables x, y in $\iint_{p} f(x, y) dx dy$ are changed to u, v with the help of the relations $x = f_1(u, v), y = f_2(u, v)$ then the double integral is transferred into

$$\iint_{R^{1}} f\left[f_{1}(u,v), f_{2}(u,v)\right] \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$$

Where R^1 is the region in the u v plane, corresponding to the region R in the xy –plane.

Changing from Cartesian to polar co-ordinates:

$$x = r\cos\theta, y = r\sin\theta$$

$$\partial\left(\frac{(x,y)}{(r,\theta)}\right) = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix}$$
$$= r\left(\cos^2\theta + \sin^2\theta\right) = r$$

$$\therefore \iint_{R} f(x, y) dx dy = \iint_{R_{1}} f(r \cos \theta, r \sin \theta) r dr d\theta$$

Note: In polar form dx dy is replaced by $r dr d\theta$

PROBLEMS:

1. Evaluate the integral by changing to polar co-ordinates $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx \, dy$

Sol. The limits of *x* and *y* are both from 0 to ∞ .

:. The region is in the first quadrant where r varies from 0 to ∞ and θ varies from 0 to $\frac{\pi}{2}$

Substituting $x = r \cos \theta$, $y = r \sin \theta$ and $dx dy = r dr d\theta$

Hence
$$\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx \, dy = \int_{\theta=0}^{\pi/2} \int_{r=0}^\infty e^{-r^2} r \, dr \, d\theta$$

$$Put r^{2} = t$$

$$\Rightarrow 2rdr = dt$$

$$\Rightarrow r dr = \frac{dt}{2}$$

Where $r = 0 \Longrightarrow t = 0$ and $r = \infty \Longrightarrow t = \infty$

$$\therefore \int_0^\infty \int_0^\infty e^{-(x^2 + y^2)} dx \, dy = \int_{\theta=0}^{\pi/2} \int_{t=0}^\infty \frac{1}{2} e^{-t} dt \, d\theta$$
$$= \int_0^{\pi/2} \frac{-1}{2} \left(e^{-t} \right)_0^\infty d\theta$$
$$= \frac{-1}{2} \int_0^{\pi/2} (0 - 1) d\theta \Rightarrow \frac{1}{2} (\theta)_0^{\pi/2} = \frac{1}{2} \frac{\pi}{2} = \frac{\pi}{4}$$

2. Evaluate the integral by changing to polar co-ordinates $\int_0^a \int_0^{\sqrt{a^2 - y^2}} (x^2 + y^2) dx dy$

Sol. The limits for x are x=0 to $\begin{aligned} x &= \sqrt{a^2 - y^2} \\ \Rightarrow x^2 + y^2 &= a^2 \end{aligned}$

 \therefore The given region is the first quadrant of the circle.

By changing to polar co-ordinates

 $x = r \cos \theta, y = r \sin \theta, dx dy = r dr d\theta$

Here 'r' varies from 0 to a and ' θ ' varies from 0 to $\pi/2$

$$\therefore \int_{0}^{a} \int_{0}^{\sqrt{a^{2} - y^{2}}} \left(x^{2} + y^{2} \right) dx \, dy = \int_{\theta = 0}^{\pi/2} \int_{r=0}^{a} r^{2} r dr d\theta$$

DOUBLE AND TRIPLE INTEGRALS

MATHEMATICS -II

$$= \int_{0}^{\pi/2} \left(\frac{\pi}{4}\right)_{0}^{a} d\theta = \frac{a^{4}}{4} (\theta)_{0}^{\pi/2}$$

$$= \frac{\pi}{8} a^{4}$$
3. Show that $\int_{0}^{4a} \int_{y^{2}/4a}^{y} \frac{x^{2} - y^{2}}{x^{2} + y^{2}} dx \, dy = 8a^{2} \left(\frac{\pi}{2} - \frac{5}{3}\right)$
Sol. The region of integration is given by $x = \frac{y^{2}}{4a}, x = y$ and $y = 0, y = 4a$.
i.e., The region is bounded by the parabola $y^{2} = 4ax$ and the straight line $x = y$.
Let $x = r \cos \theta, y = r \sin \theta$. Then $dx \, dy = r dr d\theta$
The limits for r are $r = 0$ at O and for P on the parabola $r^{2} \sin^{2} \theta = 4a(r \cos \theta) \Rightarrow r = \frac{4a \cos \theta}{\sin^{2} \theta}$
For the line $y=x$, slope m=1 i.e., $Tan\theta = 1, \theta = \frac{\pi}{4}$
The limits for $\theta: \frac{\pi}{4} \to \frac{\pi}{2}$
Also $x^{2} - y^{2} = r^{2} (\cos^{2} \theta - \sin^{2} \theta) and x^{2} + y^{2} = r^{2}$
 $\therefore \int_{0}^{4a} \int_{y^{2}}^{y} \frac{x^{2} - y^{2}}{ax^{2} + y^{2}} dx \, dy = \int_{\theta=\frac{\pi}{4}}^{\frac{\pi}{4}} \int_{r=0}^{4a \cos \theta/\sin^{2} \theta} (\cos^{2} \theta - \sin^{2} \theta) r dr d\theta$
 $= \int_{\theta=\frac{\pi}{4}}^{\frac{\pi}{4}} (\cos^{2} \theta - \sin^{2} \theta) \left(\frac{r^{2}}{2}\right)_{0}^{4a \cos \theta/an^{2} \theta} d\theta$
 $= 8a^{2} \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} (\cos^{2} \theta - \sin^{2} \theta) d\theta = 8a^{2} \left[\frac{3\pi - 8}{12} + \frac{\pi}{4} - 1\right] = 8a^{2} \left(\frac{\pi}{2} - \frac{5}{3}\right)$

Triple integrals

If x_1 , x_2 are constants. y_1 , y_2 are functions of x and z_1 , z_2 are functions of x and y, then f(x, y, z) is first integrated with respect to 'z' between the limits z_1 and z_2 keeping x and y fixed. The resulting expression is integrated with respect to 'y' between the limits y_1 and y_2 keeping x constant. The resulting expression is integrated with respect to 'x' from x_1 to x_2

i.e.
$$\iiint_{y} f(x, y, z) dx dy dz = \int_{x=a}^{b} \int_{y=g_{1}(x)}^{y=g_{2}(x)} \int_{z=f_{1}(x,y)}^{z=f_{2}(x,y)} f(x, y, z) dz dy dx$$

PROBLEMS:

1. Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} xyz \, dx \, dy \, dz$$

Sol.
$$\int_{x=0}^{1} \int_{y=0}^{\sqrt{1-x^{2}}} \int_{z=0}^{\sqrt{1-x^{2}-y^{2}}} xyz \, dx \, dy \, dz$$

$$= \int_{x=0}^{1} dx \int_{y=0}^{\sqrt{1-x^{2}}} dy \int_{z=0}^{\sqrt{1-x^{2}-y^{2}}} xyz \, dz$$

$$= \int_{x=0}^{1} dx \int_{y=0}^{\sqrt{1-x^{2}}} xy \left(\frac{z^{2}}{2}\right)_{z=0}^{\sqrt{1-x^{2}-y^{2}}} dy$$

$$= \frac{1}{2} \int_{x=0}^{1} dx \int_{y=0}^{\sqrt{1-x^{2}}} xy(1-x^{2}-y^{2}) \, dy$$

$$= \frac{1}{2} \int_{x=0}^{1} dx \int_{y=0}^{\sqrt{1-x^{2}}} x \left[(1-x^{2}) y - y^{3} \right] \, dy$$

$$= \frac{1}{2} \int_{x=0}^{1} x \left[\left(1-x^{2}\right) \frac{y^{2}}{2} - \frac{y^{4}}{4} \right]_{0}^{\sqrt{1-x^{2}}} \, dx$$

$$= \frac{1}{2} \cdot \int_{x=0}^{1} x \left[2(1-x^{2}) - 2x^{2}(1-x^{2}) - (1-x^{2})^{2} \right] \, dx$$

$$= \frac{1}{8} \int_{x=0}^{1} (x - 2x^{3} + x^{5}) \, dx = \frac{1}{8} \left[\frac{x^{2}}{2} - \frac{2x^{4}}{4} + \frac{x^{6}}{6} \right]_{0}^{1}$$

DOUBLE AND TRIPLE INTEGRALS

$$=\frac{1}{8}\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{6}\right)=\frac{1}{48}$$

2. Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$

Sol:

$$\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+y) dx \, dy \, dz$$

$$= \int_{-1}^{1} \int_{0}^{z} \left[\left(xy + \frac{y^{2}}{2} + zy \right)_{x-z}^{x+z} \right] dx \, dz$$

$$= \int_{-1}^{1} \int_{0}^{z} x (x+z) - x (x-z) + \left[\frac{x+z}{2} \right]^{2} - \left[\frac{x-z}{2} \right]^{2} + z (x+z) - z (x-z) dx \, dz$$

$$= \int_{-1}^{1} \int_{0}^{z} \left[2z (x+z) + \frac{1}{2} 4xz \right] dx \, dz$$

$$= 2 \int_{-1}^{1} \left[z \cdot \frac{x^{2}}{2} + z^{2}x + z \cdot \frac{x^{2}}{2} \right]_{0}^{z} dz$$

$$= 2 \cdot \int_{-1}^{1} \left[\frac{z^{3}}{2} + z^{3} + \frac{z^{3}}{2} \right] dz = 4 \cdot \left(\frac{z^{4}}{4} \right)_{-1}^{1} = 0$$

3. Evaluate $\int \int_V \int (xy + yz + zx) dx dy dz$, where V is the region of space bounded by planes x = 0, x = 1, y = 0, y = 2 and z = 0, z = 3.

Sol: $\int \int_{V} \int (xy + yz + zx) dx dy dz = \int_{z=0}^{3} \int_{y=0}^{2} \int_{x=0}^{1} (xy + yz + zx) dx dy dz$

$$= \int_{z=0}^{3} \int_{y=0}^{2} \left(\frac{x^{2}}{2}y + xyz + \frac{x^{2}}{2}z\right)_{0}^{1} dy dz$$

$$= \int_{z=0}^{3} \int_{0}^{2} \left(\frac{y}{2} + yz + \frac{z}{2}\right) dy dz$$

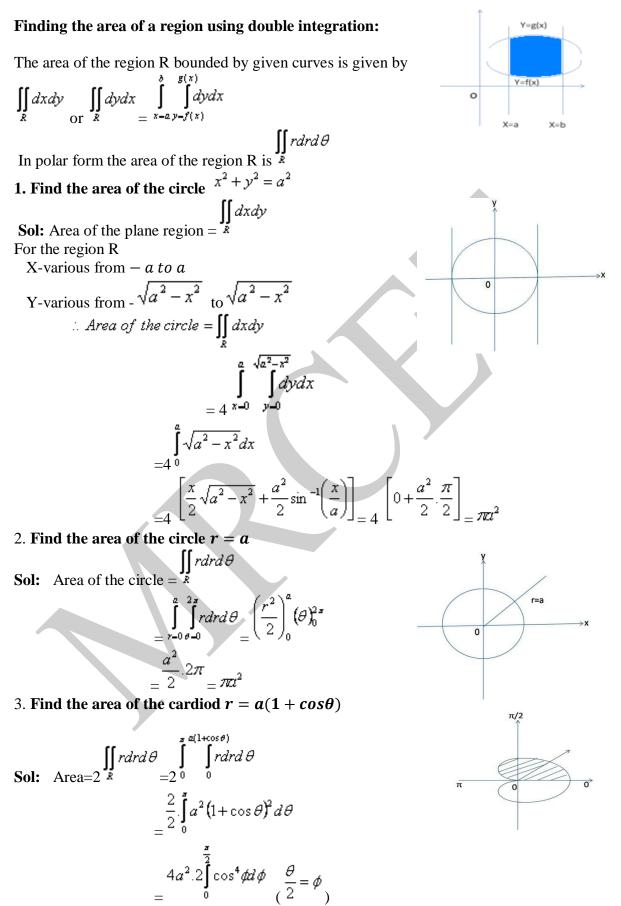
$$= \int_{z=0}^{3} \left(\frac{y^{2}}{4} + \frac{y^{2}}{2}z + \frac{zy}{2}\right)_{0}^{2} dz$$

$$= \int_{z=0}^{3} (1 + 2z + z) dz$$

$$= \int_{z=0}^{3} (1 + 3z) dz$$

$$= \left(z + \frac{3z^{2}}{2}\right)_{0}^{3} = 3 + \frac{27}{2} = \frac{33}{2}$$

Applications of Multiple integrals:



DOUBLE AND TRIPLE INTEGRALS

$$= \frac{8a^{2}}{4} \cdot \frac{2}{2} \cdot \frac{\pi}{2} = \frac{3\pi a^{2}}{2}$$
Finding the volume of a region using Triple integration:
Wolume of the solid =
$$\int_{=}^{||||} \frac{dv}{v}$$
1. Find the volume of the Sphere $x^{2} + y^{2} + z^{2} = a^{2}$
Sol: The sphere $x^{2} + y^{2} + z^{2} = a^{2}$ is cut into 8 equal parts by three co-ordinates
Planes .Hence the volume of the sphere is equal to 8 times the volume of the solid bounded
by $x = 0, y = 0, z = 0$ and $x^{2} + y^{2} + z^{2} = a^{2}$.
Z-varies from 0 to $\sqrt{a^{2} - x^{2}}$.
Y-varies from 0 to $\sqrt{a^{2} - x^{2}}$.
X-varies from 0 to $\sqrt{a^{2} - x^{2}}$.
 x .
Required volume v=8 x^{4} .
 $\int_{=8}^{a} \sqrt{a^{2} - x^{2} - y^{2}} + \left(\frac{a^{2} - x^{2}}{2}\right) \sin^{-4} \left(\frac{y}{\sqrt{a^{2} - x^{2}}}\right) \int_{0}^{\sqrt{a^{2} - x^{2}}} dx$
 $= \frac{a}{4} \left(a^{2}x - \frac{x^{2}}{2}\right) \cdot \frac{\pi}{2} dx$
 $= \frac{a}{4} \left(a^{2}x - \frac{x^{2}}{3}\right)_{0}^{a}$

DOUBLE AND TRIPLE INTEGRALS

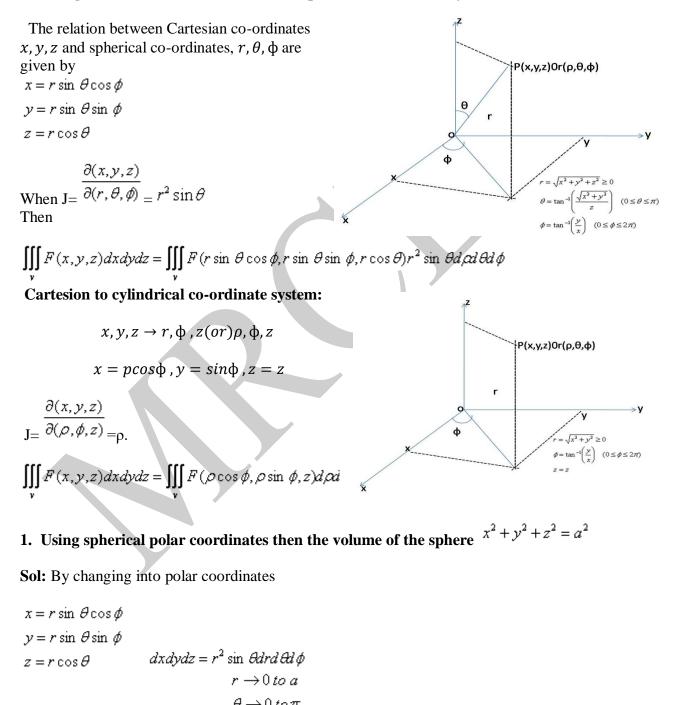
Change of variable in Triple integrals:

Let $x = \Phi 1(u, v, w), y = \Phi 2(u, v, w), z = \Phi 3(u, v, w)$ be the relation between old variables (x, y, z) with the new variables (u, v, w) of the new coordinates system.

$$\iiint_{v} F(x, y, z) dx dy dz = \iiint_{v} F(\phi_1, \phi_2, \phi_3) J du dv dw$$

Then

1. Change of variables from Cartesian to spherical co-ordinate system:



$$\phi \to 0 \ to \ 2\pi$$

Required volume =
$$\iint dx dy dz$$

DOUBLE AND TRIPLE INTEGRALS

MATHEMATICS -II

$$\int_{a}^{2\pi} \int_{a}^{\pi} \int_{a}^{a} r^{2} \sin \theta dr d\theta d\phi$$
$$= \frac{a^{3}}{3} (-\cos \theta)_{0}^{\pi} (\phi)_{0}^{2\pi}$$
$$= \frac{4\pi a^{3}}{3}$$

2. Evaluate $\iiint (x^2 + y^2 + z^2) dx dy dz$ taken over the volume enclosed by the sphere $x^2 + y^2 + z^2 = 1$, by transforming into spherical polar coordinates

Sol:

$$\iiint (x^{2} + y^{2} + z^{2}) dx dy dz = \int_{\phi=0}^{2\pi} \int_{\phi=0}^{\pi} \int_{r=0}^{\pi} r^{2} r^{2} \sin \theta dr d\theta d\phi$$
$$= \frac{a^{5}}{5} \cdot 2 \cdot 2\pi = \frac{4}{7}$$

3. Using cylindrical co-ordinates $\iint (x^2 + y^2) dx dy dz$ taken over the volume bounded by the xy -plane and the parabolid $z = 9 - x^2 - y^2$.

