

PROGRAMMING FOR PROBLEM SOLVING

[R24A0501]

LECTURE NOTES

B.TECH I YEAR – I SEM(R24)

(2024-25)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MALLA REDDY COLLEGE OF

ENGINEERING & TECHNOLOGY
(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956
(Affiliated to JNTUH, Hyderabad, Approved byAICTE - Accredited byNBA& NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

PREFACE

Today, computers are all around us. We use them for doing various tasks in a faster and more

accurate manner. For example, using a computer or smartphone, we can book train tickets

online.

We usually use the term computerisation to indicate the use of computer to develop software

in order to automate any routine human task efficiently. Computers are used for solving

various day-to-day problems and thus problem solving is an essential skill that a computer

science student should know. It is pertinent to mention that computers themselves cannot

solve a problem. Precise step-by-step instructions should be given by us to solve the problem.

Thus, the success of a computer in solving a problem depends on how correctly and precisely

we define the problem, design a solution (algorithm) and implement the solution (program)

using a programming language. Thus, problem solving is the process of identifying a

problem, developing an algorithm for the identified problem and finally implementing the

algorithm to develop a computer program.

Steps for Problem Solving

When problems are straightforward and easy, we can easily find the solution. But a complex

problem requires a methodical approach to find the right solution. In other words, we have to

apply problem solving techniques. Problem solving begins with the precise identification of

the problem and ends with a complete working solution in terms of a program or software.

Steps for Problem Solving

Analysing the problem: we need to read and analyse the problem statement carefully in

order to list the principal components of the problem and decide the core functionalities that

our solution should have. By analysing a problem, we would be able to figure out what are

the inputs that our program should accept and the outputs that it should produce

Developing an Algorithm: It is essential to device a solution before writing a program code

for a given problem. The solution is represented in natural language and is called an

algorithm. We start with a tentative solution plan and keep on refining the algorithm until the

algorithm is able to capture all the aspects of the desired solution. For a given problem, more

than one algorithm is possible and we have to select the most suitable solution

Coding: After finalising the algorithm, we need to convert the algorithm into the format

which can be understood by the computer to generate the desired solution. Different high

level programming languages can be used for writing a program.

Testing and Debugging: The program created should be tested on various parameters. The

program should meet the requirements of the user. It must respond within the expected time.

It should generate correct output for all possible inputs.

This course introduces Python Language as a coding tool.

Python is a widely used general-purpose, high level programming language. It was created

by Guido van Rossum in 1991 and further developed by the Python Software Foundation.

Why Python

It was designed with an emphasis on code readability, and its syntax allows programmers to

express their concepts in fewer lines of code. Python is a programming language that lets

you work quickly and integrate systems more efficiently.

This digital notes serves as an introductory material for first year students, enabling them to

understand problem solving through python.

The content is divided into five units as per syllabus

Unit I – Introduction to Computer System, Problem Solving with algorithms and
Flowcharts. Basics of Python Language – Tokens, Data types – Basic and
Collection types

Unit II – Operators and Control structures
Unit III – Arrays using numpy
Unit IV – Modular Programming using functions
Unit V – Files and Exception Handling

We would like to extend our sincere gratitude to Dr. VSK Reddy, Director, Malla Reddy

College of Engineering and Technology (autonomous) and Dr. S. Srinivasa Rao, Principal,

Malla Reddy College of Engineering and Technology, under whose patronage we were able

to write this content. We are also indebted to Dr.S. Shanthi, Head of the Department,

Computer Science and Engineering for her constant support and motivation for our academic

growth. We would also like to acknowledge our colleagues who have provided their valuable

suggestions in preparing this content.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
I Year B.Tech-I Sem L /T/P/C

3/-/-/3

(R24A0501) PROGRAMMING FOR PROBLEM SOLVING

COURSE OBJECTIVES:

The students will be able
1. To understand basics of programming.

2. To learn how to use conditional statements and loops.

3. To structure Python programs using arrays.

4. To know the need and usage of functions

5. To learn file operations and exception handling

UNIT - I

Introduction to Programming – Computer Systems, Computer Languages, Algorithms and

Flowcharts

Introduction to Python Language: Introduction to Python Language, Features of Python,

Comments in Python.

Tokens- Keywords, Identifiers, Constants, Variables, Python Input and Output Statements
Basic Data Types: int, float, boolean, complex and string and its operations.
Collection Data Types: List, Tuples, Sets and Dictionaries. Data Type conversions,

UNIT - II

Operators in Python: Arithmetic operators, Assignment operators, Comparison operators,
Logical operators, Identity operators, Membership operators, Bitwise operators, Precedence of
operators, Expressions.
Control Flow and Loops: Indentation, if statement, if-else statement, nested if else, chained
conditional if- elif -else statement, Loops: while loop, for loop using ranges, Loop manipulation
using break, continue and pass.

UNIT- III
Arrays: Definition, Advantages of Arrays, Creating an Array, Operations on Arrays, Arrays vs List,
Importing the Array Module, Indexing and Slicing on Arrays,
working with arrays using numPy - Creating arrays using numpy, numpy Attributes and
functions, Matrices in numpy.

UNIT-IV
Functions: Defining a function, Calling a Function, Passing parameters and arguments, Python
Function arguments: Positional Arguments, Keyword Arguments, Default Arguments, Variable-
length arguments, Scope of the Variables in a Function–Local and Global Variables.
Recursive functions, Anonymous functions, Higher order functions - map(),filter() and reduce()
functions in Python, command-line arguments.

UNIT-V
File Handling in Python: Introduction to files, Text files and Binary files, Access Modes, Writing
Data to a File-write() and writelines(), Reading Data from a File-read(),readline() and readlines(),
Random access file operations-seek() and tell().
Error Handling in Python: Introduction to Errors and Exceptions: Compile-Time Errors, Logical
Errors, Runtime Errors, Types of Exceptions, Python Exception Handling Using try, except and
finally statements.

COURSE OUTCOMES:
Upon completion of the course, students will be able to
1. Express proficiency in handling data types in python.

2. Understand the syntax and semantics of python control flow statements
3. Develop programs using arrays

4. Know how to write modular programs using functions.

5. Perform file operations and handle exceptions

TEXT BOOKS
1. “Mastering C”, K R Venugopal, S R Prasad, Tata McGraw Hill Education (India) Private Limited.

2. R.NageswaraRao,“Core Python Programming”, Dreamtech.
3. Allen B. Downey,``Think Python: How to Think Like a Computer Scientist” 2nd edition,

Updated for Python3, Shroff/O’Reilly Publishers,2016.
4. Python Programming: A Modern Approach, Vamsi Kuramanchi,Pearson.

REFERENCEBOOKS:
1. Core Python Programming,W.Chun,Pearson.

2. Introduction to Python,Kenneth A. Lambert, Cengage.

3. Learning Python, Mark Lutz,Orielly.

Malla Reddy College of Engineering and Technology 1

UNIT-1
Introduction to Programming – Computer Systems, Computer Languages, Algorithms and

Flowcharts

Introduction to Python Language: Introduction to Python Language, Features of Python,

Comments in Python.

Tokens- Keywords, Identifiers, Constants, Variables, Python Input and Output Statements

Basic Data Types: int, float, boolean, complex and string and its operations.

Collection Data Types: List, Tuples, Sets and Dictionaries. Data Type conversions.

Introduction to Programming

Computer: A computer is an electronic device that manipulates information, or data. It has the

ability to store, retrieve, and process data.

A computer is a combination of hardware and software resources which integrate together and

provides various functionalities to the user.

Hardware are the physical components of a computer like the processor, memory devices, monitor,

keyboard etc. while software is the set of programs or instructions that are required by the hardware

resources to function properly. There are a few basic components that aids the working-cycle of a

computer i.e. the Input- Process- Output Cycle and these are called as the functional components of a

computer. It needs certain input, processes that input and produces the desired output. The input unit

takes the input, the central processing unit does the processing of data and the output unit produces the

output. The memory unit holds the data and instructions during the processing.

Digital Computer: A digital computer can be defined as a programmable machine which reads the

binary data passed as instructions, processes this binary data, and displays a calculated digital output.

Therefore, Digital computers are those that work on the digital data.

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 2

Functional Components of a Digital Computer

 Input Unit :The input unit consists of input devices that are attached to the computer. These

devices take input and convert it into binary language that the computer understands. Some of

the common input devices are keyboard, mouse, joystick, scanner etc.

 Central Processing Unit (CPU): The CPU is called the brain of the computer because it is the

control center of the computer. It first fetches instructions from memory and then interprets

them so as to know what is to be done. CPU executes or performs the required computation and

then either stores the output or displays on the output device.

The CPU has three main components which are responsible for different functions – Arithmetic

Logic Unit (ALU), Control Unit (CU) and Memory Unit

 Arithmetic and Logic Unit (ALU): The ALU, as its name suggests performs mathematical

calculations and takes logical decisions. Arithmetic calculations include addition, subtraction,

multiplication and division. Logical decisions involve comparison of two data items to see

which one is larger or smaller or equal.

 Control Unit: The Control unit coordinates and controls the data flow in and out of CPU and

also controls all the operations of ALU, memory and also input/output units. It is also

responsible for carrying out all the instructions stored in the program. It decodes the fetched

instruction, interprets it and sends control signals to input/output devices until the required

operation is done properly by ALU and memory.

 Memory : Memory attached to the CPU is used for storage of data and instructions and is

called internal memory. When a program is executed, it’s data is copied to the internal memory

and is stored in the memory till the end of the execution. The internal memory is also called the

Primary memory or Main memory. This memory is also called as RAM, i.e. Random Access

Memory.

 Output Unit : The output unit consists of output devices that are attached with the computer. It

converts the binary data coming from CPU to human understandable form. The common output

devices are monitor, printer, plotter etc.

Programming For Problem Solving B. Tech I Year I Semester

https://www.geeksforgeeks.org/types-computer-memory-ram-rom/

Malla Reddy College of Engineering and Technology 3

Computer Software: Software is the collection of programs (instructions) that allow the hardware

to do its job.

There are two types of Computer Software.

A. System Software

B. Application Software

A. System Software: System Software consists of programs that manage the hardware resources of

a computer and perform required information processing tasks.

These programs are divided into three classes.

i. Operating System Software: It provides services such as a user interface, files and data base

access and interfaces to communication systems such as Internet protocols. The primary purpose of

this software is to keep the system operating in an efficient manner while allowing the users access

to the system.

ii. System Support Software: It provides system utilities and other operating services. Examples of

system utilities are sort programs and disk format programs. Operating services consist of programs

that provide performance statistics for the operational staff and security monitors to protect the

system and data.

iii. System Development Software: It includes language translators that convert programs in to

machine language for execution, debugging tools to ensure that programs are error - free and

computer -assisted software engineering (CASE) systems.

B. Application Software: It is directly responsible for helping users to solve their problems.

Application software is broken into two classes.

i. General - Purpose Software

ii. Application - Specific Software

General Purpose Software: It is purchased from a software developer and can be used for more

than one application. Examples: word processors, database management systems, computer – aided

design systems. They are labeled general purpose because they can solve a variety of user computing

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 4

problems.

Application Specific Software: It can be used only for its intended purpose.

Example: A general ledger system used by accountants.

They can be used only for the task for which they were designed. They cannot be used for other

generalized tasks.

COMPUTER LANGUAGES:

The language used in the communication of computer instructions is known as the Computer

programming language. The computer has its own language and any communication with the

computer must be in its language or translated into this language. Three levels of programming

languages are available. They are:

1. Machine languages (Low level languages)

2. Assembly (or symbolic) languages

3. Procedure-oriented languages (High level languages)

1. Machine language: Computers are made of two-state electronic devices. They can understand

only pulse and no-pulse (or ‗1‘ and ‗0‘) conditions. Therefore, all instructions and data should be

written using binary codes 1 and 0. This binary code is called the machine code or machine

language.

Machine languages are usually referred to as the first generation languages.

2. Assembly language: The assembly language, also referred to as the second-generation

programming language, is also a low-level language. In an assembly language, the 0s and 1s of

machine language are replaced with abbreviations or mnemonic code. An assembly language

program consists of a series of instructions and mnemonics that correspond to a stream of executable

instructions. During the execution, the assembly language program is converted into the machine

code with the help of an assembler.

3. High-level languages: High level languages further simplified programming tasks by reducing the

number of computer operation details that had to be specified. High level languages like C, Python,

java are more abstract, easier to use, and more portable across platforms, as compared to low level

programming languages.

Algorithm:

An algorithm is a finite step-by-step procedure for solving a particular problem. It is a finite
sequence of steps which when followed will give desired result.

The following are the features or characteristics of an algorithm

Finiteness: An algorithm terminates after a fixed number of steps

Definiteness: Each step of the algorithm is precisely defined. It should be clear and

unambiguous

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 5

Effectiveness: All the operations used in the algorithm can be performed exactly in a fixed

duration of time. Every step should be basic and essential

Input: An algorithm may have 0 or more inputs

Output: An algorithm must have one or more outputs

Example: Write an algorithm to find the sum of two numbers

Step 1: Read two numbers n1 and n2

Step 2: Add n1 and n2 and store the result in sum

Step 3: write sum

Step 4: Stop

Flowchart:

A flowchart can also be defined as a diagrammatic representation of an algorithm.

A flowchart is a type of diagram that represents a workflow or process.

Symbols used in Flowchart

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 6

Example: Flowchart to find the area of a square

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 7

Introduction to Python Language

Python Basics:

⚫ Python is a general-purpose interpreted, interactive, object-oriented, and high-level

programming language.

⚫ Python is programming language as well as scripting language.

⚫ Python is also called as Interpreted language

⚫ So it is an uncomplicated and robust programming language that delivers both the power and

complexity of traditional compiled languages along with the ease-of-use (and then some) of

simpler scripting and interpreted languages.

Difference between Scripting Language and Programming Language

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 8

Why Python?

⚫ Python is a high-level, interpreted, interactive and object-oriented scripting language.

⚫ Python is designed to be highly readable. It uses English keywords frequently where as other

languages use punctuation, and it has fewer syntactical constructions than other languages.

⚫ Python is a MUST for students and working professionals to become a great Software

Engineer especially when they are working in Web Development Domain.

History of Python:

⚫ Invented in the Netherlands, early 90s by Guido van Rossum

⚫ Python was conceived in the late1980s and its implementation was started in December

1989

⚫ Guido Van Rossum is fan of ‘Monty Python’s Flying Circus’, this is a famous TV show

in Netherlands

⚫ Named after Monty Python

⚫ Open sourced from the beginning

Who uses python today…

⚫ Python is being applied in real revenue-generating products by real companies.

For instance:

⚫ Google makes extensive use of Python in its web search system, and employs Python’s

creator.

⚫ Intel, Cisco, Hewlett-Packard, Seagate, Qualcomm, and IBM use Python for hardware

testing.

⚫ The YouTube video sharing service is largely written in Python

Features of Python:

1. Easy

When we say the word ‘easy’, we mean it in different contexts.

a. Easy to Code

⚫ Python is very easy to code as compared to other popular languages like Java and C++.

⚫ Anyone can learn Basic Python syntax in just a few hours. Thus, it is programmer-

friendly.

b. Easy to Read

⚫ Being a high-level language, Python code is quite like English. Looking at it, you can tell

what the code is supposed to do.

⚫ Also, since it is dynamically-typed, it mandates indentation. This aids readability.

2. Expressive

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 9

⚫ First, let’s learn what is expressiveness. Suppose we have two languages A and B, and all

programs that can be made in A can be made in B using local transformations.

⚫ However, there are some programs that can be made in B, but not in A, using local

transformations. Then, B is said to be more expressive than A.

⚫ Python provides us with a myriad of constructs that help us focus on the solution rather

than on the syntax.

⚫ This is one of the outstanding python features that tell you why you should learn Python.

3. Free and Open-Source

⚫ Firstly, Python is freely available. You can download it from the Python Official Website.

⚫ Secondly, it is open-source. This means that its source code is available to the public. You

can download it, change it, use it, and distribute it.

⚫ This is called FLOSS(Free/Libre and Open Source Software). As the Python

community, we’re all headed toward one goal- an ever-bettering Python.

4. High-Level

⚫ Python is a high-level language. This means that as programmers, we don’t need to

remember the system architecture.

⚫ Also, we need not manage memory. This makes it more programmer-friendly and is one

of the key python features.

5. Portable

⚫ Let’s assume you’ve written a Python code for your Windows machine. Now, if you want

to run it on a Mac, you don’t need to make changes to it for the same.

⚫ In other words, you can take one code and run it on any machine. This makes Python

a portable language.

⚫ However, you must avoid any system-dependent features in this case.

6. Interpreted

⚫ If you’re familiar with any languages like C++ or Java, you must first compile it, and then

run it. But in Python, there is no need to compile it.

⚫ Internally, its source code is converted into an immediate form called bytecode.

⚫ So, all you need to do is to run your Python code without worrying about linking to

libraries, and a few other things.

⚫ By interpreted, we mean the source code is executed line by line, and not all at once.

Because of this, it is easier to debug your code.

⚫ Also, interpreting makes it just slightly slower than Java, but that does not matter compared

to the benefits it offers.

⚫ If you have any doubt in DataFlair’s features of python programming language article, drop
a comment below and we will get back to you

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 10

7. Object-Oriented

⚫ A programming language that can model the real world is said to be object-oriented. It

focuses on objects and combines data and functions.

⚫ Contrarily, a procedure-oriented language revolves around functions, which are code that

can be reused.

⚫ Python supports both procedure-oriented and object-oriented programming which is

one of the key python features.

⚫ It also supports multiple inheritance, unlike Java.

⚫ A class is a blueprint for such an object. It is an abstract data type and holds no values.

8. Extensible

⚫ If needed, you can write some of your Python code in other languages like C++.

