Lecture Notes

On

COMPUTER ORGANIZATION & MICROPROCESSOR
(R20A1201)
Department of Information Technology

B.TECH Il YEAR — | SEM
(2022-23)

Prepared by:

Mr. M. Ramanjaneyulu
Associate Professor, ECE Dept.

&

Mr.N.Suresh,
Assistant Professor, ECE Dept.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution - UGC, Govt. of India)

Recognized under 2(f) and 12(B) of UGC ACT 1956
(Affiliated to JNTUH, Hyderabad, Approved by AICTE- Accredited by NBA & NAAC—‘A’ Grade-I1SO 9001:2015
Certified)
Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad — 500100, Telangana State, India.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
B.TECH - IlI- YEAR I-SEM-I T L/T/PIC
3/-1-13
(R20A1201) COMPUTER ORGANISATION & MICROPROCESSORS
COURSE OBJECTIVES:
Students should be able:
1. To understand basic components of computers and architecture of 8086 microprocessor
2. To classify the instruction formats and various addressing modes 0f8086 microprocessor.
3. To represent the data and understand how computations are performed at machine level.
4. To outline the memory organization and 1/Organization.
5. To understand the parallelism both in terms of single and multiple processors.

UNIT - I Digital Computers: Introduction, Block diagram of Digital Computer, Definition
of Computer Organization, Computer Design and Computer Architecture.

Basic Computer Organization and Design: Instruction codes, Computer Registers,
Computer instructions, Timing and Control, Instruction cycle, Memory Reference
Instructions, Input — Output and Interrupt, Complete Computer Description.

Micro Programmed Control: Control memory, Address sequencing, micro program
example, design of control unit.

UNIT - Il Central Processing Unit: The 8086 Processor Architecture, register organization,
Physical memory organization, General Bus Operation, I/0O Addressing Capability, Special
Processor Activities, Minimum and Maximum mode system and timings. 8086 Instruction
Set and Assembler Directives-Machine language instruction formats, addressing modes,
Instruction set of 8086, Assembler directives and operators.

UNIT - Il Assembly Language Programming with 8086- Machine level programs,
Machine coding the programs, Programming with an assembler, Assembly Language
example programs. Stack structure of 8086, Interrupts and Interrupt service routines, Interrupt
cycle of 8086, Interrupt programming, Passing parameters to procedures, Macros, Timings
and Delays.

UNIT - IV Computer Arithmetic: Introduction, Addition and Subtraction, Multiplication
Algorithms, Division Algorithms, Floating - point Arithmetic operations. Input-Output
Organization: Peripheral Devices, Input-Output Interface, Asynchronous data transfer, Modes
of Transfer, Priority Interrupt, Direct memory Access, Input —Output Processor (I0P), Intel
8089 IOP.

UNIT - V Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory,
Associate Memory, Cache Memory.

Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline,
Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processors.

REFERENCE BOOKS:

1. Microprocessors and Interfacing, D V Hall, SSSP Rao, 3rd edition, McGraw Hill India
Education Private Ltd.

2. Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer Organization, 5th Edition, Tata
McGraw Hill,2002

3. Computer Organization and Architecture, William Stallings, 9th Edition, Pearson.

4. David A. Patterson, John L. Hennessy: Computer Organization and Design — The
Hardware/ Software Interface ARM Edition, 4th Edition, Elsevier, 2009.

COURSE OUTCOMES:

Students will be able:

= To identify the basic components and the design of CPU, ALU and Control Unit.

* To interpret memory hierarchy and describe the impact on computer cost/performance.

= To express instruction level parallelism and pipelining for high performance Processor
design.

= To represent the instruction set, instruction formats

Computer Organization & Operating System

Il BTECH | SEM

INDEX
UNIT NO TOPIC PAGE NO
1 Digital Computers, Basic Computer
Organization and Design, Micro Programmed | 1-68
Control
5 Central Processing Unit 69-152
8086 Instruction Set and Assembler Directives
3 Assembly Language Programming with 8086 | 193-196
4 Computer Arithmetic 197-252
Input-Output Organization
5 Memory Organization 253-307

Pipeline and Vector Processing

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

UNIT-1
INTRODUCTION TO DIGITAL COMPUTERS

CONTENTS:

Digital Computers:

e [ntroduction,
e Block diagram of Digital Computer,
e Definition of Computer Organization.

Digital Computers:

It is a digital system that performs various computational tasks.

First electronic digital computers introduced in the year 1940’s were primarily
used for the numerical computations.

Digital computer uses the binary number system, which has two digits, 0 & 1.
A Binary digit is called a bit.

In computers, information is represented in ‘Group of bits’.

Computer System:

A computer system is subdivided into 2 functional units:
1. Hardware and
2. Software

1. Hardware: Consists of electronic components and electromechanical devices
that comprise the physical entity of the system.

2. Software: Consists of instructions and data that the computer manipulates to
perform various data processing tasks.

Program: It is a sequence of instructions for the computer

Dept of CSC(I0T) Page 1

Computer Organization & Microprocessor (R20A1201) 11/l Sem

Software

Application software System software
System Software:

Consists of collection of programs whose purpose is to make more effective use of
computer.

The programs included in the system software are referred to as operating system.
The system software is an indispensable part of a computer.

Application Software:
It is software that performs specific tasks for an end-user.

For example, A High level language program written by user to solve particular
data processing needs is an Application program.

A compiler that is used to translate high level language to machine language is a
System program.

WHY STUDY COMPUTER ORGANIZATION?

It gives an insight of how a computer executes programs internally and can help
programmer to write more effective programs.

For system programmers, a good knowledge of Computer Organization is essential
because they need to program the bare hardware without the support of an
operating system.

Dept of CSC(I0T) Page 2

Computer Organization & Microprocessor (R20A1201) 11/l Sem

Relation between Computer Architecture, Organization, System
program and Application program

Application
Program

—

System
Program

Architecture

Organization

Figl.1 Organization Implements Architecture
Computer Architecture:

It gives the external view of the computer. It is concerned with the structure and
behavior of the computer.

An Assembly level programmer needs to be aware of Specific Instruction
supported by the processor, the instruction formats, the specific registers, and
their roles, the way to perform input or output data.

Computer Organization:

CO is concerned with the way the hardware components operate and the way they
are connected together to form the computer system.

The various components are assumed to be in place and the task is to investigate
the organizational structure to verify that computer parts operate as intended.

CO gives an internal view of a computer and the roles that internal components
play during execution of a program.

Dept of CSC(I0T) Page 3

Computer Organization & Microprocessor (R20A1201) 11/l Sem

In other words, CO deals with how different parts of the computer such as the
processor, memory, and peripheral devices are interconnected and the roles that
internal components play during program execution.

Figure 1.1 shows that System program (operating system) directly interacts with
the Computer Hardware.

The Application program invokes the services offered by the System programs.

Application programs are independent of the Architecture (High level Language)
and are converted to machine dependent programs through a system program.

The internal organization of a basic computer is defined by its internal registers,
the timing and the control structure, & the set of instructions that it uses.

The internal organization of a digital system is defined by sequence of micro
operations it performs on data stored in registers.

Block Diagram of a Digital Computer:

Random Access Memory
(RAM)

Central Processing Unit

(CPU)
Input Input-Output Processor] Output
devices (1OP) devices

Figl.2: Block Diagram of a Digital Computer

A digital computer consists of five functionally independent parts.

1. CPU: Contains an Arithmetic and logical unit for manipulating data, a number
of registers for storing data, and control circuit for fetching and executing
instructions.

Dept of CSC(IOT) Page 4

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

2. RAM: Contains storage for instructions and data .Here, the CPU can access any
location at random and retrieve the binary information within the fixed interval of
time.

3. 10OP: Contains electronic circuits for communicating and controlling the
transfer of information between the computer and the outside the world.

4. Input Devices: Computers accept coded information through input units, which
reads the data. Ex: Keyboard, Mouse, joy sticks.

5. Output Devices: Used to produce output through output devices. EX: Printer,
Plotter, Micro film Output, Voice Output, speakers.

Basic Computer Organization & Design
CONTENTS:

e Instruction Codes

e Computer Registers

e Computer Instructions

e Timing and Control

e Instruction Cycle

e Memory Reference Instructions
e Input-Output and Interrupt

Instruction Codes:
The user of a computer can control the process by means of a program

A program is a set of instructions that specifies the operations, operands, and
the sequence by which processing has to occur.

The instruction code is a group of bits that instruct the computer to perform a
specific operation.

An instruction consists of Opcode and operands.

Instruction Format
Opcode Operands

Dept of CSC(I0T) Page 5

Computer Organization & Microprocessor (R20A1201) 11/l Sem

Examples:
- ADDA,B
- ADDRI1,R2
« MOV CX, 4929h
« MOV AX,BX
« SUB AX, BX
« INC AX

OPCODE:
The most basic part of instruction code is its operation part.

The operation part of an instruction code specifies the operation to be performed.
The operation code of an instruction is a group of bits that define operations such

as ADD, Subtract, multiply, shift and complement.

Examples:
ADD A, B
SUB AX, BX
MUL AX, BX

The number of bits required for an operation code of an instruction depends on the
total number of operations available on the computer.

The operation code must consists of at least n bits for a given 2”n distinct
operations.

An operation is a part of instruction stored in computer memory.

The control unit receives the instruction from the memory and interprets the
operation code bits.

It then (Opcode) issues a sequence of control signals to initiates micro operations
in internal computer registers.

For every operation code, the control issues a sequence of micro operations needed

for the hardware implementation of the specified operation.

Dept of CSC(I0T) Page 6

Computer Organization & Microprocessor (R20A1201) 11/l Sem

OPERANDS:
An instruction code should not only specify the operation but also the registers or

the memory words where the operations are to be found and also the registers
or the memory words where the results are to be stored.

Memory words can be specified by instructions codes by their address.

Processor registers can be specified by assigning to the binary code of k bits that

specifies one of 2/'k registers.

DIFFERENT MODES OF INSTRUCTION:

Based on Second part of Instruction, We can specify the Different modes of an
instruction. They are:

Immediate Mode:

When the second part of an instruction specifies an operand, the instruction is said
to have an Immediate Operand

EX: ADD AX, 2387 H

Direct Address:

When the second part of an instruction specifies an address of an operand, The
instruction is said to have a Direct Address

EX: MOV AX, [1592H]

Indirect Address:

When the second part of an instruction designates an address of a memory word in
which the address of the operand is found, the instruction is said to have a Indirect
Address.

EX: Load R1, @500

Dept of CSC(I0T) Page 7

Computer Organization & Microprocessor (R20A1201) 11/l Sem

THE BASIC COMPUTER
The Basic Computer has two components, a Processor Register and Memory.

The Memory unit has a capacity of 4096 words. Each word contains 16 bits.

To specify the address of operand, 12 bits are needed; 4096 = 22 .So 12 bits of an
instruction word are needed to specify Address and 4 more bits are available for
the Opcode. (Or 3 bits for opcode & 1 bit to specify Direct or Indirect Address).

Memory
4096 x 16

T

Instructions
(programs)

Operands
(data)

,)4—\\

Processor Register
{accumulator or AC)

Figl.3: Basic Computer

Stored program Organization:
The simplest way to organize a computer is to have one processor register(AC)

and a instruction code format with two parts.

Dept of CSC(I0T) Page 8

Computer Organization & Microprocessor (R20A1201) 11/l Sem

Stored Program Organization

15 12 11 0 Memory
4096 x 16
Opcode Address

) _ s
Instruction format

Instructions
(programs)

Operands

Binary operand (data)

B

Processor Register
(accumulator or AC)

Figl.4: Stored Program Organization
A computer instruction is often divided into two parts

15 12 11 O

Opcode Address

Instruction format

The first part specifies the operation to be performed. The second part specifies an
address.

The memory address tells the control where to find an operand in memory. This
operand is read from memory and used as the data to be operated on together with
the data stored in the processor register. Figl.4 depicts the type of Organization.
MEMORY:

Instructions are stored in one section of memory and data in other.

For a memory unit with 4096 words we need 12 bits to specify an address since
2712=4096.

Dept of CSC(IOT) Page 9

Computer Organization & Microprocessor (R20A1201) 11/l Sem

If we store each instruction code in one 16-bit memory word. There are 4 bits
available for the operation code to specify one out of 16 possible operations and 12
bits to specify the address of an operand.

The control read a 16 bit operand form the data portion of the memory.

It then executes the operation specified by the operation code.

PROCESSOR REGISTER (ACCUMULATOR):

Computers that have a single processor register usually assign to it the name
accumulator and label it AC. The operation is performed with the memory operand
and content of AC.

If an operation in an instruction code does not need an operand from memory, the
rest of the bits in the instruction can be used for other purposes. For example,
operations such as clear AC complement AC, and increment AC operate on data
stored in AC register. They do not need an operand from memory and they can be
used to specify other operations for the computer. They do not need an operand

from memory and they can be used to specify other operations for the computer.

Direct Addressing& Indirect Addressing:
Consider the instruction format shown in figure a.

15 14 12 11 O

[I] Opcode | Address]

Instruction format

It consists of 3 bit Opcode, a 12 bit address and an indirect address mode
designated by I.

How to distinguish between a direct and indirect address?

A. One bit of the instruction code (I bit) can be used to distinguish between a
direct and indirect address.

When | bit =0; It Specifies a Direct Address

Dept of CSC(I0T) Page 10

Computer Organization & Microprocessor (R20A1201) 11/l Sem

When | bit =1; It Specifies an Indirect Address

Direct and Indirect Addressing

15 14 12 11 L]
] 1 Opcode | Address Indirect
Direct addressing
addressing . .
Instruction format -
\ OJADD]| 457 [ADD] 300
300 1350

457 Operand

1350 Opcrand

+ -
(? ?
AC AC
I i I | t I
b. Direct Addressing C. Indirect Addressing

Figl.5 Pictorial Representation of Direct & Indirect Addressing

Direct addressing
A direct address instruction is shown in figure b.

22 K. Add 457

It is placed in address 22 in memory and the | bit is 0, so the instruction is
recognized as a direct address instruction. The opcode specifies an ADD
instruction, and the address part is the binary equivalent of 457.The control finds
the operand in memory at address 457 & adds it the content of AC.

Indirect addressing

The instruction in address 35 in memory is shown in figure c.

35 [t ‘ADD ‘ 300

Dept of CSC(IOT) Page 11

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

It has a mode bit | =1, therefore it is recognized as an Indirect address instruction.
The address part is the binary equivalent of 300.The control goes to address 300 to
find the address of the operand. The address of the operand in this case is 1350.The
operand found in address 1350 is then added to the content of AC. The indirect
address instruction needs two references to memory to fetch an operand.

» The first reference is to needed to read the address of the operand.

» The second reference is for the operand itself.
Effective Address:
It is defined as the address of an operand. Thus the Effective Address in the

instruction of figure a is 457 and figure b is1350.

Computer Registers:

Basic Computer Registers and Memory

L_* |
11 0
| AR | Memory
) 4096 words
15 0 16 bits per word
| IR l
15 0 15 0
| TR | | DR |
i o 7 0 15 0

| OUTR | | INPR | | AC |

Figl.6 Basic Computer Registers and Memory
A processor has many registers to hold instructions, addresses, data, etc

Dept of CSC(I0T) Page 12

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

The processor has a register, the Program Counter (PC) that holds the memory
address of the next instruction .
— Since the memory in the Basic Computer only has 4096 locations, the
PC only needs 12 bits
The memory unit has a capacity of 4096 words and each word contains 16 bits.12
bits of an instruction word are needed to specify the address of an operand. This
leaves 3 bits for the operation part of the instruction and a bit (1) to specify a direct
or indirect address. In a Direct or indirect addressing, the processor needs to keep
track of what locations in memory it is addressing:
The Address Register (AR) is used for this
— The AR is a 12 bit register in the Basic Computer
When an operand is found, using either direct or indirect addressing, it is placed in
the Data Register (DR). The data register (DR) holds the operand read from
memory. The processor then uses this value as data for its operation
The accumulator (AC) register is a general purpose processing register. The
significance of a general purpose register is that it can be referred to in instructions
— e.g. load AC with the contents of a specific memory location(LDA);
store the contents of AC (STA)into a specified memory location
The instruction read form memory is placed in the instruction register (IR).
Often a processor will need a scratch register to store intermediate results or other
temporary data; in the Basic Computer this is the Temporary Register (TR). The

temporary register (TR) is used for holding the temporary data during the
processing.

The Basic Computer uses a very simple model of input/output (I1/O) operations.
Input devices are considered to send 8 bits of character data to the processor. The

processor can send 8 bits of character data to output devices

Dept of CSC(I0T) Page 13

Computer Organization & Microprocessor (R20A1201) 11/l Sem

The Input Register (INPR) holds an 8 bit character received from an input
device
The Output Register (OUTR) holds an 8 bit character to be send to an output
device

» The registers are also listed in table together with a brief description of their

function and the number of bits that they contain..

List of Registers for the Basic Computer
Register # of Bits Register Function
Symbol Name
DR 16 Data Register Holds memory

operand
AR 12 Address Register Holds mem.
address
AC 16 Accumulator Processor Reg.
IR 16 Instruction Holds instruction
Register code
PC 12 Program Counter Holds instruction
address
TR 16 Temporary Holds temporary
Register data
INPR bt Input Register Holds input
character
OUTR 8 Output Register Holds output
character

Tablel.1 List of registers for Basic computers
The memory address register has 12 bits since this is the width of a memory

address.

The program counter also has 12 bits and it holds the next instruction to be read
from memory after the current instruction is executed.

11l LL]

I ==]

Dept of CSC(I0T) Page 14

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

The PC goes through a counting sequence and causes the computer to read
sequential instructions previously stored in memory. Instruction words are read and
executed in sequence unless a branch instruction is encountered.

A branch instruction calls for a transfer to a nonconsecutive instruction in the
program. The address part of a branch instruction is transferred to PC to become

the address of the next instruction.

Common Bus System:

A Dbasic computer has 8 registers, memory unit and a control unit. Paths must be
provided to transfer information from one register to another and between memory
and registers. . A more efficient scheme for transferring information in a system
with many registers is to use a common bus. To avoid excessive wiring, memory
and all the register are connected via a common bus. The connection of the
registers and memory of the basic computer to a common bus system is shown in
Fig.1.6. The outputs of seven registers and memory are connected to the
common bus. The specific output that is selected for the bus lines at any given
time is determined from the binary value of the selection variables S,5,S,. The
register who’s LD (Load) is enabled receives the data from the bus. Registers can
be incremented by setting the INR control input and can be cleared by setting the

CLR control input.

The Accumulator’s input must come via the Adder & Logic Circuit. This
allows the Accumulator and Data Register to swap data simultaneously.

The address of any memory location being accessed must be loaded in the Address
Register (AR).

Dept of CSC(I0T) Page 15

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

=2
=1 BEus
=0

|
\J I ermiorss Lt 5
7 AN0E 16 %
I
W)!ite Fead
= | AR |

I

| g T e —
LD INE CLER
= P]
I
LD

I
g
e r
e DR] =
T

b e clr

e — | .
ﬁ Unit LD IMNER CLER

IMPE

= | IR | 5

E_

= TR | 5

T 1-.!‘ T L & loclk
I INER CLE OUTE |

=== 16 bhit comanon buaas ===

Figl.6 Basic registers connected via a common Bus

SUMMARY

1. The organization of the computer is defined by its internal registers, the timing
and control structure, and the set of instructions that it uses.

2. The user of a computer can control the process by means of a program. A
program is a set of instructions that specify the operations, operations operands, and
the sequence by which processing has to occur.

3. The general-purpose digital computer is capable of executing various micro
operations and, in addition, can be instructed as to what specific sequence of
operations it must perform.

4. An operation is part of an instruction stored in computer memory. It is a binary
code tells the computer to perform a specific operation.

5. The operation part of an instruction code specifies the operation to be performed.
6. Instruction code formats are conceived computer designers who specify the

architecture of the computer.

Dept of CSC(I0T) Page 16

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

7. The simplest way to organize a computer is to have one processor register and
instruction code format with two parts. The first part specifies the operation to be
performed and the second specifies an address.

8. Computer instructions are normally stored in consecutive memory locations and are
executed sequentially one at a time.

9. The direct and indirect addressing modes are used in the computer.

10. The memory word that holds the address of the operand in an indirect address
instruction is used as a pointer to an array of data. The pointer could be placed in
processor register instead of memory as done in commercial computers.

11. The basic computer has eight registers, a memory unit, and a control unit. Paths
should be provided to transfer information from one register to another and between
memory and registers.

12. The output of seven registers and memory are connected to the common bus.

13. The lines from the common bus are connected to the inputs of each register and
the data input of each register and the data inputs of the memory.

14. The 16 lines of the common bus receive information from sex registers and the
memory unit. The bus lines are connected to the inputs of six registers and the
memory.

15. The content of any register can be applied onto the bus and an operation can be
performed in the adder and logic circuit during the same clock cycle.

16. The input data and output data of the memory are connected to the common bus,
but the memory address is connected to AR.

17. Content of any register can be applied onto the bus and an operation can be
performed in the adder and logic circuit during the same clock cycle.

18. The clock transition at the end of the cycle transfers the content of the bus into the

designated destination register and the output of the adder and logic circuit into AC.

Dept of CSC(I0T) Page 17

Computer Organization & Microprocessor (R20A1201) 11/l Sem

Computer Instructions

The basic computer has 3 instruction code formats as shown in the figure below:

15 14 12 11 0

(Opcode = 000 through 110)

(a) Memory — reference instruction
15 12 11 0

(Opcode =111,7=0)

(b) Register — reference instruction

15 12 11 0

(Opcode =111,7=1)

(c) Input — output instruction

Figl.7 Basic computer Instruction format

1. In Memory-reference instruction, 12 bits of memory is used to specify an
address, 3bits for opcode and one bit to specify the addressing mode I.
When 1=0; represents direct Addressing Mode

I=1; represents Indirect Addressing Mode
2. The Register-reference instructions are represented by the Opcode 111 with a 0
in the leftmost bit (bit 15) of the instruction. A Register-reference instruction
specifies an operation on or a test of the AC (Accumulator) register.Here the
operand from memory is not needed, therefore the other 12 bits are used to specify
the operation or test to be executed.
3. An Input-Output instruction does not need a reference to memory and is
recognized by the operation code 111 with a 1 in the leftmost bit of the
instruction. The remaining 12 bits are used to specify the type of the input-output
operation or test performed.
The three operation code bits in positions 12 through 14 should be equal to
111. Otherwise, the instruction is a memory-reference type. When the three
operation code bits are equal to 111, control unit inspects the bit in position 15. If

Dept of CSC(I0T) Page 18

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

the bit (15) is 0, the instruction is a register-reference type. Otherwise, the
instruction is an input-output type having bit 1 at position 15.

The instructions for the computer are listed in Table 1.2. The symbol designation is
a three letter word and represents an abbreviation intended for programmers and
users.

Hex Code

Symbol | =0 =1 Description

AND Oxxx 8xxx AND memory word to AC

ADD Ixxx 9xxx Add memory word to AC

LDA 2xxx Axxx | Load AC from memory

STA 3xxx Bxxx | Store content of AC into memory
BUN 4xxx Cxxx Branch unconditionally

BSA 5xxx Dxxx | Branch and save return address
ISZ 6xxx Exxx | Increment and skip if zero

CLA 7800 Clear AC

CLE 7400 Clear E

CMA 7200 Complement AC

CME 7100 Complement E

CIR 7080 Circulate right AC and E

CIL 7040 Circulate left AC and E

INC 7020 Increment AC

SPA 7010 Skip next instr. if AC is positive
SNA 7008 Skip next instr. if AC is negative
SZA 7004 Skip next instr. if AC is zero
SZE 7002 Skip next instr. if E is zero

HLT 7001 Halt computer

INP F800 Input character to AC

OouT F400 Output character from AC

SKi F200 Skip on input flag

SKO F100 Skip on output flag

ION F080 Interrupt on

IOF F040 Interrupt off

Tablel.2 Basic computer Instructions
The hexadecimal code is equal to the equivalent hexadecimal number of the binary
code used for the instruction.

Dept of CSC(I0T) Page 19

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

By using the hexadecimal equivalent we reduced the 16 bits of an instruction
code to four digits with each hexadecimal digit being equivalent to four bits.

Instruction Set Completeness:

A computer should have a set of instructions so that the user can construct machine
language programs to evaluate any function.

A set of instructions is said to be complete if the computer includes a sufficient
number of instructions in each of the following categories:

e Arithmetic, logical and shift instructions

e A set of instructions for moving information to and from memory and
processor registers.

e Program control Instructions together with instructions that check status
conditions.

e Input and Output instructions

Arithmetic, logic and shift instructions provide computational capabilities for
processing the type of data the user may wish to employ.

Transfer of Information: A huge amount of binary information is stored in the
memory unit, but all computations are done in processor registers. Therefore, one
must possess the capability of moving information between these two units.
Program control instructions such as branch instructions are used to change the
sequence in which the program is executed.

Input and Output instructions act as an interface between the computer and the
user. Programs and data must be transferred into memory, and the results of
computations must be transferred back to the user.

Instruction Types

Functional Instructions
- Arithmetic, logic, and shift instructions
- ADD, CMA, INC, CIR, CIL, AND, CMA,CLA
Transfer Instructions: Data transfers between the main memory and the processoregisters
- LDA, STA
Control Instructions
- Program sequencing and control

- BUN, BSA, ISZ
— |1PUL/OUtPUL INstructions L
Dept of CSC - Input and output

- INP, OUT

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

Timing and Control

The timings for all the registers in the basic computer is controlled by a master
clock generator. Its clock pulses are applied to all flip-flops and register in the
system & to flip-flops and registers in the control unit.

The clock pulses do not change the state of a register, unless the register is enabled
by a control signal.

The control signals are generated in the control unit and provide control
inputs for the bus’s multiplexers and for the processor registers and provides
micro operations for the accumulator.

CONTROL ORGANIZATION:

The Control Organization is classified into two major categories:
— Hardwired Control
— Micro programmed Control

Hardwired Control

The Hardwired Control organization involves the control logic to be implemented
with gates, flip-flops, decoders, and other digital circuits.

The main advantage of Hardwired Control is its fast mode of operation.

If the design has to be modified or changed, it requires changes in the wiring
among the various components.

Micro-programmed Control

The Micro programmed Control organization is implemented by using the
programming approach.

The control information is stored in control memory.

The control memory is programmed to initiate requires sequence of micro
operations.

Dept of CSC(I0T) Page 21

Computer Organization & Microprocessor (R20A1201) 11/l Sem

Any required changes or modifications can be done by updating the micro program
in control memory.

Control unit of a basic computer (Hardwired Control organization):

The following image shows the block diagram of a Hardwired Control
organization.

Instruction Register

T l b Ly _ 1 - Other Inputs
Ll l
w ceat;:er R (/_ \"-.
l 76 54 3 2 1 0
l l l 1 7 l Do Control
> T e
- Control Logic Outputs
o7 » Gates
T15 f
o |
t t1] »
15 14 2 1 0

4x 16
decoder

l——— Increment (INR)

4 Bit Sequence tif—————— Clear ([CLR)
Counter

(SC)

< Clock

Figl.8 Control Unit of Basic computer

A Hard-wired Control consists of two decoders, a sequence counter, and a number of logic
gates.

An instruction fetched from the memory unit is placed in the instruction register (IR). The
component of an instruction register includes: | bit, the operation code, and bits 0 through 11.

| |

Dept of CSC(I0T) Page 22

Computer Organization & Microprocessor (R20A1201) 11/l Sem

The operation code in bits 12 through 14 are decoded with a 3 x 8 decoder. The outputs of the
decoder are designated by the symbols DO through D7. The operation code at bit 15 is
transferred to a flip-flop designated by the symbol 1. The operation codes from Bits 0 through 11
are applied to the control logic gates.

The Sequence counter (SC) can count in binary numbers from 0 through 15.The outputs of the
counter are decoded into 16 timing signals To through Tis.The sequence counter SC can be
incremented or cleared synchronously. Most of the time, the counter is incremented to provide
the sequence of timing signals out of the 4 x 16 decoder. Once in a while, the counter is cleared
to 0, causing the next active timing signal to be To.

As an example, consider the case where SC is incremented to provide timing signals To, T, Ta,
Ts, and T4 in sequence. At time T4, SC is cleared to 0 if decoder output D3z is active. This is
expressed symbolically by the statement.

D3T4: SC* 0
Timing Signals

The timing diagram of Fig.1.9 shows the time relationship of the control signals.

To T T3 Ty Ta Ta
Clock 1 y ' a a

N s | -

T2 \
|
2 [A
|
Ts ' | h
/
.
Dy __,-’/ rd

) T

Figl.9 Example of control Timing Signals

Dept of CSC(I0T) Page 23

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

The sequence counter SC responds to the positive transition of the clock. Initially,
the CLR input of SC is active. The first positive transition of the clock clears SC to
0, which in turn activates the timing signal T, out of the decoder.

To is active during one clock cycle. The positive clock transition labeled Ty in the
diagram will trigger only those registers whose control inputs are connected to
timing signal To.

SC is incremented with every positive clock transition unless its CLR input is
active. This produces the sequence of timing signals To, Ty, T2, T3 ,T4 and so on, as
shown in the diagram.

If SC is not cleared, the timing signals will continue with T5, Tsup to Tis and
back to To The last three waveforms in Fig. show how SC is cleared when D3T, =
1. Output D3 from the operation decoder becomes active at the end of timing signal
T,.

When timing signal T, becomes active, the output of the AND gate that
implements the control function D3T4 becomes active. This signal is applied to the
CLR input of SC. On the next positive clock transition (the one marked T4 in the
diagram) the counter is cleared to 0. This causes the timing signal T, to become
active instead of Ts that would have been active if SC were incremented instead of
cleared.

> Reference

A memory read or writes cycle will be initiated with the rising edge of a timing
signal. It will be assumed that a memory cycle time is less than the clock cycle
time.

According to this assumption, a memory read or write cycle initiated by a
timing signal will be completed by the time the next clock goes through its
positive transition. The clock transition will then be used to load the memory
word into a register. This timing relationship is not valid in many computers
because the memory cycle time is usually longer than the processor clock cycle.

Dept of CSC(I0T) Page 24

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

In such a case it is necessary to provide wait cycles in the processor until the
memory word is available. To facilitate the presentation, we will assume that a
wait period is not necessary in the basic computer.

To fully comprehend the operation of the computer, it is crucial that one
understands the timing relationship between the clock transition and the timing
signals. For example, the register transfer statement

To: AR« PC

Specifies a transfer of the content of PC into AR if timing signal Ty is active. To is
active during an entire clock cycle interval during this time the content of PC is
placed onto the bus (with S;S1Sp = 010) and the LD (load) input of AR is enabled.

The actual transfer does not occur until the end of the clock cycle when the clock
goes through a positive transition. This same positive clock transition increments
the sequence counter SC from 0000 to 0001. The next clock cycle has T, active
and Tp inactive.

INSTRUCTION CYCLE

A program residing in the memory unit of the computer consists of a sequence of
Instructions. In the basic computer, each instruction cycle consists of the following
phases:

1. Fetch an instruction from memory
2. Decode the instruction

3. Read the effective address from memory if the instruction has an
indirect address

4. Execute the instruction

Upon the completion of step 4, the control goes back to stepl to fetch, decode and
execute the next instruction. This process continues indefinitely unless a HALT
instruction is encountered.

Dept of CSC(I0T) Page 25

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

Fetch and Decode:
Initially, the PC is loaded with the address of the first instruction in the program.
The sequence counter SC is cleared to 0, provided a decoding timing signal TO

After each clock pulse, the SC is incremented by one, so that the timing signals go
through the sequence TO, T1, T2, etc.

The micro operations for the fetch and decode phases can be specified by the
following register transfer statements:

To: AR+ PC

T1: IR«—M [AR], PG— PC+1

T2:DO,....,D7 +Decode IR(12-14), AR 4R(0-11), | +R(15)
FETCH PHASE:

Since only AR is connected to the address inputs of memory, it is necessary to
transfer the address from PC to AR during the clock transition associated with
timing signal TO.

The instruction read from memory is then placed in the instruction register IR with
the clock transition associated with timing signal T1.

At the same time, PC is incremented by one to prepare it for the address of the next
instruction in the program.

DECODE PHASE:

At time T2, the operation code in IR is decoded, the indirect bit is transferred to
flip-flop I, and the address part of the instruction is transferred to AR.

Note that SC is incremented after each clock pulse to produce the sequence TO, T1,
and T2

Dept of CSC(I0T) Page 26

Computer Organization & Microprocessor (R20A1201) 11/l Sem

Determine the Type of Instruction:

The timing signal that is active after the decoding is T3 During time Ts, the control
unit determines the type of instruction that was just read from memory.

The flowchart of Fig. below presents an initial configuration for the instruction
cycle and shows how the control determines the instruction type after the decoding.

The three possible instruction types available in the basic computer are specified in
Fig. on basic computer formats.

1. Memory Reference instructions
2. Register Reference instructions
3. 1/0 Reference instructions

Decoder output D~ is equal to 1 if the operation code is equal to binary 111. From
Fig. on basic computer formats we determine that if D; = 1, the instruction must be
a register reference or 1/O reference.

If D7 = 0, the operation code must be one of the other seven values 000 through
110, specifying a memory-reference instruction.

Control then inspects the value of the first bit of the instruction, which is now
available in flip-flop I. If D7 = 0 and | = 1, we have a memory reference instruction
with an indirect address.

It is then necessary to read the effective address from memory. The micro
operation for the indirect address condition can be symbolized by the register
transfer statement :

AR « M[AR]

Initially, AR holds the address part of the instruction. This address is used
during the memory read operation.

The word at the address given by AR is read from memory and placed on the
common bus.

Dept of CSC(I0T) Page 27

Computer Organization & Microprocessor

(R20A1201)

Flow chart for Instruction Cycle

Suart
SC+0
T
[AR « PC
T,
[IR - M [AR), PC « PC + | l

Decode operation code in /R (12 - 14)

AR« IR0 - 11), 1 « IR (15)

(chistcrorlil)) =1 /\ =0 (Memory-reference)

I1/1 Sem

O
(L) 1/L= 0 (register) (indirect) = l*: 0 (direct)
I 1

Figl.10 Flow chart for Instruction cycle

T; Tg 1 T’ T_\
Execute ; Execute |AR - M[,qk]l | Nothing |
nput-output register-reference
instrocton instruction
SC 0 SC«0 1
Execute
memorcy-reference
nstruction
SC«0

The LD input of AR is then enabled to receive the indirect address that resided in
the 12 least significant bits of the memory word.

The three instruction types are subdivided into four separate paths. The selected
operation is activated with the clock transition associated with timing signal Ts.
This can be symbolized as follows:

Dept of CSC(IOT)

Page 28

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

D7 I'Ts: Execute a register-reference instruction
DI Ts: Execute an input-output instruction
D'z I'T3: Nothing

D7 ITa: AR < M [AR]

When a memory-reference instruction with 1 = 0 is encountered, it is not
necessary to do anything since the effective address is already in AR.

However, the sequence counter SC must be incremented when D'7T3 = 1, so that
the execution of the memory-reference instruction can be continued with timing
variable T,

A register-reference or input-output instruction can be executed with the clock
associated with timing signal Ts. After the instruction is executed, SC is cleared to
0 and control returns to the fetch phase with To = 1.

Note that the sequence counter SC is either incremented or cleared to 0 with
every positive clock transition.

We will adopt the convention that if SC is incremented, we will not write the
statement SC «— SC + 1, but it will be implied that the control goes to the next
timing signal in sequence.

When SC is to be cleared, we will include the statement SC « 0.
Register-Reference Instructions(D71'Ts3):

Register-reference instructions are recognized by the control when D; =1 and | =
0. These instructions use bits 0 through 11 of the instruction code to specify one
of 12 instructions.

These 12 bits are available in IR(0-11). They were also transferred to AR during
time T,..The control functions and micro operations for the register-reference
instructions are listed in Table below.

These instructions are executed with the clock transition associated with
timing variable Ta.

Dept of CSC(I0T) Page 29

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

Each control function needs the Boolean relation D71' T3, which we designate for
convenience by the symbol “r”. The control function is distinguished by one of
the bits in IR(0-11).