Sol:

$$\int_{r=0}^{3} \int_{\theta=0}^{2\pi} \int_{z=0}^{9-r^2} r^2 r dr d\theta dz = 2\pi \int_{r=0}^{3} (9-r^2) r^3 dr$$
$$= 2\pi \left[\frac{9r^4}{4} - \frac{r^6}{6} \right]_{0}^{3}$$
$$= 2\pi \left[\frac{729}{4} - \frac{243}{2} \right] = \frac{243\pi}{2}$$

4 Evaluate x=0 y=0 y=0 x=0 $\sqrt{1-x^2-y^2}$ by changing to spherical polar coordinates.

Sol: Given region of integration is the volume of the sphere $x^2 + y^2 + z^2 = 1$ in the first octant

$$\theta \to 0 \ to \frac{\pi}{2}$$

 $\phi \to 0 \ to \frac{\pi}{2}$

 $r \rightarrow 0$ to 1

For which

$$\int_{x=0}^{1} \int_{y=0}^{\sqrt{1-x^2}} \int_{x=0}^{\sqrt{1-x^2-y^2}} \frac{dzdydx}{\sqrt{1-x^2-y^2}} = \int_{x=0}^{1} \int_{\phi=0}^{\frac{\pi}{2}} \int_{\phi=0}^{\frac{\pi}{2}} \frac{r^2 \sin \theta}{\sqrt{1-r^2}} dr d\theta d\phi$$

$$= \frac{(-\cos)_{0}^{\frac{\pi}{2}}(\phi)_{0}^{\frac{\pi}{2}}\int_{0}^{1}\frac{1-(1-r^{2})}{\sqrt{1-r^{2}}}dr}{1\cdot\frac{\pi}{2}\left[\sin^{-1}r - \left\{\frac{r}{2}\sqrt{1-r^{2}} + \frac{1}{2}\sin^{-1}\right\}\right]_{0}^{1}}$$
$$= \frac{\pi}{2}\left[\frac{\pi}{2}-\frac{1}{2}\frac{\pi}{2}\right] = \frac{\pi^{2}}{8}$$

5. Using cylindrical co-ordinates, find the volume of the cylindrical with base radius a and height h.

Sol:

$$x = r \cos\theta, \quad y = r \sin\theta, \quad z = z$$

$$r \to 0 \ to a$$

$$\theta \to 0 \ to 2\pi$$

$$J = r$$

$$z \to 0 \ to h$$
Required volume=
$$\iiint dx dy dz = \int_{r=0}^{a} \int_{\theta=0}^{2\pi} \int_{z=0}^{b} r dr d\theta dz = \frac{a^2}{2} \cdot 2\pi h = \pi a^2 h$$
6. Using cylindrical coordinates evaluate
$$\iiint (x^2 + y^2 + z^2) dx dy dz$$
taken over the region
$$0 \le z \le x^2 + y^2 \le 1$$
Sol:

$$r \to 0 \ to 1$$

$$\theta \to 0 \ to 2\pi$$

$$z \to 0 \ to 1$$

$$x^2 + y^2 = r^2$$
, J=r
Given integration=
$$\int_{x=0}^{1} \int_{x=0}^{2\pi} \int_{x=0}^{1} (r^2 + z^2) r dr d\theta dz$$
Given integration=
$$\frac{r^4}{4} \cdot 2\pi \cdot 1 + \frac{1}{3} \cdot \frac{1}{2} \cdot 2\pi = \frac{\pi}{2} + \frac{\pi}{3} = \frac{5\pi}{6}$$

UNIT - V

VECTOR CALCULUS

INTRODUCTION

Scalar: A quantity which is completely specify by its magnitude only.

Ex: Time, Temperature.

Vector: A quantity which is completely specify by its magnitude and direction.

Ex: Force ,Velocity.

Position Vector: Let A and B are two vectors then the position vector of AB is $\overline{AB} = \overline{OB} - \overline{OA}$.

If $\bar{a} = a_1 i + a_2 j + a_3 k$ then $|\bar{a}| = \sqrt{a_1^2 + a_2^2} + a_3^2$

If \bar{a} is any vector then its unit vector is given by $\frac{\bar{a}}{|\bar{a}|}$

Dot Product

 $\bar{a}. \bar{b} = |\bar{a}| |\bar{b}| \cos\theta$ where θ is angle between two vectors

We know i.i = j.j = k.k = 1 and i.j = j.k = k.i = 0

if $\bar{a} = a_1 i + a_2 j + a_3 k$, $\bar{b} = b_1 i + b_2 j + b k$ then $\bar{a} \cdot \bar{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$

Cross Product

 $\bar{a} \times \bar{b} = |\bar{a}| |\bar{b}| \hat{n} \sin\theta$

$$\begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \text{ since } i x i = j x j = k x k = 0$$

i x j = k; j x k = i; k x i = j; j x i = -k; i x k = -j; k x j = i

Scalar and Vector Point Functions

Consider a region in three dimensional space. To each point P(x,y,z), suppose we associate a unique real number (called scalar) say ϕ . This $\phi(x,y,z)$ is called a scalar point function. Scalar point function defined on the region. Similarly if to each point P(x,y,z) we associate a unique vector $\overline{f}(x,y,z)$, \overline{f} is called vector point functions.

Examples:

For example take a heated solid. At each point P(x,y,z) of the solid, there will be temperature T(x,y,z). This T is a scalar point function.

Suppose a particle (or a very small insect) is tracing a path in space. When it occupies a position P(x,y,z) in space, it will be having some speed, say, v. This **speed** v is a scalar point function.

Consider a particle moving in space. At each point P on its path, the particle will be having a velocity \bar{v} which is vector point function. Similarly, the acceleration of the particle is also a vector point function.

Tangent vector to a curve in space

Consider an interval [a,b].

Let x = x(t), y = y(t), z = z(t) be continuous and derivable for $a \le t \le b$.

Then the set of all points (x(t), y(t), z(t)) is called a curve in a space.

Let A = (x(a), y(a), z(a)) and B = (x(b), y(b), z(b)). These A,B are called the end points of the curve. If A =B, the curve in said to be a closed curve.

Let P and Q be two neighbouring points on the curve.

Let $\overline{OP} = \overline{r}(t), \overline{OQ} = \overline{r}(t + \delta t) = \overline{r} + \delta \overline{r}.$ Then $\delta \overline{r} = \overline{OQ} - \overline{OP} = \overline{PQ}$

Then $\frac{\delta \overline{r}}{\delta t}$ is along the vector PQ. As $\overline{Q} \rightarrow P$, PQ and hence $\frac{PQ}{\delta t}$ tends to be along the tangent to the curve at P.

Hence $\lim_{\delta t \to 0} \frac{\delta \overline{r}}{\delta t} = \frac{d\overline{r}}{dt}$ will be a tangent vector to the curve at P. (This $\frac{d\overline{r}}{dt}$ may not be a unit vector)

Suppose arc length AP = s. If we take the parameter as the arc length parameter, we can observe that $\frac{d\bar{r}}{ds}$ is unit tangent vector at P to the curve.

Vector Differential Operator

Def. The vector differential operator ∇ (read as del) is defined as

$$\nabla \equiv \bar{i} \frac{\partial}{\partial x} + \bar{j} \frac{\partial}{\partial y} + \bar{k} \frac{\partial}{\partial z}.$$

This operator possesses properties analogous to those of ordinary vectors as well as differentiation operator.

We will define now some quantities known as "gradient", "divergence" and "curl" involving this operator ∇ . We must note that this operator has no meaning by itself unless it operates on some function suitably

Gradient of a Scalar Point Function

Let $\phi(x, y, z)$ be a scalar point function of position defined in some region of space. Then the vector function $\bar{i}\frac{\partial\phi}{\partial x} + \bar{j}\frac{\partial\phi}{\partial y} + \bar{k}\frac{\partial\phi}{\partial z}$ is known as the gradient of ϕ or $\nabla\phi$

$$\nabla \phi = (\bar{i}\frac{\partial}{\partial x} + \bar{j}\frac{\partial}{\partial y} + \bar{k}\frac{\partial}{\partial z})\phi = \bar{i}\frac{\partial\phi}{\partial x} + \bar{j}\frac{\partial\phi}{\partial y} + \bar{k}\frac{\partial\phi}{\partial z}$$

Directional Derivative

Let $\phi(x, y, z)$ be a scalar function defined throughout some region of space. Let this function have a value ϕ at a point P whose position vector referred to the origin O is $\overline{OP} = \overline{r}$. Let $\phi + \Delta \phi$ be the value of the function at neighbouring point Q. If $\overline{OQ} = \overline{r} + \Delta \overline{r}$. Let Δr be the

length of $\Delta \bar{r}$. $\frac{-\tau}{1}$ gives a measure of the rate at which ϕ change when we move from P to Q. The limiting value of $\frac{\Delta \phi}{\Delta r} as \Delta r \rightarrow 0$ is called the derivative of ϕ in the direction of \overline{PQ} or

simply directional derivative of ϕ at P and is denoted by $d\phi/dr$.

The physical interpretation of $\nabla \phi$

The gradient of a scalar function $\phi(x, y, z)$ at a point P(x, y, z) is a vector along the normal to the level surface $\phi(x, y, z) = c$ at P and is in increasing direction. Its magnitude is equal to the greatest rate of increase of ϕ .

Greatest value of directional derivative of $\overline{\Phi}$ at a point **P** = |grad ϕ | at that point. **NOTE:**

1.Let r = xi + yj + zk. Then dr = dxi + dyj + dzk if ϕ is any scalar point function, then $d\phi = \frac{\partial \phi}{\partial x}dx + \frac{\partial \phi}{\partial y}dy + \frac{\partial \phi}{\partial z}dz = \left(\bar{i}\frac{\partial \Phi}{\partial x} + \bar{j}\frac{\partial \Phi}{\partial y} + \bar{k}\frac{\partial \Phi}{\partial z}\right)\left(\bar{i}dx + \bar{j}dy + \bar{k}dz\right) = \nabla \Phi . d\bar{r}$

2. grad Φ at any point is a vector normal to the surface $\Phi(x, y, z) = c$ through that point w P(x, y, z) where c is a constant.

3. The directional derivative of a scalar point function ϕ at a point P(x, y, z) in the direction of a unit vector \overline{e} is equal to \overline{e} . grad $\phi = \overline{e} \cdot \nabla \phi$.

4. If θ is angle between two surfaces ϕ_1, ϕ_2 then $\cos \theta = \frac{\nabla \phi_1 \cdot \nabla \phi_2}{|\nabla \phi_1| |\nabla \phi_1|}$ 5.Unit Normal vector of a surface \emptyset is $\frac{\nabla \phi}{|\nabla \varphi|}$

PROBLEMS

1. Show that $\nabla[\mathbf{f}(\mathbf{r})] = \frac{f'(r)}{r} r$ where $\bar{r} = x\bar{i} + y\bar{j} + z\bar{k}$. Sol:- Since $\bar{r} = x\bar{i} + y\bar{j} + z\bar{k}$, we have $r^2 = x^2 + y^2 + z^2$

Differentiating w.r.t. 'x' partially, we get

$$2r\frac{\partial r}{\partial x} = 2x \Rightarrow \frac{\partial r}{\partial x} = \frac{x}{r}$$
. Similarly $\frac{\partial r}{\partial y} = \frac{y}{r}$, $\frac{\partial r}{\partial z} = \frac{z}{r}$

$$\nabla [f(r)] = \left(\bar{i}\frac{\partial}{\partial x} + \bar{j}\frac{\partial}{\partial y} + \bar{k}\frac{\partial}{\partial z}\right)f(r) = \sum \bar{i}f^{1}(r)\frac{\partial r}{\partial x} = \sum \bar{i}f^{1}(r)\frac{x}{r}$$
$$= \frac{f^{1}(r)}{2}\sum \bar{i}x = \frac{f^{1}(r)}{2}.\bar{r}$$

Note : From the above result, $\nabla(\log r) = \frac{1}{r^2} \bar{r}$, $\nabla(r^n) = nr^n - 2\bar{r}$.

2.Find the directional derivative of f = xy + yz + zx in the direction of vector $\overline{i} + 2\overline{j} + 2\overline{k}$ at the point (1,2,0).

Sol:- Given f = xy + yz + zx.

Grad f =
$$\bar{i}\frac{\partial f}{\partial x} + \bar{j}\frac{\partial f}{\partial y} + \bar{z}\frac{\partial f}{\partial z} = (y+z)\bar{i} + (z+x)\bar{j} + (x+y)\bar{k}$$

If \bar{e} is the unit vector in the direction of the vector $\bar{i} + 2\bar{j} + 2\bar{k}$, then

$$\bar{e} = \frac{\bar{i} + 2\bar{j} + 2k}{\sqrt{1^2 + 2^2 + 2^2}} = \frac{1}{3}(\bar{i} + 2\bar{j} + 2\bar{k})$$

Directional derivative of f along the given direction $= \overline{e} \cdot \nabla f$

$$= \frac{1}{3} (\bar{i} + 2\bar{j} + 2\bar{k}) [(y + z)\bar{i} + (z + x)\bar{j} + (x + y\bar{k})] at (1,2,0)$$

$$= \frac{1}{3} [(y + z) + 2(z + x) + 2(x + y)] (1,2,0) = \frac{10}{3}$$

3. Find the directional derivative of the function $xy^2+yz^2+zx^2$ along the tangent to the curve $x = t, y = t^2, z = t^3$ at the point (1,1,1).

Sol: - Here $f = xy^2 + yz^2 + zx^2$

$$\nabla f = \bar{i}\frac{\partial f}{\partial x} + \bar{j}\frac{\partial f}{\partial y} + \bar{k}\frac{\partial f}{\partial z} = (y^2 + 2xz)\bar{i} + (z^2 + 2xy)\bar{j} + (x^2 + 2yz)\bar{k}$$

At (1,1,1),
$$\nabla f = 3\bar{i} + 3\bar{j} + 3k$$

Let \overline{r} be the position vector of any point on the curve x = t, $y = t^2$, $z = t^3$. then

)

$$\overline{r} = x\overline{i} + y\overline{j} + z\overline{k} = t\overline{i} + t^2\overline{j} + t^3\overline{k}$$
$$\frac{\partial\overline{r}}{\partial t} = \overline{i} + 2t\overline{j} + 3t^2\overline{k} = (\overline{i} + 2\overline{j} + 3\overline{k}) \text{ at } (1,1,1)$$

We know that $\frac{\partial \overline{r}}{\partial t}$ is the vector along the tangent to the curve.

Unit vector along the tangent
$$= \overline{e} \ e = \frac{\overline{i+2j+3k}}{\sqrt{1+2^2+3^2}} = \frac{\overline{i+2j+3k}}{\sqrt{14}}$$

Directional derivative along the tangent = $\nabla f.\bar{e} = \frac{1}{\sqrt{14}} (\bar{i} + 2\bar{j} + 3\bar{k}) \cdot 3(\bar{i} + \bar{j} + \bar{k})$

$$\frac{3}{\sqrt{14}}\left(1+2+3\right) = \frac{18}{\sqrt{14}}$$

4. Find the directional derivative of the function $f = x^2 - y^2 + 2z^2$ at the point P = (1,2,3) in the direction of the line \overline{PQ} where Q = (5,0,4).

Sol:- The position vectors of P and Q with respect to the origin are $\overline{OP} = \overline{i} + 2\overline{j} + 3\overline{k}$ and

$$\overline{OQ} = 5\overline{i} + 4\overline{k}$$
; $\overline{PQ} = \overline{OQ} - \overline{OP} = 4\overline{i} - 2\overline{j} + \overline{k}$

Let \overline{e} be the unit vector in the direction of \overline{PQ} . Then $\overline{e} = \frac{4\overline{i} - 2\overline{j} + k}{\sqrt{21}}$

grad $f = \overline{i}\frac{\partial f}{\partial x} + \overline{j}\frac{\partial f}{\partial y} + \overline{k}\frac{\partial f}{\partial z} = 2x\overline{i} - 2y\overline{j} + 4z\overline{k}$

The directional derivative of \overline{f} at P (1,2,3) in the direction of $\overline{PQ} = \overline{e} \cdot \nabla f$

$$=\frac{1}{\sqrt{21}}\left(4\bar{i}-2\bar{j}+\bar{k}\right)\left(2x\bar{i}-2y\bar{j}+4z\bar{k}\right)\frac{1}{\sqrt{21}}\left(8x+4y+4z\right)_{at(1,2,3)}=\frac{1}{\sqrt{21}}\left(28\right)$$

5. Find the greatest value of the directional derivative of the function $f = x^2yz^3$ at (2,1,-1). Sol: we have

$$\operatorname{grad} f = \overline{i} \frac{\partial f}{\partial x} + \overline{j} \frac{\partial f}{\partial y} + \overline{k} \frac{\partial f}{\partial z} = 2xyz^3 \overline{i} + x^2 z^3 \overline{j} + 3x^2 yz^2 \overline{k} = -4\overline{i} - 4\overline{j} + 12\overline{k} \text{ at } (2,1,-1).$$

Greatest value of the directional derivative of $f = |\nabla f| = \sqrt{16 + 16 + 144} = 4\sqrt{11}$.

6. Find the directional derivative of xyz^2+xz at (1, 1, 1) in a direction of the normal to the surface 3xy2 + y = z at (0, 1, 1).

Sol:- Let $f(x, y, z) \equiv 3xy^2 + y - z = 0$

Let us find the unit normal e to this surface at (0,1,1). Then

$$\frac{\partial f}{\partial x} = 3y^2, \ \frac{\partial f}{\partial y} = 6xy + 1, \ \frac{\partial f}{\partial z} = -1.$$
$$\nabla f = 3y^2 \mathbf{i} + (6xy + 1)\mathbf{j} - \mathbf{k}$$
$$(\nabla f)_{(0,1,1)} = 3\mathbf{i} + \mathbf{j} - \mathbf{k} = \overline{n}$$
$$\overline{e} = \frac{\overline{n}}{|\overline{n}|} = \frac{3i + j - k}{\sqrt{9 + 1 + 1}} = \frac{3i + j - k}{\sqrt{11}}$$

VECTOR CALCULUS

Let $g(x, y, z) = xyz^2 + xz$, then

$$\frac{\partial g}{\partial x} = yz^2 + z, \ \frac{\partial g}{\partial y} = xz^2, \ \frac{\partial g}{\partial z} = 2xy + x$$

 $\nabla g = (yz^2 + z)i + xz2j + (2xyz + x)k$

And
$$[\nabla g]_{(1,1,1)} = 2i+j+3k$$

Directional derivative of the given function in the direction of \overline{e} at $(1,1,1) = \nabla g.\overline{e}$

=(2i+j+3k).
$$\left(\frac{3i+j-k}{\sqrt{11}}\right) = \frac{6+1-3}{\sqrt{11}} = \frac{4}{\sqrt{11}}$$

7. Evaluate the angle between the normal to the surface $xy = z^2$ at the points (4,1,2) and (3,3,-3).

Sol:- Given surface is $f(x, y, z) = xy - z^2$

Let \overline{n}_1 and \overline{n}_2 be the normal to this surface at (4,1,2) and (3,3,-3) respectively.

Differentiating partially, we get

$$\frac{\partial f}{\partial x} = y, \frac{\partial f}{\partial y} = x, \frac{\partial f}{\partial z} = -2z.$$

grad f = $y\bar{i} + x\bar{j} - 2z\bar{k}$

$$\bar{n}_1 = (\text{grad } f) \text{ at } (4,1,2) = \bar{i} + 4\bar{j} - 4\bar{k}$$

$$\cos \theta = \frac{\overline{n_1} \cdot \overline{n_2}}{\left|\overline{n_1}\right| \left|\overline{n_2}\right|} = \frac{(i+4j-4k)}{\sqrt{1+16+16}} \cdot \frac{(3i+3j+6k)}{\sqrt{9+9+36}}$$

$$\frac{(3+12-24)}{\sqrt{33}\sqrt{54}} = \frac{-9}{\sqrt{33}\sqrt{54}}$$

8. Find a unit normal vector to the surface $x^2+y^2+2z^2 = 26$ at the point (2, 2, 3).

Sol:- Let the given surface be $f(x,y,z) \equiv x^2+y^2+2z^2-26=0$. Then

$$\frac{\partial f}{\partial x} = 2x, \ \frac{\partial f}{\partial y} = 2y, \ \frac{\partial f}{\partial z} = 4z.$$

grad f =
$$\sum \overline{i} \frac{\partial f}{\partial x} = 2xi + 2yj + 4zk$$

Normal vector at (2,2,3) = $[\nabla f]_{(2,2,3)} = 4\bar{i} + 4\bar{j} + 12\bar{k}$

Unit normal vector = $\frac{\nabla f}{|\nabla f|} = \frac{4(\bar{i} + \bar{j} + 3\bar{k})}{4\sqrt{11}} = \frac{\bar{i} + \bar{j} + 3\bar{k}}{\sqrt{11}}$

VECTOR CALCULUS

9. Find the values of *a* and *b* so that the surfaces $ax^2-byz = (a+2)x$ and $4x^2y + z^3 = 4$ may intersect orthogonally at the point (1, -1,2).

