
 SOFTWARE ENGINEERING A.Y 2024-25

DIGITAL NOTES

ON

SOFTWARE ENGINEERING

B.TECH II YEAR-II SEM

R22A0505

(R22)REGULATION

(2024-25)

Prepared by

M Sai Krishna Murthy
Assistant. Professor

DEPARTMENT OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

MALLAREDDY COLLEGE OF ENGINEERING &

TECHNOLOGY

(Autonomous Institution–UGC, Govt. of India)

(Affiliated to JNTUH, Hyderabad, Approved by AICTE –Accredited by NBA&NAAC – ‘A’Grade-ISO9001:2015

Certified) Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, INDIA.

 SOFTWARE ENGINEERING A.Y 2024-25

MALLAREDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

II Year B.Tech CSIT- II Sem L/T/P/C
 3/-/-/3
(R22A0505) SOFTWARE ENGINEERING

COURSE OBJECTIVES

• The aim of the course is to provide an understanding of the working
knowledge of the techniques to understand Software development as a
process.

• Various software process models and system models.
• Various software designs, Architectural, object oriented, user interface etc.
• Software testing methodologies overview: various testing techniques

including white box testing black box testing regression testing etc.
• Software quality: metrics, risk management quality assurance etc.

UNIT-I
Introduction to Software Engineering: The evolving role of software, changing nature of software,

software myths.

A Generic view of process: Software engineering-a layered technology, a process framework, the

capability maturity model integration (CMMI).

Process models: The waterfall model, Spiral model and Agile methodology

UNIT -II

Software Requirements: Functional and non- functional requirements, user requirements, system

requirements, interface specification, the software requirements document.

Requirements engineering process: Feasibility studies, requirements elicitation and analysis,

requirements validation, requirements management.

UNIT-III

Design Engineering: Design process and design quality, design concepts, the design model. Creating

an architectural design: software architecture, data design, architectural styles and patterns, architectural

design, conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams,

collaboration diagrams, use case diagrams, component diagrams.

UNIT-IV

Testing Strategies: A strategic approach to software testing, test strategies for conventional software,

black-box and white-box testing, validation testing, system testing, the art of debugging.

Metrics for Process and Products: Software measurement, metrics for software quality.

UNIT-V

Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk

projection, risk refinement, RMMM.

Quality Management: Quality concepts, software quality assurance, software reviews, formal technical

reviews, statistical software quality assurance, software reliability, the ISO 9000 quality standards.

.

 SOFTWARE ENGINEERING A.Y 2024-25

TEXTBOOKS:
1. Software Engineering A practitioner’s Approach, RogerS

Pressman,6thedition. McGraw Hill International Edition.

2. Software Engineering, IanSommerville,7th edition, Pearson education.

Course Outcomes:

3. Understand software development life cycle Ability to translate end-user requirements into system

and software requirements.

4. Structure the requirements in a Software Requirements Document and Analyze Apply various

process models for a project, Prepare SRS document for a project

5. Identify and apply appropriate software architectures and patterns to carry out high level design of

a system and be able to critically compare alternative choices.

6. Understand requirement and Design engineering process for a project and Identify different

principles to create an user interface

7. Identify different testing methods and metrics in a software engineering project and Will have

experience and/or awareness of testing problems and will be able to develop a simple testing

report

 SOFTWARE ENGINEERING A.Y 2024-25

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF CSIT

INDEX

S. No

Unit Topic Page No

1

I
Introduction to Software Engineering 1

2 I Evolving Role of Software , Changing nature of software
2

3
I Software myths 3

4 I A Generic view of process : Software engineering-a layered
technology ,a process framework

4

5 I The capability maturity model Integration(CMMI).
5

6

I
Process models

7

7 II
Software Requirements 13

8 II
Functional and non- functional requirements, user

requirements, system requirements, interface specification 14

9 II
The software requirements document

15

10

II

Requirements engineering process

17

11 II
Feasibility studies, requirements elicitation and analysis

18

12 II
Requirements validation, requirements management 21

13 III Design Engineering
24

 SOFTWARE ENGINEERING A.Y 2024-25

14 III Design concepts

25

15 III The design model

27

16

III
Creating an architectural design: software
architecture, data design

28

17

III
A Conceptual Model of the UML

31

18

III
Basic structural modeling, class diagrams, sequence
diagrams, collaboration diagrams, use case diagrams,
component diagrams

53

19

IV
Testing Strategies : A strategic approach to software testing
,test strategies for conventional software

54

20

IV
Black-Box and White-Box testing

58

21

IV Validation testing, System testing

61

22

IV
The art of Debugging

62

23

IV
Product metrics: Software Quality, Metrics for Analysis Model,
Metrics for Design Model, Metrics for source code, Metrics for
testing, Metrics for maintenance.

64

24

V
Risk management: Reactive Vs proactive risk strategies,
software risks,

67

25

V Identification, Risk projection,

68

26

V Risk refinement, RMMM

69

27

V
Quality Management: Quality concepts, software quality
assurance

65

28

V Software reviews, formal technical reviews

71

29

V

Statistical software quality assurance,.

72

30

V
Software reliability, the ISO

9000qualitystandards

73

 SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

UNIT- I

Introduction to Software Engineering: The evolving role of software, changing

nature of software, software myths.

A Generic view of process: Software engineering-a layered technology, a

process framework, the capability maturity model integration (CMMI).

Process models: The waterfall model, Spiral model and Agile methodology

INTRODUCTION:

Software Engineering is a framework for building software and is an engineering

approach to software development. Software programs can be developed

without S/E principles and methodologies but they are indispensable if we want

to achieve good quality software in a cost effective manner.

Software is defined as:

Instructions + Data Structures + Documents

Engineering is the branch of science and technology concerned with the design,

building, and use of engines, machines, and structures. It is the application of

science, tools and methods to find cost effective solution to simple and complex

problems.

SOFTWARE ENGINEERING is defined as a systematic, disciplined and

quantifiable approach for the development, operation and maintenance of

software.

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

The Evolving role of software

The dual role of Software is as follows:
1. A Product-Information transformer producing, managing and displaying information.
2. A Vehicle for delivering a product-Control of computer(operating system),the

communication of information(networks) and the creation of other programs.

Characteristics of software

• Software is developed or engineered, but it is not manufactured in the classical
sense.

• Software does not wear out, but it deteriorates due to change.

• Software is custom built rather than assembling existing components.

THECHANGINGNATUREOFSOFTWARE

• The various categories of software are
• System software
• Application software
• Engineering and scientific software
• Embedded software
• Product-line software
• Web-applications
• Artificial intelligence software

• System software. System software is a collection of programs written to service other

programs

• Embedded software—resides in read-only memory and is used to control products

and systems for the consumer and industrial markets.
• Artificial intelligence software. Artificial intelligence (AI) software makes use of non

numeric algorithms to solve complex problems that are not amenable to computation
or straightforward analysis

• Engineering and scientific software.Engineering and scientific software have been
characterized by "number crunching" algorithms.

LEGACYSOFTWARE

Legacy software is older programs that are developed decades ago. The quality of
legacy software is poor because it has in extensible design, convoluted code, poor and
nonexistent documentation, test cases and results that are not achieved.
As time passes legacy systems evolve due to following reasons:

 The software must be adapted to meet the needs of new computing environment or
technology.

 The software must be enhanced to implement new business requirements.

 The software must be extended to make it interoperable with more modern systems
or database 

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

 The software must be re architected to make it viable within a network environment.

SOFTWAREMYTHS

Myths are widely held but false beliefs and views which propagate misinformation
and confusion. Three types of myth are associated with software:
- Management myth

- Customer myth
- Practitioner’s myth

MANAGEMENTMYTHS

• Myth (1)-The available standards and procedures for software are enough.
• Myth (2)-Each organization feel that they have state-of-art software
development tools since they have latest computer.

• Myth (3)-Adding more programmers when the work is behind schedule can catch up.
• Myth(4)-Outsourcing the software project to third party , we can relax and let that

party build it.

CUSTOMERMYTHS

• Myth (1)-General statement of objective is enough to begin writing programs,
the details can be filled in later.
• Myth(2)-Software is easy to change because software is flexible

PRACTITIONER’SMYTH
• Myth (1)-Once the program is written, the job has been done.
• Myth (2)-Until the program is running, there is no way of assessing the quality.
• Myth(3)-The only deliverable work product is the working program
• Myth (4)-Software Engineering creates voluminous and unnecessary

documentation and invariably slows down software development.

SOFTWARE ENGINEERING-A LAYEREDTECHNOLOGY

 Fig: Software Engineering-A layered technology

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

SOFTWARE ENGINEERING -A LAYERED TECHNOLOGY

• Quality focus –Bedrock that supports Software Engineering.
• Process-Foundation for software Engineering
• Methods-Provide technical How-to’s for building software
• Tools-Provide semi-automatic and automatic support to methods

A PROCESS FRAMEWORK

• Establishes the foundation for a complete software process
• Identifies a number of frame work activities applicable to all software projects
• Also include a set of umbrella activities that are applicable across the

entire software process.

A PROCESS FRAME WORK comprises of: Common process frame work Umbrella
activities Framework activities Tasks, Milestones, deliverables SQA points

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

A PROCESS FRAME WORK

Used as a basis for the description of process models Generic process activities
• Communication
• Planning
• Modeling
• Construction
• Deployment

APROCESSFRAMEWORK

Genericviewofengineeringcomplimentedbyanumberofumbrellaactivities

 Software project tracking and control

 Formal technical reviews

 Software quality assurance

 Software configuration management

 Document preparation and production

 Reusability management

 Measurement

 Risk management

CAPABILITY MATURITY MODEL INTEGRATION (CMMI)
• Developed by SEI (Software Engineering institute)
• Assess the process model followed by an organization and rate the organization with

different levels
• A set of software engineering capabilities should be present as organizations reach

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

different levels of process capability and maturity.

CMMI process Meta model can be represented in different ways
1. A continuous model
2. A staged model

Continuous model:

-Lets organizations elect specific improvement that best meet its business objectives
and minimize risk- Levels are called capability levels.
-Describes a processin2 dimensions
-Each process area is assessed against specific goals and practices and israted
according to the following capability levels.

CMMI

• Six levels of CMMI
– Level0:Incomplete
– Level1:Performed
– Level2:Managed
– Level3:Defined
– Level4:Quantitativelymanaged
– Level5:Optimized

CMMI

• Incomplete-Process is adhoc. Objective and goal of process areas are not known
• Performed-Goal, objective, work tasks, work products and other activities of

software process are carried out
• Managed-Activities are monitored, reviewed, evaluated and controlled
• Defined-Activities are standardized, integrated and documented

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

• Quantitatively Managed-Metrics and indicators are available to measure the process
and quality

• Optimized-Continuous process improvement based on quantitative feedback from
the user

-Use of innovative ideas and techniques, statistical quality control and other methods for
process improvement.

CMMI-Staged model

- This model is used if you have no clue of how to improve the process for quality
software.

- It gives a suggestion of what things other organizations have found helpful to work
first

- Levels are called maturity levels

PROCESS MODELS

• Help in the software development
• Guide the software team through a set of frame work activities
• Process Models may be linear, incremental or evolutionary

THE WATERFALL MODEL

• Used when requirements are well understood in the beginning
• Also called classic life cycle
• A systematic, sequential approach to Software development
• Begins with customer specification of Requirements and progresses through
planning, modeling, construction and deployment.