By assigning the symbol Bito bit i of IR, all control functions can be simply
denoted by rB..

TABLE Execution of Register-Reference Instructions

D7I'T; = r (common to all register-reference instructions)
IR(i) = B; [bit in TR(0-11) that specifies the operation]

r: SC+<0 Clear SC
CLA rB;: AC<0 Clear AC
CLE rBy: E<«0_ Clear E
CMA rBy: AC<AC Complement AC
CME rBy: E<«E Complement E

CIR rB;: ACe<shr AC, AC(15)«E, E«< AC(0) Circulate right
CIL rBs: AC<shl AC, AC(0)«<E, E<AC(15) Circulate left
INC rBs;: AC+—AC +1 Increment AC
SPA rBy If (AC(15) = 0) then (PC«<PC + 1) Skip if positive
SNA rB;: If (AC(15) = 1) then (PC«PC + 1) Skip if negative

SZA rB,. If (AC = 0) then PC«PC + 1) Skip if AC zero
SZE rBy: If (E =0) then (PC«PC + 1) Skip if E zero
HLT 7rB,: S <0 (S is a start—stop flip-flop) Halt computer

Example of Register reference Instruction:

For example, the instruction CLA has the hexadecimal code 7800, which gives the
binary equivalent 0111 1000 0000 0000.

The first bit is a zero and is equivalent to I'. The next three bits constitute the
operation code and are recognized from decoder output D7. Bit 11 in IR is 1 and is
recognized from Bi.

The control function that initiates the micro operation for this instruction is
D71'"T3B11 = rB11. The execution of a register-reference instruction is completed at
time Ts. The sequence counter SC is cleared to 0 and the control goes back to
fetch the next instruction with timing signal To.

Dept of CSC(I0T) Page 30

Computer Organization & Microprocessor (R20A1201) 11/l Sem

The first seven register-reference instructions perform clear, complement,
circular shift, and increment micro operations on the AC or E registers.

The next four instructions cause a skip of the next instruction in sequence when a
stated condition is satisfied. The skipping of the instruction is achieved by
incrementing PC once again (in addition, it is being incremented during the fetch
phase at time T3).

The condition control statements must be recognized as part of the control
conditions.

» The AC is positive when the sign bit in AC (15) = 0; it is negative when
AC (15) = 1.

» The content of AC is zero (AC = 0) if all the flip-flops of the register are
zero.

The HLT instruction clears a start-stop flip-flop S and stops the sequence
counter from counting. To restore the operation of the computer, the start-stop flip-
flop must be set manually.

Memory-Reference Instructions

In orderto specify the micro operations needed for the execution of each
instruction, it is necessary that the function that they are intended to perform be
defined precisely.

We will now show that the function of the memory-reference instructions can be
defined precisely by means of register transfer notation.

Table below lists the seven memory-reference instructions. The decoded output
Difori=0,1, 2, 3, 4,5, and 6 from the operation decoder that belongs to each
instruction is included in the table.

The effective address of the instruction is in the address register AR and was
placed there during timing signal T, when | = 0, or during timing signal Ts when |
=1

Dept of CSC(I0T) Page 31

Computer Organization & Microprocessor (R20A1201) 11/l Sem

The execution of the memory-reference instructions starts with timing signal
T4. The symbolic description of each instruction is specified in the table in terms of
register transfer notation.

TABLE Memory-Reference Instructions

Operation
Symbol decoder Symbolic description
AND D, AC—AC N M[AR)]
ADD D, AC«AC + M[AR), E«Cou
LDA D, AC <M|[AR)]
STA D, M[AR]«AC
BUN D, PC<AR
BSA Ds M[AR]«<PC, PC«AR +1
ISZ D, M[AR]) < M[AR] + 1,

If M[AR] + 1=0then PC«PC + 1

AND to AC:

This is an instruction that performs the AND logic operation on pairs of bits in AC
and the memory word specified by the effective address.

The result of the operation is transferred to AC. The micro operations that execute
this instruction are:

DoT4: DR « M[AR]
DoTs: AC < AC A DR, SC « 0

The control function for this instruction uses the operation decoder Dy since this
output of the decoder is active when the instruction has an AND operation whose
binary code value is 000.

Dept of CSC(I0T) Page 32

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

Two timing signals are needed to execute the instruction. The clock
transition associated with timing signal T, transfers the operand from memory into
DR.

The clock transition associated with the next timing signal Ts transfers to AC the
result of the AND logic operation between the contents of DR and AC.

ADD to AC:

This instruction adds the content of the memory word specified by the effective
address to the value of AC.

The sum is transferred into AC and the output carry Coy is transferred to the E
(extended accumulator) flip-flop.

The micro operations needed to execute this instruction are

D1T4: DR «— M[AR]
DiTs: AC <~ AC + DR, E <~ Cout, SC <0

The same two timing signals, T4 and Ts, are used again but with operation decoder
D; instead of Do, which was used for the AND instruction.

After the instruction is fetched from memory and decoded, only one output of the
operation decoder will be active, and that output determines the sequence of rnicro
operations that the control follows during the execution of a memory-reference
instruction.

LDA: Load to AC

This instruction transfers the memory word specified by the effective address to
AC.

The micro operations needed to execute this instruction are
D,T4: DR « M [AR]
D,Ts: AC «— DR, SC «— 0

Note that there is no direct path from the bus into AC (see figure under Common
Bus System).

Dept of CSC(I0T) Page 33

Computer Organization & Microprocessor (R20A1201) 11/l Sem
The adder and logic circuit receive information from DR which can be
transferred into AC.

Therefore, it is necessary to read the memory word into DR first and then transfer
the content of DR into AC.

The reason for not connecting the bus to the inputs of AC is the delay encountered
in the adder and logic circuit.

It is assumed that the time it takes to read from memory and transfer the word
through the bus as well as the adder and logic circuit is more than the time of one
clock cycle.

By not connecting the bus to the inputs of AC we can maintain one clock cycle per
micro operation.

STA: Store AC

This instruction stores the content of AC into the memory word specified by the
effective address.

Since the output of AC is applied to the bus and the data input of memory is
connected to the bus, we can execute this instruction with one micro operation:

D3T4: M [AR] < AC, SC «+— 0
BUN: Branch Unconditionally

This instruction transfers the program to the instruction specified by the effective
address.

Remember that PC holds the address of the instruction to be read from memory in
the next instruction cycle.

PC is incremented at time T to prepare it for the address of the next instruction in
the program sequence.

The BUN instruction allows the programmer to specify an instruction out of
sequence and we say that the program branches (or jumps) unconditionally.

Dept of CSC(I0T) Page 34

Computer Organization & Microprocessor (R20A1201) 11/l Sem

The instruction is executed with one micro operation:
D4T4: PC «— AR, SC <0
The effective address from AR is transferred through the common bus to PC.

Resetting SC to 0 transfers control to To. The next instruction is then fetched and
executed from the memory address given by the new value in PC.

BSA: Branch and Save Return Address

This instruction is useful for branching to a portion of the program called a
subroutine or procedure.

When executed, the BSA instruction stores the address of the next instruction in
sequence (which is available in PC) into a memory location specified by the
effective address.

The effective address plus one is then transferred to PC to serve as the address of
the first instruction in the subroutine.

This operation was specified in Table above (see Memory-Reference Instructions)
with the following register transfer:

M[AR] « PC, PC « AR + 1

A numerical example that demonstrates how this instruction is used with a
subroutine is shown in Fig. below.

Dept of CSC(I0T) Page 35

Computer Organization & Microprocessor (R20A1201) 11/l Sem

Figure Example of BSA instruction execution.

Memory Memory
20 0 BSA 135 20 0 BSA 135
PC =21 Next instruction 21 Next instruction
AR =135 135 21
136 Subroutine PC =136 Subroutine
1 BUN 135 1 BUN 135
(a) Memory, PC, and AR at time T (b) Memory and PC after execution

The BSA instruction is assumed to be in memory at address 20. Th I bit is 0 and
the address part of the instruction has the binary equivalent of 135.

After the fetch and decode phases, PC contains 21, which is the address of the
next instruction in the program (referred to as the return address). AR holds the
effective address 135.

This is shown in part (a) of the figure. The BSA instruction performs the
following numerical operation:

M [135] < 21, PC « 135+ 1 = 136

The result of this operation is shown in part (b) of the figure. The return address
21 is stored in memory location 135 and control continues with the subroutine
program starting from address 136.

The return to the original program (at address 21) is accomplished by means of
an indirect BUN instruction placed at the end of the subroutine.

Dept of CSC(I0T) Page 36

Computer Organization & Microprocessor (R20A1201) 11/l Sem
When this instruction is executed, control goes to the indirect phase to read the
effective address at location 135, where it finds the previously saved address 21.

When the BUN instruction is executed, the effective address 21 is transferred to
PC.

The next instruction cycle finds PC with the value 21, so control continues to
execute the instruction at the return address.

ISZ: Increment and Skip if Zero

This instruction increment the word specified by the effective address, and if the
incremented value is equal to 0, PC is incremented by 1.

The programmer usually stores a negative number (in 2's complement) in the
memory word.

As this negative number is repeatedly incremented by one, it eventually reaches
the value of zero.

At that time PC is incremented by one in order to skip the next instruction in the
program.

Since it is not possible to increment a word inside the memory, it is necessary to
read the word into DR, increment DR, and store the word back into memory.

This is done with the following sequence of micro operations:

DeTa: DR < M [AR]
DeTs: DR «— DR + 1
DeTe: M[AR] < DR, if (DR = 0) then (PC « PC + 1), SC « 0

Dept of CSC(I0T) Page 37

Computer Organization & Microprocessor (R20A1201) 11/l Sem

Control Flowchart

Memory — reference instnaction

] ADD w LA STaA
k| DTy w Ty T Ty LTy
DR+« MLAR) 1 I DR = A [AR I | DR — M [AR] A [AR] +— AT
ST — D
k DT s T 0, Ts L DT s
AT e AT S DR AL — AL & DR AL = DR
E — O
S5 4= D0 5C =0 S a0
BLM BSaA I5Z
] DT, - 0T, * DT
T = AR A LAR) »— PO I DR — M LAR] l
ST — 0 A AR+ 1
v D Te L 3 DTy
PO e— AR D« DR s
S5 «— 0

T DTy
M [AR] — D&
If (DR = 0
then (PO +— PAC + 1)
5C «— 0

Figure Flowchart for memory-reference imstoucmions.

The control functions are indicated on top of each box.

The micro operations that are performed during time T4, Ts, or Ts depend on the
operation code value.

This is indicated in the flowchart by six different paths, one of which the control
takes after the instruction is decoded.

The sequence counter SC is cleared to 0 with the last timing signal in each case.

This causes a transfer of control to timing signal To to start the next instruction
cycle.

Dept of CSC(IOT) Page 38

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

Note that we need only seven timing signals to execute the longest instruction
(1S2).

Input-Output

A computer can serve no useful purpose unless it communicates with the external
environment.

To demonstrate the most basic requirements for input and output communication,
we will use as an illustration a terminal unit with a keyboard and printer.

Input-Output Configuration

The terminal sends and receives serial information. Each quantity of information
has eight bits of an alphanumeric code.

The serial information from the keyboard is shifted into the input register INPR.
The serial information for the printer is stored in the output register OUTR.

These two registers communicate with a communication interface serially and with
the AC in parallel.

— The input-output configuration is shown in Fig. below.

— The transmitter interface receives serial information from the
keyboard and transmits it to INPR.

— The receiver interface receives information from OUTR and sends it
to the printer serially.

— The input register INPR consists of eight bits and holds alphanumeric
input information.

The 1-bit input flag FGI is a control flip-flop.

The flag bit is set to 1 when new information is available in the input device and is
cleared to O when the information is accepted by the computer.

Dept of CSC(I0T) Page 39

Computer Organization & Microprocessor (R20A1201)

I1/1 Sem

The flag is needed to synchronize the timing rate difference between the input

device and the computer.

Input —output Configuration

Serial
Input-output ..
. communication
terminal ;
interface
. Receiver
Printer -4—— interface
Transmitter
Keyboard — | interface

I

— o Parallel Communications Path

INPR Input register - 8 bits
OUTR Output register - 8 bits

FGI Input flag - 1 bit

FGO Output flag - 1 bit
IEN Interrupt enable - 1 bit

Computer

registers and

flip-flops

< | OUTR FGO
7 Y
AC
| INPR FGI

Serial Communications Path

The process of information transfer is as follows. Initially, the input flag FGI is

cleared to 0.

When a key is struck in the keyboard, an 8-bit alphanumeric code is shifted into
INPR and the input flag FGI is set to 1.

As long as the flag is set, the information in INPR cannot be changed by striking

another key.

The computer checks the flag bit FGI; if FGI= 1, the information from INPR is
transferred in parallel into AC and FGlI is cleared to 0.

Dept of CSC(I0T)

Page 40

Computer Organization & Microprocessor (R20A1201) 11/l Sem

Once the flag is cleared, new information can be shifted into INPR by striking
another key.

The output register OUTR works similarly but the direction of information flow is
reversed. Initially, the output flag FGO is set to 1.

The computer checks the flag bit FGO; if FGO=1, the information from AC is
transferred in parallel to OUTR and FGO is cleared to 0.

The output device accepts the coded information, prints the corresponding
character, and when the operation is completed, it sets FGO to 1.

The computer does not load a new character into OUTR when FGO is 0 because
this condition indicates that the output device is in the process of printing the
character.

Input-Output Instructions (D71 T3):

Input and output instructions are needed for transferring information to and
from AC register, for checking the flag bits, and for controlling the interrupt
facility.

Input-output instructions have an operation code 1111 and are recognized by the
control when D7 =1 and | = 1. The remaining bits of the instruction specify the
particular operation.

The control functions and micro operations for the input-output instructions are
listed in Table below.

These instructions are executed with the clock transition associated with timing
signal Ts.

Each control function needs a Boolean relation D;ITs, which we designate for
convenience by the symbol “p”.

The control function is distinguished by one of the bits in IR (6-11).

By assigning the symbol B; to bit i of IR, all control functions can be denoted by
“pBi ”for i = 6 though 11.

Dept of CSC(I0T) Page 41

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

The sequence counter SC is cleared to 0 when p = D7IT3 = 1.

Input-output Instructions

D, IT,; = p
IR() = B,

i

i=6, ..., 11

p: SC«0 Clear SC
INP | pB,;: AC(0-7) < INPR, FGl < 0 Input char. to AC
OUT | pBy;: OUTR « AC(0-7), FGO « 0 Output char. from AC

SKI | pBy: if(FGI = 1) then (PC « PC + 1) Skip on input flag

SKO | pBs: if(FGO = 1) then (PC « PC +1) Skip on output flag
ION | pB;: IEN « 1 Interrupt enable on
IOF | pBg: IEN<«O Interrupt enable off

The INP instruction transfers the input information from INPR into the eight low-
order bits of AC and also clears the input flag to 0.

The OUT instruction transfers the eight least significant bits of AC into the
output registers OUTR and clears the output flag to 0.

The next two instructions in Table above check the status of the flags and cause
a skip of the next instruction if the flag is 1.

The instruction that is skipped will normally be a branch instruction to return and
check the flag again.

The branch instruction is not skipped if the flag is 0. If the flag is 1, the branch
instruction is skipped and an input or output instruction is executed.

The last two instructions setand clear an interrupt enable flip flop IEN. The
purpose of IEN is explained in conjunction with the interrupt operation

Dept of CSC(I0T) Page 42

Computer Organization & Microprocessor (R20A1201) 11/l Sem

Interrupt cycle

The interrupt cycle is an hardware implementation of a branch and save return
address.

The return address is available in PC is stored in a specific location where it can be
found later when the program returns to the instruction at which it was interrupted.

This location can be a processor register or a memory stack or a specific memory
location.

Here we choose the memory location to be 0 as the place for storing the return
address;

Control then inserts address 1 into PC and clears IEN and R so that no more
interrupts can occur until the interrupt request from the flag has been received.

An example that shows what happens during the interrupt cycle is shown below

Demonstration of the interrupt cycle

Memory Memory
0 0 256
1{0 BUN 1120 PC=1]|0 BUN 1120
255 ; 255 3
PC =256 s 256 iy
program program
1120 1120
1/O /O
program program
1 BUN 0 1 BUN 0
(a) Before interrupt (b) After interrupt cycle
Dept of CSC(I0T) Page 43

Computer Organization & Microprocessor (R20A1201) 11/l Sem
Suppose if an interrupt has occurred then R is set to 1 while the control is
executing the instruction at address 255.

At this time, the return address 256 is in PC.

The programme has previously placed an input-output service program in memory
starting from address 1120 and a BUN 1120 instruction at address 1.

When control reaches timing signal TO and finds that R=1, it proceeds with the
interrupt cycle.

The content of PC (256) is stored in memory location 0, PC is set to 1, and R is
cleared to O.

At the beginning of the next instruction cycle, the instruction that is read from
memory is in address 1, since this is the content of PC.

The branch instruction at address1 causes the program to transfer to the input
—output service program at address 1120.

This program checks the flags, determines which flag is set, and then transfers the
required input or output information.

Once this is done, the instruction ION is executed to set IEN to 1 & the program
returns to the location where it was interrupted.

The instruction that returns the computer to the original place in the main
program is a branch indirect instruction with an address part of 0.

This instruction is placed at the 1/O service program.

After this instruction is read from memory during the fetch phase, control goes to
the indirect phase to read the effective address.

The effective address is in location 0 and is the return address that was stored
there during the previous interrupt cycle.

The execution of the indirect BUN instruction results in placing into PC the return
address from location O.

Dept of CSC(I0T) Page 44

Computer Organization & Microprocessor (R20A1201) 11/l Sem

Flow chart for Interrupt cycle

Instruction cycle =0 /l\ =1 Interrupt cycle
L 3 \/ 1

Ferwch and decode
instruction

Store returm address
in lecation O
M [0] — PC

l

Branch 1o location 1
PO 1

¥

Execute
instruction

FEN «— O
R’ «— 0

Figure Flowchart for interrupr cycle.

The way the interrupt is handled by the computer can be explained by means of the
flow chart.

An interrupt flip flop R is included in the computer. When R=0; computer goes
through an instruction cycle.

During the execution phase of the instruction cycle, IEN is checked by the control.

If it is O (IEN=0); it indicates the programmer does not want to use the interrupt.
So control continues with the next instruction cycle.

If IEN=1; the control checks the flag bits (FGI &FGO) .

If both flags indicate 0 (FGI=0 &FGO=0); it indicates that a neither the input nor
the output registers are ready for transfer of information

In this case, control continues with the next instruction cycle.

Dept of CSC(I0T) Page 45

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

If either flag (FGI or FGO) is set tol while IEN=1; flipflop R is set to 1.

At the end of the execution phase, control checks the value of R,& if is equal to 1
(R=1) it goes to an interrupt cycle.

Interrupt Cycle (Register Transfer Notation)
The list of Register transfer operations in interrupt cycle is given below

The interrupt cycle is initiated after the last execute phase if the interrupt
flip-flop R is equal to 1.

This flip-flop (R) is set to 1 if IEN=1 and either the FGI or FGO are
equal to 1. This can happen with any clock transition except when
timing signals TO, T1, T2 are active.

The condition for setting flipflop R to 1 can be expressed with the
following register transfer statement

TO’T1°T2’ (IEN) (FGI + FGO): R « 1

The symbol + between FGI and FGO in the control function designate a
logic OR operation. This is ANDed with IEN and TO’T1°T2".

Modified fetch phase

The fetch and decode phases of the instruction cycle must be modified:
Replace TO, T1, T2 with R'TO, R'T1, R'T2.

The reason for this is that after the instruction is executed and SC is
cleared to O, the control will go through a fetch phase only if R=0.

If R=1, the control will go through interrupt cycle.

The interrupt cycle stores the return address (PC) into memory location
0, branches to memory location 1, clears IEN,R and SC to 0.

This can be done with following sequence of micro operations:

Dept of CSC(I0T) Page 46

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

RTO: AR « 0, TR « PC
RT1: M[AR] « TR, PC « 0
RT2: PC «— PC+1,IEN « 0, R < 0, SC « 0

During the first timing signal AR is cleared to 0O, the content of PC is
transferred to the temporary register TR.

With the second timing signal, the return address is stored in memory at
location 0 and PC is cleared to O.

The third timing signal increments PC tol, clears IEN and R and control
goes back to TO by clearing SC to 0.

The beginning of the next instruction cycle has the condition RTO and
content of PC=L1.

The control then goes through an instruction cycle that fetches and
executes the BUN instruction in location 1.

Micro programmed Control
Control Unit:

The main function of control unit is to initiate sequences of micro operations. The
number of micro operations in the systems is finite.

Two major types of Control Unit:
1. Hardwired Control:

When the control signals are generated by Hardware using conventional logic
design techniques then the control unit is said to be hardwired.

The control logic is implemented with gates, F/Fs, decoders, and other digital
circuits

Dept of CSC(I0T) Page 47

Computer Organization & Microprocessor (R20A1201) 11/l Sem

The key characteristics are

e High speed of operation

e Expensive

e Relatively complex

¢ No flexibility of adding new instructions (Wiring change-if the design
has to be modified)

Examples of CPU with hardwired control unit are Intel 8085, Motorola 6802, Zilog
80, and any RISC CPUs.

2. Microprogrammed Control:
The control information is stored in a control memory, and

The control memory is programmed to initiate the required sequence of micro
operations

Any required change can be done by updating the micro program in control
memory, - Slow operation

The key characteristics are

e Speed of operation is low when compared with hardwired
e Less complex

e Less expensive

e Flexibility to add new instructions

Examples of CPU with micro programmed control unit are Intel 8080, Motorola
68000 and any CISC CPUs.

The control function that specifies a micro operation is a binary variable.

When it is in one state the corresponding micro operation is executed. The opposite
state does not change the state of registers.

Control signal (that specify microoperations) in a bus-organized system are: A
groups of bits that select the paths in multiplexers, decoders, and arithmetic
logic units

Dept of CSC(I0T) Page 48

Computer Organization & Microprocessor (R20A1201) 11/l Sem
Control unit initiates a series of micro operations. During any time certain micro
operations are initiated while others are idle.

Control Word:

The control variables (specifying a micro operation) at any given time can be
represented by a string of 1’s and 0’s is called “control word”.

Microprogrammed Control Unit :

A control unit whose binary control variables are stored in memory (control
memory)

Microinstruction

The microinstruction specifies one or more microoperations for the system.
Microprogram

A sequence of microinstruction

Control Memory:

A Memory that is a part of control unit. The control unit consists of control
memory used to store the micro program. Control memory is a permanent i.e.,
read only memory (ROM).

A computer having a Micro programmed Control Unit has 2 separate Memories :

1. Main Memory: For storing user program (Machine instructions/data) .
The contents of the main memory may alter.

2. Control Memory: For storing microprogram that can not be altered.
The Microprogram consists of microinstructions.

Microinstruction specifies various control signals for execution of register micro
operations.

Each machine Instruction initiates a series of Microinstructions in control
Memory.

Dept of CSC(I0T) Page 49

Computer Organization & Microprocessor (R20A1201) 11/l Sem

These microinstructions generate the micro operations

e To fetch the instruction from main memory;

e To evaluate the effective address,

e To execute the operation specified by the instruction,

e To return control to the fetch phase in order to repeat the cycle for the next
instruction.

Micro programmed Control Organization

The general configuration of a micro programmed control unit is shown below

External | Nextaddress | | Control Contro Control Control
mput | generator(Seq (> address (> | memory > |data > Word
" uencer) register (ROM) teglster —‘

Next address Information

1. Control Memory (ROM):

* A memory is part of a control unit.

 All the control Information is permanently stored.
2. Control Address Register

» Specify the address of the microinstruction
3. Control Data Register (Pipeline Register)

* Hold the present microinstruction(specifies one or moremicrooperations)
read from control memory

Dept of CSC(I0T) Page 50

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

» To generate the address of the next microinstruction, some bits of present
micro instruction can be used.

» Thus a microinstruction contains bits for initiating the microoperations and
bits that determine the address sequence for control memory.

4. Next Address Generator (Sequencer)
» Determine the address sequence that is read from control memory

« Next address of the next microinstruction can be specified several way
depending on the sequencer input

Address Sequencing:

Microinstructions are stored in control memory in groups, with each group
specifies a Routine.

The hardware that controls the address sequencing of the control memory must be
able of sequencing the microinstruction within a routine and be able to
branch from one routine to another.

Fetching:

An initial address is loaded into the control address register when power is turned
on. This address is the address of the first microinstruction that activates the fetch
routine.

After the end of fetch routine, the instruction is in the instruction register of
the computer (Decoding).

The control memory next must go through the routine that determines the
effective address of the operand. After computing the effective address, the
address of the operand is available in the memory address register.

The next step is to generate the micro operations that execute the instruction
fetched from memory.

The microoperation steps to be generated in processor registers depend upon the
operation code part of instruction.

Dept of CSC(I0T) Page 51

Computer Organization & Microprocessor (R20A1201) 11/l Sem
Each instruction has its own microprogram routine stored in a given location of the
control memory.

The transformation from the instruction code bits to an address in the control
memory where the routine is located is called as Mapping.

After the execution of the instruction control must return to the fetch routine.

Address Sequencing Capabilities:
1) Incrementing of the control address register

2) Unconditional branch or conditional branch, depending on status bit
conditions

3) Mapping process (bits of the instruction address for control memory)

4) A facility for subroutine return

The below figure shows a block diagram of a control memory and the associated
hardware needed for selecting the next Micro instruction address

| Instruction code |

Mapping
logic

Branch L) X

bits logic === Multiplexers

I

> Control address register
(CAR)

Subroutine
regiser
(SBR)

‘ Incrementer |

I

Control memory

Fig: Selection of Address for Control Memory

Dept of CSC(I0T) Page 52

Computer Organization & Microprocessor (R20A1201) 11/l Sem

Selection of Address for Control Memory

The Micro instruction in control memory contains set of bits to initiate micro
operations in computer registers and other bits to specify the method by which
the next address is obtained.

The diagram shows four different paths from which the Control Address
Register receives the information.

1) Incrementer (Increment CAR by 1)
2) Branch address from control memory
3) Mapping Logic (External Address from main memoryto control memory)
4) SBR: Subroutine Register
* Return Address cannot be stored in ROM

» Return Address for a subroutine is stored in SBR

Conditional Branching

Status conditions are special bits in the system that provide parameter information
such as carry-out of an adder, sign bit of number, mode bits of an instruction, input
/output status condition.

Information in these bits can be tested and actions initiated based on their
condition; whether their value is 1 or O.

The status bits together with the field in the microinstruction that specifies a
branch address, control the conditional branch decisions generated in the
branch logic.

Branch Logic: It can be implemented in different ways.

The simple way is to test the specified condition and branch to the indicated
address if the condition is met; otherwise the address register is incremented.

This can be implemented with the help of Multiplexer.

Dept of CSC(I0T) Page 53

Computer Organization & Microprocessor (R20A1201) 11/l Sem

Example: Let there are eight status bit conditions in the system. Three bits in the
microinstruction are used to specify one of eight status bits.

If the selected status bit is in the 1 state the output of the multiplexer is 1,
otherwise 0.

The 1 output in the multiplexer generates a control signal to transfer the branch
address from the microinstruction into the control address register otherwise
address register to be incremented.

The unconditional branch microinstruction can be implemented by loading the
branch address from control memory into control address register.

MAPPING OF INSTRUCTIONS TO MICROROUTINES:

Mapping from the OP-code of an instruction to the address of the microinstruction
which is the starting microinstruction of its execution microprogram

Machine OP-code
Instruction 1019 1 Address

Mapping bits Ojx xx x{00

Microinstruction
address 0101 100

Fig Mapping from instruction code to Microinstruction address

Consider a 4 bit Opcode = specify up to 16 distinct instructions. And assume that
control memory has 128 words.

Mapping Process : Converts the 4-bit Opcode to a 7-bit control memory address
1) Place a “0” in the most significant bit of the address
2) Transfer 4-bit Operation code bits
3) Clear the two least significant bits of the CAR

Mapping Function:

Dept of CSC(I0T) Page 54

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

Mapping is implemented by ROM or PLD. A PLD (an Integrated Circuit) is
similar to ROM except that it uses AND and OR gates with internal electronic
fuses.

The interconnection between AND, OR and outputs can be programmed as in
ROM

Subroutine:

Subroutines are program that are used by other routines to accomplish a particular
task.

A subroutine can be called from any point within the main body of the micro
program.

Frequently many microprogram contain identical section of code. Microinstruction
can be saved by employing subroutines that used common section of micro-code.

Ex. The sequence of micro operations needed to generate the effective address of
the operand for an instruction is common to all memory reference instructions.

This sequence could be a subroutine that is called from within many other routines
to execute the effective address computation.

Microprogram that uses Subroutines must have for storing return address during a
subroutine call and restoring the address during a subroutine return.

Microprogram Example:

The process of code generation for the control memory is called
microprogramming.

The block diagram of the computer configuration is shown in below figure.
Two memory units:

1. Main memory — stores instructions and data

2. Control memory — stores microprogram

Four processor registers :

Dept of CSC(I0T) Page 55

Computer Organization & Microprocessor (R20A1201) 11/l Sem

1. Program counter — PC

2. Address register — AR

3. Data register — DR

4. Accumulator register - AC
Two control unit registers

1. Control address register — CAR

2. Subroutine register — SBR

Transfer of information among registers in the processor is through MUXs
rather than a bus.

Computer Configuration

‘ [
10 0
| AR]
Addres; Memory
10 + 2048 x 16
PC l
6 0 6 v 0 1 DR 9
Lser]| |cAr]
C | - |
ontrolmemory Arithmetic
128 x 20 logic and
shiftunit
Control unit 1
15

— |Acsi

Micro program Control unit

Fig: Computer Hardware configuration

MACHINE INSTRUCTION FORMAT:

Dept of CSC(IOT)

Main Memory

2048*16

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

It consists of 3 fields:

1. | bit to denote Direct or Indirect Addressing
2. 4 bit opcode
3. 11 bit Address Field

Machine instruction format=16 BIT Address size=11bits
15 14 1 10 0
| Opcode Address

Sample machine instructions

Symbol OP-code Description . .
ADD 0000 AC < AC + M[EA] EA is the effective address
BRANCH 0001 if (AC < 0) then (PC « EA)
STORE 0010 M[EA] « AC
EXCHANGE|] 0011 AC « M[EA], M[EA] « AC

MICRO INSTRUCTION FORMAT:

The Microinstruction format for the control memory is shown

In figure. The 20 bits of the microinstruction are divided into Control Memory

_ 128*20
4 functional parts.

Microinstruction Format=20 BIT==6 FIELDS

3 3 3 2 2 7
| F1 | F2 | F3 | cp | BR | AD |

F1, F2, F3: Microoperation fields
CD: Condition for bramchimg
BR: Bramch field

AD: Address field

The microinstruction format is composed of 20 bits with four parts to it

Dept of CSC(I0T) Page 57

Computer Organization & Microprocessor (R20A1201) 11/l Sem

1. Three fields F1, F2, and F3 specify micro operations for the
computer [3 bits each].

2. The CD field selects status bit conditions [2 bits]
3. The BR field specifies the type of branch to be used [2 bits]
4. The AD field contains a branch address [7 bits]

Each of the three micro operation fields can specify one of seven possibilities. This
gives a total of 21 Instructions.

Not more than three micro operations can be chosen for a microinstruction.

If fewer than three micro operations are used, the next 1 or more fields will use the
binary code 000 = NOP.

Each Micro operation in Table is defined with a register transfer statement and is
assigned a symbol for symbolic notation.

The three bits in each field are encoded to specify seven distinct microoperations
listed in below table.

All transfer type micro operations symbols use five letters. The first 2 letters
indicate source register and the third letter is always T, and last 2 letters designate
destination register.

Dept of CSC(I0T) Page 58

Computer Organization & Microprocessor

(R20A1201)

MICROINSTRUCTION FIELD DESCRIPTIONS - F1, F2, F3

F1 Microoperation Symbol F2 Microoperation Symbol
000 | None NOP 000 [None NOP
001 | AC—AC+DR ADD 001 | AC«—AC-DR SUB
010 | AC« 0 CLRAC 010 | AC«— ACVvDR OR

011 | AC«— AC +1 INCAC 011 | AC«+< AC ADR AND
100 | AC <« DR DRTAC 100 | DR « M[AR] READ
101 | AR « DR(0-10) DRTAR 101 | DR« AC ACTDR
110 | AR« PC PCTAR 10 | DR« DR +1 INCDR
111 " M[AR] < DR WRITE 111 | DR(0-10) < PC PCTDR
F3 Microoperation Symbol

000 | None NOP

001 [AC«< AC®DR XOR

010 | AC « AC’ COM

011 | AC «shlAC SHL

100 | AC « shrAC SHR

101 |PC« PC+1 INCPC

110 [PC « AR ARTPC

111 | Reserved

Table: Symbols and Binary code for Microlnstruction Fields

MICROINSTRUCTION FIELD DESCRIPTIONS - CD, BR

I1/1 Sem

The condition field (CD) is two bits to specify four status bit conditions shown

below
CD Condition |Symbol Comments
00 Always =1 U Unconditional branch
01 DR(15) I Indirect address bit
10 AC(15) S Sign bit of AC
11 AC=0 Z Zero value in AC

The branch field (BR) consists of two bits and is used with the address field to
choose the. address of the next microinstruction.

Dept of CSC(I0T)

Page 59

Computer Organization & Microprocessor (R20A1201)

BR Symbol Function

00 JMP CAR « AD if condition =1
CAR « CAR + 1 if condition=0

01 CALL | CAR « AD, SBR « CAR + 1 if condition =1
CAR « CAR + 1 if condition =0

10 RET CAR « SBR (Return from subroutine)

11 MAP CAR(2-5) « DR(11-14), CAR(0,1,6) < 0

SYMBOLIC MICROINSTRUCTIONS

Symbols are used in microinstructions as in assembly language

I1/1 Sem

A symbolic microprogram can be translated into its binary equivalent by a
microprogram assembler.

Each symbolic microinstruction is divided into 5 fields:

Label, Micro operations, CD, BR, and AD.

