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DISTRIBUTED SYSTEMS 

UNIT– I 

CHARACTERIZATION OF DISTRIBUTED SYSTEMS:INTRODUCTION 

Distributed System–is a system of hardware or software components located at networked 

computers which communicate and coordinate their actions by passing messages. 

 It is a collection of autonomous computers, connected through network and 

middleware. 

 Users perceive the system as a single integrated computed facility. 

Features of Centralised System: 

 One component with non-autonomous parts 

 Component shared by users all the time 

 All resources accessible 

 Software runs in a single process 

 Single Point of control 

 Single Point of failure 

Features of Distributed System: 

 Multiple autonomous components 

 Components are not shared by all users 

 Resources may not be accessible 

 Software runs in concurrent processes on different processors 

 Multiple Points of control 

 Multiple Points of failure 

Characteristics of Distributed System: 

1. Concurrency of components (concurrent program execution) 

2. Lack of a global clock(no single notion of time for all the systems) 

3. Independent failures of components(failure of one component doesnot affect 

 others) 
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Application of DS : 

 Tele communication network(telephonen/w,cellularn/w,computern/w) 

 Network Applications (WWW, onlineapps, n/wfilesystems, bankingsystems ) 

 Real-time process control systems(aircraftcontrolsystems) 

 Parallel computation( grid computing, clustercomputing) 

Examples of DS: 

1. INTERNET: It is a vast interconnected collection of heterogeneous computer 

networks. It is a very large distributed system which enables users to use services like 

WWW, email, file transfer etc.  

Services are open-ended. 

ISP:Internetserviceprovider:companiesthatprovidemodemandotherfacilitiestousersandorganiz

ationswhichenable them to access services anywhere in the internet. 

Intranet–sub networks operated by companies and other organizations. 

Backbone–

linksintranets.Itisan/wlinkwithhightransmissioncapacityandemployssatellitecommunication, 

fiber optics and other circuits. 

2. INTRANET: 

 An Intranet is a portion of the Internet that is separately administered and has a 

boundary that can beconfigured to enforce local security policies.It is composed of 

severalLAN’s linked by backboneconnections. An Intranet is connected to the Internet via a 

router, which allows the users inside theintranet to make use of services. It also allows the 

users in other intranets to access its services. Firewallprotectsan 

Intranetbypreventingunauthorized messagesleavingorenteringusingfilteringmethod. 

3. Mobile&UbiquitousComputing: 

 Technological advances in device miniaturization and wireless networking have led to 

the integration ofsmall and portable computing devices into distributed systems (laptops, 

phones, PDS’s, wearable devicesetc) 

Mobilecomputingistheperformanceofcomputingtaskswhile theuser isonthe move. 

 Ubiquitous computing is the harnessing of many small, cheap computational devices 

present in usersenvironment.Devices become pervasivein everydayobjects. 
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ResourceSharing: 

• Resource sharing is the primary motivation of distributed computing 

• Resources types 

– Hardware ,e.g.printer, scanner,camera 

– Datasources, e.g.file, database,webpage 

– Specificresources, e.g. search engine 

• Service 

– Managesacollectionofrelatedresourcesandpresentstheirfunctionalitiestouser

 sand applications 

• Server 

– aprocessonnetworkedcomputerthatacceptsrequestsfromprocessesonotherco

mputers to performa serviceandrespondsappropriately 

• Client 

– therequestingprocess 

• Communicationisthrough messagepassingor Remoteinvocation 

Manydistributedsystemscanbeconstructedinthe formofinteracting 

clientsandservers.Ex:WWW,Email,Networkedprintersetc. 

WebBrowser–clientwhichcommunicateswithwebservertorequestwebpages. 

World Wide Web: 

WWWisanevolvingsystemforpublishingandaccessingresourcesandservicesacrosstheInternetus

ingwebbrowsers. 

Weboriginated at 

Europeancentrefornuclearresearch,Switzerlandin1989.Documentsexchanged contain 

hyperlinks. 

Web is an open system. Its operation is based on communication standards and document 

standards. 

Initiallywebprovideddataresourcesbutnowincludesservicesalso.Webisbasedonthreemainstand

ardtechnological components: 
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1. HTML: hyper text markup language for specifying contents and layouts of 

pages. 

2. URL:uniform resource locator which identifies documents and other resources 

stored as part of web. 

3. A client-server architecture with standard rules for 

interaction(HTTP)bywhichbrowsersandclients fetch documents and other 

resources from web servers. 

HTML: used to specify the text and images that make up the contents of a web page and to 

specify how they are laid out and formatted for presentation to the user. Web page contains 

headings, paragraphs, tables and images. HTML is also used to specify links and resources 

associated with them. HTML text is stored as a file in the web server which is retrieved and 

interpreted by the webbrowser.HTML directives–tags - <P> 

Ex: 

<IMG SRC= “http“> 

< P >WELCOME 

<AHREF=“http--------“> </A> 

< /P> 

URL:Itspurposeistoidentifyaresource.Ithastwotop-level components: 

Scheme:Scheme-specific-identifier 

(typeof URLieftp,http) (specific info to be retrieved ie www.abc.net/--

.html)HTTPURL’sare mostwidelyused. 

Form ->http://servername[:port] [/path name]Ex:http://www.google.com/search?q=MRCET 

The simplest method of publishing a resource on the web is to place the corresponding file in 

a directory thattheweb server canaccess. 

HTTP: defines the ways in which browsers and other types of client interact with web 

servers.Features:Request-replyinteractions,contenttypes,oneresourceperrequest, simpleaccess 

control. 

DynamicPages:AprogramthatwebserversruntogeneratecontentfortheirclientsisreferredtoasaC

ommon GatewayInterface(CGI)program. 

uniform
http://www.abc.net/--.html
http://www.abc.net/--.html
http://servername/
http://www.google.com/search?q=MRCET
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XML –designedasawayofrepresentingdatainstandard,structured,application-

specificforms.Itisusedto describe the capabilities of devices and to describe personal info held 

about users. The web of linkedmetadataresources is asemantic web. 

CHALLENGES: 

The challenges arising from the construction of distributed systems are: 

1. Heterogeneity of components: The Internet enables users to access services and run 

applications over a heterogeneous collection of computers and networks. Heterogeneity(that is, 

variety and difference)applies to all of the following: 

 networks; 

 computer hardware; 

 operating systems; 

 programming languages; 

 implementations by different developers 

 Different programming languages use different representations for characters and data 

structures such as arrays and records. Heterogeneity can be handled in three ways: 

Middleware •The term middleware applies to a software layer that provides a programming 

abstraction as  well as masking the heterogeneity of the underlying networks, hardware, 

operating systems and programming languages.The Common Object Request Broker 

(CORBA),is an example. 

Heterogeneity and mobile code •The term mobile code is used to refer to program code that 

can betransferredfromonecomputertoanother and run atthedestination–

Javaappletsareanexample. 

Thevirtualmachineapproachprovidesawayofmakingcodeexecutableonavarietyofhostcomputer

s: the compiler for a particular language generates code for a virtual machine instead 

ofparticularhardwareordercode.Forexample,theJavacompilerproduces  

codeforaJavavirtualmachine,whichexecutes itbyinterpretation. 

2. Openness 

 The openness of a computer system is the characteristic that determines whether the 

system can be extended and re implemented in various ways. The openness of distributed 
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systems is determined primarily by the degree to which new resource-sharing services can be 

added and be made available for use by a variety of client programs. 

• Open systems are characterized by the fact that their key interfaces are 

published. 

• Open distributed systems are based on the provision of a uniform 

communication mechanism and published interfaces for access to shared 

resources. 

• Open distributed systems can be constructed from heterogeneous hardware and 

software, possibly from different vendors. But the conformance of each 

component to the published standard must be carefully tested and verified if the 

system is to work correctly. 

3. Security 

 Many of the information resources that are made available and maintained in 

distributed systems have a high intrinsic value to their 

users.Securityforinformationresourceshasthreecomponents: confidentiality (protection against 

disclosure to unauthorized individuals), integrity(protection againstalteration or corruption), 

and availability (protection against interference with the means to access theresources). 

Challenge is not only to conceal the contents of a message but also to establish the identity of 

senderand receiver. Encryption techniques are used for this purpose. Two challenges not yet 

fully met are –denialofserviceattacksand securityofmobilecode. 

4. Scalability 

 Distributed systems operate effectively and efficiently at many different scales, 

ranging from a smallintranet to the Internet. A system is described as scalable if it will 

remain effective when there is asignificant increase in the number of resources and the 

number of users. The design of scalabledistributedsystems presents the followingchallenges: 

Controlling the cost of physical resources.Controlling the performance 

lossPreventingsoftwareresourcesrunningoutAvoidingperformancebottlenecks 

 

 

 



[Distributed Systems] Page 7  

5. Failure handling 

 Computer systems sometimes fail. When faults occur in hardware or software, 

programs may produceincorrect results or may stop before they have completed the intended 

computation. Failures in adistributedsystemarepartial–

thatis,somecomponentsfailwhileotherscontinuetofunction.Thereforethe 

handlingoffailuresisparticularlydifficult. 

Detecting failures: Some failures can be detected. For example, checksums can be used to 

detectcorrupteddata inamessageorafile. 

Masking failures: Some failures that have been detected can be hidden or made less severe. 

Twoexamplesofhidingfailures: 

Messages can be retransmitted when they fail to arrive. 

File data can be written to a pair of disks so 

that ifoneiscorrupted, the otherwill bethere. 

Tolerating failures: For example, when a web browser cannot contact a web server, it does 

not makethe user wait for ever while it keeps on trying– it informs the user about the 

problem, leaving themfreeto tryagain later. 

Recovery from failures: Recovery involves the design of software so that the state of 

permanent datacanberecovered or‘rolledback’afteraserver hascrashed. 

Redundancy: Services can bemadetotoleratefailures bythe useofredundantcomponents. 

6. Concurrency 

 Both services and applications provide resources that can be shared by clients in a 

distributed system.There is therefore a possibility that several clients will attempt to access a 

shared resource at the sametime. Therefore services and applications generally allow multiple 

client requests tobe processedconcurrently. In this case processes should ensure correctness 

and consistency. Operations of objects should be synchronized using semaphores etc. 

7. Transparency 

 Transparency is defined as the concealment from the user and the application 

programmer of theseparation of components in a distributed system, so that the system is 

perceived as a wholerather thanasacollection ofindependentcomponents.Thevarious formsof 

transparencyare: 
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Access transparency enables local and remote resources to be accessed using identical 

operations.Locationtransparencyenablesresourcestobeaccessedwithoutknowledgeoftheirphysi

calornetworklocation (forexample, which buildingorIP address). 

Concurrency transparency 

enablesseveralprocessestooperateconcurrentlyusingsharedresourceswithout 

interferencebetween them. 

Replication transparency enables multiple instances of resources to be used to increase 

reliability and performance without knowledge of the replicas byusers 

orapplicationprogrammers. 

Failuretransparencyenablestheconcealmentoffaults, allowing users and application programs 

to complete their tasks despite the failure of hardware or softwarecomponents. 

Mobilitytransparency allows the movement of resources and clientswithin a system without 

affecting the operation of users or programs. 

Performance transparency allows the system to be reconfigured to improve performance as 

loadsvary.Scaling transparency allows the system and applications to expand in scale without 

change to thesystemstructureortheapplication algorithms. 

 

INTRODUCTION TO  SYSTEM MODELS 

 

System Models specify the common properties and design issues for a distributed system. 

They describe the relevant aspects of DS design. 

Each type of model is intended to provide an abstract, simplified but consistent description of 

a relevantaspect of distributed system design: 

Physicalmodelsarethemostexplicitwayinwhichtodescribeasystem; they capture the 

hardware composition of a system in terms of the computers (and other devices, such as 

mobile phones)and their inter connectingnetworks. 

Architectural models describe a system in terms of the computational and communication 

tasksperformedbyitscomputationalelements; the 

computationalelementsbeingindividualcomputersoraggregatesofthemsupportedbyappropriate

network inter connections. 
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Fundamental models take an abstract perspective in order to examine individual aspects of 

adistributed system. The fundamental models that examine three important aspects of 

distributedsystems: interaction models, which consider the structure and sequencing of the 

communicationbetween the elements of the system; failure models, which consider the ways 

in which a systemmay fail to operate correctly and; security models, which consider how the 

system is protected against attempts to interfere with itscorrect operationor to stealits data. 

1. Architectural models 

Architecture models define the way in which the components of systems interact with one 

anotherand how they are mapped onto the network. The architecture of a systemis its 

structure in termsof separately specified components and their interrelationships. The overall 

goal is to ensure thatthestructurewill meet presentand likelyfuturedemands on it. 

Software layers 

In alayeredapproach,a complex system is partitioned into a number of layers, 

withagivenlayermaking use of the services offered by the layer below. In terms of distributed 

systems, thisequates to a vertical organization of services into service layers. Given the 

complexity ofdistributed systems, it is often helpful to organize such services into layers. the 

important termsplatformand middleware, which define asfollows: 

A platform for distributed systems and applications consists of the lowest-level hardware 

andsoftware layers. These low-level layers provide services to the layers above them, which 

areimplementedindependentlyineachcomputer, bringing the 

system’sprogramminginterfaceuptoalevelthat facilitates 

communicationandcoordinationbetween processes. 
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There are two main architectural models: 

1. Client-ServerModel 

2. Peer-to-peer architecture 

Client-server:This is the architecture that is most often cited when distributed systems 

arediscussed.Itishistoricallythemostimportantandremainsthemostwidelyemployed.Serverisa 

process which accepts requests from other processes and Client is a process requesting 

servicesfromaserver. 

Servers may in turn be clients of other servers, as the figure indicates. For example, a web 

serveris often a client of a localfile server that manages the files in which the web pagesare 

stored.ses. 

Clients invoke individual servers 

  

Another web-related example concerns search engines, which enable users to look up 

summariesof information available on web pages at sites throughout the Internet. Thus a 

search engine isboth a server and a client: it responds to queries from browser clients and it 

runs web crawlersthatactas clients of other web servers. 