⚫ This makes Python an extensible language, meaning that it can be extended to other

languages.

9. Embeddable

⚫ We just saw that we can put code in other languages in our Python source code.

⚫ However, it is also possible to put our Python code in a source code in a different language

like C++.

⚫ This allows us to integrate scripting capabilities into our program of the other language.

10. Large Standard Library

⚫ Python downloads with a large library that you can use so you don’t have to write your

own code for every single thing.

⚫ There are libraries for regular expressions, documentation-generation, unit-testing, web

browsers, threading, databases, CGI, email, image manipulation, and a lot of other

functionality.

11. GUI Programming

⚫ Software is not user-friendly until its GUI is made. A user can easily interact with the

software with a GUI.

⚫ Python offers various libraries for making Graphical user interface for your applications.

⚫ For this, you can use Tkinter, wxPython or JPython. These toolkits allow you for easy and

fast development of GUI.

12. Dynamically Typed

⚫ Python is dynamically-typed. This means that the type for a value is decided at runtime,

not in advance. This is why we don’t need to specify the type of data while declaring it

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 11

Python Applications

Python is known for its general-purpose nature that makes it applicable in almost every domain of

software development. Python makes its presence in every emerging field. It is the fastest-growing

programming language and can develop any application.

Application areas where Python can be applied.

GETTING STARTED

Python Versions

⚫ There are two major Python versions- Python 2 and Python 3.

⚫ On 16 October 2000, Python 2.0 was released with many new features.

⚫ On 3rd December 2008, Python 3.0 was released with more testing and includes new

features.

Finding an Interpreter for Python Programming

Windows: There are many interpreters available freely to run Python scripts like

IDLE (Integrated Development Environment) which is installed when you install the

python software from http://python.org/downloads/

Programming For Problem Solving B. Tech I Year I Semester

http://python.org/downloads/

Malla Reddy College of Engineering and Technology 12

Python Installation:

There are many interpreters available freely to run Python scripts like IDLE (Integrated

Development Environment) which is installed when you install the python software from

http://python.org/downloads/

Steps to be followed and remembered:

⚫ Step 1: Select Version of Python to Install.

⚫ Step 2: Download Python Executable Installer.

⚫ Step 3: Run Executable Installer.

⚫ Step 4: Verify Python was Installed On Windows.

⚫ Step 5: Verify Pip Was Installed.

⚫ Step 6: Add Python Path to Environment Variables (Optional)

Python Code Execution:

 Python’s traditional runtime execution model: source code you type is translated to byte

code, which is then run by the Python Virtual Machine.

 Your code is automatically compiled, but then it is interpreted.

Programming For Problem Solving B. Tech I Year I Semester

http://python.org/downloads/

Malla Reddy College of Engineering and Technology 13

Source code extension is .py
Byte code extension is .pyc (compiled python code)

Modes for using Python interpreter:

There are two modes for using the Python interpreter:

⚫ Interactive Mode

⚫ Script Mode

1. Running Python in interactive mode

⚫ Without passing python script file to the interpreter, directly execute code to Python

prompt. Once you’re inside the python interpreter, then you can start.

>>> print("hello world")

hello world

Relevant output is displayed on subsequent lines without the >>> symbol

>>> x=[0,1,2]

Quantities stored in memory are not displayed by default.

>>> x

#If a quantity is stored in memory, typing its name will display it. [0, 1, 2]

>>> 2+3

 The chevron at the beginning of the 1st line, i.e., the symbol >>> is a prompt the python

interpreter uses to indicate that it is ready.

 If the programmer types 2+6, the interpreter replies 8.

2. Running Python in script mode:

 Alternatively, programmers can store Python script source code in a file with the .py

extension, and use the interpreter to execute the contents of the file.

 To execute the script by the interpreter, you have to tell the interpreter the name of the file.

Working with the interactive mode is better when Python programmers deal with small

pieces of code as you can type and execute the immediately, but when the code is more

than 2-4 lines, using the script for coding can help to modify and use the code in future.

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 14

Python input() Function

Python input() function is used to get input from the user. It prompts for the user input and reads a

line. After reading data, it converts it into a string and returns that. It throws an error EOFError if

EOF is read.

Signature

var = input ([prompt])

Parameters

prompt: It is a string message which prompts for the user input.

Return

It returns user input after converting into a string.

Python input() Function Example 1

Here, we are using this function get user input and display to the user as well.

1. # Python input() function example

2. # Calling function

3. val = input("Enter a value: ")

4. # Displaying result

5. print("You entered:",val)

Output:

Enter a value: 45

You entered: 45

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 15

Python input() Function Example 2

The input() method returns string value. So, if we want to perform arithmetic operations, we need

to cast the value first. See the example below.

1. # Python input() function example

2. # Calling function

3. val = input("Enter an integer: ")

4. # Displaying result

5. val = int(val) # casting into string

6. sqr = (val*val) # getting square

7. print("Square of the value:",sqr)

Output:

Python print() Function

Python print() function prints the given object on the screen or other standard output devices.

Signature

print(object(s), sep=separator, end=end, file=file, flush=flush)

Parameters

object(s): It is an object to be printed. The Symbol * indicates that there may be more than one

object.

sep='separator' (optional): The objects are separated by sep. The default value of sep is ' '.

end='end' (optional): it determines which object should be print at last.

file (optional): - The file must be an object with write(string) method. If it is omitted, sys.stdout

will be used which prints objects on the screen.

flush (optional): If True, the stream is forcibly flushed. The default value of flush is False

Return

It does not return any value. Python

print() Function Example 1

1. print("Python is programming language.")2.

3. x = 7

4. # Two objects passed

5. print("x =", x)

6.

7. y = x

8. # Three objects passed

9. print('x =', x, '= y')

Programming For Problem Solving B. Tech I Year I Semester

Enter an integer: 12

Square of the value: 144

Malla Reddy College of Engineering and Technology 16

Output:

Python print() Function Example 2

The below example use print() with separator and end parameters.

1. x = 7

2. print("x =", x, sep='00000', end='\n\n\n')3.

print("x =", x, sep='0', end='')

Output:

Comments:

 Comments begins with a hash(#) symbol and is useful in mentioning that the whole line

should be considered as a comment until the end of line.

 It is used to basically provide the description of particular line of code.

 So it will ignore from execution by Python Interpreter.

Example:

To print Hello World (It is comment)

>>> print (“Hello World”)

 So it executes only one line of code.

Python Identifiers

 A Python identifier is a name used to identify a variable, function, class, module or other

object. An identifier starts with a letter A to Z or a to z or an underscore (_) followed by

zero or more letters, underscores and digits (0 to 9).

 Python does not allow punctuation characters such as @, $, and % within identifiers.

Python is a case sensitive programming language. Thus, Manpower and manpower are two

different identifiers in Python.

Programming For Problem Solving B. Tech I Year I Semester

Python is programming language.

x = 7

x = 7 = y

a =000007

a =07

Malla Reddy College of Engineering and Technology 17

Python Keywords:

The following list shows the Python keywords. These are reserved words and you cannot use them

as constant or variable or any other identifier names. Mostly Python keywords contain lowercase

letters only.

Lines and Indentation:
 Python provides no braces to indicate blocks of code for class and function definitions or

flow control.

 Blocks of code are denoted by line indentation, which is rigidly enforced.

The number of spaces in the indentation is variable, but all statements within the blockmust be

indented the same amount

For example –

a=10

b=20

if(a>b):

print("a is greater than b")

else:

print("a is less than b")

However, the following block generates an error –

a=10

b=20

if(a>b):

print("a is greater than b")

else:

print("a is less than b")

Thus, in Python all the continuous lines indented with same number of spaces would form a block.

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 18

Variables in Python:

 Variables are nothing but reserved memory locations to store values. This means that when

you create a variable you reserve some space in memory.

 Based on the data type of a variable, the interpreter allocates memory and decides what can

be stored in the reserved memory.

 Therefore, by assigning different data types to variables, you can store integers, decimals

or characters in these variables.

Rules for Python variables:

 A variable name must start with a letter or the underscore character

 A variable name cannot start with a number

 A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and

_)

 Variable names are case-sensitive (age, Age and AGE are three different variables)

Assigning Values to Variables:

 Python variables do not need explicit declaration to reserve memory space.

 The declaration happens automatically when you assign a value to a variable.

 The equal sign (=) is used to assign values to variables.

The operand to the left of the = operator is the name of the variable and the operand to theright of

the = operator is the value stored in the variable

For example −

a= 50 # An integer assignmentb

= 7000.0 # A floating point c =

"John" # A string

print (a)

print (b)

print (c)

This produces the following result −

50

7000.0

John

Multiple Assignment:

 Python allows you to assign a single value to several variables simultaneously.

 For example :

a = b = c = 1

 Here, an integer object is created with the value 1, and all three variables are assigned to

the same memory location. You can also assign multiple objects to multiple variables.

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 19

For example −

a,b,c = 1,2,"mrec“

 Here, two integer objects with values 1 and 2 are assigned to variables a and b respectively,

and one string object with the value "john" is assigned to the variable c.

Output Variables:

 The Python print statement is often used to output variables.

 Variables do not need to be declared with any particular type and can even change type

after they have been set.

Example

x = 5 # x is of type int

x = "python " # x is now of type str

print(x)

Output: python

To combine both text and a variable, Python uses the “+” character:

Example

x = "awesome"

print("Python is " + x)

Output
Python is awesome

You can also use the + character to add a variable to another variable:

Example

x = "Python is "y

= "awesome" z

= x + y print(z)

Output:

Python is awesome

 Python Identifiers:

 Identifiers are the name given to variables, classes, methods(functions), etc. For example,

Programming For Problem Solving B. Tech I Year I Semester

Here, is a variable (an identifier) which holds the value 'Python'.

We cannot use keywords as variable names as they are reserved names that are built-in to Python.

For example,

language

language = 'Python'

https://www.programiz.com/python-programming/class
https://www.programiz.com/python-programming/function

Malla Reddy College of Engineering and Technology 20

Programming For Problem Solving B. Tech I Year I Semester

The above code is wrong because we have used

To learn more about variables, visit Python Variables.

as a variable name.

Rules for Naming an Identifier

continue

continue = 'Python'

 Identifiers cannot be a keyword.

 Identifiers are case-sensitive.

 It can have a sequence of letters and digits. However, it must begin with a letter or _. The

first letter of an identifier cannot be a digit.

 It's a convention to start an identifier with a letter rather _.

 Whitespaces are not allowed.

 We cannot use special symbols like !, @, #, $, and so on.

Some Valid and Invalid Identifiers in Python

Valid Identifiers Invalid Identifiers

score @core

return_value return

highest_score highest score

name1 1name

convert_to_string convert to_string

Things to Remember

Python is a case-sensitive language. This means, and

Always give the identifiers a name that makes sense. While

are not the same.

is a valid name, writing

would make more sense, and it would be easier to figure out what it represents when you look

at your code after a long gap.

Multiple words can be separated using an underscore, like this_is_a_long_variable

= 10

count c = 10

variable Variable

https://www.programiz.com/python-programming/variables-constants-literals

Malla Reddy College of Engineering and Technology 21

Data Types in Python:

 Every value in Python has a datatype.

 Since everything is an object in Python programming, data types are actually classes and

variables are instance (object) of these classes.

There are various data types in Python. Some of the important types are listed below.

 Numbers

 Strings

 List

 Tuples

 Sets

 Dictionary

NUMBERS

Number data types:

 Number data types store numeric values.

 They are immutable data types, means that changing the value of a number data type results

in a newly allocated object.

 Number objects are created when you assign a value to them

 Python has three built-in numeric data types: integers, floating-point numbers, and

complex numbers.

Integers:

 An integer is a whole number with no decimal places. For example, 1 is an integer,

but 1.0 isn’t.

 So in Python, integers are zero, positive or negative whole numbers without a fractional

part and having unlimited precision, e.g. 0, 100, -10.

The followings are valid integer literals in Python.

>>> 0

0

>>> 100

100

>>> -10

-10

>>> 1234567890

1234567890

>>> y=500

>>> y

500

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 22

 Integers can be binary, octal, and hexadecimal values.

>>> 0b11011000 # binary

216

>>> 0o12 # octal

10

>>> 0x12 # hexadecimal

15

All integer literals or variables are objects of the int class. Use the type() method to get

 the class name, as shown below.

>>>type(100)

<class 'int'> # type of x is int

>>> x=1234567890

>>> type(x)

<class 'int'> # type of x is int

>>> y=500

>>> type(y) # type of y is int

<class 'int'>

 Leading zeros in non-zero integers are not allowed e.g. 000123 is invalid number, 0000

is 0.

>>> x=01234567890

SyntaxError: invalid token

Float:

 In Python, floating point numbers (float) are positive and negative real numbers with a

fractional part denoted by the decimal symbol . or the scientific notation E or e, e.g.

1234.56, 3.142, -1.55, 0.23, 1.432e2,1e-4

>>> f=1.2

>>> f

1.2

>>> type(f)

<class 'float'>

 Floats has the maximum size depends on your system. The float beyond its maximum size

referred as "inf", "Inf", "INFINITY", or "infinity". Float 2e400 will be considered as

infinity for most systems.

>>> f=2e400

>>> f

Inf

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 23

 Scientific notation is used as a short representation to express floats having many digits.

For example: 345.56789 is represented as 3.4556789e2 or 3.4556789E2

>>> f=1e3

>>> f

1000.0

>>> f=1e5

>>> f

100000.0

>>> f=3.4556789e2

>>> f

345.56789

STRINGS

Strings are amongst the most popular types in Python. We can create them simply by enclosing

characters in quotes. Python treats single quotes the same as double quotes. This contrasts with

most other scripting languages, which use single quotes for literal strings and doublequotes to allow

escaping of characters.

Python uses the "raw string" operator to create literal quotes, so no differentiation isnecessary.

Other languages such as C use single quotes for characters and double quotes for strings.

Python does not have a character type; this is probably another reason why single and double

quotes are the same.

Nearly every Python application uses strings in one form or another. Strings are immutable,

meaning that changing an element of a string requires creating a new string. Strings are made up

of individual characters, and such elements of strings may be accessed sequentially via slicing.

How to Create and Assign Strings

Creating strings is as simple as assigning a value to a variable:

>>> aString = 'Hello World!'

>>> anotherString = "Python is cool!"

>>> print (aString)

Hello World!

>>> print (anotherString)

Python is cool!

>>> aBlankString = ''

>>> print (aBlankString)''

How to Access Values(Characters and Substrings) in Strings

 Python does not support a character type; these are treated as strings of length one, thus

also considered a substring.

 To access substrings, use the square brackets for slicing along with the index or indices to

obtain your substring:

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 24

>>> aString = 'Hello World!'

>>> aString[0] # Forward Indexing

'H'

>>> aString[-1] # Backward Indexing

'd’

>>> aString[1:5] #Slicing

'ello'

>>> aString[6:]

'World!'

How to Update Strings

 You can "update" an existing string by (re)assigning a variable to another string.

 The new value can be related to its previous value or to a completely different string

altogether.

>>> aString = 'Hello World!'

>>> aString = aString[:6] + 'Python!'

>>> aString

'Hello Python!'

>>> aString = 'different string altogether'

>>> aString

'different string altogether'

 Like numbers, strings are not mutable, so you cannot change an existing string without

creating a new one from scratch.

 That means that you cannot update individual characters or substrings in a string.

 However, as you can see above, there is nothing wrong with piecing together part of your

old string and assigning it to a new string.

How to Remove Characters and Strings

To repeat what we just said, strings are immutable, so you cannot remove individual characters

from an existing string. What you can do, however, is to empty the string, or to put together another

string which drops the pieces you were not interested in.

Let us say you want to remove one letter from "Hello World!"… the (lowercase) letter "l," for

example:

>>> aString = 'Hello World!'

>>> aString = aString[:3] #slicing from the start + aString[4:]#slicing to the end

>>> aString

'Helo World!'

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 25

Membership Operator(in, not in)

 The membership question asks whether a character (string of length one) appears in a

string.

 True is returned if that character appears in the string and False otherwise

 Here are a few more examples of strings and the membership operators.

>>> 'c' in 'abcd'

True

>>> 'n' in 'abcd'

False

>>> 'n' not in 'abcd'

True

Multi Line Strings

You can assign a multiline string to a variable by using three quotes:

>>>a=”””This is Python Programming,

Python Language is awesome,

It is very easy to understand and

Easy to implement code”””

>>>print(a)

This is Python Programming,

Python Language is awesome, It

is very easy to understand and

Easy to implement code

Escape Character

To insert characters that are illegal in a string, use an escape character. An escape character is a

backslash \ followed by the character you want to insert.

An example of an illegal character is a double quote inside a string that is surrounded by double

quotes:

Example:

The escape character allows you to use double quotes when you normally would not be allowed:

>>>txt = "Python is an easy and \"interesting\" language."

>>>print(txt)

Python is an easy and "interesting" language.

Concatenation of Two or More Strings

 Joining of two or more strings into a single one is called concatenation.

 The + (concatenation) operator does this in Python. Simply writing two string literals

together also concatenates them.

 The * (repetition) operator can be used to repeat the string for a given number of times.

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 26

Python String Operations

str1 = 'Hello'

str2 ='World!'#

using +

print('str1 + str2 = ', str1 + str2)

using *

print('str1 * 3 =', str1 * 3)

 When we run the above program, we get the following output:

str1 + str2 = HelloWorld!

str1 * 3 = HelloHelloHello

String Length

To get the length of a string, use the len() function. The len() function returns the length of the

string:

>>>a= "Hello,World!"

>>> print(len(a))

12

Upper Case

The upper() method returns the string in upper case:

>>>a= "Hello,World!"

>>> print(a.upper())

HELLO, WORLD!

Lower Case

The lower() method returns the string in lower case:

>>>a= "Hello,World!"

>>>print(a.lower())

hello, world!