(or) Find the constants a and b so that surface $ax^2-byz = (a+2)x$ will orthogonal to $4x^2y + z^3 = 4$ at the point (1,-1,2).

Sol:- Let the given surfaces be $f(x, y, z) = ax^2 - byz = (a + 2)x$ -----(1)

And $g(x, y, z) = 4x^2y + z^3 = 4$ -----(2)

Given the two surfaces meet at the point (1,-1,2).

Substituting the point in (1), we get

$$a + 2b - (a + 2) = 0 \Longrightarrow b = 1$$

Now
$$\frac{\partial f}{\partial x} = 2ax - (a+2), \frac{\partial f}{\partial y} = -bz$$
 and $\frac{\partial f}{\partial z} = -by$

$$\nabla f = \sum \bar{i} \frac{\partial f}{\partial x} = [(2ax - (a+2)]i - bz + bk] = (a-2)i - 2bj + bk$$

= $(a-2)i - 2j + k = \overline{n}_1$, normal vector to surface 1.

Also $\frac{\partial g}{\partial x} = 8xy, \ \frac{\partial g}{\partial y} = 4x^2, \ \frac{\partial g}{\partial z} = 3z^2.$

$$\nabla g = \sum \bar{i} \frac{\partial g}{\partial x} = 8xyi + 4x^2j + 3z^2k$$

 $(\nabla g)_{(1,-1,2)} = -8i + 4j + 12k = \overline{n}_2$, normal vector to surface 2.

Given the surfaces f(x, y, z), g(x, y, z) are orthogonal at the point (1,-1,2).

$$\left[\overline{\nabla}f\right]\left[\overline{\nabla}g\right] = 0 \Rightarrow ((a-2)i - 2j + k). (-8i + 4j + 12k) = 0$$
$$\Rightarrow -8a + 16 - 8 + 12 \Rightarrow a = 5/2$$
$$Hence \ a = 5/2 \ and \ b = 1.$$

Divergence of a vector

Let \bar{f} be any continuously differentiable vector point function. Then $\bar{i} \cdot \frac{\partial \bar{f}}{\partial x} + \bar{j} \cdot \frac{\partial \bar{f}}{\partial y} + \bar{k} \cdot \frac{\partial \bar{f}}{\partial z}$ is called the divergence of \bar{f} and is written as div \bar{f} .

i.e., div
$$\bar{f} = \bar{i} \cdot \frac{\partial \bar{f}}{\partial x} + \bar{j} \cdot \frac{\partial \bar{f}}{\partial y} + \bar{k} \cdot \frac{\partial \bar{f}}{\partial z} = \left(\bar{i} \cdot \frac{\partial}{\partial x} + \bar{j} \cdot \frac{\partial}{\partial y} + \bar{k} \cdot \frac{\partial}{\partial z}\right) \cdot \bar{f}$$

Hence we can write div \bar{f} as

div $\bar{f} = \nabla$. \bar{f}

This is a scalar point function.

NOTE: If the vector $\bar{f} = f_1 \bar{i} + f_2 \bar{j} + f_3 \bar{k}$, then $div \bar{f} = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$

Solenoidal Vector

A vector point function \bar{f} is said to be solenoidal if $div \bar{f} = 0$.

Physical interpretation of divergence:

Depending upon \bar{f} in a physical problem, we can interpret div \bar{f} (∇ . \bar{f}).

Suppose $\overline{F}(x, y, z, t)$ is the velocity of a fluid at a point (x, y, z) and time 't'. Though time has no role in computing divergence, it is considered here because velocity vector depends on time.

Imagine a small rectangular box within the fluid as shown in the figure. We would like to measure the rate per unit volume at which the fluid flows out at any given time. The divergence of \overline{F} measures the outward flow or expansions of the fluid from their point at any time. This gives a physical interpretation of the divergence.

PROBLEMS

1. Find div
$$\bar{f}$$
 when $grad(x^3+y^3+z^3-3xyz)$

Sol:- Let
$$\phi = x^3 + y^3 + z^3 - 3xyz$$

Then
$$\frac{\partial \phi}{\partial x} = 3x^2 - 3yz$$
, $\frac{\partial \phi}{\partial y} = 3y^2 - 3zx$, $\frac{\partial \phi}{\partial z} = 3z^2 - 3xy$

grad
$$\phi = \overline{i} \frac{\partial \phi}{\partial x} + \overline{j} \frac{\partial \phi}{\partial y} + \overline{k} \frac{\partial \phi}{\partial z} = 3[(x^2 - yz)\overline{i} + (y^2 - zx)\overline{j} + (z^2 - xy)\overline{k}]$$

div
$$\bar{f} = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z} = \frac{\partial}{\partial x} [3(x^2 - yz)] + \frac{\partial}{\partial y} [3(y^2 - zx)] + \frac{\partial}{\partial z} [3(z^2 - xy)]$$

$$= 3(2x)+3(2y)+3(2z) = 6(x+y+z)$$

2. If $\overline{f} = (x+3y)\overline{i} + (y-2z)\overline{j} + (x+pz)\overline{k}$ is Solenoidal, find *P*.

Sol:- Let
$$\bar{f} = (x+3y)\bar{i} + (y-2z)\bar{j} + (x+pz)\bar{k} = f_1\bar{i} + f_2\bar{j} + f_3\bar{k}$$

We have $\frac{\partial f_1}{\partial x} = 1$, $\frac{\partial f_2}{\partial y} = 1$, $\frac{\partial f_3}{\partial z} = p$ div $\bar{f} = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z} = 1 + 1 + p = 2 + p$

VECTOR CALCULUS

150

since \bar{f} is solenoidal, we have div $\bar{f} = 0 \Longrightarrow 2 + p = 0 \Longrightarrow p = -2$

3. Find div $\bar{f} = r^n \bar{r}$. Find n if it is solenoidal?

Sol: Given $\overline{f} = r^n \overline{r}$. where $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ and $r = |\overline{r}|$

We have
$$r^2 = x^2 + y^2 + z^2$$

Differentiating partially with respect to x, we get

$$2r \frac{\partial r}{\partial x} = 2x \Rightarrow \frac{\partial r}{\partial x} = \frac{x}{r},$$
Similarly $\frac{\partial r}{\partial y} = \frac{y}{r}$ and $\frac{\partial r}{\partial z} = \frac{z}{r}$
 $\bar{f} = r^n (x\bar{i} + y\bar{j} + z\bar{k})$
div $\bar{f} = \frac{\partial}{\partial x} (r^n x) + \frac{\partial}{\partial y} (r^n y) + \frac{\partial}{\partial z} (r^n z)$

$$= nr^{n-1} \frac{\partial r}{\partial x} x + r^n + nr^{n-1} \frac{\partial r}{\partial y} y + r^n + nr^{n-1} \frac{\partial r}{\partial z} z + r^n$$

$$= nr^{n-1} \left[\frac{x^2}{r} + \frac{y^2}{r} + \frac{z^2}{r} \right] + 3r^n = nr^{n-1} \frac{(r^2)}{r} + 3r^n = nr^n + 3r^n = (n+3)r^n$$
Let $\bar{f} = r^n \bar{r}$ be solenoidal. Then $div \ \bar{f} = 0$
 $(n+3) r^n = 0 \Rightarrow n = -3$
4. Evaluate $\nabla_{\cdot} \left(\frac{\bar{r}}{r^3} \right)$ where $\bar{r} = xi + yj + zk$ and $r = |\bar{r}|$.
Sol:- We have $\bar{r} = xi + yj + zk$ and $r = \sqrt{x^2 + y^2 + z^2}$
 $\frac{\partial r}{\partial x} = \frac{x}{r}, \frac{\partial r}{\partial y} = \frac{y}{r}, and \frac{\partial r}{\partial z} = \frac{z}{r}$
 $\therefore \frac{\bar{r}}{r^3} = r^3xi + r^3yj + r^3zk = f_1i + f_2j + f_3k$
Hence $\nabla_{\cdot} \left(\frac{\bar{r}}{r^3} \right) = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$
We have $f_1 = r^3 x \Rightarrow \frac{\partial f_1}{\partial x} = r^{-3}.1 + x(-3)r^{-4}.\frac{\partial r}{\partial x}$
 $(\text{MCET (CAMCET CODE: MLRD)}$

$$\therefore \frac{\partial f_1}{\partial x} = r^{-3} - 3xr^{-4} \frac{x}{y} = r^{-3} - 3x^2 r^{-5}$$
$$\nabla \cdot \left(\frac{\bar{r}}{r^3}\right) = \sum \frac{\partial f_1}{\partial x} = 3r^{-3} - 3r^{-5} \sum x^2 = 3r^{-3} - 3r^{-5} r^2 = 0$$

Curl of a Vector

Let \bar{f} be any continuously differentiable vector point function. Then the vector function defined by $\bar{i} \times \frac{\partial \bar{f}}{\partial x} + \bar{j} \times \frac{\partial \bar{f}}{\partial y} + \bar{k} \times \frac{\partial \bar{f}}{\partial z}$ is called curl of \bar{f} and is denoted by curl \bar{f} or $(\nabla x \bar{f})$.

Curl
$$\bar{f} = \bar{i} \times \frac{\partial \bar{f}}{\partial x} + \bar{j} \times \frac{\partial \bar{f}}{\partial y} + \bar{k} \times \frac{\partial \bar{f}}{\partial z} = \sum \left(\bar{i} \times \frac{\partial \bar{f}}{\partial x} \right)$$

Theorem 1: If \bar{f} is differentiable vector point function given by $= \bar{f} f_1 \bar{i} + f_2 \bar{j} + f_3 \bar{k}$ then curl $\bar{f} = \left(\frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z}\right) \bar{i} + \left(\frac{\partial f_1}{\partial z} - \frac{\partial f_3}{\partial x}\right) \bar{j} + \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right) \bar{k}$

Note :

$$\bar{f} = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_1 & f_2 & f_3 \end{vmatrix} = \nabla \mathbf{x}$$

Note (2) : If \bar{f} is a constant vector then curl $\bar{f} = \bar{o}$.

Physical Interpretation of curl

curl

If \overline{w} is the angular velocity of a rigid body rotating about a fixed axis and \overline{v} is the velocity of any point P(x, y, z) on the body, then $\overline{w} = \frac{1}{2} curl \overline{v}$. Thus the angular velocity of rotation at any point is equal to half the curl of velocity vector. This justifies the use of the word "curl of a vector".

Any motion in which curl of the velocity vector is a null vector i.e *curl* $\bar{v} = \bar{0}$ is said to be Irrotational.

Def: A vector \bar{f} is said to be Irrotational if curl $\bar{f} = \bar{0}$.

If \bar{f} is Irrotational, there will always exist a scalar function $\varphi(x, y, z)$ such that $\bar{f} = grad \phi$. This ϕ is called scalar potential of \bar{f} .

It is easy to prove that, if $\bar{f} = grad \phi$, then curl $\bar{f} = 0$.

Hence $\nabla x \ \bar{f} = 0 \Leftrightarrow$ there exists a scalar function ϕ such that $\bar{f} = \nabla \phi$.

This idea is useful when we study the "work done by a force later.

VECTOR CALCULUS

152

PROBLEMS

1. Find curl \bar{f} where $\bar{f} = grad(x^3+y^3+z^3-3xyz)$

Sol:- Let $\phi = x^3 + y^3 + z^3 - 3xyz$ Then

grad
$$\phi = \sum \overline{i} \frac{\partial \phi}{\partial x} = 3(x^2 - yz)\overline{i} + 3(y^2 - zx)\overline{j} + 3(z^2 - xy)\overline{k}$$

curl grad
$$\phi = \nabla x$$
 grad $\phi = 3 \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 - yz & y^2 - zx & z^2 - xy \end{vmatrix}$

$$3[\overline{i}(-x+x)-\overline{j}(-y+y)+\overline{k}(-z+z)]=\overline{0}$$

 \therefore curl $\overline{f} = \overline{0}$.

Note: We can prove in general that $curl (grad \phi) = \overline{0} \cdot (i.e) grad \phi$ is always irrotational.

2.Show that the vector $(x^2 - yz)\overline{i} + (y^2 - zx)\overline{j} + (z^2 - xy)\overline{k}$ is irrotational and find its scalar potential.

Sol: let
$$\bar{f} = (x^2 - yz)\bar{i} + (y^2 - zx)\bar{j} + (z^2 - xy)\bar{k}$$

Then curl $\bar{f} = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 - yz & y^2 - zx & z^2 - xy \end{vmatrix} = \sum \bar{i}(-x+x) = \bar{0}$

 $\therefore \bar{f}$ is Irrotational. Then there exists ϕ such that $\bar{f} = \nabla \phi$.

$$\Rightarrow \bar{i}\frac{\partial\phi}{\partial x} + \bar{j}\frac{\partial\phi}{\partial y} + \bar{k}\frac{\partial\phi}{\partial z} = (x^2 - yz)\bar{i} + (y^2 - zx)\bar{j} + (z^2 - xy)\bar{k}$$

Comparing components, we get

$$\frac{\partial \phi}{\partial x} = x^2 - yz \Longrightarrow \phi = \int \left(x^2 - yz\right) dx = \frac{x^3}{3} - xyz + f_1(y, z) \dots \dots (1)$$

$$\frac{\partial \phi}{\partial y} = y^2 - zx \Rightarrow \phi = \frac{y^3}{3} - xyz + f_2(z, x).....(2)$$
$$\frac{\partial \phi}{\partial z} = z^2 - xy \Rightarrow \phi = \frac{z^3}{3} - xyz + f_3(x, y).....(3)$$
DEPARTMENT OF HUMANITIES & SCIENCES ©MRCET (EAMCET CODE: MLRD

=

MATHEMATICS -II

From (1), (2),(3),
$$\phi = \frac{x^3 + y^3 + z^3}{3} - xyz$$

:.
$$\phi = \frac{1}{3}(x^3 + y^3 + z^3) - xyz + cons \tan \theta$$

Which is the required scalar potential.

3. Find constants *a*, *b* and *c* if the vector

 $\bar{f} = (2x+3y+az)\bar{i} + (bx+2y+3z)\bar{j} + (2x+cy+3z)\bar{k}$ is Irrotational.

Sol:- Given $\bar{f} = (2x + 3y + az)\bar{i} + (bx + 2y + 3z)\bar{j} + (2x + cy + 3z)\bar{k}$

$$\operatorname{Curl} \bar{f} = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2x + 3y + az & bx + 2y + 3z & 2x + cy + 3z \end{vmatrix}$$
$$(c-3)\bar{i} - (2-a)\bar{j} + (b-3)\bar{k}$$

If the vector is Irrotational then curl $\bar{f} = \bar{0}$

$$\therefore 2 - a = 0 \Longrightarrow a = 2, b - 3 = 0 \Longrightarrow b = 3, c - 3 = 0 \Longrightarrow c = 3$$

4.If f(r) is differentiable, show that $curl \{ \bar{r} f(r) \} = \bar{0}$ where

 $\bar{r} = x\bar{i} + y\bar{j} + z\bar{k}$.

Sol: $r = \bar{r} = \sqrt{x^2 + y^2 + z^2}$

$$r^2 = x^2 + y^2 + z^2$$

$$\Rightarrow 2r \frac{\partial r}{\partial x} = 2x \Rightarrow \frac{\partial r}{\partial x} = \frac{x}{r}, \text{ similarly } \frac{\partial r}{\partial y} = \frac{y}{r}, \text{ and } \frac{\partial r}{\partial z} = \frac{z}{r}$$

 $curl\{\bar{r}f(r)\} = curl\{f(r)(x\bar{i}+y\bar{j}+z\bar{k})\} = curl(x.f(r)\bar{i}+y.f(r)\bar{j}+z.f(r)\bar{k})$

$$= \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xf(r) & yf(r) & zf(r) \end{vmatrix} = \sum \bar{i} \left[\frac{\partial}{\partial y} [zf(r)] - \frac{\partial}{\partial z} [yf(r)] \right]$$
$$\sum \bar{i} \left[zf^{1}(r) \frac{\partial r}{\partial y} - yf^{1}(r) \frac{\partial r}{\partial z} \right] = \sum \bar{i} \left[zf^{1}(r) \frac{y}{r} - yf^{1}(r) \frac{z}{r} \right] = \bar{0}.$$

VECTOR CALCULUS

5. Find constants a,b,c so that the vector \overline{A} =

 $(x+2y+az)\overline{i} + (bx-3y-z)\overline{j} + (4x+cy+2z)\overline{k}$ is Irrotational. Also find ϕ such that $\overline{A} = \nabla \phi$.

Sol: Given vector is $\overline{A} = (x+2y+az)\overline{i} + (bx-3y-z)\overline{j} + (4x+cy+2z)\overline{k}$

Vector \overline{A} is Irrotational \Rightarrow curl $\overline{A} = \overline{0}$

$$\Rightarrow \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x + 2y + az & bx - 3y - z & 4x + cy + 2z \end{vmatrix} = \overline{0}$$

$$\Rightarrow (c+1)\overline{i} + (a-4)\overline{j} + (b-2)\overline{k} = \overline{0}$$
$$\Rightarrow (c+1)\overline{i} + (a-4)\overline{j} + (b-2)\overline{k} = 0\overline{i} + 0\overline{j} + 0\overline{k}$$

Comparing both sides,

$$c + 1 = 0, a - 4 = 0, b - 2 = 0$$

c = -1, a = 4, b = 2

Now $\overline{A} = (x+2y+4z)\overline{i} + (2x-3y-z)\overline{j} + (4x-y+2z)\overline{k}$, on substituting the values of *a*, *b*, *c*

we have $\overline{A} = \nabla \phi$.

$$\Rightarrow \overline{A} = (x+2y+4z)\overline{i} + (2x-3y-z)\overline{j} + (4x-y+2z)\overline{k} = \overline{i}\frac{\partial\phi}{\partial x} + \overline{j}\frac{\partial\phi}{\partial y} + \overline{k}\frac{\partial\phi}{\partial z}$$

Comparing both sides, we have

$$\frac{\partial \phi}{\partial x} = x + 2y + 4z \Longrightarrow \phi = \frac{x^2}{2} + 2xy + 4zx + f_1(y, z)$$

$$\frac{\partial \phi}{\partial y} = 2x - 3y - z \Longrightarrow \phi = 2xy - 3y^2/2 - yz + f_2(x, z)$$

$$\frac{\partial \phi}{\partial z} = 4x - y + 2z \Longrightarrow \phi = 4xz - yz + z^2 + f_3(y, x)$$

Hence $\phi = x^2/2 - 3y^2/2 + z^2 + 2xy + 4zx - yz + c$

VECTOR CALCULUS

Laplacian Operator

$$\nabla \cdot \nabla \phi = \sum \bar{i} \cdot \frac{\partial}{\partial x} \left(\bar{i} \frac{\partial \phi}{\partial x} + \bar{j} \frac{\partial \phi}{\partial y} + \bar{k} \frac{\partial \phi}{\partial z} \right) = \sum \frac{\partial^2 \phi}{\partial x^2} = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \phi = \nabla^2 \phi$$

Thus the operator $\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ is called Laplacian operator.