Peer-to-peer:In this architecture all of the processes involved in a task or activity play 

similarroles,interacting cooperatively as peers without anydistinction between client and 

server processes or the computers on which they run. In practical terms, all participating 

processes runthe same program and offer the sameset of interfaces to eachother.While the 

client-servermodel offers a direct and relatively simple approach to the sharing of data and 

other resources, itscales poorly. Enables hundreds of computers to provide access to 

resources they share andmanage. Each object is replicated in several computers. Ex: Napster 

app for sharing digital musicfiles. 
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Several variations on the above models can be derived: 

1. Multiple-Servers Model: In this services are provided by multiple servers. Services 

can beimplementedas several server processesinseparate host computers. 

 

2. Web Proxy Server: It provides a shared cache of recently visited pages and web 

resourcesfor the client machines at a site or across several sites. Purpose of proxy 

servers is to increaseavailabilityand performance oftheservice. 

3. MobileCode: 

a) Client requests resultsinthedownloadingofappletcode 

b) Appletsareawell-

knownandwidelyusedexampleofmobilecode.Itisdownloadedfromaweb server 

andexecutedlocallyresultingin good interactive response. 

4. MobileAgent: 

 Amobileagentisarunningprogramthattravelsfromonecomputertoanotherinnetworkcarry

ingout a task on someones behalf 

5. Network Computers: 

 Networkcomputer 

 Remotefileserver 

 Client 
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 network 

 OS and Files 

Networkcomputer: 

Download sits OS and application software needed from a Remotefileserver 

Applications are run locally but the files are managed by the remote file server; low software 

management and maintenance cost. 

6. Thin Client: 

Asoftwarelayerthatsupportsawindowbasedinterfaceonacomputerthatislocaltotheuserwhile 

executingapplication programs onacomputer server 

Design requirements for distributed architectures: 

1. Performance Issues 

2. Quality of Service 

3. Use of cache and replication 

PerformanceIssues 

Responsiveness 

Delay,responsetime, slowdown,stretchfactor 

Determinedbyloadandperformanceoftheserverandthenetwork,andbydelaysinallsoftwarecompo

nentsinvolved 

Throughput 

Therate atwhichcomputationalworkof theserverordata transferofthenetworkisdone 

Load balancing/loadsharing 

Enableapplicationsandservice processestoproceedconcurrentlyandexploittheavailableresource 

3. Fundamental Models 

Modelsofsystemssharesomefundamentalproperties.Inparticular,allof themare 

composedofprocessesthatcommunicatewithoneanotherbysendingmessages over acomputer 

network. 

The purpose of such a model is: 
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• To make explicit all the relevant assumptions about the systems we are modelling. 

• To make generalizations concerning what is possible or impossible, given those 

assumptions.The aspects of distributed systems that we wish to capture in our fundamental 

models are intended to helpustodiscussandreason about: 

Interaction: Computation occurs within processes; the processes interact by passing 

messages,resulting in communication (informationflow) and coordination (synchronization 

and orderingofactivities)between processes 

Failure: The correct operation of a distributed system is threatened whenever a fault occurs 

inany of the computers on which it runs (including software faults) or in the network that 

connectsthem.Ourmodel definesand classifies the faults. 

Security: The modular nature of distributed systems and their opennessexposes them to 

attackby both externaland internal agents.Our security model defines andclassifies the 

formsthatsuch attacks may take, providing a basis for the analysis of threats to a system and 

for the designofsystems thatareableto resist them. 

There are three Fundamental Models: 

a) Interactionmodel 

Fundamentallydistributedsystemsarecomposedofmanyprocesses, interacting in complex 

ways.For example: 

 Multipleserver processesmaycooperatewithoneanotherto provide aservice; 

 A set of peerprocesses may cooperate with one another to achieve a common 

goal;Two significant factors affecting interacting processes in adistributed 

system: 

• Communication performance is often a limiting characteristic. 

• It is impossible to maintain a single global notion of time. 

Performanceofcommunicationchannels•Communicationoveracomputernetworkhasthefollowi

ngperformancecharacteristics relatingtolatency, bandwidth and jitter: 

The delay between the start of a message’s transmission from one process and the 

beginningofitsreceipt byanother is referred to aslatency. The latency includes: 

– The time taken for the firstof a stringof bits ransmitted throughanetworktor each 
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its 

– Destination. For example, the latency for the transmission of a message through 

a satellite linkisthe timeforaradio signals to travel tothesatellite and back. 

• Thebandwidthofacomputernetworkisthetotalamountofinformationthatcanbetrans

mitted over it in a given time. When a large number of communication channels 

are usingthesamenetwork, theyhaveto sharetheavailablebandwidth. 

• Jitter is the variation in the time taken to deliver a series of messages. Jitter is 

relevant tomultimedia data. For example,if consecutive samplesof audio data 

areplayed with differingtimeintervals, thesoundwillbebadlydistorted. 

Computer clocks and timing events • Each computer in a distributed systemhas its 

owninternal clock, which can be used by local processes to obtain the value of the current 

time.Therefore two processes running on different computers can each associate timestamps 

with theirevents. However, even if the two processes read their clocks at the same time, their 

local clocksmay supply different time values. This is because computer clocks drift from 

perfect time and,more importantly, their drift rates differ from one another. The term clock 

drift rate refers to therateatwhichacomputer clockdeviatesfromaperfect 

referenceclock.Eveniftheclocksonall 

The computers in a distributed system are set to the same time initially, their clocks will 

eventually vary quite significantly unless corrections are applied. 

Clock Drift Rate 

Two variants of the interaction model • 

Synchronous distributed systems: has a strong assumption of time.Asynchronous distributed 

system is one in which the following bound are defined: 

• Thetimeto executeeachstepofaprocess hasknown lowerand upperbounds. 

• Eachmessagetransmittedoverachannelisreceivedwithin aknownboundedtime. 

• Each process has a local clock whose drift rate from real time has a known 

bound.Asynchronousdistributedsystems:makesnoassumptionoftime.Anasynchro

nousdistributedsystemisoneinwhich therearenobounds on: 

• Process execution speeds–for example, one process step may take only a Pico 

second and another a century; all that can be said is that each step may take an 
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arbitrarily long time. 

• Message transmission delays – for example, one message from process A to 

process B may be delivered in negligible time and another may take several 

years. In other words, a message may be received after an arbitrarily long time. 

• Clock drift rates–again; the drif trat of a clock is arbitrary. 

b) Failure model 

In a distributed system both processes and communication channels may fail – that is, they 

may depart from what is considered to be correct or desirable behavior. The failure   model 

defines the ways in which failure may occur in order to provide an understanding of the 

effects of failures. We can have failures of processes and communication channels. These are 

presented under the headings omission failures, arbitrary failures and timing failures. 

Omission failures • The faults classified as omission failures refer to cases when a process or 

communication channel fails to perform actions that it’s supposed to do. 

Process omission failures: The chief omission failure of a process is to crash. When, say that 

process has crashed we mean that it has halted and will not execute any further steps of its 

program ever. 

 

In an asynchronous distributed system 

 A timeout means that a process is NOT responding; may have crashed or may be 

slow; or the message may not have arrived 

In a synchronous distributed system 

 A time out means that a process is crashed, so called fail-stop 

 However, this method of crash detection relies on the use of timeouts – that is, a 

method in which one process allows a fixed period of time for something to occur. In an 

asynchronous system timeout can indicate only that a process is not responding – it may have 

crashed or may be slow, or the messages may not have arrived. 

Communication omission failures: Consider the communication primitives send and receive. 
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Process p performs a send by inserting the message m in its outgoing message buffer. The 

communication channel transports m to q’s incoming message buffer. Process q performs a 

receive by taking m from its incoming message buffer and deliver in get. The out going and 

Incoming message buffer are typically provided by the operating system. 

Arbitrary failures • The term arbitrary or Byzantine failure is used to describe the worst 

possible failure semantics, in which any type of error may occur. For example, a process may 

set wrong values in its dataitems, oritmay return a wrong value in responseto an invocation. 

An arbitrary failure of a process is one in which it arbitrarily omits intended processing steps 

or takesunintended processing steps. 

Communication channels can suffer from arbitrary failures; for example, message contents 

maybe corrupted, nonexistent messages may be delivered or real messages may be delivered 

more than once. 

Timing failures • Timing failures are applicable in synchronous distributed systems where 

time limits are set on process execution time, message deliverytime and clock drift rate. 

Timing 

Failures are listed in the following figure. Any one of these failures may result in responses 

being unavailable to clients within a specified time interval. 

Real-time operating systems are designed with a view to providing timing guarantees, but 

they are more complex to design and may requirer edundant hardware. 

c) Security model 

The security of a distributed system can be achieved by securing the processes and the 

channelsusedfortheirinteractionsandbyprotectingtheobjectsthattheyencapsulateagainstunautho

rizedaccess. 

Protection is described in terms of objects; although the concepts apply equally well to 

resources fall types 

Protecting objects: 

Objects are intended to be used in different ways by different users. For example, some 

objects may hold a user’s private data, such as their mailbox, and other objects may hold 

shared datasuchaswebpages.Tosupportthis, access rights specify who is allowed to perform 

the operations of an object–for example, who is allowed to read or to write its state. 
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The enemy • To model security threats, we postulate an enemy (sometimes also known as the 

adversary) that is capable of sending any message to any process and reading or copying any 

messagesent between apairofprocesses,asshowninthe followingfigure.Theattackmay 

Come from a computer that is legitimatelyconnectedtothenetworkorfromonethatisconnected 

in an unauthorized manner. The threats from a potential enemy include threats 

toprocessesand threats tocommunicationchannels. 

 

Defeating security threats 

Cryptographyisthescienceofkeepingmessagessecure, and encryption is the process of 

scrambling a message in such away as to hide its contents. Modern cryptographyisbased on 

Encryption algorithms that use secret keys–large numbers that are difficulttoguess–

totransform data in a manner that can only be reversed with knowledge of the corresponding 

decryption key. 

Authentication: The use of shared secrets and encryption provides the basis for the 

authentication of messages–proving the identities supplied by their senders. The basic 

authentication technique is to include in a message an encrypted portion that contains enough 

of the contents of the message to guarantee its authenticity. 

Secure channels: Encryption and authentication are used to build secure channels as a service 
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layer on top of existing communication services. A secure channel is a communication 

channel connecting a pair of processes, each of which acts on behalf of a principal, as shown 

in the following figure. A secure channel has the following properties: 

• Eachoftheprocessesknowsreliablytheidentityoftheprincipalonwhosebehalftheoth

erprocessisexecuting. 

• A secure channel ensures the privacy and integrity (protection against 

tampering) of the data transmitted across it. 

• Each message includes a physical or logical time stamp to prevent messages 

from being replayed or reordered. 
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UNIT II 

Time and Global States- Introduction-Clocks, events and process states-Synchronizing 

physical clocks-Logical time and logical clocks-Global states-Distributed debugging. 

Coordination and Agreement-Introduction- Distributed   mutual exclusion-Elections-

Multicast communication-Consensus and related problems. 

Time and Global States 

There are two formal models of distributed systems: synchronous and asynchronous. 

Synchronous distributed systems have the following characteristics: 

 the time to execute each step of a process has known lower and upper bounds; 

 each message transmitted over a channel is received within a known bounded 

time; 

 Each process has a local clock whose drift rate from real time has a known 

bound. 

Asynchronous distributed systems, in contrast, guarantee no bounds on process execution 

speeds, message transmission delays, or clock drift rates. Most distributed systems we 

discuss, including the Internet, are asynchronous systems. 

Generally, timing is a challenging an important issue in building distributed systems. 

Consider a couple of examples: 

 Suppose we want to build a distributed system to track the battery usage of a 

bunch of laptop computers and we'd like to record the percentage of the battery 

each has remaining at exactly 2pm. 

 Suppose we want to build a distributed, real time auction and we want to know 

which of two bidders submitted their bid first. 

 Suppose we want to debug a distributed system and we want to know whether 

variable x1 in process p1 ever differs by more than 50 from variable x2 in process 

p2. 

In the first example, we would really like to synchronize the clocks of all participating 

computers and take a measurement of absolute time. In the second and third examples, 

knowing the absolute time is not as crucial as knowing the order in which events occurred. 
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Clock Synchronization 

Every computer has a physical clock that counts oscillations of a crystal. This hardware clock 

is used by the computer's software clock to track the current time. However, the hardware 

clock is subject to drift -- the clock's frequency varies and the time becomes inaccurate. As a 

result, any two clocks are likely to be slightly different at any given time. The difference 

between two clocks is called their skew. 

There are several methods for synchronizing physical clocks. External 

synchronization means that all computers in the system are synchronized with an external 

source of time (e.g., a UTC signal). Internal synchronization means that all computers in the 

system are synchronized with one another, but the time is not necessarily accurate with 

respect to UTC. 

In a synchronous system, synchronization is straightforward since upper and lower bounds on 

the transmission time for a message are known. One process sends a message to another 

process indicating its current time, t. The second process sets its clock to t + 

(max+min)/2 where max and min are the upper and lower bounds for the message 

transmission time respectively. This guarantees that the skew is at most (max-min)/2. 

Cristian's method for synchronization in asynchronous systems is similar, but does not rely on 

a predetermined max and min transmission time. Instead, a process p1 requests the current 

time from another process p2 and measures the RTT (Tround) of the request/reply. 

Whenp1 receives the time t from p2 it sets its time to t + Tround/2. 

The Berkeley algorithm, developed for collections of computers running Berkeley UNIX, is 

an internal synchronization mechanism that works by electing a master to coordinate the 

synchronization. The master polls the other computers (called slaves) for their times, 

computes an average, and tells each computer by how much it should adjust its clock. 

The Network Time Protocol (NTP) is yet another method for synchronizing clocks that uses a 

hierarchical architecture where he top level of the hierarchy (stratum 1) are servers connected 

to a UTC time source. 
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Logical Time 

Physical time cannot be perfectly synchronized. Logical time provides a mechanism to define 

the causal order in which events occur at different processes. The ordering is based on the 

following: 

 Two events occurring at the same process happen in the order in which they are 

observed by the process. 

 If a message is sent from one process to another, the sending of the message happened 

before the receiving of the message. 

 If e occurred before e' and e' occurred before e" then e occurred before e". 