Remove Whitespace

Whitespace is the space before and/or after the actual text, and very often you want to remove this

space. The strip() method removes any whitespace from the beginning or the end:

>>>a = " Hello, World! "

>>>print(a.strip()) # returns "Hello, World!"

Hello, World!

Replace String

The replace() method replaces a string with another string:

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 27

a= "Hello,World!"

print(a.replace("H", "J"))

Jello, World!

Split String

The split() method returns a list where the text between the specified separator becomes the list

items.

a = "Hello, World!"

print(a.split(",")) # returns ['Hello', ' World!']

['Hello', ' World!']

String Format

We can combine strings and numbers by using the format() method.The format() method takes the

passed arguments, formats them, and places them in the string where the placeholders {} are: Use

the format() method to insert numbers into strings:

>>>age = 36

>>>txt = "My name is John, and I am {}"

>>>print(txt.format(age))

My name is John, and I am 36

String Methods

 Method Description

capitalize() Converts the first character to upper case

casefold() Converts string into lower case

center() Returns a centered string

count() Returns the number of times a specified value occurs in a string

encode() Returns an encoded version of the string

endswith() Returns true if the string ends with the specified value

expandtabs() Sets the tab size of the string

find() Searches the string for a specified value and returns the position of where it

was found

format() Formats specified values in a string

format_map() Formats specified values in a string

Programming For Problem Solving B. Tech I Year I Semester

https://www.w3schools.com/python/ref_string_capitalize.asp
https://www.w3schools.com/python/ref_string_casefold.asp
https://www.w3schools.com/python/ref_string_center.asp
https://www.w3schools.com/python/ref_string_count.asp
https://www.w3schools.com/python/ref_string_encode.asp
https://www.w3schools.com/python/ref_string_endswith.asp
https://www.w3schools.com/python/ref_string_expandtabs.asp
https://www.w3schools.com/python/ref_string_find.asp
https://www.w3schools.com/python/ref_string_format.asp

Malla Reddy College of Engineering and Technology 28

index() Searches the string for a specified value and returns the position of where it

was found

isalnum() Returns True if all characters in the string are alphanumeric

isalpha() Returns True if all characters in the string are in the alphabet

isdecimal() Returns True if all characters in the string are decimals

isdigit() Returns True if all characters in the string are digits

isidentifier() Returns True if the string is an identifier

islower() Returns True if all characters in the string are lower case

isnumeric() Returns True if all characters in the string are numeric

isprintable() Returns True if all characters in the string are printable

isspace() Returns True if all characters in the string are whitespaces

istitle() Returns True if the string follows the rules of a title

isupper() Returns True if all characters in the string are upper case

join() Joins the elements of an iterable to the end of the string

ljust() Returns a left justified version of the string

lower() Converts a string into lower case

lstrip() Returns a left trim version of the string

partition() Returns a tuple where the string is parted into three parts

replace() Returns a string where a specified value is replaced with a specified value

rfind() Searches the string for a specified value and returns the last position of where

it was found

rindex() Searches the string for a specified value and returns the last position of where

it was found

rjust() Returns a right justified version of the string

rpartition() Returns a tuple where the string is parted into three parts

rsplit() Splits the string at the specified separator, and returns a list

rstrip() Returns a right trim version of the string

Programming For Problem Solving B. Tech I Year I Semester

https://www.w3schools.com/python/ref_string_index.asp
https://www.w3schools.com/python/ref_string_isalnum.asp
https://www.w3schools.com/python/ref_string_isalpha.asp
https://www.w3schools.com/python/ref_string_isdecimal.asp
https://www.w3schools.com/python/ref_string_isdigit.asp
https://www.w3schools.com/python/ref_string_isidentifier.asp
https://www.w3schools.com/python/ref_string_islower.asp
https://www.w3schools.com/python/ref_string_isnumeric.asp
https://www.w3schools.com/python/ref_string_isprintable.asp
https://www.w3schools.com/python/ref_string_isspace.asp
https://www.w3schools.com/python/ref_string_istitle.asp
https://www.w3schools.com/python/ref_string_isupper.asp
https://www.w3schools.com/python/ref_string_join.asp
https://www.w3schools.com/python/ref_string_ljust.asp
https://www.w3schools.com/python/ref_string_lower.asp
https://www.w3schools.com/python/ref_string_lstrip.asp
https://www.w3schools.com/python/ref_string_partition.asp
https://www.w3schools.com/python/ref_string_replace.asp
https://www.w3schools.com/python/ref_string_rfind.asp
https://www.w3schools.com/python/ref_string_rindex.asp
https://www.w3schools.com/python/ref_string_rjust.asp
https://www.w3schools.com/python/ref_string_rpartition.asp
https://www.w3schools.com/python/ref_string_rsplit.asp
https://www.w3schools.com/python/ref_string_rstrip.asp

Malla Reddy College of Engineering and Technology 29

 split() Splits the string at the specified separator, and returns a list

startswith() Returns true if the string starts with the specified value

strip() Returns a trimmed version of the string

swapcase() Swaps cases, lower case becomes upper case and vice versa

title() Converts the first character of each word to upper case

translate() Returns a translated string

upper() Converts a string into upper case

zfill() Fills the string with a specified number of 0 values at the beginning

LIST

 The list is a most versatile Data type available in Python in which objects are mutable in

type and can be written as a list of comma-separated values (items) between square

brackets.

⚫ Important thing about a list is that items in a list need not be of the same type.

⚫ Strings consist only of characters and are immutable (cannot change individual elements)

while lists are flexible container objects which hold an arbitrary number of Python objects.

⚫ Creating lists is simple; adding to lists is easy, too, as we see in the following examples.

Example:

list1 = ['physics', 'chemistry', 1997, 2000];

list2 = [1, 2, 3, 4, 5];

 mylist = ["apple", "banana", "cherry"]

List

Lists are used to store multiple items in a single variable.

Lists are one of 4 built-in data types in Python used to store collections of data, the other 3are

Tuple, Set, and Dictionary, all with different qualities and usage.

Lists are created using square brackets:

Programming For Problem Solving B. Tech I Year I Semester

Example.

Create a List:

https://www.w3schools.com/python/ref_string_split.asp
https://www.w3schools.com/python/ref_string_startswith.asp
https://www.w3schools.com/python/ref_string_strip.asp
https://www.w3schools.com/python/ref_string_swapcase.asp
https://www.w3schools.com/python/ref_string_title.asp
https://www.w3schools.com/python/ref_string_translate.asp
https://www.w3schools.com/python/ref_string_upper.asp
https://www.w3schools.com/python/ref_string_zfill.asp
https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_dictionaries.asp
https://www.w3schools.com/python/python_server.asp

Malla Reddy College of Engineering and Technology 30

thislist=["apple", "banana", "cherry"]

print(thislist)

List Items

List items are ordered, changeable, and allow duplicate values.

List items are indexed, the first item has index [0], the second item has index [1] etc.

Ordered

When we say that lists are ordered, it means that the items have a defined order, and that order will

not change.

If you add new items to a list, the new items will be placed at the end of the list.

Changeable

The list is changeable, meaning that we can change, add, and remove items in a list after it has

been created.

Allow Duplicates

Since lists are indexed, lists can have items with the same value:

thislist=["apple", "banana", "cherry", "apple", "cherry"]

print(thislist)

List Length

To determine how many items a list has, use the len() function:

thislist=["apple", "banana", "cherry"]

print(len(thislist))

Programming For Problem Solving B. Tech I Year I Semester

Note: There are some list methods that will change the order, but in general: the order of the items

will not change.

Example

Lists allow duplicate values:

Example

Print the number of items in the list:

https://www.w3schools.com/python/python_lists_methods.asp

Malla Reddy College of Engineering and Technology 31

List Items - Data Types

List items can be of any data type:

list1=["apple", "banana", "cherry"]

list2=[1, 5, 7, 9, 3]

list3 = [True, False, False]

A list can contain different data types:

list1 = ["abc", 34, True, 40, "male"]

type()

From Python's perspective, lists are defined as objects with the data type 'list':

mylist=["apple", "banana", "cherry"]

print(type(mylist))

How to Create and Assign Lists

 Creating lists is as simple as assigning a value to a variable.

 You handcraft a list (empty or with elements) and perform the assignment.

 Lists are delimited by surrounding square brackets ([]).

>>> aList = [123, 'abc', 4.56, ['inner', 'list'], 7-9j]

Programming For Problem Solving B. Tech I Year I Semester

Example

String, int and boolean data types:

Example

A list with strings, integers and boolean values:

<class 'list'>

Example

What is the data type of a list?

Malla Reddy College of Engineering and Technology 32

>>> anotherList = [None, 'something to see here']

>>> print (aList)

[123, 'abc', 4.56, ['inner', 'list'], (7-9j)]

>>> print (anotherList) [None,

'something to see here']

>>> aListThatStartedEmpty = []

>>> print (aListThatStartedEmpty)

[]

How to Access Values in Lists

 Slicing works similar to strings; use the square bracket slice operator ([]) along with the

index or indices.

>>> aList[0]

123

>>> aList[1:4]

['abc', 4.56, ['inner', 'list']]

>>> aList[:3]

[123, 'abc', 4.56]

>>> aList[3][1]

'list'

How to Update Lists

 You can update single or multiple elements of lists by giving the slice on the left-hand side

of the assignment operator, and you can add to elements in a list with the append() method:

>>> aList

[123, 'abc', 4.56, ['inner', 'list'], (7-9j)]

>>> aList[2]

4.56

>>> aList[2] = 'float replacer'

>>> aList

[123, 'abc', 'float replacer', ['inner', 'list'], (7-9j)]

>>>

>>> anotherList.append("hi, i'm new here")

>>> print (anotherList)

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 33

[None, 'something to see here', "hi, i'm new here"]

>>> aListThatStartedEmpty.append('not empty anymore')

>>> print (aListThatStartedEmpty)

['not empty anymore']

How to insert item in List

 To insert a new list item, without replacing any of the existing values, we can use the

insert() method.

 The insert() method inserts an item at the specified index:

>>>str_list = ['jack', 'jumped', 'over', 'candlestick']

>>>str_list.insert(2, 'park')

>>>print(str_list)

['jack', 'jumped', 'park', 'over', 'candlestick']

How to Remove List Elements and Lists

 To remove a list element, you can use either the del statement if you know exactly which

element(s) you are deleting or the remove() method if you do not know.

>>> aList

[123, 'abc', 'float replacer', ['inner', 'list'], (7-9j)]

>>> del aList[1]

>>> aList

[123, 'float replacer', ['inner', 'list'], (7-9j)]

>>> aList.remove(123)

>>> aList

['float replacer', ['inner', 'list'], (7-9j)]

 You can also use the pop() method to remove and return a specific object from a list.

>>> aList.pop()

(7-9j)

Programming For Problem Solving B. Tech I Year I Semester

 To clear the list, clear() method will be used to empties the list. The list still remains, but

Malla Reddy College of Engineering and Technology 34

it has no content.

>>> aList.clear()

print(aList)

[]

 Normally, removing an entire list is not something application programmers do.

 Rather, they tend to let it go out of scope (i.e., program termination, function call

completion, etc.) and be garbage-collected, but if they do want to explicitly remove an

entire list, use the del statement:

>>>del aList

Membership (in, not in)

 With strings, the membership operator determined whether a single character is a member

of a string.

 With lists (and tuples), we can check whether an object is a member of a list (or tuple).

>>> mixup_list = [4.0, [1, 'x'], 'fruits', (-1.9+6j)]

>>>mixup_list

[4.0, [1, 'x'], 'fruits', (-1.9+6j)]

>>> 'fruits' in mixup_list

True

>>>

>>> 'x' in mixup_list

False

>>> 'x' in mixup_list[1]

True

Concatenation(+) Operator

 The concatenation operator allows us to join multiple lists together.

>>> num_list = [43, -1.23, -2, 6.19e5]

>>> str_list = ['jack', 'jumped', 'over', 'candlestick']

>>> mixup_list = [4.0, [1, 'x'], 'fruits', -1.9+6j]

>>>

>>> num_list + mixup_list

[43, -1.23, -2, 619000.0, 4.0, [1, 'x'], 'fruits', (-1.9+6j)]

>>>

>>> str_list + num_list

['jack', 'jumped', 'over', 'candlestick', 43, -1.23, -2, 619000.0]

 We can use the extend() method in place of the concatenation operator to append the

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 35

contents of a list to another.

 Using extend() is advantageous over concatenation because it actually appends the

elements of the new list to the original, rather than creating a new list from scratch like +

does

Repetition (*)

 Use of the repetition operator may make more sense with strings, but as a sequence type,

lists and tuples can also benefit from this operation, if needed:

>>> num_list * 2

[43, -1.23, -2, 619000.0, 43, -1.23, -2, 619000.0].

len()

 For strings, len() gives the total length of the string, as in the number of characters.

 For lists (and tuples), it will not surprise you that len() returns the number of elements in

the list (or tuple).

 Container objects found within count as a single item.

 Our examples below use some of the lists already defined above in previous sections.

>>> len(num_list)4

Copy a List

 You cannot copy a list simply by typing list2 = list1, because: list2 will only be a reference

to list1, and changes made in list1 will automatically also be made in list2.

 There are ways to make a copy, one way is to use the built-in List method copy().

>>>str_list = ['jack', 'jumped', 'over', 'candlestick']

>>>mylist = str_list.copy()

>>>print(mylist)

['jack', 'jumped', 'over', 'candlestick']

 Another way to make a copy is to use the built-in method list().

>>>str_list = ['jack', 'jumped', 'over', 'candlestick']

>>>mylist = list(str_list)

>>>print(mylist)

['jack', 'jumped', 'over', 'candlestick']

List Methods

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 36

 Python has a set of built-in methods that you can use on lists.

Method Description

append() Adds an element at the end of the list

clear() Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Add the elements of a list (or any iterable), to the end of the current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

remove() Removes the item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

TUPLES

Tuples:

 Tuples are another container type extremely similar in nature to lists.

 The only visible difference between tuples and lists is that tuples use parentheses and lists

use square brackets.

 Functionally. there is a more significant difference, and that is the fact that tuples are

immutable.

 Tuples are used to store multiple items in a single variable.

 Tuple is one of 4 built-in data types in Python used to store collections of data, the other 3

are List, Set, and Dictionary, all with different qualities and usage.

 A tuple is a collection which is ordered and unchangeable.

Tuple Items

 Tuple items are ordered, unchangeable, and allow duplicate values.

 Tuple items are indexed, the first item has index [0], the second item has index [1] etc.

1. Ordered: When we say that tuples are ordered, it means that the items have a defined

order, and that order will not change.

Programming For Problem Solving B. Tech I Year I Semester

https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_list_clear.asp
https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp
https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_list_sort.asp
https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_dictionaries.asp

Malla Reddy College of Engineering and Technology 37

2. Unchangeable : Tuples are unchangeable, meaning that we cannot change, add or

remove items after the tuple has been created.

3. Allow Duplicates : Since tuple are indexed, tuples can have items with the same value

How to Create and Assign Tuples

Creating and assigning lists are practically identical to lists, with the exception of emptytuples.

 These require a trailing comma (,) enclosed in the tuple delimiting parentheses (()).

>>> aTuple = (123, 'abc', 4.56, ['inner', 'tuple'], 7-9j)

>>> anotherTuple = (None, 'something to see here')

>>> print aTuple

(123, 'abc', 4.56, ['inner', 'tuple'], (7-9j))

>>> print anotherTuple

(None, 'something to see here')

>>> emptyTuple = ()

>>> print emptyTuple

()

How to Access Values in Tuples

 Slicing works similar to lists: Use the square bracket slice operator ([]) along with the

index or indices.

>>> aTuple = (123, 'abc', 4.56, ['inner', 'tuple'], 7-9j)

>>> aTuple[1:4]

('abc', 4.56, ['inner', 'tuple'])

>>>

>>> aTuple[:3]

(123, 'abc', 4.56)

>>> aTuple[3][1]

'tuple

How to Update Tuples

 Like numbers and strings, tuples are immutable which means you cannot update them or

change values of tuple elements.

1. In strings, we were able to take portions of an existing string to create a new string. The

same applies for tuples.

>>> aTuple = aTuple[0], aTuple[1], aTuple[-1]

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 38

>>> aTuple

(123, 'abc', (7-9j))

>>> tup1 = (12, 34.56)

>>> tup2 = ('abc', 'xyz')

>>> tup3 = tup1 + tup2

>>> tup3

(12, 34.56, 'abc', 'xyz')

2. Change Tuple Values: Once a tuple is created, you cannot change its values. Tuples

are unchangeable, or immutable as it also is called.

 But there is a workaround. You can convert the tuple into a list, change the list, and

convert the list back into a tuple.

>>>aTuple = (123, 'abc', 4.56, ['inner', 'tuple'], 7-9j)

>>>aList = list(aTuple)

>>>aList[1] = "xyz"

>>>aTuple = tuple(aList)

>>>print(aTuple)

(123, 'xyz', 4.56, ['inner', 'tuple'], (7-9j))

How to Remove Tuple Elements and Tuples

 Removing individual tuple elements is not possible.

 There is, of course, nothing wrong with putting together another tuple with the undesired

elements discarded.

 To explicitly remove an entire list, just use the del statement:

>>> del aTuple

Single Element Tuples

 If we take a single element in tuple it will not considered as a tuple but it will considered

as either int, float or strings based on the type of value which we have taken as a single

element.

 But there will not be any problem in list for single element in it.

>>> ['abc']

['abc']

>>> type(['abc']) # a list

<class 'list'>

>>>

>>> [123]

[123]

>>> type([123]) # also a list

<class 'list'>

>>>

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 39

>>> ('xyz')

'xyz'

>>> type(('xyz')) # a string, not a tuple

<class 'string'>

>>>

>>> (456)

456

>>> type((456)) # an int, not a tuple

<class 'int'>

 It probably does not help your case that the parentheses are also overloaded as the

expression grouping operator.