Note : (i). $\nabla^2 \phi = \nabla . (\nabla \phi) = div(grad \phi)$

(ii). If $\nabla^2 \phi {=} 0$ then ϕ is said to satisfy Laplacian equation. This ϕ is called a harmonic function.

PROBLEMS

1. Prove that $div.(grad r^m) = m(m+1)r^m - 2 (or) \nabla^2(r^m) = m(m1)r^m - 2 (or)$ $\nabla^2(r^n) = n(n+1)r^n - 2$

Sol: Let $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ and $r = |\overline{r}|$ then $r^2 = x^2 + y^2 + z^2$.

Differentiating w.r.t. 'x' partially, wet get $2r \frac{\partial r}{\partial x} = 2x \Rightarrow \frac{\partial r}{\partial x} = \frac{x}{r}$.

Similarly
$$\frac{\partial r}{\partial y} = \frac{y}{r}$$
 and $\frac{\partial r}{\partial z} = \frac{z}{r}$
Now $grad(r^{m}) = \sum \overline{i} \frac{\partial}{\partial x} (r^{m}) = \sum \overline{i} m r^{m-1} \frac{\partial r}{\partial x} = \sum \overline{i} m r^{m-1} \frac{x}{r} = \sum \overline{i} m r^{m-2} x$
 $\therefore div (grad r^{m}) = \sum \frac{\partial}{\partial x} [mr^{m-2}x] = m \sum \left[(m-2)r^{m-3} \frac{\partial r}{\partial x} x + r^{m-2} \right]$
 $= m \sum \left[(m-2)r^{m-4}x^{2} + r^{m-2} \right] = m [(m-2)r^{m-4} \sum x^{2} + \sum r^{m-2}]$
 $= m [(m-2)r^{m-4}(r^{2}) + 3r^{m}-2]$
 $= m [(m-2)r^{m-2} + 3r^{m}-2]$
 $= m [(m-2+3)r^{m-2}] = m(m+1)r^{m}-2.$
Hence $\overline{v}^{2}(r^{m}) = m(m+1)r^{m}-2$
2. Show that $\nabla^{2}[f(\mathbf{r})] = \frac{d^{2}f}{dr^{2}} + \frac{2}{r} \frac{df}{dr} = f^{11}(r) + \frac{2}{r} f^{1}(r)$ where $\mathbf{r} = |\overline{r}|$.

Sol: grad
$$[f(r)] = \nabla f(r) = \sum_{i=1}^{\infty} i \frac{\partial}{\partial x} [f(r)] = \sum_{i=1}^{\infty} i f^{i}(r) \frac{\partial r}{\partial x} = \sum_{i=1}^{\infty} i f^{i}(r) \frac{x}{r}$$

$$\therefore \operatorname{div} [\operatorname{grad} f(r)] = \nabla^2 [f(r)] = \nabla \cdot \nabla f(r) = \sum \frac{\partial}{\partial x} \left[f^1(r) \frac{x}{r} \right]$$
$$= \sum \frac{r \frac{\partial}{\partial x} [f^1(r)x] - f^1(r)x \frac{\partial}{\partial x}(r)}{r^2}$$
$$= \sum \frac{r \left(f^{11}(r) \frac{\partial r}{\partial x} x + f^1(r) \right) - f^1(r)x \left(\frac{x}{r} \right)}{r^2}$$
$$= \sum \frac{r f^{11}(r) \frac{x}{r} x + r f^1(r) - f^1(r)x \left(\frac{x}{r} \right)}{r^2}$$
$$= \frac{\sum r f^{11}(r) \frac{x}{r} x + r f^1(r) - x^2}{r^2} \cdot \frac{f^1(r)}{r}$$
$$= \frac{f^{11}(r)}{r^2} \sum x^2 + \frac{1}{r} \sum f^1(r) - \frac{1}{r^3} f^1(r) \sum x^2$$
$$= \frac{f^{11}(r)}{r^2} (r^2) + \frac{3}{r} f^1(r) - \frac{1}{r^3} f^1(r) r^2$$
$$= f^{11}(r) + \frac{2}{r} f^1(r)$$

3. If ϕ satisfies Laplacian equation, show that $\nabla \phi$ is both solenoidal and irrotational. Sol: Given $\nabla^2 \phi = 0 \Rightarrow div(grad \phi) = 0 \Rightarrow grad \phi$ is solenoidal

We know that $curl(grad \phi) = \overline{0} \Rightarrow grad \phi$ is always irrotational

4. Prove that curl grad $\phi = 0$.

Proof: Let ϕ be any scalar point function. Then

$$grad \phi = \overline{i} \frac{\partial \phi}{\partial x} + \overline{j} \frac{\partial \phi}{\partial y} + \overline{k} \frac{\partial \phi}{\partial z}$$
$$curl(grad \phi) = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} & \frac{\partial \phi}{\partial z} \end{vmatrix}$$
$$= \overline{i} \left(\frac{\partial^2 \phi}{\partial y \partial z} - \frac{\partial^2 \phi}{\partial z \partial y} \right) - \overline{j} \left(\frac{\partial^2 \phi}{\partial x \partial z} - \frac{\partial^2 \phi}{\partial z \partial x} \right) - \overline{k} \left(\frac{\partial^2 \phi}{\partial x \partial y} - \frac{\partial^2 \phi}{\partial y \partial x} \right) = \overline{0}$$
Note : Since $Curl(grad \phi) = \overline{0}$, we have $grad \phi$ is always irrotational.

VECTOR CALCULUS

5. Prove that $div \ curl \overline{f} = 0$

$$\Pr{oof} : Let \ \bar{f} = f_1 \bar{i} + f_2 \bar{j} + f_3 \bar{k}$$
$$\therefore curl \ \bar{f} = \nabla \times \bar{f} = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_1 & f_2 & f_3 \end{vmatrix}$$

$$= \left(\frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z}\right) \overline{i} - \left(\frac{\partial f_3}{\partial x} - \frac{\partial f_1}{\partial z}\right) \overline{j} + \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right) \overline{k}$$

- $\therefore \quad div \ curl \ \overline{f} = \nabla . (\nabla \times \overline{f}) = \frac{\partial}{\partial x} \left(\frac{\partial f_3}{\partial y} \frac{\partial f_2}{\partial z} \right) \frac{\partial}{\partial y} \left(\frac{\partial f_3}{\partial x} \frac{\partial f_1}{\partial z} \right) + \frac{\partial}{\partial z} \left(\frac{\partial f_2}{\partial x} \frac{\partial f_1}{\partial y} \right)$
- $=\frac{\partial^2 f_3}{\partial x \partial y} \frac{\partial^2 f_2}{\partial x \partial z} \frac{\partial^2 f_3}{\partial y \partial x} + \frac{\partial^2 f_1}{\partial y \partial z} + \frac{\partial^2 f_2}{\partial z \partial x} \frac{\partial^2 f_1}{\partial z \partial y} = 0$

Note : Since $div(curl \overline{f}) = 0$, we have $curl \overline{f}$ is always solenoidal.

VECTOR INTEGRATION

Line Integral

Any integral which is to be evaluated over a Curve C is called Line integral of F.

Note : Work done by \overline{F} along a curve c is $\int \overline{F} dr$

PROBLEMS

1. If $F = (x^2-27) \ i -6yz \ j +8xz^2 \ k$, evaluate $\int \overline{F} \cdot dr$ from the point (0,0,0) to the point (1,1,1) along the Straight line from (0,0,0) to (1,0,0), (1,0,0) to (1,1,0) and (1,1,0) to (1,1,1).

Sol: Given $\overline{F} = (x^2 - 27)\overline{i} - 6yz\overline{j} + 8xz^2\overline{k}$

Now $\vec{\mathbf{r}} = x\vec{\mathbf{i}} + y\vec{\mathbf{j}} + z\vec{k} \implies d\vec{\mathbf{r}} = dx\vec{\mathbf{i}} + dy\vec{\mathbf{j}} + dz\vec{k}$

 $\vec{F} \cdot d\vec{r} = (x^2 - 27)dx - (6yz)dy + 8xz^2dz$ DEPARTMENT OF HUMANITIES & SCIENCES ©MRCET (EAMCET CODE: MLRD) 157

VECTOR CALCULUS

(i) Along the straight line from O = (0,0,0) to A = (1,0,0)Here y = 0 = z and dy = dz = 0. Also x changes from 0 to 1.

$$\therefore \int_{0A} \bar{F} \cdot d\bar{r} = \int_{0}^{1} (x^{2} - 27) dx = \left[\frac{x^{3}}{3} - 27x \right]_{0}^{1} = \frac{1}{3} - 27 = \frac{-80}{3}$$

(ii) Along the straight line from A = (1,0,0) to B = (1,1,0) Here $x = 1, z = 0 \Rightarrow dx = 0, dz = 0. y$ changes from 0 to 1.

$$\therefore \int_{AB} \bar{F} \cdot d\bar{r} = \int_{y=0}^{1} (-6yz) dy = 0$$

(iii) Along the straight line from B = (1,1,0) to C = (1,1,1)x = 1 = y dx = dy = 0 and z changes from 0 to 1.

$$\therefore \int_{BC} \bar{F} \cdot d\bar{r} = \int_{z=0}^{1} 8xz^2 dz = \int_{z=0}^{1} 8xz^2 dz = \left[\frac{8z^3}{3}\right]_{0}^{1} = \frac{8}{3}$$

$$(i) + (ii) + (iii) \Rightarrow \int_{C} \bar{F} \cdot d\bar{r} = \frac{88}{3}$$

2. If $\overline{F} = (5xy - 6x^2)\overline{i} + (2y - 4x)\overline{j}$, evaluate $\int_C \overline{F} \cdot d\overline{r}$ along the curve C in xyplane $y = x^3$ from (1,1) to (2,8).

Sol: Given
$$\overline{F} = (5xy - 6x^2) i + (2y - 4x) \overline{j}$$
,-----(1)
Along the curve $y = x^3$, $dy = 3x^2 dx$

$$\vec{F} = (5x^4 - 6x^2)\vec{i} + (2x^3 - 4x)\vec{j}, [Putting y = x^3 in (1)]$$
$$d\vec{r} = dx\vec{i} + dy\vec{j} = dx\vec{i} + 3x^2 dx \vec{j}$$

$$\ddot{F} \cdot d\bar{r} = \left[(5x^4 - 6x^2)\bar{i} + (2x^3 - 4x)\bar{j} \right] \cdot \left[dx\bar{i} + 3x^2 dx\bar{j} \right]$$

$$= (5x^4 - 6x^2) dx + (2x^3 - 4x)3x^3 dx$$

$$= (6x^5 + 5x^4 - 12x^3 - 6x^2)dx$$

Hence
$$\int_{y=x^3} \bar{F} \cdot d\bar{r} = \int_{1}^{2} (6x^5 + 5x^4 - 12x^3 - 6x^2) dx$$

= $\left(6 \cdot \frac{x^6}{6} + 5 \cdot \frac{x^5}{5} - 12 \cdot \frac{x^4}{4} - 6 \cdot \frac{x^3}{4}\right) = \left(x^6 + x^5 - 3x^4 - 2x^3\right)_{1}^{2}$

MATHEMATICS -II

$$= 16(4+2-3-1) - (1+1-3-2) = 32+3 = 35$$

3. Find the work done by the force $\overline{F} = z\overline{i} + x\overline{j} + y\overline{k}$, when it moves a particle along the arc of the curve $\overline{r} = cost \overline{i} + sint \overline{j} - t \overline{k} from t = 0$ to $t = 2\pi$

Sol: Given force $\overline{F} = z\overline{i} + x\overline{j} + y\overline{k}$ and the arc is $\overline{r} = cost\overline{i} + sint\overline{j} - t\overline{k}$ i.e., x = cost, y = sint, z = -t $\therefore d\overline{r} = (-sint\overline{i} + cost\overline{j} - \overline{k})dt$

 $\therefore \bar{F} \cdot d\bar{r} = (-t \bar{i} + \cos \bar{j} + \sin t \bar{k}). (-\sin t \bar{i} + \cos \bar{j} - \bar{k})dt = (t \sin t + \cos^2 t - \sin t)dt$

Hence work done = $\int_{0}^{2\pi} \bar{F} \cdot d\bar{r} = \int_{0}^{2\pi} (t \sin t + \cos^2 t - \sin t) dt$ = $[t(-\cos t)]^{2\pi} - \int_{0}^{2\pi} (-\sin t) dt + \int_{0}^{2\pi} \frac{1 + \cos 2t}{t} dt - \int_{0}^{2\pi} \sin t dt$

$$= \left[r(\cos t) \right]_{0}^{2\pi} + \frac{1}{2} \left(t + \frac{\sin 2t}{2} \right)_{0}^{2\pi} + \left(\cos t \right)_{0}^{2\pi}$$
$$= -2\pi - (1-1) + \frac{1}{2} (2\pi) + (1-1) = -2\pi + \pi = -\pi$$

Surface Integral

Any integral which is to be evaluated over a surface S is called surface integral and it is denoted by $\int \vec{F} \cdot \vec{n} ds$

Let $F = F_1 i + F_2 j + F_3 k$, where *F1*, *F2*, *F3* are continuous and differentiable functions of *x*, *y*, *z*.

Then
$$\int_{S} \overline{F}.ndS = \iint_{S} F_1 dy dz + F_2 dx dz + F_3 dx dy$$

Note: 1.Let R be the projection of S on xy plane.then

 $\int_{S} \overline{F}.ndS = \iint_{R} \frac{\overline{F}.\overline{n}}{\left|\overline{n}.\overline{k}\right|} dxdy$

2. Let R be the projection of S on yz plane.then

$$\int_{S} \overline{F}.ndS = \iint_{R} \frac{\overline{F.n}}{\left|\overline{n.i}\right|} dy dz$$

3. Let *R* be the projection of *S* on *zx* plane.then $\int_{S} \overline{F} \cdot n dS = \iint_{R} \frac{\overline{F} \cdot \overline{n}}{|\overline{n} \cdot \overline{j}|} dx dz$

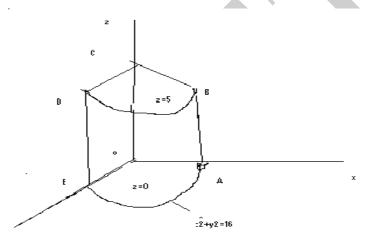
PROBLEMS

1.Evaluate $\int \overline{F} \cdot ndS$ where $\overline{F} = zi + xj - 3y^2zk$ and S is the surface $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = 5.

Sol. The surface S is $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = 5. $\varphi = x^2 + y^2 = 16$ Let

Then

$$\nabla \phi = \bar{i} \frac{\partial \phi}{\partial x} + \bar{j} \frac{\partial \phi}{\partial y} + \bar{k} \frac{\partial \phi}{\partial z} = 2x\bar{i} + 2y\bar{j}$$



unit normal

$$\overline{n} = \frac{\nabla \phi}{|\nabla \phi|} = \frac{x\overline{i} + y\overline{j}}{4} (\because x^2 + y^2 = 16)$$

Let R be the projection of S on yz-planeThen

$$\int_{S} \overline{F}.ndS = \iint_{R} \overline{F}.\overline{n} \frac{dydz}{\left|\overline{n} \ . \ \overline{i}\right|} \quad \dots \dots \ast \ast$$

Given

$$\mathbf{F} = \mathbf{z}\mathbf{i} + \mathbf{x}\mathbf{j} - 3\mathbf{y}^2\mathbf{z}\mathbf{k}$$

 \overline{n} . $\overline{i} = \frac{x}{4}$

$$\overline{F} \cdot \overline{n} = \frac{1}{4}(xz + xy)$$

and

In *yz*-plane, x = 0, y = 4

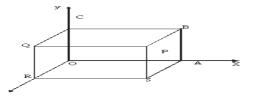
In first octant, y varies from 0 to 4 and z varies from 0 to 5.

 $\int_{S} \overline{F} \cdot n dS$ = $\int_{y=0}^{4} \int_{z=0}^{5} (y+z) dz dy = 90.$

2: If $\overline{F} = zi + xj - 3y^2zk$, evaluate $\int_{S} \overline{F.ndS}$ where S is the surface of the cube bounded by x = 0, x = a, y = 0, y = a, z = 0, z = a

Sol. Given that S is the surface of the x = 0, x = a, y = 0, y = a, z = 0, z = a, and

$$\bar{F} = zi + xj - 3y2zk$$



we need to evaluate $\int F.ndS$.

(I)For OABC

Equation is z = 0 and dS = dxdy

n = -k

$$\int_{S_1} \overline{F.ndS} = -\int_{x=0}^{a} -\int_{y=0}^{a} (yz) \, dx \, dy = 0$$

(II)For PQRS

Equation is z = a and dS = dxdy

n = k

$$\int_{S_2} \overline{F} \cdot n dS = \int_{x=0}^{a} \left(\int_{y=0}^{a} y(a) dy \right) dx = \frac{a^4}{2}$$

(III)For OCQR

Equation is x = 0, and n = -i, dS = dydzDEPARTMENT OF HUMANITIES & SCIENCES ©MRCET (EAMCET CODE: MLRD) 161

MATHEMATICS -II

$$\int_{S_3} \overline{F} \cdot ndS = \int_{y=0}^a \int_{z=0}^a 4xzdydz = 0$$

(IV)For ABPS

Equation is x = a, and $\mathbf{n} = -\mathbf{i}$, dS = dydz

$$\int_{S_3} \overline{F.ndS} = \int_{y=0}^{a} \left(\int_{z=0}^{a} 4azdz \right) dy = 2a^4$$

(V)For OASR Equation is y = 0, and $\overline{n} = -\overline{j}$, dS = dxdz

$$\int_{S_5} \overline{F} \cdot ndS = \int_{y=0}^{a} \int_{z=0}^{a} y^2 dz dx = 0$$

(VI)For *PBCQ* Equation is y = a, and n = -j, dS = dxdz

$$\int_{S_6} \overline{F.ndS} = - \int_{y=0}^{a} \int_{z=0}^{a} y^2 dz dx = 0$$

Adding (i) to (vi)

we get
$$\int_{S_6} \overline{F.ndS} = 0 + \frac{a^4}{2} + 0 + 2a^4 + 0 - a4 = \frac{3a^4}{2}$$

Volume Integrals

Let V be the volume bounded by a surface r = f(u,v). Let F(r) be a vector point function define over V. Divide V into m sub-regions of volumes $\delta V_1, \delta V_2, \dots, \delta V_m$

Let $P_i(\bar{r}_i)$ be a point in δV_i . Then form the sum $I_m = \sum_{i=1}^m \bar{F}(r_i) \delta V_i$. Let $m \to \infty$ in such a way that δV_i shrinks to a point,. The limit of I_m if it exists, is called the volume integral of $\bar{F}(\bar{r})$ in the region V is denoted by $\int_V \bar{F}(\bar{r}) dv$ or $\int_V \bar{F} dv$.