Sample Format
Five fields: label; micro-ops; CD; BR; AD
Label: May be empty or may specify a symbolic
address terminated with a colon
Micro-ops: consists of one, two, or three symbols
separated by commas
CD: one of {U, |, S, Z}, where U: Unconditional Branch
I: Indirect address bit
S: Sign of AC
Z: Zero value in AC
BR: one of {JMP, CALL, RET, MAP}
AD: one of {Symbolic address, NEXT, empty}
Dept of CSC(I0T) Page 60

Computer Organization & Microprocessor (R20A1201) 11/l Sem

SYMBOLIC MICROPROGRAM - FETCH ROUTINE

During FETCH, Read an instruction from memory
and decode the instruction and update PC

Sequence of microoperations in the fetch cycle:

Symbolic microprogram for the fetch cycle:

ORG 64
FETCH: PCTAR U JMP NEXT
READ, INCPC U JMP NEXT

- DRTAR U _ MAP

Binary equivalents translated by an assembler

Binary

address F1 F2 F3] BR AD
gl 110 000 000 00 0o A 00000
A D000 000 1040 101 oo oo A 000010
gl] 101 000 000 oo 11 CPCROR OO CH 0

= Control Storage: 128 20-bitwords

= The first 64 words: Routines for the 16 machine instructions

= The last 64 words: Used for other purpose (e.g., fetch routine and other subroutines)

» Mapping: OP-code XXX X into 0XXXXX00, the first address for the 16 routines are
OO 000D 00), A0 0001 00), 8, 12, 16, 20, ..., 60

Partial Symbolic Microprogram

Label Microops C BR Al

ORG O

ADD: MO 1 CALL INDRCT
READ u JMP MEXT
ADD u JMP FETCH
ORG 4

ERANCH: MO 5 JMP OWVER
MO u JMP FETCH

OWER: MO 1 CALL INDRCT
ARTPC u JMP FETCH
ORG B

STORE: MO 1 CALL INDRCT

T u) JMP MEXT

WRITE u JMP FETCH
ORG 12

EXCHANGE: MO 1 CALL INDRCT
R O u) JMP MEXT
ACTDR, DRTAC u JMP MEXT
WRIT u MF FETCH
ORG &4

FETCH: FCTAR u JMP MEXT
READ, INMCPC n) JMP MEXT
DRTA u) MAF

INDRCT: O u JMP MEXT
DRTAR u RET

Dept of CSC(IOT) Page 61

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

SBR=CAR+1=0000001

CAR= 0000001 DR{15)=1
BINARY MICROPROGRAM
Address Binary Microinstruction
Micro Routine Decimal Binary F1 F2 F3 cD ER AD
ADD 0 ooooono 0on 0on oon 01 M 1000011
1 Q00000 000 100 000 0o 0o ooooo1o
2 ooo0oo10 00 0on 0on 0o 0o 1000000
3 0000011 000 000 000 00 0o 1000000
BRANCH 4 0000100 000 000 000 10 0o 0000110
5 000010 000 000 000 00 0o 1000000
G 0000110 000 000 000 01 1y 1000011
7 0000111 000 000 10 00 0o 1000000
STORE i 0001000 000 000 000 01 1y 1000011
9 0001001 000 101 000 00 0o 0001010
100 0001010 111 000 000 00 0o 1000000
T 000101 000 000 000 00 0o 1000000
EXC HAHI- 12 0001100 000 000 000 01 1y 1000011
13 0001101 001 000 000 00 0o 0001110
14 0001110 100 101 000 00 0o 000111
15 0001111 111 000 000 00 0o 1000000
FETCH 64 1000000 0 000 000 00 0o 1000001
65 1000001 000 100 101 00 0o 1000010
66 1000010 101 000 000 00 1 0000000
INDRCT 67 1000011 000 100 000 00 0o 1000100
68 1000100 101 000 000 00 10 0000000

This microprogram can be implemented using ROM

Design of Control Unit

The bits of microinstruction are usually divided into fields, with each field defining
a distinct, separate function.

The various fields available in the instruction format provide control bits to initiate
the microoperation.

Special bits(status bits) are used to specify the way that the next address is to be
evaluated and an address field for branching.

Decoding of Microinstruction Fields :

— F1, F2, and F3 of Microinstruction are decoded with a 3 x 8 decoder

— Output of decoder must be connected to the proper circuit to initiate
the corresponding microoperation .

Dept of CSC(I0T) Page 62

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

3 3 3 2 2 7
TEEIEE

microoperation fields

L Ll ald

3 x 8 decoder 3 x 8 decoder 3x 8 decoder
7654 3210 f6543210 F654 3210
v[[]+%]+ IX123E1E) 12222222}

AND -
ADD »| Arithmetic [+ AC
Slisant [or
zl = F F
== PC DR{0-10) Load ¥
2|2 V) A 4
select| ° 1

Multiplexers

L

Loa AR Clock

Fig Decoding of Micro operation fields

When F1 = 101 (binary 5), the next pulse transition transfers the content of DR (0-
10) to AR.

Similarly, when F1= 110 (binary 6) there is a transfer from PC to AR (symbolized
by PCTAR).

As shown in figure, outputs 5 and 6 of decoder F1 are connected to the load input
of AR so that when either one of these outputs is active, information from the
multiplexers is transferred to AR.

The multiplexers select the information from DR when output 5 is active and from
PC when output 5 is inactive.

The transfer into AR occurs with a clock transition only when output 5 or output 6
of the decoder is active.

Dept of CSC(I0T) Page 63

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

For the arithmetic logic shift unit the control signals are instead of coming from the
logical gates, now these inputs will now come from the outputs of AND, ADD and
DRTAC respectively.

Microprogram Sequencer:

» The basic components of a microprogrammed control unit are the control
memory and the circuits that select the next address.

» The address selection part is called a microprogram sequencer.

* The purpose of a microprogram sequencer is to present an address to the
control memory so that a microinstruction may be read and executed.

» The next-address logic of the sequencer determines the specific address
source to be loaded into the control address register.

» The block diagram of the microprogram sequencer is shown in below figure.

Dept of CSC(I0T) Page 64

Computer Organization & Microprocessor (R20A1201) 11/l Sem

External

Load
g~

SoR 5150

¢
00 0. CAR+1

| Incrementeﬂ
01 1. CAR€AD

¥ 11 3. MAPPING CAF

Microops Ch BR AD

I T

Fig Microprogram sequencer for Control Memory

There are two multiplexers in the circuit.

1The first multiplexer selects an address from one of four sources and
routes it into control address register CAR.

2. The second multiplexer tests the value of a selected status bit and the
result of the test is applied to an input logic circuit.

The output from CAR provides the address for the control memory.

The content of CAR is incremented and applied to one of the multiplexer inputs
and to the subroutine registers SBR.

The other three inputs to multiplexer come from

Dept of CSC(IOT) Page 65

Computer Organization & Microprocessor (R20A1201) 11/1 Sem

1. The address field of the present microinstruction
2. from the out of SBR
3. From an external source that maps the instruction

The CD (condition) field of the microinstruction selects one of the status bits in the
second multiplexer.

If the bit selected is equal to 1, the T variable is equal to 1; otherwise, it is equal to
0.

The T value together with two bits from the BR (branch) field goes to an input
logic circuit.

The input logic in a particular sequencer will determine the type of operations that
are available in the unit.

MICROINSTRUCTION FIELD DESCRIPTIONS - CD, BR

CD Condition Symbol Comments
00 Always =1 U Unconditional branch
01 DR(15) | Indirect address bit
10 AC(15) S Sign bit of AC
11 AC=0 Z Zero value in AC

BR Symbol Function

00 JMP CAR « AD if condition =1

CAR « CAR +1if condition=10

01 CALL | CAR « AD, SBR « CAR + 1 if condition =1
CAR « CAR + 1 if condition=0

10 RET CAR « SBR (Return from subroutine)

1 MAP | CAR(2-5) « DR(11-14), CAR(0,1,6) < 0

Dept of CSC(I0T) Page 66

Computer Organization & Microprocessor (R20A1201) 11/l Sem

MICROPROGRAM SEQUENCER -NEXT MICROINSTRUCTION
ADDRESS LOGIC

External i
[ﬁrﬁﬂﬁ . Subrouting
In-Line
$Sq| Address Source
00 | CAR+1,In-Line [3210]
01| SBR RETURN "[31 muxi SBR |+= —Subroutine
10 | CS(AD), Branch or CALL| ™ Addresst i CALL
Lo selection
Incrementer
)
1
Clock=p» CAR
¥

Control Storage

MUX-1 selects an address from one of four sources and routes it into a CAR
- In-Line Sequencing - CAR + 1
- Branch, Subroutine Call - CS(AD)
- Return from Subroutine — Output of SBR

- New Machine instruction - MAP

Dept of CSC(I0T) Page 67

Computer Organization & Microprocessor

(R20A1201)

MICROPROGRAMSEQUENCER-CONDITION AND BRANCH

I1/1 Sem

CONTROL
From| 11 - L L(load SBR with PC)
S - > T = for subroutine Call
CPU |57 . Input
” logic — S, for nextaddress
_____r—S, selection
CD Field of CS
Input Logic
I3, T Meaning Source of Address S:5; L
In-Line CAR+1 00 0
JMP CAR< (AD) 10 o
In-Line CAR+1 00 o
CALL CS(AD) and SBR <- CAR+1 10 1
RET SBR 01 0
MAP DR{(11-14) 11 0
CD Condition Symbol Comments
00 Always =1 u Unconditional branch
01 DR(15) 1 Indirect address bit
10 AC(15) S Sign bit of AC
11 AC=0 Z Zero value in AC
BR Symbol Function
00 JMP CAR « AD if condition =1
CAR <« CAR + 1 if condition=0
01 CALL CAR « AD, SBR « CAR + 1 if condition=1
CAR « CAR + 1 if condition=0
10 RET CAR « SBR (Return from subroutine)
11 MAP CAR(2-5) <+ DR(11-14), CAR(0,1,6) < 0
Page 68

Dept of CSC(IOT)

UNIT-II

CONTENTS:

Central Processing Unit: The 8086 Processor Architecture, Register
organization, Physical memory organization, Minimum and Maximum mode

system and timings.

8086 Instruction Set and Assembler Directives- Addressing modes, Instruction

set of 8086, Assembler directives.

Introduction to basic concepts:
Important Terminology used in Microprocessor

The unit of data size can be represented as:

1. Bit: A binary digit that can have the value O or 1
2. Byte: Group of 8 bits
3. Nibble: Half of a byte, or group of 4 bits

4. Word: Two bytes or group of16 bits %o

The terms used to describe the amounts of memory in IBM PCs and compatibles:

1. Kilobyte (Kb): 2"10bits
2. Megabyte (Mb): 2720bits over 1 million
3. Gigabyte (Gb) : 2*30bits, over 1 billion

4. Terabyte (Tb) : 2*40bits, over 1 trillion

Number Representation Techniques:

* Binary system
» Octal system
* Decimal system

» Hexadecimal system
Hexadecimal system

« |t is one of the type of Number Representation techniques, in which there

value of base is 16.

» Hexadecimal Number System is commonly used in Computer programming

and Microprocessors.
* Itis used to describe locations in memory for every byte.

« The main advantage of using Hexadecimal numbers is that it uses less

memory to store more numbers.
Examples:
1. To represent a binary number as its equivalent hexadecimal number

 Start from the right and group 4 bits at a time, replacing each 4-bit binary

number with its hex equivalent

Ex. Represent binary 100111110101 in hex
1001 1111 0101
= 9 F 5

2. To represent a hexadecimal number as its binary equivalent number

Start from the right and group 4 bits at a time, replacing each 4-bit binary
number with its hex equivalent

Ex. Convert hex 29B to binary
2 9 B
= 0010 1001 1011

» Microprocessor is Brain of the systems

AR SVeisimondsy

What is a Microprocessor?

e The word comes from the combination micro and processor.

Processor means a device that processes numbers, specifically binary

numbers, 0’s and 1°s.

In the late 1960’s, processors performed the required operation, but were too
large and too slow.

® Inthe early 1970’s the microchip was invented. All of the components that

made up the processor were now placed on a single piece of silicon.

e The size became several thousand times smaller and the speed became

several hundred times faster.

® The “Micro” Processor was born.
Definition of Microprocessor

» The Microprocessor is a programmable IC that performs arithmetic or
logical operations according to the program and produces the output

results.
Or

» Microprocessor is a multipurpose, programmable device that accepts digital
data as input, processes it according to instructions stored in its memory, and

provides results as output.
Or

« A microprocessor is a computer processor which incorporates the functions

of a computer's central processing unit (CPU) on a single integrated circuit

(1C)

https://en.wikipedia.org/wiki/Computer_processor
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Integrated_circuit

Evolution of Microprocessors

PO eSS o of bits Clock speeaed ([FHa) wear of introdoctiom
Ela Te ¥ 1 3 T AR 1971
S00E = SO B 1972
BOuSD = 2 AT
208S = ™A 1TSS
20285 16 5. 2 or 1O 1Lo9F=E
2os= 15 = 2 or LOM LTS
S0186 16 &iha 1922
S80286 16 naAa 1982
S0 86 i 1S to 2 1SS
S0486 =2 16 to LM 1SS
Fentiurn == [T] 1993
FPentiurm 1l 32 233F to SO 1997
Fentivrm 1l =2 SO0 o LS 1o
Pendtiurnm =2 1.3 to 3 .85 200D
Drual oore =2 1L.2to 3 S 200
Core Z Do =28 1.2 to 3G 2D0S
i, isS anmnd 7 (== 224G o F6G 2010

» Latest one is the Intel i9 core processor

8086 Microprocessor

Intel 8086 microprocessor is the enhanced version of Intel 8085 microprocessor. It
was designed by Intel in 1976.

The 8086 microprocessor is al6-bit, N-channel, HMOS microprocessor. Where the
HMOS is used for "High-speed Metal Oxide Semiconductor".

It is a 40 pin, Dual Inline Packaged IC. It has 16 data lines and 20 address lines
thus it can able to access 2720 i.e. 1 Mb address in the memory

It is able to perform the operation with 16 bit data in one cycle i.e it can carry 16
bit data at a time.8086 provides the programmer with 14 internal registers, each
16 bits or 2 Bytes wide.

Components of Microprocessor

Microprocessor

Registers

Contro
Logic

ALU

A microprocessor consists of an ALU, Control unit and Register array

ALU performs arithmetic and logical operations on the data received from an input
device or memory.

Control unit controls the instructions and flow of data within the computer.

Registers are used for temporary storage of data, instructions, addresses during
execution of a program.

System Bus:The memory and i/o ports are interconnected to microprocessor

through a System bus.

A Bus is a group of conducting wires which carries information; all the peripherals

are connected to microprocessor through Bus.

> There are three types of buses:

1. Address bus

2. Data bus

3. Control bus

Input Port

Output Port

l
l

Figure 1 Block diagram of Computer

« The control bus carries the control, timing and coordination signals to
manage the various functions across the system.

« The address bus is used to specify memory locations for the data being

transferred.

. The data bus, which is a bidirectional path, carries the actual data between

the processor, the memory and the peripherals.

Working Principle of Microprocessor:

The microprocessor follows a sequence to execute the instruction:

1. Fetch

2. Decode

3. Execute

Memory Segmentation

* Segmentation is the process of dividing.

* The available memory space is divided into "chunks" called segments. Such
a memory is known as segmented memory and each segment has its own
base address.

It is basically used to enhance the speed of execution, so that the processor is
able to fetch and execute the data from the memory easily and fast.

Need for Segmentation:

* To increase execution speed and fetching speed, 8086 segments the
memory.

« 1MB of memory is segmented into 4 64kB segments.

« Each segment has its own address or starting address and within the segment
it has the offset address.

» 8086 works only with four 64KB segments within the whole 1MB memory.

Memory Segmentation in 8086:

00000H

P) Code SEgI'T'IEI'Iﬂ-Eﬂ-l{B-II Starting address of code
> ' : segment

Starting address of data
SEEMEnt

5| N Data segment(64KB)

Offset Address

——"1MB Memory

(]| 8 Extra segment(64KB) Starting address of extra
segmeant

—Sk, BP 8 Stack segment{64KB)

Starting address of stack
segment

FFFFFH

Memory segments

These four memory segments are called:

1. Code segment: It holds the instruction codes of a program.
2. Data segment: It holds the data, variables and constants given in the
program

3. Extra segment: It also holds the data of certain string instructions.

4. Stack segment: It is used as a stack and it is used to store the return

address. It holds addresses and data of subroutines.

Offset Address:

To address a specific memory location within a segment we need an offset address.

The offset address is also 16-bit wide and it is provided by one of the associated

pointer or index register
Pointers and index registers contain offset address:

Stack Pointer and Base Pointer:

SP (Stack Pointer) : This is the 16-bit register. It points to the program stack in

stack segment.

BP (Base Pointer) : BP is also the 16-bit register. It points to data in stack

segment.

Source index: It is of 16 bits, It is used to point the memory locations in the data

segment for source data.

Destination index: It is of 16 bits It is used to point the memory locations in the

data segment for destination data.
Calculating Physical Address:
How can a 20-bit address be obtained, if there are only 16-bit registers?

Address Adder: The BIU contains a dedicated adder which is used to generate the
20bit physical address.

This address is formed by adding an 16 bit segment address and a 16 bit offset

address.

Physical address= Segment address*10H+offset address

Example problems on calculating physical address

1Q.The value of Code Segment (CS) Register is 4042H and the value of
different offsets is as follows: BX: 2025H , IP: 0580H , DI: 4247H
Calculate the effective address/physical address of the memory location

pointed by the CS register?

A: The offset of the CS Register is the IP register. Therefore, the effective address

of the memory location pointed by the CS register is calculated as follows:
Effective address= Base address of CS register X 104 + Address of IP

4042y X 104 + 05804 = (40420 + 0580)H = 410004

Architecture of 8086 Microprocessor:

To memory and
Input/ Qutput

6-Byte
pre-fetch
queue

[[PA=Seg X IOH
E + offset

Cs

DS

AH [AL [-AX") General

| Purpose
: CHICL -~
i "UH' DL _,& Registers

' Block Diaaram of 8086 Microprocessor |

e e e e e - - ——— - - ———

The architecture of 8086 can be internally divided into two separate functional

units
1. Bus Interface Unit (BIU)
2. Execution Unit(EV)

The reason behind two separate sections for BIU and EU in the architecture of
8086 is to perform fetching and decoding-executing simultaneously, which is used

to saves the processor time of operation i.ePipelined Architecture.

1. The Bus Interface Unit (BIU):

It provides the interface of 8086 to external memory and 1/O devices via the
System Bus. It performs various machine cycles such as memory read, 1/0
read etc. to transfer data between memory and 1/O devices.

BIU performs the following functions-

. It generates the 20 bit physical address for memory access.
« It fetches instructions from the memory.
. It transfers data to and from the memory and 1/0O.

« Maintains the 6 byte prefetch instruction queue (supports pipelining).

* The BIU handles all transactions of data and addresses on the buses for EU.
» The instruction bytes are transferred to the instruction QUEUE.

» EU executes instructions from the instruction system byte queue.

> BIU mainly contains

« 4 segment registers
* 6-byte pre-fetch queue
« Address Generation Unit

e Instruction Pointer

To memory and

Input/ Qutput
B T S T e S S W (s e 6 Sy S A) S N e e S e e et s o i SR o 4 S ey & @
! BIU E 3
6
2 5 6-Byte |
PA = Seg X 10H 4 pre-fetch !
+ offset 3 i
of 2 queue
£S 1 :
SOR| $@ 000 e e e m '
DS i

ES
1P

....................................

Address Generation Unit:

» The physical address of the instruction is achieved by combining the

segment address with that of the offset address.
6-byte pre-fetch queue

» This queue is used in 8086 in order to perform pipelining.

» As at the time of decoding and execution of the instruction in EU, the BIU

fetches the sequential upcoming instructions and stores it in this queue.

 The size of this queue is 6-byte. This means at maximum a 6-byte

instruction can be stored in this queue.

* The queue exhibits FIFO behavior, first in first out.

« BIU fills in the queue until the entire queue is full.
» BIU fetches 2 instruction bytes in a single memory cycle.

« BIU restart filling in the queue when at least two locations of queue are

vacant.

Instruction Pointer: The Instruction Pointer is a register that holds the address of

the next instruction to be fetched from memory.
4 Segment Registers

BIU contains 4 segment registers. Each segment register is of 16-bit.

The segments are present in the memory and these registers hold the base address
of respective segments.

1. Code Segment Register:

It is a 16-bit register and holds the address of the instruction or program stored
in the code segment of the memory.

2. Stack segment register:

The Stack segment register is usually used to store information about memory
segment. It handles memory to store data and addresses during execution.

3. Data segment register:

It holds the address of the data segment. The data segment stores the data in the
memory whose address is present in this 16-bit register.

4. Extra segment register:

Here the starting address of the extra segment is present. This register basically
contains the address of the string data.

String: mean a series of data words or bytes that reside in consecutive memory
locations.

Physical

addess memory
FEEEE H -f— Highest address
7FFFF H ~—Top of Extra Segmet
g Extra
sl | Segment
Four segment registers o)
In BIU —»=70000 H -— Bottom of Exira Segment
ES 7 0 0 0 S5FFFF H -a— Top of Stack Segment
CSs 3 0 0 0 é StaC k
ss | s 0 0 0 | N Segment
DS | 2 0 ((»-50000 H ~— Fotom ot satk segment
* 3FFFF H ~— Top of Code Segment
Segment registers hold g Code
the upper 16 bits of the “ Segment
starting addresses of - 1 Of Code Segment
four memory segments »> 30000 H oo mearmen
that 8086 is working with 2FFFFH op of Data Segment
at any particular time.
2 Data
@ Segment
—P 20000 H -«§— Bottom of Data Segment

2. The Execution Unit (EU):

1. EU contains Control Unit, ALU, Pointer and Index register, Flag register,
General Purpose Register, Operands

2. EU: Fetches instructions from the Queue in BIU, decodes and executes
arithmetic and logic operations using the ALU.

3. Sends control signals for internal data transfer operations within the
MIiCroprocessor.

EU
é«: gt -—*Q;((General
“cH el |—~cx (7 Purpose ALU
DH | DL |— DX Registers

SP | "

Bsr Operands | :

Dl Flags :
Control Unit:

It’s directs the operation of the processor.
It also signals the ALU to perform the desired operation

ALU:

It handles all arithmetic and logical operations, like +, —, %, /, OR, AND, NOT
operations.

Result (Accumulator)
ALU

Status (Flag Register)

General purpose registers:

There are 8 general purpose registers, i.e., AH, AL, BH, BL, CH, CL, DH, and DL.
AX register

This is the accumulator. It is of 16 bits and is divided into two 8-bit registers AH

and AL to also perform 8-bit instructions.
It is used to stores the 16-bit/8 bit result of certain ALU operations.
BX register

This is the base register. It is of 16 bits and is divided into two 8-bit registers BH

and BL to also perform 8-bit instructions.

It is used to store the starting base address of the memory area within the data

segment.
CX register

This is the counter register. It is of 16 bits and is divided into two 8-bit registers

CH and CL to also perform 8-bit instructions.

It is referred to as counter. Used to hold the count value in SHIFT, ROTATE and
LOORP instructions.

DX register

This is the data register. It is of 16 bits and is divided into two 8-bit registers DH
and DL to also perform 8-bit instructions.

Pointer and Index Registers:
SP (Stack Pointer):

This is the 16-bit register. It points to the program stack in stack segment. SP is
used during instructions like PUSH, POP, CALL, RET etc.

BP (Base Pointer) :

BP is also the 16-bit register. It points to data in stack segment. BP can hold offset
address of any location in the stack segment. It is used to access random

locations of the stack.

Source index:

It holds offset address in Data Segment during string operations

Destination index:

It is of 16 bits It holds offset address in Extra Segment during string operations
This register is used to hold I/O port address for 1/O instruction

Flag Register:

Flag register holds the status of the result generated by the ALU.

The 8086 microprocessor has a 16 bit register for flag register. In this register 9
bits are active for flags.

In that 9 flags, they are divided into 2 groups — Conditional Flags and Control
Flags.

IP FLAGS
oF |OF | IF [TF|sF|2F| |[aF] |PF| |cF REGISTER

Flag Reqisters Intel B086-8088 Microprocessor

6 Status flags:

carry flag(CF)

parity flag(PF)

auxiliary carry flag(AF)

zero flag(2)

sign flag(S)

. overflow flag (O)

Status flags are updated after every arithmetic and logic operation.

o Ul A wWN e

3 Control flags:
1. trap flag(TF)
2. interrupt flag(1F)
3. direction flag(DF)

Operand:

It is a temporary register and is used by the processor to hold the temporary
values at the time of operation.

FLAG REGISTER OF 8086 MICROPROCESSOR:

l Flagss I
lx[xIu]x]o;in;lur]r;lsslzrlxIAsI.(lps[xIcs]
—-.r-.-qx—-._~c-l —
Overflow I T Carry fl
IDirectio Parity flag
Interrupt enabl Acauvaxiliary flag
Trap ero
Siom

O are status flags =
3 are control flags

Conditional Flags:

It represents the result of the last arithmetic or logical instruction executed.

Following is the list of conditional flags

1. Carry flag— This flag indicates an overflow condition for arithmetic
operations.(Carry is generated when performing n bit operations and the result is

more than n bits) Addition-Carry , Subtraction-Barrow

Example: Add FOH and78H

1111 0000
+ 0111 1000

CARRY —= 1 0110 1000

2.Auxiliary flag— The AF is set/reset when a 1-byte arithmetic operation is
performed at ALU, it results in a carry/barrow from lower nibble (i.e. DO — D3) to
upper nibble (i.e. D4 — D7), then this flag is set, i.e. carry given by D3 bit to D4 is
AF flag.

ac

EXAMPLE: Add 7CH, 0OCH

1 - 1 - 1

D7 Do D5 D4 D3ID2D1 DO
0 1 1 1 1 1 0 0
] 0 0 0 1 1 0 0
1 0 0 0 1 0 0 0

3. Parity flag: This flag is used to indicate the parity of the result, The result

contains even number of 1’s, then the Parity Flag is set. For odd number of 1°s, the
Parity Flag is reset.

(AND A register with Accumulator)

> P=1 D7D6DSD4 DID2DIDO
o1 11 00 01
01 1 1 0O 0 01
93 5 4 U 0 9 1

4. Zero flag — this flag is set to 1 when the result of arithmetic or logical operation
Is zero else it is set to 0.

(XOR A register with Accumulator)

D7 D6 D5 D4 D3 D2 DIDO
OO0 1 O O 1 0 1
OO0 1 O O 1 01
0O 0 O O O O O O

Z=1,The Zero flag is set because the ALU
operation resultin O

5. Sign flag — After any operation if the MSB (B(7)) of the result is 1, it indicates
the number is negative and the sign flag becomes set, i.e. 1. If the MSB is O, it

indicates the number is positive

6. Overflow flag — Overflow flag became set as we added 2 positive numbers and

we got a negative number.

MOV AL, 58 (50 is 81018008 which is positive)
MOV BL, 32 (32 is 08110018 which is positive)
ADD AL, BL (82 is 10000018 which is negative)

Control Flags:
Control flags controls the operations of the execution unit.

Trap flag— When a system is instructed to single-step, it will execute one

instruction and then stop.

Interrupt flag — It is an interrupt enable/disable flag, i.e. used to allow/prohibit the
interruption of a program. It is set to 1 for interrupt enabled condition and set to 0

for interrupt disabled condition.

Direction flag- It is used in string operation. As the name suggests when it is set
then string bytes are accessed from the higher memory address to the lower

memory address and vice-a-versa.

Features of 8086 Microprocessor:

It is a 16-bit Microprocessor introduced by INTEL in the year 1978. (The term
“16-bit” means that its arithmetic logic unit(ALU), internal registers and most of

its instructions are designed to work with 16-bit binary words.)
It requires +5V DC power supply.

8086 has a 20 bit address bus can access up to 2?° memory locations (1
MB).Address ranges from 00000H to FFFFFH

The 8086 can generate 16-bit I/0 address; hence it can access 2716 = 65536(64K)
1/0O ports.

It has 16-bit data bus, so it can read data from or write data to memory and ports

either 16 bits or 8 bits at a time.

The 8086 has multiplexed address and data bus which reduced the number of pins
needed (ADO-AD15)

It is available in 40 pin Dual In line Package(DIP).
It consists of 29,000 HMOS transistors.

It has 6 bytes Queue

It provides 14, 16-bit registers.

Clock frequency ranges from 5MHz to 10 MHz

It uses two stages of pipelining, i.e. Fetch Stage and Execute Stage, which
improves performance.
8086 is designed to operate in two modes

1. Minimum Mode
* The minimum mode is selected by applying logic 1 to the MN/MX input pin
« This is a single microprocessor configuration.

2. Maximum Mode
» The maximum mode is selected by applying logic 0 to the MN/MX input pin

* This is a multi microprocessor configuration.

Implementation of Pipelined Process in 8086

Implementation of pipelining is done by 2 units in the 8086 Microprocessor.
BIU(consists of 6 byte prefetch Queue):

» Fetches the sequenced instruction from the memory,

« Finds the physical address of that location in the memory where the

instruction is stored and

» Manages the 6-byte pre-fetch queue.
6-byte pre-fetch queue:

» This queue is used in 8086 in order to perform pipelining.

» As at the time of decoding and execution of the instruction in EU, the BIU

fetches the sequential upcoming instructions and stores it in this queue.
» The size of this queue is 6-byte.

« This means at maximum a 6-byte instruction can be stored in this queue.

« The queue exhibits FIFO behavior, first in first out.
» BIU fills in the queue until the entire queue is full.
» BIU fetches 2 instruction bytes in a single memory cycle.

» BIU restart filling in the queue when at least two locations of queue are

vacant.
EU (Execution Unit)

» Decodes instructions fetched by the BIU
» Executes instructions.

» EU contains Control Unit, ALU, Pointer and Index register, Flag register,

General Purpose Register, Operands
Register Organization:

A register is a very small amount of fast memory that is built in the CPU (or

Processor) in order to speed up the operation.

Register is very fast and efficient than the other memories like RAM, ROM,

external memory etc,.
That’s why the registers occupied the top position in memory hierarchy model

The 8086 microprocessor has a total of fourteen registers that are accessible to the

programmer.

All these registers are 16-bit in size. The registers of 8086 are categorized into 5

different groups.

» General registers
* Index registers
 Pointer registers

» Segment registers

Status registers

8086 REGISTER ORGANIZATION

Type Register Name of the
ES Extra Segment e Ragistar
CSs Code Segment
SS Stack Segment General 16 bit AX, BX, CX, DX
DS Data Segment purpose
IP Instruction Pointer 95 = 8 bit AL, AH, BL, BH,
CL, CH, DL, DH
AX AH AL Accumulator
BX| BH BL Base Register Paintar 1S8R SF, 8P
cx_cn CL Count Register '“9/sters
DX DH DL Data Register Indexed 16 bit SI, DI
sp Stack Pointer registers
BP Base Pointer
Instruction 16 bit IP
S| Source Index Polnter
DI Destination Index
FLAGS Segment 16 bit CS, DS, SS, ES
registers
Flags 16 bit Flag register

General Purpose Registers:

General purpose registers are used to store temporary data within the
microprocessor during arithmetic and logic operations. These all general registers

can be used as either 8-bit or 16-bit registers.

The general registers are:

BH BL General
CH L Registers
DH DL

AX (Accumulator):

This is the accumulator. It is of 16 bits and is divided into two 8-bit registers AH

and AL to also perform 8-bit instructions.

It is used to stores the 16-bit/8 bit result of certain arithmetic and logical

operations.

This Accumulator used in arithmetic, logic and data transfer operations. For
manipulation and division operations, one of the numbers must be placed in AX or
AL.

BX register:

This is the base register. It is of 16 bits and is divided into two 8-bit registers BH

and BL to also perform 8-bit instructions.

It is used to store the starting base address of the memory area within the data

segment.
CX register

This is the counter register. It is of 16 bits and is divided into two 8-bit registers

CH and CL to also perform 8-bit instructions.

It is referred to as counter. Used to hold the count value in SHIFT, ROTATE and
LOORP instructions.

DX register

This is the data register. It is of 16 bits and is divided into two 8-bit registers DH

and DL to also perform 8-bit instructions.

This register is used to hold I/O port address for 1/O instruction.

Index Register:

Source index:

It holds offset address in Data Segment during string operations

Destination index:

It is of 16 bits It holds offset address in Extra Segment during string operations
This register is used to hold 1/O port address for 1/O instruction

Pointer Registers:

SP (Stack Pointer) :

This is the 16-bit register. It points to the program stack in stack segment. SP is
used during instructions like PUSH, POP, CALL, RET etc.

BP (Base Pointer):

BP is also the 16-bit register. It points to data in stack segment. BP can hold offset
address of any location in the stack segment. It is used to access random

locations of the stack.
Instruction Pointer

The Instruction Pointer is a register that holds the address of the next instruction to

be fetched from memory.
Segment Registers:

The segments are present in the memory and these registers hold the address of

respective segments.
These registers are as follows:

« Code segment register
« Stack segment register
+ Data segment register

« Extra segment register

Code Segment Register:

It is a 16-bit register and holds the address of the instruction or program stored
in the code segment of the memory.

Stack segment register:

The Stack segment register is usually used to store information about memory
segment. It handles memory to store data and addresses during execution.

Data segment register:

It holds the address of the data segment. The data segment stores the data in the
memory whose address is present in this 16-bit register.

Extra segment register:

Here the starting address of the extra segment is present. This register basically
contains the address of the string data.

Status Register (Flag register):

The status register also called as flag register. The 8086 flag register contents
indicate the results of computation in the ALU. It also contains some flag bits to

control the CPU operations.
Flag register holds the status of the result generated by the ALU.

The 8086 microprocessor has a 16 bit register for flag register. In this register 9

bits are active for flags.

In that 9 flags, they are divided into 2 groups — Conditional Flags and Control
Flags.

P FLAGS
[T T TorJorlwrrse]zr] Tar] Ter[TJer REGISTER

Flag Reqisters Intel 3086-3088 Microprocessaor

Programming Model:

The programming model of the 8086 considered to be program
visible because its registers are used during application programming and

are specified by the instructions.

Other registers, are considered to be program invisible because they are not

addressable directly during applications programming,

But may be used indirectly during system programming.

Q. How can a 20-bit address be obtained, if there are only 16-bit

registers?

However, the largest register is only 16 bits (64k); so physical addresses
have to be calculated. These calculations are done in hardware within the

microprocessor.

The 16-bit contents of segment register gives the starting/ base address of

particular segment.

To address a specific memory location within a segment we need an offset

address.

The offset address is also 16-bit wide and it is provided by one of the

associated pointer or index register.

To be able to program a microprocessor, one does not need to know all
of its hardware architectural features. What is important to the programmer
Is being aware of the various registers within the device and to understand

their purpose, functions, operating capabilities, and limitations.

The below figure illustrates the software architecture of the 8086 microprocessor.

In the programming model there are

» 4 General Purpose registers(Data Registers)
» 4 Segment registers

» 2 Pointer registers

* 2 Index registers

1 Instruction Pointer register

» 1 Flag register

i SAER AT Acoummmalanor
== B BET =L Eazase Index
3 CH I ot
CGensrml e ol IEE IoT. Iar=
%E'_EUJ];'EIIEIEL:-:E- =1 Sorce Incdes
I IDestnmation In«dex
B Base puolmber
=F Sr=rlk peolavber
== (s S R W
L= Stack SsemTyesmnE
Se et —
rEEASTET - } Di=ta s=gmments
ES
Ir Im =iy fiaay peodinieT
| Flaz register

Fros=ramoyims maosdlel of 1S-bit werzsiom of 5 -56 Taowily

15 14 13 12 11 10 B 8 7 & S5 4 3 2 1 0

| - | -] - | - |oFlor| w|rr|sF|zF] - |ar]| - |pe] - CF |

The point to note is that the beginning segment address must begin at an address
divisible by 16.Also note that the four segments need not be defined separately. It

Is allowable for all four segments to completely overlap (CS = DS = ES = SS).

Logical and Physical Address

Addresses within a segment can range from address 00000h to address OFFFFh.
This corresponds to the 64K-bytelength of the segment. An address within a

segment is called an offset or logical address.

gives the displacement from the base address of the segment to
the desired location within it, as opposed to its "real" address, which maps directly

anywhere into the 1 MByte memory space. This "real" address is called

What is the difference between the physical and the logical address?

The physical address is 20 bits long and corresponds to the actual binary code
output by the BIU on the address bus lines. The logical address is an offset from

location O of a given segment.

Physical Address Generation in 8086

» The 20-bit physical address is generated by adding 16-bit contents of a
segment register with an 16-bit offset value (also called Effective Address)
which is stored in a corresponding default register (either in IP, BX, Sl, DI,
BP or SP. Different segments have different default register for offset, for
example IP is default offset register for Code Segment)

» BIU always appends 4 zeros automatically to the 16-bit address of a segment
register (to make it 20-bit) besause it knows the starting address of a
segment always ends with 4 zeros

Points to a memory Offset Value (16 bits)
location within a
segment
AIETIE—
Ccs " ES SS Segment Register (16 bits) [IIIDNNN
A
/
IP BX DI BP Upper 16bit of starting 6-bi
address of asegment 20-bits 16-bits
DI SP
Actual address for
s j e

Y N\

Default Registers Assigned to store b
offset values for different segments Physical Address (20 Bits)

Figure 14-1. Real-Address Mode Address Formation

19 3]
BASE 16-BIT SEGMENT SELECTOR Aaao
+
19 15]
OFFSET AAaoe 16-BIT EFFECTIUE ADDRESS
20]
LINEAR

ADDRESS ARRAAARAARRARARARARAARARR

You should also be careful when writing addresses on paper to do so clearly. To
specify the logical address XXXX in the stack segment, use the convention
SS:XXXX, which is equal to [SS] * 16 + XXXX.