"Lamport called the partial ordering obtained by generalizing these two relationships 

the happened-before relation." ( → ) 

 

In the figure, a → b and c → d . Also, b → c and d → f , which means that a → f . However, 

we cannot say that a → e or vice versa; we say that they are concurrent 

(a || e). 

A Lamport logical clock is a monotonically increasing software counter, whose value need 

bear no particular relationship to any physical clock. Each process pi keeps its own logical 

clock, Li, which it uses to apply so-called Lamport timestamps to events. 
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Lamport clocks work as follows: 

LC1: Li is incremented before each event is issued at pi. 

LC2: 

When a process pi sends a message m, it piggybacks on m the value t = Li. 

On receiving (m, t), a process pj computes Lj: = max (Lj, t) and then applies LC1 before time 

stamping the event receive (m). 

An example is shown below: 

 

If e → e ' then L (e) < L (e'), but the converse is not true. Vector clocks address this problem. 

"A vector clock for a system of N processes is an array of N integers." Vector clocks are 

updated as follows: 

VC1: Initially, VI[j] = 0 for I, j = 1, 2, N 

VC2: Just before pi timestamps an event, it sets Vi[i]:=Vi[i]+1. 

VC3: pi includes the value t = Vi in every message it sends. 

VC4: When pi receives a timestamp t in a message, it sets Vi[j]:=max(Vi[j], t[j]), for 1, 2, 

...N. Taking the component wise maximum of two vector timestamps in this way is known as 

a merge operation. 
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An example is shown below: 

 

Vector timestamps are compared as follows: 

V=V' iff V[j] = V'[j] for j = 1, 2, ..., N 

V <= V' iff V[j] <=V'[j] for j = 1, 2, ..., N 

V < V' iff V <= V' and V != V' 

If e → e ' then V(e) < V(e') and if V(e) < V(e') then e → e ' . 

Global States 

It is often desirable to determine whether a particular property is true of a distributed system 

as it executes. We'd like to use logical time to construct a global view of the system state and 

determine whether a particular property is true. A few examples are as follows: 

 Distributed garbage collection: Are there references to an object anywhere in the 

system? References may exist at the local process, at another process, or in the 

communication channel. 

 Distributed deadlock detection: Is there a cycle in the graph of the "waits for" 

relationship between processes? 

 Distributed termination detection: Has a distributed algorithm terminated? 
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 Distributed debugging: Example: given two processes p1 and p2 with variables 

x1 and x2 respectively, can we determine whether the condition |x1-x2| > δ is ever 

true. 

In general, this problem is referred to as Global Predicate Evaluation. "A global state 

predicate is a function that maps from the set of global state of processes in the system ρ to 

{True, False}." 

 Safety - a predicate always evaluates to false. A given undesirable property 

(e.g., deadlock) never occurs. 

 Liveness - a predicate eventually evaluates to true. A given desirable property 

(e.g., termination) eventually occurs. 

Cuts 

Because physical time cannot be perfectly synchronized in a distributed system it is not 

possible to gather the global state of the system at a particular time. Cuts provide the ability 

to "assemble a meaningful global state from local states recorded at different times". 

Definitions: 

 ρ is a system of N processes pi (i = 1, 2, ..., N) 

 history(pi) = hi = < e i 0 , e i 1 ,...> 

 h i k =< e i 0 , e i 1 ,..., e i k > - a finite prefix of the process's history 

 s i k is the state of the process pi immediately before the kth event occurs 

 All processes record sending and receiving of messages. If a process pi records 

the sending of message m to process pj and pj has not recorded receipt of the 

message, then m is part of the state of the channel between pi and pj. 

 A global history of ρ is the union of the individual process histories: H = 

h0 ∪ h1 ∪ h2 ∪...∪hN-1 

 A global state can be formed by taking the set of states of the individual 

processes: S = (s1, s2, ..., sN) 

 A cut of the system's execution is a subset of its global history that is a union of 

prefixes of process histories (see figure below). 

 The frontier of the cut is the last state in each process. 
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 A cut is consistent if, for all events e and e': 

o ( e ∈ C and e ' → e ) ⇒ e ' ∈ C 

 A consistent global state is one that corresponds to a consistent cut. 

 

Distributed Debugging 

To further examine how you might produce consistent cuts, we'll use the distributed 

debugging example. Recall that we have several processes, each with a variable xi. "The 

safety condition required in this example is |xi-xj| <= δ (i, j = 1, 2, ..., N)." 

The algorithm we'll discuss is a centralized algorithm that determines post hoc whether the 

safety condition was ever violated. The processes in the system, p1, p2, ..., pN, send their states 

to a passive monitoring process, p0. p0 is not part of the system. Based on the states collected, 

p0 can evaluate the safety condition. 

Collecting the state:  The processes send their initial state to a monitoring process and send 

updates whenever relevant state changes, in this case the variable xi. In addition, the 

processes need only send the value of xi and a vector timestamp. The monitoring process 

maintains an ordered queue (by the vector timestamps) for each process where it stores the 

state messages. It can then create consistent global states which it uses to evaluate the safety 

condition. 
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Let S = (s1, s2, ..., SN) be a global state drawn from the state messages that the monitor 

process has received. Let V(si) be the vector timestamp of the state si received from pi. Then 

it can be shown that S is a consistent global state if and only if: 

V(si)[i] >= V(sj)[i] for i, j = 1, 2, ..., N 

 

 

Coordination and Agreement 

Overview 

We start by addressing the question of why process need to coordinate their actions and agree 

on values in various scenarios. 

1. Consider a mission critical application that requires several computers to 

communicate and decide whether to proceed with or abort a mission. Clearly, all 

must come to agreement about the fate of the mission. 

2. Consider the Berkeley algorithm for time synchronization. One of the participate 

computers serves as the coordinator. Suppose that coordinator fails. The 

remaining computers must elect a new coordinator. 

3. Broadcast networks like Ethernet and wireless must agree on which nodes can 

send at any given time. If they do not agree, the result is a collision and no 

message is transmitted successfully. 
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4. Like other broadcast networks, sensor networks face the challenging of agreeing 

which nodes will send at any given time. In addition, many sensor network 

algorithms require that nodes elect coordinators that take on a server-like 

responsibility. Choosing these nodes is particularly challenging in sensor 

networks because of the battery constraints of the nodes. 

5. Many applications, such as banking, require that nodes coordinate their access 

of a shared resource. For example, a bank balance should only be accessed and 

updated by one computer at a time. 

Failure Assumptions and Detection 

Coordination in a synchronous system with no failures is comparatively easy. We'll look at 

some algorithms targeted toward this environment. However, if a system is asynchronous, 

meaning that messages may be delayed an indefinite amount of time, or failures may occur, 

then coordination and agreement become much more challenging. 

A correct process "is one that exhibits no failures at any point in the execution under 

consideration." If a process fails, it can fail in one of two ways: a crash failure or a byzantine 

failure. A crash failure implies that a node stops working and does not respond to any 

messages. A byzantine failure implies that a node exhibits arbitrary behavior. For example, it 

may continue to function but send incorrect values. 

Failure Detection 

One possible algorithm for detecting failures is as follows: 

 Every t seconds, each process sends an "I am alive" message to all other 

processes. 

 Process p knows that process q is either unsuspected, suspected, or failed. 

 If p sees q's message, it sets q's status to unsuspected. 

This seems ok if there are no failures. What happens if a failure occurs? In this case, q will 

not send a message. In a synchronous system, p waits for d seconds (where d is the maximum 

delay in message delivery) and if it does not hear from q then it knows that q has failed. In an 

asynchronous system, q can be suspected of failure after a timeout, but there is no guarantee 

that a failure has occurred. 
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Mutual Exclusion 

The first set of coordination algorithms we'll consider deal with mutual exclusion. How can 

we ensure that two (or more) processes do not access a shared resource simultaneously? This 

problem comes up in the OS domain and is addressed by negotiating with shared objects 

(locks). In a distributed system, nodes must negotiate via message passing. 

Each of the following algorithms attempts to ensure the following: 

 Safety: At most one process may execute in the critical section (CS) at a time. 

 Liveness: Requests to enter and exit the critical section eventually succeed. 

 Causal ordering: If one request to enter the CS happened-before another, then 

entry to the CS is granted in that order. 

Central Server 

The first algorithm uses a central server to manage access to the shared resource. To enter a 

critical section, a process sends a request to the server. The server behaves as follows: 

 If no one is in a critical section, the server returns a token. When the process 

exits the critical section, the token is returned to the server. 

 If someone already has the token, the request is queued. 

Requests are serviced in FIFO order. 

If no failures occur, this algorithm ensures safety and liveness. However, ordering is not 

preserved (why?). The central server is also a bottleneck and a single point of failure. 

Token Ring 

The token ring algorithm arranges processes in a logical ring. A token is passed clockwise 

around the ring. When a process receives the token it can enter its critical section. If it does 

not need to enter a critical section, it immediately passes the token to the next process. 

This algorithm also achieves safety and liveness, but not ordering, in the case when no 

failures occur. However, a significant amount of bandwidth is used because the token is 

passed continuously even when no process needs to enter a CS. 

 

 

 



[Distributed Systems] Page 29  

Multicast and Logical Clocks 

Each process has a unique identifier and maintains a logical clock. A process can be in one of 

three states: released, waiting, or held. When a process wants to enter a CS it does the 

following: 

 sets its state to waiting 

 sends a message to all other processes containing its ID and timestamp 

 once all other processes respond, it can enter the CS 

When a message is received from another process, it does the following: 

 if the receiver process state is held, the message is queued 

 if the receiver process state is waiting and the timestamp of the message is after 

the local timestamp, the message is queued (if the timestamps are the same, the 

process ID is used to order messages) 

 else - reply immediately 

When a process exits a CS, it does the following: 

 sets its state to released 

 replies to queued requests 
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This algorithm provides safety, liveness, and ordering. However, it cannot deal with failure 

and has problems of scale. 

None of the algorithms discussed are appropriate for a system in which failures may occur. In 

order to handle this situation, we would need to first detect that a failure has occurred and 

then reorganize the processes (e.g., form a new token ring) and reinitialize appropriate state 

(e.g., create a new token). 

Election 

An election algorithm determines which process will play the role of coordinator or server. 

All processes need to agree on the selected process. Any process can start an election, for 

example if it notices that the previous coordinator has failed. The requirements of an election 

algorithm are as follows: 

 Safety: Only one process is chosen -- the one with the largest identifying value. 

The value could be load, uptime, a random number, etc. 

 Liveness: All process eventually chooses a winner or crash. 

Ring-based 

Processes are arranged in a logical ring. A process starts an election by placing its ID and 

value in a message and sending the message to its neighbor. When a message is received, a 

process does the following: 

 If the value is greater that its own, it saves the ID and forwards the value to its 

neighbor. 

 Else if its own value is greater and then it has not yet participated in the election, 

it replaces the ID with its own, the value with its own, and forwards the 

message. 

 Else if it has already participated it discards the message. 

 If a process receives its own ID and value, it knows it has been elected. It then 

sends an elected message to its neighbor. 

 When an elected message is received, it is forwarded to the next neighbor. 
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Safety is guaranteed - only one value can be largest and make it all the way through the ring. 

Liveness is guaranteed if there are no failures. However, the algorithm does not work if there 

are failures. 

Bully 

The bully algorithm can deal with crash failures, but not communication failures. When a 

process notices that the coordinator has failed, it sends an election message to all higher-

numbered processes. If no one replies, it declares itself the coordinator and sends a new 

coordinator message to all processes. If someone replies, it does nothing else. When a process 

receives an election message from a lower-numbered process it returns a reply and starts an 

election. This algorithm guarantees safety and liveness and can deal with crash failures. 
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Consensus 

All of the previous algorithms are examples of the consensus problem: how can we get all 

processes to agree on a state? Here, we look at when the consensus problem is solvable. 

The system model considers a collection of processes pi (i = 1, 2, ..., N). Communication is 

reliable, but processes may fail. Failures may be crash failures or byzantine failures. 

The goals of consensus are as follows: 

 Termination: Every correct process eventually decides on a value. 

 Agreement: All processes agree on a value. 

 Integrity: If all correct processes propose the same value, that value is the one 

selected. 

We consider the Byzantine Generals problem. A set of generals must agree on whether to 

attack or retreat. Commanders can be treacherous (faulty). This is similar to consensus, but 

differs in that a single process proposes a value that the others must agree on. The 

requirements are: 
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 Termination: All correct processes eventually decide on a value. 

 Agreement: All correct processes agree on a value. 

 Integrity: If the commander is correct, all correct processes agree on what the 

commander proposed. 

 If communication is unreliable, consensus is impossible. Remember the blue army 

discussion from the second lecture period. With reliable communication, we can solve 

consensus in a synchronous system with crash failures. 

 We can solve Byzantine Generals in a synchronous system as long as less than 1/3 of 

the processes fail. The commander sends the command to all of the generals and each general 

sends the command to all other generals. If each correct process chooses the majority of all 

commands, the requirements are met. Note that the requirements do not specify that the 

processes must detect that the commander is fault. 

 It is impossible to guarantee consensus in an asynchronous system, even in the 

presence of 1 crash failure. That means that we can design systems that reach consensus most 

of the time, but cannot guarantee that they will reach consensus every time. Techniques for 

reaching consensus in an asynchronous system include the following: 

 Masking faults - Hide failures by using persistent storage to store state and 

restarting processes when they crash. 

 Failure detectors - Treat an unresponsive process (that may still be alive) as 

failed. 

 Randomization - Use randomized behavior to confuse byzantine processes. 
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UNIT-III 

 

INTERPROCESSCOMMUNICATION: 

Inter process communication (IPC) is a mechanism which allows processes to communicate 

with each other and synchronize the inactions. 

The characteristics of inter process communication: 

Message passing between a pair of processes can be supported by two message 

communication operations, send and receive, defined in terms of destinations and messages. 

To communicate, one process sends a message (a sequence of bytes) to a destination and 

another process at the destination receives the message. This activity involves the 

communication of data from the sending process to the receiving process and may involve the 

synchronization of the two processes. 