 Parentheses around a single element take on that binding role rather than as a delimiter for

tuples.

 The workaround is to place a trailing comma (,) after the first element to indicate that this

is a tuple and not a grouping.

>>> ('xyz',)

('xyz',)

>>> (456,)

(456,)

Unpacking a Tuple

 When we create a tuple, we normally assign values to it. This is called "packing" a tuple.

Packing a Tuple:

>>> aTuple = (123, 'abc', 4.56, ['inner', 'tuple'], 7-9j)

>>>aTuple

(123, 'abc', 4.56, ['inner', 'tuple'], 7-9j)

 But, in Python, we are also allowed to extract the values back into variables. This is called

"unpacking"

Unpacking a tuple:

>>> (a,b,c,d,e)=aTuple

>>> a

123

>>> b

'abc'

>>> c

4.56

>>> d

['inner', 'tuple']

>>> e(7-9j)

Note: The number of variables must match the number of values in the tuple, if not, you must usean

asterisk to collect the remaining values as a list.

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 40

Using Asterisk*:

 If the number of variables is less than the number of values, you can add an * to the variable

name and the values will be assigned to the variable as a list:

>>> (a,b,*c)=aTuple

>>> a

123

>>> b

'abc'

>>> c

[4.56, ['inner', 'tuple'], (7-9j)]

No Enclosing Delimiters:

 Any set of multiple objects, comma-separated, written without identifying symbols, i.e.,

brackets for lists, parentheses for tuples, etc., default to tuples, as indicated in these short

examples:

>>> 'abc', -4.24e93, 18+6.6j, 'xyz'

('abc', -4.24e+093, (18+6.6j), 'xyz')

>>>

>>> x, y = 1, 2

>>> x, y

(1, 2)

 Any function returning multiple objects (also no enclosing symbols) is a tuple.

Join Two Tuples (+)

 To join two or more tuples you can use the concatenation (+) operator:

>>>aTuple = ("a", "b" , "c")

>>>anotherTuple = (1, 2, 3)

>>>joinTuple = aTuple + anotherTuple

>>>print(joinTuple)

('a', 'b', 'c', 1, 2, 3)

Multiply Tuples(*)

 If you want to multiply the content of a tuple a given number of times, you can use the

repetition (*) operator:

>>>a = ("a", "b" , "c")

>>> b= a * 3

>>>print(b)

('a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c')

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 41

Tuple Methods:

count():The count() method returns the number of times a specified value appears in the tuple.

Example:

>>>atuple = (1, 3, 7, 8, 7, 5, 4, 6, 8, 5)

>>>x = atuple.count(5)

>>>print(x)2

index():The index() method finds the first occurrence of the specified value. This method raisesan

exception if the value is not found.

Example:

Search for the first occurrence of the value 8, and return its position:

>>>aTuple = (1, 3, 7, 8, 7, 5, 4, 6, 8, 5)

>>>x = aTuple.index(8)

>>>print(x)3

SETS

Sets:

⚫ Sets are used to store multiple items in a single variable.

⚫ A set is a collection which is both unordered and un indexed.

⚫ Sets are written with curly brackets.

⚫ As Sets are unordered, so you cannot be sure in which order the items will appear.

⚫ A set as a whole can be changed, but the elements present in the set are unchangeable.

⚫ Every element in the set must be unique (no duplicate values) and must be immutable

(unchangeable).

⚫ These elements can be of the data type.

⚫ However, sets are in itself data structure, which is unordered and mutable (changeable).

⚫ These are used for performing mathematical operations such as union, intersection, etc.

Creating Sets:

⚫ You can create set either by placing all the items in the curly braces or by using the set ()

function. The elements can be of integer, string, float, etc).

Example1: Using curly braces

>>>My_Print= {10, 'Hi', (7)}

>>>print (My_Print)

{10, 'Hi', 7}

Example2: Using Set () function

>>>a= set ({10, 9.0, "bye"})

>>>print (a)

{9.0, 10, 'bye'}

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 42

Example 3: Empty set

>>>a=set()

>>>print(a)

set()

Example 4:

>>>aSet = {'jack', 'jumped', 'over', 'candlestick'}

>>>print(aSet) #printing for first time

{'candlestick', 'jack', 'jumped', 'over'}

>>>print(aSet) #printing for second time

{'jumped', 'over', 'candlestick', 'jack'}

Example 5:

>>> aSet = {'jack', 'jumped', 'over', 'candlestick‘ , 'over'}

>>> aSet # Sets won’t print duplicate values

{'jack', 'over', 'jumped', 'candlestick'}

Modifying a Set:

 If you want to add only one element, then use add () method, and for adding multiple-

element you need to use the update() method.

Example1: For adding single element

>>>a={10,3}

>>>print(a)

{10,3}

>>>a.add(2)

>>>print(a)

{10,3,2}

Example2: Using update() method

>>>a = {10,3}

>>>print(a)

{10,3}

>>> a.update([2,3,4])

>>>print(a)

{10,2,3,4}

Removing elements from a set:

⚫ To remove particular elements you can use discard() and remove ().

⚫ The remove() method removes the specified element from the set.

⚫ The remove() method takes a single element as an argument and removes it from the set.

⚫ The remove() removes the specified element from the set and updates the set. It doesn't

return any value.

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 43

⚫ If the element passed to remove() doesn't exist, KeyError exception is thrown.

Example 1: Remove an Element From The Set

>>>language = {'English', 'French', 'German'}

>>>language.remove('German')

>>>print('Updated language set:', language)

Updated language set: {'English', 'French'}

Example 2: Deleting Element That Doesn't Exist

>>>animal = {'cat', 'dog', 'rabbit'}

>>>animal.remove('fish')

>>>print('Updated animal set:', animal)

It generates Key Error

⚫ You can use the set discard() method if you do not want this error.

⚫ The discard() method removes the specified element from the set.

⚫ However, if the element doesn't exist, the set remains unchanged; you will not get an error.

>>>animal = {'cat', 'dog', 'rabbit'}

>>>animal.discard('fish')

>>>print('Updated animal set:', animal)

Updated animal set: {'rabbit', 'dog', 'cat'}

Accessing items in a set:

⚫ A set element cannot be referenced by an index number since it is unordered.

⚫ However, the items in a set can be looped through by using a for a loop.

⚫ You can also choose to access a particular item in a set by using the “in” keyword.

However, note that it is case sensitive.

Using for loop:

>>>fruits_set = {"mango", "banana", "orange"}

>>> for x in fruits_set:

print(x)

mango

banana

orange

Using membership “in” keyword:

>>>fruits_set = {"mango", "banana", "orange"}

>>>print("orange" in fruits_set)

True

>>> print("Orange" in fruits_set)

False

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 44

Clearing all items in a set:

⚫ You can remove all items in a set by using the clear() method.

>>> fruits_set.clear()

>>> print(fruits_set)

set()

Copying a set

⚫ An existing set can be copied to a new set by using the copy() method.

>>> fruits_set = {"mango", "banana", "orange"}

>>>new_fruits_set = fruits_set.copy()

>>>print("new set: ", new_fruits_set)

new set: {"mango", "banana", "orange"}

Sorting a set:

⚫ The values in a set can be sorted in ascending or descending order using the sorted()

method.

⚫ By passing the set variable inside the sorted() parameter, the items in a set will be printed

in ascending order by default. The sorted() method takes in three parameter-iterable, key

and reverse.

⚫ The iterable parameter is required in which you need to specify the variable name of the

set.

⚫ The key and reverse parameter is optional.

⚫ You can use the reverse parameter to sort the items in ascending order (reverse = False) or

descending order (reverse = True).

Example:

>>>vowel_set = {"e", "a", "u", "o", "i"}

>>>print("Default sort: ", sorted(vowel_set))

Default sort: ['a', 'e', 'i', 'o', ‘u']

>>>print("Ascending order: ",sorted(vowel_set,reverse=False))

Ascending order: ['a', 'e', 'i', 'o', 'u']

>>>print("Descending order: ", sorted(vowel_set, reverse=True))

Descending order: ['u', 'o', 'i', 'e', 'a']

Python Set Operations:

⚫ Sets can be used to carry out mathematical set operations like union, intersection,

difference and symmetric difference. We can do this with operators or methods.

⚫ Let us consider the following two sets for the following operations.

>>> A = {1, 2, 3, 4, 5}

>>> B = {4, 5, 6, 7, 8}

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 45

Set Union:

⚫ Union of A and B is a set of all elements from both sets.

⚫ Union is performed using | operator. Same can be accomplished using the union() method.

a) Using | operator :

>>>print(A | B)

{1, 2, 3, 4, 5, 6, 7, 8}

b) Use Union method:

use union function

>>> A.union(B)

{1, 2, 3, 4, 5, 6, 7, 8}

use union function on B

>>> B.union(A)

{1, 2, 3, 4, 5, 6, 7, 8}

Set Intersection:

⚫ Intersection of A and B is a set of elements that are common in both the sets.

⚫ Intersection is performed using & operator. Same can be accomplished using

the intersection() method.

a) Using & operator :

A = {1, 2, 3, 4, 5}

B = {4, 5, 6, 7, 8}

>>>print(A & B)

{4, 5}

b) Use Intersection method:

use intersection function on A

>>> A.intersection(B)

{4, 5}

use intersection function on B

>>> B.intersection(A)

{4, 5}

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 46

Set Methods:

PYTHON DICTIONARIES

Dictionary:

⚫ The last standard type to add to our repertoire is the dictionary, the sole mapping type in

Python.

⚫ A dictionary is mutable and is another container type that can store any number of Python

objects, including other container types.

⚫ A dictionary is a collection which is ordered*, changeable and does not allow duplicates.

⚫ So they are implemented as resizeable hash tables.

⚫ Dictionaries are used to store data values in key:value pairs.

⚫ As of Python version 3.7, dictionaries are ordered. In Python 3.6 and earlier, dictionaries

are unordered.

⚫ Dictionaries are written with curly brackets, and have keys and values

⚫ Creating a dictionary is as simple as placing items inside curly braces {} separated by

commas.

⚫ An item has a key and a corresponding value that is expressed as a pair (key: value).

⚫ While the values can be of any data type and can repeat, keys must be of immutable type

(string, number or tuple with immutable elements) and must be unique.

⚫ We can also create a dictionary using the built-in dict() function.

empty dictionary

>>> my_dict = {}

dictionary with integer keys

>>>my_dict = {1: 'apple', 2: 'ball'}

dictionary with mixed keys

>>> my_dict = {'name': 'John', 1: [2, 4, 3]}

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 47

using dict()

>>>my_dict = dict({1:'apple', 2:'ball'})

Accessing values in Dictionary:

⚫ While indexing is used with other data types to access values, a dictionary uses keys.

⚫ Keys can be used either inside square brackets [] or with the get() method.

⚫ If we use the square brackets [], KeyError is raised in case a key is not found in the

dictionary.

⚫ On the other hand, the get() method returns None if the key is not found.

a) Accessing values using square bracket:

>>> my_dict = {'name': 'Jack', 'age': 26}

>>> print(my_dict['name'])

Jack

>>> print(my_dict['address'])

Traceback (most recent call last):

File "<pyshell#3>", line 1, in <module>

print(my_dict['address'])

KeyError: 'address'

b) Accessing values using get() method:

>>> my_dict = {'name': 'Jack', 'age': 26}

>>>print(my_dict.get('age'))

26

>>>print(my_dict.get('address'))

None

>>>

Get Values:

⚫ The values() method will return a list of all the values in the dictionary.

>>> x=my_dict.values()

>>> x

dict_values(['Jack', 26])

>>>

Updating Dictionaries (Changing and adding dictionary elements):

⚫ Dictionaries are mutable. We can add new items or change the value of existing items using

an assignment operator.

⚫ If the key is already present, then the existing value gets updated.

⚫ In case the key is not present, a new (key: value) pair is added to the dictionary.

>>> my_dict = {'name': 'Jack', 'age': 26}

>>> my_dict['age'] = 27 #updating value in dictionary

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 48

>>> print(my_dict)

{'name': 'Jack', 'age': 27}

Adding Item in dictionary

>>> my_dict['address'] = 'Downtown'

>>> print(my_dict)

{'name': 'Jack', 'age': 27, 'address': 'Downtown'}

Update Method:

⚫ The update() method will update the dictionary with the items from a given argument. If

the item does not exist, the item will be added.

⚫ The argument must be a dictionary, or an iterable object with key:value pairs.

>>> my_dict = {'name': 'Jack', 'age': 27, 'address': 'Downtown'}

>>> my_dict.update({'Gender':'Male'})

>>> my_dict

{'name': 'Jack', 'age': 27, 'address': 'Downtown‘, 'Gender': 'Male'}

>>>

Removing Dictionary Elements and Dictionaries:

⚫ We can remove a particular item in a dictionary by using the pop() method.

⚫ This method removes an item with the provided key and returns the value.

⚫ The popitem() method can be used to remove and return an arbitrary (key, value) item pair

from the dictionary.

⚫ All the items can be removed at once, using the clear() method.

⚫ We can also use the del keyword to remove individual items or the entire dictionary itself.

pop() method:

>>> squares = {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

>>> print(squares.pop(4))

16

>>> print(squares)

{1: 1, 2: 4, 3: 9, 5: 25}

popitem() method:

>>> print(squares)

{1: 1, 2: 4, 3: 9, 5: 25}

>>> print(squares.popitem())

(5, 25)

>>> print(squares)

{1:1,2: 4, 3: 9}

clear () method:

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 49

>>> squares

{1:1,2: 4, 3: 9}

>>> squares.clear()

>>> print(squares)

{}

del keyword:

⚫ The del keyword removes the item with the specified key name or it can also delete the

dictionary completely.

>>> del squares

>>> print(squares)

#this will cause an error because “squares" no longer exists.

Copy a Dictionary:

⚫ You cannot copy a dictionary simply by typing dict2 = dict1, because: dict2 will only bea

reference to dict1, and changes made in dict1 will automatically also be made in dict2.

⚫ There are ways to make a copy, one way is to use the built-in dictionary method copy().

Example:

Make a copy of a dictionary with the copy() method:

>>> my_dict = {'name': 'Jack', 'age': 26}

>>> new_my_dict=my_dict.copy()

>>> print(new_my_dict)

{'name': 'Jack', 'age': 26}

⚫ Another way to make a copy is to use the built-in function dict().

Example:

Make a copy of a dictionary with the dict() function:

>>> new_my_dict=dict(my_dict)

>>> print(new_my_dict)

{'name': 'Jack', 'age': 26}

Dictionary Membership Test

⚫ We can test if a key is in a dictionary or not using the keyword in. Notice that the membership

test is only for the keys and not for the values.

Membership Test for Dictionary Keys

>>>squares = {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

>>>print(1 in squares)

True

>>>print(2 not in squares)

True

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 50

membership tests for key only not value#

Output: False

>>>print(49 in squares)

False

Dictionary Methods

Number Type Conversion:

 Python converts numbers internally in an expression containing mixed types to a common

type for evaluation.

 But sometimes, you need to coerce a number explicitly from one type to another to satisfy

the requirements of an operator or function parameter.

 Type int(x) to convert x to a integer.

 Type float(x) to convert x to a floating-point number.

 Type complex(x) to convert x to a complex number with real part x and imaginary part

zero.

 Type complex(x, y) to convert x and y to a complex number with real part x and imaginary

part y. x and y are numeric expressions

Note: long (long int) will be used in Python 2.x but not in Python 3.x

Python defines type conversion functions to directly convert one data type to another which is

useful in day-to-day and competitive programming. This article is aimed at providing information

about certain conversion functions.

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 51

There are two types of Type Conversion in Python:

1. Python Implicit Type Conversion

2. Python Explicit Type Conversion

Type Conversion in Python

The act of changing an object’s data type is known as type conversion. The Python interpreter

automatically performs Implicit Type Conversion. Python prevents Implicit Type Conversion from

losing data.

The user converts the data types of objects using specified functions in explicit type conversion,

sometimes referred to as type casting. When type casting, data loss could happen if the object is

forced to conform to a particular data type.

Implicit Type Conversion in Python

In Implicit type conversion of data types in Python, the Python interpreter automatically converts

one data type to another without any user involvement. To get a more clear view of the topic see

the below examples.

Example

x = 10

print("x is of type:",type(x))

y = 10.6

print("y is of type:",type(y))

z = x + y

print(z)

print("z is of type:",type(z))

Output

Explicit Type Conversion in Python

In Explicit Type Conversion in Python, the data type is manually changed by the user as per their

requirement. With explicit type conversion, there is a risk of data loss since we are forcing an

expression to be changed in some specific data type. Various forms of explicit type conversion are

explained below:

Programming For Problem Solving B. Tech I Year I Semester

x is of type: <class 'int'>

y is of type: <class 'float'>

20.6

z is of type: <class 'float'>

https://www.geeksforgeeks.org/python-programming-language/

Malla Reddy College of Engineering and Technology 52

Converting integer to float

int(a, base): This function converts any data type to an integer. ‘Base’ specifies the base in

which the string is if the data type is a string.

float(): This function is used to convert any data type to a floating-point number.

initializing string

s = "10010"

printing string converting to int base 2

c = int(s,2)

print ("After converting to integer base 2 : ", end="")

print (c)

printing string converting to float

e = float(s)

print ("After converting to float : ", end="")

print (e)

Output:

Programming For Problem Solving B. Tech I Year I Semester

After converting to integer base 2 : 18

After converting to float : 10010.0

Malla Reddy College of Engineering and Technology 53

UNIT II
Operators in Python: Arithmetic operators, Assignment operators, Comparison operators,

Logical operators, Identity operators, Membership operators, Bitwise operators, Precedence of

operators, Expressions.