This Model suggests a systematic, sequential approach to SW development that

begins at the system level and progresses through analysis, design, code and

testing

PROBLEMS IN WATER FALL MODEL

• Real projects rarely follow these sequential flow since they are always iterative
• The model requires requirements to be explicitly spelled out in the
beginning, which is often difficult

Modeling

Deployment

Construction

Planning

Communication

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

• A working model is not available until late in the project time plan.

THE SPIRAL MODEL

An evolutionary model which combines the best feature of the classical lifecycle and
The iterative nature of prototype model. Include new element: Risk element. Starts in
middle and continually visits the basic tasks of communication, planning, modeling,
construction and deployment

THE SPIRAL MODEL

• Realistic approach to the development of large scale system and software

• Software evolves as process progresses
• Better understanding between developer and customer
• The first circuit might result in the development of a product specification

• Sub sequent circuits develop a prototype
• And sophisticated version of software

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

THE CONCURRENT DEVELOPMENT MODEL

• Also called concurrent engineering
• Constitutes a series of framework activities ,software engineering action ,tasks

and their associated states
• All activities exist concurrently but reside in different states
• Applicable to all types of software development

• Event generated at one point in the process trigger transitions among the states

A FINAL COMMENT ON EVOLUTIONARY PROCESS

• Difficult in project planning
• Speed of evolution is not known does not focus on flexibility and extensibility (more

emphasis on high quality)
• Requirement is balance between high quality and flexibility and extensibility

Agility and Agile Process model

The meaning of Agile is swift or versatile."Agile process model" refers to a
software development approach based on iterative development. Agile methods
break tasks into smaller iterations, or parts do not directly involve long term planning.
The project scope and requirements are laid down at the beginning of the
development process. Plans regarding the number of iterations, the duration and the
scope of each iteration are clearly defined in advance

Phases of Agile model:

1. Requirements gathering

2. Design the requirements

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

3. Construction/iteration

4. Testing/Quality assurance

5. Deployment

6. Feedback

1. Requirements gathering: In this phase, you must define the requirements. You
should explain business opportunities and plan the time and effort needed to
build the project. Based on this information, you can evaluate technical and
economic feasibility.

2. Design the requirements: When you have identified the project, work with
stakeholders to define requirements. You can use the user flow diagram or the high-
level UML diagram to show the work of new features and show how it will apply to
your existing system.

3. Construction/ iteration: When the team defines the requirements, the work
begins. Designers and developers start working on their project, which aims to
deploy a working product. The product will undergo various stages of
improvement, so it includes simple, minimal functionality.

4. Testing: In this phase, the Quality Assurance team examines the product's

performance and looks for the bug.

5. Deployment: In this phase, the team issues a product for the user's work

environment.

6. Feedback: After releasing the product, the last step is feedback. In this, the team

receives feedback about the product and works through the feedback.

Advantages:

1. Frequent Delivery

2. Face-to-Face Communication with clients.

3. Efficient design and fulfils the business requirement.

4. Any time changes are acceptable.

5. It reduces total development time.

Disadvantages:
1. Due to the shortage of formal documents, it creates confusion and crucial

decisions taken throughout various phases can be misinterpreted at any time by

different team members.

2. Due to the lack of proper documentation, once the project completes and the
developers allotted to another project, maintenance of the finished project can

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

become a difficulty.

Other process models of Agile Development and Tools

 Crystal
 Scrum

Scrum

Scrum is aimed at sustaining strong collaboration between people working on
complex products, and details are being changed or added. It is based upon the
systematic interactions between the three major roles: Scrum Master, Product Owner,
and the Team.

 Scrum Master is a central figure within a project. His principal responsibility

is to eliminate all the obstacles that might prevent the team from working
efficiently.

 Product Owner, usually a customer or other stakeholder, is actively involved

throughout the project ,conveying the global vision of the product and providing
timely feedback on the job done after every sprint.

 Scrum Team is a cross-functional and self-organizing group of people that is

responsible for the product implementation. It should consist of up to 7 team
members, in order to stay flexible and productive.

Crystal

Crystal is an agile methodology for software development. It places focus on people
over processes, to empower teams to find their own solutions for each project rather
than being constricted with rigid methodologies.

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

Crystal methods focus on:-

 People involved

 Interaction between the teams/Community

 Skills of people involved Their Talents

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

UNIT-II

SOFTWARE REQUIREMENTS: Functional and non- functional requirements, user

requirements, system requirements, interface specification, the software

requirements document.

Requirements engineering process: Feasibility studies, requirements elicitation and

analysis, requirements validation, requirements management.

Software Requirements:

IEEE defines Requirements:

1. A condition or capability needed by a user to solve a problem or achieve
an objective

2. A condition or capability that must be met or possessed by a
system or a system component to satisfy construct, standard,
specification or formally imposed document
3. A documented representation of a condition nor capability as in 1 or 2

SOFTWARE REQUIREMENTS

• Encompasses both the User’s view of the requirements(the
external view)and the Developer’s view(inside characteristics)
User’s Requirements

--Statements in a natural language plus diagram, describing the
services the system is expected to provide and the constraints
• System Requirements—Describe the system’s function ,services and

operational condition

SOFTWARE REQUIREMENTS

• System Functional Requirements

--Statement of services the system should provide
--Describe the behavior in particular situations
--Defines the system reaction to particular inputs
• Non functional Requirements
- Constraints on the services or functions offered by the system
--Include timing constraints ,constraints on the development process and
standards
--Apply to system as a whole

• Domain Requirements
--Requirements relate to specific application of the system
--Reflect characteristics and constraints of that system

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

FUNCTIONAL REQUIREMENTS

• Should be both complete and consistent
• Completeness
--All services required by the user should be defined
• Consistent
--Requirements should not have contradictory definition
• Difficult to achieve completeness and consistency for large system

NON-FUNCTIONAL REQUIREMENTS

Types of Non-functional Requirements
1. Product Requirements

-Specify product behavior
-Include the following

• Usability
• Efficiency
• Reliability
• Portability
2. Organizational Requirements

--Derived from policies and procedures
--Include the following:
• Delivery
• Implementation
• Standard
3. External Requirements

--Derived from factors external to the system and its development process
--Includes the following
• Interoperability

• Ethical
• Legislative
PROBLEMSFACEDUSINGTHENATURALLANGUAGE
1. Lack of clarity—Leads to misunderstanding because of ambiguity of

natural language
2. Confusion—Due to over flexibility, some time difficult to find
whether requirements are same or distinct.
3. Amalgamation problem—Difficult to modularize natural language

requirements

STRUCTURED LANGUAGE SPECIFICATION

• Requirements are written in a standard way
• Ensures degree of uniformity
• Provide templates to specify system requirements
• Include control constructs and graphical highlighting to partition the

specification

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

SYSTEM REQUIREMENTS STANDARD FORM

• Function
• Description
• Inputs
• Source

• Outputs
• Destination
• Action
• Precondition
• Post condition
• Side effects

Interface Specification

• Working of new system must match with the existing system

• Interface provides this capability and precisely specified

Three types of interfaces

1. Procedural interface—Used for calling the existing programs by the new
programs

2. Data structures-Provide data passing from one sub-system to another
3. Representations of Data

--Ordering of bits to match with the existing system
--Most common in real-time and embedded system

The Software Requirements document
The requirements document is the official statement of what is required
of the system developers. Should include both a definition of user
requirements and a specification of the system requirements. It is NOT a
design document. As far as possible ,it should set of” WHAT” the system

should do rather than HOW it should do it

The Software Requirements document
Heninger suggests that here are 6requirements that requirement document
should satisfy. It should

• Specify only external system behavior

• Specify constraints on the implementation.
• Be easy to change
• Serve as reference tool for system maintainers

• Record for thought about the lifecycle of the system.
• Characterize acceptable responses to undesired events

Purpose of SRS
• Communication between the Customer, Analyst, system developers,

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

maintainers

• Firm foundation for the design phase
• Support system testing activities
• Support project management and control
• Controlling the evolution of the system

IEEE requirements standard

Defines a generic structure for a requirements document that must be
instantiated for each specific system.
– Introduction.

– General description.
– Specific requirements.
– Appendices.
– Index.

IEEE requirements standard
1. Introduction :
2. Purpose
3. Scope
4. Definitions,
5. Acronyms and Abbreviations
6. References
7. Overview
8. General Description

9. Product perspective

10. Product function summary

11. User characteristics

12. General constraints
13. Assumptions and dependencies
14. Specific Requirements
15. Functional requirements

-External interface requirements
- Performance requirements
- Design constraints
- Attributeseg.security,availability,maintainability,transferability/conversion
- Other requirements
• Appendices
• Index
REQUIREMENTS ENGINEERING PROCESS
To create and maintain a system requirement document .The overall
process includes four high level requirements engineering sub-processes:
Feasibility study:--Concerned with assessing whether the system is useful
to the business

2. Elicitation and analysis:-- Discovering requirements

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

3. Specifications:-- Converting the requirements into a standard form

4. Validation:-- Checking that the requirements actually define the system
that the customer wants

SPIRAL REPRESENTATION OF REQUIREMENTS ENGINEERING
PROCESS
Process represented as three stage activity. Activities are organized as
an iterative process around a spiral. Early in the process, most effort will

be spent on understanding high-level business and the use requirement.
Later in the outer rings, more effort will be devoted to system
requirements engineering and system modeling

Three level process consists of :

 Requirements elicitation
 Requirements specification
 Requirements validation

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

FEASIBILITYSTUDIES

Starting point of the requirements engineering process
• Input :Set of preliminary business requirements, an outline
description of the system and how the system is intended to support
business processes
• Output : Feasibility report that recommends whether or not it is worth
carrying out further Feasibility report answers a number of questions:
1. Does the system contribute to the overall objective

2. Can the system be implemented using the current technology and with
in given cost and schedule

3. Can the system be integrated with other system which is already in
place.

REQUIREMENTS ELICITATION ANALYSIS

Involves a number of people in an organization.
Stakeholder definition—Refers to any person or group who will be affected
by the system directly or indirectly i.e. End users, Engineers, business
managers, domain experts.

 Reasons why eliciting is difficult

 Stakeholder often don’t know what they want from the computer
system

 A stakeholder expression of requirements in natural language is
sometimes difficult to understand.

 Different stakeholders express requirements differently
 Influences of political factors, Change in requirements due to

dynamic environments.

REQUIREMENTS ELICITATION PROCESS

Process activities
1. Requirement Discovery—Interaction with stakeholder to collect
their requirements including domain and documentation

2. Requirements classification and organization—Coherent
clustering of requirements from unstructured collection of

requirements
3. Requirements prioritization and negotiation—Assigning priority to

requirements
--Resolves conflicting requirements through negotiation
4. Requirements documentation—Requirements be documented and

placed in the next round of spiral

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

The spiral representation of Requirements Engineering

REQUIEMENTSDICOVERYTECHNIQUES

1. Viewpoints –Based on the viewpoints expressed by the stakeholder
--Recognizes multiple perspectives and provides a framework for discovering
conflicts in the requirements proposed by different stakeholders

Three Generic types of viewpoints

 Inter actor viewpoint—Represents people or other system that interact directly with the
system

 Indirect viewpoint—Stakeholders who influence the requirements ,but don’t use the
system

 Domain viewpoint—Requirements domain characteristics and constraints that
influence the requirements.

 Inter viewing--Puts questions to stakeholders about the system that they use and the
system to be developed.

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

Requirements are derived from the answers.
Two types of interview
– Closed interviews where the stakeholder’s answers pre-defined set of questions.

– Open interviews discuss a range of issues with the stakeholders for better
understanding their needs.