Synchronous and asynchronous communication: 

A queue is associated with each message destination. Sending processes cause messages to 

beaddedtoremotequeuesandreceivingprocessesremovemessagesfromlocalqueues.Communicat

ion between the sending and receiving processes may be either synchronous or asynchronous. 

Synchronous: In the synchronous form of communication, the sending and receiving 

processes synchronize at every message. In this case, both send and receive are blocking 

operations. Whenever a send is issued the sending process (or thread) is blocked until the 

corresponding receive is issued. Whenever a receive  is issued by a process(or thread), it 

blocks until a message arrives. 

Asynchronous: 

In the asynchronous form of communication, the use of the send operation is non-blocking in 

that the sending process is allowed to proceed as soon as the message has been copied to a 

local buffer, and the transmission of the message proceeds in parallel with the sending 

process the receiving process proceeds with its program after issuing a receive operation, 

which provides a buffer to be filled in the background, but it must separately receive 

notification that its buffer has been filled, by polling or interrupt. 

Message destinations in the Internet protocols, messages are sent to (Internet address, local 

port) pairs. A local port is a message destination within a computer, specified as an integer. 
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Aporthasexactlyonereceiverbutcanhavemanysenders.Processesmayusemultipleportsto 

Receive messages. Any process that knows the number of a port can send a message to it. 

Servers generally publicize their port numbers for use by clients. 

Reliability in a point-to-point message service can be described as reliable if messages are 

guaranteed to be delivered despitea‘reasonable’numberofpackets being dropped or lost. 

Ordering • Some applications require that messages be delivered in sender order – that is, 

the order in which they were transmitted by the sender. The delivery of messages out of 

sender order is regarded as a failure by such applications. 

Sockets 

Both forms of communication (UDP and TCP) use the socket abstraction, which provides 

anendpointforommunicationbetweenprocessesInterprocesscommunicationconsistsoftransmitti

ng a message between a socket in one process and a socket in another process, is shown in 

the following figure. 

 

 For a process to receive messages, its socket must be bound to a local port and one of 

the Internet addresses of the computer on which it runs. Messages sent to a particular Internet 

address and port number can be received only by a process whose socket is associated with 

that Internet address and port number. Processes may use the same socket for sending and 

receiving messages. Port. Each socket is associated with a particular protocol – either UDP or 

TCP. 

UDP datagram communication 

A datagram sent by UDP is transmitted from a sending process to a receiving process without 

acknowledgement or retries. If a failure occurs, the message may not arrive. A datagram is 

transmitted between processes when one process sends it and another receives it. To send or 

receive messages a process must first create a socket bound to an Internet address of the local 

host and a local port. A server will bind its socket to a server port – one that it makes known 

to clients so that they can send messages to it. A client binds its socket to any free local port. 



[Distributed Systems] Page 36  

The receive method returns the Internet address and port of the sender, in addition to the 

message, allowing the recipient to send a reply. 

The following are some issues relating to datagram communication: 

Message size: The receiving process needs to specify an array of bytes of a particular size in 

which to receive a message. If the message is too big for the array, it is truncated on arrival. 

The underlying IP protocol allows packet lengths of up to 216 bytes, which includes the 

headers as well as the message. However, most environments impose a size restriction of 

8kilobytes. Any application requiring messages larger than the maximum must fragment 

themintochunks of that size. 

Blocking: Sockets normally provide non-blocking sends and blocking receives for datagram 

communication (a non-blocking receive is an option in some implementations). The send 

operation returns when it has handed the message to the underlying UDP and IP protocols, 

which are responsible for transmitting it to its destination. On arrival, the message is placed 

in queue for the socket that is bound to the destination port. The message can be collected 

from the queue by an outstanding or future invocation of receive on that socket. Messages are 

discarded at the destination if no process already has a socket bound to the Destination port. 

Timeouts: The receive that blocks forever is suitable for use by a server that is waiting to 

receiver quests from its clients. But in some programs, it is not appropriate that a process that 

has invoked a receive operation should wait indefinitely in situations where the sending 

process may have crashed or the expected message may have been lost. To allow for such 

requirements, time outs can be set on sockets. 

Receive from any: The receive method does not specify an origin for messages. Instead, an 

invocation of receive gets a message addressed to its socket from any origin. The receive 

method returns the Internet address and local port of the sender, allowing the recipient 

tocheckwherethemessagecame from 

Failure model for UDP datagram’s• A failure model for communication channels and 

defines reliable communication in terms of two properties: integrity and validity. The 

integrity property requires that messages should not be corrupted or duplicated. The use of a 

checksum ensures that there is a negligible probability that any message received is 

corrupted. UDP datagram’s suffer from the following failures: 

Omission failures: Messages may be dropped occasionally, either because of checksum error 

or because no buffer space is available at the source or destination. Ordering: Messages can 
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sometimes be delivered out of sender order. 

A reliable delivery service may be constructed from one that suffers from omission failures 

bytheuseofacknowledgements. 

Use of UDP: 

1. The Domain Name System, which looks up DNS names in the Internet, is 

implemented over UDP. 

2. Voice over IP(VOIP) also runs over UDP. 

TCP stream communication: 

Message sizes: The application can choose how much data it writes to a stream or reads from 

it. It may deal in very small or very large sets of data. The underlying implementation of a 

TCP stream decides how much data to collect before transmitting it as one or more IP 

packets. On arrival, the data is handed to the application as requested. Applications can, if 

necessary, force data to be sent immediately 

Lost messages: The TCP protocol uses an acknowledgement scheme. As an example of as 

impel scheme (which is not used in TCP), the sending end keeps a record of each IP packet 

sent and the receiving end acknowledges all the arrivals. If the sender does not receive an 

acknowledgement within a timeout, it retransmits the message 

Flow control: The TCP protocol attempts to match the speeds of the processes that read from 

and write to a stream. If the writer is too fast for the reader, then it is blocked until the reader 

has consumed sufficient data. 

Message duplication and ordering: Message identifiers are associated with each IP packet, 

which enables the recipient to detect and reject duplicates, or to reorder messages that do not 

arrive in sender order. 

Message destinations: A pair of communicating processes establishes a connection before 

they can communicate over a stream. Once a connection is established, the processes simply 

read from and write to the stream without needing to use Internet addresses and ports. 

Establishing a connection involves a connect request from client to server followed by an 

accept request from server to client before any communication can take place. This could be 

a consider able over head for a single client-server request and reply. 
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JavaAPIforUDPdatagrams: 

• The Java API provides datagram communication by means of two 

classes:DatagramPacket and Datagram Socket 

Datagram Packet: This class provides a constructor that makes an instance out of an array 

of bytes comprising a message, the length of the message and the Internet address and local 

port number of  the destination socket, as follows: 

Datagram packet 

array of  bytes containing 

message 

length of 

message 

Internet 

address 

port 

number 

An instance of Datagram Packet may be transmitted between processes when one process 

send sit and another receives it. This class provides another constructor for use when 

receiving message. Its arguments specify an array of bytes in which to receive the message 

and the length of the array. A received message is put in the Datagram Packet together with 

its length and the 

Internetaddressandportofthesendingsocket.ThemessagecanberetrievedfromtheDatagramPacke

t by means of the method get Data. The methods get Port and get Address access the port and 

Internet address. 

Datagram Socket: This class supports sockets for sending and receiving UDP datagram’s. 

Itprovidesaconstructorthattakesaportnumberasitsargument, forusebyprocessesthatneedto use a 

particular port. It also provides a no-argument constructor that allows the system to choose a 

free local port. These constructors can throw a Socket Exception if the chosen port is already 

in use or if a reserved port (a number below 1024) is specified when running over UNIX. 

The class Datagram Socket provides methods that include the following: 

Send and receive: These methods are for transmitting datagram’s between a pair of sockets. 

The argument of send is an instance of Datagram Packet containing a message and its 

destination. The argument of receive is an empty Datagram Packet in which to put the 

message, its length and its origin. The methods send and receive can throw I Exceptions. 

Set So Timeout: This method allows a timeout to be set. With a timeout set, the receive 

method will block for the time specified and then throwanInterrupted I Exception. 

Connect: This method is used for connecting to a particular remote port and Internet address, 

in which case the socket is only able to send messages to and receive messages from that 
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address 

UDP client sends a message to the server and gets reply 

UDP server repeatedly receives a request and sends sit back to the client 

JavaAPIforTCPstreams•TheJavainterfacetoTCPstreams is provided in the classes 

ServerSocketandSocket: 

ServerSocket:Thisclassisintendedforusebyaservertocreateasocketataserverportforlisteningforc

onnectrequestsfromclients.Itsacceptmethodgetsaconnectrequestfromthe 

Queue or, if the queue is empty, blocks until one arrives. The result of executing accepts is an 
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instanceofSocket – a socket to use for communicating with the client. 

Socket: This class is for use by a pair of processes with a connection. The client uses 

aconstructortocreateasocket,specifyingtheDNShostnameandportofaserver.Thisconstructor not 

only creates a socket associated with a local port but also connects it to the specified remote 

computer and port number. It can throw an Unknown Host Exception if the host name is 

wrong IOException if an IO error occurs. 

The Socket class provides the methods getInputStream and getOutputStream for accessing the 

two streams associated with a socket. The return types of these methods are Input Stream and 

Output Stream, respectively – abstract classes that define methods for reading and writing 

bytes. The return values can be used as the arguments of constructors for suitable input and 

outputstreams.OurexampleusesDataInputStreamandDataOutputStream,whichallowbinaryrepr

esentationsofprimitivedatatypestobereadandwritteninamachine-independentmanner. 

TCP client makes connection to server,sends request and receives reply 

 

TCP server makes a connection for each client and then echoes the client’s request 
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External data representation and marshalling: 

To support RMI or RPC, any data type that can be passed as an argument or returned as a 

result must be able to be flattened in an agreed format. An agreed standard for the 

representation of data structures and primitive values is called an external data 

representation. 

Marshalling is the process of taking a collection of data items and assembling them into a 

form suitable for transmission in a message. Unmarshalling is the process of disassembling 

them on arrival to produce an equivalent collection of data items at the destination 

Three alternative approaches to external data representation and marshalling are discussed 

here: 

1.CORBA’sCommonData Representation(CDR): 

CDR can represent all of the data types that can be used as arguments and return values in 

remote invocations in CORBA. 

These consist of 15 primitive types, which include short (16-bit), long (32-bit), unsigned 

short,unsignedlong, float (32-bit),double(64-bit),char, Boolean(TRUE, FALSE)- 

Primitive types: CDR defines a representation for both big-endian and little-endian orderings. 

Values are transmitted in the sender’s ordering, which is specified in each message. The 

recipient translates if it requires a different ordering 

Constructedtypes:Theprimitivevaluesthatcompriseeachconstructedtypeareaddedtoasequenceo

fbytes in a particular order, asshown in Figure4.7. 

Figure4.7. 

CORBACDR for constructed types 
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Type Representation 

sequence length (unsigned long) followed by elements in order  

string 
length (unsigned long) followed by characters in order (can also have wide 

characters) 

array array elements in order (no length specified because it is fixed) 

struct in the order of declaration of the components 

enumerated unsigned long (the values are specified by the order declared) 

union type tag followed by the selected member 

 

Figure 4.8 shows a message in CORBA CDR that contains the three fields of a struct whose 

respective types are string, string and unsigned long. The figure shows the sequence of bytes 

with four bytes in each row 

Figure4.8  CORBACDRmessage 

indexin notes 

Sequence of bytes 4bytes on representation 

0–3 5 lengthofstring 

4–7 

8–11 

"Smit" 

"h " 

‘Smith’ 

12–15 6 lengthofstring 

16–19 

20–23 

"Lond" 

"on" 

‘London’ 

24–27 1984 unsignedlong 

 

The flattened form represents a Person struct with value:{‘Smith’,‘London’,1984} 

Marshalling in CORBA • Marshalling operations can be generated automatically from the 

specification of the types of dataitems to be transmitted in a message 

 

TheCORBAinterfacecompilergeneratesappropriatemarshallingandunmarshallingoperations 

for the arguments and results of remote methods from the definitions of the types of their 

parameters and results. 

2. Java objects serialization: 

In Java RMI, both objects and primitive data values may be passed as arguments and results 

of method invocations 
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For example, 

:publicclassPersonimplements Serializable 

{ 

private String name;private String place;privateint year; 

public Person(String aName, String aPlace, int aYear) {name=aName; 

place = aPlace;year=aYear; 

} 

//followed by methods for accessing theinstance variables 

} 

In Java, the term serialization refers to the activity of flattening an object or a connected set 

of objects into a serial form that is suitable for storing on disk or transmitting in a message 

Deserialization consists of restoring the state of an object or a set of objects from their 

serialized form 

The information about a class consists of the name of the class and a version number. The 

version number is intended to change when major changes are made to the class. It can be set 

by the programmer or calculated automatically as a hash of the name of the class and 

itsinstancevariables,methodsandinterfaces.Theprocessthatdeserializesanobjectcancheckthatit 

has the correct version of the class. 

Java objects can contain references to other objects. When an object is serialized, all the 

objects that it references are serialized together with it to ensure that when the object is 

reconstructed, all of its references can be fulfilled at the destination. References are serialized 

as handles. 

To serialize an object,itsclassinformationiswrittenout,followedby 

thetypesandnamesofitsinstancevariables.Iftheinstancevariablesbelongtonewclasses,thentheircl

assinformationmustalsobewrittenout,followedby the types and names of their 

instancevariables. This recursive procedure continues until the class information and types 

and names of the instance variables of all of the necessaryclasses have been written out 

As an example,consider the serialization of the following object: 

Personp=newPerson("Smith","London",1984); 
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The serialized for mis illustrated in the following Figure 

 

To make use of Java serialization, for example to serialize the Person object, create an 

instance of the class Object Output Stream and invoke its write Object method, passing the 

Person objects its argument. To desterilize an object from a stream of data, open an 

ObjectInputStream on the stream and use its readObject method to reconstruct the original 

object. The use of this pair of classes is similar to the use of DataOutputStreamand 

DataInputStream 

3. Extensible Markup Language(XML) 

XML is used to enable clients to communicate with web services and for defining the 

interfaces and other properties of web services. XML is extensible in the sense that users can 

define their own tags, in contrast to HTML,which uses a fixed set of tags 

Figure4.10XMLdefinition of the Person structure 

<personid="123456789"> 

<name>Smith</name> 

<place>London</place> 

<year>1984</year> 

<!--acomment--> 

</person> 

 

XML elements and attributes• 

Elements: An element in XML consists of a portion of character data surrounded by matching 

start and end tags. For example, one of the elements in Figure 4.10 consists of the data Smith 

contained within the <name> ... </name> tag pair. Note that the 

elementwiththe<name>tagisenclosedintheelementwiththe<personid="123456789">... 