Cartesian Form : Let $\overline{F}(r) = F_1 \overline{i} + F_2 \overline{i} + F_3 \overline{k}$ where F_1 , F_2 , F_3 are functions of x, y, z. We know that $dv = dx \, dy \, dz$. The volume integral given by $\int_{v} \overline{F} dv = \iiint (F_1 \overline{i} + F_2 \overline{i} + F_3 \overline{k}) \, dx \, dy \, dz$.

$$= \bar{i} \iiint F_1 dx dy dz + \bar{j} \iiint F_2 dx dy dz + \bar{k} \iiint F_3 dx dy dz$$

PROBLEMS

1.If $\overline{F} = 2xz \, i - x \, j + y^2 k$ evaluate $\int \overline{F} \, dv \, over \, V$ where V is the region bounded by the surfaces $x = 0, x = 2, y = 0, y = 6, z = x^2, z = 4$.

Given $\overline{F} = 2xz \, i - x \, j + y^2 k$.

The volume integral is given by

$$\int \overline{F} \, dv = \int_0^2 \int_{y=0}^6 \int_{z=x^2}^4 (2xz \, i - x \, j + y^2 k) dx dy dz$$

$$= i \int_{0}^{2} \int_{y=0}^{6} \int_{z=x^{2}}^{4} (2xz) dx dy dz - j \int_{0}^{2} \int_{y=0}^{6} \int_{z=x^{2}}^{4} (x) dx dy dz + k \int_{0}^{2} \int_{y=0}^{6} \int_{z=x^{2}}^{4} (y^{2}) dx dy dz$$
$$= i \int_{0}^{2} \int_{y=0}^{6} x(16 - x^{4}) dx dy - j \int_{0}^{2} \int_{y=0}^{6} x(4 - x^{2}) dx dy + k \int_{0}^{2} \int_{y=0}^{6} y^{2} (x^{2} - 4) dx dy$$

$$= i \int_{0}^{2} \int_{y=0}^{6} (16x - x^{5}) \, dx \, dy - j \int_{0}^{2} \int_{y=0}^{6} (4x - x^{3}) \, dx \, dy + k \int_{0}^{2} \int_{y=0}^{6} y^{2} (x^{2} - 4) \, dx \, dy$$

$$= i \int_{0}^{2} 6(16x - x^{5}) \, dx - j \int_{0}^{2} 6(4x - x^{3}) \, dx + k \int_{0}^{2} 72(x^{2} - 4) \, dx$$

$$= i \int_{0}^{2} (96x - 6x^{5}) \, dx - j \int_{0}^{2} (24x - 6x^{3}) \, dx + k \int_{0}^{2} (72x^{2} - 218) \, dx$$

$$= 128i - 24j - 384k$$

Vector Integral Theorems

Introduction

In this chapter we discuss three important vector integral theorems: (i) Gauss divergence theorem, (ii) Green's theorem in plane and (iii) Stokes theorem. These theorems deal with conversion of

(i)

F.n ds into a volume integral where S is a closed surface.

(ii)

 $\int_{C} F dr$ into a double integral over a region in a plane when C is a closed curve in the plane and.

(iii)

 $\int_{S} (\nabla \times \overline{A}) \cdot \overline{n} \, ds$ into a line integral around the boundary of an open two sided surface.

Gauss Divergence Theorem

(Transformation between surface integral and volume integral)

Let S be a closed surface enclosing a volume V. If \overline{F} is a continuously differentiable vector point function, then

$$\int_{V} div F dv = \int_{s} \bar{F} \cdot \bar{n} dS$$

When n is the outward drawn normal vector at any point of S.

PROBLEMS

1. Verify Gauss Divergence theorem for $\overline{F} = (x^3 - yz)\overline{i} - 2x^2y\overline{j} + z\overline{k}$ taken over the surface of the cube bounded by the planes x = y = z = a and coordinate planes.

Sol: By Gauss Divergence theorem we have

$$\int_{S} \overline{F}.\overline{n}dS = \int_{V} div\overline{F}dv$$

Now $div \ \bar{f} = \sum \bar{i} \cdot \left(\frac{\partial \bar{f}}{\partial x}\right) = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$ $= 3x^2 - 2x^2 + 1$

Here the cube bounded by the planes x = y = z = a and coordinate planes.

Hence

x 🔸 0 to a

 $z \rightarrow 0$ to a

$$RHS = \int_{0}^{a} \int_{0}^{a} \int_{0}^{a} (3x^{2} - 2x^{2} + 1)dx \, dy \, dz = \int_{0}^{a} \int_{0}^{a} \int_{0}^{a} (x^{2} + 1) \, dx \, dy \, dz = \int_{0}^{a} \int_{0}^{a} \left(\frac{x^{3}}{3} + x\right)_{0}^{a} dy \, dz$$

$$\int_{0}^{a} \int_{0}^{a} \left[\frac{a^{3}}{3} + a\right] dy dz = \int_{0}^{a} \left[\frac{a^{3}}{3} + a\right] (y)_{0}^{a} dz = \left(\frac{a^{3}}{3} + a\right) a \int_{0}^{a} dz = \left(\frac{a^{3}}{3} + a\right) (a^{2}) = \frac{a^{5}}{3} + a^{3} \dots \dots (1)$$

Verification: We will calculate the value of $\int F.ndS$ over the six faces of the cube.

(i)

For $S_1 = PQAS$; unit outward drawn normal $\bar{n} = \bar{i}$

VECTOR CALCULUS

x = a; ds = dy dz; $0 \le y \le a, 0 \le z \le a$

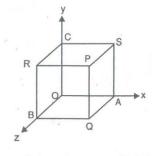
$$\therefore \overline{F.n} = x^3 - yz = a^3 - yz \sin cex = a$$

$$\therefore \iint_{S_1} \overline{F.n} dS = \int_{z=0}^{a} \int_{y=0}^{a} (a^3 - yz) dy dz$$

$$= \int_{z=0}^{a} \left[a^3 y - \frac{y^2}{2} z \right]_{y=0}^{a} dz$$

$$= \int_{z=0}^{a} \left(a^4 - \frac{a^2}{2} z \right) dz$$

$$= a^5 - \frac{a^4}{4} \dots (2)$$



(ii)

For $S_2 = OCRB$; unit outward drawn normal $\overline{n} = -ix = 0$; ds = dy dz; $0 \le y \le a, y \le z \le a$ $\overline{F}.\overline{n} = -(x^3 - yz) = yz$ since x = 0 $\int_{S_z} \int \overline{F}.\overline{n}dS = \int_{z=0}^a \int_y^a yz \, dy \, dz = \int_{z=0}^a \left[\frac{y^2}{2}\right]_{y=0}^a z dz$ $= \frac{a^2}{2} \int_{z=0}^a z dz = \frac{a^4}{4} \dots (3)$

(iii)

For
$$S_3 = RBQP$$
; $z = a$; $ds = dxdy$; $\bar{n} = \bar{k}$
 $0 \le x \le a, 0 \le y \le a$
 $\bar{F}.\bar{n} = z = a$ since $z = a$

$$\therefore \iint_{S_3} \overline{FndS} = \int_{y=0}^a \int_{x=0}^a adxdy = a^3.....(4)$$

(iv)

For
$$S_4 = OASC$$
; $z = 0$; $\overline{n} = -\overline{k}$, $ds = dxdy$;
 $0 \le x \le a, 0 \le y \le a$
 $\overline{F}.\overline{n} = -z = 0$ since $z = 0$
 $\int_{S_4} \int \overline{F}.\overline{n}dS = 0...(5)$

(v)

For
$$S_5 = PSCR$$
; $y = a$; $\bar{n} = \bar{j}$, $ds = dzdx$;

$$0 \le x \le a, 0 \le z \le a$$

$$\bar{F}.\bar{n} = -2x^2y = -2ax^2 \text{ since } y = a$$

$$\iint_{S_5} \bar{F}.\bar{n}dS = \int_{x=0}^{a} \int_{z=0}^{a} (-2ax^2)dzdx$$

MATHEMATICS -II

$$\int_{x=0}^{a} (-2ax^{2}z)_{z=0}^{a} dx$$
$$= -2a^{2} \left(\frac{x^{3}}{3}\right)_{0}^{a} = \frac{-2a^{5}}{3} \dots (6)$$

(vi)

For
$$S_6 = OBQA$$
; $y = 0$; $\bar{n} = -\bar{j}$, $ds = dzdx$;
 $0 \le x \le a, 0 \le y \le a$
 $\bar{F}.\bar{n} = 2x^2y = 0$ since $y = 0$

$$\int_{S_6} \int \bar{F}.\bar{n}dS = 0$$

$$\int_{S_6} \int \bar{F}.\bar{n}dS = \int_{S_1} \int + \int_{S_2} \int + \int_{S_5} \int + \int_{S_4} \int + \int_{S_5} \int + \int_{S_6} \int +$$

Hence Gauss Divergence theorem is verified

2. Use divergence theorem to evaluate $\iint_{S} \overline{F} \cdot dS$ where $\overline{F} = 4xi - 2y^{2}j + z^{2}k$ and S is the surface bounded by the region $x^{2}+y^{2}=4$, z=0 and z=3.

Sol: We have

$$div\overline{F} = \nabla .\overline{F} = \frac{\partial}{\partial x}(4x) + \frac{\partial}{\partial y}(-2y^2) + \frac{\partial}{\partial z}(z^2) = 4 - 4y + 2z$$

By divergence theorm,

$$\iint_{S} \overline{F} \cdot dS = \iiint_{V} \sqrt{\sqrt{4-x^{2}}} \sqrt{\sqrt{4-x^{2}}} = \int_{X=-2}^{2} \int_{y=-\sqrt{4-x^{2}}} \sqrt{(4-4y+2z)} dx dy dz$$
$$= \int_{2}^{2} \int_{\sqrt{4-x^{2}}} [(4-4y)z+z^{2}]_{0}^{3} dx dy$$
$$= \int_{2}^{2} \int_{\sqrt{4-x^{2}}} [12(1-y)+9] dx dy$$
$$= \int_{2}^{2} \int_{\sqrt{4-x^{2}}} (21-12y) dx dy$$

VECTOR CALCULUS

$$= \int_{-2}^{2} \left[\int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} 21 \, dy - 12 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} y \, dy \right] dx$$
$$= \int_{-2}^{2} \left[21 \times 2 \int_{0}^{\sqrt{4-x^2}} dy - 12(0) \right] dx$$

[Since the integrans in first integral is even and in 2nd integral it is on add function]

$$= 42 \int_{-2}^{2} (y)_{0}^{\sqrt{4-x^{2}}} dx$$

$$= 42 \int_{-2}^{2} \sqrt{4-x^{2}} dx = 42 \times 2 \int_{0}^{2} \sqrt{4-x^{2}} dx$$

$$= 84 \left[\frac{x}{2} \sqrt{4-x^{2}} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_{0}^{2}$$

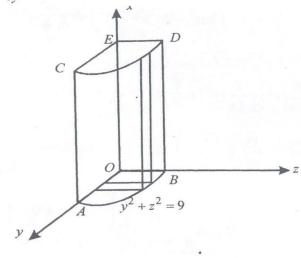
$$= 84 \left[0 + 2 \cdot \frac{\pi}{2} - 0 \right] = 84\pi$$

3. Verify divergence theorem for $2x^2y\bar{i} - y^2\bar{j} + 4xz^2\bar{k}$ taken over the region of first octant of the cylinder $y^2 + z^2 = 9$ and x = 2.

(or) Evaluate $\iint_{S} \overline{F}.\overline{ndS}$, where $\overline{F} = 2\mathbf{x}^2\mathbf{y}\,\overline{i} \cdot \mathbf{y}^2\,\overline{j} + 4\mathbf{x}\mathbf{z}^2\,\overline{k}$ and S is the closed surface of the

region in the first octant bounded by the cylinder $y^2+z^2 = 9$ and the planes x = 0, x = 2, y = 0, z = 0

Sol: Let $\overline{F} = 2x^2y\,\overline{i} \cdot y^2\,\overline{j} + 4xz^2\,\overline{k}$ $\therefore \nabla$. $\overline{F} = \frac{\partial}{\partial x}(2x^2) + \frac{\partial}{\partial y}(-y^2) + \frac{\partial}{\partial z}(4xz^2) = 4xy - 2y + 8xz$



VECTOR CALCULUS

Now we sall calculate $| \overline{F}.\overline{n} ds for all the five faces.$

$$\int_{S} \overline{F}.\overline{n}dS = \int_{s_1} \overline{F}.\overline{n}dS + \int_{s_2} \overline{F}.\overline{n}dS + \dots + \int_{s_5} \overline{F}.\overline{n}dS$$

Where S_1 is the face *OAB*, S_2 is the face *CED*, S_3 is the face *OBDE*, S_4 is the face *OACE* and S_5 is the curved surface *ABDC*.

(i)
On
$$S_1: x = 0, \overline{n} = -i$$
 $\therefore \overline{F} \cdot \overline{n} = 0$ Hence $\int_{s_1} \overline{F} \cdot \overline{n} dS$
(ii) On $S_2: x = 2, \overline{n} = i$ $\therefore \overline{F} \cdot \overline{n} = 8y$
 $\therefore \int_{s_2} \overline{F} \cdot \overline{n} dS = \int_0^3 \int_0^{\sqrt{9-z^2}} 8y dy dz = \int_0^3 8 \left(\frac{y^2}{2}\right)_0^{\sqrt{9-z^2}} dz$

VECTOR CALCULUS

$$= 4 \int_{0}^{3} (9 - z^{2}) dz = 4 \left(9z - \frac{z^{3}}{3}\right)_{0}^{3} = 4(27 - 9) = 72$$
(iii) On $S_{3} : y = 0, \overline{n} = -j, ..., \overline{F}.\overline{n} = 0$ Hence $\int_{S_{4}} \overline{F}.\overline{n}dS$
(tv) On $S_{4} : z = 0, \overline{n} = -k$. $\overline{F}.\overline{n} = 0$. Hence $\int_{S_{4}} \overline{F}.\overline{n}ds = 0$
(v) On $S_{3} : y^{2} + z^{2} = 9, \overline{n} = \frac{\nabla(y^{2} + z^{2})}{|\nabla(y^{2} + z^{2})|} = \frac{2y\overline{y} + 2z\overline{k}}{\sqrt{4y^{2} + 4z^{2}}} = \frac{y\overline{y} + z\overline{k}}{\sqrt{4 \times 9}}$
 $\overline{F}.\overline{n} = -\frac{y^{3} + 4xz^{3}}{3}$ and $\overline{n}.\overline{k} = \frac{z}{3} = \frac{1}{3}\sqrt{9 - y^{2}}$
Hence $\int_{S_{4}} \overline{F}.\overline{n}ds = \int \int_{\overline{R}} \overline{F}.\overline{n} \frac{dx \, dy}{|n\overline{k}|}$ Where R is the projection of S_{5} on xy - plane.
$$= \int_{\overline{R}} \int \frac{4xz^{3} - y^{3}}{\sqrt{9 - y^{2}}} dx \, dy = \int_{x=0}^{2} \int_{y=0}^{3} [4x(9 - y^{2}) - y^{3}(9 - y^{2})^{\frac{1}{2}}] dy \, dx$$
Tofind $\int_{0}^{1} y^{3}(\sqrt{9 - y^{2}}) dy$
sub
 $y = 3\sin\theta$
 $dy = 3\cos\theta$
 $\int_{0}^{3} y^{3}(\sqrt{9 - y^{2}}) dy = \int_{0}^{\frac{\pi}{2}} \sin^{3}\theta d\theta$
We get
 $\int_{0}^{3} \overline{F}.\overline{n}ds$

$$= \int_{0}^{2} 72x \, dx - 18 \int_{0}^{2} dx = 72\left(\frac{x^{2}}{2}\right)_{0}^{2} - 18(x)_{0}^{2} = 144 - 36 = 108$$
Thus $\int_{5}^{2} \overline{F}.\overline{n}ds = 0 + 72 + 0 + 0 + 108 = 180 \dots (2)$

Hence the Divergence theorem is verified from the equality of (1) and (2).

4. Verify Gauss divergence theorem for $\overline{F} = x^3 \overline{\iota} + y^3 \overline{j} + z^3 \overline{k}$ taken over the cube bounded by x = 0, x = a, y = 0, y = a, z = 0, z = a.