Logical address is in the form of: Base Address: Offset

Offset is the displacement of the memory location from the starting location of the
segment. To calculate the physical address of the memory, BIU uses the following

formula:
Physical address= Segment address*10H+offset address

Physical Memory Organization:

The total memory (1MB) of 8086 is physically organised as an odd bank and even
bank each of 512K 8-bit bytes addressed in parallel by the processor.

1. A high (odd) bank (D15-D8) and
2. A low (low) bank (D7-D0)

Byte data with even addresses is transferred on the D7-DO0 bus lines ;

While odd addressed byte data is transferred on the D15-D8 bus lines.

The processor provides two enable signals, BHE(Bus High Enable) and AO for
selection of either even or odd bank or both the banks.

Even addresses are on the low half of the data bus(D0-D7)

Odd addresses are on the high half of the data bus(D8-D15)

A0 =0; when data is on the low half of the data bus(D0-D7)

BHE =0; when data is on the high half of the data bus(D8-D15)

0009O0H

BHE =0 AO=0
Odd bank 8 BIT even bank 8 BIT
Memory 1 Memory 2
. . Db8-D1s _ Dpo-D7 J
system
_" H Higher lower
D8 - D15 byte byte

Fig: Physical Memory Organization

The two signals AOand BHE select the appropriate banks as shown in below table

BHE Ao Indication

0 0 Whole word(2 byte)

0 1 Upper byte from or
to odd address

1 0 Lower byte from or
to even address

1 1 None

Table: Selection of banks using BHE and A0

PIN DIAGRAM

(Signal Descriptions of 8086)

MAX (MIN)
MODE MODE
GND 1 u 40 Ucc
AD14 2 39 AD1S
AD13 3 38 Al6/S3
AD12 - 37 AlT7/S4
AD11 S 36 A18/SS
AD10O 6 35 Al9/S6
AD 9 7 34 BHE/S7
AD S8 8 33 MN/MX
AD 7 9 32 RD
8086 :
AD 6 10 CPU 31 RQ/GTO (HOLD)
ADS 11 30 RQ/GT1 (HLDA)
AD4 12 29 LOCK (WR)
AD 3 13 28 S2 (M/10)
AD 2 14 27 S1 (DT/R)
AD1 15 26 SO (DEN)
ADO 16 25 QSso (ALE)
NMI 17 24 QS1l (INTA)
INTR 18 23 TEST
CLK 19 22 READY
GND 20 21 RESET

« QOut of 40 pins, 32 pins are having same function in minimum or

maximum mode,

« And remaining 8 pins are having different functions in minimum

and maximum mode.

 Following are the pins which are having same functions

Common signals:

GND<«— 1 ~ 40—V,

AD, < 2 39 [ADts

AD,, «> 3 38— AD,, /S,

AD,, <= 4 37— AD,,/ S,

AD, <> 5 36 — AD,, /S,

AD, < 6 35— AD,, /S,

AD, «—| 7 34 —> BHE/ S,

AD, «—{ 8 33 [«— MN/ MX

AD, «— 9 32—>RD e

AD, <110 8086 31> HoLD (RQ/GT)
AD, <= 11 30 == HLDA (RQ/GT,)
AD, <12 29 — WR (LOCK)
AD, «—{ 13 28— M/I0 (S

AD, «<—{ 14 27— DT/R (S)

AD, «{ 15 26 —> DEN (So)

AD, <! 16 25 —> ALE (QS,)

NMI «<—={ 17 24— INTA (QS))
INTR —| 18 23 «— TEST

CLK —{ 19 22 [«— READY

GND «<— 20 21 [«<— RESET

AD,-AD,;; (Bidirectional)
Address/Data bus

These are 16 address/data bus.
ADO-AD7 carries low order byte data and ADS8-AD15
carries higher order byte data.

During the first clock cycle, it carries 16-bit address and

after that it carries 16-bit data.

Address/status bus
Al16/S3 - A17/S4 - A18/S5 - A19/S6.
These are the 4 address/status buses.

During the first clock cycle, it carries 4-bit address and

later it carries status signals.

Address/Status bus
0] 0 Extra segment access
o 1 Stack segment access
1 0] Code segment access

1 1 Data segment access

BHE (Active Low)/S, (Output)

Bus High Enable/Status

It is used to indicate the transfer of most significant half
of data using data bus D8-D15.

This signal is low during the first clock cycle, thereafter
it is active.

It is multiplexed with status signal S,.

MN/ MX
MINIMUM / MAXIMUM
It stands for Minimum/Maximum and is available at pin

33.
It indicates what mode the processor is to operate in;
when it is high, it works in the minimum mode and vice-

versa.

RD (Read) (Active Low)

The signal is used for read operation.

READY

*It is available at pin 22.

It is an acknowledgement signal from Memory or 1I/O
devices that data is transferred.

It is an active high signal.

*When it is high, it indicates that the device is ready to
transfer data.

*When it is low, it indicates wait state.

TEST

*TEST pin is examined by the "WAIT" instruction.
°If the TEST pin is Low, execution continues.

Otherwise the processor waits in an "idle" state.

RESET (Input)
Reset causes the processor to immediately terminate its
present activity.

CLK

Clock signal is provided through Pin-19. It provides timing
to the processor for operations. Its frequency is different
for different versions, i.e. 5MHz, SMHz and 10MH=z.

INTR Interrupt Request
Interrupt pin
This signal is active high and internally
synchronized.

NMI (Non Maskable Interrupt)
Signal

Min/ Max Pins

The 8086 microprocessor can work in two modes of operations : Minimum

mode and Maximum mode.

In the minimum mode of operation the microprocessor do not associate with

any co-processors and cannot be used for multiprocessor systems.

In the maximum mode the 8086 can work in multi-processor or co-processor

configuration.

Minimum or maximum mode operations are decided by the pin MN/
MX(Active low).

When this pin is high 8086 operates in minimum mode otherwise it operates in

Maximum mode.

Minimum mode signals

Pins 24 -31

For minimum mode operation, the MN/ MX is tied
to VCC (logic high)

8086 itself generates all the bus control signals

31 fe—» HOLD
30 fe—> HLD.A
29 — W

28 F— MYy IO
27— DT/ R

25 [— ALE
24 — INTA

DT/R (Data Transmit/ Receive) Output signal from the
processor to control the direction of data flow
through the data transceivers

DEN (Data Enable) Output signal from the processor
used as out put enable for the transceivers

ALE (Address Latch Enable) Used to demultiplex the
address and data lines using external latches

M/I10 Used to differentiate memory access and I/0
access. For memory reference instructions, it is
high. For IN and OUT instructions, it is low.

WR Write control signal; asserted low Whenever
processor writes data to memory or I/0 port

INTA (Interrupt Acknowledge) When the interrupt
request is accepted by the processor, the output is
low on this line.

HOLD Input signal to the processor form the bus masters
as a request to grant the control of the bus.

Usually used by the DMA controller to get the
control of the bus.

HLDA (Hold Acknowledge) Acknowledge signal by the
processor to the bus master requesting the control
of the bus through HOLD.

The acknowledge is asserted high, when the
processor accepts HOLD.

Maximum mode signals:

During maximum mode operation, the MN/ MX is
grounded (logic low)

Pins 24 -31 are reassigned

31 = (RQ/ GT,)
30 je— (R—Q / GT,)
29 > (LOCK)
28 —> (§2)

27 —> (S))

26 —> (So)

25 — (QS))

24 — (QS))

Sor S1, S2 Status signals; used by the 8086 bus controller to
generate bus timing and control signals. These are
decoded as shown.

Status Signal
— — = Machine Cycle
S, S, Se

0 0 0 Interrupt acknowledge
0 0 | Read 1/0 port

0 1 0 Write IO port

0 I 1 Halt

1 0 0 Code access

1 0 | Read memory

| | 0 Write memory

| 1 | Passive/Inactive

QSy, 05, (Queue Status) The processor provides the status
of queue in these lines.

The queue status can be used by external device to
track the internal status of the queue in 8086.

The output on QS, and QS, can be interpreted as
shown in the table.

Queue status

ucue operation
Qs Qs, Q P
0 0 No operation
0 I First byte of an opcode from queue
I 0 Empty the queue
| I Subsequent byte from queue

RQ/GT,,
RQ/GT,;

LOCK

(Bus Request/ Bus Grant) These requests are used
by other local bus masters to force the processoil
to release the local bus at the end of the
processor’s current bus cycle.

These pins are bidirectional.

The request onGT, will have higher priority thancT,

An output signal activated by the LOCK prefix
instruction.

Remains active until the completion of the
instruction prefixed by LOCK.

The 8086 output low on the LOCK pin while
executing an instruction prefixed by LOCK tc
reven her m rs from inin ntrol ol

the system bus.

Minimum and Maximum mode Timing Signals of 8086:

Minimum Mode 8086:

The microprocessor 8086 is operated in minimum mode by strapping its at pin
33 MN/MX pin to logic 1.

In this mode, all the control signals are given out by thel] microprocessor chip

itself. There is a single microprocessor in the minimum mode system.

The remaining components in the system are latches, transreceivers, clock

generator, memory and I/O devices.

Latches are generally buffered output D-type flip-flops like 74LS373 or 8282.

They are used for separating the valid address from the multiplexed

address/data signals and are controlled by the ALE signal generated by
8086.

Transreceivers are the bidirectional buffers and some times they are called as
data amplifiers. They are required to separate the valid data from the time
multiplexed address/data signals. They are controlled by two signals namely,
DEN and DT/R. The DEN signal indicates the direction of data, i.e. from or to

the processor.

The system contains memory for the monitor and users program storage.
Usually, EPROM are used for monitor storage, while RAM for users program

storage.

A system may contain 1/O devices. The opcode fetch and read cycles are similar.

Minimum Mode 8086 Configuration

v.. —II]l—l
82844 Clock MNRIX [*— Yo
Generator fge] CLK MAD 1.
BEE el S E ALY TR 3
| zzcET ED ' 4
! ROy L : 4
I _ i
il B '
1
e O S it e i
1 State 1 [} 1
1 Eia:om'.nr] 8o8&s I: [1
1 1 | CPU HH [[
1 1 ALE 4 cLK
______ il — . '
GND === T L} 1
S n 1 3
AD-AD,s ¥ Addrgais — Y 5854 [Addr 1 Py
Ays=AD 5 HE L []] »
B=E 1 # ‘
1 I~ '
(L
_____ 1
1 -
: 1 -]
| ===lor 1l 1
i I_ 1! 1
e 1l 1 .
1 Transosver : H Data - 'y
- 5 1 \
I 1 I:q: A 1
1= =
S A] :
I F ¥ = L 3 -
cE z
data bus drive MCS-80

2142 RLARA(4)

_ Optional TEDw CSOn WEOD
=T Inoreased
2718-2 PROM (2)

2) i2)
16 % B I 1K = 8

OR

Heset CLK GENETRTOR -—_-I_ MINIMUM MODE 8086 SYSTEM

8284
read
= =3
Reset clk ready ————— FAED
MI/ O v . >
L— MN/ VX RD = DMUX % ;
Vce WR '_> | IOWR >
i 3 cs == Cse RAM
______ LOGIC == CsoRAM
8086 1_> Cse ROM
ALE fpSTB 73 l == "Cso ROM
ADO-AD15 i Latches q;
A16/53- 2o0r3
A19/56
DT/R° DEN ORD | TOWR

-A--

The timing diagram can be categorized in two parts, the first is the timing

diagram for read cycle and the second is the timing diagram for write cycle.
Timing signals for Minimum Mode: Read Cycle:

The read cycle begins in T1 with the assertion of address latch enable (ALE)
signal and also M / 10 signal. During the negative going edge of this signal, the

valid address is latched on the local bus.

The BHE and A0 signals address low, high or both bytes. From T1 to T4 , the

M/10 signal indicates a memory or 1/O operation.

At T2, the address is removed from the local bus and is sent to the output. The

bus is then tristated. The read (RD) control signal is also activated in T2. The

read (RD) signal causes the address device to enable its data bus drivers. After RD
goes low, the valid data is available on the data bus. The addressed device will
drive the READY line high. When the processor returns the read signal to high
level, the addressed device will again tristate its bus drivers.

Minimum Mode 8086 System (cont..)
ol einn Bl ol AR e e B B

| 3 g 1| G5 T, | 5 o] T, |

ALE / \

ADD / STATUS XBHE _ ., X S, —S; X

Bus reserved

ADD / DATA

Aais — Ao {fordatain X D;c—D,)<
== %

- \ R
— -

Read Cycle Timing Diagram for Minimum Mode

Timing signals for Minimum Mode: Write Cycle:

A write cycle also begins with the assertion of ALE and the emission of the

address. The M/IO signal is again asserted to indicate a memory or I/Ooperation.

In T2, after sending the address in T1, the processor sends the data to be written
to the addressed location. The data remains on the bus until middle of T4 state.
The WR becomes active at the beginning of T2 (unlike RD is somewhat delayed
in T2 to provide time for floating). The BHE and AO signals are used to select the
proper byte or bytes of memory or 1/O word to be read or write. The M/IO, RD

and WR signals indicate the type of data transfer as shown in table below.

M/IO RD WR Transfer Type
0 0 1 1/0 read
4 1 0 1/0 write
1 0 1 Memory read
1 1 0 Memory write
Data Transfer table

Minimum Mode 8086 System (cont..)

| T, | T, T, ke T IT, |

Cik o M PR B R S o o e R o BT

ALE / \
ADD / STATUS XBXE - AmX S;—S; ><
ADD / DATA X Ais— Ay wvalid data D,.— D, X

WR \

) S /

DT /R / \

Write Cycle Timing Diagram for Minimum Mode

Hold Response sequence:

The HOLD pin is checked at leading edge of each clock pulse. If it is received
active by the processor before T4 of the previous cycle or during T1 state of
the current cycle, the CPU activates HLDA in the next clock cycle and for

succeeding bus cycles, the bus will be given to another requesting master. The

control of the bus is not regained by the processor until the requesting master does
not drop the HOLD pin low. When the request is dropped by the requesting
master, the HLDA is dropped by the processor at the trailing edge of the next

clock.

Minirmmurm Mode S0O086 Systermnm (cont.)
< | | | | | 1 I | I 1 | ===

FIC>E 1>

IR E»A ;

PBus Roecqguest and Bus CGGrant Thimings in Minimurmnm Mode System

Maximum Mode 8086:

In the maximum mode, the 8086 is operated by strapping the MN/MX pin to

ground. In this mode, the processor derives the status signal S2, S1, SO.

Another chip called bus controller derives the control signal using this status
information. In the maximum mode, there may be more than one
microprocessor in the system configuration. The components in the system
are same as in the minimum mode system. The basic function of the bus
controller chip 1C8288, is to derive control signals like RD and WR (for
memory and 1/O devices), DEN, DT/R, ALE etc. using the information by the

processor on the status lines.

The bus controller chip has input lines S2, S1, SO and CLK. These inputs to
8288 are driven by CPU. It derives the outputs ALE, DEN, DT/R, MRDC,
MWTC, AMWC, IORC, IOWC and AIOWC.. INTA pin used to issue two

interrupt acknowledge pulses to the interrupt controller or to an interrupting

device.

IORC, IOWC are 1/0 read command and I/O write command signals
respectively . These signals enable an 10 interface to read or write the data from

or to the address port.

The MRDC, MWTC are memory read command and memory write command
signals respectively and may be used as memory read or write signals. All
these command signals instructs the memory to accept or send data from or to
the bus.

For both of these write command signals, the advanced signals namely
AIOWC and AMWTC are available. They also serve the same purpose, but
are activated one clock cycle earlier than the IOWC and MWTC signals
respectively.

Maximum Mode 8086 System (cont..)

Clk DEN =%
—*(S, DT/R Control bus
S, 8288 IORC
L] s IOWTC
o - MWT
—*Reset Reset Eu ?(f;: R |
Clk e S, CEN _ ALE MRDC
Generator == 5.
= CIRDY 3284 Ready 2 —+ 5V l
8086 CIK| ||
AD-AD, (A css b
A Ao Latches ;
DT/R =
BHE A,
DIR l l
v :’)3:‘:_‘ CS0y; €SO,]‘%‘_ CS WR RD
DEN [>°——’ﬁ ReE N ; Peripherals
1T e T :
| Data bus | ')

Maximum Mode 8086 Svstem.

Timing signals for Maximum Mode: Read Cycle:

The maximum mode system timing diagrams are divided in two portions as
read (input) and write (output) timing diagrams. The address/data and

address/status timings are similar to the minimum mode.

ALE is asserted in T1, just like minimum mode. The only difference lies in the

status signal used and the available control and advanced command signals.

Here the only difference between in timing diagram between minimum mode
and maximum mode is the status signals used and the available control and

advanced command signals.

S0, S1, S2 are set at the beginning of bus cycle.8288 bus controller will output a
pulse as on the ALE and apply a required signal to its DT / R pin during T1.

In T2, 8288 will set DEN=1 thus enabling transceivers, and for an input it will
activate MRDC or IORC. These signals are activated until T4. For an output,
the AMWC or AIOWC is activated from T2 to T4 andl] MWTC or IOWC is
activated from T3 to T4. The status bit SO to S2 remains active until T3 and

become passive during T3 and T4

Maximum Mode 8086 System (cont..)

r———l———— IOne bus clycle

o el e E gl
2 SRR R /

E

S,—S, Active X Inactive X Active
Add/Status Y BHE, Ag— Ay N S,—8, p-mmme
AGOatn e o (DDy)imr-tecmamsn-

L e T /
DT /R —\ /

Memory Read Timing in Maximum Mode

Timing signals for Maximum Mode: Write Cycle:

Maximum Mode 8086 System (cont..)
-

One bus cycle
ol |

B
ALE /

T Active X mnactive X Active

ADD/STATUS X X BHE) ST eSSt
ADD/DATA A-A Dataout D,. — D, —
AMWC or \ /
AIOWC
MWTC or IOWC \ /
DT /R high

me /

Memory Write Timing in Maximum mode.

Timings for RQ/ GT Signals:

The request/grant response sequence contains a series of three pulses. The

request/grant pins are checked at each rising pulse of clock input.

When a request is detected and if the condition for HOLD request are satisfied, the
processor issues a grant pulse over the RQ/GT pin immediately during T4 (current)

or T1 (next) state.

When the requesting master receives this pulse, it accepts the control of the bus, it

sends a release pulse to the processor using RQ/GT pin.
Maximum Mode 8086 System (cont..)

= \/%\/\ _/

Another master CPU grant bus Master releases bus
request bus access

RQ/GT Timings in Maximum Mode.

Addressing modes of 8086

The way for which an operand is specified for an instruction in the accumulator, in

a general purpose register or in memory location, is called addressing mode.

The 8086 microprocessors have 8 addressing modes. Two addressing modes have

been provided for instructions which operate on register or immediate data.

These two addressing modes are:

Register Addressing: In register addressing, the operand is placed in one of the

16-bit or 8-bit general purpose registers.
Example
MOV AX, CX

ADD AL, BL

Immediate Addressing: In immediate addressing, the operand is specified in

the instruction itself.
Example

MOV AL, 35H
MOV BX, 0301H
MOV [0401], 3598H

ADD AX, 4836H

The remaining 6 addressing modes specify the location of an operand which is

placed in a memory.

These 6 addressing modes are:

Direct Addressing: In direct addressing mode, the operands offset is given in

the instruction as an 8-bit or 16-bit displacement element.
Example
ADD AL, [0301]

The instruction adds the content of the offset address 0301 to AL. the operand is
placed at the given offset (0301) within the data segment DS.

Register Indirect Addressing: The operand's offset is placed in any one of

the registers BX, BP, Sl or DI as specified in the instruction.
Example
MOV AX, [BX]

It moves the contents of memory locations addressed by the register BX to the

register AX.

Based Addressing: The operand's offset is the sum of an 8-bit or 16-bit
displacement and the contents of the base register BX or BP. BX is used as base

register for data segment, and the BP is used as a base register for stack segment.

Effective address (Offset) = [BX + 8-bit or 16-bit displacement].

Example
MOV AL, [BX+05]; an example of 8-bit displacement.

MOV AL, [BX + 1346H]; example of 16-bit displacement.

Indexed Addressing: The offset of an operand is the sum of the content of an

index register SI or DI and an 8-bit or 16-bit displacement.

Offset (Effective Address) = [SI or DI + 8-bit or 16-bit displacement]
Example

MOV AX, [SI + 05]; 8-bit displacement.

MOV AX, [SI + 1528H]; 16-bit displacement.

Based Indexed Addressing: The offset of operand is the sum of the content of

a base register BX or BP and an index register Sl or DI.
Effective Address (Offset) = [BX or BP] + [SI or DlI]

Here, BX is used for a base register for data segment, and BP is used as a base

register for stack segment.
Example
ADD AX, [BX + SI]

MOV CX, [BX + SI]

Based Indexed with Displacement: In this mode of addressing, the operand's

offset is given by:

Effective Address (Offset) = [BX or BP] + [SI or DI] + 8-bit or 16-bit

displacement
Example
MOV AX, [BX + SI + 05]; 8-bit displacement

MOV AX, [BX + SI + 1235H]; 16-bit displacement

Addressing Modes for control transfer instructions:

1. Intersegment

a) Intersegment direct b) Intersegment indirect

2. Intrasegment

a) Intrasegment direct b) Intrasegment indirect
1. (a) Intersegment direct: In this mode, the address to which the control is to be
transferred is in a different segment. This addressing mode provides a means of
branching from one code segment to another code segment. Here, the CS and IP of
the destination address are specified directly in the instruction.
Example: JMP 5000H, 2000H;
Jump to effective address 2000H in segment 5000H.
1. (b) Intersegment indirect: In this mode, the address to which the control is to
be transferred lies in a different segment and it is passed to the instruction

indirectly, i.e. contents of a memory block containing four bytes, i.e. IP(LSB),

IP(MSB), CS(LSB) and CS(MSB) sequentially. The starting address of the
memory block may be referred using any of the addressing modes, except
immediate mode.

Example: JMP [2000H].

Jump to an address in the other segment specified at effective address 2000H in
DS.

2.(a) Intrasegment direct mode: In this mode, the address to which the control is
to be transferred lies in the same segment in which the control transfers
instruction lies and appears directly in the instruction as an immediate
displacement value. In this addressing mode, the displacement is computed relative
to the content of the instruction pointer.

The effective address to which the control will be transferred is given by the sum
of 8 or 16 bit displacement and current content of IP. In case of jump instruction, if
the signed displacement (d) is of 8-bits (i.e. -128<d<+127), it as short jump and if
itis of 16 bits (i.e.

-32768<d<+32767), it is termed as long jump.

Example: IMP SHORT LABEL.

2.(b) Intrasegment indirect mode: In this mode, the displacement to which the
control is to be transferred is in the same segment in which the control transfer
instruction lies, but it is passed to the instruction directly. Here, the branch address
Is found as the content of a register or a memory location.This addressing mode
may be used in unconditional branch instructions.

Example: JIMP [BX]; Jump to effective address stored in BX.

Instruction Set of 8086:

The sequence of commands used to tell a microcomputer what to do is called a
program,

Each command in a program is called an instruction

The entire group of instructions that a microprocessor supports is called Instruction
Set. 8086 has more than 20,000 instructions.

Classification of Instruction Set:

1. Data Transfer Instructions

2. Arithmetic instructions

3. Bit Manipulation Instructions

4. Program Execution Transfer Instructions

5. String Instructions

6. Processor Control Instructions

Data Transfer Instructions:
These instructions are used to transfer data from source to destination.The operand
can be a constant, memory location, register or 1/O port address.Instructions to
transfer a word.
Data Transfer Instructions:

MOV

PUSH

POP

PUSHA

POPA
XCHG
XLAT
The MOV instruction copies a word or byte of data from a specified source to a

specified destination

Data Transfer Instructions
MOYV Des, Src:

Src operand can be register, memory location or immediate
operand.

Des can be register or memory operand.

Both Src and Des cannot be memory location at the same
time.

Peg*
MOV CX, o37A H
MOV AL, BL.

MOV BX, [o301 H]
MOV:

= MOV-
Move byte or word to register or memory

MOV Destination, Source

e MOV CX, O45FH
e MOV BL, [43E4H]
e MOV AX, DX

- MOV DH, [BX]

- MOV DS, BX

PUSH:

PUSH Operand:
It pushes the operand into top of stack.
E.g.: PUSH BX

POP Des:
It pops the operand from top of stack to Des.

Des can be a general purpose register, segment register
(except CS) or memory location.

E.g.: POP AX

XCHG

XCHG Des, Src:

This instruction exchanges Src with Des.

It cannot exchange two memory locations directly.
E.g.: XCHG DX, AX

Instructions for input and output port transfer

IN Accumulator, Port Address:

It transfers the operand from specified port to accumulator
register.

E.g.: IN AX, co28 I

OUT Port Address, Accumulator:
It transfers the operand from accumulator to specified port.

E.g.: OUT o028 H, AX

LOAD INSTRUCTION

LEA Register, Src:

It loads a 16-bit register with the offset
address of the data specified by the Src.

B lbes sbe oAl

This instruction loads the contents of DI
(offset) into the BX register.

Arithmetic Instructions:
This instructions are use to perform the arithmetic operations like +,-,*,/,etc.

Instructions to perform addition

ADD Des, Stc:
It adds a byte to byte or a word to word.

It effects AF, CF, OF, PF, SF, ZF flags.

E.g.:
ADID AL, 7qH
ADIDD OX, AX
ADD AX, [BX]

ATDDDC Des, Src:
It adds thhe two operands with CF.

It effects AF, CF, OF, PF, SF¥F, ZF flags.

E - -
ADC AT, 74
ATOC 1O, AX
ATIC A, [BX]

SUB Des, Src:
It subtracts a byte from byte or a word from word.
It effects AF, CF, OF, PF, SF, ZF flags.
For subtraction, CF acts as borrow flag,.
E.g-:
SUB AL, 74

SUB DX, AX
SUB AX, [BX]

SBB Des, Src:

It subtracts the two operands and also the
borrow from the result.

It effects AF, CF, OF, PF, SF, ZF flags_
=E -

SBB AL, 74H

SBB DX, AX

SBB AX, [BX]

INC Srxc:
It increments the byte or word by one.

The operand can be a register or memory
location.

It effects AF, OF, PF, SF, ZF flags.
CF is not effected.
E.g.: INC AX

IPDPEC Syc:
It decremments thhe byte or word by one.

The operand camn be a register Or Imernmnory
location.

It effects AF, OF, PF, SF, ZF flags.
CF is mot effected.

E.g: DEC AX

AAA (ASCII Adjust after Addition):

The data entered from the terminal is in ASCII format.

In ASCII, o — 9 are represented by 30H — 39H.

This instruction allows us to add the ASCII codes.

This instruction does not have any operand.

Other ASCII Instructions:
AAS (ASCII Adjust after Subtraction)
AAM (ASCII Adjust after Multiplication)
AAD (ASCII Adjust Before Division)

DAA (Decimal Adjust after Addition)

It is used to make sure that the result of adding two BCD
numbers is adjusted to be a correct BCD number.

It only works on AL register.

DAS (Decimal Adjust after Subtraction)

It is used to make sure that the result of subtracting two
BCD numbers is adjusted to be a correct BCD number.

It only works on AL register.

NEG Src:

It creates 2’s complement of a given
number.

That means, it changes the sign of a
number.

CMP Des, Src:
It compares two specified bytes or words.

The Src and Des can be a constant, register or memory
location.

Both operands cannot be a memory location at the same
time.

The comparison is done simply by internally subtracting
the source from destination.

The value of source and destination does not change, but
the flags are modified to indicate the result.

MUL Src:
It is an unsigned multiplication instruction.

It multiplies two bytes to produce a word or two words to
produce a double word.

AN — AL hre

DX : AX = AX ™ Src

This instruction assumes one of the operand in AL or AX.
Src can be a register or memory location.

IMUL Src:

It is a signed multiplication instruction.

DIV Src:

[t is an unsigned division instruction.
[t divides word by byte or double word by word.

The operand is stored in AX, divisor is Src and the
result is stored as:

AH = remainder AL = quotient

IDIV Src:

[t is a signed division instruction.

CBW (Convert Byte to Word):
This instruction converts byte in AL to word in AX.

The conversion is done by extending the sign bit of AL
throughout AH.

CWD (Convert Word to Double Word):

This instruction converts word in AX to double word in
e A%

The conversion is done by extending the sign bit of AX
throughout DX.

Bit Manipulation Instructions:

These instructions are used at the bit level i.e. operations like logic &shift etc
These instructions can be used for:

Testing a zero bit

Set or reset a bit

Shift bits across registers

Logical Shift Rotate
e NOT e SAL e ROL
« AND e SHL e RCL
e OR e SAR e ROR
e XOR e SHR e RCR
e TEST

NOT Src:

It complements each bit of Src to produce 1’s
complement of the specified operand.

The operand can be a register or memory location.

NOT Destination

e NOT BX

[Type text]

[Type text] [Type text]

AND Des, Src:

It performs AND operation of Des and Src.

Src can be immediate number, register or memory
location.

Des can be register or memory location.

Both operands cannot be memory locations at the same
time.

CF and OF become zero after the operation.

PF, SF and ZF are updated.

AND pDestination, Source

« AND BH, CL
e AND CX, [SI]
« AND BX, OOFFH
= AND DX, BX

OR Des, Src:

It performs OR operation of Des and Src.

Src can be immediate number, register or memory
location.

Des can be register or memory location.

Both operands cannot be memory locations at the same
time.

CF and OF become zero after the operation.

PF, SF and ZF are updated.

[Type text] [Type text] [Type text]

XOR Des, Src:

It performs XOR operation of Des and Src.

Src can be immediate number, register or memory
location.

Des can be register or memory location.

Both operands cannot be memory locations at the same
time.

CF and OF become zero after the operation.

PF, SF and ZF are updated.

XOR Destination, Source

e XOR BH, CL
e XOR BP, DI
e XOR DX, BX

SHL Des, Count:

It shift bits of byte or word left, by count.
It puts zero(s) in LSBs.
MSB is shifted into carry flag.

If the number of bits desired to be shifted is 1, then the
immediate number 1 can be written in Count.

However, if the number of bits to be shifted is more than
1, then the count is put in CL register.

[Type text] [Type text] [Type text]

SAL / SHL Destination, Count

- SAL BX, O1
- SAL BP, CL
- MOV CL, O4H

- SAL AL, CL
B7Y B6 B5 B4 B3 B2 B1 BO

E—_1]/of{1[1]o]1]1]1
N N N

SHR Des, Count:
It shift bits of byte or word right, by count.
It puts zero(s) in MSBs.
LSB is shifted into carry flag.

If the number of bits desired to be shifted is 1, then the
immediate number 1 can be written in Count.

However, if the number of bits to be shifted is more than
1, then the count is put in CL register.

SHR 0 —F= —T= —J= —T= —t= —T= —= —1= —1—a= [F

Bit position: 7 6 5 4 3 2 1 0

[Type text]

[Type text] [Type text]

ROL Des, Count:

III—-—l—!nI 1-?9 1!;:1E1 1_i-—,,

It rotates bits of byte or word left, by count.
MSB is transferred to LSB and also to CF.

If the number of bits desired to be shifted is 1, then the
immediate number 1 can be written in Count.

However, if the number of bits to be shifted is more than
1, then the count is put in CL register.

o
o
@
Wl
g
0

s B, B, By

=

E IR ERE EEERER

ROR Des, Count:

It rotates bits of byte or word right, by count.
LSB is transferred to MSB and also to CF.

If the number of bits desired to be shifted is 1, then the
immediate number 1 can be written in Count.

However, if the number of bits to be shifted is more than
1, then the count is put in CL register.

[Type text] [Type text] [Type text]

RCL Instruction : RCL destination, count.

RCR Instruction : RCR destination, count.

a By Bs Bs By By B, By By

I N B B R N N
B

r Bs Bsg By By B; By oy cY

Program Execution Transfer Instructions:

These instructions cause change in the sequence of the execution of instruction.
This change can be through a condition or sometimes unconditional. The
conditions are represented by flags.

[Type text] [Type text] [Type text]

CALL Des:

This instruction is used to call a subroutine or function
or procedure,

The address of next instruction after CALL is saved onto
stack.

RET:

It returns the control from procedure to calling program.
Every CALL instruction should have a RET.

JMP Des:

This instruction is used for unconditional jump from
one place to another.

Jxx Des (Conditional Jump):

All the conditional jumps follow some conditional
statements or any instruction that affects the flag.

Loop Des:
This is a looping instruction.

The number of times looping is required is placed in the
CX register.

With each iteration, the contents of CX are
decremented.

ZF is checked whether to loop again or not.

[Type text]

Mnemonic

JA
JAE
B
JBE
JC
JE
JNC
JNE
JNZ
JPE
JPO
JZ

[Type text]

Meaning
Jump if Above
Jump if Above or Equal
Jump if Below
Jump if Below or Equal
Jump if Carry
Jump if Equal
Jump if Not Carry
Jump if Not Equal
Jump if Not Zero
Jump if Parity Even
Jump if Parity Odd
Jump if Zero

String Instructions

[Type text]

Conditional Jump Table

Jump Condition
CF=o0and ZF = o
CF=o0

CF=1
CF=10r72F =1
CF =1

ZF =1

CF=o0

ZF = o

ZF = o

PF =1

PF =0

ZF =1

String in assembly language is just a sequentially stored bytes or words.

There are very strong set of string instructions in 8086.

By using these string instructions, the size of the program is considerably reduced.

CMPS Des, Src:

It compares the string bytes or words.

SCAS String:

It scans a string.

It compares the String with byte in AL or with word in

AX.

[Type text] [Type text] [Type text]

MOVS / MOVSB /f MOVSW:

It causes moving of byte or word from one string to
another.

In this instruction, the source string is in Data Segment
and destination string is in Extra Segment.

SI and DI store the offset values for source and
destination index.

REP (Repeat):
This is an instruction prefix.

It causes the repetition of the instruction until CX
becomes zero.

E.g.: REP MOVSB STR1, STR2
It copies byte by byte contents.

REP repeats the operation MOVSB until CX becomes zero.

Processor Control Instructions:

These instructions control the processor itself.8086 allows to control certain
control flags that:
Causes the processing in a certain direction processor synchronization if more than

one microprocessor attached.

[Type text] [Type text] [Type text]

STC:

It sets thhe carxry flag to .

CI.C:

It clears thhe carryy flag to o.

CNVIC =

It complermments the carr>vyv flags.

STD:

It sets the direction flag to 1.

If it is set, string bytes are accessed from higher memory
address to lower memory address.

CLD:

It clears the direction flag to o.

If it is reset, the string bytes are accessed from lower
memory address to higher memory address.

[Type text] [Type text] [Type text]

Assembler Directives:

There are some instructions in the assembly language program which are not a part
of processor instruction set.

These instructions are instructions to the assembler, linker and loader.

These are referred to as pseudo-instructions or as assembler directives.

The assembler directives enable us to control the way in which a program
assembles and lists.

They act during the assembly of a program and do not generate any executable

machine code

ASSUME Directive

The ASSUME directive is used to tell the assembler that the name of the logical
segment should be used for a specified segment.

The 8086 works directly with only 4 physical segments: a Code segment, a data
segment, a stack segment, and an extra segment.

Example:

1. ASUME CS:CODE ;This tells the assembler that the logical segment named
CODE contains the instruction statements for the program and should be treated as
a code segment.

2. ASUME DS:DATA ;This tells the assembler that for any instruction which
refers to a data in the data segment, data will found in the logical segment DATA.
SEGMENT:

The SEGMENT directive is used to indicate the start of a logical segment.
Preceding the SEGMENT directive is the name you want to give the segment.

For example, the statement CODE SEGMENT indicates to the assembler the start
of a logical segment called CODE.

[Type text] [Type text] [Type text]

The SEGMENT and ENDS directive are used to “bracket” a logical segment
containing code of data.

ENDS (END SEGMENT):

This directive is used with the name of a segment to indicate the end of that logical
segment.

CODE SEGMENT: Start of logical segment containing code instruction
statements

CODE ENDS: End of segment named CODE

DB — Define Byte:

DB directive is used to declare a byte type variable or to store a byte in memory
location.