Effective interviewers

a) Open-minded : no pre-conceived ideas
b) Prompter: prompt the interview to start discussion with a question or a proposal

2. Scenarios --Easier to relate to real life examples than to abstract description. Starts
with an outline of the interaction and during elicitation ,details are added to create a
complete description of that interaction
Scenario includes:

1. Description at the start of the scenario

2. Description of normal flow of the event
3. Description of what can go wrong and how this is handled
4. Information about other activities parallel to the scenario
5. Description of the system state when the scenario finishes

LIBSYS scenario
• Initial assumption: The user has logged onto the LIBSYS system and has

located the journal containing the copy of the article.

• Normal: The user selects the article to be copied. He or she is then prompted by

the system to either provide subscriber information for the journal or to indicate how
they will pay for the article. Alternative payment methods are by credit card or by
quoting an organizational account number.
• The user is then asked to fill in a copyright form that maintains details of the
transaction and they then submit this to the LIBSYS system.

• The copyright form is checked and, if OK, the PDF version of the article is
downloaded to the LIBSYS working area on the user’s computer and the user is
informed that it is available. The user is asked to select a printer and a copy of the
article is printed

LIBSYS scenario
• What can go wrong: The user may fail to fill in the copyright form correctly. In this

case, the form should be re-presented to the user for correction. If there submitted

form is still in correct then the user’s request for the article is rejected.
• The payment may be rejected by the system. The user’s request for the article is

rejected.
• The article download may fail. Retry until successful or the user terminates the

session.
• Other activities: Simultaneous downloads of other articles.
• System state on completion: User is logged on. The downloaded article has

been deleted from LIBSYS workspace if it has been flagged as print-only.

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

Use cases—scenario based technique for requirement elicitation. A fundamental
feature of UML, notation for describing object-oriented system models. Identifies a

type of interaction and the actors involved. Sequence diagrams are used to add
information to a Use case

Article printing use-case

Article printing LIBSYS use cases

Article printing Article search

User administration Supplier Catalogue services Library

User Library Staff

REQUIREMENTSVALIDATION

Concerned with showing that the requirements define the system that the customer
wants. Important because errors in requirements can lead to extensive rework cost

Validation checks

 Validity checks –Verification that the system performs the intended function by
the user

 Consistency check --Requirements should not conflict
 Completeness checks—Includes requirements which define all functions and

constraints intended by the system user
Realism checks –Ensures that the requirements can be actually implemented

Verifiability –Testable to avoid disputes between customer and developer.

VALIDATION TECHNIQUES

 REQUIREMENTS REVIEWS : Reviewers check the following:

o Verifiability: Testable

o Comprehensibility

o Traceability

o Adaptability

 PROTO TYPING

 TEST-CASE GENERATION

Requirements management
Requirements are likely to change for large software systems and as such
requirements management process is required to handle changes.
Reasons for requirements changes
(a) Diverse Users community where users have different requirements and priorities
(b) System customers and end users are different
(c) Change in the business and technical environment after installation two classes of

requirements

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

(d) Enduring requirements : Relatively stable requirements
(e) Volatile requirements : Likely to change during system development process or

during operation

Requirements management planning

An essential first stage in requirement management process. Planning process consists
of the following

i. Requirements identification—Each requirement must have unique tag for

cross reference and traceability

ii. Change management process—Set of activities that assess the impact and cost

of changes

iii. Traceability policy--A matrix showing links between requirements and other

elements of software development

iv. CASE tool support—Automatic tool to improve efficiency of change

management process. Automated tools are required for requirements storage,
change management and traceability management

Traceability
Maintains three types of trace ability information.
1. Source traceability—Links the requirements to the stakeholders
2. Requirements traceability—Links dependent requirements within the requirements

document

3. Design traceability—Links from the requirements to the design module

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

A traceability matrix Requirements change management consists of three
principal stages:

1. Problem analysis and change specification--Process starts with a
specific change proposal and analyzed to verify that it is valid
2. Change analysis and costing—Impact analysis in terms of cost, time and

risks

3. Change implementation—Carrying out the changes in requirements

document, system design and its implementation

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

UNIT III

Design Engineering: Design process and design quality, design concepts, the design
model. Creating an architectural design: software architecture, data design, architectural
styles and patterns, architectural design, conceptual model of UML, basic structural
modeling, class diagrams, sequence diagrams, collaboration diagrams, use case
diagrams, component diagrams

DESIGN PROCESS AND DESIGNQUALITY

Encompasses the set of principles, concepts and practices that lead to the
development of high quality system or product. Design creates a representation or
model of the software. Design model provides details about S/W architecture,
interfaces and components that are necessary to implement the system. Quality is
established during Design. Design should exhibit firmness, commodity and design.
Design sits at the kernel of S/W Engineering. Design sets the stage for construction.

QUALITY GUIDELINES
• Uses recognizable architectural styles or patterns
• Modular that is logically partitioned into elements or subsystems
• Distinct representation of data, architecture, interfaces and components
• Appropriate data structures for the classes to be implemented
• Independent functional characteristics for components
• Interfaces that reduces complexity of connection

• Repeatable method

QUALITY ATTRIBUTES

FURPS quality attributes
• Functionality
* Features and capabilities of programs
* Security of the overall system
• Usability

* user-friendliness
* Aesthetics
* Consistency

* Documentation
• Reliability
* Evaluated by measuring the frequency and severity of failure
* MTTF
• Supportability

* Extensibility
* Adaptability

* Serviceability

DESIGN CONCEPTS
1. Abstractions

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

2. Architecture

3. Patterns
4. Modularity
5. Information Hiding

6. Functional Independence
7. Refinement
8. Re-factoring

9. Design Classes

DESIGN CONCEPTS ABSTRACTION
Many levels of abstraction.
Highest level of abstraction: Solution is slated in broad terms using
the language of the problem environment
Lower levels of abstraction: More detailed description of the solution is
provided
• Procedural abstraction—Refers to a sequence of instructions that a

specific and limited function

• Data abstraction—Named collection of data that describe a data object

DESIGN CONCEPTS

ARCHITECTURE—Structure organization of program components

(modules) and their interconnection Architecture Models
(a) Structural Models—An organized collection of program components
(b) Framework Models—Represents the design in more abstract way
(c) Dynamic Models—Represents the behavioral aspects indicating

changes as a function of external events

(d).Process Models—focus on the design of the business or technical
process

PATTERNS

Provides a description to enables a designer to determine the followings:

(a). Whether the pattern is applicable to the current work

(b). Whether the pattern can be reused

(c). Whether the pattern can serve as a guide for developing a similar
but functionally or structurally different pattern

MODULARITY

Divides software into separately named and addressable
components, sometimes called modules. Modules are integrated to
satisfy problem requirements. Consider two problems p1 andp2. If
the complexity of p1 iscp1 and of p2 is cp2 then effort to solve
p1=cp1 and effort

t

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

o solve p2=cp2 If cp1>cp2 then ep1>ep2

The complexity of two problems when they are combined is often greater
than the sum of the perceived complexity when each is taken separately.
Based on Divide and Conquer strategy:
it is easier to solve a complex problem when broken into sub-modules

INFORMATION HIDING

Information contained within a module is inaccessible to other modules
who do not need such information. Achieved by defining a set of
Independent modules that communicate with one another only that
information necessary to achieve S/W function. Provides the greatest
benefits when modifications are required during testing and later. Errors
introduced during modification are less likely to propagate to other
location within the S/W.

FUNCTIONAL INDEPENDENCE

A direct outgrowth of Modularity. Abstraction and information hiding.

Achieved by developing a module with single minded function and an
aversion to excessive interaction with other modules. Easier to develop
and have simple interface. Easier to maintain because secondary effects
caused by design or code modification are limited, error propagation is

reduced and reusable modules are possible. Independence is assessed
by two quantitative criteria:

(1) Cohesion
(2) Coupling
Cohesion-- Performs a single task requiring little interaction with other
components Coupling--Measure of interconnection among modules.

Coupling should be low and cohesion should be high for good design.

REFINEMENT & REFACTORING

REFINEMENT -- Process of elaboration from high level abstraction to the

lowest level abstraction. High level abstraction begins with a statement of
functions. Refinement causes the designer to elaborate providing more
and more details at successive level of abstractions Abstraction and
refinement are complementary concepts.

REFACTORING -- Organization technique that simplifies the design of a

component without changing its function or behavior. Examines for

redundancy, unused design elements and inefficient or unnecessary

algorithms.

DESIGN CLASSES-- Class represents a different layer of design

architecture.

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

Five types of Design Classes
1. User interface class—Defines all abstractions that are necessary for

human computer interaction

2. Business domain class --
Refinementoftheanalysisclassesthatidentityattributesandservicesto
implement some of business domain
3. Process class –implement slower level business abstractions required
to fully manage the business domain classes
4. Persistent class --

Representdatastoresthatwillpersistbeyondtheexecutionofthesoftware
5. System class --Implements management and control functions to
operate and communicate within the computer environment and with the
outside world.

THE DESIGN MODEL

Analysis viewed in two different dimensions as process dimension and
abstract dimension. Process dimension indicates the evolution of the design
model as design tasks are executed as part of software process.
Abstraction dimension represents the level of details as each element of the
analysis model is transformed into design equivalent
Data Design elements
--Data design creates a model of data that is represented at a high level of
abstraction
--Refined progressively to more implementation-specific representation for
processing by the computer base system
--Translation of data model into a data base is pivotal to achieving business
objective of a system

THE DESIGN MODEL

Architectural design elements .Derived from three sources

 Information about the application domain of the software

 Analysis model such as data flow diagrams or analysis classes.

 Architectural pattern and styles Interface Design elements Set of
detailed drawings constituting:

 User interface

 External interfaces to other systems, devices etc

 Internal interfaces between various components

THE DESIGN MODEL

Deployment level design elements. Indicate show software functionality and
sub system will be allocated within the physical computing environment.
UML deployment diagram is developed and refined Component level
design elements fully describe the internal details of each software

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

component. UML diagram can be used

CREATING ANARCHITECTURAL DESIGN

What is SOFTWARE ARCHITECTURE… The software architecture of a
program or computing system is the structure or structures of the system,
which comprise software components, the externally visible properties of
those components and the relationship among them.

Software Architecture is not the operational software. It is a
representation that enables a software engineer to
• Analyze the effectiveness of the design in meeting its stated

requirements.
• Consider architectural alternative at a stage when making design

changes is still relatively easy.
• Reduces the risk associated with the construction of the software.

Why Is Architecture Important? Three key reasons
--Representations of software architecture enable communication

and understanding between stakeholders
--Highlights early design decisions to create an operational entity.
--constitutes a model of software components and their interconnection

Data Design
The data design action translates data objects defined as part of the
analysis model into data structures at the component level and database
architecture at application level when necessary.

DATA DESIGN ATARCHITECTURE LEVEL

• Data structure at programming level
• Database at application level
• Data warehouse at business level.

DATA DESIGN AT COMPONENT LEVEL

Principles for data specification:
 Proper selection of data objects and data and data models

 Identification of attribute and functions and their encapsulation of
these with in a class

 Mechanism for representation of the content of each data object.

Class diagrams may be used

 Refinement of data design elements from requirement analysis to
component level design.

 Information hiding
 A library of useful data structures and operations be developed.
 Software design and PL should support the specification and

realization of abstract data types.