Control Flow and Loops: Indentation, if statement, if-else statement, chained conditional if-

elif -else statement, Loops: While loop, for loop using ranges, Loop manipulation using break,

continue and pass.

Python basic Operators:

Operators are used to perform operations on variables and values. Python divides the operators

in the following groups:

 Arithmetic operators

 Assignment operators

 Comparison operators

 Logical operators

 Identity operators

 Membership operators

 Bitwise operators

Arithmetic operators

Operator Description Example

+ Addition x + y

- Subtraction x - y

* Multiplication x * y

/ Division x / y

// Floor Division x // y

% Remainder x % y

** Exponentiation x ** y

Assignment operators

Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 54

/= x /= 3 x = x / 3

Comparison operators

Operator Name Example

== Equal x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

Logical operators

Operator Description Example

and Returns True if both

statements are true

x < 5 and x < 10

or Returns True if one ofthe

statements is true

x < 5 or x < 4

not Reverse the result, returns

False if the result is true

not(x < 5 and x < 10)

Identity operators

Operator Description Example

is Returns true if both variables are the same object x is y

is not Returns true if both variables are not the same object x is not y

Membership operators

Operator Description Example

in Returns True if a sequence with the specified value is

present in the object

x in y

not in Returns True if a sequence with the specified value is not

present in the object

x not in y

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 55

Bitwise operators

Operator Name Description

& AND Sets each bit to 1 if both bits are 1

| OR Sets each bit to 1 if one oftwo bits is 1

^ XOR Sets each bit to 1 if only one of two bits is 1

~ NOT Inverts all the bits

<< Zero fill left shift Shift left by pushing zeros in from the right and let the

leftmost bits fall off

>> Signed right shift Shift right by pushing copies of the leftmost bit in from

the left, and let the rightmost bits fall off

Precedence of Operators:

Operator precedence affects how an expression is evaluated.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher precedence

than +, so it first multiplies 3*2 and then adds into 7.

Example 1:

>>> 3 + 4 * 2

11

Multiplication gets evaluated before the addition operation

>>> (10 + 10) * 2

40

Parentheses () overriding the precedence of the arithmetic operators

Example 2:

a = 20

b = 10

c = 15

d = 5

e = 0

e = (a + b) * c / d

#(30 * 15) / 5

print("Value of (a + b) * c / d is ", e)

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 56

e = ((a + b) * c) / d

(30 * 15) / 5

print("Value of ((a + b) * c) / d is ", e)

e = (a + b) * (c / d);

(30) * (15/5)

print("Value of (a + b) * (c / d) is ", e)

e = a + (b * c) / d;

20 + (150/5)

print("Value of a + (b * c) / d is ", e)

Output:

Value of (a + b) * c / d is 90.0

Value of ((a + b) * c) / d is 90.0

Value of (a + b) * (c / d) is 90.0

Value of a + (b * c) / d is 50.0

Expressions:

An expression is a combination of values, variables, and operators. An expression is

evaluated using assignment operator.

Examples:

Y=x + 17

>>> x=10

>>> z=x+20

>>> z

30

>>> x=10

>>> y=20

>>> c=x+y

>>> c

30

Avalue all by itself is a simple expression, and so is a variable.

>>> y=20

>>>y

20

Python also defines expressions only contain identifiers, literals, and operators. So,

Identifiers: Any name that is used to define a class, function, variable module, or object is an

identifier.

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 57

Literals: These are language-independent terms in Python and should exist independently in any

programming language. In Python, there are the string literals, byte literals, integer literals,

floating point literals, and imaginary literals.

Some of the python expressions are:

Generator expression:

Syntax:(compute(var) for var in iterable)

>>> x = (i for i in 'abc') #tuple comprehension

>>> x

<generator object <genexpr> at 0x033EEC30>

>>> print(x)

<generator object <genexpr> at 0x033EEC30>

You might expect this to print as ('a', 'b', 'c') but it prints as <generator object <genexpr>

at 0x02AAD710> The result of a tuple comprehension is not a tuple: it is actually a

generator. The only thing that you need to know now about a generator now is that you

can iterate over it, but ONLY ONCE.

Conditional expression:

Syntax: true_value if condition else false_value

>>> x = “1” if True else “2”

>>> x

>>> ‘1’

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 58

Control Flow and Loops

conditional (if), alternative (if-else), chained conditional (if- elif -else),

Loops: while loop, for loop using ranges, Loop manipulation using pass, continue and

break

Conditional (if):

The if statement contains a logical expression using which data is compared and a decision

is made based on the result of the comparison.

Syntax:

if expression:

statement(s)

If the boolean expression evaluates to TRUE, then the block of statement(s) inside the if

statement is executed. If boolean expression evaluates to FALSE, then the first set of

code after the end of the if statement(s) is executed.

if Statement Flowchart:

Fig: Operation of ifstatement

Example: Python if Statement

a = 3

if a > 2:

print(a, “is greater")

print("done")

a = -1

if a < 0:

print(a, “ is smaller")

print("Finish")

Output:

3 is greater

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 59

done

-1 is smaller

Finish

Alternative if(If-else):

An else statement can be combined with an if statement. An else statement contains the

block of code (false block) that executes if the conditional expression in the if statement

resolves to 0 or a FALSE value.

The else statement is an optional statement and there could be at most only one else

statement following if.

Syntax of if - else :

if test_expression:

Body of if stmts

else:

Body of else stmts

If - else Flowchart

Fig: Operation of if – else statement

Example of if - else:

a=int(input('enter the number'))

if a>5:

print("a is greater")

else:

print("a is smaller thanthe input given")

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 60

a=10

b=20

if a>b:

print("A is Greater than B")

else:

print("B is Greater than A")

Chained Conditional: (If-elif-else):

The elif statement allows us to check multiple expressions for TRUE and execute a block of

code as soon as one of the conditions evaluates to TRUE. Similar to the else, the elif

statement is optional. However, unlike else, for which there can be at most one statement,

there can be an arbitrary number of elif statements following an if.

Syntax of if – elif - else :

if test expression:

body of if stmts

elif test expression:

body of elif stmts

else:

body of else stmts

Flowchart of if – elif - else:

Fig: Operation of if – elif - else statement

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 61

Example of if - elif – else:

a=int(input('enter the number'))

b=int(input('enter the number'))

c=int(input('enter the number'))

if a>b and a>c:

print("a is greater")

elif b>c:
print("b is greater")

else:

print("c is greater")

Iteration:

A loop statement allows us to execute a statement or group of statements multiple times as long
as the condition is true. Repeated execution of a set of statements with the help of loops is called
iteration.

Loops statements are used when we need to run same code again and again, each time with a
different value.

Statements:

In Python Iteration (Loops) statements are ofthree types:

1. While Loop

2. For Loop

3. Nested For Loops

While loop:

 Loops are either infinite or conditional. Python while loop keeps reiterating a block of

code defined inside it until the desired condition is met.

 The while loop contains a boolean expression and the code inside the loop

is repeatedly executed as long as the boolean expression is true.

 The statements that are executed inside while can be a single line of code or a block of

multiple statements.

Syntax: Flowchart:

while(expression):

statement(s)

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 62

Example

i=1

while i<=5:

print("Mrcet college")

i=i+1

output:

Mrcet college

Mrcet college

Mrcet college

Mrcet college

Mrcet college

i = 1

while (i< =10):

print(i)

i += 1

output:

1

2

3

4

5

6

7

8

9

10

For loop:

Python for loop is used for repeated execution of a group of statements for the desired number of

times. It iterates over the items of lists, tuples, strings, the dictionaries and other iterable objects

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 63

Flowchart:

Example:

numbers = [1, 2, 4, 6, 11, 20]

seq=0

for val in numbers:

seq=val*val

print(seq)

Output:

1

4

16

36

121

400

Iterating over a list:

#list ofitems

list = [‘Apple’,’Banana’,’Orange’,’Grapes’]

i = 1

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 64

#Iterating over the list
for item in list:

print ('Item', i, 'is ', item)
i += 1

Output:
Item 1 is Apple
Item 2 is Banana
Item 3 is Orange
Item 4 is Grapes

Iterating over a dictionary:

#creating a dictionary

college = {"CSE":"block1","IT":"block2","ECE":"block3"}

#Iterating over the dictionary to print keys

print ('Keys are:')

for keys in college:

print (keys)

#Iterating over the dictionary to print values
print ('Values are:')

for blocks in college.values():

print(blocks)

Output:

Keys are:

CSE

IT

ECE

Values are:

block1

block2

block3

Nested For loop:

When one Loop defined within another Loop is called Nested Loops.

Syntax:

for val in sequence:

for val in sequence:

statements

statements

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 65

Example 1 of Nested For Loops (Pattern Programs)

for i in range(1,6):

for j in range(0,i):

print(i, end=" ")

print('')

Output:

1

2 2

3 3 3

4 4 4 4

5 5 5 5 5

Example 2 of Nested For Loops (Pattern Programs)

for i in range(1,6):

for j in range(5,i-1,-1):

print(i, end=" ")

print('')

Output:

1 1 1 1 1

2 2 2 2

3 3 3

4 4

break and continue:

In Python, break and continue statements can alter the flow of a normal loop.Sometimes we

wish to terminate the current iteration or even the whole loop without checking test

expression.The break and continue statements are used in these cases.

break:

The break statement terminates the loop containing it and control of the program flows to the

statement immediately after the body of the loop.If break statement is inside a nested loop (loop

inside another loop), break will terminate the innermost loop.

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 66

Flowchart:

The following shows the working ofbreak statement in for and while loop:

for var in sequence:

code inside for loop

If condition:

break (if break condition satisfies it jumps to outside loop)

#code inside for loop

code outside for loop

while test expression:

code inside while loop

If condition:

break(if breakcondition satisfies it jumps to outside loop)

code inside while loop

code outside while loop

Example:

for val in "MRCET COLLEGE":

if val == " ":

break

print(val)

print("The end")

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 67

Output:

M

R

C

E

T

The end

Program to display all the elements upto number 88

for num in [11, 9, 88, 10, 90, 3, 19]:

print(num)

if(num==88):

print("The number 88 is found")

print("Terminating the loop")

break

Output:

11

9

88

The number 88 is found

Terminating the loop

Continue:

The continue statement is used to skip the rest of the code inside a loop for the current iteration

only. Loop does not terminate but continues on with the next iteration.

Flowchart:

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 68

The following shows the working ofbreak statement in for and while loop:

for var in sequence:

code inside for loop

Ifcondition:

continue (if break condition satisfies it jumps to outside loop)

code inside for loop

code outside for loop

while test expression:

code inside while loop

If condition:

continue(if break condition satisfies it jumps to outside loop)

code inside while loop

code outside while loop

Example:

Program to show the use of continue statement inside loops

for val in "string":

if val == "i":

continue

print(val)

print("The end")

Output:

s

t

r

n

g

The end

program to display only odd numbers

for num in [20, 11, 9, 66, 4, 89, 44]:

Skipping the iteration when number is even
if num%2 == 0:

continue
This statement will be skipped for all even numbers

print(num)

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 69

Output:

11

9

89

Pass:

In Python programming, pass is a null statement. The difference between a comment and pass

statement in Python is that, while the interpreter ignores a comment entirely, pass is not ignored.

pass is just a placeholder for functionality to be added later.

Example:

sequence = {'p', 'a', 's', 's'}

for val in sequence:

pass

Output:

>>>

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 70

Unit III

Arrays: Definition, Advantages of Arrays, Creating an Array, Operations on Arrays, Arrays vs List,

Importing the Array Module, Indexing and Slicing on Arrays,

working with arrays using numPy - Creating arrays using numpy, numpy Attributes and functions,

Matrices in numpy.

Arrays

Arrays are an ordered collection of elements of the same data type. Python arrays can only hold a

sequence of multiple items that are of the same type.

Difference between Python Lists and Python Arrays

Lists and arrays behave similarly.

Just like arrays, lists are an ordered sequence of elements.

They are also mutable and not fixed in size, which means they can grow and shrink throughout the

life of the program. Items can be added and removed, making them very flexible to work with.

However, lists and arrays are not the same thing.

Lists store items that are of various data types. This means that a list can contain integers, floating

point numbers, strings, or any other Python data type, at the same time. That is not the case with

arrays.

Arrays store only items that are of the same single data type. There are arrays that contain only

integers, or only floating point numbers, or only any other Python data type you want to use.

Advantages of Python Arrays

Lists are built into the Python programming language, whereas arrays aren't. Arrays are not a built-in

data structure, and therefore need to be imported via the array module in order to be used.

Arrays of the array module are are useful when you want to work with homogeneous data.

They are also more compact and take up less memory and space which makes them more size

efficient compared to lists.

Creating Python arrays

In order to create Python arrays, the array module has to be imported which contains all the

necessary functions.

There are three ways you can import the array module:

1. By using import array

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 71

import array

#how you would create an array

array.array()

2. import array as arr

#how you would create an array

arr.array()

3. from array import *, with * importing all the functionalities available.

from array import *

#how you would create an array

array()

Define Arrays in Python

Once the array module is imported, we can then go on to define a Python array.

The general syntax for creating an array looks like this:

variable_name = array(typecode,[elements])

 variable_name would be the name of the array.

 The typecode specifies what kind of elements would be stored in the array. Whether it would be an

array of integers, an array of floats or an array of any other Python data type. Remember that all

elements should be of the same data type.

 Inside square brackets you mention the elements that would be stored in the array, with each element

being separated by a comma. You can also create an empty array by just writing variable_name =

array(typecode) alone, without any elements.

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 72

The different type codes that can be used with the different data types when defining Python arrays:

TYPECODE C TYPE PYTHON TYPE SIZE

'b' signed char int 1

'B' unsigned char int 1

'u' wchar_t Unicode character 2

'h' signed short int 2

'H' unsigned short int 2

'i' signed int int 2

'I' unsigned int int 2

'l' signed long int 4

'L' unsigned long int 4

'q' signed long long int 8

'Q' unsigned long long int 8

'f' float float 4

'd' double float 8

Example of how to define an array in Python:

import array as arr

numbers = arr.array('i',[10,20,30])

print(numbers)

#output

#array('i', [10, 20, 30])

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 73

Example of how to create an array numbers of float data type.

from array import *

#an array of floating point values

numbers = array('d',[10.0,20.0,30.0])

print(numbers)

#output

#array('d', [10.0, 20.0, 30.0])

Array Indexing and How to Access Individual Items in an Array in Python

Each item in an array has a specific address. Individual items are accessed by referencing their index

number.

Indexing in Python, and in all programming languages and computing in general, starts at 0.

To access an element, we first write the name of the array followed by square brackets. Inside the

square brackets you include the item's index number.

The index value of the last element of an array is always one less than the length of the array.

Where n is the length of the array, n - 1 will be the index value of the last item.

The general syntax would look something like this:

array_name[index_value_of_item]

Example:

import array as arr

numbers = arr.array('i',[10,20,30])

print(numbers[0]) # gets the 1st element

print(numbers[1]) # gets the 2nd element

print(numbers[2]) # gets the 3rd element

#output

#10

#20

#30

We can also access each individual element using negative indexing.

With negative indexing, the last element would have an index of -1, the second to last element would

have an index of -2, and so on.

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 74

Example

import array as arr

numbers = arr.array('i',[10,20,30])

print(numbers[-1]) #gets last item

print(numbers[-2]) #gets second to last item

print(numbers[-3]) #gets first item

#output

#30

#20

#10

How to Slice an Array in Python

To access a specific range of values inside the array, use the slicing operator, which is a colon :.

When using the slicing operator and you only include one value, the counting starts from 0 by

default. It gets the first item, and goes up to but not including the index number you specify.

import array as arr

#original array

numbers = arr.array('i',[10,20,30])

#get the values 10 and 20 only

print(numbers[:2]) #first to second position

#output

#array('i', [10, 20])

When you pass two numbers as arguments, you specify a range of numbers. In this case, the counting

starts at the position of the first number in the range, and up to but not including the second one:

import array as arr

#original array

numbers = arr.array('i',[10,20,30])

#get the values 20 and 30 only

print(numbers[1:3]) #second to third position

#output

#array('i', [20, 30])

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 75

Array Methods

Below are some operations that can be performed in an array:

1. append():This method is used to add the value mentioned in its arguments at the end of the

array

2. clear(): This method removes all the elements from the array

3. copy(): This method creates and returns an identical copy of the array

4. insert():This method is used to add the value(x) at the ith position specified in its

argument.

5. pop():This method removes the element at the position mentioned in its argument and

returns it

6. remove():This method is used to remove the first occurrence of the value mentioned in its

arguments

7. index():This method returns the index of the first occurrence of the value mentioned in the
arguments.

8. reverse(): This method reverses the array. In this example, we are reversing the array by

using reverse()

Example showing array methods

import array

arr1 = array.array(‘i', [1,2,3,4,5])

print(‘Elements of array are :’)

for i in arr1:

print(i , end=’ ‘)

#methods of array module

arr1.append(6)

arr1.append(2)

print(‘Array elements after append operation : ‘)

for i in arr1:

print(i , end=’ ‘)

print(‘No. of occurrences of element 2 :’, arr1.count(2))

print(‘Index of element 5 :’,arr1.index(5))

print(‘Element removed from array :’,arr1.pop(3))

print(‘Array elements after remove operation :’)

for i in arr1:

print(i , end=’ ‘)

arr1.reverse()

print(‘Array elements after reverse operation :’)

for i in arr1:

print(i , end=’ ‘)

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 76

Array Types in Python

When talking about arrays, any programming language like C or Java offers two types of arrays.

They are:

Single dimensional arrays: These arrays represent only one row or one column of elements. For

example, marks obtained by a student in 5 subjects can be written as 'marks' array, as:

marks = array('i', [50, 60, 70, 66, 72])

The above array contains only one row of elements. Hence it is called single dimensional array

or one dimensional array.