Example:

1. PRICE DB 49h, 98h, 29h ;Declare an array of 3 bytes, named as PRICE and
initialize.

2. NAME DB ‘ABCDEF’;Declare an array of 6 bytes and initialize with ASCII
code for letters

3. TEMP DB 100 DUP (?) ;Set 100 bytes of storage in memory and give it the
name as TEMP, but leave the 100 bytes uninitialized. Program instructions will
load values into these locations.

DW - Define Word

The DW directive is used to define a variable of type word or to reserve storage
location of type word in memory.

Example:

MULTIPLIER DW 437Ah ; this declares a variable of type word and named it as
MULTIPLIER. This variable is initialized with the value 437Ah when it is loaded

Into memory to run.

[Type text] [Type text] [Type text]

EXP1 DW 1234h, 3456h, 5678h ; this declares an array of 3 words and initialized
with specified values.

STOR1 DW 100 DUP (0); Reserve an array of 100 words of memory and
initialize all words with 0000.Array is named as STORL.

DD (DEFINE DOUBLE WORD):

The DD directive is used to declare a variable of type double word or to reserve
memory locations, which can be accessed as type double word.

Example

1. ARRAY DD 25629261H, will define a double word named ARRAY and
initialize the double word with the specified value when the program is loaded into
memory to be run. The low word, 9261H, will be put in memory at a lower address
than the high word.

DQ (DEFINE QUADWORD):

The DQ directive is used to tell the assembler to declare a variable 4 words in
length or to reserve 4 words of storage in memory.

Example

1. BIG_ NUMBER DQ 243598740192A92BH will declare a variable named
BIG_NUMBER and initialize the 4 words set aside with the specified number
when the program is loaded into memory to be run.

DT (DEFINE TEN BYTES):

The DT directive is used to tell the assembler to declare a variable, which is 10
bytes in length or to reserve 10 bytes of storage in memory.

Example

1.PACKED BCD DT 11223344556677889900 will declare an array named
PACKED_BCD, which is 10 bytes in length. It will initialize the 10 bytes with the

[Type text] [Type text] [Type text]

values 11, 22, 33, 44, 55, 66, 77, 88, 99, and 00 when the program is loaded into
memory to be run.

2. RESULT DT 20H DUP (0) will declare an array of 20H blocks of 10 bytes
each and initialize all 20 bytes to 00 when the program is loaded into memory to be
run.

END — END Directive

END directive is placed after the last statement of a program to tell the assembler
that this is the end of the program module.

The assembler will ignore any statement after an END directive.

ENDP — END PROCEDURE

ENDP directive is used along with the name of the procedure to indicate the end of
a procedure to the assembler

Example:

1. SQUARE_NUM PROCE ; It start the procedure ;Some steps to find the square
root of a number

2. SQUARE_NUM ENDP ;Hear it is the End for the procedure

EQU (EQUATE):

EQU is used to give a name to some value or symbol.

Each time the assembler finds the given name in the program, it replaces the name
with the value or symbol you equated with that name.

Example:

1. FACTOR EQU 03H ;at the start of your program, and later in the program you
write the instruction statement ADD AL, FACTOR. When the assembler codes this
instruction statement, it will code it as if you had written the instruction ADD AL,
O3H.

[Type text] [Type text] [Type text]

LENGTH:

LENGTH is an operator, which tells the assembler to determine the number of
elements in some named data item, such as a string or an array. Example:

1. MOV CX, LENGTH STRING1, for example, will determine the number of
elements in STRING1 and load it into CX.

EVEN

This EVEN directive instructs the assembler to increment the location of the
counter to the next even address if it is not already in the even address.

If the word is at even address 8086 can read a memory in 1 bus cycle.

If the word starts at an odd address, the 8086 will take 2 bus cycles to get the data.
A series of words can be read much more quickly if they are at even address.

When EVEN is used the location counter will simply incremented to next address
and NOP instruction is inserted in that incremented location

Example:

DATA1 SEGMENT,; Location counter will point to 0009 after assembler reads
‘next statement

SALES DB 9 DUP(?) ;declare an array of 9 bytes

EVEN ; increment location counter to 000AH

RECORD DW 100 DUP(0) ;Array of 100 words will start ;from an even address
for quicker read DATAL ENDS

PROC

The PROC directive is used to identify the start of a procedure. The term near or
far is used to specify the type of the procedure.

Example:

SMART PROC FAR ; This identifies that the start of a procedure named as

SMART and instructs the assembler that the procedure is far .

[Type text] [Type text] [Type text]

SMART ENDP

This PROC is used with ENDP to indicate the break of the procedure.

PTR

This PTR operator is used to assign a specific type of a variable or to a label.
Example:

1. INC [BX] ; This instruction will not know whether to increment the byte
pointed to by BX or a word pointed to by BX.

PUBLIC

The PUBLIC directive is used to instruct the assembler that a specified name or
label will be accessed from other modules.

Example:

PUBLIC DIVISOR, DIVIDEND; these two variables are public so these are
available to all modules.

EXTRN

If an instruction in a module refers to a variable in another assembly module, we

can access that module by declaring as EXTRN directive.

UNIT-II

Assembly Language Programming with 8086-
Programming with an assembler, Assembly Language example
programs. Stack structure of 8086, Interrupts and Interrupt service

routines, Interrupt cycle of 8086, passing parameters to procedures,
Macros.

Over the years, computer languages have been evolved from Low-Level to High-Level

Languages.

In the earliest days of computers, only Binary Language was used to write programs. The

computer languages are classified as follows:

(Computer Languages)

(Machine Language)
Usel s&0' sto Use mnemonics to
create instructions create instructions
Ex: Binary Language Assembly Language

Similar to
human langugae

COBOL, FORTRAN, BASIC
C, C++, JAVA

The examples of instructions for different languages can be given as:

C C++

JAVA

High Level Language

ADD A,B Assembly Language

100100111 Machine Language

H

Hardware

Machine Language(Low level language):

Low-Level language is the only language which can be understood by the computer. Low-

level language is also known as Machine Language.

The machine language contains only two symbols 1 & 0. All the instructions of machine
language are written in the form of binary numbers 1's & 0's. A computer can directly

understand the machine language.

Assembly Language

Processors deal only with binaries (1s and 0s).

‘Assembly Language’ is the human readable notation of ‘machine language’
‘Machine language’ is a processor understandable language.

Machine language is a binary representation and it consists of 1s and Os.

Machine language is made readable by using specific symbols called “mnemonics” in
Assembly Language.

Assembly language programming is the process of writing processor specific machine code
in mnemonic form.

Assembler: Converting the mnemonics into actual processor instructions (machine
language) and associated data using an assembler.

Assemblytanguage=> Assembler =>Machine|anguage
(Low level language)

Machine lanquage is only understand by the computers. Assembly language is only understand by human beings not

by the computers.

In machine language data only represented with the help of binary | Inassembly language data can be represented with the help

format(0s and 1s), hexadecimal and octadecimal. of mnemonics such as Mov, Add, Sub, End etc.

Machine language is very difficult to understand by the human Assembly language is easy to understand by the human being
beings. as compare to machine language.

Modifications and error fixing cannot be done in machine Modifications and error fixing can be done in assembly
language. language.

Machine language is very difficult to memorize so itis not possible | Easy to memorize the assembly language because some

to learn the machine language. alphabets and mnemonics are used.

Executionis fastin machine language because all datais already | Execution is slow as compared to machine language.

present in binary format.

There is no need of translator. The machine understandable formis | Assembler is used as translator to convert mnemonics into

the machine language. machine understandable form.

Machine language is hardware dependent. Assembly language is the machine dependent and it is not

portable.

Instruction Format for ALP
» The general format of an assembly language instruction is an Opcode followed by Operands

Opcode operandl, operand?2

EX: MOV A, #30
 This instruction mnemonic moves decimal value 30 to the 8086 Accumulator register.
« MOV A ----- Opcode
e 30----------- Operand(Single Operand)
» The same instruction when written in machine language will look like
- 01110100 00011110
 First 8 bit binary value represent the opcode MOV A
 The 2" 8 bit binary value represent the operand 30.

> Each line of an assembly language program is split into four fields as:

LABEL OPCODE OPERAND COMMENTS

LABEL.:
» A Label is an optional field
» Labels are symbolic names which are used to “identify”
« Label is commonly used for representing
— A memory location, address of a program, sub-routine, code portion etc
— Assembler insist strict format for labeling
— Labels are always suffixed by colon(:)
— Labels begin with a valid character ; labels can contain numbers from 0 to 9 and
special character_(underscore)
OPCODE:
» The Opcode tells the processor/controller what operations it has to do

Operands:
» The Operands provide the data and information required to perform the action specified by
the opcode. It is not necessary that all opcode should have Operands following them.
COMMENT:
« The symbol; represents the start of a comment. Assembler ignores the text in a line after the
; symbol while assembling the program

Example:

R R R R R R R

DELAY: MOV RO, #255; Load Register RO with 255

DIJNZ R1, DELAY; Decrement R1 and loop till R1=0

RET ; Return to calling program

R T T R R R R R R R R

; SUBROUTINE FOR GENERATING DELAY
; DELAY PARAMETR PASSED THROUGH REGISTER R1
; RETURN VALUE NONE,REGISTERS USED: RO, R1

PROGRMMING WITH AN ASSEMBLER

The Assembler performs the task of coding.

An Assembler converts the mnemonics of instruction along with data into their equivalent
object codes.

Assembler is a program that converts an assembly input file called as source file to an
object file.

In Assembly language programming, the mnemonics are directly used in the user programs.
Linker and Loader: Converts the object codes into an executable code.

Advantages of Assembly Language

The programming is easy as compared to machine language because the function of coding
is performed by the assembler.

The chances of error being committed are less because mnemonics are used instead of
numerical opcodes.

As the mnemonics are purpose suggestive, the Debugging is easier.

The constants and address locations can be labeled with suggestive labels, hence imparting
a more friendly interface to the user.

The memory control is in the hands of user and the results may be stored in a more user
friendly form.

Converting Source file to Executable file

TLabrary Fales

Source File 1

sy or e Eile]) = Biodule Assembler
(ool =13

¥

Db peck File 1

Seurce File 2
f.cngrss or e File]) |— o Iodule Azsembl er ff—n- Cpect File =2 |—
(Bl odul = -2

e ot o Hex Fils
Comoe e e

Linkear!
L ocator

- Abzolute Obpect Fil e b

Tachine Tode
(Hewx Fille)

The Assembly language programming is done by one of the popular assemblers called as
MASM(Microsoft Macro Assembler).

There are number of assemblers available like MASM , TASM & DOS assembler.

MASM can be used along with a LINK program to structure the codes generated by an
MASM in the form of an executable file.

MASM reads source program as an input and provides object files as output.

The LINK accepts the object file produced by the MASM and produces an EXE file.

Text Editor:

While writing a program for assembler, the first step to be considered is the Text editor

In the text editor, one can type the program and check the listing typed for any typing
mistake and syntax error.

Before quitting the program, one has to save the program.

After saving the text file with any name, one is free to start the Assembly process.

There are number of text editors are available in the market like Norton Editor[NE] , Turbo
C & Edlin etc..

Throughout this chapter, the NE is used.

Thus for writing a program in assembly language one need NE editor, MASM Assembler,
Linker and Debug utility of DOS(Disk Operating System)

Steps Involved in Assembly Program Development:

In the following section, the procedure for opening a file for a program, assembling it,
executing it and checking its results are described.

1. Entering a Program

2. Assembling a program
3. Linking a program

4. Using DEBUG

Before starting the process, ensure that all files namely
NE.COM(Nortan’sEditor), MASM.EXE(Assembler), LINK.EXE(Linker),
DEBUG.EXE(Debugger) are available in the same directory in which you are working.

1. Entering a Program:

Start the procedure with the following command after you boot the terminal and enter the
directory containing all the files mentioned
You will get a display as shown in figure

C>NE

Enter Filename:

Mortan'sEditor
press any key
to continue

MNortan's Editor opening screen

» Suppose one types filename as KMB.ASM as filename the screen will display as shown in
figure.

Enter Filename: KMB. ASM

Mortan'sEditor

press any key fo
continue

Mortan's Editor Alternative

* Press any of the keys you will get a display as shown in figure

KMB . ASM

Nortan's Editor opens a new file KMB.ASM

* Note that, every Assembly Language program, the extension .ASM must be there.

* The extension .ASM shows that it is an Assembly Language program file.

* Even if you type the file name without the .ASM extension, the assembler searches for the
file and if it is not found issues the command ‘File not found’.

» We can type the another type of command line, to get the same display

C>NE KMB.ASM

KMB . ASM

MNortan's Editor opens a new file KMB.ASM

* You can modify or save the file KMB.ASM with the command F3-E.

« Otherwise, simply quit the file to abandon the changes and exit NE with the command
F3-Q.

* Once the above procedure is completed, you may now focus on assembling the program.

* Note that all the commands and the displays shown in the above section are for Nortan’s
Editor.

* Note that be for quitting the editor program, the modified file should be saved, otherwise it
will be lost.

A program for KMB.ASM is shown in figure

ASSUME CS:CODE, DS:DATA
DATA SEGMENT
OPR1 DW 1234 H
OPR2 DW O002 H
RESULT DW 01 H DUP(?)

DATA ENDS

CODE SEGMENT

START MOV AX, DATA
MOV DS, AX
MOV AX, OPR 1
MOV BX, OPR 2
CLC
ADD AX, BX
MOV DI, OFFSET RESULT
MOV [DI], AX
MOV AH, 4CH
INT 21 H

CODE ENDS
END START

KBM.ASM

Fig. 3.9 A Program KMB.ASM in Norton's Editor

. Assembling a program

Microsoft Assembler MASM is easy to use and popular Assembler.

The main task of the Assembler program is to accept the text-assembly language program
file as an input and prepare an object file.

The text-assembly language program file is prepared by using any of the editors program
like NE.

The MASM accepts the file name only with the extension .ASM Even if the filename
without any extension is given as input, it provides .ASM extension to it.

To assemble the program one may enter the following command

C>MASM KMB
Or
C>MASM KMB.ASM

If any of the above command is entered, the screen displays as shown in figure

LA 3
B e T + " ok e "'1. =l s 2 IL-\. e
AP | I'-".I - = - -
o |
| 4 L0 58
»ject ename
filename [NUL.LST
L Reference[NU

Fig. 3.10 MASM Screen Display

Another command line is available in MASM that does not need any file name in the
command line, is given along with the corresponding display.

If you do not enter the filename as shown in figure 3.10 ,then you may enter it as a source
filename as shown in figure 3.11

The source filename is to be typed in the source filename with or without the extension
ASM

In the next line, the expected .OBJ filename is to be entered which creates the object file of
the ALP.

Fig. 3.11 MASM Alternative Screen Display

The .OBJ file is created with the entered name and the .OBJ extension.

If no filename is entered for it, before pressing any key, the new .OBJ file is created with
the same name as the source file and extension .OBJ

The .OBJ file contains the coded object modules of the program to be assembled.

On the next line, a filename is entered for the expected listing file of the source file , in the
same way as the object filename was entered.

The Listing file is automatically generated in the Assembly process.

The listing file is identified by the entered source filename and extension .LST.

Listing file contains the total offset map of the source files including labels, offset
addresses,opcodes, memory allotment for different labels and directives and relocation
information.

The Cross reference file name is also entered in the same way as for listing file.

Cross reference file file is used for debugging the source program.

It contains the statistical information like size of the file in the bytes, number of labels,
list of labels, routines to be called, etc.about the source program.

After the cross reference file name is entered the assembly process starts.

If the program contains syntax errors, they are displayed using error code number and the
corresponding line number at which they appear.

Once these syntax errors and warnings are taken care of by the programmer, the assembly
process is completed successfully.

The successful assembly process may generate the .OBJ, .LST, and CRF files which may
be further used by the linker programmer to link the object files and generate an executable
file(.EXE) form a object file .OBJ

The file generated by the MASM are further used by the program LINK.EXE to generate an
executable file of the source program

. Linking a program

The DOS linking program LINK.EXE links the different object modules of a source
program and function library routines to generate an executable code of the source program.
The main input to the linker is the .OBJ file that contains the object modules of the source
program

The linker program is invoked by the following options

C>LINK
Or
C>LINK KMB.OBJ

The .OBJ extension is a must for a file to be accepted by the LINK as a valid object file.

If no filenames are entered for these files, by default, the source filename is considered with
different extensions.

The LINK command display is shown in the FIG

Fig. 3.12 Link Command Screen Display

The option input libraries in the display expects any special library name of which the
functions were used by the source program.

The output of the LINK program is an executable file with entered filename and .EXE
extension

The executable filename can further be entered at the DOS prompt to execute the file

4, Usmg DEBUG

DEBUG.COM is a DOS utility that facilitates debugging and trouble shooting of ALP.

» All the processor resource and memory resource management functions are carried out by
the operating systems.

« The DEBUG utility enables you to have the control of these resources up to some extent.

» The Debug command at DOS prompt invokes the facility.

« A _(dash) signals the successful invoke operation of DEBUG , that is further used as
DEBUG prompt for debugging commands.

« The DEBUG command character display explain the DEBUG command entry procedure

C>DEBUG =

—-Syvmbol of <ENTER>key

-

Fig. 3.12 DEBUG Command Line and Prompt

» The list of generally used valid commands of DEBUG is given in table along with their
respective syntax

Table 3.1 DEBUG Commands
COMMAND Format/Formats Frunctions
CHARACTER
-R <ENTER> Display all Registers and flags
R reg<ENTER> Display specified register contents and
S1d contente RIS modify with the entered new contents.
contents
D <ENTER> Display 128 memory locations of RAM
starting from the current display pointer.
-D SEG:0OFFSET1 OFFSET2<ENTER> Display memory contents in SEG from
OFFSETI1 to OFFSET2.
£ <ENTER> Enter Hex data at current display pointer
SEG-OFFSET.
£ SEG:OFFSET1 <ENTER> Enter data at SEG:OFFSET1 byte by byte.

The memory pointer is to be incremented
by space key. data entry is to be completed
by pressing the <ENTER> key.

-

SEG:O0OFFSET1I OFFSETZ BYTE <ENTER> Fiii the memory area starting from

SEG:OFFSETI to OFFSET2 by the byte
BYTE.
3 SEG:0OFFSET1 Fill the area as ab with the
OFFSET2BYTE1.BYTE2.BYTE3<ENTER> sequence BYTEI BYTE2. BYTES3, etc.
-a <ENTER> Assemble from the current CS:IP.
a SEG:0FFSET <ENTER> Assemble the entered instruction
from SEG:OFFSET address.
u <ENTER> Unassemble from the current CS:IP.

-u SEG:0OFFSET <ENTER> Unassemble from the address
SEG:OFFSET.

-g <ENTER> Execute from current CS:IP. By modifying
CS and IP using R comman d this can be
used for any address.

g —OFFSET <ENTER> Execute from OFFSET in the current CS.

INT 21H

» There are some DOS functions available under INT21H.

« All the hardware resources (Memory, keyboard, CRT display, hard disk and floppy
disk drive) of DOS are handled by the instruction INT21H.

» The routines required to refer these resources are written as Interrupt Service Routines for
INT21H.

« Under this Interrupt, specific resource is selected depending on the value of AH.

« For example, if AH contains 09H, then CRT display is to be used for displaying a message.

» If AH contains 0AH, then keyboard is accessed.
The Interrupts are called function calls and the value in AH is called Function value

PROGRAMMING EXAMPLES:

* In this section, we sill study some programs which elucidate the
use of instructions, directives and some other facilities.

1. ALP for addition of two 8-bit numbers

ASSUME CS: CODE, DS: DATA
DATA SEGMENT
VAR1 DB 85H
VAR?2 DB 32H
RES DB ?
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA
MOV DS, AX
MOV AL, VAR1
MOV BL, VAR?2
ADD AL, BL
MOV RES, AL
MOV AH, 4CH
INT 21H
CODE ENDS
END START
END
2. ALP for Subtraction of two 8-bit numbers

ASSUME CS: CODE, DS: DATA
DATA SEGMENT
VAR1 DB 53H
VAR2 DB 2AH
RES DB ?
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA
MOV DS, AX
MOV AL, VAR1
MOV BL, VAR2
SUB AL, BL
MOV RES, AL
MOV AH, 4CH
INT 21H
CODE ENDS
END START
END

3. ALP for Multiplication of two 8-bit numbers

ASSUME CS: CODE, DS:DATA

DATA SEGMENT
VAR1 DB OEDH
VAR?2 DB 99H
RES DW ?
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA
MOV DS, AX
MOV AL, VAR1
MOV BL, VAR2
MUL BL
MOV RES, AX
MOV AH, 4CH
INT 21H
CODE ENDS
END START
END

4. ALP for division of 16-bit number with 8-bit number

ASSUME CS: CODE,DS:DATA
DATA SEGMENT
VARL DW 6827H
VAR?2 DB OFEH
QUO DB?
REM DB ?
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA
MOV DS, AX
MOV AX, VAR
DIV VAR2
MOV QUO, AL
MOV REM, AH
MOV AH, 4CH
INT 21H
CODE ENDS
END START
END

5ALP for addition of two 16-bit numbers

ASSUME CS: CODE, DS: DATA
DATA SEGMENT
VAR1 DW 8560H
VAR2 DW 3297H
RES DW ?
DATA ENDS

CODE SEGMENT
START: MOV AX, DATA
MOV DS, AX
MOV AX, VAR1
CLC
MOV BX, 0000H
ADD AX, VAR2
JNC K
INC BX
K: MOV RES, AX
MOV RES+2, BX
MOV AH, 4CH
INT 21H
CODE ENDS
END START
END

6. ALP for Subtraction of two 16-bit numbers

ASSUME CS:CODE,DS:DATA
DATA SEGMENT

VAR1 DW 8560H

VAR2 DW 3297H

RES DW ?
DATA ENDS
CODE SEGMENT
START:MOV AX,DATA
MOV DS,AX
MOV AX,VAR1
CLC
SUB AX,VAR2
MOV RES,AX
MOV AH,4CH
INT 21H
CODE ENDS
END START
END

7. ALP for Multiplication of two 16-bit numbers

ASSUME CS: CODE, DS: DATA, ES: EXTRA
DATA SEGMENT
OPR1 DW 5169H
OPR2 DW 1000H
DATA ENDS
EXTRA SEGMENT
RES DW 2 DUP(0)
EXTRA ENDS
CODE SEGMENTSTART:

MOV AX, DATA

MOV DS, AX ; REGISTER ADDRESIING MODE
MOV AX, EXTRA
MOV ES, AX ; REGISTER ADDRESIING MODE
MOV SI, OFFSET OPR1
MOV AX, [S1] ; INDEXED ADDRESSING MODE
MOV BX,0PR2 ; DIRECT ADDRESSING MODE
MUL BX ; REGISTER ADDRESSING MODE
MOV RES, AX ; DIRECT ADDRESSING MODE
MOV RES+2, DX ; DIRECT ADDRESSING MODE
INT O3H

CODE ENDS

END START

END
8. ALP to Sort a set of unsigned integer numbers in ascending/descending

order.
ASCENDING ORDER

ASSUME CS: CODE, DS: DATA
DATA SEGMENT
LIST DW 0125H,0144H,3001H,0003H,0002H
COUNT EQU 05H
DATA ENDS
CODE SEGMENT
START:MOV AX,DATA
MOV DS,AX
MOV DX,COUNT-1
BACK: MOV CX,DX
MOV SI, OFFSET LIST
AGAIN: MOV AX,[SI]
CMP AX,[SI+2]
JCGO
XCHG AX,[SI+2]
XCHG AX,[SI]
GO:INC Sl
INC SI
LOOP AGAIN
DEC DX
INZ BACK
INT 03H
CODE ENDS
END START
END

DESCENDING ORDER

PROGRAM:
ASSUME CS: CODE, DS:DATA
DATA SEGMENT
LIST DW 0125H,0144H,3001H,0003H,0002H

COUNT EQU 05H
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA
MOV DS, AX
MOV DX, COUNT-1
BACK: MOV CX, DX
MOV SI, OFFSET LIST
AGAIN: MOV AX, [SI]
CMP AX, [SI+2]
JAE GO
XCHG AX,[SI+2]
XCHG AX,[SI]
GO: INCSI
INC SI
LOOP AGAIN
DEC DX
INZ BACK
INT 03H
CODE ENDS
END START
D

MORE PROGRAMMING EXAMPLES:

1. Write an ALP to find factorial of number for 8086.
MOV AX, 05H
MOV CX, AX
Back: DEC CX
MUL CX
LOOP back
: results stored in AX
: to store the result at DOOOH
MOV [D000], AX

HLT

Write & program for addition of two numbers,

Solution The following program adds two 16-bit operands. There are various methods of
specilying operands depending upon the addressing modes that the programmer wants to use,

Accordingly, there may ba differant program listings to achiave a single programming goal. A skilled
programmer uses a simple logic and implements it by using a minimum number of instructions. Let
us now try o explain the following program:

ASSUME C5:CODE, D5:DATA
DATA SEGMENT

OPRL OW 1234H » 15T operand
OPRZ DW 0002H ; 2nd operand
RESULT DW 01 DUR(?) . A word of memory reserved for re-
sult
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA » Initialize data seqment
MOV DS, AX :
HOV X, OPR] . Take 1st operand fn AX
MOV BX, OPRE . Take Znd operand in BX
(LO + (lear previous carry 1f any
ADD AX, B . Add BX to A
MOV DI, OFFSET RESULT . Take offset of RESULT in DI
MOV (D17, AX » Storetheresultatmemory addressin DI
MOV AH, 4CH + Return to 005 prompt
INT 21H
CODE ENDS + (ODE segment ends

END START . Program ends

Write a program for the addition of a series of 8-bit numbers. The series containg 100({numbers).

Solution In the first program, we have implemented the addition of two numbers. In this program,
we show the addition of 100 (D) numbers. Initially, the resulting sum of the first two numbers will be
storad. To this sum, the third number will be added. This procedure will be repeated till all the num-
bers in the series are addad. A conditional jump instruction will be used to implement the counter
checking logic. The comments explain the purpose of each instruction.

ASSUME C5:CODE, D5:DATA
DATA SEGMENT

NUMLIST DB 524, 23H,-
COUNT EQU 1000

RESULT DW OLH DUP(?)
DATA ENDS
CODE SEGMENT
ORG 200H
START: MOV AX, DATA
MOV DS, AX
MOV CX, COUNT
KOR AX, AX

f0R BX, BX

MOV SI,OFFSET NUMLIST
AGAIN: MOV BL, [5I]
ADD AX, BX
INC 51

DEC CX
NZ AGATN

MOV DI, OFFSET RESULT
MOV [DI], AX

MOV AH, 4CH

INT Z1H

CODE ENDS

END START

Jata segment starts

List of byte numbers

Number of bytes to be added

One word 15 reserved for result
Data segment ends

Code segment starts at relative
address 0200h in code segment

c Initialize data segment

Number of bytes to be added in CX
Clear AY and CF

Clear BH for converting the byte to
word

Point to the first number in the
list

Take the first number in BL,BHis zero
Add AX with BX

Increment pointer to the byte 1ist
Decrement counter

o [fallnumbers are added,point to re-

¥

4
E]

sult

+ gestination and store it

Return to DOS

A program fo find out the largest number from a given unordered array of 8-bit numbers, stored in
the locations starting from a known address.

Solution Compare the ith number of the series with the (i+1)th number using CMP instruction.
It will set the flags appropriately, depending upon whether the ith number or the {(+1th number is
greater. If the ith number is greater than (/+1)th, leave it in AX (any register may be used). Other-
wise, load the (i+1)th number in AX, replacing the ith number in AX. The procedure is repeated till
all the members in the array have been compared.

ASSUME C5:CODE.
DATA SEGMENT
LIST DB S5ZH.
COUNT EQU OF

23H.

D5:DATA

SeH, 4E&H,

LARGEST DB O1H DUPCT)

;: Data segment starts

: List of byte numbers

: Mumber of bytes in the list

: One byte is reserved for the largest

number.
DATA ENDS : Data segment ends
CODE SEGMEMNT ; Code segment starts.
START: MOV AX, DATA ; Initialize data segment.
MOV D5, AX
MOV SI, OFFSET LIST
MOV CL. COUNT : Number of bytes in CL.
MOV AL, [511] : Take the first number in AL
AGALN: CMP AL, L[5I+1] : andcompare it with the next number.
JNL MEXT
MOV AL, [5I+1]
HWEXT: INC 51 : Increment pointer to the byte list.
DEC CL : Decrement counter.
JNZ AGATIN : If &1l numbers are compared, point to
result
MOV SI, OFFSET LARGEST ; destimation and store it.
MOV [SI], AL
MOV AH., 4CH ; Returnm to DOS.
INT Z1H
CODE ENDS
EMD START

Stack Structure of 8086:

Stack

The stack is a block of memory that may be used for temporarily storing the
contents of the registers inside the CPU.

It is a top-down data structure whose elements are accessed using the stack
pointer (SP)

SP is decremented by two as we store a data word into the stack

SP gets incremented by two as we retrieve a data word from the stack back to
the CPU register.

The process of storing the data in the stack is called ‘pushing into’ the stack.

The reverse process of transferring the data back from the stack to the CPU

register is known as ‘popping off” the stack.
The stack is essentially Last-In-First-Out (LIFO) data segment.
This means that the data which is pushed into the stack last will be on top

of stack and will be popped off the stack first.

Stack pointer:

The stack pointer is a 16-bit register that contains the offset address of the

memory location in the stack segment.

Stack segment

The stack segment have a memory block of a maximum of 64 Kbytes

locations,

Stack Segment register (SS)

Stack Segment register (SS) contains the base address of the stack segment in
the memory.

The Stack Segment register (SS) and Stack pointer register (SP) together
address the stack-top as explained below:

Let the content of SS be 5000H and the content of stack pointer be 2050H.
To find the current stack-top address, the stack segment register content is
shifted left by four bit positions.

The resulting 20 bit content is added with the 16 bit offset value, stored in the
stack point register.

In the above case, the stack-top address can be calculated as shown:

HOW WE CAN CALCULATE STACK TOP ADDRESS =

SS stack segment contain base address of stack segmentin memory

SS stack segment and SP make a address together stack top

SS stack segment contain 5000H
SP stack pointer contain 2050H

SS = 5000H

SP =2050H
SS = 0101 0000 0000 0000
10H*SS = 0101 0000 0000 0000 0000
SP = + 0010 0000 0101 0000

Stack top address = 0101 0010 0000 0101 0000

ss |~ I <— o

allowed stack l

SP Memory area

52050 H stack top

egisterin I € physical address

architecture

« If the stack top points to a memory location 52050H, it means that the
location 52050H is already occupied with the previously pushed data.

» The next 16 bit push operation will decrement the stack pointer by two, so
that it will point to the new stack-top 5204EH

» The decremented contents of SP will be 204EH. This location will now be
occupied by the recently pushed data.

» Thus for a selected value of SS, the maximum value of SP=FFFFH

« The segment can have maximum of 64K locations.

 If the SP starts with an initial value of FFFFH, it will be decremented by two

whenever a 16-bit data is pushed onto the stack.
 After successive push operations, when the stack pointer contains 0000H,
any attempt to further push the data to the stack will result in stack overflow.
« Each PUSH operation decrements the SP by 2. While Each POP operation
increments the SP by 2,

Stack Overflow Condition

LEARN AND GROW) SP after execution
of each instruction

“ mstoeion I
lnstructlok

push AX

50001 H

SP ﬁ““ 50002 H

A
allowed stack
Memory area

phttAded
platthtad
______ > W"VV‘ a3

* Suppose a main program is being executed by the processor.

« At some point during the execution of the program, all the registers in the
CPU may contain the useful data.

 If there is a subroutine CALL Instruction at this stage, there is a possibility
the all or some of the registers of the main program can be modified.

» This may result in loss of data.

It can be avoided by using the stack.

 After a procedure is called using the CALL instruction, the IP is incremented
to the next instruction.

» Then the contents of IP, CS and flag register are pushed automatically to the
stack.

« The control is then transferred to the specified address in the CALL
instruction i.e. starting address of the procedure. Then the procedure is
executed.

» After each PUSH operation SP will be modified . Thus all the registers can
be copied on to the stack.

 Now these registers may be used by the subroutine, since their original
contents are saved onto the stack.

« At the end of execution of subroutine, all the registers can get back their

original contents by popping the data from the stack.

Effect of PUSH and POP on SP

LEARN AND GROW R SO | After

£

A g Pop ins.

SS

SP

AX

4l

— s
POP BX| | 34FDH |
534FE BH- | 34FEH |
534FF H
PUSHAX | 2200 ! _ 3500H |

Interrupts and Interrupt Service Routines

Interrupt:
Interrupt means “Break the sequence of operation”.
« An Interrupt is an indicating event that needs immediate attention.

» The interrupts can be either hardware interrupts or software interrupts.

» The following image shows the types of interrupts we have in a 8086 microprocessor

Interrupts

N

Hardware Software
Interrupt Interrupt

N

Non-Maskable

Maskable Interrupt
Interrupt

Types of Interrupt

Hardware Interrupt:

« It is an electronic alerting signal sent to the processor from an external
device, like a disk controller or an external peripheral.

* The 8086 has two hardware interrupt pins, i.e. NMI and INTR.

* NMI is a non-maskable interrupt and INTR is a maskable interrupt having
lower priority.

« One more interrupt pin associated is INTA called interrupt acknowledge.

NMI

It is a single non-maskable interrupt pin (NMI) having higher priority than
the maskable interrupt request pin (INTR) and it is of type 2 interrupt.

When this interrupt is activated, these actions take place —
. Completes the current instruction that is in progress.
. Pushes the Flag register values on to the stack.

. Pushes the CS (code segment) value and IP (instruction pointer) value of the

return address on to the stack.

. IP is loaded from the contents of the word location 00008H.
. CS s loaded from the contents of the next word location 0000AH.
. Interrupt flag and trap flag are reset to 0.

INTR

The INTR is a maskable interrupt because the microprocessor will be interrupted

only if interrupts are enabled using set interrupt flag instruction.
It should not be enabled using clear interrupt Flag instruction.

The INTR interrupt is activated by an I/O port. If the interrupt is enabled and NMI
Is disabled, then the microprocessor first completes the current execution and

sends ‘0’ on INTA pin twice.

The first ‘0’ means INTA informs the external device to get ready and during the
second ‘0’ the microprocessor receives the 8 bit, say X, from the programmable

interrupt controller.
These actions are taken by the microprocessor —
. First completes the current instruction.
. Activates INTA output and receives the interrupt type, say X.

. Flag register value, CS value of the return address and IP value of the return

address are pushed on to the stack.
. IP value is loaded from the contents of word location X x 4
. CSis loaded from the contents of the next word location.

. Interrupt flag and trap flag is reset to O

Software Interrupts

Some instructions are inserted at the desired position into the program to create
interrupts. These interrupt instructions can be used to test the working of various

interrupt handlers. It includes —
INT- Interrupt instruction with type number

It is 2-byte instruction. First byte provides the op-code and the second byte

provides the interrupt type number. There are 256 interrupt types under this group.
Its execution includes the following steps —
. Flag register value is pushed on to the stack.

CS value of the return address and IP value of the return address are pushed

on to the stack.

IP is loaded from the contents of the word location ‘type number’ x 4

CS is loaded from the contents of the next word location.

Interrupt Flag and Trap Flag are reset to 0

The starting address for type0 interrupt is 000000H, for typel interrupt is 00004H
similarly for type2 is 00008H and so on. The first five pointers are dedicated

interrupt pointers. i.e. —
. TYPE 0 interrupt represents division by zero situation.

. TYPE 1 interrupt represents single-step execution during the debugging of a

program.

. TYPE 2 interrupt represents non-maskable NMI interrupt.

. TYPE 3 interrupt represents break-point interrupt.
. TYPE 4 interrupt represents overflow interrupt.

The interrupts from Type 5 to Type 31 are reserved for other advanced
microprocessors, and interrupts from 32 to Type 255 are available for hardware

and software interrupts.
INT 3-Break Point Interrupt Instruction

It is a 1-byte instruction having op-code is CCH. These instructions are inserted
into the program so that when the processor reaches there, then it stops the normal

execution of program and follows the break-point procedure.
Its execution includes the following steps —

Flag register value is pushed on to the stack.