</person>tagpair.Theabilityofanelementtoencloseanotherelementallowshierarchic data to be 
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represented– a very important aspect of XML. An empty tag 

hasnocontentandisterminatedwith/>insteadof>.Forexample,theemptytag 

<european/> could be included within the<person>...</person>tag 

XML elements can have attributes. By the use of attributes we can add the information about 

the element. 

<book publisher="Tata McGraw Hill"></book>Herepublisheris aattribute 

In our above example id is an attribute 

It is a matter of choice as to which items are represented as elements and which ones as 

attributes 

Names: The names of tags and attributes in XML generally start with a letter, but can also 

start with an underline or a colon The names continue with letters, digits, hyphens, 

underscores, colons or full stops. Letters are case-sensitive. 

Parsing and well-formed documents • An XML document must be well formed – that is, it 

must conform to rules about its structure. A basic rule is that every start tag has a matching 

end tag. Another basic rule is that all tags are correctly nested– for example, 

<x>..<y>..</y>..</x>is correct, whereas <x>..<y>..</x>..</y> is not. Finally, every XML 

document must have single root element that encloses all the other elements. These rules 

make it very simple to implement parsers for XML documents. When a parser reads an XML 

document that is not well formed, it will report an error. 

XML prolog:Every XML document must have a prologas its first line. The prolog must at 

least specify the version of XML in use(which iscurrently1.0).For example: 

<?XML version="1.0" encoding="UTF-8"standalone="yes"?> 

The prolog may specify the encoding(UTF-8)which is default 

XML Namespaces 

XMLName space isused to avoid element name conflict in XMLdocument. 

XML Namespace Declaration 

An XML namespace is declared using the reserved XML attribute. This attribute name must 

be started with"xmlns". 

Let's see the XML namespace syntax: 
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<elementxmlns:name="URL"> 

Here,namespacestartswithkeyword"xmlns".Thewordnameisanamespaceprefix.TheURL is a 

namespace identifier. 

Let's take an example with two tables: 

Table1: 

<table> 

<tr> 

<td>Aries</td> 

<td>Bingo</td> 

</tr> 

</table> 

Table2:Thistablecarries information about a computer table. 

<table> 

<name>Computertable</name> 

<width>80</width> 

<length>120</length> 

</table> 

If you add these both XML fragments together, there would be a name conflict because both 

have<table>element. Although they have different name and meaning. 

 

 

 

We can getrid of thisnameconflictby usingnamespacesByUsingxmlnsAttribute 

You can use xmlns attribute to define namespace with the following syntax: 

<elementxmlns:name="URL"> 

Foreg: 

<root> 
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<h:tablexmlns:h="http://www.abc.com/TR/html4/"> 

<h:tr> 

<h:td>Aries</h:td> 

<h:td>Bingo</h:td> 

</h:tr> 

</h:table> 

<f:tablexmlns:f="http://www.xyz.com/furniture"> 

<f:name>Computertable</f:name> 

<f:width>80</f:width> 

<f:length>120</f:length> 

</f:table> 

</root> 

XMLschemas:An XML schema is used to define the structure of anXMLdocument.It is like 

DTD but provides more control on XML structure. 

An XML schema forthe Person structure 

<xsd:schemaxmlns:xsd=URL of XMLschema definitions> 

<xsd:elementname="person"type="personType"/> 

<xsd:complexTypename="personType"> 

<xsd:sequence> 

<xsd:elementname="name" type="xs:string"/> 

<xsd:elementname="place" type="xs:string"/> 

<xsd:elementname="year"type="xs:positiveInteger"/> 

</xsd:sequence> 

<xsd:attributename="id"type="xs:positiveInteger"/> 

</xsd:complexType> 

</xsd:schema> 

http://www.abc.com/TR/html4/
http://www.xyz.com/furniture
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GroupCommunication 

A multicast operation is more appropriate – this is an operation that sends a single message 

from one process to each of the members of a group of processes, usually in such a way that 

themembershipofthegroupis transparent to the sender. 

IPmulticast–An implementation of multicast communication 

A multicast group is specified by a Class D Internet address (see Figure 3.15) – that is, an 

address whose first 4 bits are 1110 inIPv4 

Being a member of a multicast group allows a computer to receive IP packets sent to the 

group. The membership of multicast groups is dynamic, allowing computers to join or leave 

at anytime and to join an arbitrary number of groups. It is possible to send datagram’s to a 

multicast group without being a member 

AnapplicationprogramperformsmulticastsbysendingUDPdatagramswithmulticastaddresses 

and ordinary port numbers. It can join a multicast group by making its socket join the group, 

enabling it to receive messages to the group. 

The following details are specific toIPv4 

MulticastroutersInternetmulticastsmakeuseofmulticastrouters,whichforwardsingledatagrams 

to routers on other networks, where they are again multicast to local members. To limit the 

distance of propagation of a multicast datagram, the sender can specify the number of routers 

it is allowed to pass – called the time to live, or TTL for short. 

Multicast address allocation Class D addresses (that is, addresses in the range 224.0.0.0 

to239.255.255.255)arereservedformulticasttrafficandmanagedgloballybytheInternetAssigned

Numbers Authority(IANA). 

Multicast addresses may be permanent or temporary. Permanent groups exist even when the 

reareno members and therange224.0.6.000 to 224.0.6.127 

The remainder of the multicast addresses is available for use by temporary groups,which 

must be created before use and cease to exist when all the members have left 

Java API to IP multicast • The Java API provides a datagram interface to IP multicast 

through the class MulticastSocket,which is a subclass of DatagramSocket with the additional 

capability 

of being able to join multicast groups. The class Multicast Socket provides two alternative 
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constructors, allowing sockets to be created to use either a specified local port (6789, in 

Figure4.14) or any free local port. A process can join a multicast group with a given multicast 

address by invoking the join Group method of its multicast socket. Effectively, the socket 

joins a multicast group at a given port and it will receive datagram’s sent by processes on 

other computers to that group at that port. A process can leave a specified group by invoking 

the leaveGroup method of its multicast socket. 

In the example in Figure 4.14, the arguments to the main method specify a message to be 

multicast and the multicast address of a group (for example, "228.5.6.7"). After joining that 

multicast group, the process makes an instance of DatagramPacket containing the message 

and sends it through its multicast socket to the multicast group address at port 6789. After 

that, it attempts to receive three multicast messages from its peers via its socket, which also 

belongs to the group on the same port. When several instances of this program are run 

simultaneously on different computers, all of them join the same group, and each of them 

should receive its own message and the messages from those that joined after it. 

TheJavaAPIallowstheTTLtobesetforamulticastsocketbymeansofthesetTimeToLive 

method.Thedefaultis1,allowingthemulticasttopropagateonlyon the local network. 

Figure4.14Multicastpeerjoinsagroupandsendsandreceivesdatagrams 

import java.net.*;importjava.io.*; 

publicclassMulticastPeer{ 

publicstatic voidmain(Stringargs[]){ 

args give message contents & destination multicast group (e.g. 

"228.5.6.7")MulticastSockets=null; 

try{ 

InetAddressgroup=InetAddress.getByName(args[1]);s=newMulticastSocket(6789);s.joinGro

up(group); 

byte [] m = args[0].getBytes();DatagramPacketmessageOut= 

new DatagramPacket(m, m.length, group, 6789);s.send(messageOut); 

byte[]buffer=newbyte[1000]; 

for(inti=0;i<3;i++){//getmessagesfromothersin groupDatagramPacketmessageIn= 
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new DatagramPacket(buffer, buffer.length);s.receive(messageIn); 

System.out.println("Received:"+newString(messageIn.getData())); 

} 

s.leaveGroup(group); 

}catch(SocketExceptione){System.out.println("Socket:"+e.getMessage()); 

}catch(IOExceptione){System.out.println("IO:"+e.getMessage());}finally{if(s!= 

null)s.close();} 

} 

} 

Distributed Objects and Remote Invocation 

Programming Models for Distributed Application: 

• Remote procedure call – client calls the procedures in a server program that is 

running in a different process. 

• Remote method invocation (RMI) – an object in one process can invoke 

methods of objects in another process 

• Event notification – objects receive notification of events at other objects for 

which they have registered. 

Middleware: 

The important aspects of middleware are: 

 Location transparency: In RPC ,the client that calls a procedure cannot tell 

whether the procedure runs in the same process or in different process, possibly 

on a different computer. 

Similarly in RMI the object making the invocation cannot tell whether the object it invokes is 

local or not and does not need to know the location. 
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 Itisalsofreefromthespecificsofcommunicationprotocols,operatingsystem and 

communication hardware 

Interfaces: 

In most of the programming languages program is divided into set of modules and these 

modules communicate with each other. In distributed systems these modules are present 

indifferent processes. The interface of a module specifies the procedures and the variables 

that can be accessed from other modules. 

There are two types of interfaces: 

 Service interface: In client server model ,The server specifies set of procedures 

and input-output parameters available to the client. 

 Remote interface: In Distributed object model ,a remote interface specifies the 

methods of an object that are available for invocation by other objects and also 

the input output arguments. 

Interface Definition Language: It provides a notation for defining interfaces. It can also 

specify type of arguments. 

Examples:CORBAIDL for RMI,SunXDR for RPCCORBA IDLExample: 
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In the above example, add person and get person are methods that are available for RPC 

Communication between Distributed Objects: 

1. The Object Model: 

 An object encapsulates both data and methods. Objects can be accessed via 

object references. 

 An interface provides a definition of the signatures of a set of methods 

 Actions are performed by method invocations: 

The invocation of a method has three effects: 

i. The state of the receiver may be changed 

ii. A new object maybe instantiated 

iii. Further invocations on methods in other objects may take place. 

 Exceptions may be thrown to caller when an error occurs. 

 Garbage collection frees the space occupied by objects when they are  no 

 longer needed. 

The Distributed Objects Model: 

Here we discuss the object model that is applicable to distributed objects. 

 Remote method invocation – Method invocations between objects in different 

processes,whether in the same computer of not. 

 Localmethodinvocation–Methodinvocationsbetweenobjectsinthesameprocess. 
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 Remote object – Objects that can receive remote invocations Remote and local 

method invocations areshowninFigure5.3. 

• Each process contains objects, some of which can receive remote invocations, 

others only local invocations 

• Those that can receive remote in vocations are called remoteobjects 

• Objects need to know the remote object reference of an object in another 

process in order to invoke its methods 

• the remote interface specifies which methods can be invoked remotely. The two 

fundamental concepts that are heart of distributed object model are: 

1. Remote object reference: An object must have the remote object reference 

of an object in order to do remote invocation of an object. Remote object 

references may be passed as input arguments or returned as output 

arguments 

2. Remote interface: Objects in other processes can invoke only the methods 

that belong to its remote interface (Figure5.4). 

CORBA– uses IDL to specify remote interface 

JAVA – extends interface by the Remote keywordFigure5.4 

A remote object and its remote interface 
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Here the methods m1,m2,m3 are provided in the remote interface .so, client can access only 

these methods. 

2.DesignIssuesforRMI: 

Two important design issues in making RMI a natural extension of local method 

are:1.Invocationsemantics  and  ii. Transparency 

1. Remote Invocation Semantics: 

To provide a more reliable request-reply protocol, these fault-tolerant measures can be 

employed: 

Retry request message: whether to transmit the request message until either a reply is 

received or server is assumed to be failed. 

Duplicate Filtering: when transmissions are used , whether to filter out duplicate requests at 

theserver. 

Retransmission of results: whether to keep a history of result messages to enable lost results 

to be retransmitted without re-executing the operations at theserver. 

Combinations of these measures lead to a variety of possible semantics for the reliability of 

remote invocations. 

The choices of RMI invocation semantics are defines as follows: 

i. Maybe invocation semantics:Remote method may be executed once or not at all. If 

then result message is not received after a timeout there will be no retries,it is 

uncertain whether the method has been executed. . On the other hand, the procedure may have 

been executed and the result message has been lost. Maybe semantics 

isusefulonlyforapplicationsin whichoccasional failedcalls areacceptable 

 It suffers the following Failures: 

1. Omission failures if the invocation or result message is lost. 

2. Crash failures when the server containing the remote object fails 

ii .  At-least-once semantics: With at-least-once semantics, the invoker receives either a 

result, in which case the invoker knows that the procedure was executed at least once, 

or an exception in forming it that no result was received. 
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 At-least-once semantics can suffer from the following types of failure: 

 Crash failures when the server containing the remote procedure fails; 

 arbitrary failures – in cases when the request message is retransmitted, the 

remote server may receive it and execute the procedure more than once, possibly 

causing wrong values to be stored or returned 

iii.  At-most-once semantics: With at-most-once semantics, the caller receives either a 

result, in which case the caller knows that the procedure was executed exactly once, 

or an exception informing it that no result was received, in which case the procedure 

will have been executed either once or not at all. 

Invocation Semantics: 

 

2. Transparency Issues: 

 Goal is to make a remote invocation as similar as possible a local invocation The 

Issues (Differences from the local invocation)faced here are: 

1. Syntax maybemadeidenticalbutbehavioraldifferencesexists.Thecausecouldbe 

 Failure and latency. 

2. Exceptions and exception handling are needed 

3. Implementation of RMI: 

Figure5.6 shows an object A invokes a method in a remote object B 
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Remote Reference Module: Responsibilities: 

i. Translation between local and remote object references 

ii. theremotereferencemoduleineachprocesshasaremoteobjecttablethatincludes: 

 An entry for all the remote objects held by the process. For example in the 

above fig the remote object B will be recorded in the table at theserver 

 An entry for each local proxy. for example in the above fig the proxy for B 

will be recorded in the table at the client. 