Multi-dimensional arrays: These arrays represent more than one row and more than one column of

elements. For example, marks obtained by 3 students each one in 5 subjects can be written as 'marks'

array as:

marks = [[50, 60, 70, 66, 72], [60, 62, 71, 56, 70], [55, 59, 80, 68, 65]]

The first student's marks are written in first row. The second student's marks are in second row and

the third student's marks are in third row. In each row, the marks in 5 subjects are mentioned. Thus

this array contains 3 rows and 5 columns and hence it is called multi-dimensional array.

marks =[[50, 60, 70, 66, 72],

[60, 62, 71, 56, 70],

[55, 59, 80, 68, 65]]

Each row of the above array can be again represented as a single dimensional array. Thus the above

array contains 3 single dimensional arrays. Hence, it is called a two dimensional array. A two

dimensional array is a combination of several single dimensional arrays. Similarly, a three

dimensional array is a combination of several two dimensional arrays.

In Python, we can create and work with single dimensional arrays only. So far, the examples and

methods discussed by us are applicable to single dimensional arrays.

Python does not support multi-dimensional arrays. We can construct multidimensional arrays using

third party packages like numpy (numerical python)

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 77

Working with numpy arrays

NumPy is a Python library used for working with arrays.

It also has functions for working in domain of linear algebra, fourier transform, and matrices.

NumPy was created in 2005 by Travis Oliphant. It is an open source project and you can use it

freely.

NumPy stands for Numerical Python.

Why Use NumPy?

In Python we have lists that serve the purpose of arrays, but they are slow to process.

NumPy aims to provide an array object that is up to 50x faster than traditional Python lists.

The array object in NumPy is called ndarray, it provides a lot of supporting functions that make

working with ndarray very easy.

NumPy arrays are stored at one continuous place in memory unlike lists, so processes can access and

manipulate them very efficiently. This is the main reason why NumPy is faster than lists

NumPy module has to be imported to use it.

The array object in NumPy is called ndarray.

We can create a NumPy ndarray object by using the array() function.

Example:

import numpy as np

arr=np.array([1, 2, 3, 4, 5])

print(arr)

Dimensions- Arrays:

0-D Arrays:

0-D arrays, or Scalars, are the elements in an array. Each value in an array is a 0-D array.

The following code will create a zero-dimensional array with a value 36.

import numpy as np
arr = np.array(36)

print(arr)

Output: 36

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 78

1-Dimensional Array: An array that has 0-D arrays as its elements is called uni-dimensional or 1-D

array

The code below creates a 1-D array,

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
print(arr)

Output: [1 2 3 4 5]

Two Dimensional Arrays:

An array that has 1-D arrays as its elements is called a 2-D array.

These are often used to represent matrix

import numpy as np

arr1 = np.array([[1, 2, 3], [4, 5, 6]])

print(arr1)

Output:

[[1 2 3]

[4 5 6]]

Three Dimensional Arrays:

3-D arrays

An array that has 2-D arrays (matrices) as its elements is called 3-D array.

import numpy as np

arr1 = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])

print(arr1)

Output:

[[[1 2 3]

[4 5 6]]

[[1 2 3]

[4 5 6]]]

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 79

Higher Dimensional Arrays

An array can have any number of dimensions.

When the array is created, you can define the number of dimensions by using the ndmin argument.

import numpy as np

arr=np.array([1, 2, 3, 4],ndmin=5)

print(arr)

Check Number of Dimensions

NumPy arrays provides the ndim attribute that returns an integer that tells us how many dimensions

the array has.

import numpy as np

a=np.array(42)

b=np.array([1, 2, 3, 4, 5])

c=np.array([[1, 2, 3],[4, 5, 6]])

d=np.array([[[1, 2, 3],[4, 5, 6]],[[1, 2, 3],[4, 5, 6]]])

print(a.ndim)

print(b.ndim)

print(c.ndim)

print(d.ndim)

Access Array Elements

Array indexing is the same as accessing an array element.

You can access an array element by referring to its index number.

The indexes in NumPy arrays start with 0, meaning that the first element has index 0, and the second

has index 1 etc.

import numpy as np

arr=np.array([1, 2, 3, 4])

print(arr[0])

To access elements from 2-D arrays we can use comma separated integers representing the

dimension and the index of the element.

import numpy as np

arr=np.array([[1,2,3,4,5],[6,7,8,9,10]])

print('2nd element on 1st row: ',arr[0,1])

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 80

Access 3-D Arrays

To access elements from 3-D arrays we can use comma separated integers representing the

dimensions and the index of the element.

import numpy as np

arr=np.array([[[1, 2, 3],[4, 5, 6]],[[7, 8, 9],[10, 11, 12]]])

print(arr[0,1,2])

Negative Indexing

Use negative indexing to access an array from the end.

Print the last element from the 2nd dim:

import numpy as np

arr=np.array([[1,2,3,4,5],[6,7,8,9,10]])

print('Last element from 2nd dim: ', arr[1,-1])

Slicing arrays

Slicing in python means taking elements from one given index to another given index.

We pass slice instead of index : [start:end:step]

Slice elements from index 1 to index 5(excluding index 5)

import numpy as np

arr=np.array([1, 2, 3, 4, 5, 6, 7])

print(arr[1:5])

Negative Slicing

Slice from the index 3 from the end to index 1 from the end

import numpy as np

arr=np.array([1, 2, 3, 4, 5, 6, 7])

print(arr[-3:-1])

Output:

[5,6]

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 81

Return every other element from index 1 to index 5: (using step)

import numpy as np

arr=np.array([1, 2, 3, 4, 5, 6, 7])

print(arr[1:5:2])

Slicing 2-D Arrays

From the second element, slice elements from index 1 to index 4 (not included):

import numpy as np

arr=np.array([[1, 2, 3, 4, 5],[6, 7, 8, 9, 10]])

print(arr[1, 1:4])

Output:

[7,8, 9]

Attributes of ndarray

Attributes Description

ndim returns number of dimension of the array

size returns number of elements in the array

dtype returns data type of elements in the array

shape

returns a tuple of integers indicating the number of elements that

are stored along each dimension of the array..

itemsize returns the size (in bytes) of each elements in the array

data

returns the buffer containing actual elements of the array in

memory

import numpy as np

arr=np.array([[1, 2, 3, 4, 5],[6, 7, 8, 9, 10]])

print(arr.ndim)

print(arr.size)

print(arr.dtype)

print(arr.shape)

print(arr.itemsize)

print(arr.data)

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 82

Output:

2

10

int64

(2, 5)

8

<memory at 0x7fb8a2925ff0>

Array methods:

1. numpy.arange():

The arange([start,] stop[, step,][, dtype]) : returns an array with evenly spaced elements as

per the interval

Parameters :

start : [optional] start of interval range. By default start = 0

stop : end of interval range

step : [optional] step size of interval. By default step size = 1,

For any output out, this is the distance between two adjacent values, out[i+1] - out[i].

dtype : type of output array

Example

import numpy as np

a=np.arange(4)

print(a)

b=arange(4,10)

print(b)

c=np.arange(4,20,3)

print(c)

Output:

[0,1,2,3]

[4,5,6,7,8,9]

[4,7,10,13,17]

2. numpy.reshape()

The numpy.reshape() function allows us to reshape an array in Python. Reshaping basically

means, changing the shape of an array. And the shape of an array is determined by the number

of elements in each dimension.

reshape() function shapes an array without changing the data of the array.

 numpy.reshape(a, newshape, order='C')

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 83

Parameters:

Name Description Required

/

Optional

a Array to be reshaped. Required

newshape The new shape should be compatible with the original

shape. If an integer, then the result will be a 1-D array

of that length. One shape dimension can be -1. In this

case, the value is inferred from the length of the array

and remaining dimensions.

Required

order Read the elements of a using this index order, and

place the elements into the reshaped array using this

index order. ‘C’ means to read / write the elements

using C-like index order, with the last axis index

changing fastest, back to the first axis index changing

slowest. ‘F’ means to read / write the elements using

Fortran-like index order, with the first index changing

fastest, and the last index changing slowest. Note that

the ‘C’ and ‘F’ options take no account of the memory

layout of the underlying array, and only refer to the

order of indexing. ‘A’ means to read / write the

elements in Fortran-like index order if a is Fortran

contiguous in memory, C-like order otherwise.

Example:

import numpy as np

x = np.array([[2,3,4], [5,6,7]])

print(np.reshape(x, (3, 2)))

Output:

array([[2, 3],

[4, 5],

[6, 7]])

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 84

Reshaping a NumPy array using a variable and an inferred dimension

Output:

The -1 argument indicates that we want NumPy to automatically determine the number of

columns needed based on the total number of elements in the array.

3. ndarray.flatten()

The ndarray.flatten() function is used to get a copy of an given array collapsed into one

dimension.

This function is useful when we want to convert a multi-dimensional array into a one-

dimensional array

Syntax:

 numpy.ndarray.flatten(order='C')

Parameters:

Name Description Required

/

Optional

order ‘C’ means to flatten in row-major (C-style) order. ‘F’

means to flatten in column-major (Fortran- style) order.

‘A’ means to flatten in column-major order if a is Fortran

contiguous in memory, row-major order otherwise. ‘K’

means to flatten a in the order the elements occur in

memory. The default is ‘C’.

Programming For Problem Solving B. Tech I Year I Semester

import numpy as np

x = np.array([[2,3,4], [5,6,7]])

print(np.reshape(x, (3, -1)))

array([[2, 3],

[4, 5],

[6, 7]])

Malla Reddy College of Engineering and Technology 85

Example:

import numpy as np

y = np.array([[2,3], [4,5]])

print(y.flatten())

Output:

array([2, 3, 4, 5])

4. numpy.zeros()

The numpy.zeros() function provide a new array of given shape and type, which is filled with

zeros.

import numpy as np

a=np.zeros(3)

print(a)

[0., 0., 0.,]

import numpy as np

a=np.zeros((6,2), dtype = int)

print(a)

[[0 0],

[0 0],

[0 0]]

5. The numpy.ones() function returns a new array of given shape and type, with ones.

(Similar to numpy.zeros)

import numpy as np

a=np.ones((6,2), dtype = int)

print(a)

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 86

6. numpy.eye()

The numpy.eye() function in Python is used to return a two-dimensional array with ones (1)

on the diagonal and zeros (0) elsewhere.

Parameters

The numpy.eye() function takes the following parameter values:

 N: This represents the number of rows we want in the output array.

 M: This represents the number of columns we want in the output array. This is optional.

 k: This represents the index of the diagonal. 0 is the default value and the main diagonal. This

is optional.

 dtype: This represents the data type of array to be returned. This is optional.

 order: This represents whether the output should be stored in C or F order in memory. This is

optional.

 like: This is the array prototype or array_like object.

An array with 3 rows with the ones starting at the index i.e from the second column

import numpy as np

myarray = np.eye(3, k=1,dtype=int)

print(myarray)

Output:

[[0 1 0]

[0 0 1]

[0 0 0]]

An array with 3 rows, 3 columns and with the ones starting at the index 0 i.e from the first

column

import numpy as np

myarray = np.eye(3,3 ,dtype=int)

print(myarray)

Output:

[[1 0 0]

[0 1 0]

[0 0 1]]

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 87

Operations on numpy Arrays:

Arithmetic Operations:

Python code to perform arithmetic operations on NumPy array

import numpy as np

Operations on 1D array

Initializing the array

arr1 = [1,2,3,4,5]

print('First array:')

print(arr1)

print('\nSecond array:')

arr2 = [6,7,8,9,10]

print(arr2)

print('\nAdding the two arrays:')

print(np.add(arr1, arr2)) # method to perform addition of two arrays

print(arr1+arr2) # using + operator to perform addition of two arrays

print('\nSubtracting the two arrays:')

print(np.subtract(arr1, arr2))

print(arr1 – arr2)

print('\nMultiplying the two arrays:')

print(np.multiply(arr1, arr2))

print(arr1 * arr2)

print('\nDividing the two arrays:')

print(np.divide(arr1, arr2))

print(arr1 / arr2)

Operations on 2D array

Initializing the array

arr1 = np.arange(4).reshape(2, 2)

print('First array:')

print(arr1)

print('\nSecond array:')

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 88

arr2 = np.arange(1,5).reshape(2,2)

print(arr2)

print('\nAdding the two arrays:')

print(np.add(arr1, arr2)) # method to perform addition of two arrays

print(arr1+arr2) # using + operator to perform addition of two arrays

print('\nSubtracting the two arrays:')

print(np.subtract(arr1, arr2))

print(arr1 – arr2)

print('\nMultiplying the two arrays:')

print(np.multiply(arr1, arr2))

print(arr1 * arr2)

print('\nDividing the two arrays:')
print(np.divide(arr1, arr2))

print(arr1 / arr2)

print(np.dot(arr1,arr2)) # method to perform matrix multiplication

print(np.transpose(arr1)) # method to perform transpose of a matrix

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 89

UNIT-IV

Functions: Defining a function, Calling a Function, Passing parameters and arguments, Python

Function arguments: Positional Arguments, Keyword Arguments, Default Arguments, Variable-

length arguments, Scope of the Variables in a Function–Local and Global Variables.Recursive

functions, Anonymous functions, command-line arguments. Higher order functions - map(),filter()

and reduce() functions in Python.

Functions

Functions and its use: Function is a group of related statements that perform a specific task.

Functions help break our program into smaller and modular chunks. As our program grows larger

and larger, functions make it more organized and manageable. It avoids repetition and makes code

reusable.

Basically, we can divide functions into the following two types:

1. Built-in functions - Functions that are built into Python. Ex: abs(),all().ascii(),bool()………so

on….

integer = -20

print('Absolute value of -20 is:', abs(integer))

Output:

Absolute value of -20 is: 20

2. User-defined functions - Functions defined by the users themselves.

def add_numbers(x,y):

sum = x + y

return sum

print("The sum is", add_numbers(5, 20))

Output:

The sum is 25

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 90

Parameters and arguments:

Parameters are passed during the definition of function while Arguments are passed during the

function call.

Example:

#here a and b are parameters

def add(a,b): #//function definition

return a+b

#12 and 13 are arguments #function call

result=add(12,13)

print(result)

Output:

25

Some examples on functions:

To display vandemataram by using function use no args no return type

#function defination

def display():

print("vandemataram")

print("i am in main")

#function call

display()

print("i am in main")

Output:

i am in main

vandemataram

i am in main

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 91

Example:

def Fun1() :

#Type1 : No parameters and no return type

print("function 1")

Fun1()

Output:

function 1

def fun2(a) :

print(a)

fun2("hello")

Output:

Hello

def fun3():

#Type 2: with param with out return type

#Type 3: without param with return type

return "welcome to python"

print(fun3())

Output:

welcome to python

#Type 4: with param with return type

def fun4(a):

return a

print(fun4("python is better then c"))

Output:

python is better then c

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 92

Python function arguments

There are three types of Python function arguments using which we can call a function.

1. Default Arguments

2. Keyword Arguments

3. Variable-length Arguments

Syntax:

def functionname():

statements

.

.

.

functionname()

Function definition consists of following components:

1. Keyword def indicates the start of function header.

2. A function name to uniquely identify it. Function naming follows the same rules of writing

identifiers in Python.

3. Parameters (arguments) through which we pass values to a function. They are optional.

4. A colon (:) to mark the end of function header.

5. Optional documentation string (docstring) to describe what the function does.

6. One or more valid python statements that make up the function body. Statements must have

same indentation level (usually 4 spaces).

7. An optional return statement to return a value from the function.

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 93

Example:

def hf():

print(“helloworld”)

hf()

In the above example we are just trying to execute the program by calling the function. So it

will not display any error and no output on to the screen but gets executed. To get the statements of

function need to be use print().

#calling function in python:

def hf():

print("hello world")

hf()

Output:

hello world

Example:

def hf():

print("hw")

print("ghkfjg 66666")

hf()

hf()

hf()

Output:

hw

ghkfjg 66666

hw

ghkfjg 66666

hw

ghkfjg 66666

Example:

def add(x,y):

c=x+y

print(c)

add(5,4)

Output:

9

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 94

Example:

def add(x,y):

c=x+y

return c

print(add(5,4))

Output:

9

Example:

def add_sub(x,y):

c=x+y

d=x-y

return c,d

print(add_sub(10,5))

Output:

(15, 5)

The return statement is used to exit a function and go back to the place from where it was called.

This statement can contain expression which gets evaluated and the value is returned. If there is no

expression in the statement or the return statement itself is not present inside a function, then the

function will return the None object.

def hf():

` return "hw"

print(hf())

Output:

hw

Example:

def hf():

return "hw"

hf()

Output:

>>>

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 95

Example:

def hello_f():

return "hellocollege"

print(hello_f().upper())

Output:

HELLOCOLLEGE

Passing Arguments

Positional arguments: These are the arguments that need to be included in the proper position or

order. The first positional argument always needs to be listed first when the function is called. The

second positional argument needs to be listed second and the third positional argument listed third,

etc.

Example:

def wish(name,msg):

"""This function greets to

the person with the provided message"""

print("Hello",name + ' ' + msg)

wish("MRCET","Good morning!")

Output:

Hello MRCET Good morning!

Below is a call to this function with one and no arguments along with their respective error

messages.

>>>wish("MRCET") # only one argument

TypeError: wish() missing 1 required positional argument: 'msg'

>>>wish() # no arguments

TypeError: wish() missing 2 required positional arguments: 'name' and 'msg'

Example:

def hello(wish,hello):

return “hi” '{},{}'.format(wish,hello)

print(hello("mrcet","college"))

Output:

himrcet,college

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 96

#Keyword Arguments:

When we call a function with some values, these values get assigned to the arguments according to

their position.

Python allows functions to be called using keyword arguments. When we call functions in this way,

the order (position) of the arguments can be changed.