CS value of the return address and IP value of the return address are pushed

on to the stack.

IP is loaded from the contents of the word location 3x4 = 0000CH

CS is loaded from the contents of the next word location.

Interrupt Flag and Trap Flag are reset to 0
INTO - Interrupt on overflow instruction

It is a 1-byte instruction and their mnemonic INTO. The op-code for this
instruction is CEH. As the name suggests it is a conditional interrupt instruction,
I.e. it is active only when the overflow flag is set to 1 and branches to the interrupt
handler whose interrupt type number is 4. If the overflow flag is reset then, the

execution continues to the next instruction.

Its execution includes the following steps —

Flag register values are pushed on to the stack.

CS value of the return address and IP value of the return address are pushed

on to the stack.
IP is loaded from the contents of word location 4x4 = 00010H
CS is loaded from the contents of the next word location.

Interrupt flag and Trap flag are reset to O

Software Interrupt:

It is caused either by an exceptional condition or a special instruction in the
instruction set

When the CPU is executing a program, an Interrupt breaks the normal
sequence of execution of instructions, Diverts it execution to some other
program called Interrupt service routine(ISR)

ISR is a program that tells the processor what to do when the interrupt
occurs.

Whenever an interrupt occurs the processor completes the execution of the
current instruction and starts the execution of an Interrupt Service Routine
(ISR) or Interrupt Handler.

After executing ISR, the control is transferred back again to the main
program which was being executed at the time of interruption.

Whenever a number of devices interrupt a CPU at a time, and if the processor
is able to handle them properly, it is said to have multiple interrupt

processing capability.

Interrupt Service Routines

Interrupt

_ISR

54
55 (RA)

For every interrupt, there must be an interrupt service routine (ISR),

or interrupt handler.

When an interrupt occurs, the microprocessor runs the interrupt service
routine,

For every interrupt, there is a fixed location in memory that holds the address
of its interrupt service routine, ISR.

The table of memory locations set aside to hold the addresses of ISRS is

called as the Interrupt Vector Table.

Interrupt Cycle of 8086:

Suppose an external device interrupts the CPU at the interrupt pin , either
NMI or INTR of the 8086,

While the CPU is executing an instruction in the program, the CPU first
completes the execution of the current Instruction.

The IP is then incremented to point to the next instruction.

The CPU acknowledges the requesting device on its INTA pin immediately if
it is a NMI, TRAP, or Divide by Zero.
If it is a INT request, the CPU checks the IF flag.

-If IF is set, then it is acknowledged by using INTA pin.

-If IF is not set(Reset), the interrupt requests are ignored.
Note that the responses to NMI, TRAP, and divide by zero Interrupt request
are independent of the IF flag.
After an Interrupt is occurred , the CPU computes the vector address from
the type of Interrupt.
When a microprocessor receives an interrupt signal it stops executing current
normnal program, save the status (or content) of various registers (IP, CS and
flag registers in case of 8086) in stack and
Then the processor executes a subroutine/procedure in order to perform the
specific task/work requested by the interrupt.
The subroutine/procedure that is executed in response to an interrupt is also
called Interrupt Service Subroutine (ISR).
At the end of ISR, the last instruction should be IRET
At the end of ISR, the stored status of registers in stack is restored to

respective registers, and the processor resumes the normal program execution

from the point {instruction) where it was interrupted

Interrupt Response Sequence

N

Main Program Stack-SS and SP IVT
ISRCS:ISR IP
o S vinesw ISR
PSW, MainCS, Main IP 0000:03FFH
SP-2 MainCS '
Sp-4 Main P
0000:0000H

¥

ISR

ISRPROC

ENDP

s IRET

Interrupt Vector Table:

Sl - "
M:- «‘p ———— l'vpe FFH Interrupt (Available) /

ot 003FCH —
o
A
g all; » » .
\‘\\ - :F J\-lll.lhll Interrupts
N
é\\ (224)
o o00g4n]__"YPe é1H Interrupt (Avalable)
moeo" 1:";‘1' 20H lﬁ(l'."ll;\f : Avallable) =)
—

Type 1FH Interrupt (Reserved)

0007CH
Reserved Interrupts

- - (27)

= i
X o
- I'ype O5H Interrupt (Reserved)
00014H R
00010H ' —
0000CH fype O3H Interrupt (Break Point)
00008H — '
Type 01H Interrupt Dedicated Interrupts
0004FH (Trap or Single step)
' (05)
[O003FH
o 1 .00002" |"“l' JOH Inter i‘.."if
(Divide by Zero)
1 e | FOO001H '

« Intel has reserved 1024 locations for Interrupt vector table.

« Each Interrupt requires 4 bytes, i.e 2 bytes for IP and CS of its ISR.

« Thus a total of 1024 bytes are required for 256 Interrupt types, hence the
Interrupt vector table starts at 0000: 0000 and ends at 0000:03FFH

« The IVT contains the IP and CS of all the interrupt types stored sequentially.

PROCEDURES

Whenever we have a series of instructions that we want to
execute several times ina program, we write the series of instructions
as a separate subprogram. We can then call this subprogram each time
we want to execute that series of instructions. This saves us from
having to write the series of instructions over and over each time we
want it to execute in the program. This subprogram is usually called a
subroutine or a procedure.

The CALL instruction in the main program loads the instruction
pointer with the starting address of the procedure. The next instruction
fetched then will be the first instruction of the procedure. At the end
of the procedure a return instruction, RET, sends execution back to
the next instruction after the CALL in the main line program.

MAIN LINE PROGRAM

PROCEDILIRE

— || | =

|

|

|

!

e | |

------------ . \ B |
' RET v

The CALL instruction performs two operations when it executes.
First it stores the address of the instruction after the CALL
instruction on the stack. The second operationis load the instruction
pointer with the starting address of the procedure. The RET copiesa
word from the top of the stack to the instruction pointer register.

A near call is a call to a procedure which is in the same code
segment as the CALL instruction. A far call is a call to a procedure
which is in a different segment from which contains the call
instruction.

A stack is a section of memory set a side for storing return
addresses. The stack is also used to save the contents of the registers
for the calling program while a procedure executes. An other use of
the stack is to hold data or addresses that will be acted upon by a
procedure.

An important point about the operation of the stack is that the SP
register is automatically decremented by 2 before a word is written to
the stack. This means that at the start of your program you must
initialise the SP register to point to the top of the memory you set
aside as a stack, rather than initialising it to point to the bottom
location.

If the 8086 executes a near CALL instruction, the SP register will
automatically be decremented by 2 and contents of IP register will be
written to the stack.

When a near RET instruction executes, the IP value stored in
the stack will be copied back to the IP register and the SP register
will be automatically incremented by 2.

PROC:

The PROC directive is used to identify the start of a procedure.
The PROC directive follows a name you give the procedure. After the
PROC directive the term NEAR or FAR is used to specify the type of
the procedure.

Factorial PROC near

RET
Factorial ENDP

ENDP :- [end procedure]

This directive is used along with the name of the procedure

to indicate the end of aprocedure to the assembler.

SQUARE_ROOT PROC NEAR

SQUARE_ROOT
ENDP

Passing Parameters to Procedures

Procedures

Procedure is a part of code that can be called from your program in order to

make some specific task.

Procedures make program more structural and easier to understand.
Generally procedure returns to the same point from where it was called.
The syntax for procedure declaration:

name PROC

; here goes the code
; of the procedure ...

RET
ENDP

name - is the procedure name, the same name should be in the top and the

bottom, this is used to check correct closing of procedure.

Procedures or subroutines may require input data or constants for their

execution.

Their data or constants may be passed to the subroutine by the main
program or some subroutine may access readily available data of constants

available in memory.

The following are the techniques used to pass input data/parameter to
procedures in ALP

e

5.

Using Global declared Variable
Using registers of CPU architecture.
Using Memory locations.

Using stack.

Using PUBLIC & EXTRN

» If a procedure is interactive it may directly accepts inputs from input

devices.

Using Global declared Variable

A variable or parameter label may be declared global in the main program
and the same variable can be used by all the routines or procedures of the

application
Example:

ASSUME CS: CODE1,DS: DATA
DATA SEGMENT
NUMBER EQU 77H GLOBAL

DATA ENDS

CODE1 SEGEMENT
START: MOV AX,DATA
MOV DS, AX

MOV AX, NUMBER

CODE1 ENDS

ASSUME CS: CODE2
CODEZ2 SEGEMENT
MOV AX,DATA
MOV DS, AX
MOV BX, NUMBER

CODEZ ENDS

END START
Using reqgisters of CPU Architecture.

The CPU general purpose registers may be used to pass parameters to the

procedures.

The main program may store the parameters to be passed to the procedure

in the available CPU registers and the procedure may use the same register

contents for execution.

« Example:
ASSUME CS: CODE
CODE SEGEMENT
START: MOV AX,5555H
MOV BX, 7272H

CALL PROCEDURE1

PROCEDURE PROCEDURE1 NEAR
ADD AX, BX

RET
PROCEDURE1 ENDP
CODE ENDS
END START
Using Memory locations.

* Memory locations may also be used to pass parameters to procedures in the
same way as registers.

* A main program may store the parameter to a procedure at known memory
address location and the procedure may use the same location for accessing
the parameter.

Example:
ASSUME CS: CODE1,DS: DATA
DATA SEGMENT
NUMBER DB [55H]
COUNT EQU 10H
DATA ENDS
CODE1 SEGEMENT
START: MOV AX,DATA

MOV DS, AX

CALL ROUTINE

PROCEDURE ROUTINE NEAR
MOV BX,NUMBER
MOV CX, COUNT
ADD AX, BX

ROUTINE ENDP
CODE ENDS
END START

Using Stack Memory

Stack can be used to pass parameters to a procedure

A main program may store the parameters to be passed to a procedure in

its CPU registers.

The registers will further be pushed on to the stack. The procedure during

its execution pops back the appropriate parameters as and when required.

Example:

ASSUME CS: CODE,SS: STACK
CODE SEGEMENT
START: MOV AX,5555H

MOV BX, 7272H

PUSH AX
PUSH BX
CALL ROUTINE

PROCEDURE ROUTINE NEAR

MOV DX,SP
ADD SP, 02
POP AX
POP BX

MOV SP, DX
STACK SEGMENT
STACK DATA DB 200H DUP(?)
STACK ENDS
END START

Using PUBLIC & EXTRN

For passing parameters to procedures using the PUBLIC & EXTRN
directives, may be declared PUBLIC in the main routine and the same
should be declared EXTRN in the procedure.

Thus the main program can pass the PUBLIC parameters to a procedure
in which it is declared EXTRN

Example:

ASSUME CS: CODE,DS: DATA

DATA SEGMENT

PUBLIC NUMBER EQU 200H

DATA ENDS

CODE SEGEMENT

START: MOV AX,DATA
MOV DS, AX

CALL ROUTINE

PROCEDURE ROUTINE NEAR
EXTRN NUMBER
MOV AX,;NUMBER

ROUTINE ENDP
CODE ENDS
END START

MACROS

It is a label assigned with the repeatedly appearing string of instructions.

The process of assigning s label or macro name to the string is called

macro.
A macro within a macro is called nested macro

The macro name or macro definition is then used throughout the main

program to refer to that string of instructions.

Difference between Macro and Procedure

In the macro, the complete code of string instruction is inserted at each

place where the macro name appears.
Hence for Macro, the EXE file becomes lengthy.

Procedure/ subroutine is called whenever necessary. i.e. the control of

execution is transferred to the subroutine every time it is called.

So the EXE file becomes smaller as the subroutine appears only once in the

code.
Macro does not utilize the service of stack.
Procedure/Subroutine utilize the service of stack.

There is no question of transfer of control as the program using macro
inserts the complete code of the macro at every reference of the macro

name.
The control is transferred to the subroutine/Procedure whenever it is called

Macro requires large memory space compared to the procedure(less

memory space) as it inserts the entire code in the program.

Macro requires less time for execution, as it does not contain CALL and

RETURN instructions as the subroutines do.

Defining a Macro

A Macro can be defined anywhere in the program using the directives
MACRO and ENDM.

The label prior to MACRO is the macro name which should be used in the

actual program.

The ENDM directive marks the end of the instructions or statements

sequence assigned with the MACRO name.
The following MACRO DISPLAY displays the message MSG on the CRT.
The syntax is given as

DISPLAY MACRO
MOV AX,SEG MSG
MOV DS, AX

MOV DX,0FFSET MSG
MOV AH,09H

INT 21H

ENDM

The above definition of the macro assigns the name DISPLAY to the

instruction sequence between the directives MACRO and ENDM.

While assembling, the above sequence of instructions will replace label
DISPLAY, whenever it appears in the program.

A MACRO may also be used to represent statements and directives.

The concept of macro remains the same independent of its contents.

The following example shows the MACRO containing the statements. The

macro defines the strings to be displayed

STRINGS MACRO

MSG1 DB 0AH,0DH, “Program terminated normally”, 0AH,0DH, “$”
MSG2 DB 0AH,0DH, “Retry, Abort, Fail”, 0AH,0DH, “$”

A macro may be called by its name, along with any values to be passed to
the macro.

Calling a macro means inserting the statements and instructions represented
by the macro directly at the place of the macro name in the program.

Passing parameter to a MACRO

Using parameters in a definition, the programmer specifies the parameters

of the macro those are likely to be changed each time the macro is called.

For example, DISPLAY macro written in program can be made to display
to different messages MSG1 and MSG2, as shown

DISPLAY MACRO
MOV AX,SEG MSG
MOV DS, AX
MOV DX,OFFSET MSG
MOV AH,09H
INT 21H
ENDM

Parameters MSG can be replaced by MSG1 and MSG2 while calling the
macro as shown

DISPLAY MSG1

MSG1 DB 0AH,0DH, “Program terminated normally”, 0AH,0DH, “$”
MSG2 DB 0AH,0DH, “Retry, Abort, Fail”, 0)AH,0DH, “$”

All the parameters are specified in the definition execute sequentially and

also in the call with the same sequence.

All the directives available in MASM can also be used in a macro and carry

the same significanc

Unit-1V

Computer Arithmetic: Introduction, Addition and Subtraction,
Multiplication Algorithms, Division Algorithms

Input-Output Organization: Peripheral Devices, Input-Output
Interface, Asynchronous data transfer, Modes of Transfer, Priority
Interrupt, Direct memory Access, Input —Output Processor (IOP).

COMPUTER ARITHMETIC

Introduction:

Data is manipulated by using the arithmetic instructions in digital computers.

Data is manipulated to produce results necessary to give solution for the

computation problems.

The Addition, subtraction, multiplication and division are the four basic arithmetic

operations.

Using these operations other arithmetic functions can be formulated and scientific

problems can be solved by numerical analysis methods.

Arithmetic Processor:

It is the part of a processor unit that executes arithmetic operations.

The arithmetic instructions definitions specify the data type that should be
present in the registers used .

The arithmetic instruction may specify binary or decimal data and in each
case the data may be in fixed-point or floating point form.

Fixed point numbers may represent integers or fractions.

The negative numbers may be in signed magnitude or signed-2’s
complement representation.

The arithmetic processor is very simple if only a binary fixed point add
instruction is included.

It would be more complicated if it includes all four arithmetic operations for

binary and decimal data in fixed and floating point representations.

Algorithm

Algorithm can be defined as a finite number of well defined procedural steps

to solve a problem.

» Usually, an algorithm will contain a number of procedural steps which are
dependent on results of previous steps.

« A convenient method for presenting an algorithm is a flowchart which
consists of rectangular and diamond —shaped boxes.

* The computational steps are specified in the rectangular boxes and the
decision steps are indicated inside diamond-shaped boxes from which 2 or
more alternate path emerge

Addition and Subtraction:

There are three ways of representing negative fixed point binary numbers:
1.Signed-magnitude representation ---- used for the representation of mantissa for
floating point operations by most computers.

2. Signed-1’s complement

3. Signed -2’s complement—Most computers use this form for performing
arithmetic operation with integers.

Addition and subtraction algorithm for signed-magnitude data:

The representation of numbers in signed-magnitude is familiar because it is used in
arithmetic calculations.

 Let the magnitude of two numbers be A & B.

* When signed numbers are added or subtracted, there are 4 different
conditions to be considered for each addition and subtraction depending on
the sign of the numbers.

* The conditions are listed in the table below. The table shows the operation to
be performed with magnitude(addition or subtraction) are indicated for

different conditions

Add Subtract magnitudes
SLNo | Operation | Magnitudes When A>B | When A<B | When A=B
1 (+A)+ [+B) +(A+B)
2 (+A) +(-B) +{ A-B) -(B-A) + A-B)
3 (-A)+(+B) -(A-B) +(B-A) + A-B)
4 (-A)+(-B) -(A+B)
5 (+A) - (+B) +{ A-B) -(B-A) + A-B)
6 (+A)-(-B) +(A+B)
7 [-A)-(+B) -{A+B)
8 (-A)-(-B) -[A-B) +(B-A) +(A-B)

» The last column is needed to prevent a negative zero. In other words, when

two equal numbers are subtracted, the result should be +0 not -0.

» The algorithm for addition and subtraction (from the table above):
Addition Algorithm:

» When the signs of A and B are identical, add two magnitudes and attach the

sign of A to the result.

* When the sign of A and B are different, compare the magnitudes and

subtract the smaller number from the larger.

» Choose the sign of the result to be the same as A if A>B or the complement
of sign of A if A<B.

 If the two magnitudes are equal, subtract B from A and make the sign of the

result positive.

Subtraction Algorithm:
* When the signs of A and B are different, add two magnitudes and attach the

sign of A to the result.

When the sign of A and B are identical, compare the magnitudes and
subtract the smaller number from the larger.

Choose the sign of the result to be the same as A if A>B or the complement
of sign of A if A<B.

If the two magnitudes are equal, subtract B from A and make the sign of the

result positive.

Hardware Implementation:

Let A and B are two registers that hold the numbers. AS and BS are 2, flip-
flops that hold sign of corresponding numbers.

The result is stored in A and AS and thus they form Accumulator register.
We need to perform micro operation, A+ B and hence a parallel adder is
required.

A comparator is needed to establish if A> B, A=B, or A=B, or A<B

We need to perform micro operations A-B and B-A and hence two parallel
subtractor are required.

An exclusive OR gate can be used to determine the sign relationship, that is,
equal or not.

Thus the hardware components required are a magnitude comparator, an

adder, and two subtractors

Reduction of hardware by using different procedure:

We know subtraction can be done by complement and add.

The result of comparison can be determined from the end carry after the
subtraction.

We find an adder and a complementer can do subtraction and comparison if

2’s complement is used for subtraction.

B, B register
' Mode Control
AVF] Complementer . M
Output -
¥ iy Parallel Addert -
S
Ag A register «—— Load Sum

Figure 1: Hardware for signed-magnitude addition and subtraction

AVF Add overflow flip flop. It hold the overflow bit when A & B are added.
Flip flop E —Output carry is transferred to E. It can be checked to see the
relative magnitudes of the two numbers.

A-B = A +(-B)= Adding A and 2’s complement of B.

The A register provides other micro operations that may be needed when the
sequence of steps in the algorithm is specified.

The complementer passes the contents of B or the complement of B to the
Parallel Adder depending on the state of the mode control M.

It consists of EX-OR gates and the parallel adder consists of full adder
circuits.

The M(Mode Control) signal is also applied to the input carry of the adder.
When input carry M=0, the sum of full adder is A +B.
WhenM=1,S=A+B’+1=A-B

Hardware algorithm: Flow Chart for Add and Subtract operations:

Subrrace operation Add operation

" Minuend in A Augend in 4
Subtrahend in & Addend in B

A. v B .“|, = [{.
A, =B, A, # B,
—_! {)
EA+~A+B + 1 [A~ A+vHB]
‘4»‘;"[. 0
4
i - | ave—r |
£)
A<BH \/
|
| A~ A l
¢
A~ A4+

-
A, A,

} 3 P)
(- END)
(resultisin A and A4,)

Figure 10-2 Flowchart for add and subtract operations.

» The EX-OR gate provides 0 as output when the signs are identical. It is 1
when the signs are different.

* A+ B iscomputed for the following and the sum is stored in EA:
1. When the signs are same and addition operation is required.
2. When the signs are different and subtract operation is required.

* The carry in E after addition indicates an overflow if it is 1 and it is
transferred to AVF, the add overflow flag

* A-B = A+ B’+1 computed for the following:

* 1. When the signs are different and addition operation is required.

2. When the signs are same and subtract operation is required. No overflow
can occur if the numbers are subtracted and hence AVF is cleared to Zero.
A 1 in E indicates that A > B and the number in A is the correct result. If
this number in A is zero, the sign AS must be made positive to avoid a
negative zero.

A 0 in E indicates that A< B. For this case it is necessary to take the 2’s
complement of the value in A.

In the algorithm shown in flow chart, it is assumed that A register has
circuits for micro operations complement and increment.

Hence two complement of value in A is obtained in 2, micro operations..

In other paths of the flow chart, the sign of the result is the same as the sign
of A, so no change in AS is required.

However, when A < B, the sign of the result is the complement of
original sign of A.

Hence the complement of AS stored in AS.

Final Result: As and A

Addition and Subtraction with signed-2’s complement Data

The addition of two numbers in signed-2's complement form consists of
adding the numbers with the sign bits treated the same as the other bits of the
number.

A carry-out of the sign-bit position is discarded.
The subtraction consists of first taking the 2's complement of the subtrahend
and then adding it to the minuend.
The register configuration for the hardware implementation is shown in

Figure below.

BR Register

|

V Complementer&Parallel Adder

I 3

Overflow

AC Register

Fig: Hardware for Signed 2/s complement for addition/ subtractioin,

Hardware implementation of signed 2’s complement for addition/subtraction

Here the sign bits are not separated from the registers and named it as
AC(Accumulator) and the B register(BR)

The leftmost bit in AC and BR represents the sign bits of the numbers.

The two sign bits are added or subtracted together with the other bits in the
complementer and parallel adder.

The overflow flip-flop V is set tol if there is an overflow.

The output of the carry in this case is discarded.

The algorithm for adding and subtracting two binary numbers in signed2's

complement representation is shown in the flow chart below

Algorithm for adding and subtracting numbers in 2’s

complement form:

Subtract Add

Minuend in AC Augend in AC
Subtrahend in BR Addend in BR

AC—AC+BR + 1 AC«AC + BR
Veoverflow Ve overflow

Algorithm for adding and subtracting numbers in 2’s complement form

The sum is obtained by adding the contents of AC and BR (including their
sign bits).

The overflow bit V is set to 1 if the exclusive-OR of the last two carries is 1,
and it is cleared to O otherwise.

The subtraction operation is accomplished by adding the content of AC to
the 2's complement of BR.

Taking the 2's complement of BR has the effect of changing a positive
number to negative, and vice versa.

An overflow must be checked during this operation because the two
numbers added could have the same sign.

The programmer must realize that if an overflow occurs, there will be an

erroneous result in the AC register.

Multiplication Algorithms:

Multiplication of two fixed-point binary numbers in signed-magnitude

representation is done with process of successive shift and adds operations.

» This process is best illustrated with a numerical example as follows:

23 10111 Multiplicand
19 > 10011 Multiplier
10111
10111
00000 —+
Q0000

10111
437 110110101 Product

Numerical example of Multiplication

« If the multiplier bit is equal to 1, the multiplicand is copied down; otherwise

zeros are copied down.
* The numbers copied down are shifted one position to the left from the

previous number.
» Finally, the numbers are added and their sum forms the product.

Hardware Implementation for Signed-Magnitude Data Multiplication:

B,
B register Sequence counter (SC)
Complementer and
parallel adder
(rightmost bit)
A, Ql Q.
0—»{ E > A register - Q register

Figure 5: Hardware for multiply operation

The hardware for multiplication consists of the equipment shown in Figure
above.

Initially, the multiplicand is in register B and the multiplier in Q.

Their corresponding signs are stored in the flip-flops Qs and Bs

Initially A is set to 0 as number of bits in the multiplicand.

The sequence counter SC is initially set to a number equal to the number of
bits in the multiplier.

The sum of A and B forms a partial product which is transferred to the EA
register.

Both partial product and multiplier are shifted to the right.

This shift will be denoted by the statement shr EAQ to designate the right
shift depicted in Figure above.

The least significant bit of A is shifted into the most significant position of
Q, the bit from E is shifted into the most significant position of A, and 0 is
shifted into E.

After the shift, one bit of the partial product is shifted into Q, pushing the
multiplier bits one position to the right.

In this manner, the rightmost flip-flop in register Q, designated by Q,, will
hold the bit of the multiplier, which must be inspected next.

The counter is decremented by 1 after forming each partial product.
When the content of the counter reaches zero, the product is formed and the

process stops.

Hardware Algorithm(Flow chart) Signed-Magnitude Data
Multiplication:

Medtipd y operation

Multiplicand in 8
Multiplier in Q

Al .-oleal
Ql .-oleal
A~0 E~0
SC *n |

shr £EAQ
SC «-SC — |

END
(product s in AQ)

Fig : Flowchart multiply operation on sign magnitude representation numbers
* Initially, the multiplicand is in B and the multiplier in Q. Their

corresponding signs are in Bs and Qs, respectively.

* The signs are compared, and both signs of A and Q are set to correspond to
the sign of the product since a double-length product will be stored in
registers A and Q.

* Registers A and E are cleared and the sequence counter SC is set to a

number equal to the number of bits of the multiplier.

» After the initialization, the low-order bit of the multiplier in Qn, is tested.

* If Qnis a1, the multiplicand in B is added to the present partial product in
A. If Qnis a 0, nothing is done.

» Register EAQ is then shifted once to the right to form the new partial
product.

» The sequence counter is decremented by 1 and its new value checked. If it is
not equal to zero, the process is repeated and a new partial product is
formed. The process stops when SC = 0.

* Note that the partial product formed in A is shifted into Q one bit at a time
and eventually replaces the multiplier.

« The final product is available in both A and Q, with A holding the most
significant bits and Q holding the least significant bits.

» The following table describes multiplication of binary numbers 10111(+23)
and 10011(+19) which are represented using Sign Magnitude

Representation.

Table : Numerical Example for Binary Multiplier

Multiplicand B = 10111

A Q sC

00000 10011 101
10111

Multiplier in O
Q. =1;add B
First partial product 10111

Shift right EAQ 01011 11001 100
QO.=1;add B 10111

Second partial product 00010

Shift right EAQ 10001 01100 011
Q. = 0; shift right EAQ 01000 10110 010
Q. = 0; shift right EAQ 00100 01011 001
Q.= 1;add B 10111

Fifth partial product 11011

Shift right EAQ 01101 10101 000
Final product in AQ = 0110110101

o0 oM

e QOO -

complement numbers)

Now Result is available in Registers A and Q. i.e. 0110110101 => 437 and

sign bit of A is 0. So result is +437.

The following table 3 describes multiplication of binary numbers
10011(+19) and 00110(+6)which are represented using Sign Magnitude

Representation.

Here Multiplicand is positive value, so Bs = 0. Here Multiplier is positive

value, so Qs = 0.

Now A = Bs+ Qs , i.e As is positive; when both Bs and Qs are equal

Booth Multiplication Algorithm (for

signed-2’s

Booth algorithm gives a procedure for multiplying binary integers in signed-

2's complement representation.

BR register

1

Sequence counter (SC)

Complementer and
parallel adder

AC register

On

Qn+|

s

OR register

— |

As in all multiplication schemes, Booth algorithm requires examination of

the multiplier bits and shifting of the partial product.

Prior to the shifting, the multiplicand may be added to the partial product,

subtracted from the partial product, or left unchanged according to the

following rules:

1. The multiplicand is subtracted from the partial product upon encountering
the first least significant 1 in a string of 1's in the multiplier.

2.The multiplicand is added to the partial product upon encountering the first 0
(provided that there was a previous 1) in a string of 0's in the multiplier.

3.The partial product does not change when the multiplier bit is identical to the

previous multiplier bit.

The hardware implementation of Booth algorithm requires the register
configuration shown in Figure.
Qn designates the least significant bit of the multiplier in register QR. An extra flip-

flop Qn+1is appended to QR to facilitate a double bit inspection of the multiplier.
The flowchart for Booth algorithm is shown in Figure .

MuITprY

!

C Multiplicand in R
Multiplier in QR

AC-— 0O
Q-.l*o
SC=—n

AC =~ AC + BR + 1 AC ~ AC + BR

(END)

AC and the appended bit Qn+1 are initially cleared to 0 and the sequence
counter SC is set to a number n equal to the number of bits in the multiplier.
The two bits of the multiplier in Qn and Qn+1 are inspected.

If the two bits are equal to 10, it means that the first 1 in a string of 1's has
been encountered. This requires a subtraction of the multiplicand from the
partial product in AC.

If the two bits are equal to 01, it means that the first O in a string of 0's has
been encountered. This requires the addition of the multiplicand to the
partial product in AC.

When the two bits are equal, the partial product does not change. An
overflow cannot occur because the addition and subtraction of the
multiplicand follow each other.

The next step is to shift right the partial product and the multiplier
(including bit Qn+1).

This is an arithmetic shift right (ashr) operation which shifts AC and QR
to the right and leaves the sign bit in AC unchanged.

The sequence counter is decremented and the computational loop is repeated
n times.

A numerical example of Booth algorithm is shown in Table 5. It shows the
step-by-step multiplication of (-9) x (-13) = + 117.

Here the multiplier in QR is negative and that the multiplicand in BR is also

negative. The 10-bit product appears in AC and QR and is positive.

BR = 10111
Q.Q..i BR +1=010001 AC QR Q.a SC

Initial 00000 10011 0 101
1 0 Subtract BR 01001
01001

ashr 00100 11001 1 100

1 1 ashr 00010 01100 1 011
01 Add BR 10111
11001

ashr 11100 10110 0 010

00 ashr 11110 01011 a 001
1 0 Subtract BR 01001
00111

ashr 00011 10101 1 000

Table : Example of Multiplication with Booth Algorithm
* Now Result is available in Registers AR and QR. i.e. 0001110101 =>+117.
ARRAY MULTIPLIER::

* An Array multiplier is implemented with combinational circuit.

» Consider the multiplication of two 2-bit numbers as shown in figure.

« The multiplicand bits are bl and bo; the multiplier bits are al and a0 and
the product is c3c2c1cO.

» The partial product is formed by multiplying a0 by b1b0.

» The multiplication of two bits such as ao and b0 produces a result 1 if both
bits are 1; otherwise , it produces a 0.

« This is identical to an AND operation and can be implemented with an AND
gate.

* As shown in the figure, the first partial product is formed by means of two
AND gates.

* The second partial product is formed by multiplying al by blb0 and is
shifted to one position to the left.

» The two partial products are added with two half adders circuits.

2 bit by 2 bit Array multiplier

b1 b0
a1l a0
aOb1 aObO0

al1b1 al1b0

c3 c2 =3 cO
l| 1] [\ T'I
] : Neee 4 ey
IHA — |

Division Algorithm:

* Division of two fixed-point binary numbers in signed magnitude
representation is performed with paper and pencil by a process of successive
compare, shift and subtract operations.

* Binary division is much simpler than decimal division because here the
quotient digits are either 0 or 1.

» The division process is described in Figure

Example of Division Operation:

Quotient = Q
Dividend = A

Divisor B =)
10001

Remainder
Hardware Implementation
B H':'i: STEr
Lomglementer and
parallel sgaer
[
— — On

{ﬁ:&r-}. O Ragister

Division Operation using Pen and Paper:

The divisor is compared with the five most significant bits of the dividend.
Since the 5-bit number is smaller than B, we again repeat the same process.
Now the 6-bit number is greater than B, so we place a 1 for the quotient bit
in the sixth position above the dividend.

Now we shift the divisor once to the right and subtract it from the
dividend.

The difference is known as a partial remainder because the division could
have stopped here to obtain a quotient of 1 and a remainder equal to the

partial remainder.

Hardware Implementation for Signed-Magnitude Data

In hardware implementation for signed-magnitude data in a digital
computer, it is convenient to change the process slightly.

Instead of shifting the divisor to the right, two dividends, or partial
remainders, are shifted to the left, thus leaving the two numbers in the
required relative position.

Subtraction is achieved by adding A to the 2's complement of B.

End carry gives the information about the relative magnitudes.

The hardware required is identical to that of multiplication.

FLOWCHART OF DIVIDE OPERATION

Dividend In AQ
DlvisorinB
|
R OB, shi EAQ
§Cen -1 !
AV

EAc-A+E'H

EACABY] [ABH]

AR AB !
0(A<B) AzB
EAA'B | [EA«A'B| | [EA«A+B Q1
DVF 1 VF 0 | |
§C ¢ 5C-1
0 ,{L ¢0
END
(Divide overflow) W

END
(Quotientin @
Remainderin R)

» Comparing a partial remainder with the divisor continues the process.

« If the partial remainder is greater than or equal to the divisor, the
quotient bit is equal to 1.

» The divisor is then shifted right and subtracted from the partial remainder. If
the partial remainder is smaller than the divisor, the quotient bit is 0 and no

subtraction is needed.

The divisor is shifted once to the right in any case. Obviously the result
gives both a quotient and a remainder.

Register EAQ is now shifted to the left with O inserted into Qn and the
previous value of E is lost.

The example is given in Figure to clear the proposed division process.

The divisor is stored in the B register and the double-length dividend is
stored in registers A and Q.

The dividend is shifted to the left and the divisor is subtracted by adding its
2's complement value.

End carry(E) gives the information about the relative magnitudes.

If E = 1, it signifies that A > B. The quotient bit 1 is inserted into Qn and the
partial remainder is shifted to left to the process.

If E =0, it signifies that A < B. So the quotient in Qn remains a 0.

The value of B is added to restore the partial remainder in A to restore to its
previous value.

The partial remainder is shifted to the left and the process is repeated again
until all quotient bits are formed.

The remainder is then found in register A and the quotient is in register Q.
Before showing the algorithm in flowchart form, we have to consider the

sign of the result and a overflow condition.

Considering the sign of the result and a Overflow condition.

FLOWCHART OF DIVIDE OPERATION

P———
 shIEAQ
Consic_lerin Normal
g the sign Division
of the Process
result and a
overflow
condition.
1
SC « §C41
0 ¢0
END
(Divide overflow)
END
(QuotientinQ
Remainderin R)

Initially, the dividend is in A & Q and the divisor is in B.

Sign of result is transferred into Q, to be the part of quotient. Then a constant
Is set into the SC to specify the number of bits in the quotient.

Since an operand must be saved with its sign, one bit of the word will be
inhabited by the sign, and the magnitude will be composed of n -1 bits.

The condition of divide-overflow is checked by subtracting the divisor in B
from the half of bits of the dividend stored in A.

If A> B, DVF is set and the operation is terminated before time.

If A < B, no overflow condition occurs and so the value of the dividend

Is reinstated by adding B to A.

Normal Division Process using Flowchart:

The division of the magnitudes starts by shl dividend in AQ to left in the
high-order bit shifted into E.

Note — If shifted a bit into E is equal to 1, and we know that EA > B as EA
comprises a 1 followed by n -1 bits whereas B comprises only n -1 bits). In
this case, B must be subtracted from EA, and 1 should insert into Q, for the
quotient bit.

If the shift-left operation (shl) inserts a O into E, the divisor is subtracted by
adding its 2’s complement value and the carry is moved into E.

If E = 1, it means that A > B; thus, Q, is set to 1. If E = 0, it means that A <
B and the original number is restored or reimposed by adding B into A.

Now, this process is repeated with register A containing the partial

remainder. After n-1 times, the final result is available in A and Q registers.