RMI Software: 

Proxy—provides remote invocation transparency 

 marshal arguments, unmarshal results, send and receive messages Dispatcher– 

 handles transfer of requests to correct method 

 receive requests, select correct method, and pass on request message Skeleton – 

 implements methods of remote interface 

 unmarshal arguments from request, invoke the method of the remote object, and 

marshal the results 

RMI Server and Client Programs: 

Server: contains 

 classesfordispatchers,skeletons and remote objects 

 initializationsectionforcreatingsomeremoteobjects 

 registration of remote objects with the binderClientcontains: 
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 classes for proxies of all remote objects 

 binder to look up remote object references 

RMI Binder and Server Threads: 

A binder in a distributed system is a separate service that maintains a table containing 

mappings from textual names to remote object references 

Server threads: 

 sometimes implemented so that remote invocation causes a new thread to be 

created to handle the call 

 server with several remote objects might also allocate separate threads to handle 

each object Activation of remote objects: 

 A remote object is described as active when it is a running process. 

 A remote object is described as passive when it can be made active if requested. 

 An object that can live between activations of processes is called a persistent 

object 

Allocation servicehelpsclients to locate remote objects from their remote references 

RMI Distributed Garbage Collection: 

Aim-recover memory if no reference t o an object exists. If there is a reference object should 

still exists. 

The distributed garbage collector works in cooperation with the local garbage collector. 

 Each server has table(Beholders)that maintains list of references to an object. 

 When the client C first receives a reference to an object B, it invokes add 

Ref(B)and then creates a proxy. The server adds C to the remote object holder 

Beholders. 

 When remote object B is no longer reachable, it deletes the proxy and invokes 

recovered(B). 

 When Beholders is empty, the server reclaims the space occupied by B. 
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Remote Procedure Call: 

A RPC call is very similar to RMI ,in which a client program calls a procedure in another 

program running in server process 

Figure5.7Roleofclientandserverstub procedures in RPC 

 

The software components required to implement RPC are shown in the above Figure. 

The stub procedure behaves like a local procedure to the client, but instead of executing the 

call, it marshals the procedure identifier and the arguments into a request message, which it 

sends via its communication module to the server. When the reply message arrives, it 

unmarshals the results. 

The server process contains a dispatcher together with one server stub procedure and one 

service procedure for each procedure in the service interface 

The dispatcher selects one of the server stub procedures according to the procedure identifier 

in the request message 

The server stub procedure then unmarshals the arguments in the request message, calls the 

corresponding service procedure and marshals there turn values for the reply message 

The service procedures implement the procedures in the service interface 

Client and servers tub procedures and the dispatcher can be generated automatically by an 

interface compiler from the interface definition no f the service. 
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Case study :Sun RPC: 

• It is designed for client-server communication over Sun NFS network file 

system. 

• UDP or TCP can be used. If UDP is used, the message length is restrictedto64 

KB 

Interface Definition Language: 

 The notation is rather primitive compared to CORBA IDL or JAVA as shown in 

Figure5.8. 

 Instead of no interface definition, a program number and a version number are 

supplied. 

 The procedure number is used as a procedure definition. 

 Single input parameter and output result are being passed. 

Figure5.8 

Files interface in SunXDR 

 

 For example, see the XDR definition in Figure 5.8 of an interface with a pair of 

procedures for writing and reading files. The program number is 9999 and the version 

number is 2. The READ procedure (line 2) takes as its input parameter a structure with three 

components specifying a file identifier, a position in the file and the number of bytes 

required. Its result is a structure containing the number of bytes returned and the file data. 

The WRITE procedure (line 1) has no result. The WRITE and READ procedures are given 
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numbers 1 and 2. The number 0 is reserved for a null procedure, which is generated 

automatically and is intended to be used to test whether a server is available. 

 The interface compiler rpcgen can be used to generate the following from an interface 

definition: 

Client stub procedures; 

Server main procedure, dispatcher and server stub procedures; 

XDR marshalling and unmarshalling procedures for use by the dispatcher and client and 

server stub procedures 

Binding • Sun RPC runs a local binding service called the port mapper at a well-known port 

number on each computer. Each instance of a port mapper records the 

programnumber,version number and port number in use by each service running locally. 

When a server starts up it registers its program number, version number and port number with 

the local port mapper.When a client starts up, it finds out the server’s port by making a 

remote request to the port mapper at the server’s host, specifying the program number and 

version number. 

Events and Notifications 

• The idea behind the use of events is that one object can react to a change 

occurring in another object. 

• The actions done by the user are seen as events that cause state changes in 

objects. 

• The objects are notified whenever the state changes. 

• Local event model can be extended to distributed event-based systems by using 

the publish-subscribe paradigm. 

In publish-subscribe paradigm: 

• An object that has event publishes. 

• Those that have interest subscribe. 

• Objects that represent events are called notifications. 

• Distributed event-based systems have two main characteristics: 

• Heterogeneous – Event-based systems can be used to connect heterogeneous 
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 components in the Internet. 

• Asynchronous – Notification are sent asynchronously by event-generating 

objects to those subscribers 

 The architecture of distributed event notification specifies the roles of participants as 

in Fig.5.10: 

 It is designed in a way that publishers work independently from subscribers. 

 Event service maintains a database of published events and of subscribers’ 

interests. 

Fig.5.10: Architecturefordistributedeventnotification 

 

 

 

• The roles of the participants are: 

 Object of Interest – This is an object experiences change of state, as a result of 

its operations being invoked. 

 Event – An event occurs at an object of interest as the result of the completion 

of a method invocation. 

 Notification – A notification is an object that contains information about an 

event. 

 Subscriber – A subscriber is an object that has subscribed to some type of 

events in another object. 
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 Observer objects – The main purpose of an observer is to separate an object of 

interest from its subscribers. 

 Publisher – This is an object that declares that it will generate notifications of 

particular types of event. 

Figure5.10showsthreecases: 

 An object of interest inside the event service sends notification directly to the 

subscribers. 

 An object of interest inside the event service sends notification via the observer 

to the subscribers. 

 The observer queries the object of interest outside the event service and sends 

notifications to the subscribers. 

Roles for observers–the task of processing notifications can be divided among observers: 

 Forwarding – Observers simply forward notifications to subscribers. 

 Filtering of notifications – Observers address notifications to those subscribers who 

find these notifications are useful. 

 Patterns of events–Subscribers can specify patterns of events of interest. 

 Notification mailboxes – A subscriber can set up a notification mailbox which 

receives the notification on behalf of the subscriber. 

JAVARMI (RemoteMethodInvocation) 

The RMI (Remote Method Invocation) is an API that provides a mechanism to create       

distributed application in java.TheRMIallowsanobject toinvokemethodsonanobjectrunningin 

another JVM. 

The RMI provides remote communication between the applications using two objects 

proxy(stub)and skeleton. 

RMI uses proxy and skeleton object for communication with the remote object. 

proxy 

The stub is an object, acts as a gateway for the client side. All the outgoing requests are 

routed through it. It resides at the client side and represents the remote object. When the 

caller invokes method on the stub object, it does the following tasks: 
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1. Itinitiates a connection with remoteVirtual Machine(JVM), 

2. It writes and transmits(marshals)the parameters to the remote Virtual 

Machine(JVM), 

3. It waits forthe result 

4. It reads(unmarshals)the return value or exception, and 

5. It finally,returns the value to the caller.skeleton 

 The skeleton is an object,acts as a gateway forthe server side object. All the in coming 

requests are routed through it. When the skeleton receives the incoming request, it does the 

following tasks: 

1. It reads the parameter forthe remote method 

2. It invokes the method on the actual remote object,and 

3. It writes and transmits (marshals)the result to the caller. 

JavaRMI Example 

Thereare6 steps to write the Microgram. 

1. Create the remote interface 

2. Provide the implementation of the remote interface 

3. Compile the implementation class and create the stub and skeleton objects using 

thermictool 

4. Start the registry service by rmiregistrytool 

5. Create and start the remote application 

6. Create and start the client application  

RMI Example 

 In this example, we have followed all the 6 steps to create and run the rmi application. 

The client application needs only two files, remote interface and client application. In the rmi 

application, both client and server interact with the remote interface. The client application 

invokes methods on the proxy object, RMI sends the request to the remote JVM. The return 

value is sent back to the proxy object and then to the client application. 
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1) create the remote interface 

 For creating the remote interface, extend the Remote interface and declare 

theRemoteException with all the methods of the remote interface. Here, we are creating a 

remote interface that extends the Remote interface. There is only one method named add() 

and itdeclaresRemoteException. 

importjava.rmi.*; 

publicinterfaceAdderextends Remote 

{ 

publicintadd(intx,inty)throwsRemoteException; 

} 

2) Provide the implementation of the remote interface 

 Now provide the implementation of the remote interface. For providing the 

implementation of the Remote interface, we need to 

o EitherextendtheUnicastRemoteObject class, 

o or use the export Object() method of the Unicast Remote Object class 

In case, you 

extendtheUnicastRemoteObjectclass,youmustdefineaconstructorthatdeclaresRemoteExceptio

n. 
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importjava.rmi.*; 

importjava.rmi.server.*; 

publicclassAdderRemoteextendsUnicastRemoteObjectimplementsAdder 

{ 

AdderRemote()throwsRemoteException 

{ 

super(); 

} 

publicintadd(intx,inty) 

{returnx+y;} 

} 

3) create the stub and skeleton objects using the rmic compilerrmicAdderRemote 

4) RMIREGISTRY: 

 Rmi registry is the binder for java RMI.this is maintained in every server hosting 

remoteobjects.ItmaintainsatablemappingtextualURLstylenamestoreferencesto remoteobjects 

.hosted on that computer.It is accessed by the mehods of naming class.which takes the url 

formatted string of the following form: 

//computername:port/object name 

 Where computername:port refers to the location of the RMI registry;TheNamingclass 

provides 5 methods. 

1. Remotelookup(stringname):methodisusedbyclientstolookuparemoteobjectbynam

e.A remote object reference is returned. 

2. void rebind(string name, Remote obi) : this method is used by a server to 

register are mote object by name 

3. void bind(string name, Remote obi) : this method is used by a server to register 

are mote object by name but if the name is already bound to a remote 

objectreferenceanexception is thrown 

4. void unbind(stringname,Remoteobj):this method removes a binding 

5. string[] list():It returns an array of the names of the remote objects bound in the 

registry 
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5) Create and run the server application 

Now rmi services need to be hosted in a server process. 

In this example,we are binding the remoteobject by the names. 

importjava.rmi.*; 

importjava.rmi.registry.*; 

publicclassMyServer{ 

publicstaticvoidmain(Stringargs[]){ 

try{ 

Adder s=newAdderRemote();Naming.rebind("rmi://localhost:5000/sonoo",s); 

}catch(Exceptione){System.out.println(e);} 

} 

} 

6) Createandruntheclientapplication 

 At the client we are getting the stub object by the lookup() method of the Naming 

class and invoking the method on this object. In this example, we are running the server 

andclientapplications,inthesamemachinesoweareusinglocalhost.Ifyouwanttoaccessthe remote 

object from another machine, change the local host to the host name (or IPaddress)where the 

remote object is located. 

importjava.rmi.*; 

publicclassMyClient{ 

publicstaticvoidmain(Stringargs[]){ 

try{ 

Adder 

stub=(Adder)Naming.lookup("rmi://localhost:5000/sonoo");System.out.println(stub.add(34,4

)); 

}catch(Exceptione){} 

} 

} 
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DISTRIBUTED SYSTEMS 

 

UNIT-IV 

 

 A file system is responsible for the organization, storage, retrieval, naming, sharing, 

and protection of files. File systems provide directory services, which convert a file name 

(possibly a hierarchical one)into an internal identifier (e.g. inode, FAT index). They contain a 

representation of the file data itself and methods for accessing it (read/write). The file system 

is responsible for controlling access to the data and for performing low-level operations such 

as buffering frequently used data and issuing disk/O requests.DFS makes it convenient to 

share information and files among users on a network in a controlled and authorized way. 

The server allows the client users to share files and store data just like they are storing the 

information locally. However, the servers have full control over the data and give access 

control to the clients. 

 A distributed file system is to present certain degrees of transparency to the user and 

the system: Access transparency: Clients are unaware that files are distributed and can 

access them in the same way as local files are accessed. 

Location transparency: A consistent name space exists encompassing local as well as 

remote files.The name of a file does not give it location. 

Concurrency transparency: All clients have the same view of the state of the file system. 

This means that if one process is modifying a file, any other processes on the same system or 

remote systems that are accessing the files will see the modifications in a coherent manner. 

Failure transparency: The client and client programs should operate correctly after a server 

failure. Heterogeneity: File service should be provided across different hardware and 

operating system platforms. 

Scalability: The file system should work well in small environments (1 machine, a dozen 

machines)and also scalegracefully to huge ones(hundredsthroughtensofthousandsof systems). 

Replication transparency: To support scalability, we may wish to replicate files across 

multiple servers.Clients should be unaware of this. 

Migrationtransparency:Filesshouldbeabletomovearoundwithouttheclient'sknowledge. 
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Supportfine-

graineddistributionofdata:Tooptimizeperformance,wemaywishtolocateindividualobjectsnear 

the processes that use them. 

Tolerancefornetworkpartitioning:Theentirenetworkorcertainsegmentsofitmaybeunavailable

to a client during certain periods (e.g. disconnected operation of laptop). The file system 

should be tolerant of this. 

File service types 

 To provide a remote system with file service, we will have to select one of two 

models of operation.One of these is the upload/download model. In this model, there are two 

fundamental operations: read file transfers an entire file from the server to the requesting 

client, and write file copies the file back to the server. It is a simple model and efficient in 

that it provides local access to the file when it is being used. Three problems are evident. It 

can be wasteful if the client needs access to only a small amount of the file data. It can be 

problematic if the client doesn't have enough space to cache the entire file. 

 Another important distinction in providing file service is that of understanding the 

difference between directory service and file service. A directory service, in the context of 

file systems, maps human-friendly textual names for files to their internal locations, which 

can be used by the file service. The file service itself provides the file interface (this is 

mentioned above). Another component of file distributed file systems is the client module. 