Sol: We have $\overline{F} = x^{3}\overline{i} + y^{3}\overline{j} + z^{3}\overline{k}$ $\nabla.\overline{F} = \frac{\partial}{\partial x}(x^{3}) + \frac{\partial}{\partial y}(y^{3}) + \frac{\partial}{\partial z}(z^{3}) = 3x^{2} + 3y^{2} + 3z^{2}$ $\int \int \int \nabla.\overline{F} \, dv = \int \int \int (3x^{2} + 3y^{2} + 3z^{2}) dx \, dy \, dz$ $= 3 \int_{x=0}^{a} \int_{y=0}^{a} (x^{2} + y^{2} + z^{2}) dx \, dy \, dz$ $= 3 \int_{x=0}^{a} \int_{y=0}^{a} (\frac{x^{3}}{3} + xy^{2} + z^{2}x)_{0}^{a} dy \, dz$ $= 3 \int_{x=0}^{a} \int_{y=0}^{a} (\frac{a^{3}}{a} + ay^{2} + az^{2}) dy \, dz$ $= 3 \int_{0}^{a} (\frac{a^{3}}{3}y + a\frac{y^{3}}{3} + az^{2}y)_{0}^{a} dz$ $= 3 \int_{0}^{a} (\frac{a^{4}}{3} + \frac{a^{4}}{3} + a^{2}z^{2}) dz = 3 \int_{0}^{a} (\frac{2}{3}a^{4} + a^{2}z^{2}) dz$ $= 3 (\frac{2}{3}a^{4}z + a^{2}.\frac{z^{3}}{3})_{0}^{a} = 3(\frac{2}{3}a^{5} + \frac{1}{3}a^{5})$ $= 3a^{5}$

To evaluate the surface integral divide the closed surface *S* of the cube into 6 parts. i.e.,

 S_1 : The face *DEFA*; S_4 : The face *OBDC*

 S_2 : The face AGCO ; S_5 : The face GCDE

 S_3 : The face *AGEF* ;S₆: The face *AFBO*

$$\int_{S} \int \overline{F} \cdot \overline{n} ds = \int_{S_1} \int \overline{F} \cdot \overline{n} ds + \int_{S_2} \int \overline{F} \cdot \overline{n} ds + \dots + \int_{S_6} \int \overline{F} \cdot \overline{n} ds$$

On S₁, we have $\overline{n} = \overline{i}, x = a$

C

Q

R

MATHEMATICS -II

$$\therefore \iint_{s_1} \overline{F}.\overline{n}ds = \int_{z=0}^{a} \int_{y=0}^{a} \left(a^3\overline{i} + y^3\overline{j} + z^3\overline{k}\right).\overline{i}dydz$$

$$\iint_{S_1} \overline{F}.\overline{n}ds = \int_{z=0}^{a} \int_{y=0}^{a} \left(a^3\overline{i} + y^3\overline{j} + z^3\overline{k}\right).\overline{i}\,dy\,dz$$

$$= \int_{s_1}^{a} \int_{y=0}^{a} a^3dy\,dz = a^3 \int_{0}^{a} (y)_{0}^{a}\,dz$$

$$= a^4(z)_{0}^{a} = a^5$$

On S _2, we have $\bar{n} = -\bar{\imath}, x = 0$

$$\iint_{s_2} \overline{F}.\overline{n}ds = \int_{z=0}^{a} \int_{y=0}^{a} \left(y^3 \overline{j} + z^3 \overline{k} \right) \cdot \left(\overline{-i} \right) dy dz = 0$$

On S₃, we have $\overline{n} = \overline{j}, y = a$

$$\iint_{s_3} \overline{F}.\overline{n}ds = \int_{z=0}^{a} \int_{x=0}^{a} \left(x^3 \overline{i} + a^3 \overline{j} + z^3 \overline{k} \right).\overline{j}dxdz = a^3 \int_{z=0}^{a} \int_{x=0}^{a} dxdz = a^3 \int_{0}^{a} adz = a^4 \left(z \right)_{0}^{a}$$

= a^5

$$On S_{4}, we have \bar{n} = -\bar{j}, y = 0$$

$$\int_{S_{4}} \int \bar{F} \cdot \bar{n} ds = \int_{x=0}^{a} \int_{x=0}^{a} (x^{3}\bar{\iota} + z^{3}\bar{k}) \cdot (-\bar{j}) dx dz = 0$$

$$On S_{5}, we have \bar{n} = \bar{k}, z \neq a$$

$$\int_{S_{5}} \int \bar{F} \cdot \bar{n} ds = \int_{y=0}^{a} \int_{x=0}^{a} (x^{3}\bar{\iota} + y^{3}\bar{j} + a^{3}\bar{k}) \cdot \bar{k} dx dy$$

$$= \int_{y=0}^{a} \int_{x=0}^{a} a^{3} dx dy = a^{3} \int_{0}^{a} (x)_{0}^{a} dy = a^{4} (y)_{0}^{a} = a^{5}$$

$$On S_{6}, we have \bar{n} = -\bar{k}, z = 0$$

$$\int_{S_{6}} \int \bar{F} \cdot \bar{n} ds = \int_{y=0}^{a} \int_{x=0}^{a} (x^{3}\bar{\iota} + y^{3}\bar{j}) \cdot (-\bar{k}) dx dy = 0$$

$$Thus \iint_{S} \int \bar{F} \cdot \bar{n} ds = a^{5} + 0 + a^{5} + 0 = 3a^{5}$$

$$Hence \iint_{S} \bar{F} \cdot \bar{n} ds = \iint_{V} \bar{V} \cdot \bar{F} dv$$

.:. *The* Gauss divergence theorem is verified.

VECTOR CALCULUS

5. Compute $\int (ax^2 + by^2 + cz^2) dS$ over the surface of the sphere $x^2 + y^2 + z^2 = 1$

Sol: By divergence theorem
$$\int_{S} \overline{F} \cdot n dS = \int_{V} \overline{V} \cdot \overline{F} \, dv$$

Given $\overline{F} \cdot \overline{n} = ax^{2} + by^{2} + cz^{2}$. Let $\phi = x^{2} + y^{2} + z^{2} - 1$
 \therefore Normal vector \overline{n} to the surface ϕ is
 $\overline{V}\phi = \left(\overline{i}\frac{\partial}{\partial x} + \overline{j}\frac{\partial}{\partial y} + \overline{k}\frac{\partial}{\partial y}\right) (x^{2} + y^{2} + z^{2} - 1) = 2(x\overline{i} + y\overline{j} + z\overline{k})$

:. Unit normal vector $= \overline{n} = \frac{2(xi+yj+zk)}{2\sqrt{x^2+y^2+z^2}} = x\overline{i} + y\overline{j} + z\overline{k}$ Since $x^2 + y^2 + z^2 = 1$

$$\therefore F.n = F.(xi + yj + zk) = (ax^{2} + by^{2} + cz^{2}) = (axi + byj + czk).(xi + yj + zk)$$

i.e.,
$$\overline{F} = ax\overline{i} + by\overline{j} + cz\overline{k}$$
 $\nabla .\overline{F} = a + b + c$

Hence by Gauss Divergence theorem,

$$\int_{S} (ax^{2} + by^{2} + cz^{2})dS = \int_{V} (a + b + c)dv = (a + b + c)V = \frac{4\pi}{3}(a + b + c)$$

$$\int_{S} SInce V = \frac{4\pi}{3} is the volume of the sphere of unit radius$$

6. Use divergence theorem to evaluate $\iint_{S} \overline{F} \cdot d\overline{S}$ where $\overline{F} = x^{3}i + y^{3}j + z^{3}k$ and S is the surface of the sphere $x^{2} + y^{2} + z^{2} = r^{2}$

Sol: We have
$$\overline{V}.\overline{F} = \frac{\partial}{\partial x}(x^3) + \frac{\partial}{\partial y}(y^3) + \frac{\partial}{\partial z}(z^3) = 3(x^2 + y^2 + z^2)$$

∴ By divergence theorem,

$$\overline{V}.\overline{F}dV = \int \int_{V} \int \overline{V}.\overline{F}dV = \iiint (x^{2} + y^{2} + z^{2})dxdydz$$
$$= 3 \int_{r=0}^{a} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} r^{2}(r^{2}\sin\theta \, dr \, d\theta \, d\phi)$$

Applying spherical coordinates,

$$\int_{S} \int \overline{F} \cdot dS = 3 \int_{r=0}^{a} \int_{\theta=0}^{\pi} r^{4} \sin \theta \left[\int_{\phi=0}^{2\pi} d\phi \right] dr d\theta$$
$$= 3 \int_{r=0}^{a} \int_{\theta=0}^{\pi} r^{4} \sin \theta (2\pi - 0) dr d\theta = 6\pi \int_{r=0}^{a} r^{4} \left[\int_{0}^{\pi} \sin \theta d\theta \right] dr$$

VECTOR CALCULUS

$$= 6\pi \int_{\substack{r=0\\a}}^{a} r^4 (-\cos\theta)_0^{\pi} dr = -6\pi \int_{0}^{a} r^4 (\cos\pi - \cos\theta) dr$$
$$= 12\pi \int_{0}^{a} r^4 dr = 12\pi \left[\frac{r^5}{5}\right]_{0}^{a} = \frac{12\pi a^5}{5}$$

7. Verify divergence theorem for $\overline{F} = x^2 i + y^2 j + z^2 k$ over the surface S of the solid cut off by the plane x+y+z=a in the first octant.

Sol. By Gauss theorem,
$$\int_{s} \overline{F} \cdot \overline{n} dS = \int_{v} div \overline{F} dv$$
$$\frac{\partial \phi}{\partial x} = 1, \frac{\partial \phi}{\partial y} = 1, \frac{\partial \phi}{\partial z} = 1$$
$$\therefore grad \phi = \sum \overline{i} \frac{\partial \phi}{\partial x} = \overline{i} + \overline{j} + \overline{k}$$
$$Unit normal = \frac{grad \phi}{|grad \phi|} = \frac{\overline{i} + \overline{j} + \overline{k}}{\sqrt{3}}$$

Let R be the projection of S on *xy*-plane

Then the equation of the given plane will be $x+y=a \Rightarrow y=a-x$

Also when
$$y=0$$
, $x=a$

$$\therefore \int_{S} \overline{F}.\overline{n}dS = \iint_{R} \frac{\overline{F}.\overline{n}dxdy}{\left|\overline{n}.\overline{k}\right|}$$

$$= \int_{0}^{a} \int_{0}^{a-x} [2x^{2} + 2y^{2} - 2ax + 2xy - 2ay + a^{2}] dx dy$$

=
$$\int_{x=0}^{a} \left[2x^{2}y + \frac{2y^{3}}{3} + xy^{2} - 2axy - ay^{2} + a^{2}y \right]_{0}^{a-x} dx$$

=
$$\int_{x=0}^{a} [2x^{2}(a-x) + \frac{2}{3}(a-x)^{3} + x(a-x)^{2} - 2ax(a-x) - a(a-x)^{2} + a^{2}(a-x)dx$$

$$\therefore \int_{s} \overline{F}.\overline{n}dS = \int_{0}^{a} \left(-\frac{5}{3}x^{3} + 3ax^{2} - 2a^{2}x + \frac{2}{3}a^{3} \right) dx = \frac{a^{4}}{4}, \text{ on simplification...(1)}$$

Given
$$\overline{F} = x^2 \overline{i} + y^2 \overline{j} + z^2 \overline{k}$$

$$\therefore div \ \overline{F} = \frac{\partial}{\partial x} (x^2) + \frac{\partial}{\partial y} (y^2) + \frac{\partial}{\partial z} (z^2) = 2(x + y + z)$$

$$Now \iiint div \overline{F} . dv = 2 \int_{x=0}^{a} \int_{y=0}^{a-x} \int_{z=0}^{a-x-y} (x + y + z) dx dy dz$$

$$= 2 \int_{x=0}^{a} \int_{y=0}^{a-x} \left[z(x+y) + \frac{z^2}{2} \right]_{0}^{a-x-y} dx dy$$

$$= 2 \int_{x=0}^{a} \int_{y=0}^{y=0} (a-x-y) \left[x+y + \frac{a-x-y}{2} \right] dx dy$$

$$= \int_{x=0}^{a} \int_{y=0}^{y=0} (a-x-y) [a+x+y] dx dy$$

$$= \int_{0}^{a} \int_{0}^{0} \left[a^2 - (x+y)^2 \right] dy dx = \int_{0}^{a} \int_{0}^{a-x} (a^2 - x^2 - y^2 - 2xy) dx dy$$

$$= \int_{0}^{a} \left[a^2 y - x^2 y - \frac{y^3}{3} - xy^2 \right]_{0}^{a-x} dx$$

$$= \int_{0}^{a} (a-x) (2a^2 - x^2 - ax) dx = \frac{a^4}{4} \dots \dots (2)$$

Hence from (1) and (2), the Gauss Divergence theorem is verified.

8. Use Gauss Divergence theorem to evaluate $\int \int_{S} (yz^2\bar{\iota} + zx^2\bar{\jmath} + 2z^2\bar{k}) ds$, where S is the closed surface bounded by the xy-plane and the upper half of the sphere $x^2+y^2+z^2=a^2$

above this plane.

Sol: Divergence theorem states that

$$\iint_{S} \vec{F}.ds = \iint_{V} \int \vec{V}.\vec{F} \, dv$$

Here $\nabla .\overline{F} = \frac{\partial}{\partial x}(yz^2) + \frac{\partial}{\partial y}(zx^2) + \frac{\partial}{\partial z}(2z^2) = 4z$ $\therefore \iint_{s} \overline{F}.ds = \iiint_{V} 4z dx dy dz$

Introducing spherical polar coordinates $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$,

$$z = r \cos \theta \text{ then } dx dy dz = r^2 dr d\theta d\phi$$

$$\therefore \iint_s \overline{F} ds = 4 \int_{r=0}^a \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} (r \cos \theta) (r^2 \sin \theta dr d\theta d\phi)$$

$$= 4 \int_{r=0}^a \int_{\theta=0}^{\pi} r^3 \sin \theta \cos \theta \left[\int_{\phi=0}^{2\pi} d\phi \right] dr d\theta$$

$$= 4 \int_{r=0}^{\pi} \int_{\theta=0}^{\pi} r^3 \sin \theta \cos \theta (2\pi - 0) dr d\theta$$

MATHEMATICS -II

$$= 4\pi \int_{r=0}^{a} r^{3} \left[\int_{0}^{\pi} \sin 2\theta \ d\theta \right] dr = 4\pi \int_{r=0}^{a} r^{3} \left(-\frac{\cos 2\theta}{2} \right)_{0}^{\pi} dr$$
$$= (-2\pi) \int_{0}^{a} r^{3} (1-1) dr = 0$$

9. Use Divergence theorem to evaluate $\int \int (x\overline{i} + y\overline{j} + z^2\overline{k})\overline{n}ds$. Where S is the surface bounded by the cone $x^2+y^2=z^2$ in the plane z = 4.

Sol: Given $\int \int (x\bar{\imath} + y\bar{\jmath} + z^2\bar{k}) \cdot \bar{n} \cdot ds$ Where S is the surface bounded by the cone $x^2 + y^2 = z^2$ in the plane z = 4. Let $\bar{F} = x\bar{\imath} + y\bar{\jmath} + z^2\bar{k}$ By Gauss Divergence theorem, we have

$$\int \int (x\bar{\imath} + y\bar{\jmath} + z^2\bar{k}).\,\bar{n}.\,ds = \int \int \int \int \bar{V}.\,\bar{F}\,dv$$
$$\nabla.\bar{F} = \frac{\partial}{\partial x}(x) + \frac{\partial}{\partial y}(y) + \frac{\partial}{\partial z}(z^2) = 1 + 1 + 2z = 2(1+z)$$

On the cone, $x^2 + y^2 = z^2$ and $z=4 \Rightarrow x^2 + y^2 = 16$ The limits are z = 0 to 4, y = 0 to $\sqrt{16 - x^2}$, x = 0 to 4.

$$\iint_{V} \int \overline{V} \cdot \overline{F} \, dv = \iint_{0} \iint_{0} \iint_{0}^{1} 2(1+z) \, dx \, dy \, dz$$
$$= 2 \iint_{0}^{4} \iint_{0}^{16-x^{2}} \left\{ [z]_{0}^{4} + \left[\frac{z^{2}}{2} \right]_{0}^{4} \right\} \, dx \, dy$$

$$= 2\int_{0}^{4} \sqrt{\int_{0}^{4} \int_{0}^{\pi} [4+8]} dx dy = 2 \times 12 \int_{0}^{4} [y]_{0}^{\sqrt{16-x^{2}}} dx$$
$$= 24 \int_{0}^{4} \sqrt{16-x^{2}} dx = 24 \int_{0}^{\frac{\pi}{2}} \sqrt{16-16\sin^{2}\theta} \cdot 4\cos\theta d\theta$$

 $[putx = 4\sin\theta \Rightarrow dx = 4\cos\theta d\theta. Also \ x = 0 \Rightarrow \theta = 0 \ and \ x = 4 \Rightarrow \theta = \frac{\pi}{2}]$

$$\therefore \iint_{V} \nabla \overline{F} \, dv = 96 \times 4 \int_{0}^{\frac{\pi}{2}} 4 \sqrt{1 - \sin^{2}\theta} \cos \theta \, d\theta = 96 \times 4 \int_{0}^{\frac{\pi}{2}} \cos^{2}\theta \, d\theta$$
$$\iint_{V} \int \overline{V} \cdot \overline{F} \, dv = 96 \times 4 \int_{0}^{\frac{\pi}{2}} 4 \sqrt{1 - \sin^{2}\theta} \, \cos \theta \, d\theta = 96 \times 4 \int_{0}^{\frac{\pi}{2}} \cos^{2}\theta \, d\theta$$

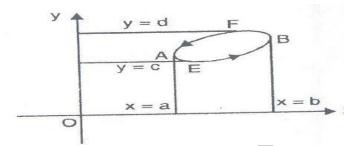
MATHEMATICS -II

$$= 96 X 4 \int_{0}^{\frac{\pi}{2}} \frac{1 + \cos 2\theta}{2} d\theta = 96X4 \int_{0}^{\frac{\pi}{2}} \left[\frac{1}{2} + \frac{\cos 2\theta}{2}\right] d\theta$$
$$= 384 \left[\frac{1}{2}\theta + \frac{1}{2}\frac{\sin 2\theta}{2}\right]_{0}^{\frac{\pi}{2}} = 96\pi$$

Green's Theorem in a Plane(Transformation b/w Line Integral and Surface Integral)

If S is Closed region in xy plane bounded by a simple closed curve C and if M and N are continuous functions of x and y having continuous derivatives in R, then

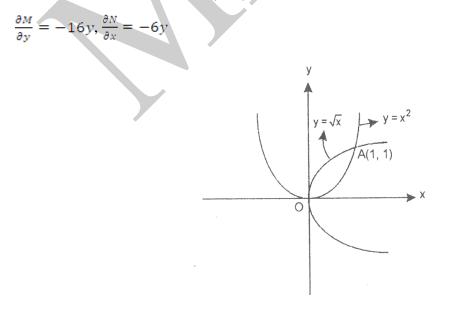
 $\iint_{C} Mdx + Ndy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy.$ Where *C* is traversed in the anti clock-wise direction



PROBLEMS

LVerify Green's theorem in plane for $\oint (3x^2 - 8y^2)dx + (4y - 6xy)dy$ where C is the region bounded by $y=\sqrt{x}$ and $y=x^2$.

Sol: Let $M=3x^2-8y^2$ and N=4y-6xy. Then



VECTOR CALCULUS

We have by Green's theorem,

$$\iint_{C} Mdx + Ndy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy.$$
Now
$$\iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy = \iint_{R} (16y - 6y) dxdy$$

$$= 10 \iint_{R} y dxdy = 10 \int_{x=0}^{1} \int_{y=x^{2}}^{\sqrt{x}} y dydx = 10 \int_{x=0}^{1} \left(\frac{y^{2}}{2} \right)_{x^{2}}^{\sqrt{x}} dx$$

$$= 5 \int_{0}^{1} (x - x^{4}) dx = 5 \left(\frac{x^{2}}{2} - \frac{x^{5}}{5} \right)_{0}^{1} = 5 \left(\frac{1}{2} - \frac{1}{5} \right) = \frac{3}{2}$$
....(1)

Verification:

We can write the line integral along c

=[line integral along $y=x^2$ (from O to A) + [line integral along $y^2=x$ (from A to O)] $= l_1 + l_2(say)$

Now
$$I_1 = \int_{x=0}^{1} \{ [3x^2 - 8(x^2)^2] dx + [4x^2 - 6x(x^2)] 2x dx \} \left[\because y = x^2 \Rightarrow \frac{dy}{dx} = 2x \right]$$

= $\int_{0}^{1} (3x^3 + 8x^3 - 20x^4) dx = -1$

A

And
$$l_{2} = \int_{1}^{0} \left[\left(3x^{2} - 8x \right) dx + \left(4\sqrt{x} - 6x^{\frac{3}{2}} \right) \frac{1}{2\sqrt{x}} dx \right] = \int_{1}^{0} \left(3x^{2} - 11x + 2 \right) dx = \frac{5}{2}$$

 $:. I_1 + I_{2=-1+5/2=3/2}.$

From(1) and (2), we have $\iint_{\partial X} M dx + N dy = \iint_{\partial X} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy.$

Hence the verification of the Green's theorem.