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

ARCHITECTURAL STYLES

Describes a system category that encompasses:
(1) a set of components

(2) a set of connectors that enables “communication and coordination
(3) Constraints that define how components can be integrated to form the

system

(4) Semantic models to understand the overall properties of a system

Data-flow architectures
Shows the flow of input data ,its computational components and output
data. Structure is also called pipe and Filter. Pipe provides path for flow of
data. Filters manipulate data and work independent of its neighboring

filter. If data flow degenerates into a single line of transform, it is termed
as batch sequential.
Call and return architectures
Achieves a structure that is easy to modify and scale . Two sub styles
(1) Main program/sub program architecture
--Classic program structure

--Main program invokes a number of components, which in turn invoke still

other components

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

(2) Remote procedure call architecture
--Components of main program/sub program are distributed across
computers over network

Object-oriented architectures
The components of a system encapsulate data and the operations.

Communication and coordination between components is done via

message

Layered architectures
A number of different layers are defined Inner Layer(interface with OS)
• Intermediate Layer Utility services and application function)Outer

Layer(User interface)

ARCHITECTURAL PATTERNS

A template that specifies approach for some behavioral
characteristics of the system Patterns are imposed on the

architectural styles
Pattern Domains
1. Concurrency
--Handles multiple tasks that simulate parallelism.

FIG:Layered

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

--Approaches (Patterns)
(a) Operating system process management pattern
(b) A task scheduler pattern
(c) Persistence

--Data survives past the execution of the process
--Approaches (Patterns)
(a) Data base management system pattern
(b) Application Level persistence Pattern(word processing software)

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

1. Distribution
--Addresses the communication of system in a distributed environment
--Approaches (Patterns)

(a)Broker Pattern
--Acts as middleman between client and server.

Conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams,
collaboration diagrams, use case diagrams, component diagrams

A Conceptual Model of the UML

To understand the UML, you need to form a conceptual model of the
language, and this requires learning three major elements: the UML's basic
building blocks, the rules that dictate how those building blocks may be put
together, and some common mechanisms that apply throughout the UML.

Building Blocks of the UML

The vocabulary of the UML encompasses three kinds of building blocks:

1. Things

2. Relationships

3. Diagrams
Things are the abstractions that are first-class citizens in a model;
relationships tie these things together; diagrams group interesting
collections of things.

Things in the UML

There are four kinds of things in the UML:

1. Structural things

2. Behavioral things

3. Grouping things

4. Annotational things

These things are the basic object-oriented building blocks of the UML. You
use them to write well-formedmodels.

Structural Things

Structural things are the nouns of UML models. These are the mostly
static parts of a model, representing elements that are either
conceptual or physical. In all, there are seven kinds of structural things.

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

First, a class is a description of a set of objects that share the same

attributes, operations, relationships, and semantics. A class implements

one or more interfaces. Graphically, a class is rendered as a rectangle,

usually including its name, attributes, and operations, as

Figure Classes

Second, an interface is a collection of operations that specify a service of a
class or component. An interface therefore describes the externally visible
behavior of that element. An interface might represent the complete
behavior of a class or component or only a part of that behavior. An
interface defines a set of operation specifications (that is, their signatures)
but never a set of operation implementations. Graphically, an interface is
rendered as a circle together with its name. An interface rarely stands
alone. Rather, it is typically attached to the class or component that realizes
the interface, as in

Figure Interfaces

Third, collaboration defines an interaction and is a society of roles and
other elements that work together to provide some cooperative behavior
that's bigger than the sum of all the elements. Therefore, collaborations
have structural, as well as behavioral, dimensions. A given class might
participate in several collaborations. These collaborations therefore
represent the implementation of patterns that make up a system.
Graphically, a collaboration is rendered as an ellipse with dashed lines,

SOFTWARE ENGINEERING A.Y 2024-25

Dept. of CSIT

usually including only its name, as in Figure .

Figure Collaborations

Fourth, a use case is a description of set of sequence of actions that a
system performs that yields an observable result of value to a particular
actor. A use case is used to structure the behavioral things in a model. A
use case is realized by collaboration. Graphically, a use case is rendered
as an ellipse with solidlines, usually including only its name, as in Figure.

Figure Use Cases

Fifth, an active class is a class whose objects own one or more processes
or threads and therefore can initiate control activity. An active class is just
like a class except that its objects represent elements whose behavior is
concurrent with other elements. Graphically, an active class is rendered
just like a class, but
With heavy lines, usually including its name, attributes, and operations, as in Figure.

Figure Active Classes

SOFTWARE ENGINEERING
A.Y 2024-25

Dept. of CSIT

The remaining two elements• component, and nodes• are also

different. They represent physical things, whereas the previous

five things represent conceptual or logical things.

Sixth, a component is a physical and replaceable part of a system that
conforms to and provides the realization of a set of interfaces. In a system,
you'll encounter different kinds of deployment components, such as COM+
components or Java Beans, as well as components that are artifacts of the
development process, such as source code files. A component typically
represents the physical packaging of otherwise logical elements, such as
classes, interfaces, and collaborations. Graphically, a component is
rendered as a rectangle with tabs, usually including only its name, as in
Figure.

Figure Components

Seventh, a node is a physical element that exists at run time and

represents a
Computational resource, generally having at least some memory and,
often, processing capability. A set of components may reside on a node
and may also migrate from node to node. Graphically, a node is rendered
as a cube, usually including only its name, as in
Figure Nodes

 35| P a g e

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

These seven elements• classes, interfaces, collaborations, use cases, active

classes, components, and nodes• are the basic structural things that you may

include in a UML model. There are also variations on

These seven, such as actors, signals, and utilities (kinds of classes), processes
and threads (kinds of active classes), and applications, documents, files, libraries,
pages, and tables (kinds of components).

Behavioral Things

Behavioral things are the dynamic parts of UML models. These are the verbs

of a model, representing behavior over time and space. In all, there are two
primary kinds of behavioral things.

First, an interaction is a behavior that comprises a set of messages exchanged

among a set of objects within a particular context to accomplish a specific purpose.
The behavior of a society of objects or of an individual operation may be specified
with an interaction. An interaction involves a number of other elements, including
messages, action sequences (the behavior invoked by a message), and links (the
connection between objects). Graphically, a message is rendered as a directed
line, almost always including the name of its operation.

Second, a state machine is a behavior that specifies the sequences of states an

object or an interaction goes through during its lifetime in response to events,
together with its responses to those events. The behavior of an individual class or
a collaboration of classes may be specified with a state machine. A state machine
involves a number of other elements, including states, transitions (the flow from
state to state), events (things that trigger a transition), and activities (the response
to a transition). Graphically, a state is rendered as a rounded rectangle, usually
including its name and its sub states, if any.

These two elements• interactions and state machines• are the basic behavioral things that you may
include

in a UML model. Semantically, these elements are usually connected to
various structural elements,primarily classes, collaborations, and objects.

Grouping Things

Grouping things are the organizational parts of UML models. These are the boxes

into which a model can be decomposed. In all, there is one primary kind of

grouping thing, namely, packages.

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

A package is a general-purpose mechanism for organizing elements into groups.
Structural things, behavioral things, and even other grouping things may be placed
in a package. Unlike components (which exist at run time), a package is
purely conceptual (meaning that it exists only at development time).

Graphically, a package is rendered as a tabbed folder, usually including only its name
and, sometimes,its contents, as in Figure.

Figure Packages

Packages are the basic grouping things with which you may organize a UML
model. There are also variations, such as frameworks, models, and subsystems
(kinds of packages).

Annotational Things

Annotational things are the explanatory parts of UML models. These are the comments you
may apply to describe, illuminate, and remark about any element in a model. There is one
primary kind of annotational thing, called a note. A note is simply a symbol for rendering
constraints and comments attached to an element or a collection of elements. Graphically,
a note is rendered as a rectangle with a dog-eared corner, together with a textual or
graphical comment, as in Figure .

Relationships in the UML

There are four kinds of relationships in the UML:

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

 Dept. of CSIT

1. Dependency

2. Association

3. Generalization

4. Realization

These relationships are the basic relational building blocks of the UML. You use them
to write well-formed models.

First, a dependency is a semantic relationship between two things in which a change to one
thing (the independent thing) may affect the semantics of the other thing (the dependent thing).
Graphically, a dependency is rendered as a dashed line, possibly directed, and occasionally
including a label, as in Figure.

Figure Dependencies

Second, an association is a structural relationship that describes a set of links, a link being a
connection among objects. Aggregation is a special kind of association, representing a
structural relationship between a whole and its parts. Graphically, an association is rendered as
a solid line, possibly directed, occasionally including a label, and often containing other
adornments, such as multiplicity and role names, as in Figure.

Figure Associations

Third, a generalization is a specialization/generalization relationship in which objects of the
specialized element (the child) are substitutable for objects of the generalized element (the
parent). In this way, the child shares the structure and the behavior of the parent. Graphically,
a generalization relationship is rendered as a solid line with a hollow arrowhead pointing to
the parent, as in Figure .

Figure Generalizations

Fourth, a realization is a semantic relationship between classifiers, wherein one classifier

specifies a contract that another classifier guarantees to carry out. You'll encounter realization
relationships in two places: between interfaces and the classes or components that realize
them, and between use cases and the collaborations that realize them. Graphically, a
realization relationship is rendered as a cross between a generalization and a dependency

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

relationship, as in Figure.

Figure Realization

These four elements are the basic relational things you may include in a UML model. There are

also variations on these four, such as refinement, trace, include, and extend (for

dependencies). The five views of architecture are discussed in the following section.

Diagrams in the UML

A diagram is the graphical presentation of a set of elements, most often rendered as a
connected graph of vertices (things) and arcs (relationships). The UML includes nine
such diagrams:

1. Class diagram

2. Object diagram

3. Use case diagram

4. Sequence diagram

5. Collaboration diagram

6. State chart diagram

7. Activity diagram

8. Component diagram

9. Deployment diagram

A class diagram shows a set of classes, interfaces, and collaborations and their relationships.
These diagrams are the most common diagram found in modeling object- oriented systems.
Class diagrams address the static design view of a system. Class diagrams that include active
classes address the static process view of a system.

An object diagram shows a set of objects and their relationships. Object diagrams represent
static snapshots of instances of the things found in class diagrams. These diagrams address
the static design view or static process view of a system as do class diagrams, but from the
perspective of real or prototypical cases.

A use case diagram shows a set of use cases and actors (a special kind of class) and their

relationships. Use case diagrams address the static use case view of a system. These
diagrams are especially important inorganizing and modeling the behaviors of a system.

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

Both sequence diagrams and collaboration diagrams are kinds of interaction diagrams. An
shows an interaction, consisting of a set of objects and their relationships, including the
messages that may be dispatched among them. Interaction diagrams address the dynamic
view of a system. A sequence diagram is an interaction diagram that emphasizes the time-

ordering of messages;

A collaboration diagram is an interaction diagram that emphasizes the structural organization of

the objects that send and receive messages. Sequence diagrams and collaboration diagrams
are isomorphic, meaning that you can take one and transform it into the other.

A state chart diagram shows a state machine, consisting of states, transitions, events, and

activities. State chart diagrams address the dynamic view of a system. They are especially

important in modeling the behavior of an interface, class, or collaboration and emphasize

the event-ordered behavior of an object, which is especially useful in modeling reactive

systems.

An activity diagram is a special kind of a state chart diagram that shows the flow from
activity to activity within a system. Activity diagrams address the dynamic view of a system.
They are especially important in modeling the function of a system and emphasize the flow
of control among objects.

A component diagram shows the organizations and dependencies among a set of
components. Component diagrams address the static implementation view of a system.
They are related to class diagrams in that a component typically maps to one or more
classes, interfaces, or collaborations.