This is the client-side interface for file and directory service. It provides a local file system 

interface to client software (for example, the vnodefilesystem layer of a UNIX kernel). 

File system were originally developed for centralized computer systems and desktop 

computers .to disk storage. 

 

 

resources. 

 

become more complex. 

jectsystems(CORBA,Java)andtheweb,thepicturehas 
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Storage systems and their properties 

 Sharing Persistent Distributed 

cache/replicas 

Consistency 

maintenance 

Example 

Main memory No No No 1 RAM 

File systemn No Yes No 1 UNIX file 

system 

Distributed file 

system 

Yes Yes Yes Yes Sun NFS 

web Yes Yes Yes No Web server 

Distributed shared 

memory 

Yes No Yes Yes Ivy(DSM) 

Remote 

objects(RMI/ORB) 

Yes No No 1 CORBA 

Persistent object 

store 

Yes Yes No 1 CORBA 

persistent state 

service 

Peer to peer storage 

system 

Yes Yes Yes 2 Ocean Store 

 

file system modules: 

Directorymodule: RelatesfilenamestofileIDs 

Filemodule: Relatesfile IDstoparticularfiles 

Access controlmodule: Checks permission for operation requested 

File access module: Read or writes file data or attributes 

Block module: Accesses and allocates disk blocks 

Device module: Disk I/O and buffering 

 

 The below table Summarizes the main operations on files that are available to 

applications in UNIX systems. 
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List out the UNIXfilesystem Operations: 

fieldes=open(name,mode)fieldes=create(name,mode)status=close(fieldes)count=read(fieldes,

buffer,n)count=write(fieldes,buufer,n)pos=Iseek(filedes,offset,whence)status=unlink(nmae)st

atus=link(name1,nmae2)status=stat(name,buffer) 

List out the transparencies in file system. 

 Access transparency 

 Location transparency 

 Mobility transparency 

 Performance transparency 

 Scaling transparency 

What is meant by concurrency control: 

 Changestoafilebyoneclientshouldnotinterferewiththeoperationofotherclientssimultane

ously accessing or changing the same file. This is well-known issue of concurrencycontrol 

.The need for concurrency control for access to shared data in many applicationsIswidely 

accepted and techniques are known for its implementation ,but they are costly .Mostcurrent 

file services follow morden UNIX standards in providing advisery or mandatory file 

orrecord-levellocking. 
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What is file replication: 

In a file service that supports replication, a file may be represented by several copies 

of its contents at different locations. This has two benefits-its enables multiple servers to 

share the load of providing a service to clients accessing the same set of files, enhancing the 

scalability of the service, and it enhances fault tolerance by enabling clients to locate another 

server that holds a copy of the file when one has failed. Few file services support replication 

fully, but most support the catching of files or portions of files locally,alimited form of 

replication. 

What is meant by directory services: 

 The directory services provide a mapping between text names for files and their 

UFIDs. Client may obtain the UFIDs of a file by quoting its text name to the directory 

services. The directory services provide the function needed to generate directories, to add 

new file name to directories and to obtain UFIDs from directories. It is client of the flat file 

services; its directory is stored infilesoftheflatservices.Whenahierarchicfile-

namingschemeisadoptedasinUNIX,directorieshold references tootherdirectories. 

 

Case studies : 

File service architecture • This is an abstract architectural model that underpins both NFS 

and AFS.Itisbaseduponadivisionofresponsibilitiesbetweenthreemodules–

aclientmodulethatemulatesa conventional file system interface for application programs, and 

server modules, that perform operations for clients on directories and on files. The 

architecture is designed to enable a stateless implementation of the server module. 

Sketch the file service architecture: 
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List the flat file service operation. 

Read(file/d,I,N)>data-throws bad position -if1≤ 1≤length(file):reads a sequence of up to 

NitemsFrom a file starting at item/andreturnsit in data 

Write(File/D,I,Ddata)-throws bad position -if1≤1≤length(file)+1: writes a sequence of 

datatoaFile,starting at item1,extendingthefileif necessary 

Create()->Field -createsanewfileoflength0 and delivers aUFID for it 

Delete(Field) -removes the file from the file store 

Get Attributes(Field)->> -returns the file attributes forth file 

Set Attributes(FileID) -setsthefileattributes(only those attributes that not Shaded in) 

List the directory service operation. 

SUN NFS • Sun Microsystems’s Network File System(NFS) has been widely adopted in 

industry and in academic environments since its introduction in 1985. The design and 

development of NFS were undertaken by staff at Sun Microsystems in 1984. Although 

several distributed file services had already been developed and used in universities and 

research laboratories, NFS was the first file service that was designed as a product. The 

design and implementation of NFS have achieved success both technicallyand commercially. 

Sun’sNetwork File System: 

The earliest successful distributed system could be attributed to Sun Microsystems, which 

developed the Network File System (NFS). NFSv2 was the standard protocol followed for 

many years, designed with the goal of simple and fast server crash recovery. This goal is of 



[Distributed Systems] Page 73  

utmost importance in multi-client and single-server based network architectures because a 

single instant of server crash means that all clients are unserviced. The entire system goes 

down. 

Stateful  protocols make things complicated when itcomes to crashes. Consider a client A 

trying to access some data from the server. However, just after the first read, the server 

crashed. Now, when the server is up and running, client A issues the second read request. 

However, the server does not know which file the client is referring to, since all that 

information was temporary and lost during the crash. 

Stateless protocols come to our rescue. Such protocols are designed so as to not store any 

stateinformationintheserver.Theserverisunawareofwhattheclientsaredoing—whatblocksthey 

are caching, which files are opened by them and where their current file pointers are. 

Theserver simply delivers all the information that is required to service a client request. If a 

server crash happens, the client would simply have to retry the request. Because of their 

simplicity,NFS implements a stateless protocol. 

File Handles: 

NFS uses file handles to uniquely identify a file or a directory that the current operation is 

being performed upon. This consists of the following components: 

 Volume Identifier – An NFS server may have multiple file systems or 

partitions. The volume identifier tells the server which file system is being 

referred to. 

 InodeNumber– This number identifies the file within the partition. 

 GenerationNumber–This number isused while reusing an inode number. 

File Attributes: 

 “File attributes” is a term commonly used in NFS terminology. This is a collective 

term for the 

trackedmetadataofafile,includingfilecreationtime,lastmodified,size,ownershippermissionsetc. 

This can be accessed by calling stat()on the file. 

NFS architecture. 

https://www.geeksforgeeks.org/difference-between-stateless-and-stateful-protocol/
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NFS access control and authentication: 

 

server on each request. 

 

smust be checked by the’s access permission attribute. 

are inserted by the RPC system. 

 

solution. 

 

 

 

Mount service: 

 

mount(remotehost,remotedirectory,localdirectory) 

Servermaintainsatableofclientswhohavemountedfilesystemsatthatserver. 

 

<IPaddress,port number,file handle> 

-mountedorsoft-mountedinaclientcomputer. trates a Client with two remotely 

mounted filestores. 
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Server caching: 

Similar to UNIX file caching for local files: 

 

newer pages.Read-ahead and delayed-write optimizations. 

 

remotecaseitdoesn'toffernecessarysynchronizationguaranteestoclients. 

Achievement of transparencies is other goals of NFS: 

-performance distributed service. 

Access transparency:The API is the UNIX system call interface for both local and remote 

files. 

Locationtransparency:Namingoffilesystemsiscontrolledbyclientmountoperations,but 

transparencycan be ensured by an appropriate system configuration. 

Mobility transparency: Hardly achieved; relocation of files is not possible, relocation of file 

systems is possible, but requires updates to client configurations. 

Scalabilitytransparency:Filesystems(filegroups)maybesubdividedand allocated to 

separate servers. 

Replication transparency: 

–Limitedtoread-

onlyfilesystems;forwritablefiles,theSUNNetworkInformationService(NIS)runsover NFSand 

is used to replicate essential system files. 

CaseStudy:The Andrew File System(AFS): 

AFS differs markedly from NFS in its design and implementation. The differences are 

primarily attribute able to the identification of scalability as the most important design goal. 

AFS is designed to perform well with larger numbers of active users than other distributed 

file systems. The key strategy for achieving capability is the caching of whole files in client 

nodes. 

AFS has two unusual design characteristics: 

Whole-file serving: The entire contents of directories and files are transmitted to client 
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computers by AFS servers(inAFS-3,fileslargerthan64kbytesare transferredin64-kbytechunks). 

Whole file caching: Once a copy of a file or a chunk has been transferred to a client 

computer it is stored in a cache on the local disk. The cache contains several hundred of the 

files most recently used on that computer. The cache is permanent, surviving reboots of the 

client computer. Local copies of files are usedtosatisfyclients’ 

openrequestsinpreferencetoremotecopieswheneverpossible. 

Like NFS, AFS provides transparent access to remote shared files for UNIX programs 

running on work stations. 

 

OPERATIONOFAFS: 

i) When a user process in a client computer issues an open system call for a file in 

the shared -file space and there is not a current copy of the file in the local 

cache, the server holding the file is located and is sent a request for a copy of the 

file. 

ii) ThecopyisstoredinthelocalUNIXfilesystemintheclientcomputer.Thecopyisthenop

enedand the resulting UNIX file descriptor is returned to the client. 

iii) Subsequentread,writeandotheroperationsonthefilebyprocessesintheclientcompute

rareappliedtothelocalcopy. 

iv) When the process in the client issues a close system call, if the local copy has 

been updated its contents are sent back to the server. The server updates the file 

contents and the timestamps on thefile. 

Thecopyontheclient’slocaldiskisretainedincaseitisneededagainbyauser-

levelprocessonthe same workstation. 

 AFS is a distributed file system, with scalability as a major goal. Its efficiency can be 

at tribute to the following practical assumptions(as also seen in UNIX file system): 

 Files are small(i.e.entire file can be cached) 

 Frequency of reads much more than those of writes 

 Sequential access common 

 Files are not shared(i.e. read and written by only one user) 



[Distributed Systems] Page 77  

 Shared files are usually not written 

 Diskspace is plentiful 

 AFSdistinguishesbetweenclientmachines(workstations)anddedicatedservermachines. 

Caching files in the client side cache reduces computation at the server side, thus enhancing 

performance. However, the problem of sharing files arises. 

Tosolvethis,allclientswithcopiesofafilebeingmodifiedbyanotherclientarenot informed the 

moment the client makes changes. That client thus updates its copy, and the changes are 

reflected in the distributed file system only after the client closes the file. 

 

The key software components in AFS are: 

 Vice: The server side process that resides on top of the Unix kernel, providing 

shared file services to each client 

 Venus: The client side cache manager which acts as an interface between the 

application program and the Vice 

 All the files in AFS are distributed among the servers. The set of files in one server is 

referred to as a volume. In case a request cannot be satisfied from this set of files, the vice 

server informs the client where it can find the required file. 

The basic file operations can be described more completely as: 

 Open a file: Venus traps application generated file open system calls, and checks 

whether it can be serviced locally (i.e. a copy of the file already exists in the 

cache) before requesting Vice for it. It then returns a file descriptor to the calling 

application. Vice, along with a copy of the file, transfers a callback 

promise,whenVenus requests for a file. 

 Read and Write: Reads/Writes are done from/to the cached copy. 

 Close a file: Venus traps file close system calls and closes the cached copy of 

the file. If the file had been updated, it informs the Vice server which then 

replaces its copy with the updated one, as well as issues callbacks to all clients 

holding call back promises on this file. On receiving a call back, the client 

discards its copy,and works on this fresh copy. 

 The server wishes to maintain its states at all times, so that no information is lost due 
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to crashes. This is ensured by the Vice which writes the states to the disk. When 

theservercomesupagain,italsoinformsalltheserversaboutitscrash,sothatinformation about 

updates may bypassed toot. 

 

Distributed shared memory(DSM) 

Shared memory is the memory block that can be accessed by more than one program. A 

shared memory concept is used to provide a way of communication and provide less 

redundant memory management. 

Distributed Shared Memory abbreviated as DSM is the implementation of shared memory 

concept in distributed systems. The DSM system implements the shared memory models in 

loosely coupled systems that are deprived of a local physical shared memory in the system. In 

this type of system distributed shared memory provides a virtual memory space that is 

accessible by all the system (also known as nodes)of the distributed hierarchy. 

Message passing versus DSM 

The message passing and DSM can be compared based on services they offer and in terms of 

their efficiency 
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Message Passing Distributed Shared Memory 

Services Offered:     

The processes share variables directly,  

sonomarshallingandunmarshalling.Sharedv

ariablescanbenamed,storedandaccessedin 

DSM. 

Variables   have   to   be    

marshalledfromoneprocess,transmittedandunmar

shalledintoothervariablesatthereceivingprocess. 

Processes can communicate with

 other 

Here,aprocess does not have private 

processes. They can be protected fromone Address space So on eprocesscanalterthe 

anotherbyhavingprivateaddress spaces. executionofother.    

This technique can be used in Thiscannotbeusedtoheterogeneous  

heterogeneouscomputers.    computers.     

Synchronization between processes is Synchronization is through locks and 

throughmessagepassingprimitives.  semaphores.     

Processes communicating via message Processes communicating through

 DSM 

passingmustexecuteatthesametime.  may execute with non-

overlapping 

  lifetimes.     

Efficiency:     

Any particular read or update may or 

maynotinvolvecommunicationbytheunderly

ing runtime support. 

Allremotedataaccessesareexplicitandtherefore 

the programmer is always  

awareofwhetheraparticularoperationisin-

processorinvolvestheexpenseofcommunication. 

 

Synchronizationmodel: 

 Manyapplicationsapplyconstraintsconcerningthevaluesstoredinsharedmemory. ). 

For example, if a and b are two variables stored in DSM, then aconstraint might 

be that a = b always. If two or more processes execute thefollowingcode: 

  a :=a+1; 

  b :=b+1; 

thenaninconsistencymayarise.Supposeaandbareinitiallyzeroandthatprocess1 

gets as far as setting a to 1. Before it can increment b, process 2 sets a to 2 and b to 
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1.Theconstraint hasbeenbroken.Thesolutionistomakethiscodefragmentintoacriticalsection: 

tosynchronize processes to ensurethat onlyonemayexecute it atatime. 