Example of Binary Division with Digital Hardware:

Divisor B = 10001 E A (o] 5C
ividend: 01110 00000 g
| EAQ 0 11100 00000
B+ 01111
=] 1 01011
SetQ, =1 1 01011 00001 A
shl EAQ 0 10110 00010
Add F + 1 01111
E=1 1 00101
Set Q, =1 1 00101 00011 E
ishl EAQ (1] 01010 00110
Add B+ 1 01111
IE=0;leave @, =0 0 11001 00110
Add B 10001 >
Restore remainder 1 01010
shl EAQ 0 10100 01100
Add B +1 01111
E =] 1 00011
SetQ, =1 | 00011 01101 1
shl EAQ 0 00110 11010
Add B + 1 D1111
E=0;leave 0, =0 0 10101 11010
Add B 10001
Restore remainder 1 o110 11010 | O
Neglect E
Remainder in A : 00110
IQuotientin Q: 11010

Input-Output Organization:

Contents:

Peripheral Devices,
Input-Output Interface,
Asynchronous data transfer,
Modes of Transfer,

Priority Interrupt,

Direct memory Access,

Input —Output Processor (I0P)

Peripheral Devices:

The Input / output organization of computer depends upon the size of computer
and the peripherals connected to it.

The 1/0 Subsystem of the computer, provides an efficient mode of communication
between the central system and the outside environment

Input/output devices attached to the computer are called Peripheral devices.
The most common input output devices are:

1) Monitor

1) Keyboard

1) Mouse

Iv) Printer

v) Magnetic tapes

Input Devices

Output Devices

Keyboard
Optical input devices

- Card Reader

- Paper Tape Reader

- Bar code reader

- Digitizer

- Optical Mark Reader
Magnetic Input Devices

- Magnetic Stripe Reader
Screen Input Devices

- Touch Screen

- Light Pen

- Mouse

Analog Input Devices

ASCIlI(American Standard Code for Information

Interchange)- Alphanumeric Characters:

Input/output devices that communicate with people and the computer are
usually involved in the transfer of Alphanumeric Information to and from
the device and the computer.

The standard binary code for the alphanumeric characters is ASCII

It uses 7 bits to code 128 characters.

ASCII code contains 94 characters that are printable and 34 characters that
are nonprinting characters used for various control functions.

Among 94, 26 used for uppercase letters, 26 used for lowercase letters,10 are
used for numerical and 32 are used for special characters.

34 control characters are used for routing and arranging the printed text in a
prescribed format

3 types of control characters:

1. Format Effectors (control the layout of printing includes BS-Back
space,HT-Horizontaltab, CR-Carriage Return)

2. Information Separators(used to separate data into paragraphs & pages
includes RS-record seperator and FS-file seperator)

3. Communication control characters (useful for transmission of text

between remote terminals includes STX-Start of text, ETX-End of text)

Input - Output Interface

Input Output Interface provides a method for transferring information
between internal storage and external 1/O devices.

Peripherals connected to a computer need special communication links for

interfacing them with the central processing unit.
» The purpose of communication link is to resolve the differences that exist
between the central computer and each peripheral.
The Major Differences are:-
1. Peripherals are electromechnical and electromagnetic devices and CPU and
memory are electronic devices. Therefore, a conversion of signal values may be
needed.
2. The data transfer rate of peripherals is usually slower than the transfer rate of
CPU and consequently, a synchronization mechanism may be needed.
3. Data codes and formats in the peripherals differ from the word format in the
CPU and memory.
4. The operating modes of peripherals are different from each other and must be
controlled so as not to disturb the operation of other peripherals connected to the
CPU.
To Resolve these differences, computer systems include special hardware
components between the CPU and Peripherals to supervises and synchronizes all
input and out transfers
These components are called Interface Units because they interface between the

processor bus and the peripheral devices.

1/0 BUS and Interface Module:

It defines the typical link between the processor and several peripherals as

shown in figure.

Processor

Input/output bus

The 1/0 Bus consists of data lines, address lines and control lines.

is i]
e = -
Interface Interface Interface
Keyboard
and Printer Magnetic
display disk
terminal

Connection of 1/0 bus to input-output devices

Data

Address

Control

The 1/0 bus from the processor is attached to all peripherals interface.

To communicate with a particular device, the processor places a device

address on address lines.

Each Interface decodes the address and control received from the 1/O

bus, interprets them for peripherals and provides signals for the

peripheral controller.

It is also synchronizes the data flow and supervises the transfer between

peripheral and processor.

Each peripheral has its own controller. For example, the printer controller

controls the paper motion, the print timing

The processor provides a function code in the control lines.

The control lines are referred as 1/O command.

The commands are as following:

Control command- A control command is issued to activate the peripheral
and to inform it what to do.

Status command- A status command is used to test various status conditions
in the interface and the peripheral.

Data Output command- A data output command causes the interface to
respond by transferring data from the bus into one of its registers.

Data Input command- The data input command is the opposite of the data

output.

I/0O Bus Versus Memory Bus:

To addition to communicate with 1/0, the processor must communicate with
the memory unit.

Like the 1/O bus, the memory bus contains data, address and read/write
control lines.

There are 3 ways that computer buses can be used to communicate with
memory and |/O:

I. Use two Separate buses , one for memory and other for 1/0

ii. Use one common bus for both memory and 1/O but separate
control lines for each.

Ii. Use one common bus for memory and 1I/O with common control
lines.

In the first method, the computer has independent sets of data, address and
control buses one for accessing memory and other for 1/0.

This is done in computers that provide a separate 1/0 processor (IOP).

» The purpose of IOP is to provide an independent pathway for the transfer of

information between external device and internal memory.

ISOLATED 1/O Bus Versus MEMORY MAPPED 1/0O Bus

Isolated 1/0O Bus :
The distinction between Memory transfer and 1/O transfer is made through

separate read and Write lines.
During an 1/O transfer, the 1/O read and 1/O write contro Isignals are enabled.

During an Memory transfer, the Memory read and Memory write contro Isignals

are enabled.
This configuration isolates all 1/O interface addresses from Memory Addresses.

e Separate (isolated) memory and /O address spaces
 Distinct input and output instructions
Memory Mapped 1/0 Bus:

e A single set of read/write control lines(no distinction between memory and
I/O transfer)

e Memory and I/O addresses share the common address space (reduces
memory address range available).

e No specific input or output instruction

e The same memory reference instructions can be used for 1/O transfers

e Considerable flexibility in handling 1/O operations

Example of I/O INTERFACE:
It consists of two data registers called ports, a control register, a status register, Bus

buffers and Timing and control circuits.

The chip select and register select determines the address assigned to interface.

. || PotA [l0data ,
] ‘| register |
Bidirectiona Bus § 101010

atabus buffers ;
: PortB | _10data
) I| register | :

] th
CPU Choselrt : fcs : _— 10

! Rl gy : Gl | oto00 | Device
o Registerselect: foc) amm E =

Oread | Control E

— R [Tsms | Status

Owite___+_fys ‘ [egister [¢——
CS R§1 RSO Register selected

0 x x None - data bus in high-impedence

1 0 0 Port A reaister

1T 0 1 Port B reaister

1 1 10 Control register

1T 1 1 Status register

Asynchronous Data Transfer:

Two units such as CPU and 1I/O interface are designed independently of each other
and the internal timing of each unit is independent of each other. In this case, the
two units are said to be asynchronous.
* This Scheme is used when speed of I/O devices does not match with
microprocessor, and timing characteristics of 1/O devices is not predictable.
* In this method, process initiates the device and checks its status. As a result,
CPU has to wait till 1/0 device is ready to transfer data.

* When device is ready CPU issues instruction for 1/O transfer. In this method

two types of techniques are used based on signals before data transfer.

I. Strobe Control

1. Handshaking
Strobe pulse
A strobe pulse is supplied by one unit to indicate the other unit when the transfer
has to occur(or time at which data is being transferred)
Handshaking
A control signal is accompanied with each data being transmitted to indicate the
presence of data The receiving unit responds with another control signal to
acknowledge receipt of the data.
Strobe Signal :
The strobe control method of Asynchronous data transfer employs a single control
line to time each transfer. The strobe may be activated by either the source or the
destination unit.

Data Transfer Initiated by Source Unit(source initiated strobe signal for data

transfer)
: Data Bus
Source . Destination
Unit Sirobe Unit
(a) Block Diagram
Data | valid data |

Strobe I l

(4 =3] Timing Diagram

Source-Initiated strobe for Data Transfer

* In the block diagram fig. (a), the data bus carries the binary information
from source to destination unit.

« Typically, the bus has multiple lines to transfer an entire byte or word.

» The strobe is a single line that informs the destination unit when a valid data
word is available.
» The timing diagram fig. (b) the source unit first places the data on the data
bus.
» The information on the data bus and strobe signal remain in the active state
to allow the destination unit to receive the data.
Data Transfer Initiated by Destination Unit(Destinaation initiated strobe

signal for data transfer)

] Data Bus
Source Strol Destination
Unit atrobe Unit
(a) Block IMagram
Data o Valid data *
Strobe

iby Timing Diagram

Destination-Initiated strobe for Data Transfer

* In this method, the destination unit activates the strobe pulse, to informing
the source to provide the data.

» The source will respond by placing the requested binary information on the
data bus.

» The data must be valid and remain in the bus long enough for the destination
unit to accept it.

* When accepted the destination unit then disables the strobe and the source

unit removes the data from the bus

Disadvantage of Strobe Signal:

The disadvantage of the strobe method is that, the source unit initiates the

transfer has no way of knowing whether the destination unit has actually

received the data item that was places in the bus.

Similarly, a destination unit that initiates the transfer has no way of knowing

whether the source unit has actually placed the data on bus. The Handshaking

method solves this problem

Handshaking

The handshaking method solves the problem of strobe method by
introducing a second control signal that provides a reply to the unit that

initiates the transfer.

Principle of Handshaking:

The basic principle of the two-wire handshaking method of data transfer is
as follow:

One control line is in the same direction as the data flows in the bus from the
source to destination.

It is used by source unit to inform the destination unit whether there a valid
data in the bus.

The other control line is in the other direction from the destination to the
source.

It is used by the destination unit to inform the source whether it can accept
the data. The sequence of control during the transfer depends on the unit that

initiates the transfer.

Source Initiated Transfer using Handshaking:

Data Bus

Source Unit IData Valid Destination
Unit

Data accepted

(a) Block Diagram

Source unit Destination Unit

Plhace the data on bus, -___\
Enable dara Flid Accept data from bus.

Enable dafa aocepied,
Disable dara valid.

Invalidate data on bus.) Disable data accepred.

Ready to accept data.

(b) Sequence of evenits

The sequence of events shows four possible states that the system can be at
any given time.

The source unit initiates the transfer by placing the data on the bus and
enabling its data valid signal.

The data accepted signal is activated by the destination unit after it accepts
the data from the bus.

The source unit then disables its data accepted signal and the system goes

into its initial state .

Destination Initiated Transfer Using Handshaking:

The name of the signal generated by the destination unit has been changed to
ready for data to reflects its new meaning.

The source unit in this case does not place data on the bus until after it
receives the ready for data signal from the destination unit.

From there on, the handshaking procedure follows the same pattern as in the
source initiated case.

The only difference between the Source Initiated and the Destination

Initiated transfer is in their choice of Initial sate

Data Bus

Source Data Valid Destination
Linit LUinit
Ready for data

(a) Block Diagram

: . Destination Unit
Source unit

Ready to accept data. _
Place the data on bus. Enable ready for data 4+
Enable data Valid. \

Disable dara valid. Accept data from bus.
- Disable ready for data.

Invalidate data on bus.

{b) Sequence of events

Destination-Initiated transfer using Handshaking

» Advantage of the Handshaking method:

The Handshaking scheme provides degree of flexibility and reliability
because the successful completion of data transfer relies on active
participation by both units.

If any of one unit is faulty, the data transfer will not be completed. Such an
error can be detected by means of a Timeout mechanism which provides an

alarm if the data is not completed within time.

Asynchronous Serial Transmission:

The transfer of data between two units is serial or parallel.

In parallel data transmission, n bit in the message must be transmitted
through n separate conductor path.

In serial transmission, each bit in the message is sent in sequence one at a
time.

Parallel transmission is faster but it requires many wires. It is used for short

distances and where speed is important.

 Serial transmission is slower but is less expensive.

» In Asynchronous serial transfer, each bit of message is sent a sequence at a
time, and binary information is transferred only when it is available. When
there is no information to be transferred, line remains idle.

 Inthis technique each character consists of three points :

I. Start bit
Ii. Character bit
Ii. Stop bit

« Start Bit- First bit, called start bit is always zero and used to indicate the
beginning character.

» Stop Bit- Last bit, called stop bit is always one and used to indicate end of
characters. Stop bit is always in the 1- state and frame the end of the

characters to signify the idle or wait state.

Character Bit- Bits in between the start bit and the stop bit are known as
character bits. The character bits always follow the start bit.

Asynchronous Serial Transmission

Start . . Hl.np
bi 4 Character bits * | bits

Asvnchronous Serial Transmission

Serial Transmission of Asynchronous is done by two ways:
a) Asynchronous Communication Interface

b) First In First out Buffer
Asynchronous Communication Interface:

Bidirectional Bus)
Data Bus Buffers o | Transmitte - Shift Transmit Data
Register Register
Cantral Transmitter | g nomitter clock
Chip select o Regioter control and jt——-—
—'F_"' Cs _; clack
m
ister select
L RS Timing 5 - _
And E Status Receiver Receiver clock
10 Read - Register contral |————
RD Control and clock
110 Wirite
—_—WR .
Receiver Shift Receive data
o m——
register register

It works as both a receiver and a transmitter.

Its operation is initialized by CPU by sending a byte to the control register.

The transmitter register accepts a data byte from CPU through the data bus

and transferred to a shift register for serial transmission.

The receive portion receives information into another shift register, and

when a complete data byte is received it is transferred to receiver register.

CPU can select the receiver register to read the byte through the data bus.
Data in the status register is used for input and output flags.
First In First Out Buffer (FIFO):

* A First In First Out (FIFO) Buffer is a memory unit that stores information
in such a manner that the first item is in the item first out.

* A FIFO buffer comes with separate input and output terminals.

The important feature of this buffer is that it can input data and output data
at two different rates.

When placed between two units, the FIFO can accept data from the source
unit at one rate, rate of transfer and deliver the data to the destination unit at
another rate.

If the source is faster than the destination, the FIFO is useful for source data
arrive in bursts that fills out the buffer.

FIFO is wuseful in some applications when data are transferred

asynchronously.

Modes of Data Transfer:

The data transfer can be handled by various modes.
Some of the modes use CPU as an intermediate path, others transfer the data

directly to and from the memory unit and

® This can be handled by 3 following ways:

I. Programmed 1/0O
Il. Interrupt-Initiated 1/0
Ii. Direct Memory Access (DMA)

Programmed I/O Mode

In this mode, Programmed 1/O operations are the results of I/O instructions
which is a part of computer program.

Each data transfer is initiated by a instruction in the program.

Normally the transfer is from a CPU register to peripheral device or vice-
versa.

Once the data transfer is initiated the CPU starts monitoring the interface to
see when next transfer can made.

The instructions of the program keep close tabs on everything that takes

place in the interface unit and the 1/O devices.
* In the Programmed I/O Mode, the CPU stays in the program loop until the
I/0 indicates that it is ready for data transfer.

Example of Programmed 1/O:
« An example of data transfer from an 1/O device through an interface into the

CPU is shown in figure:

Figure Data transfer from /O device to CPU.
Interface
_ Data bus 1/0 bus
Address bus Data register
CPU 1/0 read PR 1/0
e device
[/0 write Status
> register F Data accepted =
F = Flag bit

» The peripheral device transfers bytes of bytes of data one at a time when
they are available.

* When a byte of data is available, the device places it in the 1/0 bus and
enables data valid line.

» The interface accepts the data into its data register and enables data accepted
line.

* The interface sets a bit in the status register that is referred as Flag bit(F).

Databus | | Interface VO bus
Address bus ; 1o
CPU IO read - -{.—Datavald device

O wirite Data accepted
register

» A program is written for the computer too check for flag in status register to
determine if a byte has placed in the data register by the 1/0O device.

» This is done by reading the status register to a CPU register and checking
the value of flag bit.

« If F=1, CPU reads the data from data register.

» If F=0, CPUlinterface disables the data accepted line.

» A flowchart of the program is written for CPU is shown below

» Here the device is sending a sequence of bytes that must be stored in
memory.

» The transfer of data requires three instructions:

1. Read the status register.

2. Chfeck the status of the flag bit and branch to step 1 if not set or to step
3 if set.

3. Read the data register.

Flowchart:
» Read statusregister |
Check flag bit
.| Polling or Status Checking
flag - W it

=1 R + Continuous CPUinvolvement

P Fm— + CPU slowed down to 0 speed
Transfer data to memory + Simple
+Least hardware

Operation
omplete?

yes

Continue with
program

Drawback of the Programmed 1/0 :

The main drawback of the Program Initiated I/O was that the CPU has to
monitor the units all the times when the program is executing.

Thus the CPU stays in a program loop until the 1/O unit indicates that it is
ready for data transfer.

This is a time consuming process and the CPU time is wasted a lot in
keeping an eye to the executing of program.

To remove this problem an Interrupt facility and special commands are used.

Interrupt-Initiated 1/O :

In this method an interrupt facility called an interrupt command is used to
inform the device about the start and end of transfer.

In the meantime the CPU executes other program. When the interface
determines that the device is ready for data transfer it generates an Interrupt
Request and sends it to the computer.

When the CPU receives such an signal, it temporarily stops the execution of
the program and branches to a service program to process the 1/O transfer
and after completing it returns back to task, what it was originally
performing.

In this type of 10, computer does not check the flag. It continue to perform
its task.

Whenever any device wants the attention, it sends the interrupt signal to
the CPU.

CPU then deviates from what it was doing, store the return address from PC
and branch to the address of the subroutine.

There are two ways of choosing the branch address:

Vectored Interrupt

Non-vectored Interrupt

In vectored interrupt the source that interrupts the CPU provides the
branch information. This information is called interrupt vectored.

In non-vectored interrupt, the branch address is assigned to the fixed

address in the memory.

Priority Interrupt:

There are number of 10 devices attached to the computer.
They are all capable of generating the interrupt.
When the interrupt is generated from more than one device, priority
interrupt system is used to determine which device is to be serviced first.
Devices with high speed transfer are given higher priority and slow devices
are given lower priority.
Establishing the priority can be done in two ways:

Using Software

Using Hardware
A polling procedure is used to identify highest priority in software means.
Polling Procedure :
There is one common branch address for all interrupts.
Branch address contain the code that polls the interrupt sources in sequence.
The highest priority is tested first.
The particular service routine of the highest priority device is served.
The disadvantage is that time required to poll them can exceed the time to
serve them in large number of 10 devices.
Using Hardware:

Hardware priority system function as an overall manager

It accepts interrupt request and determine the priorities.

To speed up the operation each interrupting devices has its own interrupt
vector.

No polling is required, all decision are established by hardware priority
interrupt unit.

It can be established by serial or parallel connection of interrupt lines.

Serial or Daisy Chaining Priority:

Device with highest priority is placed first.

Device that wants the attention send the interrupt request to the CPU.

CPU then sends the INTACK signal which is applied to Pl(priority in) of
the first device.

If it had requested the attention, it place its VAD(vector address) on the bus.
And it block the signal by placing 0 in PO(priority out)

If not it pass the signal to next device through PO(priority out) by placing 1.
This process is continued until appropriate device is found.

The device whose Pl is 1 and PO is 0 is the device that send the interrupt

request
Processor data bus
VAD | VAD 2 l VAD 3
Device | Device 2 Device 3
To next
Pl FO | P/ PO (| P PO - deviea
Y
Interrupt request
e o| INT

CPU

Interrupt ack ledge
n enup ACKNOW lgL []\TA(V(

Parallel Priority Interrupt:

It consists of interrupt register whose bits are set separately by the
interrupting devices.

Priority is established according to the position of the bits in the
register.

Mask register is used to provide facility for the higher priority devices to

interrupt when lower priority device is being serviced or disable all lower
priority devices when higher is being serviced.

Corresponding interrupt bit and mask bit are ANDed and applied to priority
encoder.

» Priority encoder generates two bits of vector address.

» Another output from it sets IST(interrupt status flip flop).

Interrupt
register

- VAD
Disk 0 ——D—' lo 10 CPU
Printer — 4 D_ 0 -1 X
o
0
Reader ——— > L — o :
= = o
O
o
Q

Keyboard 3 4'__3_] I .
Enable
=
O e —— =5
N |
Interrupt
to CPU
2
INTACK
from CPU
A
Mask
registe

Priority Interrupt Hardware

Priority Encoder:

Determines the highest priority interrupt when more than one interrupts take place
If two or more inputs arrive at the same time, the input having the highest priority
will take precedence.

Input 10 has the highest priority and 13 has the lowest Priority.

Priority Encoder Truth Table

Inputs Outputs
do. Sl a1 X » ISF Boolean functions
1 X X ¢ 0 0 | 3 3
0 1 > pe 0 1 1 x = 1514
O SOEE X Y . 3 y =I4I, + I4F,
0 0 0 1 1 1 1 (IST)=1,+ 1, + 1, + I,
0 0 0 0 S 0

Priority Encoder Truth Table
INTERRUPT CYCLE:
» At the end of each Instruction cycle
. CPU checks IEN and IST

. If IEN o IST = 1, CPU -> Interrupt Cycle

SP«SP-1 Decrement stack pointer

M[SP] « PC Push PC into stack

INTACK « 1 Enable interrupt acknowledge

PC «~ VAD Transfer vector address to PC

IEN <« O Disable further interrupts

Go To Fetch to execute the first instruction
in the interrupt service routine

Direct Memory Access (DMA):

In the Direct Memory Access (DMA) the interface transfer the data into
and out of the memory unit through the memory bus.

The transfer of data between a fast storage device such as magnetic disk and
memory is often limited by the speed of the CPU.

Removing the CPU from the path and letting the peripheral device manage
the memory buses directly would improve the speed of transfer.

This transfer technique is called Direct Memory Access (DMA).

During the DMA transfer, the CPU is idle and has no control of the memory
buses.

A DMA Controller takes over the buses to manage the transfer directly
between the 1/0 device and memory.

The CPU may be placed in an idle state in a variety of ways. One common
method extensively used in microprocessor is to disable the buses through

special control signals such as:
Bus Request (BR)

Bus Grant (BG)

These two control signals in the CPU that facilitates the DMA transfer.

The Bus Request (BR) input is used by the DMA controller to request the
CPU.

When this input is active, the CPU terminates the execution of the current
instruction and places the address bus, data bus and read write lines into a
high Impedance state. High Impedance state means that the output is

disconnected.

CPU Bus signals for DMA Transfer:

ABLUS ——— Ml dress Bus

Bus Request BR

peUs |———Data Bus
High Impedance
(disable) when BG

is enable
Read

RI)

Bus Grant =] BG

WR — " Write

CI'U bus Signals for DMA Transfer
« The CPU activates the Bus Grant (BG) output to inform the external DMA
that the Bus Request (BR) can now take control of the buses to conduct
memory transfer without processor.
* When the DMA terminates the transfer, it disables the Bus Request (BR)
line.
« The CPU disables the Bus Grant (BG), takes control of the buses and return
to its normal operation.
» The transfer can be made in several ways that are:
I. DMA Burst
Ii. Cycle Stealing
DMA Burst :-

In DMA Burst transfer, a block sequence consisting of a number of memory

words is transferred in continuous burst while the DMA controller is master of
the memory buses.

Cycle Stealing:
* Cycle stealing allows the DMA controller to transfer one data word at a

time, after which it must returns control of the buses to the CPU

DMA Controller:

« The DMA controller needs the usual circuits of an interface to communicate
with the CPU and 1/O device. The DMA controller has three registers:
I. Address Register
1. Word Count Register
Iii. Control Register
I. Address Register :- Address Register contains an address to specify the
desired location in memory.
I. Word Count Register :- WC holds the number of words to be transferred
and internally tested for zero.
iii. Control Register :-
e Control Register specifies the mode of transfer
The unit communicates with the CPU via the data bus and control lines.
The registers in the DMA are selected by the CPU through the address bus by
enabling the DS (DMA select) and RS (Register select) inputs.

e The RD (read) and WR (write) inputs are bidirectional.

e When the BG (Bus Grant) input is 0, the CPU can communicate with the
DMA registers through the data bus to read from or write to the DMA
registers.

e When BG =1, the DMA can communicate directly with the memory by
specifying an address in the address bus and activating the RD or WR

control.

Block Diagram of DMA Controller

Address Bus

Data bus = - Dat:_: bus
buffers
DMA Select ——f DS
Remister Select ——* RS
Read =—+ RID
Write +=—+ WH
Bus Reguest =——] HBR
Bus Grant ——| BG
Interrupt *=— Interrupt

CerZam=2"

-
—

o o-

Address bus buffers

Address Register

o Word Count Register

Control Register

DM A Request

DM A Acknowledgment

to LAY devices

DMA Transfer:

Block Diagram of DMA Controller

& | Interrupt
BG Random-access
CPU memory unit (RAM)
—| BER
RD _ WR Addr __Data RD WR Addr_ Data
Il [t ry ry
Read control
I3
¥ Write control
F
¥ _Data bus ¥
& &
¥ Address bus
* r
Address
select
A4 ¥ ¥ v
RD WR Addr Data
Ds DMAack. -
*|RS DMA Vo
Controller Peripheral
BR device
—_—
BG - DMA request
Interrupt

* The CPU communicates with the DMA through the address and data buses
as with any interface unit.

» The DMA has its own address, which activates the DS and RS lines.

* The CPU initializes the DMA through the data bus. Once the DMA receives
the start control command, it can transfer between the peripheral and the
memory.

* When BG = 0 the RD and WR are input lines allowing the CPU to
communicate with the internal DMA registers.

* When BG=1, the RD and WR are output lines from the DMA controller to

the random access memory to specify the read or write operation of data.

Input-Output Processor:
« It is a processor with direct memory access capability that communicates

with 10 devices.

« |OP is similar to CPU except that it is designed to handle the details of 10
operation.

» Unlike DMA which is initialized by CPU, I10P can fetch and execute its own
instructions.

» |OP instruction are specially designed to handle 10 operation.

Block Diagram of a computer with a 1/0 Processor:

Central processing
unit (CPU)

Peripheral devices

'

processor (I0OP) 1/0 bus

Memory unit jet—p

Memory bus

Figure Block diagram of a computer with I/O processor.

« Memory occupies the central position and can communicate with each
processor by DMA.

» CPU is responsible for processing data.

* |OP provides the path for transfer of data between various peripheral
devices and memory.

« Data formats of peripherals differ from CPU and memory. IOP maintain
such problems.

« Data is transferred from IOP to memory by stealing one memory cycle.

* Instructions that are read from memory by IOP are called commands to

distinguish them from instructions that are read by the CPU.

CPU- IOP Communication:

Figure 11-20 CPU-IOP communication.

CPU operations IOF opcrations

Semnd imstruction

to test JOP path [T ——
Transfor status word

/ cisfocne e’ S acation
If status OK., send

stary l)'(:'l::_!;guclit”l Access memory for

IOF program

) 4 Y

CPU conunues with & e i 2

another Ogram onduct 1O wransfers

e using DMA:; prepare
Stalus report

!

/O ransfer completed;

: / interrupt CPU

Reqquest 1OP siatus

Transfor siatus word
1O mernory location

Check status word
for correct transfer

!

Continue

Instruction that are read from memory by an IOP
Distinguish from instructions that are read by the CPU.

Commands are prepared by experienced programmers and are stored in
memory

Command word = IOP program

UNIT-V

Memory Organization:
Memory Hierarchy, Main Memory, Auxiliary memory,
Associate Memory, Cache Memory.

Pipeline and Vector Processing:

Parallel Processing, Pipelining, Arithmetic Pipeline,
Instruction Pipeline, RISC Pipeline, Vector Processing,
Array Processors.

Memory Hierarchy:

Introduction
» The memory unit is an essential component needed for storing programs and

data.

* Most general purpose computers run more efficiently if they are equipped
with additional storage beyond the capacity of main memory.

» It is more economical to use low cost storage devices to serve as a backup
for storing the information that is not currently used by the CPU.

« Main Memory: Memory unit that communicates directly with the CPU
(RAM)

* Auxiliary Memory: Device that provide backup storage (Disk Drives)

Key characteristics of computer Memory system:

Location Performance

Internal (e.g. processor registers. main Access time

memory, cache) Cvile thne

External (e.g. optical disks, magnetic
disks, tapes)

Transfer rate

¢ Physical Type
“apacity
P) Semiconductor
Number of words .
Magnetic
Number of bytes .
: Optical

Unit of Transfer .
Magneto-optical

Word . e
Physical Characteristics
Block _)
Volatile/nonvolatile
Access Method
Erasable/nonerasable
Sequential e
) Organization
Direct
Memory modules
Random
Associative

AN mmmaiaa..

Memory Hierarchy in a computer system:

The total memory capacity of a computer can be visualized as being a

hierarchy of components.

Only programs and data currently needed by the processor reside in main

memory.

All other information is stored in Auxiliary memory and transferred to main

memory when needed.

Memory hierarchy system consist of all storage devices from auxiliary

memory to main memory to cache memory

As one goes down the hierarchy :
Cost per bit decreases.
Capacity increases.

Access time increases.

Frequency of access by the processor decreases

Register
Memory

Increasing order of Cache
access time ratio Memory

Main Memory

Magnetic Disks

Magnetic Tapes

Storage Capacity decreases
& Cost per bit decreases

Primary Memory

Auxillary
Memory

Memory Hierarchy in a Computer System:

A |
o Magnetic P
i Tapes b
-

A 4

Main
Memory

Auxiliary Memory — I/O Processor

-

Magnetic | ¢
disks

-

v

L J

-~

CPU

» Figure illustrates the components in a typical memory hierarchy.

» At the bottom of the hierarchy are the relatively slow magnetic tapes used
to store removable files.

* Next are the Magnetic disks used as backup storage.

« The Main memory occupies a central position by being able to
communicate directly with CPU and with auxiliary memory devices
through an 1/O process

« The 1/0 processor manages data transfer between auxiliary memory and
main memory.

» Program not currently needed in main memory are transferred into auxiliary
memory to provide space for currently used programs and data.

* The cache memory is used for storing segments of programs currently
being executed in the CPU.

* The auxiliary memory has a large storage capacity is relatively inexpensive,
but has low access speed compared to main memory.

* The cache memory is very small, relatively expensive, and has very high

access speed.

« The CPU has direct access to both cache and main memory but not to
auxiliary memory.

* Multiprogramming

» Many operating systems are designed to enable the CPU to process a
number of independent programs concurrently.

« Multiprogramming refers to the existence of 2 or more programs in different
parts of the memory hierarchy at the same time.

* Memory management System:

* The part of the computer system that supervises the flow of information

between auxiliary memory and main memory.

MAIN MEMORY:

« Main memory is the central storage unit in a computer system.

« It is a relatively large and fast memory used to store programs and data
during the computer operation.

« The principal technology used for the main memory is based on semi
conductor integrated circuits.

» Integrated circuits RAM chips are available in two possible operating
modes, static and dynamic.

« Static RAM - Consists of internal flip flops that store the binary
information.

* Dynamic RAM — Stores the binary information in the form of electric
charges that are applied to capacitors.

* Most of the main memory in a general purpose computer is made up of
RAM integrated circuit chips, but a portion of the memory may be
constructed with ROM chips.

* Read Only Memory —Store programs that are permanently resident in the

computer and for tables of constants that do not change in value once the
production of the computer is completed.

The ROM portion of main memory is needed for storing an initial program
called a Bootstrap loader.

Boot strap loader —function is start the computer software operating when
power is turned on.

Boot strap program loads a portion of operating system from disc to main

memory and control is then transferred to operating system.

RAM and ROM CHIP:

A RAM chip is better suited for communication with CPU if it has one or
more control inputs that select the chip only when needed.

RAM chip —utilizes bidirectional data bus with three state buffers to perform
communication with CPU

Three state buffers consists of

Logic 1

Normal Operation

H_J

Logic 0

High impedance state -open circuit & has no logic significance

Figure 12-2 Typical RAM chip.

Chip select | e CS|
Chip select 2 =m—={ OS2
Read == RD 128X 8 | et B-biit data bus
RAM
7-bit address = AD7

{a) Block diagram

The block diagram of a RAM Chip is shown in Fig.

The capacity of memory is 128 words of eight bits (one byte) per word.

This requires a 7-bit address and an 8-bit bidirectional data bus.

The read and write inputs specify the memory operation and the two chips
select (CS) control inputs are enabling the chip only when it is selected by
the microprocessor.

The read and write inputs are sometimes combined into one line labeled
R/W.

The function table listed in Fig. specifies the operation of the RAM chip.
The unit is in operation only when CS1=1 and CS2=0.

The bar on top of the second select variable indicates that this input is
enabled when it is equal to 0.

If the chip select inputs are not enabled, or if they are enabled but the read or
write inputs are not enabled, the memory is inhibited and its data bus is in a

high-impedance state.

Chip is enabled when
CS1=1; CS2=0

CSI C52 RD WR |Memory function State of data bus

0 0 x «x Inhibit High-impedance

0 | x X Inhibit High-impedance

1 0 0 0 Inhibit High-impedance

I 0 0 | Write Input data to RAM

I 0 | X Read Output data from RAM
I I x X Inhibit High-impedance

(b) Function table

* When CS1=1 and CS2=0, the memory can be placed in a write or read
mode.

* When the WR input is enabled, the memory stores a byte from the data bus
into a location specified by the address input lines.

* When the RD input is enabled, the content of the selected byte is placed into
the data bus.

 The RD and WR signals control the memory operation as well as the bus

buffers associated with the bidirectional data bus.
ROM Chip:

* A ROM chip is organized externally in a similar manner. However, since a
ROM can only read, the data bus can only be in an output mode.

» The block diagram of a ROM chip is shown in fig.

Chip select | e (5]
Chip sclect 2 ——— C52
512X R b 2-bit data bus

ROM
o-bit Aaddress e— ADS

Figure 12-3 Typical ROM chip.

* The nine address lines in the ROM chip specify any one of the 512 bytes
stored in it.
* The two chip select inputs must be CS1=1 and CS2=0 for the unit to operate.

Otherwise, the data bus is in a high-impedance state.

Memory Address Map:

The interconnection between memory and processor is then established
from knowledge of the size of memory needed and the type of RAM and
ROM chips available.

The addressing of memory can be established by means of a table that
specifies the memory address assigned to each chip.

The table called Memory address map, is a pictorial representation of
assigned address space for each chip in the system.

The memory address map for this configuration is shown in table.

The component column specifies whether a RAM or a ROM chip is used.
The hexadecimal address column assigns a range of hexadecimal equivalent
addresses for each chip.

The address bus lines are listed in the third column.

The RAM chips have 128 bytes and need seven address lines.

The ROM chip has 512 bytes and needs 9 address lines.

TABLE 12-1 Memory Address Map for Microprocomputer

Address bus
Hexadecimal
Component address 10 9 B 7 6 5§ 4 3 21
RAM 1 0000-007F 00 0 x x X X X X x
RAM 2 0080-00FF 00 1 x X X X X X X
RAM 3 0100-017F 01 0 x x x X X X X
RAM 4 01800l FF 01 1 x x x X X X X
ROM 0200-03FF 1 x X X X X X X X x

Ll g W)
Avddress buss
Lo —11 1y = B - — R} WL Dhaita bias

Drecoder
3 2 o

Dana

B
- Diena

Disaa

=
|
b o f=d
i
]
X
-]

hemory connection oo che TFLE

RAM and ROM chips are connected to a CPU through the data and address
buses.

The low order lines in the address bus select the byte within the chips and
other lines in the address bus select a particular chip through its chip select
inputs.

The connection of memory chips to the CPU is shown in Fig.

This configuration gives a memory capacity of 512 bytes of RAM and 512
bytes of ROM.

Each RAM receives the seven low-order bits of the address bus to select
one of 128 possible bytes.

The particular RAM chip selected is determined from lines 8 and 9 in the

address bus.

This is done through a 2 X 4 decoder whose outputs go to the CS1 inputs in
each RAM chip.

Thus, when address lines 8 and 9 are equal to 00, the first RAM chip is
selected.

When 01, the second RAM chip is select, and so on.

The RD and WR outputs from the microprocessor are applied to the inputs
of each RAM chip.

The selection between RAM and ROM is achieved through bus line 10.