(Or)

If you have some functions with many parameters and you want to specify only some of them, then

you can give values for such parameters by naming them - this is called keyword arguments - we use

the name (keyword) instead of the position (which we have been usingall along) to specifythe

arguments to the function.

There are two advantages - one, using the function is easier since we do not need to worry about the

order of the arguments. Two, we can give values to only those parameters which we want, provided

that the other parameters have default argument values.

Example:

def func(a, b=5, c=10):

print 'a is', a, 'and b is', b, 'and c is', c

func(3, 7)

func(25, c=24)

func(c=50, a=100)

Output:

a is 3 and b is 7 and c is 10

a is 25 and b is 5 and c is 24

a is 100 and b is 5 and c is 50

Note:

The function named func has one parameter without default argument values, followed by two

parameters with default argument values.

In the first usage, func(3, 7), the parameter a gets the value 3, the parameter b gets the value 5 and c

gets the default value of 10.

position of the argument. Then, the parameter c gets the value of 24 due to naming i.e. keyword

arguments. The variable b gets the default value of 5.

In the third usage func(c=50, a=100), we use keyword arguments completely to specify the values.

Notice, that we are specifying value for parameter c before that for a even though a is defined before

c in the function definition.

For example: if you define the function like below

def func(b=5, c=10,a): # shows error : non-default argument follows default argument

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 97

Example:

def print_name(name1, name2):

""" This function prints the name """

print (name1 + " and " + name2 + " are friends") #calling the function

print_name(name2 = 'A',name1 = 'B')

Output:

B and Aare friends

#Default Arguments:

Function arguments can have default values in Python.

We can provide a default value to an argument by using the assignment operator (=)

def hello(wish,name='you'):

return '{},{}'.format(wish,name)

print(hello("good morning"))

Output:

good morning,you

def hello(wish,name='you'):

return '{},{}'.format(wish,name) #print(wish + „ „ + name)

print(hello("good morning","cse")) #hello("good morning","cse")

Output:

good morning,cse

Note: Any number of arguments in a function can have a default value. But once we have a default

argument, all the arguments to its right must also have default values.

This means to say, non-default arguments cannot follow default arguments. For example, if we had

defined the function header above as:

Example:

def hello(name='you', wish):

Syntax Error: non-default argument follows default argument

def sum(a=4, b=2): #2 is supplied as default argument

""" This function will print sum of two numbers

if the arguments are not supplied it will add the default value """

print (a+b)

sum(1,2) #calling with arguments sum() #calling without arguments Output:

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 98

Output:

3

6

Variable-length arguments:

Sometimes you may need more arguments to process function then you mentioned in the

definition. If we don‟t know in advance about the arguments needed in function, we can use

variable-length arguments also called arbitrary arguments.

For this an asterisk (*) is placed before a parameter in function definition which can hold non-

keyworded variable-length arguments and a double asterisk (**) is placed before a parameter in

function which can hold keyworded variable-length arguments.

If we use one asterisk (*) like *var, then all the positional arguments from that point till the end are

collected as a tuple called „var‟ and if we use two asterisks (**) before a variable like

**var, then all the positional arguments from that point till the end are collected as a

dictionary called „var‟.

Example:

def wish(*names):

"""This function greets all

the person in the names tuple."""

names is a tuple with arguments

for name in names:

print("Hello",name)

wish("MRCET","CSE","SIR","MADAM")

Output:

Hello MRCET

Hello CSE

Hello SIR

Hello MADAM

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 99

Local and Global scope:

Local Scope:

A variable which is defined inside a function is local to that function. It is accessible from the point

at which it is defined until the end of the function, and exists for as long as the function is executing

Global Scope:

A variable which is defined in the main body of a file is called a global variable. It will be visible

throughout the file, and also inside any file which imports that file.

The variable defined inside a function can also be made global by using the global statement.

def function_name(args):

.............

global x #declaring global variable inside a function

..............

create a global variable

Example:

x = "global"

def f():

print("x inside :", x)

f()

print("x outside:", x)

Output:

x inside : global

x outside: global

Example:

create a local variable

def f1():

y = "local" print(y)

f1()

Output:

local

If we try to access the local variable outside the scope for example,

Example:

def f2():

y = "local"

f2()

print(y)

Then when we try to run it shows an error,

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 100

Output:

Traceback (most recent call last):

File "C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py", line 6, in

<module>

print(y)

NameError: name 'y' is not defined

The output shows an error, because we are trying to access a local variable y in a global scope

whereas the local variable only works inside f2() or local scope.

Example:

use local and global variables in same code

x = "global"

def f3():

global x

y = "local"

x = x * 2

print(x)

print(y)

f3()

Output:

globalglobal

local

• In the above code, we declare x as a global and y as a local variable in the f3(). Then, we use

multiplication operator * to modify the global variable x and we print both x and y.

• After calling the f3(), the value of x becomes global global because we used the x * 2 to print two

times global. After that, we print the value of local variable y i.e local.

Example:

use Global variable and Local variable with same name

x = 5

def f4():

x = 10

print("local x:", x)

f4()

print("global x:", x)

Output:

local x: 10

global x: 5

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 101

Example:

#Program to find area of a circle using function use single return value function with argument.

pi=3.14

def areaOfCircle(r):

return pi*r*r

r=int(input("Enter radius of circle"))

print(areaOfCircle(r))

Output:

Enter radius of circle 3

28.259999999999998

#Program to write sum different product and function.

Example:

def calculate(a,b):

total=a+b

diff=a-b

prod=a*b

div=a/b

mod=a%b

return total,diff,prod,div,mod

a=int(input("Enter a value"))

b=int(input("Enter bvalue"))#using arguments with return value

#function call

s,d,p,q,m = calculate(a,b)

print("Sum= ",s,"diff= ",d,"mul= ",p,"div= ",q,"mod= ",m) #print("diff= ",d)

#print("mul= ",p)

#print("div= ",q)

#print("mod= ",m)

Output:

Enter a value 5

Enter b value 6

Sum= 11

diff= -1 mul= 30

div= 0.8333333333333334

mod= 5

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 102

Example:

#program to find biggest of two numbers using functions.

def biggest(a,b):

if a>b :

return a

else :

return b

a=int(input("Enter a value"))

b=int(input("Enter b value")) #function call

big=biggest(a,b)

print("big number= ",big)

Output:

Enter a value 5

Enter b value-2 big number= 5

Example:

#program to find biggest of two numbers using functions.(nested if)

def biggest(a,b,c):

if a>b :

if a>c :

return a

else :

return c

else :

if b>c :

return b

else :

return c

a=int(input("Enter a value"))

b=int(input("Enter b value"))

c=int(input("Enter c value")) #function call

big=biggest(a,b,c)

print("big number= ",big)

Output:

Enter a value 5

Enter b value 6

Enter c value 7

big number= 7

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 103

Example:

#Writer a program to read one subject mark and print pass or fail use single return values function

with argument.

def result(a):

if a>40:

return "pass"

else:

return "fail"

a=int(input("Enter one subject marks"))

print(result(a))

Output:

Enter one subject marks 35

fail

Example:

#Write a program to display mrcetcse dept 10 times on the screen.(while loop)

def usingFunctions():

count =0

while count<10:

print("mrcetcsedept",count)

count=count+1

usingFunctions()

Output:

mrcetcse dept 1

mrcetcse dept 2

mrcetcse dept 3

mrcetcse dept 4

mrcetcse dept 5

mrcetcse dept 6

mrcetcse dept 7

mrcetcse dept 8

mrcetcse dept 9

Recursion in Python:

The term Recursion can be defined as the process of defining something in terms of itself. In simple

words, it is a process in which a function calls itself directly or indirectly.

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 104

def func(): <--

|

| (recursive call)

|

func() ----

Example 1: A Fibonacci sequence is the integer sequence of 0, 1, 1, 2, 3, 5, 8….

Program to print the fibonacci series upto n_terms

Recursive function

def recursive_fibonacci(n):

if n <= 1:

return n

else:

return(recursive_fibonacci(n-1) + recursive_fibonacci(n-2))

n_terms = 10

check if the number of terms is valid

if n_terms <= 0:

print("Invalid input ! Please input a positive value")

else:

print("Fibonacci series:")

for i in range(n_terms):

print(recursive_fibonacci(i))

Output:

Fibonacci series:

0

1

1

2

3

5

8

13

21

34

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 105

Anonymous Functions:

Anonymous function is a function i.e. defined without name.

While normal functions are defined using the def keyword.

Anonymous functions are defined using lambda keyword hence anonymous functions are also called

lambda functions.

Syntax:

lambda arguments: expression

• Lambda function can have any no. of arguments for any one expression.

• The expression is evaluated and returns.

Use of Lambda functions:

• Lambda functions are used as nameless functions for a short period of time.

• In python lambda functions are an argument to higher order functions.

• Lambda functions are used along with built-in functions like filter(),map() and reduce()etc….

Example:

Write a program to double a given number

double = lambda x:2*x

print(double(5))

Output:

10

Example:

#Write a program to sum of two numbers

add = lambda x,y:x+y

print(add(5,4))

Output:

9

Example:

#Write a program to find biggest of two numbers

biggest = lambda x,y: a if x>y else y

print(biggest(20,30))

Output:

30

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 106

Command Line Arguments:

The arguments that are given after the name of the program in the command line shell of the

operating system are known as Command Line Arguments.

Example:

Python program to demonstrate

command line arguments

import sys

print ('argument list', sys.argv)

name = sys.argv[1]

print ("Hello {}. How are you?".format(name))

Output:

C:\Python311>python hello.py CSE

#argument list ['hello.py', 'CSE']

Hello CSE. How are you?

Higher Order Functions:

If a function contains other functions as a parameter or returns a function as an output i.e, the

functions that operate with another function are known as Higher order Functions. It is worth

knowing that this higher order function is applicable for functions and methods as well that takes

functions as a parameter or returns a function as a result. Python too supports the concepts of higher

order functions.

Filter():

The filter functions takes list as argument.

• The filter() is called when new list is returned which contains items for which the function evaluates

to true.

• Filter:The filter() function returns an iterator were the items are filteredthrough a function to test if

the item is accepted or not.

Syntax: filter(function, iterable)

Example:

#Write a program to filter() function to filter out only even numbers from the given list

myList =[1,2,3,4,5,6]

newList = list(filter(lambda x: x%2 ==0,myList))

print(newList)

Output:

[2, 4, 6]

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 107

Example:

#Write a program for filter() function to print the items greater than 4

list1 = [10,2,8,7,5,4,3,11,0, 1]

result = filter (lambda x: x > 4, list1)

print(list(result))

Output:

[10, 8, 7, 5, 11]

Map() :

• Map() function in python takes a function & list.

• The function is called with all items in the list and a new list is returned which contains items

returned by that function for each item.

• Map applies a function to all the items in an list.

• The advantage of the lambda operator can be seen when it is used incombination with the map()

function.

• map() is a function with two arguments:

Syntax:

r = map(func, seq)

Example:

#Write a program for map() function to double all the items in the list

myList =[1,2,3,4,5,6,7,8,9,10]

newList = list(map(lambda x: x*2,myList))

print(newList)

Output:

[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Example:

Write a program to seperate the letters of the word "hello" and add the letters as items of the list.

letters = []

letters = list(map(lambda x:x,"hello"))

print(letters)

Output:

['h', 'e', 'l', 'l', 'o']

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 108

Example:

Write a program for map() function to double all the items in the list?

def addition(n):

return n + n

numbers = (1, 2, 3, 4)

result = map(addition, numbers)

print(list(result))

Output:

[2, 4, 6, 8]

Reduce():

The reduce(fun,seq)function is used to apply a particular function passed in its argument to all of the

list elements mentioned in the sequence passed along.This function is defined in “functools” module.

• Applies the same operation to items of sequence.

• Use the result of the first operation for the next operation

• Returns an item, not a list.

Example:

#Write a program to find some of the numbers for the elements of the list by using reduce()

import functools

myList =[1,2,3,4,5,6,7,8,9,10]

print(functools.reduce(lambda x,y: x+y,myList))

Output:

55

Example:

#Write a program for reduce() function to print the product of items in a list

from functools import reduce

list1 = [1,2,3,4,5]

product = reduce (lambda x, y: x*y, list1) print(product)

Output:

120

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 109

Fruitful functions:

We write functions that return values, which we will call fruitful functions. We have seen the return

statement before, but in a fruitful function the return statement includes a return

expression as a return value."

(or)

Any function that returns a value is called Fruitful function. A Function that does not return a value

is called a void function.

The Keyword return is used to return back the value to the called function.

returns the area of a circle with the given radius:

def area(radius):

temp = 3.14 * radius**2

return temp

print(area(4))

(or)

def area(radius):

return 3.14 * radius**2

print(area(2))

Sometimes it is useful to have multiple return statements, one in each branch of a conditional:

def absolute_value(x):

if x < 0:

return -x

else:

return x

Since these return statements are in an alternative conditional, only one will be executed.

As soon as a return statement executes, the function terminates without executing any subsequent

statements. Code that appears after a return statement, or any other place the flow of execution can

never reach, is called dead code.

In a fruitful function, it is a good idea to ensure that every possible path through the program hits a

return statement. For example:

def absolute_value(x):

if x < 0:

return -x

if x > 0:

return x

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 110

This function is incorrect because if x happens to be 0, both conditions is true, and the function ends

without hitting a return statement. If the flow of execution gets to the end of a function, the return

value is None, which is not the absolute value of 0.

>>> print absolute_value(0) None

By the way, Python provides a built-in function called abs that computes absolute values.

Write a Python function that takes two lists and returns True if they have at least one common

member.

def common_data(list1, list2):

for x in list1:

for y in list2:

if x == y:

result = True return result

print(common_data([1,2,3,4,5], [1,2,3,4,5]))

print(common_data([1,2,3,4,5], [1,7,8,9,510]))

print(common_data([1,2,3,4,5], [6,7,8,9,10]))

Output:

True

True

None

Example:

def area(radius):

b = 3.14159 * radius**2

return b

Brief on other functions like sort, sorted and range:

The sort() method sorts the elements of a given list in a specific ascending or descending order.

The syntax of the sort() method is:

list.sort(key=..., reverse=...)

Example:

L1=[2,4,6,8,1,3,5]

L1.sort()

L2=[9,11,13,10,12,15,14]

L2.sort()

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 111

The sorted() function returns a sorted list of the specified iterable object.

You can specify ascending or descending order. Strings are sorted alphabetically, and numbers are

sorted numerically.

Note: You cannot sort a list that contains BOTH string values AND numeric values. Syntax:

sorted(iterable, key=key, reverse=reverse)

Example:

a = (1, 11, 2)

x = sorted(a)

print(x)

The built-in function range() generates the integer numbers between the given start integer to the

stop integer, i.e., It returns a range object. Using for loop, we can iterate over a sequence of numbers

produced by the range() function

range() function in for loop to iterate over numbers defined by range().

How to use range():

range(n) : will generate numbers from 0 to (n-1)

For example: range(8) is equivalent to [0, 1, 2, 3, 4, 5, 6, 7] range(x, y) : will generate numbers from

x to (y-1)

For example: range(5, 9) is equivalent to [5, 6, 7, 8]

range(start, end, step_size) : will generate numbers from start to end with step_size as incremental

factor in each iteration. step_size is default if not explicitly mentioned.

for example: range(1, 10, 2) is equivalent to [1, 3, 5, 7, 9]

Example:

x=10

for i in range(1,x,2):

print(i)

Output:

1

3

5

7

9

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 112

UNIT – V

File Handling in Python: Introduction to files, Text files and Binary files, Access Modes,

Writing Data to a File-write() and writelines(), Reading Data from a File-read(),readline() and

readlines(), Random access file operations-seek() and tell().

Error Handling in Python: Introduction to Errors and Exceptions: Compile-Time Errors,

Logical Errors, Runtime Errors, Types of Exceptions, Python Exception Handling Using try,

except and finally statements.

File Handling in Python

Files are named locations on disk to store related information. They are used to permanently store

data in a non-volatile memory (e.g. hard disk).

Python provides inbuilt functions for creating, writing and reading files. There are two types of

files that can be handled in python, normal text files and binary files (written in binary

language,0s and 1s).

Text files: A text file is simply a sequence of ASCII or Unicode characters. Each line of text is

terminated with a special character called EOL (End of Line), which is the new line character

(‘\n’) in python by default. Python programs, contents written in text editors are some of the

example of text files. Text files are less prone to get corrupted as any undesired change may just

show up once the file is opened and then can easily be removed.

Binary files: Binary file store data in the form of sequence of bytes grouped into eight bits or

sometimes sixteen bits. These bits represent custom data and such files can store multiple types of

data (images, audio, text, etc) under a single file. A binary file stores the data in the same way as

stored in the memory. The .exe files, mp3 file, image files, word documents are some of the

examples of binary files. There is no terminator for a line and the data is stored after converting it

into machine understandable binary language. Since binary files store data in sequential bytes, a

small change in the file can corrupt the file and make it unreadable to the supporting application.

Opening and Closing Files:

Python provides basic functions and methods necessary to manipulate files

by default. The file manipulation is done using a file object.

The open() Function:

Before we can read or write a file, it has to be opened using Python's built-in open() function. This

function creates a file object which would be utilized to call other support methods associated with it.

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 113

Syntax:

file object = open(file_name [, access_mode][, buffering])

Parameters

file_name: The file_name argument is a string value that contains the name of the file that you want

to access.

access_mode: The access_mode determines the mode in which the file has to be opened ie. read,

write append etc. A complete list of possible values is given below in the table. This is optional

parameter and the default file access mode is read (r)

buffering: If the buffering value is set to 0, no buffering will take place. If the buffering value is 1,

line buffering will be performed while accessing a file. If you specify the buffering value as an

integer greater than 1, then buffering action will be performed with the indicated buffer size. If

negative, the buffer size is the system default(default behavior).