A deploymheemnt. Dd ieapgl or yamme nst h o ws the configuration of run-time processing nodes and the components

that live on address the static deployment view of an architecture. They are related to component
diagrams in that a node typically encloses one or more components the configuration of run-time
processing nodes and the components that live on address the static deployment view of an
architecture. They are related to component diagrams in that a node typically encloses one or more
components.

Rules of the UML

The UML's building blocks can't simply be thrown together in a random fashion. Like any
language, the UML has a number of rules that specify what a well-formed model should look
like. A well-formed model is one that is semantically self-consistent and in harmony with all its
related models.

The UML has semantic rules for

Names What you can call things, relationships, and
diagrams

Scope The context that gives specific meaning to a name

Visibility How those names can be seen and used by others

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

Integrity How things properly and consistently relate to one
another

Execution What it means to run or simulate a dynamic model

Models built during the development of a software-intensive system tend to evolve a n dmay
be viewed by many stakeholders in different ways and at different times. For this reason, it is
common for the development team to not only build models that are well-formed, but also to
build models that are elided, incomplete, and inconsistent.

Common Mechanisms in the UML

It is made simpler by the presence of four common mechanisms that apply
consistently throughoutthe language.

1. Specifications

2. Adornments

3. Common divisions

4. Extensibility mechanisms

Specifications

The UML's specifications provide a semantic backplane that contains all the parts of all the
models of a system, each part related to one another in a consistent fashion. The UML's
diagrams are thus simply visual projections into that backplane, each diagram revealing a
specific interesting aspect of the system.

Adornments

Most elements in the UML have a unique and direct graphical notation that provides a visual
representation of the most important aspects of the element. For example, the notation for a
class is intentionally designed to be easy to draw, because classes are the most common
element found in modeling object-oriented systems. The class notation also exposes the
most important aspects of a class, namely its name, attributes, and operations.
Every element in the UML's notation starts with a basic symbol, to which can be
added a variety ofadornments specific to that symbol.

Common Divisions

In modeling object-oriented systems, the world often gets divided in at least a couple of ways.

First, there is the division of class and object. A class is an abstraction; an object is
one concrete manifestation of that abstraction. In the UML, you can model classes as
well as objects, as shownin Figure.

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

Figure Classes And Objects

In this figure, there is one class, named Customer, together with three objects: Jan (which
is marked explicitly as being a Customer object), :Customer (an anonymous Customer
object), and Elyse (which in its specification is marked as being a kind of Customer object,
although it's not shown explicitly here).

Second, there is the separation of interface and implementation. An interface declares a
contract, and an implementation represents one concrete realization of that contract,
responsible for faithfully carrying out the interface's complete semantics. In the UML, you
can model both interfaces and their implementations, as shown in Figure.

Figure Interfaces And Implementations

In this figure, there is one component named spellingwizard.dll that implements two
interfaces, I Unknown and ISpelling.Almost every building block in the UML has this
same kind of interface/ implementation dichotomy. For example, you can have use
cases and the collaborations that realize them, as well as operations and the methods
that implement them.

 Extensibility Mechanisms

. The UML's extensibility mechanisms include

· Stereotypes

· Tagged values

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

· Constraints

A stereotype extends the vocabulary of the UML, allowing you to create new kinds of
building blocks that are derived from existing ones but that are specific to your problem.
For example, if you are working in a programming language, such as Java or C++, you will
often want to model exceptions. In these languages, exceptions are just classes, although
they are treated in very special ways. Typically, you only

want to allow them to be thrown and caught, nothing else. You can make exceptions first
class citizens in your models• meaning that they are treated like basic building blocks• by
marking them with an appropriate stereotype, as for the class Overflow in
Figure .

Figure Extensibility Mechanisms

A tagged value extends the properties of a UML building block, allowing you to create
new information in that element's specification. For example, if you are working on a
shrink-wrapped product that undergoes many releases over time, you often want to track
the version and author of certain critical abstractions. Version and author are not primitive
UML concepts. They can be added to any building block, such as a class, by introducing
new tagged values to that building block. In Figure, for example, the class Event Queue is
extended by marking its version and author explicitly.

A constraint extends the semantics of a UML building block, allowing you to add new rules
or modify existing ones. For example, you might want to constrain the Event Queue class
so that all additions are done in order. You can add a constraint that explicitly marks these
for the operation adds.

The deployment view of a system encompasses the nodes that form the system's
hardware topology on which the system executes. This view primarily addresses the
distribution, delivery, and installation of the parts that make up the physical system. With
the UML, the static aspects of this view are captured in deployment diagrams; the dynamic
aspects of this view are captured in interaction diagrams, state chart diagrams, and activity
diagrams.

Each of these five views can stand alone so that different stakeholders can focus on the
issues of the system's architecture that most concern them. These five views also interact
with one another• nodes in the deployment view hold components in the implementation

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

view that, in turn, represent the physical realization of classes, interfaces, collaborations,
and active classes from the design and process views. The UML permits you to express
every one of these five views and their interactions.

Basic structural modeling:

Class

Classes are the most important building block of any object-oriented system. A class is a
description of a set of objects that share the same attributes, operations, relationships,
and semantics. A class implements one or more interfaces.

Terms and Concepts

A class is a description of a set of objects that share the same attributes,

operations, relationships, and semantics. Graphically, a class is rendered as a

rectangle.

Names

Every class must have a name that distinguishes it from other classes. A name is a textual

string. That name alone is known as a simple name; a path name is the class name

prefixed by the name of the package in which that class lives. A class may be drawn
showing only its name, as Figure shows.

Figure Simple and Path Names

Attributes

An attribute is a named property of a class that describes a range of values that instances
of the property may hold. A class may have any number of attributes or no attributes at all.
An attribute represents some property of the thing you are modeling that is shared by all
objects of that class

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

Operations

An operation is the implementation of a service that can be requested from any object of
the class to affect behavior. In other words, an operation is an abstraction of something you
can do to an object and that is shared by all objects of that class. A class may have any
number of operations or no operations at all.

For example, in a windowing library such as the one found in Java's awt package, all
objects of the class Rectangle can be moved, resized, or queried for their properties. Often
(but not always), invoking an operation on an object changes the object's data or state.
Graphically, operations are listed in a compartment just below the class attributes.
Operations may be drawn showing only their names.

You can further specify an attribute by stating its class and possibly a default initial value

You can specify an operation by stating its signature, covering the name, type, and
default value of all parameters and (in the case of functions) a return type, as shown
in Figure.

Figure Operations and Their Signatures

Organizing Attributes and Operations

When drawing a class, you don't have to show every attribute and every operation at once.
In fact, in most cases, you can't (there are too many of them to put in one figure) and you
probably shouldn't (only a subset of these attributes and operations are likely to be relevant
to a specific view). For these reasons, you can elide a class, meaning that you can choose
to show only some or none of a class's attributes and operations. An empty compartment
doesn't necessarily mean there are no attributes or operations, just that you didn't choose
to show them. You can explicitly specify that there are more attributes or properties than
shown by ending each list with an ellipsis ("...").

To better organize long lists of attributes and operations, you can also prefix

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

each group witha descriptive category by using stereotypes, as shown in Figure .

Figure Stereotypes for Class Features

 Responsibilities

A responsibility is a contract or an obligation of a class. When you create a class, you are
making a statement that all objects of that class have the same kind of state and the same
kind of behavior. At a more abstract level, these corresponding attributes and operations are
just the features by which the class's responsibilities are carried out. A Wall class is
responsible for knowing about height, width, and thickness; a Fraud Agent class, as you
might find in a credit card application, is responsible for processing orders and determining
if they are legitimate, suspect, or fraudulent; a Temperature Sensor class is responsible for
measuring temperature and raising an alarm if the temperature reaches a certain point.

When you model classes, a good starting point is to specify the responsibilities of the things
in your vocabulary. Techniques like CRC cards and use case-based analysis are especially
helpful here. A class may have any number of responsibilities, although, in practice, every
well-structured class has at least one responsibility and at most just a handful. As you refine
your models, you will translate these responsibilities into a set of attributes and operations
that best fulfill the class's responsibilities.

Graphically, responsibilities can be drawn in a separate compartment at the bottom of
the class icon,as shown in Figure.

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

Figure Responsibilities

Attributes, operations, and responsibilities are the most common features you'll need
when you create abstractions. In fact, for most models you build, the basic form of these
three features will be all you needto convey the most important semantics of your classes.

Operations

An operation is the implementation of a service that can be requested from any object of
the class to affect behavior. In other words, an operation is an abstraction of something you
can do to an object and that is shared by all objects of that class. A class may have any
number of operations or no operations at all.

For example, in a windowing library such as the one found in Java's awt package, all
objects of the class Rectangle can be moved, resized, or queried for their properties.
Often (but not always), invoking an operation on an object changes the object's data
or state. Graphically, operations are listed in a compartment just below the class
attributes. Operations may be drawn showing only their names, as in Figure You can
specify an operation by stating its signature, covering the name, type, and default
value of all parameters and (in the case of functions) a return type, as shown in
Figure.

Responsibilities

A responsibility is a contract or an obligation of a class. When you create a class, you are making a
statement that all objects of that class have the same kind of state and the same kind of behavior.
At a more abstract level, these corresponding attributes and operations are just the features by
which the class's responsibilities are carried out. A Wall class is responsible for knowing about
height, width, and thickness; a Fraud Agent class, as you might find in a credit card application, is
responsible for processing orders and determining if they are legitimate, suspect, or fraudulent; a
Temperature Sensor class is responsible for measuring temperature and raising an alarm if the
temperature reaches a certain point.

Other Features

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

When you model classes, a good starting point is to specify the responsibilities of the things in your
vocabulary. Techniques like CRC cards and use case-based analysis are especially helpful here. A
class may have any number of responsibilities, although, in practice, every well-structured class has
at least one responsibility and at most just a handful. As you refine your models, you will translate
these responsibilities into a set of attributes and operations that best fulfill the class's responsibilities.

graphically, responsibilities can be drawn in a separate compartment at the bottom of
the class icon,as shown in Figure.

Figure Responsibilities

Attributes, operations, and responsibilities are the most common features you'll need
when you create abstractions. In fact, for most models you build, the basic form of these
three features will be all you needto convey the most important semantics of your classes.

When you build models, you will soon discover that almost every abstraction you create is
some kind of class. Sometimes, you will want to separate the implementation of a class
from its specification, and this can be expressed in the UML by using interfaces.

When you start building more complex models, you will also find yourself encountering the
same kinds of classes over and over again, such as classes that represent concurrent
processes and threads, or classes that represent physical things, such as applets, Java
Beans, COM+ objects, files, Web pages, and hardware. Because these kinds of classes
are so common and because they represent important architectural abstractions, the UML
provides active classes (representing processes and threads), components (representing
physical software components), and nodes (representing hardware devices).

Other Features

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

Relationships

Terms and Concepts

A relationship is a connection among things. In object-oriented modeling, the three most
important relationships are dependencies, generalizations, and associations.
Graphically, a relationship is rendered as a path, with different kinds of lines used to
distinguish the kinds of relationships.

Dependency

A dependency is a using relationship that states that a change in specification of one thing
(for example, class Event) may affect another thing that uses it (for example, class
Window), but not necessarily the reverse. Graphically, a dependency is rendered as a
dashed directed line, directed to the thing being depended on. Use dependencies when
you want to show one thing using another.

When you build models, you will soon discover that almost every abstraction you create is
some kind of class. Sometimes, you will want to separate the implementation of a class
from its specification, and this can be expressed in the UML by using interfaces.