2.Evaluate $\oint (3x^2 - 8y^2) dx + (4y - 6xy) dy$ over triangle enclosed by the *lines* y =0, $x = \frac{\pi}{2}$, $y = \frac{2x}{\pi}$ using Green's theorem.

Sol: Let $M=y-\sin x$ and $N = \cos x$ Then

 $\frac{\partial M}{\partial x} = 1$ and $\frac{\partial N}{\partial x} = -\sin x$

 $\therefore \text{ By Green's theorem } \iint_{C} Mdx + Ndy = \iint_{D} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy.$

VECTOR CALCULUS

MATHEMATICS -II

$$\Rightarrow \int_{c} (y - \sin x) dx + \cos x dy = \iint_{R} (-1 - \sin x) dx dy$$

= $-\int_{x=0}^{\pi/2} \int_{y=0}^{2\pi} (1 + \sin x) dx dy$
= $-\int_{x=0}^{\pi/2} (\sin x + 1) [y]_{0}^{2x/\pi} dx$
= $\frac{-2}{\pi} \int_{x=0}^{\pi/2} x (\sin x + 1) dx$
= $\frac{-2}{\pi} \Big[x (-\cos x + x) \Big]_{0}^{\pi} - \int_{0}^{\pi/2} 1 (-\cos x + x) dx$
= $\frac{-2}{\pi} \Big[x (-\cos x + x) + \sin x - \frac{x^{2}}{2} \Big]_{0}^{\pi/2}$
= $\frac{-2}{\pi} \Big[-x \cos x + \frac{x^{2}}{2} + \sin x \Big]_{0}^{\pi/2} = \frac{-2}{\pi} \Big[\frac{\pi^{2}}{8} + 1 \Big] = -\left(\frac{\pi}{4} + \frac{2}{\pi}\right)$

3.A Vector field is given by $\overline{F} = (\sin y)\overline{i} + x(1 + \cos y)\overline{j}$

Evaluate the line integral over the circular path $x^2+y^2 = a^2$, z=0

(i) Directly (ii) By using Green's theorem

Sol: (i) Using the line integral

$$\oint_c \overline{F} \cdot d\overline{r} = \oint_c F_1 dx + F_2 dy = \oint_c \sin y dx + x(1 + \cos y) dy$$
$$= \iint_c \sin y dx + x \cos y dy + x dy = \iint_c d(x \sin y) + x dy$$

Given Circle is $x^2 + y^2 = a^2$. Take $x = a \cos \theta$ and $y = a \sin \theta$ so that $dx = -a \sin \theta \, d\theta$ and $dy = a \cos \theta \, d\theta$ and $\theta = 0 \rightarrow 2\pi$

$$\therefore \quad \oint \overline{F} \cdot d\overline{r} = \int_0^{2\pi} d[a \, \cos\theta \sin(a \, \sin\theta)] + \int_0^{2\pi} a(\, \cos\theta) a \, \cos\theta \, d\theta$$
$$= [a \, \cos\theta \sin(a \, \sin\theta)]_0^{2x} + 4a^2 \, \int_0^{\pi/2} \cos^2\theta \, d\theta$$
$$= 0 + 4a^2 \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \pi a^2$$

(ii)Using Green's theorem

Let $M=\sin y$ and $N=x(1 + \cos y)$. Then

$$\frac{\partial M}{\partial y} = \cos y$$
 and $\frac{\partial N}{\partial x} = (1 + \cos y)$

By Green's theorem,

VECTOR CALCULUS

$$\iint_{C} Mdx + Ndy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy$$

$$\therefore \iint_{C} \sin y dx + x(1 + \cos y) dy = \iint_{R} (-\cos y + 1 + \cos y) dxdy == \iint_{R} dxdy$$
$$= \iint_{R} dA = A = \pi a^{2} (\because area \text{ of circle} = \pi a^{2})$$

We observe that the values obtained in (i) and (ii) are same to that Green's theorem is verified.

4.Show that area bounded by a simple closed curve C is given by $\frac{1}{2} \oint x dy - y dx$ and hence find the area of

- (i) The ellipse $\mathbf{x} = a \cos \theta$, $y = b \sin \theta$ $(i.e) \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- (ii)The Circle $\mathbf{x}=\mathbf{a}\cos\theta$, $y=\mathbf{a}\sin\theta$ $(i.e)x^2+y^2=a^2$

<u>Solution</u>: We have by Green's theorem $\iint_C Mdx + Ndy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy$

Here M=-y and N=x so that $\frac{\partial M}{\partial y} = -1$ and $\frac{\partial N}{\partial x} = 1$

$$\iint_{c} xdy - ydx = 2 \int_{R} dxdy = 2A \text{ where A is the area of the surface.}$$

$$\therefore \frac{1}{2} \int x \, dy - y \, dx = A$$

(i)For the ellipse x=acos θ and y=bsin θ and $\theta = 0 \rightarrow 2\pi$

$$\therefore Area, A = \frac{1}{2} \oint x dy - y dx = \frac{1}{2} \int_0^{2\pi} \left[(a \cos \theta) (b \cos \theta) - (b \sin \theta (-a \sin \theta)) \right] d\theta$$
$$= \frac{1}{2} ab \int_0^{2\pi} (\cos^2 \theta + \sin^2 \theta) d\theta = \frac{1}{2} ab (\theta)_0^{2\pi} = \frac{ab}{2} (2\pi - 0) = \pi ab$$

(ii)Put a=b to get area of the circle $A = \pi a^2$

5. Verify Green's theorem for $\int_c [(xy + y^2)dx + x^2dy]$, where *C* is bounded by y=x and $y=x^2$

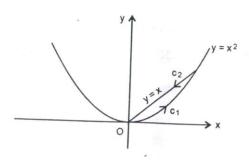
Sol: By Green's theorem, we have
$$\iint_C M dx + N dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dx dy$$

Here M=xy + y^2 and N= x^2

DEPARTMENT OF HUMANITIES & SCIENCES OMRCET (EAMCET CODE: MLRD) 179

VECTOR CALCULUS

MATHEMATICS -II



The line y=x and the parabola $y=x^2$ intersect at O(0,0) and A(1,1)

Now
$$\iint_{c} M dx + N dy = \int_{c_1} M dx + N dy + \int_{c_2} M dx + N dy \dots (1)$$
(1)

Along C_1 (*i.e.* $y = x^2$), the line integral is

Along C_2 (*i.e.* y = x) from (1,1) to (0,0), the line integral is

$$\int_{c_2} Mdx + Ndy = \int_{c_2} (x \cdot x + x^2) dx + x^2 dx \quad [\because dy = dx]$$

$$= \int_{\varphi_2} 3x^2 dx = 3 \int_1^0 x^2 dx = 3 \left(\frac{x^3}{3}\right)_1^0 = (x^3)_1^0 = 0 - 1 = -1 \qquad \dots (3)$$

From (1), (2) and (3), we have

$$\int_{c} Mdx + Ndy = \frac{19}{20} - 1 = \frac{-1}{20}$$
...(4)

Now

$$\iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy = \iint_{R} (2x - x - 2y) dx dy$$
$$= \int_{0}^{1} [(x^{2} - x^{2}) - (x^{3} - x^{4})] dx = \int_{0}^{1} (x^{4} - x^{3}) dx$$
$$= \left(\frac{x^{5}}{5} + \frac{x^{4}}{4} \right)_{0}^{1} = \frac{1}{5} - \frac{1}{4} = \frac{-1}{20} \dots (5)$$

From(4)and(5), We have $\iint_{c} M dx + N dy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$

Hence the Green's Theorem is verified.

DEPARTMENT OF HUMANITIES & SCIENCES ©MRCET (EAMCET CODE: MLRD) 180

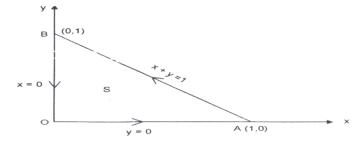
VECTOR CALCULUS

6. Verify Green's theorem for $\int_c [(3x^2 - 8y^2)dx + (4y - 6xy)dy]$ where c is the region bounded by x=0, y=0 and x+y=1.

Solution : By Green's theorem, we have

$$\int_{c} M \, dx + N \, dy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dx \, dy$$

Here $M=3x^2 - 8y^2$ and N=4y-6xy



$$\therefore \frac{\partial M}{\partial y} = -16y \text{ and } \frac{\partial N}{\partial x} = -6y$$

Now $\int_{c} M dx + N dy = \int_{OA} M dx + N dy + \int_{AB} M dx + N dy + \int_{BC} M dx + N dy \dots (1)$

Along OA, y=0 $\therefore dy = 0$

$$\int_{OA} M dx + N dy = \int_0^1 3x^2 dx = \left(\frac{x^2}{3}\right)_0^1 = 1$$

Along AB, x+y=1 \therefore dy = -dx and x=1-y and y varies from 0 to 1.

$$\int_{AB} Mdx + Ndy = \int_{0}^{1} [3(y-1)^{2} - 8y^{2}](-dy) + [4y+6y(y-1)]dy$$
$$= \int_{0}^{1} (-5y^{2} - 6y + 3)(-dy) + (6y^{2} - 2y)dy$$
$$= \int_{0}^{1} (11y^{2} + 4y - 3)dy = \left(11\frac{y^{5}}{3} + 4\frac{y^{2}}{2} - 3y\right)_{0}^{1}$$
$$= \frac{11}{3} + 2 - 3 = \frac{8}{3}$$

Along BO, x=0 \therefore dx = 0 and limits of y are from 1 to 0

$$\int_{BO} Mdx + Ndy = \int_{1}^{0} 4y dy = \left(4\frac{y^2}{2}\right)_{1}^{0} = (2y^2)_{0}^{1} = -2$$

from (1), we have $\int_{c} M dx + N dy = 1 + \frac{8}{3} - 2 = \frac{5}{3}$

VECTOR CALCULUS

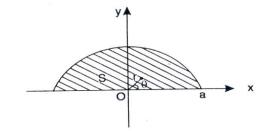
Now
$$\iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy = \int_{x=0}^{1} \int_{y=0}^{1-x} (-6y+16y) dx dy$$
$$= 10 \int_{x=0}^{1} \left[\int_{y=0}^{1-x} y dy \right] dx = 10 \int_{0}^{1} \left(\frac{y^{2}}{2} \right)_{0}^{1-x} dx$$
$$= 5 \int_{0}^{1} (1-x)^{2} dx = 5 \left[\frac{(1-x)^{3}}{-3} \right]_{0}^{1}$$
$$= \frac{5}{3} \left[(1-1)^{3} - (1-0)^{3} \right] = \frac{5}{3}$$
From (2) and (3), we have
$$\int_{c} M dx + N dy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$$

Hence the Green's Theorem is verified.

7. Apply Green's theorem to evaluate $\oint_c (2x^2 - y^2) dx + (x^2 + y^2) dy$, where c is

the boundary of the area enclosed by the *x*-axis and upper half of the circle $x^2 + y^2 = a^2$

Sol: Let $M=2x^2 - y^2$ and $N=x^2 + y^2$ Then



$$\frac{\partial M}{\partial y} = -2y$$
 and $\frac{\partial N}{\partial x} = 2x$

 $\therefore \quad By \; Green's Theorem, \int_{c} M dx + N dy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$

$$\iint_{c} [(2x^{2} - y^{2})dx + (x^{2} + y^{2})dy] = \iint_{R} (2x + 2y)dxdy$$

$$=2\int_{R}\int_{R}(x+y)dy$$
$$=2\int_{0}^{a}\int_{0}^{\pi}r(\cos\theta+\sin\theta).rd\,\theta dr$$

[Changing to polar coordinates (r, θ) , r varies from 0 to a and θ varies from 0 to π]

$$\therefore \prod_{c} [(2x^{2} - y^{2})dx + (x^{2} + y^{2})dy] = 2\int_{0}^{a} r^{2}dr \int_{0}^{\pi} (\cos\theta + \sin\theta)d\theta$$

VECTOR CALCULUS

$$=2.\frac{a^{3}}{3}(1+1)=\frac{4a^{3}}{3}$$

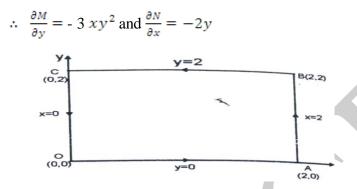
8. Verify Green's theorem in the plane for $\int_{C} (x^2 - xy^3) dx + (y^2 - 2xy) dy$

Where *C* is square with vertices (0,0), (2,0), (2,2), (0,).

Solution: The Cartesian form of Green's theorem in the plane is

$$\int_{c} M dx + N dy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$$

Here $M=x^2 - xy^3$ and $N=y^2 - 2xy$



Evaluation of $\int_{c} (Mdx + Ndy)$

To Evaluate $\int_{C} (x^2 - xy^3) dx + (y^2 - 2xy) dy$, we shall take C in four different segments viz (i) along OA(y=0) (ii) along AB(x=2) (iii) along BC(y=2) (iv) along CO(x=0).

(i)Along OA(y=0)

$$\int_{\mathcal{C}} (x^2 - xy^3) \, dx + (y^2 - 2xy) \, dy = \int_0^2 x^2 \, dx = \left(\frac{x^3}{3}\right)_0^2 = \frac{8}{3}$$
.....(1)

(ii)Along AB(x=2)

 $\int_{\mathcal{C}} (x^2 - xy^3) \, dx + (y^2 - 2xy) \, dy = \int_0^2 (y^2 - 4y) \, dy \quad [\because x = 2, \, dx = 0]$

$$= \left(\frac{y^3}{3} - 2y^2\right)_0^2 = \left(\frac{8}{3} - 8\right) = 8\left(-\frac{2}{3}\right) = -\frac{16}{3}$$

....(2)

(iii)Along BC(y=2)

$$\int_{C} (x^{2} - xy^{3}) dx + (y^{2} - 2xy) dy = \int_{2}^{0} (x^{2} - 8x) dx \quad [\because y = 2, dy = 0]$$

$$=\left(\frac{x^3}{3} - 4x^2\right)_0^2 = -\left(\frac{8}{3} - 16\right) = \frac{40}{3} \dots \dots (3)$$

(iv)Along *CO*(*x*=0)

DEPARTMENT OF HUMANITIES & SCIENCES OMRCET (EAMCET CODE: MLRD) 183

$$\int_{C} (x^{2} - xy^{3}) dx + (y^{2} - 2xy) dy = \int_{2}^{0} y^{2} dx \quad [\because x = 0, dx = 0] = \left(\frac{y^{3}}{3}\right)_{2}^{0} = -\frac{8}{3}$$
.....(4)

Adding(1),(2),(3) and (4), we get

$$\int_{C} \left(x^2 - xy^3\right) dx + \left(y^2 - 2xy\right) dy = \frac{8}{3} - \frac{16}{3} + \frac{40}{3} - \frac{8}{3} = \frac{24}{3} = 8 \qquad \dots (5)$$

Evaluation of $\iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$

Here x ranges from 0 to 2 and y ranges from 0 to 2.

$$\iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy = \int_{0}^{2} \int_{0}^{2} (-2y + 3xy^{2}) dx dy$$

= $\int_{0}^{2} \left(-2xy + \frac{3x^{2}}{2}y^{2} \right)_{0}^{2} dy$
= $\int_{0}^{2} (-4y + 6y^{2}) dy = (-2y^{2} + 2y^{3})_{0}^{2}$
= $-8 + 16 = 8$...(6)

From (5) and (6), we have

$$\int_{c} M \, dx + N \, dy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dx \, dy$$

Hence the Green's theorem is verified.

Stoke's Theorem (Transformation between Line Integral and Surface Integral)

Let S be a open surface bounded by a closed, non intersecting curve C. If \overline{F} is any differentiable vector point function then

 $\oint_c \overline{F} d \overline{r} = \int_s curl \ \overline{F} d \overline{n} ds$ where c is traversed in the positive direction and \overline{n} is unit outward drawn normal at any point of the surface.

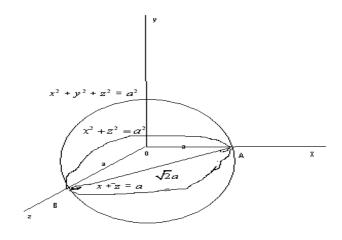
PROBLEMS

1. Apply Stokes theorem, to evaluate $\iint_{c} (ydx + zdy + xdz)$ where *c* is the curve of

intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and x + z = a.

Solution : The intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and the plane x+z=a is a circle in the plane x+z=a with *AB* as diameter.

VECTOR CALCULUS



Equation of the plane is $x+z=a \Rightarrow \frac{x}{a} + \frac{z}{a} = 1$

- : OA = OB = a i.e., A = (a, 0, 0) and B = (0, 0, a)
- : Length of the diameter AB = $\sqrt{a^2 + a^2 + 0} = a\sqrt{2}$

Radius of the circle, $r = \frac{a}{\sqrt{2}}$

Let $\overline{F}.d\overline{r} = ydx + zdy + xdz \Longrightarrow \overline{F}.d\overline{r} = \overline{F}.(\overline{\iota}dx + \overline{J}dy + \overline{k}dz) = ydx + zdy + xdz$ $\Longrightarrow \overline{F} = y\overline{\iota} + z\overline{J} + x\overline{k}$

$$\therefore \ curl \ \bar{F} = \begin{vmatrix} \bar{\imath} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial \dot{x}} \\ y & z & x \end{vmatrix} = -\left(\bar{\imath} + \bar{j} + \bar{k}\right)$$

Let \bar{n} be the unit normal to this surface. $\bar{n} = \frac{\nabla_S}{|\nabla_S|}$

Then s = x + z - a, $\nabla S = \overline{i} + \overline{k} \quad \therefore \quad \overline{n} = \frac{\nabla S}{|\nabla S|} = \frac{\overline{i} + \overline{k}}{\sqrt{2}}$

Hence $\oint_c \overline{F} \cdot d\overline{r} = \int curl \, \overline{F} \cdot \overline{n} \, ds$ (by Stokes Theorem)

$$= -\int \left(\overline{\imath} + \overline{j} + \overline{k}\right) \cdot \left(\frac{\overline{\imath} + \overline{k}}{\sqrt{2}}\right) ds = -\int \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) ds$$
$$= -\sqrt{2} \int_{S} ds = -\sqrt{2}S = -\sqrt{2} \left(\frac{\pi a^{2}}{2}\right) = \frac{\pi a^{2}}{\sqrt{2}}$$

2.Prove by Stokes theorem, *Curl grad* $\phi = \overline{o}$

Sol: Let S be the surface enclosed by a simple closed curve C.