Modes

Description

r Opens a file for reading only. The file pointer is placed at the beginning of the file.

This is the default mode.

rb Opens a file for reading only in binary format. The file pointer is placed at the

beginning of the file. This is the default mode.

r+ Opens a file for both reading and writing. The file pointer will be at the beginning of

the file.

rb+ Opens a file for both reading and writing in binary format. The file pointer will be at

the beginning of the file.

w Opens a file for writing only. Overwrites the file if the file exists. If the file does not

exist, creates a new file for writing.

wb Opens a file for writing only in binary format. Overwrites the file if the file exists. If

the file does not exist, creates a new file for writing.

w+ Opens a file for both writing and reading. Overwrites the existing file if the file

exists. If the file does not exist, creates a new file for reading and writing.

wb+ Opens a file for both writing and reading in binary format. Overwrites the existing

file if the file exists. If the file does not exist, creates a new file for reading and

writing.

a Opens a file for appending. The file pointer is at the end of the file if the file exists.

That is, the file is in the append mode. If the file does not exist, it creates a new file

for writing.

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 114

ab Opens a file for appending in binary format. The file pointer is at the end of the file if

the file exists. That is, the file is in the append mode. If the file does not exist, it

creates a new file for writing.

a+ Opens a file for both appending and reading. The file pointer is at the end of the file if

the file exists. The file opens in the append mode. If the file does not exist, it creates a

new file for reading and writing.

ab+ Opens a file for both appending and reading in binary format. The file pointer is at the

end of the file if the file exists. The file opens in the append mode. If the file does not

exist, it creates a new file for reading and writing.

x for exclusive creation. If you open a file in mode x , the file is created and opened

for writing – but only if it doesn't already exist.

The file object attributes:

Attribute Description

file.closed Returns true if file is closed, false otherwise.

file.mode Returns access mode with which file was opened.

file.name Returns name of the file.

Example:

fo = open("f1.txt", "wb")

print ("Name of the file: ", fo.name)

print ("Closed or not : ", fo.closed)

print ("Opening mode : ", fo.mode)

Output:

Name of the file: f1.txt

Closed or not : False

Opening mode : wb

close() Method:

The close() method of a file object flushes any unwritten information and closes the file object, after

which no more writing can be done.

Python automatically closes a file when the reference object of a file is reassigned to another file.

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 115

Syntax:

fileObject.close();

Example:

fo = open("f1.txt", "wb")

print("Name of the file: ", fo.name)

fo.close()

Output:

Name of the file: f1.txt

Reading and Writing Files:

The file object provides a set of access methods to read and write files.

The write() Method:

The write() method writes any string to an open file. It does not add a newline character ('\n') to the

end of the string:

Syntax:

fileObject.write(string)

Method Description

write(string) This writes the string to the file

writelines(seq)

This writes the sequence to the file. No line endings are

appended to each sequence item. The appropriate line

ending(s) need to be added based on the need

Example using write():

fo = open("f1.txt", "wb")

fo.write("Python is a great language.\nYeah its great!!\n");

fo.close()

Example using writelines()

lst = ["Python is a great language.”,”Yeah its great!!”]

fo=open(“f1.txt”,”w”)

fo.writelines(lst)

fo.close()

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 116

Python code to read data from user and write it to a file.

f=open("myfile.txt","a+")

str= " "

print("Enter text to append(@ at end): ")

while str!='@’:

str=input()

if str!='@':

f.write(str+"\n")

f.close()

The read() Method:

The read() method read a string from an open file

Syntax:

fileObject.read([count])

Method Description

fileobject.read(size=-1)

This reads from the file based on the number of

size bytes. If no argument is passed or None or

-1 is passed, then the entire file is read.

fileobject.readline(size=-1)

This reads at most size number of characters

from the line. This continues to the end of the

line and then wraps back around. If no

argument is passed or None or -1 is passed,

then the entire line (or rest of the line) is read.

fileobject.readlines()

This reads the remaining lines from the file

object and returns them as a list

Example:

Python code to read data from myfile.txt and display it on the screen

fo = open(‘myfile.txt’,’r’)

data = fo.read() # reads entire content of the file

print(data)

fo.close()

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 117

fo = open(‘myfile.txt’,’r’)

data = fo.readline() # reads a line

print(data)

fo.close()

fo = open(‘myfile.txt’,’r’)

data = fo.readlines() # reads all lines of file as elements of a list

print(data)

fo.close()

Write a python program to perform append and read operations on a file

f1=open("file2.txt","w")

f1.write("Hello All ")

f1.close()

f1=open("file2.txt","a")

f1.write("Welcome to Mrcet")

f1.close()

f1=open("file2.txt","r")

print(f1.read())

f1.close()

File Positions:

The tell() method tells you the current position within the file in other words, the next read or write

will occur at that many bytes from the beginning of the file

The seek(offset[, from]) method changes the current file position. The offset argument indicates the

number of bytes to be moved. The from argument specifies the reference position from where the

bytes are to be moved.If from is set to 0, it means use the beginning of the file as the reference

position and 1 means use the current position as the reference position and if it is set to 2 then the

end of the file would be taken as the reference position.

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 118

Python code showing the usage of tell() and seek() methods on file object

fo = open("f1.txt", "r+")

str = fo.read(10);

print "Read String is : ", str

position = fo.tell();

print "Current file position : ", position

position = fo.seek(0, 0);

str = fo.read(10);

print "Again read String is : ", str

fo.close()

Exception Handling

In python there are three types of errors

 Compile-time Errors

 Runtime Errors

 Logical Errors

Compile-time or Syntax Errors: These occur when your code violates the syntactical rules of

Python. Such errors are detected by Python compiler and need to be corrected by programmer.

Example:

count=1

while count<100 # ‘:’ missing

print(count)

Runtime Errors: Also known as exceptions, these errors happen during program execution when

PVM cannot execute the byte code. Errors such as attempting to divide by zero or accessing a

variable that doesn't exist. Exception handling mechanisms can be used to handle these errors

Logical Errors: Logical errors occur when there's a flaw in program's logic like using a wrong

formula. These errors are not detected by Python compiler or PVM. Programmer is solely

responsible for them.

Exceptions:

An exception is runtime error, which occurs during the execution of a program, that disrupts the

normal flow of the program's instructions.

In general, when a Python script encounters a situation that it can't cope with, it raises an exception.

An exception is a Python object that represents an error. When a Python script raises an exception, it

must either handle the exception immediately otherwise it would terminate and come out.

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 119

Syntax

try:

statements;

......................

except Exception I:

#if there is exception 1, then execute this block.

statements

except Exception II:

#if there is exception 1, then execute this block.

statements

………...

else:

#if there is no exception, then execute this block.

statements

finally:
#somecode(always executed)

statements

Suspicious code that may raise an exception can be handled by placing the suspicious code in a try:

block. After the try: block, an except: statement, followed by a block of code is included which

handles the problem. After the except clause(s), an else-clause can be included. The code in the else-

block executes if the code in the try: block does not raise an exception.

Example

try:

a = int(input("Enter numerator number: "))

b = int(input("Enter denominator number: "))

print("Result of Division: “,(a/b))

except ZeroDivisionError:
print(“Denominator cannot be zero ")

finally:

print("Code execution Wrap up!“)

A single try statement can have multiple except statements. This is useful when the try block

contains statements that may throw different types of exceptions.

Syntax:

try:

statements

......................

except(Exception1[,Exception2[,...ExceptionN]]]):
statements

.......................

else:

statements

Programming For Problem Solving B. Tech I Year I Semester

Malla Reddy College of Engineering and Technology 120

Example: To print the element at a given position in a list

l1=[1,2,3,4,5]

try:

n=int(input("Enter position to retrieve value: "))

print(l1[n])

except (IndexError, ValueError):

print(“Cannot continue due to error ... try again!!")

else:

print(“Element retrieved successfully…”)

A generic except clause can also be provided, which handles any exception.

Syntax

try:

statements

......................

except:

statements

.......................

else:

statements

Example

try:

a = int(input("Enter numerator number: "))

b = int(input("Enter denominator number: "))

print("Result of Division: “,(a/b))

except:

print(“Error occurred….cannot proceed.")

finally:

print("Code execution Wrap up!“)

Programming For Problem Solving B. Tech I Year I Semester

B. Tech I Year I Semester Programming For Problem Solving

Built-in Exceptions

Exception Description

ImportError Raised when an imported module does not exist

IndentationError Raised when indentation is not correct

IndexError Raised when an index of a sequence does not exist

KeyError Raised when a key does not exist in a dictionary

NameError Raised when a variable does not exist

OverflowError Raised when the result of a numeric calculation is too large

TypeError Raised when two different types are combined

UnboundLocalError Raised when a local variable is referenced before assignment

ValueError Raised when there is a wrong value in a specified data type

ZeroDivisionError Raised when the second operator in a division is zero

Malla Reddy College of Engineering and Technology 121

	PREFACE
	Steps for Problem Solving
	UNIT-1
	Functional Components of a Digital Computer
	COMPUTER LANGUAGES:
	Algorithm:
	Flowchart:
	Symbols used in Flowchart

	Introduction to Python Language
	Python Basics:
	Difference between Scripting Language and Programming Language
	History of Python:
	Who uses python today…
	For instance:
	Features of Python:
	a. Easy to Code
	b. Easy to Read
	2. Expressive
	3. Free and Open-Source
	4. High-Level
	5. Portable
	6. Interpreted
	7. Object-Oriented
	8. Extensible
	9. Embeddable
	10. Large Standard Library
	11. GUI Programming
	12. Dynamically Typed
	GETTING STARTED
	Finding an Interpreter for Python Programming
	Python Installation:
	Steps to be followed and remembered:
	Python Code Execution:
	Modes for using Python interpreter:
	1. Running Python in interactive mode
	2. Running Python in script mode:
	Signature
	Parameters
	Return
	Parameters (1)
	Return (1)
	print() Function Example 1
	Example:
	Python Identifiers
	Python Keywords:
	Lines and Indentation:
	Variables in Python:
	Rules for Python variables:
	Assigning Values to Variables:
	For example −
	This produces the following result −
	Multiple Assignment:
	For example − (1)
	Output Variables:
	Example
	Example (1)
	Output
	Example (2)
	Output:
	Python Identifiers:
	Data Types in Python:
	NUMBERS
	Integers:
	Float:
	STRINGS
	How to Create and Assign Strings
	How to Access Values(Characters and Substrings) in Strings
	How to Update Strings
	How to Remove Characters and Strings
	Membership Operator(in, not in)
	Multi Line Strings
	Escape Character
	Example: (1)
	Concatenation of Two or More Strings
	# Python String Operations
	String Length
	Upper Case
	Lower Case
	Remove Whitespace
	Replace String
	Split String
	String Format
	String Methods
	Example: (2)
	List
	List Items
	Ordered
	How to Create and Assign Lists
	How to Access Values in Lists
	How to Update Lists
	How to insert item in List
	How to Remove List Elements and Lists
	Membership (in, not in)
	Concatenation(+) Operator
	len()
	Copy a List
	List Methods
	TUPLES
	Tuple Items
	How to Create and Assign Tuples
	How to Access Values in Tuples
	How to Update Tuples
	Single Element Tuples
	Unpacking a Tuple
	Packing a Tuple:
	Unpacking a tuple:
	Using Asterisk*:
	No Enclosing Delimiters:
	Join Two Tuples (+)
	Multiply Tuples(*)
	Tuple Methods:
	Example: (3)
	Example: (4)
	SETS
	Creating Sets:
	Example1: Using curly braces
	Example2: Using Set () function
	Example 3: Empty set
	Example 4:
	Example 5:
	Modifying a Set:
	Example1: For adding single element
	Example2: Using update() method
	Removing elements from a set:
	Example 1: Remove an Element From The Set
	Example 2: Deleting Element That Doesn't Exist
	It generates Key Error
	Accessing items in a set:
	Using for loop:
	Using membership “in” keyword:
	Clearing all items in a set:
	Copying a set
	Sorting a set:
	Example: (5)
	Python Set Operations:
	Set Union:
	a) Using | operator :
	b) Use Union method:
	Set Intersection:
	a) Using & operator :
	b) Use Intersection method:
	Set Methods:
	Dictionary:
	Accessing values in Dictionary:
	a) Accessing values using square bracket:
	b) Accessing values using get() method:
	Get Values:
	Updating Dictionaries (Changing and adding dictionary elements):
	Update Method:
	Removing Dictionary Elements and Dictionaries:
	pop() method:
	popitem() method:
	clear () method:
	del keyword:
	Copy a Dictionary:
	Example: (6)
	Example: (7)
	Dictionary Membership Test
	Dictionary Methods

	UNIT II
	Arithmetic operators
	Comparison operators
	Identity operators
	Bitwise operators
	Example 1:
	Example 2:
	Output:
	Examples:
	Conditional expression:
	>>> x = “1” if True else “2”
	>>> ‘1’
	Syntax:
	if Statement Flowchart:
	Output: (1)
	Syntax of if - else :
	If - else Flowchart
	Syntax of if – elif - else :
	Flowchart of if – elif - else:
	Example of if - elif – else:
	While loop:
	Syntax: Flowchart:
	Example
	output:
	output: (1)
	For loop:
	Flowchart:
	Output: (2)
	Iterating over a list:
	Output: (3)
	Iterating over a dictionary:
	Output: (4)
	Nested For loop:
	Syntax: (1)
	# Example 1 of Nested For Loops (Pattern Programs)
	Output: (5)
	# Example 2 of Nested For Loops (Pattern Programs)
	Output: (6)
	break:
	Flowchart: (1)
	Example:
	# Program to display all the elements upto number 88
	Output: (7)
	Flowchart: (2)
	Output: (8)
	Output: (9)
	Example: (1)
	Output: (10)

	Unit III
	Arrays
	Difference between Python Lists and Python Arrays
	Advantages of Python Arrays
	Creating Python arrays
	Define Arrays in Python
	Example of how to define an array in Python:
	Example of how to create an array numbers of float data type.
	Array Indexing and How to Access Individual Items in an Array in Python
	Example:
	Example
	How to Slice an Array in Python
	Array Methods
	Array Types in Python

	Working with numpy arrays
	Why Use NumPy?
	Example:
	Dimensions- Arrays:
	Output: 36
	Two Dimensional Arrays:
	Output:
	Three Dimensional Arrays:
	Check Number of Dimensions
	Access Array Elements
	Access 3-D Arrays
	Negative Indexing
	Print the last element from the 2nd dim:
	Slicing arrays
	Negative Slicing
	Output: (1)
	Return every other element from index 1 to index 5: (using step)
	Slicing 2-D Arrays
	Output: (2)
	Attributes of ndarray
	Output: (3)
	Parameters :
	Example
	Output: (4)
	2. numpy.reshape()
	Parameters:
	Output: (5)
	Reshaping a NumPy array using a variable and an inferred dimension
	3. ndarray.flatten()
	Syntax:
	Parameters: (1)
	Output: (6)
	4. numpy.zeros()
	6. numpy.eye()
	Parameters
	Output: (7)
	Output: (8)
	# Operations on 2D array # Initializing the array

	UNIT-IV
	Output:
	Example:
	Output: (1)
	Example: (1)

	#Type1 : No parameters and no return type
	Output:

	#Type 2: with param with out return type
	Output:

	#Type 4: with param with return type
	Output:
	Syntax:
	Example:
	Output: (1)
	Example: (1)
	Output: (2)
	Example: (2)
	Example: (3)
	Output: (3)
	Example: (4)
	Output: (4)
	Output: (5)
	Example: (5)
	Output: (6)
	Example: (6)
	Output: (7)
	Example: (7)
	Output: (8)
	Example: (8)
	Output: (9)
	#Keyword Arguments:
	Example: (9)
	Output: (10)
	Note:
	Example: (10)
	Output: (11)
	#Default Arguments:
	Output: (12)
	Output: (13)
	Example: (11)
	Output: (14)
	Variable-length arguments:
	Example: (12)
	Output: (15)
	Example: (13)
	Output: (16)
	Example: (14)
	Output: (17)
	Example: (15)
	Output: (18)
	NameError: name 'y' is not defined
	Example: (16)
	Output: (19)
	Example: (17)
	Output: (20)
	Example: (18)
	Output: (21)
	Example: (19)
	Output: (22)
	Example: (20)
	Output: (23)
	Example: (21)
	Output: (24)
	Example: (22)
	Output: (25)
	Example: (23)
	Output: (26)
	Output: (27)
	Syntax: (1)
	Example: (24)
	Output: (28)
	Example: (25)
	Output: (29)
	Example: (26)
	Output: (30)
	Example: (27)
	Output: (31)
	Example: (28)
	Output: (32)
	Example: (29)
	Output: (33)
	Syntax: (2)
	Example: (30)
	Output: (34)
	Example: (31)
	Output: (35)
	Example: (32)
	Output: (36)
	Example: (33)
	Output: (37)
	Example: (34)
	Output: (38)
	Example: (35)
	Example: (36)
	How to use range():
	Example: (37)
	Output: (39)

	UNIT – V
	Opening and Closing Files:
	The open() Function:
	Syntax:
	Parameters
	The file object attributes:
	Output:
	close() Method:
	Syntax: (1)
	Example:
	Output: (1)
	Reading and Writing Files:
	The write() Method:
	Syntax: (2)
	Example using write():
	Example using writelines()
	Python code to read data from user and write it to a file.
	The read() Method:
	Syntax: (3)
	Example: (1)
	Write a python program to perform append and read operations on a file
	File Positions:
	Python code showing the usage of tell() and seek() methods on file object

	Exception Handling
	Example:
	Exceptions:
	Syntax
	Example
	Syntax:
	Example: To print the element at a given position in a list
	Syntax (1)
	Example (1)