When you start building more complex models, you will also find yourself encountering the
same kinds of classes over and over again, such as classes that represent concurrent
processes and threads, or classes that represent physical things, such as applets, Java
Beans, COM+ objects, files, Web pages, and hardware. Because these kinds of classes
are so common and because they represent important architectural abstractions, the UML
provides active classes (representing processes and threads), components (representing
physical software components), and nodes (representing hardware devices).

Finally, classes rarely stand alone. Rather, when you build models, you will typically focus on
groups

When you build models, you will soon discover that almost every abstraction you create is
some kind of class. Sometimes, you will want to separate the implementation of a class
from its specification, and this can be expressed in the UML by using interfaces.

When you start building more complex models, you will also find yourself encountering the
same kinds of classes over and over again, such as classes that represent concurrent
processes and threads, or classes that represent physical things, such as applets, Java
Beans, COM+ objects, files, Web pages, and hardware. Because these kinds of classes
are so common and because they represent important architectural abstractions, the UML
provides active classes (representing processes and threads), components (representing
physical software components), and nodes (representing hardware devices).

Finally, classes rarely stand alone. Rather, when you build models, you will typically focus on groups

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

Figure Dependencies

Generalization

A generalization is a relationship between a general thing (called the superclass or
parent)and a more specific kind of that thing (called the subclass or child). Generalization is
sometimes called an "is-a-kind- of" relationship: one thing (like the class BayWindow) is-a-
kind-of a more general thing (for example, the class Window). Generalization means that
objects of the child may be used anywhere the parent may

appear, but not the reverse. In other words, generalization means that the child is
substitutable for the parent. A child inherits the properties of its parents, especially their
attributes and operations. Often• but not always• the child has attri butes and operations in
addition to those found in its parents. An operation of

a child that has the same signature as an operation in a parent overrides the operation of
the parent; this is known as polymorphism. Graphically, generalization is rendered as a
solid directed line with a large open arrowhead, pointing to the parent, as shown in Figure.
Use generalizations when you want to show parent/child relationships.

Figure Generalization

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

A class may have zero, one, or more parents. A class that has no parents and one or more
children is called a root class or a base class. A class that has no children is called a leaf
class. A class that has exactly one parent is said to use single inheritance; a class with
more than one parent is said to use multiple inheritance.

Association

An association is a structural relationship that specifies that objects of one thing are

connected to objects of another. Given an association connecting two classes, you can

navigate from an objectof one class to anobject of the other class, and vice versa. It's quite

legal to have both ends of an association circle back to the same class. This means that,

given an object of the class, you can link to other objects of the same class. An as An

association that connects exactly two classes is called a binary association. Although it's

not as common, you can have associations that connect more than two classes; these

are called n-ary associations. Graphically, an association is rendered as a solid line

connecting the same or different classes. Use associations when you want to show

structural relationships.

Beyond this basic form, there are four adornments that apply to associations.

Name

An association can have a name, and you use that name to describe the nature of the
relationship. Sothat there is no ambiguity about its meaning, you can give a direction to

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

the name by providing a direction triangle that points in the direction you intend to read
the name, as shown in Figure.

Figure Association Names

Role

When a class participates in an association, it has a specific role that it plays in that
relationship; a role is just the face the class at the near end of the association presents to
the class at the other end of the association. You can explicitly name the role a class plays
in an association. In Figure, a Person playing the role of employee is associated with a
Company playing the role of employer.

Figure Roles

An association represents a structural relationship among objects. In many modeling
situations, it's important for you to state how many objects may be connected across an
instance of an association. This "how many" is called the multiplicity of an association's
role, and is written as an expression that evaluates to a range of values or an explicit value
as in Figure . When you state a multiplicity at one end of an association, you are specifying
that, for each object of the class at the opposite end, there must be that many objects at
the near end. You can show a multiplicity of exactly one (1), zero or one (0..1), many (0..*),

Multiplicity

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

or one or more (1..*). You can even state an exact number (for example, 3).

Figure Multiplicity

Aggregation

A plain association between two classes represents a structural relationship between
peers, meaning that both classes are conceptually at the same level, no one more
important than the other. Sometimes, you will want to model a "whole/part" relationship, in
which one class represents a larger thing (the "whole"), which consists of smaller things
(the "parts"). This kind of relationship is called aggregation, which represents a "has-a"
relationship, meaning that an object of the whole has objects of the part. Aggregation is
really just a special kind of association and is specified by adorning a plain association with
an open diamond at the whole end, as shown in Figure .

Figure Aggregation

Other Features

Plain, unadorned dependencies, generalizations, and associations with names,
multiplicities, and roles are the most common features you'll need when creating
abstractions. In fact, for most of the models you build, the basic form of these three
relationships will be all you need to convey the most important semantics of your
relationships.

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

Structural Diagrams

The UML's structural diagrams are roughly organized around the major
groups of things you'll findwhen modeling a system.

1 Class diagram Class, interfaces and
collaborations

2 Objects diagram Objects

3 Component
diagram

Components

4 Deployment
diagram

Nodes

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

UNIT IV

Testing Strategies : A strategic approach to software testing ,test strategies for conventional

software, Black-Box and White-Box testing, Validation testing, System testing, the art of

Debugging.

Product metrics: Software Quality, Metrics for Analysis Model ,Metrics for Design Model,

Metrics for source code, Metrics for testing, Metrics for maintenance.
Metrics for Process and Products: Software Measurement, Metrics for software quality.

Testing Strategies

Software is tested to uncover errors introduced during design and construction. Testing often

accounts for more project effort than other s/e activity. Hence it has to be done carefully using a

testing strategy.

The strategy is developed by the project manager, software engineers and testing
specialists. Testing is the process of execution of a program with the intention of finding errors
Involves 40% of total project cost

Testing Strategy provides a road map that describes the steps to be conducted as part of testing.
It should incorporate test planning, test case design, test execution and resultant data
collection and execution

Validation refers to a different set of activities that ensures that the software is traceable to the customer
requirements. V&V encompasses a wide array of Software Quality Assurance.

The customer requirements.

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

A strategic Approach for Software testing

Testing is a set of activities that can be planned in advance and conducted
systematically.
Testing strategy
Should have the following characteristics:

--usage of Formal Technical Reviews(FTR)
--Begins at component level and covers entire system
--Different techniques at different points
--conducted by developer and test group
--should include debugging

Software testing is one element of verification and validation.
Verification refers to these activities that ensure that software correctly implements
a specific function.
(Ex: A rebuilding the product right?)

Validation refers to the set of activities that ensure that the software built is
traceable to customer requirements.
(Ex:Are we building the right product?)

Testing Strategy

Testingcanbedonebysoftwaredeveloperandindependenttestinggroup.Testingand
debugging are different activities. Debugging follows testing

Low level tests verifies small code segments. High level tests validate major
system functions against customer requirements

Test Strategies for Conventional Software:
Testing Strategies for Conventional Software can be viewed as a spiral consisting off
our levels of testing:

1)Unit Testing
2)Integration Testing
3)Validation Testing and
4)System Testing

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

SpiralRepresentationofTesting forConventionalSoftware

Unit Testing begins at the vortex of the spiral and concentrates one a chunk of

software in source code.

It uses testing techniques that exercise specific paths in a component and its control
structure to ensure
Complete coverage and maximum error detection .It focuses on the internal
processing logic and data structures. Test cases should uncover errors.

Fig:Unit Testing

Boundary testing also should be done as s/w usually fails at its
boundaries. Unit tests can be designed before coding begins or after

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

source code is generated.

Integration testing: In this the focus is on design and construction of the software
architecture. It addresses the issues associated with problems of verification and
program construction by testing inputs and outputs. Though modules function
independently problems may arise because of interfacing. This technique uncovers
errors associated with interfacing. We can use top-down integration wherein modules
are integrated by moving downward through the control hierarchy, beginning with the
main control module. The other strategy is bottom –up which begins construction and
testing with atomic modules which are combined into clusters as we move up the
hierarchy. A combined approach called Sandwich strategy can be used i.e., top- down
for higher level modules and bottom-up for lower level modules.

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

Testing Tactics:

The goal of testing is to find errors and a good test is one that has a high probability of

finding an error.

A good test is not redundant and it should be neither too simple nor too
complex. Two major categories of software testing

 Black box testing: It examines some fundamental aspect of a system, tests whether
each function of
Product is fully operational.

 White box testing: It examines the internal operation sofa system and examines the

procedural detail.

Black box testing

This is also called behavioral testing and focuses on the functional requirements of
software. It fully
Exercises all the functional requirements for a program and finds incorrect or missing
functions, interface
Errors, database errors etc. This is performed in the later stages in the testing
process. Treats the system as
Black box whose behavior can be determined by studying its input and related output not
concerned with the internal. The various testing methods employee adheres are:
Graph based testing method: Testing begins by creating a graph of important objects
and their relationships
And then devising a series of tests that will cover the graph so that each object and
relationship is exercised
And errors are uncovered.

Fig:O-Rgraph.

1) Equivalence partitioning : This divides the input domain of a program into classes
of data from which test cases can be derived. Define test cases that uncover classes
of errors so that no. of test cases are reduced. This is based on equivalence classes
which represent a set of valid or invalid states for input conditions. Reduces the cost
of testing

Example
Input consists of1to10
Then classes are n<1,1<=n<=10,n>10
Choose one valid class with value with in the allowed range and two invalid classes
where values are greater than maximum value and smaller than minimum value.

Object

Link

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

2) Boundary Value analysis
Select input from equivalence classes such that the input lies at the edge of the

equivalence classes. Set of data lies on the edge or boundary of a class of input data or
generates the data that lies at the boundary of a class of output data .Test cases
exercise boundary values to uncover errors at the boundaries of the input domain.

Example
If0.0<=x<=1.0
Then test cases are(0.0,1.0)for valid input and(-0.1and1.1)for invalid input

3) Orthogonal array Testing
This method is applied to problems in which input domain is relatively small but too large
for exhaustive testing
Example
Three inputs A,B,C each having three values will require 27 test cases. Orthogonal
testing will reduce the number of test case to 9 as shown below

White Box testing

Also called glass box testing. It uses the control structure to derive test cases. It
exercises all independent paths ,Involves knowing the internal working of a program,
Guarantees that all independent
Paths will be exercised at least once .Exercises all logical decisions on their true and
false sides, Executes all loops, Exercises all data structures for their validity. White box
testing techniques

 Basis path testing

 Control structure testing
1. Basis path testing

Proposed by Tom Mc Cabe. Defines a basic set of execution paths based on logical
complexity of a

Procedural design. Guarantees to execute every statement in the program at least
once
Steps of Basis Path Testing

1. Draw the flow graph from flowchart of the program
2. Calculate the cyclomatic complexity of the resultant flow graph
3. Prepare test cases that will force execution
of each path Two methods to compute Cyclomatic
complexity number
1.V(G)=E-N+2whereEisnumber of edges ,N is number of nodes
2.V(G)=Number of regions

The structured constructs used in the flow graph are:

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

Fig:Basis path Testing

Basis path testing is simple and effective .It is not sufficient in itself

2. Control Structure testing

This broadens testing coverage and improves quality of testing. It uses the following
methods:
a) Condition testing :Exercises the logical conditions contained in a program module.