∴ By Stokes theorem

$$\int_{s} (curl\ grand\phi).\bar{n}\ ds = \int_{s} (\nabla x \nabla \phi).\bar{n}\ dS = \oint_{c} \nabla \phi. d\bar{r} = \oint_{c} \nabla \phi. d\bar{r}$$

VECTOR CALCULUS

MATHEMATICS -II

$$= \iint_{c} \left(\frac{\overline{i}\partial\phi}{\partial x} + \overline{j}\frac{\partial\phi}{\partial y} + \overline{k}\frac{\partial\phi}{\partial z} \right) \cdot \left(\overline{i}dx + \overline{j}dy + \overline{k}dz \right)$$

$$= \iint_{c} \left(\frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz \right) = \int d\phi = \left[\phi \right]_{p} \text{ where P is any point}$$

on C.

 $\therefore \int curl \ grad \ \phi. \ \bar{n} \ ds = \bar{0} \Rightarrow curl \ grad \ \phi = \bar{0}$

3. Verify Stokes theorem for $\overline{F} = -y^{3}\overline{\iota} + x^{3}\overline{j}$, Where S is the circular disc

$$x^2 + y^2 \le 1, z = 0.$$

Sol: Given that $\overline{F} = -y^3\overline{\iota} + x^3\overline{j}$. The boundary of C of S is a circle in xy plane.

 $x^2 + y^2 \le 1, z = 0$. We use the parametric co-ordinates x=cos $\theta, y = sin\theta, z = 0, 0 \le \theta \le 2\pi$;

 $dx = -\sin\theta \, d\theta$ and $dy = \cos\theta \, d\theta$

$$\begin{split} \therefore \oint_{c} \overline{F} \cdot dr &= \int_{c} F_{1} dx + F_{2} dy + F_{3} dz = \int_{c} -y^{3} dx + x^{3} dy \\ &= \int_{0}^{2\pi} [-\sin^{3}\theta (-\sin\theta) + \cos^{3}\theta \cos\theta] d\theta = \int_{0}^{2\pi} (\cos^{4}\theta + \sin^{4}\theta) d\theta \\ &= \int_{0}^{2\pi} (1 - 2\sin^{2}\theta \cos^{2}\theta) d\theta = \int_{0}^{2\pi} d\theta - \frac{1}{2} \int_{0}^{2\pi} (2\sin\theta \cos\theta)^{2} d\theta \\ &= \int_{0}^{2\pi} d\theta - \frac{1}{2} \int_{0}^{2\pi} \sin^{2} 2d\theta = (2\pi - 0) - \frac{1}{4} \int_{0}^{2\pi} (1 - \cos4\theta) d\theta \\ &= 2\pi + \left[-\frac{1}{4} \theta + \frac{1}{16} \sin4\theta \right]_{0}^{2\pi} = 2\pi - \frac{2\pi}{4} = \frac{6\pi}{4} = \frac{3\pi}{2} \\ \text{Now} \nabla \times \overline{F} = \begin{vmatrix} \overline{v} & \overline{v} & \overline{v} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y^{3} & x^{3} & 0 \end{vmatrix} = \overline{k} (3x^{2} + 3y^{2}) \\ \therefore \int_{s} (\nabla \times \overline{F}) \cdot \overline{n} ds = 3 \int_{s} (x^{2} + y^{2}) \overline{k} \cdot \overline{n} ds \end{split}$$

We have (k.n)ds = dxdy and R is the region on xy-plane

$$\therefore \iint_{s} (\nabla \times \overline{F}) . \overline{n} ds = 3 \iint_{R} (x^{2} + y^{2}) dx dy$$

Put x=r cos \emptyset , y = r sin \emptyset \therefore dxdy = rdr d \emptyset

r is varying from 0 to 1 and $0 \le \emptyset \le 2\pi$.

$$\therefore \int (\nabla \times \overline{F}). \ \overline{n} ds = 3 \int_{\emptyset=0}^{2\pi} \int_{r=0}^{1} r^2 . r dr \, \mathrm{d}\emptyset = \frac{3\pi}{2}$$

L.H.S=R.H.S. Hence the theorem is verified.

4. Verify Stokes theorem for $\overline{F} = (2x - y)\overline{i} - \dot{y}z^2\overline{j} - y^2z\overline{k}$ over the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ bounded by the projection of the *xy*-plane. Sol: The boundary C of S is a circle *in xy* plane i.e $x^2 + y^2 = 1$, z=0The parametric equations are $x=\cos\theta$, $y = \sin\theta$, $\theta = 0 \rightarrow 2\pi$

$$\therefore dx = -\sin\theta \ d\theta, dy = \cos\theta \ d\theta$$

$$\int_{c} \overline{F} \cdot d\overline{r} = \int_{c} \overline{F_{1}} dx + \overline{F_{2}} dy + \overline{F_{3}} dz = \int_{c} (2x - y) dx - yz^{2} dy - y^{2} z dz$$

$$= \int_{c} (2x - y) dx (since \ z = 0 \ and \ dz = 0)$$

$$= -\int_{0}^{2\pi} (2\cos\theta - \sin\theta) \sin\theta d\theta = \int_{0}^{2\pi} \sin^{2}\theta d\theta - \int_{0}^{2\pi} \sin 2\theta d\theta$$

$$= \int_{\theta=0}^{2\pi} \frac{1 - \cos 2\theta}{2} d\theta - \int_{0}^{2\pi} \sin 2\theta \ d\theta = \left[\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta + \frac{1}{2}\cos^{2}\theta\right]_{0}^{2\pi}$$

$$= \frac{1}{2}(2\pi - 0) + 0 + \frac{1}{2}(\cos 4\pi - \cos 0) = \pi$$
Again $\nabla \times \overline{F} = \left[\begin{array}{c} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial} & \frac{\partial}{\partial} & \frac{\partial}{\partial} \end{array}\right] = \overline{i}(-2yz + 2yz) - \overline{i}(0 - 0) + \overline{k}(0 + 1) = \overline{k}$

Again $\nabla \times \overline{F} = \begin{vmatrix} \partial & & J & h \\ \partial \partial x & & \partial y & \partial \\ 2x - y & -yz^2 & -y^2z \end{vmatrix} = \overline{i}(-2yz + 2yz) - \overline{j}(0 - 0) + \overline{k}(0 + 1) = \overline{k}$

$$\therefore \int_{S} (\nabla \times \overline{F}) \cdot \overline{n} ds = \int_{S} \overline{k} \cdot \overline{n} ds = \int_{R} \int dx dy$$

Where R is the projection of S on xy plane and $\bar{k}.\bar{n}ds = dxdy$

Now
$$\int \int_{R} dx dy = 4 \int_{x=0}^{1} \int_{y=0}^{\sqrt{1-x^{2}}} dy dx = 4 \int_{x=0}^{1} \sqrt{1-x^{2}} dx = 4 \left[\frac{x}{2} \sqrt{1-x^{2}} + \frac{1}{2} \sin^{-1} x \right]_{0}^{1}$$

= $4 \left[\frac{1}{2} \sin^{-1} 1 \right] = 2 \frac{\pi}{2} = \pi$

:. The Stokes theorem is verified.

5.Evaluate by Stokes theorem $\oint_c (x+y)dx + (2x-z)dy + (y+z)dz$ where C is the boundary of the triangle with vertices (0,0,0), (1,0,0) and (1,1,0).

Solution: Let $\overline{F}.d\overline{r} = \overline{F}.(\overline{\iota}dx + \overline{J}dy + \overline{k}dz) = (x+y)dx + (2x-z)dy + (y+z)dz$

Then
$$\overline{F} = (x+y)\overline{\imath} + (2x-z)\overline{\jmath} + (y+z)\overline{k}$$

By Stokes theorem, $\oint_C \overline{F} \cdot d\overline{r} = \iint_S curl \, \overline{F} \cdot \overline{n} \, ds$

Where S is the surface of the triangle OAB which lies in the xy plane. Since the z Coordinates of O, A and B

Are zero. Therefore $\overline{n} = \overline{k}$. Equation of *OA* is y=0 and

that of *OB*, y=x in the xy plane.

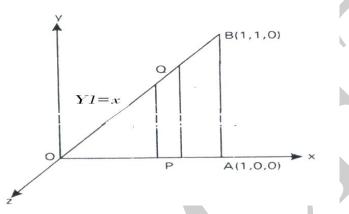
DEPARTMENT OF HUMANITIES & SCIENCES ©MRCET (EAMCET CODE: MLRD) 187

$$\therefore \ curl \ \bar{F} = \begin{vmatrix} \bar{\iota} & \bar{j} & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x + y & 2x - z & y + z \end{vmatrix} = 2\bar{\iota} + \bar{k}$$

 $\therefore \ curl \, \overline{F}.\overline{n} ds = curl \, \overline{F}.\overline{K} \, dx \, dy = dx \, dy$

$$\therefore \oint_{c} \overline{F} \cdot d\overline{r} = \iint_{s} dx \, dy = \iint_{s} dA = A = area \text{ of the } \Delta \text{ OAB}$$

$$=\frac{1}{2}\mathbf{O}\mathbf{A} \times \mathbf{A}\mathbf{B} = \frac{1}{2} \times 1 \times 1 = \frac{1}{2}$$



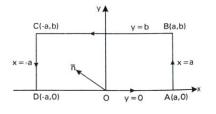
6: Verify Stoke's theorem for $\overline{F} = (x^2 + y^2)\overline{i} - 2xy\overline{j}$ taken round the rectangle bounded by the lines $x=\pm a, y=0, y=b$.

Sol: Let ABCD be the rectangle whose vertices are (a,0), (a,b), (-a,b) and (-a,0).

Equations of AB, BC, CD and DA are x=a, y=b, x=-a and y=0.

We have to prove that $\oint_c \vec{F} \cdot d\vec{r} = \int_s curl \vec{F} \cdot \vec{n} ds$

 $\oint_c \overline{F}.\,d\overline{r} = \oint_c \{(x^2+y^2)\overline{\iota}-2xy\overline{j}\}.\,\{\overline{\iota}dx+\overline{j}dy\}$



(i) Along AB, x=a, dx=0

from (1), $\int_{AB} = \int_{y=0}^{b} -2ay \, dy = -2a \left[\frac{y^2}{2}\right]_{0}^{b} = -ab^2$

DEPARTMENT OF HUMANITIES & SCIENCES OMRCET (EAMCET CODE: MLRD) 188

VECTOR CALCULUS

VECTOR CALCULUS

....(2)

(ii)Along BC, y=b, dy=0

from (1),
$$\int_{BC} = \int_{x=a}^{x=-a} (x^2 + b^2) dx = \left[\frac{x^3}{3} + b^2 x\right]_{x=a}^{-a} = \frac{-2a^3}{3} - 2ab^2$$

(iii) Along CD, x=-a, dx=0

from (1),
$$\int_{CD} = \int_{y=b}^{0} 2ay dy = \mathbb{Z}a \left[\frac{y^2}{\mathbb{Z}}\right]_{y=b}^{0} = -ab^2$$

(iv)Along DA, y=0, dy=0

from (1),
$$\int_{DA} = \int_{x=-a}^{x=a} x^2 dx = \left[\frac{x^3}{3}\right]_{x=-a}^{a} = \frac{2a^3}{3}$$

(i)+(ii)+(iii)+(iv) gives

$$\therefore \oint_c \bar{F} \cdot d\bar{r} = -ab^2 - \frac{-2a^3}{3} - 2ab^2 - ab^2 + \frac{2a^3}{3} = -4ab^2$$

Consider $\int_{\mathcal{S}} curl \, \overline{F} \cdot \overline{n} \, dS$

Vector Perpendicular to *the xy*-plane is $\overline{n} = k$

$$\therefore \ curl \, \overline{F} = \begin{vmatrix} \overline{i} & \overline{j} & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ (x^2 + y^2) & -2xy & 0 \end{vmatrix} = 4y\overline{k}$$

Since the rectangle lies in the *xy* plane,

$$\bar{n} = \bar{k}$$
 and $ds = dx dy$

 $\int_{S} \operatorname{curl} \bar{F}.\bar{n}dS = \int_{S} -4y\bar{k}.\bar{k}dx \, dy = \int_{x=-a}^{a} \int_{y=0}^{b} -4y \, dx \, dy$

$$=\int_{y=0}^{b}\int_{x=-a}^{a}-4y \, dx \, dy = 4 \int_{y=0}^{b}y \left[x\right]_{-a}^{a} dy = -4 \int_{y=0}^{b}2ay dy$$

$$=-4a[y^2]_{y=0}^b = -4ab^2$$
 ...(3).Hence from (2) and (3),

Stoke's theorem verified.

7.Verify Stoke's theorem for $\overline{F} = (y - z + 2)\overline{i} + (yz + 4)\overline{j} - xz\overline{k}$ where S is the surface of the *cube* x = 0, y=0, z=0, x=2, y=2,z=2 above the *xy* plane.

Solution: Given $\overline{F} = (y - z + 2)\overline{i} + (yz + 4)\overline{j} - xz\overline{k}$ where S is the surface of the cube.

x=0, y=0, z=0, x=2, y=2, z=2 above the xy plane.

By Stoke's theorem, we have $\int curl \bar{F}.\bar{n}ds = \int \bar{F}.d\bar{r}$

DEPARTMENT OF HUMANITIES & SCIENCES OMRCET (EAMCET CODE: MLRD) 189

....(8)

$$\begin{split} \nabla \times \overline{F} &= \left| \begin{array}{c} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y - z + 2 & y + 4 & -xz \right| \\ &= \overline{i}(0 + y) - \overline{j}(-z + 1) + \overline{k}(0 - 1) = y\overline{i} - (1 - z)\overline{j} - \overline{k} \\ &: \nabla \times \overline{F}, \overline{n} = \nabla \times \overline{F}, k = (y\overline{i} - (1 - z)\overline{j} - \overline{k}), k = -1 \\ &: \int \nabla \times \overline{F}, \overline{n} ds = \int_{0}^{2} \int_{0}^{2} -1 dx \, dy \, (\because z = 0, dz = 0) = -4 \\ &\dots (1) \\ \end{array} \right. \\ \textbf{To find } \int \overline{F}, d\overline{r} \\ &= \int \left[(y - z + 2)\overline{i} + (yz + 4)\overline{j} - xz\overline{k} \right], (dx\overline{i} + dy\overline{j} + dz\overline{k}) \\ &= \int \left[(y - z + 2)dx + (yz + 4)dy - (xz)dz \right] \\ \end{aligned} \\ \textbf{Sis the surface of the cube above the xy-plane \\ &: z = 0 \Rightarrow dz = 0 \\ &: \int \overline{F}, d\overline{r} = \int (y + 2)dx + \int 4dy \\ \textbf{Along } \overline{OA}, y = 0, z = 0, dy = 0, dz = 0, x \ change \ from 0 \ to 2. \\ \int_{0}^{2} 2dx = 2[x]_{0}^{2} = 4 \\ \textbf{Along } \overline{BC}, y = 2, z = 0, dy = 0, dz = 0, x \ change \ from 0 \ to 2. \\ \int \overline{f}, d\overline{x} = \frac{1}{2} \frac{1}{4} dy = [4y]_{y}^{2} = -8 \\ \textbf{Along } \overline{AD}, x = 2, z = 0, dx = 0, dz = 0, y \ change \ from 0 \ to 2. \\ \int \overline{F}. d\overline{r} = \int_{0}^{2} 4dy = [4y]_{y}^{2} = 8 \\ \textbf{Along } \overline{AD}, x = 0, z = 0, dx = 0, dz = 0, y \ change \ from 0 \ to 2. \\ \int \overline{f}. d\overline{f} = \frac{1}{2} \frac{1}{4} dy = [4y]_{y}^{2} = 8 \\ \textbf{Along } \overline{CO}, x = 0, z = 0, dx = 0, d\overline{z} = 0, y \ change \ from 0 \ to 2. \\ \int \overline{f}. d\overline{f} = \frac{1}{2} \frac{1}{4} dy = -8 \\ \textbf{Along } \overline{CO}, x = 0, z = 2, dx = 0, d\overline{z} = 0, y \ change \ from 2 \ to 0. \\ \int_{0}^{2} 4dy = -8 \\ \textbf{Along } V', \int_{0}^{2} \overline{F} \ d\overline{r} = 0 \\ \textbf{Along } V', \int_{0}^{2} \overline{F} \ d\overline{r} = 0 \\ \textbf{Along } V', \int_{0}^{2} \overline{F} \ d\overline{r} = 0 \\ \textbf{Along } V', \int_{0}^{2} \overline{F} \ d\overline{r} = 0 \\ \textbf{Along } V', y = 2, z = 2, dx = 0, dz = 0, y \ change \ from 0 \ to 2 \\ \frac{1}{2} \frac{\overline{F}}, d\overline{r} - \frac{1}{2} (2y + 4) dy = 2 \left[\frac{y^{2}}{2} \right]_{0}^{2} + 4 \left[y \right]_{0}^{2} = 4 + 8 = 12 \\ \textbf{Along } V', y = 2, z = 2, dy = 0, dz = 0, y \ change \ from 2 \ to 0 \\ \int_{0}^{2} \overline{F}, \ d\overline{r} = 0 \\ \textbf{Along } V', y = 2, z = 2, dy = 0, dz = 0, x \ change \ from 2 \ to 0 \\ \int_{0}^{2} \overline{F}, \ d\overline{r} = 0 \\ \textbf{Along } V', y = 2, z = 2, dy = 0, dz = 0, x \ change \ from 2 \ to 0 \\ \frac{1}{2} \int_{0}^{2} \overline{F}, \ d\overline{r} = 0 \\ \textbf{Along } V'$$

DEPARTMENT OF HUMANITIES & SCIENCES ©MRCET (EAMCET CODE: MLRD) 190

VECTOR CALCULUS

Along C'D', x = 0, z = 2, dx = 0, dz = 0, y changes from 2 to 0.

$$\int_{2}^{0} (2y+4) = 2\left[\frac{y^{2}}{2}\right]_{2}^{0} + 4\left[y\right]_{2}^{0} = -12 \qquad \dots (9)$$

$$(2)+(3)+(4)+(5)+(6)+(7)+(8)+(9) \text{ gives}$$

$$\int_{c} \overline{F} \cdot d\overline{r} = 4 - 8 + 8 - 8 + 0 + 12 + 0 - 12 = -4 \qquad \dots (10)$$

By Stokes theorem, We have

 $\int \overline{F}.d\overline{r} = \int curl \ \overline{F}.\overline{n}ds = -4$

Hence Stoke's theorem is verified.