The RAMs are selected when the bit in this line is 0 and the ROM when the
bitis 1.

Address bus lines 1 to 9 are applied to the input address of ROM without
going through the decoder.

The data bus of the ROM has only an output capability, whereas the data bus

connected to the RAMSs can transfer information in both directions.

AUXILIARY MEMORY::

Devices that provide backup storage are called auxiliary memory.

For example: Magnetic disks and tapes are commonly used auxiliary
devices.

Other devices used as auxiliary memory are magnetic drums, magnetic
bubble memory and optical disks.

It is not directly accessible to the CPU, and is accessed using the
Input/Output channels.

An Auxiliary memory is known as the lowest-cost, highest-capacity and
slowest-access storage in a computer system.It is where programs and data

are kept for long-term storage or when not in immediate use.

Magnetic Disks

» A magnetic disk is a type of memory constructed using a circular plate of
metal or plastic coated with magnetized materials.

» Usually, both sides of the disks are used to carry out read/write operations.

» However, several disks may be stacked on one spindle with read/write head
available on each surface.

» The following image shows the structural representation for a magnetic disk.

« The memory bits are stored in the magnetized surface in spots along the
concentric circles called tracks.

» The concentric circles (tracks) are commonly divided into sections called

sectors.

Magnetic disks

wfb
R <@”
& '
&
I
Read/write
head
Magnetic Tape

Reel Flange

Tape Pack ~

Hub

Side View Edge View

* Magnetic tape is a storage medium that allows data archiving, collection,

and backup for different kinds of data.

The magnetic tape is constructed using a plastic strip coated with a magnetic
recording medium.

The bits are recorded as magnetic spots on the tape along several tracks.
Usually, seven or nine bits are recorded simultaneously to form a character
together with a parity bit.

Magnetic tape units can be halted, started to move forward or in reverse, or
can be rewound.

However, they cannot be started or stopped fast enough between individual

characters.

For this reason, information is recorded in blocks referred to as records.

Associative Memory:

The time required to find an item stored in memory can be reduced
considerably if stored data can be identified by the content of the data itself
rather than by an address.

A memory unit accessed by content is called an associative memory or
content addressable memory (CAM).

CAM is accessed simultaneously and in parallel on the basis of data content
rather than by specific address or location

Associative memory is more expensive than a RAM because each cell must
have storage capability as well as logic circuits for matching its contents
with external argument.

Argument register —holds an external argument for content matching

Key register —mask for choosing a particular field or key in the argument

word

Hardware Organization

[Argument register (A)]

1

Key register (K)
vlr Match register
i
Associative memory
Input ——>» array and logic
— M
Read ———>»
Write m words
n bits per word)
-— ./
A

!

Output

It consists of a memory array and logic for m words with n bits per word.

» The argument register A and key register K each have n bits, one for each
bit of a word.

* The match register M has m bits, one for each memory word.

« Each word in memory is compared in parallel with the content of the
argument register.

* The words that match the bits of the argument register set a corresponding
bit in the match register.

« After the matching process, those bits in the match register that have been

set indicate the fact that their corresponding words have been matched.

» Reading is accomplished by a sequential access to memory for those words
whose corresponding bits in the match register have been set.

Example of Match logic:

e,

A Register 101 111100
K Register 111 000000
Memory
Word 1 100 111100 M =0
{ Word 2 101 000011 M=1 }_

I M = 1 matching word

Associative Memory of m words with n cells per word.

Y
Word 1 Cyqj
Word i Ci Lo
Word m
\ Gm‘l ij

* The relation between the memory array and external registers in an
associative memory is shown in Fig. Above.

» The cells in the array are marked by the letter C with two subscripts.

» The first subscript gives the word number and second specifies the bit
position in the word.

» Thus cell Cij is the cell for bit j in word i.

* A bit Aj in the argument register is compared with all the bits in column j of
the array provided that kj =1.

* This is done for all columns j=1,2,....n.

» If a match occurs between all the unmasked bits of the argument and the bits
in word I, the corresponding bit Mi in the match register is set to 1.

» If one or more unmasked bits of the argument and the word do not match,

Mi is cleared to O.

One cell of Associative memory:

Input -

wri& T T

8)
R = Match
Fu logic To M
Read :

It consists of flip-flop storage element Fij and the circuits for reading,
writing, and matching the cell.

The input bit is transferred into the storage cell during a write operation.

The bit stored is read out during a read operation.

The match logic compares the content of the storage cell with corresponding
unmasked bit of the argument and provides an output for the decision logic
that sets the bit in Mi.

Match Logic:

The match logic for each word can be derived from the comparison

algorithm for two binary numbers.

First, neglect the key bits and compare the argument in A with the bits stored

in the cells of the words.

Word i is equal to the argument in A if
Aj=Fij forj=1,2,.....n.

Two bits are equal if they are both 1 or both 0.

The equality of two bits can be expressed logically by the Boolean function
xj=Aj Fij + Aj ‘Fij ¢

where xj = 1 if the pair of bits in position j are equal;

otherwise , xj =0.

For a word i is equal to the argument in A we must have all xj variables

equal to 1.

This is the condition for setting the corresponding match bit Mi to 1.

The Boolean function for this condition is

Mi = x1 x2 x3...... xn; j=1ton

Include the key bit Kj in the comparison logic. The requirement is that if Kj = O.th

comesponding bits of Aj and Fij need no comparison. Only when Kj = 1 must they b
compared. This requirement is achieved by ORing each term with Kj , thus:
xj+Kj= { x| if Kj=1
1 if Kj=0
When Kj= 1. we have K" =0 and xj + 0= xp When Kj=0,then Kj" =1 xj+ 1 = 1. A tem

(%) +K)") will be in the | state if its par of bitsis not compared. This is necessary because eacl
term is ANDed with all other terms so that an output of 1 will have no effect. The comparism
of the bits has an effect only when Kj= 1.
The match logic for word i in an associative memory can now be expressed by the following
Boolean function:

Mi=(xl+K'1){(x2+ K 2){(x3+K"3)....{xn+K 'n)
Each term in the expression will be equal to 1 if its corresponding Kj = 0. If Kj = 1, the tern
will be either 0 or 1 depending on the value of x). A match will occur and Mi will be equal to

if all terms are equal to 1.

If we substitute the onginal definition of xj. the Boolean function above can be expressed
as follows:
Mi =[], [AjFij + A'jFij = K'j)

Match logic for one word of Associative Memory:

| Y Y
Figure 9 Match logic for one word of associative memory.

Each cell requires two AND gate and one OR gate. The inverters for A and
K are needed once for each column and are used for all bits in the column.
The output of all OR gates in the cells of the same word go to the input of a
common AND gate to generate the match signal for Mi . Mi will be logic 1

if @ match occurs and 0 if no match occurs.

Read Operation:

If more than one word in memory matches the unmasked argument field , all
the matched words will have 1’s in the corresponding bit position of the
match register

In read operation all matched words are read in sequence by applying
a read signal to each word line whose corresponding Mi bit is a logic 1

In applications where no two identical items are stored in the memory , only

one word may match , in which case we can use Mi output directly as a read

signal for the corresponding word

Write Operation

It has a storing capability for the information to be searched

Can take two different forms

1. Entire memory may be loaded with new information once prior to search
operation then the writing can be done by addressing each location in
sequence

This makes it random access memory for writing and content addressable
memory for reading

2. Unwanted words to be deleted and new words to be inserted by using a

tag register.

Cache Memory:

The data or contents of the main memory that are used frequently by CPU
are stored in the cache memory so that the processor can easily access that
data in a shorter time.

Whenever the CPU needs to access memory, it first checks the cache
memory.

If the data is not found in cache memory, then the CPU moves into the main
memory.

Cache memory is placed between the CPU and the main memory.

The block diagram for a cache memory can be represented as:

p

Main memory

N\ 4 N

32kx12 CPU

Cache Memory
512 x 12

The basic operation of a cache memory is as follows:
When the CPU needs to access memory, the cache is examined.

If the word is found in the cache, it is read from the fast memory.

If the word addressed by the CPU is not found in the cache, the main
memory is accessed to read the word.

A block of words one just accessed is then transferred from main memory
to cache memory.
The block size may vary from one word (the one just accessed) to about 16
words adjacent to the one just accessed.

The performance of the cache memory is frequently measured in terms of
a quantity called hit ratio

When the CPU refers to memory and finds the word in cache, it is said to
produce a hit.

If the word is not found in the cache, it is in main memory and it counts as a
miss.

The ratio of the number of hits divided by the total CPU references to
memory (hits plus misses) is the hit ratio.

Hit ratio= hits/ (hits + miss)

» Effectiveness of cache mechanism is based on a property of computer
programs called “locality of reference”

Locality of Reference:

» Many instructions in localized areas of program are executed repeatedly

during some time period. This property is called “Locality of Reference”.
Principles of cache

* The main memory can store 32k words of 12 bits each.

» The cache is capable of storing 512 of these words at any given time.

» The CPU communicates with both memories.

|t first sends a 15 bit address to cache. If there is a hit, the CPU accepts the
12 bit data from cache.

» If there is a miss, the CPU reads the word from main memory and the word
Is then transferred to cache.

» Assume cache is full and memory word not in cache is referenced

» Control hardware decides which block from cache is to be removed to
create space for new block containing referenced word from memory

* Collection of rules for making this decision is called “Replacement

algorithm ”

Mapping Functions

* The transformation of data from main memory to cache memory is referred
as Mapping process.

» Correspondence between main memory blocks and those in the cache is
specified by a memory mapping function

* There are three techniques in memory mapping
1. Associative Mapping
2. Direct Mapping

3. Set Associative Mapping

Assoclative Mapping

In this mapping function, any block of Main memory can potentially reside in any

cache block position. This is much more flexible mapping method

Figure 12-11 Associative mapping cache (all numbers in ocral).

CPU address (15 bits)

!

[Argument register l

*Address value and data

| Zaxt v i | arerepresented using
Word 1 IGO0 cotsaading octal representationi.e.
Word 2 > 9% Nk, &%10 Each digit corresponds to
Word 3 | 22345 1234 3 bits

Cache memory)

* Infig 12-11, The associative memory stores both address and content(data)
of the memory word.

» This permits any location in cache to store any word from main memory.

» The diagram shows three words presently stored in the cache.

» The address value of 15 bits is shown as a five-digit octal number and its
corresponding 12-bit word is shown as a four-digit octal number.

« A CPU address of 15-bits is placed in the argument register and the
associative memory is searched for a matching address.

« If address is found, the corresponding 12-bit data is read and sent to the

CPU. If no match occurs, the main memory is accessed for the word.
Direct Mapping:

» Associative memories are expensive compared to random access memories

because of the added logic associated with each cell.
» A particular block of main memory can be brought to a particular block of

cache memory. So, it is not flexible.

Figure 12-12 Addressing relarionships herwean main and cache memorics
6 bils 9 bits
Tag Index

ey i

00 000 32K ¥ 12 000 $12 % 12
Octal Cache memory
QOctal ‘ Main memory address Address = 9 bite
address AR
Address = 15 bits 777 Data =12 bits
" Data =]2 bits
5 ORI O 5 ¢

* Infig 12-12. The CPU address of 15 bits is divided into two fields.

» The nine least significant bits constitute the index field and remaining six
bits from the tag field.

« The main memory needs an address that includes both the tag and the index
bits.

* The number of bits in the index field is equal to the number of address
bits required to access the cache memory.

» The direct mapping cache organization uses the n- bit address to access the

main memory and the k-bit index to access the cache.

Memory
addross Memory data
00000 1220
00777 2340
————
01000 3450
01777 4560
02000 5670
02777 6710
Y Y

(4) Main memory

Figure 12-13 Direct mapping cache organization.

Index
nddress

000

177

Tag Data
00 1220
02 6710

(b) Cache memory

Each word in cache consists of the data word and associated tag.

When a new word is first brought into the cache, the tag bits are stored

alongside the data bits.

When the CPU generates a memory request, the index field is used the
index field is used for the address to access the cache.

The tag field of the CPU address is compared with the tag in the word read

from the cache.

If the two tags match, there is a hit and the desired data word is in cache.

If there is no match, there is a miss and the required word is read from main

memory.

Set Associative Mappin

In this method, blocks of cache are grouped into sets, and the mapping
allows a block of main memory to reside in any block of a specific set.

From the flexibility point of view, it is in between to the other two methods.

Index Tog Data Tay Para

000 v 3450 02 3 5670

777 02 &710 0o 2340

FPigure 12-15 Two-way set-associative mapping cache.

The octal numbers listed in Fig.12-15 are with reference to the main memory
contents.

When the CPU generates a memory request, the index values of the address
are used to access the cache.

The tag field of the CPU address is then compared with both tags in the
cache to determine if a match occurs.

The comparison logic done by an associative search of the tags in the set

similar to an associative memory search thus the name “Set Associative”.

Pipelining and Vector Processing

Parallel Processing:

Parallel processing is a term used for a large class of techniques that are used
to provide simultaneous data-processing tasks for the purpose of
increasing the computational speed of a computer system.

It refers to techniques that are used to provide simultaneous data processing.
The system may have two or more ALUSs to be able to execute two or more
instruction at the same time.
The system may have two or more processors operating concurrently.

It can be achieved by having multiple functional units that perform
same or different operation simultaneously.

Parallel processing is done by distributing the data among multiple

functional Units.

Processor with Multiple function units:

The following figure shows one possible way of separating the execution unit into

8 functional units operating in parallel

- Addar-Sublractor -

- Integer Multiply -
Logic Lhinit
— Shift Liinit -
Ta Maimory
-
Frocaasos - Mo ber L
Ragisters -
Pl
Floating-Point Addear-
Subtractor
- Flaating-Podnt Rultiply -
- Flaating-Point Divide -

Fig: Processor with Multiple functional units
The operation performed in each functional unit is indicated in each block of
the diagram.
The Adder and integer multiplier perform arithmetic operation with Integer
numbers.
The floating point operations are separated into 3 circuits operating in
parallel.
The logic, shift, and increment operation can be performed concurrently on
different data.
All units are independent, so one number can be shifted while another

number is being activated.

» Architectural Classification: —
» Flynn's classification

* Considers the organization of a computer system by number of instructions
and data items that are manipulated simultaneously.
« Based on the multiplicity of Instruction Streams and Data Streams
» Instruction Stream-Sequence of Instructions read from memory
» Data Stream - Operations performed on the data in the processor
» Parallel processing may occur in the instruction stream, in the data stream or
in both.
» Flynn’s classification divides computer into 4 major groups:
1. SISD (Single Instruction stream, Single Data stream)
2. SIMD (Single Instruction stream, Multiple Data stream)
3. MISD (Multiple Instruction stream, Single Data stream)
4. MIMD (Multiple Instruction stream, Multiple Data stream

oingle Multiple

Single

Multiple

» SISD represents the organization containing single control unit, a processor
unit and a memory unit.

* Instruction are executed sequentially and system may or may not have

internal parallel processing capabilities.

SIMD represents an organization that includes many processing units under
the supervision of a common control unit.

MISD structure is of only theoretical interest since no practical system has
been constructed using this organization.

MIMD organization refers to a computer system capable of processing
several programs at the same time.

The main difference between multicomputer system and multiprocessor
system is that the multiprocessor system is controlled by one operating
system that provides interaction between processors and all the component
of the system cooperate in the solution of a problem

Parallel Processing can be discussed under following topics:

Pipeline Processing

Vector Processing

Array Processors

PIPELINING

A technique of decomposing a sequential process into sub operations, with
each sub process being executed in a special dedicated segment that operates
concurrently with all other segments.

A pipelinig is a collection of processing segments.

Each segment performs partial processing dictated by the way task is
partitioned.

The result obtained from each segment is transferred to next segment.

The final result is obtained when data have passed through all segments.
Suppose we have to perform the following task:

Each sub operation is to be performed in a segment within a pipeline.

Each segment has one or two registers and a combinational circuit.

The register holds the data. The combinational circuit performs the
suboperation in the particular segment.

A clock is applied to all registers after enough time has elapsed to perform
all segment activity.

A clock is applied to all registers after enough time has elapsed to perform
all segment activity.

The pipeline organization will be demonstrated by means of a simple
example.

To perform the combined multiply and add operations with a stream of

numbers
Ai * Bi + Ci fori=1,2,3,...,7
Each suboperation is to be implemented in a segment within a pipeline.
R1 «Ai, R2« Bi Input Ai and Bi
R3 «-R1*R2, R4<«Ci Multiply and input Ci
R5 <R3+ R4 Add Ci to product

Each segment has one or two registers and a combinational circuit as shown

in Fig.

Fig 4-1: Example of pipeline processing

» The five registers are loaded with new data every clock pulse. The effect of

each clock is shown in Table.

gﬁ Segment 1 Segment 2 Segment 3
1 A, B - - -
2 A, B A'B, G -
3 A, B A'B, G, A, *B,+C,
4 A, B A'B; Gy A,*B,+C,
5 Ag A'By Gy Ay'By+C,
6 A B As'Bs G A*By+C,
7 A B A'Bs G As*Bs+Cs
8 o - A'B, G A6*86+C6
9 - - - - A,*B,+C,

Table 4-1: Content of Registers in Pipeline Example

General Considerations:

* Any operation that can be decomposed into a sequence of suboperations of

about the same complexity can be implemented by a pipeline processor.

» The general structure of a four-segment pipeline is illustrated in Fig. 4-2.

We define a task as the total operation performed going through all the

segments in the pipeline.

Clock

HHHE-

Four segment
Pipeline

» The behavior of a pipeline can be illustrated with a space-time diagram. o It

shows the segment utilization as a function of time

» The space-time diagram of a four-segment pipeline is demonstrated in Fig

egrent L\ p \ R (K| G| R T
PR R| BR[| KT
3 ARARARARAR
4 ARARAEAEEK:

Fig 4-3: Space-time diagram for pipeline

*Clock cycles

* Where a k-segment pipeline with a clock cycle time tp is used to execute n

tasks.

» The first task T1 requires a time equal to ktp to complete its operation.

The remaining n-1 tasks will be completed after a time equal to (n-1)tp
Therefore, to complete n tasks using a k-segment pipeline requires k+(n-1)
clock cycles.
Consider a nonpipeline unit that performs the same operation and takes a
time equal to tn to complete each task.
The total time required for n tasks is ntn.
The speedup of a pipeline processing over an equivalent nonpipeline
processing is defined by the ratio

S =ntn/(k+n-1)tp .
If n becomes much larger than k-1, the speedup becomes

S = tn/tp.

If we assume that the time it takes to process a task is the same in the
pipeline and nonpipeline circuits, i.e.,tn = ktp, the speedup reduces to
S=ktp/tp=k.
This shows that the theoretical maximum speedup that a pipeline can
provide is k, where k is the number of segments in the pipeline.
To duplicate the theoretical speed advantage of a pipeline process by means
of multiple functional units, it is necessary to construct k identical units that
will be operating in parallel.
This is illustrated in Fig. below, where four identical circuits are connected
in parallel.
Instead of operating with the input data in sequence as in a pipeline, the
parallel circuits accept four input data items simultaneously and perform

four tasks at the same time

Ll

Fig 4-4: Multiple functional units in parallel

There are various reasons why the pipeline cannot operate at its maximum
theoretical rate.

Different segments may take different times to complete their sub operation.
It is not always correct to assume that a nonpipe circuit has the same time
delay as that of an equivalent pipeline circuit.

There are three areas of computer design where the pipeline organization is

applicable.
Arithmetic pipeline
Instruction pipeline
RISC pipeline
Arithmetic pipeline:

Pipeline arithmetic units are usually found in very high speed computers
Floating—point operations, multiplication of fixed-point numbers, and similar
computations in scientific problem

Floating—point operations are easily decomposed into suboperations as
demonstrated in Sec. 10-5.

An example of a pipeline unit for floating-point addition and subtraction is
showed in the following:

The inputs to the floating-point adder pipeline are two normalized floating

point binary number

« A and B are two fractions that represent the mantissas, a and b are the
exponents.
« The floating-point addition and subtraction can be performed in four
segments, as shown in Fig. 9-6.
» The suboperations that are performed in the four segments are:
1.Compare the exponents
2. Align the mantissa
3. Add or subtract the mantissas

4. Normalize the result

Example: Consider two floating point numbers binary addition
X = 0.9504 * 103
Y ==0.8200 * 102
1. Compare exponents by subtraction:
 The exponents are compared by subtracting them to determine their
difference. The larger exponent is chosen as the exponent of the result.
» The difference of the exponents, i.e., 3 -2 =1 determines how many times
the mantissa associated with the smaller exponent must be shifted to the
right.

2. Align the mantissas:

The next segment shifts the mantissa of Y to the right
X =0.9504 * 103

Y =0.08200 * 103
3. Add mantissas:
» The two mantissas are added in segment three.
Z=X+Y=1.0324* 103
4. Normalize the result:
» After normalization, the result is written as:
Z =0.1324 * 10*
Flow chart for floating point addition and subtraction using

Pipelining

For example:
Segment 1: X=0.9504*10°
Y=0.8200%102
0.082
Segment 2:
Segment 3: 5=0.9504+0.082=1.0324
Segment 4: 0.10324

Pipelining for Floating point Addition and Subtraction
» The larger exponent is chosen as the exponent of the result

* The exponent difference determines how many times the mantissa associated

with the smaller exponent must be shifted to the right.

When an overflow occurs, the mantissa of the sum or difference is shifted
right and the exponent incremented by one.

If an underflow occurs, the number of leading zeros in the mantissa
determines the number of left shifts in the mantissa and the the exponent

decremented by one.

Instruction Pipeline:

Pipeline processing can occur not only in the data stream but in the
instruction as well.

Consider a computer with an instruction fetch unit and an instruction
execution unit designed to provide a two-segment pipeline.

Computers with complex instructions require other phases in addition to
above phases to process an instruction completely.

In the most general case, the computer needs to process each instruction with

the following sequence of steps.

1. Fetch the instruction from memory.
2. Decode the instruction.

3. Calculate the effective address.

4. Fetch the operands from memory.
5. Execute the instruction.

6. Store the result in the proper place.
There are certain difficulties that will prevent the instruction pipeline from
operating at its maximum rate.
Different segments may take different times to operate on the incoming

information.

* Some segments are skipped for certain operations.

« Two or more segments may require memory access at the same time,
causing one segment to wait until another is finished with the memory.

Example: four-segment instruction pipeline:

* Assume that:

» The decoding of the instruction can be combined with the calculation of the
effective address into one segment (DA in segment 2 and FI in segment 1).

« The instruction execution and storing of the result can be combined into one
segment(FO in segment 3 and IE in segment 4)

» Fig 9-7 shows how the instruction cycle in the CPU can be processed with a

four segment pipeline.

Segment 1:

Segment 2:

Segment 3:

Segment 4:

* Thus up to four suboperations in the instruction cycle can overlap and

up to four different instructions can be in progress of being processed at the
same time.
An instruction in the sequence may be causes a branch out of normal
sequence.
In that case the pending operations in the last two segments are completed
and all information stored in the instruction buffer is deleted.
Similarly, an interrupt request will cause the pipeline to empty and start
again from a new address value.
Fig. above shows the operation of the instruction pipeline.
The four segments are represented in the diagram with an abbreviated
symbol.
1. Fl is the segment that fetches an instruction.
2.DA is the segment that decodes the instruction and calculates
the effective address.
3. FO is the segment that fetches the operand.

4. EX is the segment that executes the instruction

Timing of Instruction Pipeline

The time in the horizontal axis is divided into steps of equal duration.

Step:_l‘i'_lI-I_S_EI.'I‘_SI‘?I]{I_HI]?_[J.
1| A DA A || EX)
oy) Instruction 1,2 are
Instruction: 2 Fl | DA || FD| EX .
N S O B N executed sequentially, and

(Beanch) 3 | ool o | & : : i
| | [FHOMFOLER] at instruction 3, thereis a

i Al = | = FI | BR[| H X

| [(== 1=Talmm el | | branching address
& [| . | Fl . DAIFC' . I:KI |
! || | A DA | RO EX]

FI: the sagment that fetches an instruction
D the segment that decodes the instruction

and calculate the efferthe pddress
FO the segment that fetches the operand

EX: the segment that eeecutes the instruction

At stepd, Instruction 1 is executed
Instruction 2 is fetching operands from memory
Instruction 3(Brach Address) is decoded and calculating effective Address
Instruction 4 is fetching Instruction from memory
After Decoding the Branch address in Instruction 3, the transfer of other instruction
from Flto DA s halted until the current Instruction is executed in step6
If the Branch address condition is satisfied, a new Instruction is fetched in step7.
* Pipeline Hazards
« It is a conflict that prevents an instruction from executing during its
designated clock cycles.
* In general, there are three major difficulties that cause the instruction
pipeline to deviate from its normal operation.
1. Structural Hazards
2. Data Hazard
3. Control hazard
1. Structural Hazards:
e These are the Resource conflicts caused by access to memory by two

segments at the same time.

Can be resolved by using separate instruction and data memories

2. Data Hazard:

These conflicts arise when an instruction depends on the result of a previous

instruction, but this result is not yet available.

3. Control Hazard:

These conflicts arise when an Branch instruction arise and this branch

instruction causes the change the value of PC.

RISC (Reduced Instruction Set Computer)Pipeline:

The data transfer instructions in RISC are LOAD and STORE.

To prevent conflicts between a memory access to fetch an instruction and to
load or store an operand, most RISC machines use two separate buses with
two memories

One for storing information and other for storing data.

Example: Three-Segment Instruction Pipeline

There are three types of instructions:

The data manipulation instructions: operate on data in processor registers
The data transfer instructions(load and store)

The program control instructions(branch instructions)

The instruction cycle can be divided into three suboperations and

implemented in three segments:

I: Instruction fetch

Fetches the instruction from program memory

A: ALU operation

The instruction is decoded and an ALU operation is performed. It performs
an operation for a data manipulation instruction, It evaluates the effective

address for a load or store instruction. It calculates the branch address for a

program control instruction.
E: Execute instruction
» Directs the output of the ALU to one of three destinations, depending on the
decoded instruction. It transfers the result of the ALU operation into a
destination register in the register file.
« It transfers the effective address to a data memory for loading or storing.
« It transfers the branch address to the program counter.
Delayed Load:
» Consider the operation of the following four instructions:
1. LOAD: R1 <« MJ[address 1]
2. LOAD: R2 « M[address 2]
3. ADD: R3 R1 +R2
4. STORE: M[address 3}« R3
» There will be a data conflict in instruction 3 because the operand in R2 is not
yet available in the A segment.
» This can be seen from the timing of the pipeline shown in Fig. 9-9(a).

Pipelining Timing with Delayed load:

c-mﬁ,;m-. 11 28 4 s 8 Atd¥clock cycle, the datais not
1. Losd R1 A L
T ' placedin R2 butthe A segment

2. Load R2 | A E .
saadmemzl | 1x | &l inclock cycle 4 wants the data
asoers | | | | 1 | ale fromR2to performaddition
O (&) Pipelinee timing with data conflict EIICIE-FE'HEIH.
' Lead A1 : ' ; ' : e B This conflict can be overcomed
200ak2 | |1 |A|E| | | #.hylnserjmg.a r'l:w:.upera_n:fr
3. No-cperation > lal e instructioninthe insturction3
4. malm-u?: . I A 3 . and thus dE‘|EI'fiﬂE'thEElddi'tiDﬂ
5. Store B3 | 1 | A |E operation by one clock cycle.

9 (b)) Pipeline timing with delayed load

This concept of delaying the dataloaded into the memory is referred as “ Delayed
Load”

Delayed Branch

« The method used in most RISC processors is to rely on the compiler to
redefine the branches so that they take effect at the proper time in the
pipeline.

» This method is referred to as delayed branch.

« The compiler is designed to analyze the instructions before and after the
branch and rearrange the program sequence by inserting useful instructions
in the delay steps.

e It is up to the compiler to find useful instructions to put after the branch
instruction. Failing that, the compiler can insert no-op instructions.

« An Example of Delayed Branch:

» The program for this example consists of five instructions.

1. Load from memory to R1

2. Increment R2

3. Add R3to R4

4. Subtract R5 from R6
5. Branch to address X

instructions after the branch instruction.

Pipelining Timing with Delayed Branch:

lh‘bl.".li'ﬂ'l'-\.l 1 | P l 2 | '\1_ =+ I!. | £ |
1. L [T | A |E
4. InEfeTrenil | | I l A | I
1. Al | 1 | L I
4. Sublrmct | | 1 A | I
%, Hranch i X | | I | A | |
e, MO-opsrrmbicn 1 A

| b 1 | 1 | }

7 Ho-opseraticn I
{ ¥ 4 | { ¥

B, Insfmection in X

10 (&) Using no-opsration instructions

Clock Cydles [1 |2 |3 | 4] 5 |& |7
1. Lomd [T A]

4. Ifeieveenil | 1 | A I

¥, Branch o X | | | I A | |

4. Add | | | | 1 . A | E

5. SLilETRC | A
1 1 1 "

i, Iredrucien in X

10 {b) Rearranging the instructions

&=

-]

10

=

In Fig. 9-10(a) the compiler inserts two no-op instructions after the branch.
The branch address X is transferred to PC in clock cycle 7.

The program in Fig. 9-10(b) is rearranged by placing the add and subtract

PC is updated to the value of X in clock cycle 5.

The compiler inserts two no-
op instructions at & &7 after
the branch instruction {5).The
branch address X s
transferred to PCin clock cycle
7.50 the fetching of instruction
s delayed by 2 clock cycles
and branch address x s
fetched atinstruction 8.

The programis rearranged
by placing the add and
subtract instructions after
the branchinstruction
Inspection of the pipeline
timing shows thatPCls
updatedtothe value of X
inclock cycle 5

Vector processing:

Normal computational systems are not enough in some special processing
requirements

In many science and engineering applications, the problems can be
formulated in terms of vectors and matrices that lend themselves to vector
processing.

Computers with vector processing capabilities are in demand in specialized

applications.

Examples:

The

Long-range weather forecasting
Petroleum explorations

Seismic data analysis

Medical diagnosis
Artificial intelligence and expert systems
Image processing

Mapping the human genome

term vector processing involves the data processing on the vectors of

involving high amount of data.

The large data can be classified as very big arrays.
The vectors are considered as the large one dimensional array of data.
The vector processing system can be understood by the example below.
EX: Consider a program which is adding two arrays A and B of length
100 to produce a vector C
Machine level program
Initialize 1=0
Read A(l)

Read B(l)
20 Store C(I)=A(D)+B(I)

Increment I=1+1

If I<=100 go to 20 continue
so in this above program we can see that the two arrays are being added in a
loop format.
First we are starting from the value of 0 and then we are continuing the loop
with the addition operation until the | value has reached to 100.
In the above program there are 5 loop statements which will be executing
100 times.
Therefore the total cycles of the CPU taken are 500 cycles.
But if we use the concept of vector processing then we can reduce the
unnecessary fetch cycles.
The same program written in the vector processing statement is given below:

C(1:100)=A(1:100)+B(1:100)

In the above statement, when the system is creating a vector like this the
original source values are fetched from the memory into the vector.
Therefore the data is readily available in the vector.
So when a operation is initiated on the data, naturally the operation will be
performed directly on the data and will not wait for the fetch cycle.

So the total no of CPU Cycles taken by the above instruction is only 100

Instruction format of vector Instruction:

Matrix Multiplication
« The multiplication of two n x n matrices consists of n2 inner products or n3
multiply-add operations.
» Consider, for example, the multiplication of two 3 x 3 matrices A and B.

Ay Ap Ay by by bys G Cp O
Gy Bp Ayl X|by by by|= Gy Cp Oy
Ay Ay 0y by by by Gy Cn Cy

The product matrix C is a 3 X 3 matrix whose elements are related to the
elements of A and B by the inner product;

3

Al
Cr’j = laik X bk,
k=] '

For example, the number in the first row and first column of matrix Cis
calculated by letting i = 1,7 = 1, to obtain

cll=allb11l+ al2b21+ al3b31

This requires three multiplication and (after initializing c11 to 0) three

additions.

In general, the inner product consists of the sum of k product terms of the
form
C = A1B1+A2B2+A3B3+...+AKBKk.

In a typical application k may be equal to 100 or even 1000.

The inner product calculation on a pipeline vector processor is shown in
Fig. 9-12.

C=AB+AB.+AB +4.8, +-
+ A8y + Al + Al + A+
+4.8,+ 48, + 4,8, + 4.8+

+ A By + A8y + A By + A B+

Implementation of the Vector Processing
« Below we can see the implementation of the vector processing concept on

the following matrix multiplication.

Multiplier Adder
pipeline pipeline

* In the above diagram we can see that how the values of A vector and B
Vector which represents the matrix are being multiplied. Here we will be
considering a 4x4 matrix A and B.

« When addition operation is taking place in the adder pipeline the next set of
values will be brought into the multiplier pipeline, so that all the operations
can be performed simultaneously using the parallel processing concepts by
the implementation of pipeline.

Memory Interleaving:

» Pipeline and vector processors often require simultaneous access to memory
from two or more sources.

* An instruction pipeline may require the fetching of an instruction and an
operand at the same time from two different segments.

An arithmetic pipeline usually requires two or more operands to enter the
pipeline at the same time.

Instead of using two memory buses for simultaneous access, the
memory can be partitioned into a number of modules connected to a
common memory address and data buses.

A memory module is a memory array together with its own address and
data registers.

Fig. 9-13 shows a memory unit with four modules.

Address bus
1 l Y Y
AR AR AR AR
Y Y Y l
Memory Memory Memory Memory
array array array array
A i
Y _
DR DR DR DR
Data bus

Multiple module Memory Organization
The advantage of a modular memory is that it allows the use of a technique
called interleaving.
In an interleaved memory, different sets of addresses are assigned to

different memory modules.

« By staggering the memory access, the effective memory cycle time can be

reduced by a factor close to the number of modules.

Array Processors:

» An array processor is a processor that performs computations on large arrays
of data.
» The term is used to refer to two different types of processors.
Attached array processor:
It is an auxiliary processor. It is intended to improve the performance of the
host computer in specific numerical computation tasks.
SIMD array processor:
Has a single-instruction multiple-data organization. It manipulates vector
instructions by means of multiple functional units responding to a common

instruction

Attached Array Processor

 Its purpose is to enhance the performance of the computer by providing
vector processing for complex scientific applications.

» Parallel processing with multiple functional units

* Fig. 9-14 shows the interconnection of an attached array processor to a host

computer.

Figure 914 Attached array processor with host computer,

Attached array
General-purpose [nput-output \
compuler inlerface PIOCESSOr
A
|
High-speed memory-to-
Main memory - o Local memory
' memory bus

Attached Array Processor with host computer
The host computer is a general-purpose commercial computer and the
attached processor is a back-end machine driven by the host computer.
The array processor is connected through an input-output controller to the
computer and the computer treats it like an external interface.
The data for the attached processor are transferred from main memory to a
local memory through a high-speed bus.
The general-purpose computer without the attached processor serves the
users that need conventional data processing.
The system with the attached processor satisfies the needs for complex
arithmetic applications.
For example, when attached to a VAX 11 computer, the FSP-164/MAX
from Floating Point Systems increases the computing power of the VAX to
100megaflops.
The objective of the attached array processor is to provide vector
manipulation capabilities to a conventional computer at a fraction of the cost

of supercomputer.

SIMD Array Processor:

An SIMD array processor is a computer with multiple processing units
operating in parallel.

A general block diagram of an array processor is shown in Fig. 9-15.

PEl MI
Master control :
unit 5 M
PE; M;
- L
3 -
El o
Main memory
PE, M,

Figure 9-15 SIMD array processor organization.

It contains a set of identical processing elements (PEs), each having a local
memory M.

Each PE includes an ALU, a floating-point arithmetic unit, and working
registers.
Vector instructions are broadcast to all PEs simultaneously.

Masking schemes are used to control the status of each PE during the
execution of vector instructions.
Each PE has a flag that is set when the PE is active and reset when the PE is
inactive.

For example, the ILLIAC IV computer developed at the University of

I1linois and manufactured by the Burroughs Corp.
— Are highly specialized computers.
— They are suited primarily for numerical problems that can be

expressed in vector or matrix form