Focuses on testing each condition in the program to ensure that it does not
contain errors

Simple condition
E1<relation operator>E2 Compound condition
simple condition<Boolean operator>simple
condition
Types of errors include operator errors, variable errors, arithmetic expression errors etc.
b) Dataflow Testing

This selects test paths according to the locations of definitions and use of variables in
a program Aims to
Ensure that the definitions of variables and sub sequent use is tested
First construct a definition-use graph from the control flow of a program

DEF(definition):definition of a variable on the left-hand side of an assignment
statement
USE:Computationaluseofavariablelikeread,writeorvariableontherighthandof

Assignment statement
Every DU chain be tested at least once.

c) Loop Testing
This focuses on the validity of loop constructs .Four categories can be defined
1. Simple loops

2. Nested loops

3. Concatenated loops

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

4. Unstructured loops

Testing of simple loops
N is the maximum number of allowable passes through the loop

1. Skip the loop entirely

2. Only one pass through the loop
3. Two passes through the loop
4. M passes through the loop where m>N
5.N-1,N,N+1passestheloop

Validation Testing:

Through Validation testing requirements are validated against s/w constructed.
These
are high-order tests where validation criteria must be evaluated to assure that s/w
meets all functional,
behaviouralandperformancerequirements.Itsucceedswhenthesoftwarefunctions in a
manner that can be reasonably expected by the customer.
1) Validation Test Criteria
2)Configuration Review
3) Alpha And Beta Testing
The validation criteria described in SRS form the basis for this testing. Here, Alpha
and Beta testing is performed. Alpha testing is performed at the developers’ site
beyond users in a natural setting and with a controlled environment. Beta testing is
conducted at end-user sites. It is a “live” application and environment is not controlled.
End-user records all problems and reports to developer. Developer then makes
modifications and releases the product.

System Testing :In system testing, s/w and other system elements are tested as a
whole. This is the last high-order testing step which falls in the context of computer
system engineering. Software is combined with other system elements like H/W,
People, Database and the overall functioning is checked by conducting a series of
tests. These tests fully exercise the computer based system. The types of tests are:

1. Recovery testing: Systems must recover from faults and resume processing within a
pre specified time.
It forces the system to fail in a variety of ways and verifies that recovery is properly
performed. Here the Mean Time To Repair (MTTR) is evaluated to see if it is within
acceptable limits.

2. Security Testing: This verifies that protection mechanisms built into a system will
protect it from improper penetrations. Tester plays the role of hacker. In reality given
enough resources and time it is possible to ultimately penetrate any system. The role of
system designer is to make penetration cost more than the value of the information that
will be obtained.

3. Stress testing : It executes a system in a manner that demands resources in
abnormal quantity, frequency or volume and tests the robustness of the system.

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

4. Performance Testing: This is designed to test the run-time performance of s/w within
the context of an integrated system. They require both h/w and s/w instrumentation.

The Art of Debugging

Debugging occurs as a consequence of successful testing. It is an action that
results in the removal of errors.
It is very much an art.

Fig:Debugging process

Debugging has two outcomes:
- Cause will be found and corrected
- Cause will not be found
Characteristics of bugs:
- Symptom and cause can be in different locations

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

- symptoms may be caused by human error or timing problems

Debugging is an innate human trait . Some are good at it and some

are not.

Debugging Strategies:
The objective of debugging is to find and correct the cause of a software error which is
realized by a
Combination of systematic evaluation , intuition and luck. Three strategies are proposed:
1) Brute Force Method.
2) Back Tracking

3) Cause Elimination

Brute Force :Most common and least efficient method for isolating the cause of a s/w

error.

This is applied when all else fails. Memory dumps are taken, run-time traces are invoked
and program is loaded with output statements. Tries to find the cause from the load of
information Leads to waste of time and effort.

Backtracking : Common debugging approach. Useful for small programs.

Beginning at the system where the symptom has been uncovered, the source code is
traced backward until the site of the cause is found. More no. of lines implies no. of paths
are unmanageable.

Cause Elimination: Based on the concept of Binary partitioning. Data related to error
occurrence are organized to isolate potential causes. A “cause hypothesis” is devised
and data is used to prove or disprove it. A list of all possible causes is developed and
tests are conducted to eliminate each

Automated Debugging: This supplements the above approaches with debugging
tools that provide semi-automated support like debugging compilers, dynamic
debugging aids, test case generators, mapping tools etc.

Regression Testing: When a new module is added as part of integration testing the

software changes.

This may cause problems with the functions which worked properly before. This

testing is the re-execution of some subset of tests that are already conducted to

ensure that changes have not propagated unintended side effects. It ensures that

changes do not introduce unintended behavior or errors. This can be done manually

or automated. Software Quality Conformance to explicitly stated functional and

performance requirements,

Explicitly documented development standards, and implicit characteristics that are
expected of all professionally developed software. Factors that affect software quality can
be categorized in two broad groups: Factors that can be directly measured (e.g. defects
uncovered during testing) Factors that can be measured only indirectly(e.g. usability or
maintainability)

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

McCall’s quality factors

1. Product operation Correctness
Reliability

Efficiency
Integrity
Usability

2. Product Revision
Maintainability
Flexibility

3. Product Transition
Portability
Reusability
Interoperability

1. Functionality

2. Reliability
3. Usability
4. Efficiency
5. Maintainability
6. Portability

ISO 9126 Quality Factors

Metrics for Process And Product

Software Measurement:

Software measurement can be categorized as
1) Direct Measure and
2) Indirect Measure

Metrics for Process And Product

Direct Measurement

Direct measure of software process include co-stand effort
Direct measure of product include lines of code , Execution speed, memory size

,defects per reporting time period.

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

Indirect Measurement

Indirect measure examines the quality of software product itself(e.g.:-
Functionality, complexity, efficiency, reliability and maintainability)

Reasons for measurement

To gain base line for comparison with future assessment to determine status
with respect to plan.
To predict the size,cost and duration estimate.
To improve the product quality and process improvement.

Software Measurement

The metrics in software Measurement are
Size oriented metrics
Function oriented metrics
Object oriented metrics
Web based application metric

Size Oriented Metrics

It totally concerned with the measurement of software.
A software company maintains a simple record for calculating the size of the
software. It includes LOC, Effort,$$,PP document ,Error ,Defect ,People.

Function oriented metrics

Measures the functionality derived by the application
The most widely used function oriented metric is Function point
Function point is independent of programming language Measures
functionality from user point of view

Object oriented metric

Relevant for object oriented programming
Based on the following

 Number of scenarios (Similar to use cases)
 Number of key classes
 Number of support classes
 Number of average support class per key
class
Number of subsystem

Web based application metric

Metrics related to web based application measure the following
1. Number of static pages(NSP)
2. Number of dynamic pages (NDP) Customization(C) =
NSP/NSP+NDP C should approach 1
Metrics for Software Quality
Measuring Software Quality
1. Correctness=defects/KLOC

2. Maintainability=MTTC(Mean-time to change)

3. Integrity=Sigma[1-(threat(1-security))]

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

Threat : Probability that an attack of specific type will occur with in a given time

Security : Probability that an attack of a specific type will be repelled Metrics for

Software

Quality Usability: Ease of use Defect Removal Efficiency(DRE)

DRE=E/(E+D)

E is the no. of errors found before delivery and D is no. of defects reported after

delivery Ideal value of DRE is 1

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

UNIT– V

Risk management: Reactive Vs proactive risk strategies, software risks, risk

identification, risk projection, risk refinement, RMMM.

Quality Management: Quality concepts, software quality assurance, software

reviews, formal technical reviews, statistical software quality assurance, software

reliability, the ISO 9000qualitystandards.

- -----------------------------

Risk Management

Risk is an undesired event or circumstance that occur while a project is underway It
is necessary for the project manager to anticipate and identify different risks that a
project may be susceptible to Risk Management .It aims at reducing the impact of all
kinds of risk that may effect a project by identifying, analyzing and managing them

Reactive Vs Proactive risk
Reactive: It monitors the projects likely risk and resources are set aside.
Proactive: Risk are identified,their probability and impact is accessed

Software Risk

It involve 2 characteristics
Uncertainty : Risk may or may not happen
Loss: If risk is reality unwanted loss or consequences will
occur It includes

o Project Risk

o Technical Risk
o Business Risk
o Known Risk
o Unpredictable Risk

o Predictable risk

Project risk: Threaten the project plan and affect schedule and resultant

cost

Technical risk: Threaten the quality and time lines of software to be

produced
Business risk: Threaten the viability of software to be built
Known risk: These risks can be recovered from careful evaluation
Predictable risk: Risks are identified by past project experience
Unpredictable risk: Risks that occur and may be difficult to identify

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

Risk Identification

It concerned with identification of risk
Step1: Identify all possible risks
Step2: Create item check list
Step3: Categorize into risk components-Performance risk, cost risk, support
risk and schedule risk
Step4: Divide the risk into one of 4
categories
Negligible-0
Marginal-1
Critical-2

Risk Identification

Risk Identification includes
Product size
Business impact Development environment
Process definition Customer characteristics
Technology to be built Staff size and
experience

Risk Projection

Also called risk estimation .It estimates the impact of risk on the project and the
product.

Estimation is done by using Risk Table. Risk projection addresses risk in 2ways

Risk

Category

Prob
abilit
y

Imp
act

RM
MM

Size

estimate PS 60% 2

may be

significantly

low

Larger no.

of

PS

30%

3

Users than

planned

Less reuse PS 70% 2

Than planned

End user BU 40% 3

Resist system

Likelihood or probability that the risk is real(Li)

Consequences(Xi)

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

Risk Projection
Steps in Risk projection
1. Estimate Li for each risk
2. Estimate the consequence Xi

3. Estimate the impact
4. Draw the risk table
Ignore the risk where the management concern is low i.e., risk having impact high or
low with low probability of occurrence
Consider all risks where management concern is high i.e., high impact with
high or moderate probability of occurrence or low impact with high probability of
occurrence

Risk Projection
Projection

The impact of each risk is assessed by Impact
values

Catastrophic-1
Critical-2
Marginal-3
Negligible-4

Risk Refinement

Also called Risk assessment
Refines the risk table in reviewing the risk impact based on the following three factors
a. Nature: Likely problems if risk occurs
b. Scope: Just how serious is it?
c. Timing: When and how long

It is based on Risk Elaboration
Calculate Risk exposure
RE=P*C

Where P is probability and C is cost of project if risk
occurs Risk Mitigation Monitoring And Management
(RMMM)
Its goal is to assist project team in developing a strategy for dealing
with risk There are three issues of RMMM
1) Risk Avoidance
2) Risk Monitoring and
3) Risk Management

Risk Mitigation Monitoring And Management(RMMM)

Risk Mitigation
Proactive planning for risk avoidance
Risk Monitoring Assessing whether predicted risk occur or
not Ensuring risk a version steps are being properly
applied
Collection of information for future risk analysis Determine
which risks caused which problems
Risk Mitigation Monitoring And Management(RMMM)

Risk Management
Contingency planning
Actions to be taken in the event that mitigation step have failed and the risk has

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

become a live problem
Devise RMMP(Risk Mitigation Monitoring And Management Plan)

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

RMMM plan

It documents all work performed as a part of risk analysis.
Each risk is documented individually by using a Risk Information
Sheet.

RIS is maintained by using a database system Quality
Management

Quality Concepts
Variation control is the heart of quality control
Form one project to another ,we want to minimize the difference between the
predicted resources needed to complete a project and the actual resources used,
including staff, equipment, and calendar time
Quality of design
Refers to characteristics that designers specify for the end
product Quality Management

Quality of conformance
Degree to which design specifications are followed in manufacturing the
product
Quality control
Series of inspections, reviews, and tests used to ensure conformance of a work
product to its specifications
Quality assurance
Consists of a set of auditing and reporting functions that assess the effectiveness
and completeness of quality control activities

Cost of Quality

Prevention costs
Quality planning, formal technical reviews ,test equipment ,training
Appraisal costs
In-process and inter-process inspection, equipment calibration and maintenance,
testing Failure costs
Rework ,repair ,failure mode analysis External failure costs
Complaint resolution ,product return and replacement ,help line support, warranty
work

Software Quality Assurance

Software quality assurance (SQA) is the concern of every software engineer to
reduce cost and improve product time-to-market.

A Software Quality Assurance Plan is not merely another name for a test plan,
though test plans are

Included in an SQA plan.
SQA activities are performed on every software project.

Use of metrics is an important part of developing a strategy to improve the
quality of both software processes and work products.

Software Quality Assurance

Definition of Software Quality serves to emphasize:
Conformance to software requirements is the foundation from which software
quality is measured.

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

Specified standards are used to define the development criteria that are used to
guide the manner in which software is engineered.
Software must conform to implicit requirements(ease of use, maintainability
,reliability, etc.) as well as its explicit requirements.

SQA Activities

Prepare SQA plan for the project.
Participate in the development of the project's software process description.
Review software engineering activities to verify compliance with the defined

software process.

Audit designated software work products to verify compliance with those defined
as part of the software process.

Ensure that any deviations in software or work products are documented and
handled according to a documented procedure.

Record any evidence of noncompliance and reports them to management.

Software Reviews

Purpose is to find errors before they are passed onto an other software
engineering activity or released to the customer.

Software engineers(and others)conduct formal technical reviews(FTRs)for
software quality assurance.

Using formal technical reviews(walk through or inspections) is an effective
means for improving software quality.

Formal Technical Review

AFTR is a software quality control activity performed by software engineers and
others. The objectives are:

To uncover errors in function, logic or implementation for any representation of
the software.

To verify that the software under review meets its requirements.
To ensure that the software has been represented according to predefined
standards. To achieve software that is developed in a uniform manner and
To make projects more manageable.

Review meeting in FTR

The Review meeting in a FTR should abide to the following
constraints Review meeting members should be between three and
five.
Every person should prepare for the meeting and should not require more than two
hours of work for each person.
The duration of the review meeting should be less than two hours.

The focus of FTR is on a work product that is requirement specification ,a
detailed component design, a source code listing for a component.

The individual who has developed the work product i.e, the producer informs the
project leader that the work product is complete and that a review is required.

The project leader contacts a review leader, who evaluates the product for
readiness, generates copy of product material and distributes them to two or three
review members for advance preparation .

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

Each reviewer is expected to spend between one and two hours reviewing the
product, making notes
There view leader also reviews the product and establish an agenda for the review

meeting The review meeting is attended by review leader, all reviewers and the
producer.
One of the reviewer act as a recorder, who notes down all important points

discussed in the meeting.
The meeting(FTR) is started by introducing the agenda of meeting and then the

producer introduces his product. Then the producer “walkthrough” the product, the

reviewers raise issues which they have prepared in advance.
If errors are found there coder notes down

Review reporting and Record keeping

During the FTR, are viewer(recorder)records all issues that have been
raised A review summary report answers three questions
What was reviewed?
Who reviewed it?
What were the findings and conclusions?
Review summary report is a single page form with possible attachments

There view issues list serves two purposes To identify problem areas in the
product.
To serve as an action item check list that guides the producer as corrections are
made.

Review Guidelines

Review the product ,not the producer
Set an agenda and maintain it
Limit debate and rebuttal
Enunciate problem areas, but don’t attempt to solve every problem
noted
Take return notes
Limit the number of participants and insist upon advance
preparation. Develop a checklist for each product i.e likely to
be reviewed.
Allocate resources and schedule time for FTRS
Conduct meaningful training for all reviewer
Review your early reviews

Software Defects
Industry studies suggest that design activities introduce 50-65% of all
defects or errors during the software process
Review techniques have been shown to be up to 75%
effective in uncovering design flaws which ultimately reduces
the cost of subsequent activities in the software process

Statistical Software Quality Assurance

Information about software defects is collected and
categorized. Each defect is traced back to its cause
Using the Pareto principle(80%ofthedefectscanbetracedto 20%ofthecauses)

isolate the "vital few" defect causes.

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

Move to correct the problems that caused the defects in the "vital few”

Six Sigma for Software Engineering

The most widely used strategy for statistical quality
assurance
Three core steps:
1. Define customer requirements, deliverables, and project goals via well-
defined methods of customer communication.
2. Measure each existing process and its output to determine current
quality performance (e.g., compute defect metrics)
3. Analyzed effect metrics and determine vital few causes.

For an existing process that needs improvement
1. Improve process by eliminating the root causes for defects
2. Control future work to ensure that future work does not reintroduce
causes of defects
If new processes are being developed
1. Design each new process to avoid root causes of defects and
to meet customer requirements

2. Verify that the process model will avoid defects and meet
customer requirements

Software Reliability

Defined as the probability of failure free operation of a computer
program in a specified environment for a specified time period
Can be measured directly and estimated using
historical and developmental data
Software reliability problems can usually be traced
back to errors in design or implementation.
Measures of Reliability
Mean time between failure(MTBF)=MTTF+MTTR
MTTF = mean time to failure
MTTR=mean time to repair

Availability= [MTTF/(MTTF+ MTTR)]x 100%

ISO 9000 Quality Standards

ISO (International Standards Organization) is a group or consortium of 63 countries
established to plan and fosters standardization. ISO declared its 9000 series of
standards in 1987. It serves as a reference for the contract between independent
parties. The ISO 9000 standard determines the guidelines for maintaining a quality
system. The ISO standard mainly addresses operational methods and
organizational methods such as responsibilities, reporting, etc. ISO 9000 defines a
set of guidelines for the production process and is not directly concerned about the
product itself.

Types of ISO 9000 Quality Standards

The ISO 9000 series of standards is based on the assumption that if a proper
stage is followed for production ,then good quality products are bound to follow
automatically .The types of industries to which the various ISO standards apply are
as follows.

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

1. ISO9001:This standard applies to the organizations engaged

indesign,development, production, and servicing of goods. This is the standard

that applies to most software development organizations.

2. ISO 9002: This standard applies to those organizations which do not design

products but are only involved in the production. Examples of these category

industries contain steel and car manufacturing industries that buy the product and

plants designs from external sources and are engaged in only manufacturing

thoseproducts.Therefore,ISO9002doesnot apply to software development

organizations.

3. ISO9003: This standard applies to organizations that are involved only in the

installation and testing of the products. For example, Gas companies.

An organization determines to obtain ISO9000 certification appliesto ISO registrar
office for registration. The process consists of the following stages:

1. Application: Once an organization decided to go for ISO certification, it

applies to the registrar for registration.

2. Pre-Assessment: During this stage ,the registrar makes a rough assessment of the
organization.

3. Document review and Adequacy of Audit: During this stage ,the registrar

reviews the document submitted by the organization and suggest an

improvement.

4. Compliance Audit: During this stage ,the registrar checks whether the

organization has compiled the suggestion made by it during the review or not.

5. Registration: The Registrar awards the ISO certification after the

successful completion of all the phases.

SOFTWARE ENGINEERING A.Y 2024-25

 Dept. of CSIT

6. Continued Inspection:The registrar continued to monitor the organization time bytime.

	COURSE OBJECTIVES
	UNIT-I
	TEXTBOOKS:
	Course Outcomes:

	INTRODUCTION:
	The Evolving role of software
	Characteristics of software

	THECHANGINGNATUREOFSOFTWARE
	LEGACYSOFTWARE
	SOFTWAREMYTHS
	MANAGEMENTMYTHS
	CUSTOMERMYTHS
	SOFTWARE ENGINEERING-A LAYEREDTECHNOLOGY
	SOFTWARE ENGINEERING -A LAYERED TECHNOLOGY
	A PROCESS FRAMEWORK
	A PROCESS FRAME WORK
	APROCESSFRAMEWORK
	CAPABILITY MATURITY MODEL INTEGRATION (CMMI)
	Continuous model:

	CMMI
	CMMI (1)
	CMMI-Staged model

	THE WATERFALL MODEL
	PROBLEMS IN WATER FALL MODEL
	THE SPIRAL MODEL
	THE SPIRAL MODEL (1)
	A FINAL COMMENT ON EVOLUTIONARY PROCESS
	Agility and Agile Process model
	Phases of Agile model:
	Disadvantages:
	Other process models of Agile Development and Tools
	Software Requirements:

	SOFTWARE REQUIREMENTS
	SOFTWARE REQUIREMENTS (1)
	• System Functional Requirements

	FUNCTIONAL REQUIREMENTS
	NON-FUNCTIONAL REQUIREMENTS
	1. Product Requirements
	2. Organizational Requirements
	3. External Requirements

	PROBLEMSFACEDUSINGTHENATURALLANGUAGE
	STRUCTURED LANGUAGE SPECIFICATION
	SYSTEM REQUIREMENTS STANDARD FORM
	Interface Specification
	Three types of interfaces
	The Software Requirements document
	IEEE requirements standard

	REQUIREMENTS ENGINEERING PROCESS
	SPIRAL REPRESENTATION OF REQUIREMENTS ENGINEERING PROCESS
	REQUIREMENTSVALIDATION
	 PROTO TYPING
	Requirements management planning

	DESIGN PROCESS AND DESIGNQUALITY
	• Functionality
	• Usability
	• Reliability
	• Supportability

	PATTERNS
	MODULARITY
	INFORMATION HIDING
	FUNCTIONAL INDEPENDENCE
	REFINEMENT & REFACTORING
	THE DESIGN MODEL
	DATA DESIGN ATARCHITECTURE LEVEL
	DATA DESIGN AT COMPONENT LEVEL
	Data-flow architectures
	Call and return architectures
	Object-oriented architectures
	Layered architectures

	ARCHITECTURAL PATTERNS
	A Conceptual Model of the UML
	Figure Nodes
	Behavioral Things
	These two elements• interactions and state machines• are the basic behavioral things that you may include
	Grouping Things
	Annotational Things
	Relationships in the UML
	Class
	Terms and Concepts
	Names
	Attributes
	Operations
	Operations (1)
	Relationships Terms and Concepts
	Dependency
	Figure Dependencies
	Association
	Name
	Role
	Aggregation
	Other Features
	Structural Diagrams
	Testing Strategies
	A strategic Approach for Software testing
	Testing Strategy
	Test Strategies for Conventional Software:
	SpiralRepresentationofTesting forConventionalSoftware
	Testing Tactics:
	Black box testing
	2) Boundary Value analysis
	3) Orthogonal array Testing
	White Box testing
	Validation Testing:
	The Art of Debugging
	McCall’s quality factors
	Metrics for Process And Product Direct Measurement
	Indirect Measurement
	Software Measurement
	Size Oriented Metrics
	Function oriented metrics
	Object oriented metric
	Web based application metric
	Risk Management
	Reactive Vs Proactive risk
	Software Risk
	Risk Identification
	Risk Projection
	Risk Refinement
	Risk Mitigation Monitoring And Management(RMMM)
	RMMM plan
	Quality Concepts
	Cost of Quality
	Software Quality Assurance
	Software Quality Assurance (1)
	SQA Activities
	Software Reviews
	Formal Technical Review
	Review meeting in FTR
	Review reporting and Record keeping
	Review Guidelines
	Statistical Software Quality Assurance
	Six Sigma for Software Engineering
	Three core steps:
	Software Reliability
	ISO 9000 Quality Standards
	Types of ISO 9000 Quality Standards