 Inorder touseDSM,then,adistributedsynchronization 

serviceneedstobeprovided,whichincludesfamiliarconstructssuch as locks 

andsemaphores 

Consistencymodel 

 TheissueofconsistencyarisesforasystemsuchasDSM, which replicates thecontents 

ofsharedmemorybycachingit atseparate computers. 

 eachprocesshas alocalreplicamanager,whichholds 

cachedreplicasofobjects.Inmostimplementations, data is read from local replicas 

for efficiency, but updates have to bepropagatedto theother replica managers 

 Consideranapplicationinwhichtwoprocessesaccesstwovariables,aandb(Figure18.

3),which areinitialized to zero. 

 Process 2 increments a and b, in that order. Process 1 reads the values of b and a 

intolocalvariablesbrandar,inthatorder.Notethatthereisnoapplication-

levelsynchronization. 

 Intuitively, process 1 should expect to see one of the following combinations 

ofvalues, depending upon the points at which the read operations applied to a 

and b(implied in the statements br := b and ar := a) occur with respect to 

process 2’sexecution: ar = 0, br = 0; ar = 1, br = 0; ar = 1, br = 1. In other 

words, the conditionar br should always be satisfied and process 1 should print 

‘OK’. However, a DSMimplementation might deliver the updates toa and b out 

of order to the replicamanagerforprocess1,inwhichcasethecombinationar =0,br = 

1could occur. 
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Figure18.3 Two processes accessing shared variables 

 

 The main consistency models that can be practically realized in DSM 

implementationsaresequential consistencyand modelsthat arebased on weakconsistency. 

Thecentralquestiontobeaskedinordertocharacterizeaparticularmemoryconsistencymodel is 

this:when areadaccessismadeto amemorylocation,whichwriteaccesses to the location are 

candidates whose values could be supplied to the read? 

Attheweakestextreme,theansweris:anywritethatwasissuedbeforetheread. 

Atthestrongestextreme,allwrittenvaluesareinstantaneouslyavailabletoallprocesses: a read 

returns the most recent write at the time that the read takes place. Thisdefinition is 

problematic in two respects. First, neither writes nor reads take place at asingle point in time, 

so the meaning of ‘most recent’ is not always clear. Each type ofaccesshas awell-definedpoint 

of issue,but theycomplete atsome later time 

 Linearizability is more usually called atomic consistency in the DSM literature. We 

now restatethedefinition oflinearizability 

 A replicated shared object service is said to be linearizable if for any execution there 

issome interleaving of the series of operations issued by all the clients that satisfies 

thefollowingtwo criteria: 

L1:  The interleaved sequence of operations meets the specification of a (single) 

 correctcopyof theobjects. 

L2:  The order of operations in the interleaving is consistent with the real times at 

 whichtheoperations occurred in theactual execution. 

 Consider the simple case where the shared memory is structured as a setof 

variablesthatmaybereadorwritten.Theoperationsareallreadsandwrites,whichweintroduced a 
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notation for in Section 18.2.1: a read of value a from variable x is denotedR(x)a; a write of 

value b to variable x is denoted W (x)b. We can now express the firstcriterionL1 in terms 

ofvariables(theshared objects) as follows: 

L1':  The interleaved sequence of operations is such that if R(x)a occurs in the sequence, 

 theneitherthelastwriteoperation thatoccurs beforeitintheinterleavedsequenceisW(x)a, 

 orno writeoperationoccursbefore it and a isthe initialvalue ofx. 

 Thiscriterionstatesourintuitionthatavariablecanonlybechangedbyawriteoperation.Thes

econdcriterionforlinearizability,L2,remainsthesame 

Sequential consistency Linearizability is too strict for most practical purposes. The 

strongestmemorymodelforDSMthat is usedin practiceissequential consistency 

 A DSM system is said to be sequentially consistent iffor any execution there is 

someinterleaving of the series of operations issued by all the processes that satisfies the 

followingtwocriteria: 

SC1:Theinterleavedsequenceofoperationsis suchthatif R(x)aoccursinthe 

sequence,theneitherthelastwriteoperationthatoccursbeforeitinthe interleavedsequenceisW(x)a , 

ornowriteoperation occurs beforeit anda is theinitial valueofx. 

SC2:Theorderofoperationsintheinterleavingisconsistentwiththeprogramorder in 

whicheachindividual client executed them. 

CriterionSC1isthesameasL1'.CriterionSC2referstoprogramorderratherthantemporalorder,whic

h is whatmakesit possibleto implement sequentialconsistency 

The combination ar = 0, br = 1 in the above example could not occur under sequential 

consistency,because process 1 would be reading values that conflict with process 2’s program 

order. An 

exampleinterleavingoftheprocesses’memoryaccessesinasequentiallyconsistentexecutionissho

wninFigure18.4 

Coherence: 

Coherenceis anexample ofa weaker formof consistency. 

Undercoherence,everyprocessagreesontheorder of write operations to the same location, but 

they do not necessarily agree on the ordering of writeoperationstodifferentlocations 

Updateoptions 
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Two main implementation choices have been devised for propagating updates made byone 

process to the others: write-update and write-invalidate. These are applicable to avariety of 

DSM consistency models, including sequential consistency. In outline, theoptionsareas 

follows: 

Write-update: The updates made by a process are made locally and multicast to all 

otherreplica managers possessing a copy of the data item, which immediately modify the 

dataread by local processes (Figure 18.5). Processes read the local copies of data 

items,without the need for communication. In addition to allowing multiple 

readers,severalprocesses may write the same data item at the same time; this is known as 

multiple-reader/multiple-writersharing 

Figure18.5 DSMusingwrite-update 

 

Write-invalidate:Thisiscommonlyimplementedintheformofmultiple-reader/single- 

writersharing.Atany time,adataitemmayeitherbeaccessedinread-

onlymodebyoneormoreprocesses,oritmaybereadandwrittenbyasingleprocess.Anitemthatiscurr

entlyaccessedinread-

onlymodecanbecopiedindefinitelytootherprocesses.Whenaprocessattemptstowritetoit,amultica

stmessageisfirstsent 

toallothercopiestoinvalidatethemandthisisacknowledgedbeforethewritecantakeplace;theotherp

rocessesaretherebypreventedfromreadingstaledata(thatis,datathatarenotuptodate).Anyprocesse

sattempting toaccessthedataitemareblockedif a writer exists. Eventually, control 
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istransferredfromthewritingprocess,andotheraccessesmay takeplaceoncetheupdatehasbeen 

sent. The effect is to process all accesses to the item on a first-come, first-served basis 

Thrashing 

 A potential problem with write-invalidate protocols is thrashing. Thrashing is said to 

occurwhere the DSM runtime spends an inordinate amount of time invalidating and 

transferringshared data compared with the time spent by application processes doing useful 

work. Itoccurs when several processes compete for the same data item, or for falsely shared 

dataitems. If, for example, one process repeatedly reads a data item that another is 

regularlyupdating, then this item will be constantly transferred from the writer and 

invalidated at thereader. This is an example of a sharing pattern for which write-invalidate is 

inappropriate andwrite-update would bebetter 

SequentialconsistencyandIvycasestudy: 

 Paging is transparent to the application components within processes; they can 

logically 

bothreadandwriteanydatainDSM.However,theDSMruntimerestrictspageaccesspermissions in 

order to maintain sequential consistency when processing reads and writes.Paged memory 

management units allow the access permissions to a data page to be set tonone, read-only or 

read-write. If a process attempts to exceed the current access permissions,then it takes a read 

or write page fault, according to the type of access. The kernel 

redirectsthepagefaulttoahandlerspecifiedbytheDSMruntime layer in each process. 

 

Theproblemofwrite-update  

 Suppose that every update has to be multicast to the remaining replicas. Suppose that 

apagehasbeenwrite-protected.Whenaprocessattemptstowrite uponthe 

page,ittakesapagefaultandahandlerroutineiscalled.Thishandlercould,inprinciple,examine  

faulting instruction to determine the value and address being written and multicast 

theupdatebeforerestoringwriteaccessandreturningtocompletethefaultinginstruction. 

 But now that write access has been restored, subsequent updates to the page will not 

cause apage fault. To make every write access produce a page fault, it would be necessary for 

thepage fault handler to set the process into TRACE mode, whereby the processor generates 

aTRACE exception after each instruction. The TRACE exception handler would turn off 
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writepermissionsto thepageand turn off TRACE modeoncemore 

Writeinvalidation 

 A process with the most up-to-date version of a page p is designated as its owner – 

referredto as owner(p). This is either the single writer, or one of the readers. The set of 

processes thathaveacopyofapagep is called its copyset – referred toascopyset(p). 

 Thepossiblestatetransitions areshowninFigure 

18.8.WhenaprocessPwattemptstowriteapage p to which it has no access or read-only access, a 

page fault takes place. The page-faulthandlingprocedureis asfollows: 

 The page is transferred to Pw , if it does not already have an up-to-date read-

onlycopy. 

 Allothercopies areinvalidated: thepagepermissions aresetto 

noaccessatallmembersofcopyset(p). 

 copyset(p) := {Pw}. 

 owner(p):=Pw. 

 The DSM runtime layer in Pw places the page with read-write permissions at 

theappropriatelocation initsaddress spaceandrestarts thefaultinginstruction. 

 

Statetransitionsunderwrite-invalidation 

Notethattwoormoreprocesseswithread-onlycopiesmay takewritefaultsatmoreor 

 less the same time. A read-only copy of a page may be out-of-date when ownership 

iseventually granted. To detect whether a current read-only copy of a page is out-of-date,each 

page can be associated with a sequence number, which is incremented wheneverownership is 

transferred. A process requiring write access encloses the sequence numberof its read-only 

copy, if it possesses one. The current owner can then tell whether thepage has been modified 

and therefore needs to be sent. This scheme is described byKesslerandLivny[1989] as 

the‘shrewdalgorithm’. 

When a process PR attempts to read a page p for which it has no access permissions, a read 

pagefault takes place. Thepage-fault handlingprocedureis as follows: 

 Thepageis copiedfromowner(p)toPR. 
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 If the current owner is a single writer, then it remains as p’s owner and its 

accesspermission for p is set to read-only access. Retaining read access is 

desirable in case theprocess attempts to read the page subsequently – it will have 

retained an up-to-dateversion of the page. However, as the owner it will have to 

process subsequent requestsfor the page even if it does not access the page 

again. So it might turn out to have beenmoreappropriateto 

reducepermissiontonoaccessandtransferownershipto PR. 

 copyset(p):=copyset(p)   {PR}. 

 TheDSMruntimelayerinPRplacesthepagewithread-

onlypermissionsattheappropriatelocation initsaddress spaceandrestartsthe 

faultinginstruction. 

It is possible for a second page fault to occur during the transition algorithms just described. 

Inorder that transitions take place consistently, any new request for the page is not processed 

untilafterthe current transition has completed . 

Thedescriptionjustgivenhasonlyexplainedwhatmustbedone.Theproblemofhowtoimplementpag

efault handlingefficientlyis nowaddressed 

Invalidationprotocols 

 Twoimportantproblemsremaintobeaddressedinaprotocoltoimplementtheinvalidationsc

heme: 

 Howtolocateowner(p)for agiven pagep. 

 Wheretostorecopyset(p). 

 For Ivy, Li and Hudak [1989] describe several architectures and protocols that take 

varyingapproaches to these problems. The simplest we shall describe is their improved 

centralizedmanageralgorithm. 

In it, a single server called a manager is used to store the location (transport address) of 

owner(p)foreverypagep.Themanagercouldbeoneoftheprocessesrunningtheapplication,oritcoul

dbeany other process. In this algorithm, the set copyset(p) is stored at owner(p). That is, the 

identifiersandtransport addresses of themembers ofcopyset(p) arestored. 

As shown in Figure 18.9, when a page fault occurs the local process (which we shall refer to 

as theclient) sends a message to the manager containing the page number and the type of 
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access required(read or read-write). The client awaits a reply. The manager handles the 

request by looking up theaddress of owner(p) and forwarding the request to the owner. In the 

case of a write fault, themanager sets the new owner to be the client. Subsequent requests are 

thus queued at the client untilithas completed the transfer ofownership to itself. 

The previous owner sends the page to the client. In the case of a write fault, it also sends the 

page’scopy set. The client performs the invalidation when it receives the copy set. It sends a 

multicastrequesttothemembersofthecopyset,awaitingacknowledgementfromalltheprocessesco

ncerned that invalidation has taken place. The multicast need not be ordered. The former 

ownerneed not be included in the list of destinations, since it invalidates itself. The details of 

copy setmanagement are left to the reader, who should consult the general invalidation 

algorithms givenabove. 

Figure18.9 Central managerandassociatedmessages 

 

A dynamic distributed manager algorithm 

A dynamic distributed manager algorithm, allows page ownership to be transferred 

betweenprocesses but which uses an alternative to multicast as its method of locating a page’s 

owner. Theidea is to divide the overheads of locating pages between those computers that 

access them. Everyprocesskeeps,foreverypagep,ahint as tothepage’s currentowner–the 

probableownerofp, orprobOwner(p). Initially, every process is supplied with accurate page 

locations. In general,however, these values are hints, because pages can be transferred 

elsewhere at any time. As inpreviousalgorithms, ownership istransferredonlywhen 
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awritefaultoccurs. 

 Theownerofapageis located byfollowingchains ofhints that areset up as 

ownershipofthepage is transferred from computer to computer. The length of the chainthat is, 

the number offorwarding messages necessary to locate the owner – threatens to increase 

indefinitely. Thealgorithm overcomes this by updating the hints as more up- to-date values 

become available.Hintsareupdated andrequestsareforwarded asfollows: 

 Whenaprocesstransfersownershipofpageptoanotherprocess,itupdates 

 probOwner(p)tobetherecipient. 

 Whenaprocesshandlesaninvalidationrequestforapagep,itupdates 

 probOwner(p)tobetherequester. 

 Whenaprocessthathasrequestedreadaccesstoapagepreceivesit,itupdates 

  probOwner(p)tobetheprovider. 

 When a process receives a request for a page p that it does not own, it forwards 

therequestto probOwner(p)andresets probOwner(p)tobe therequester. 

 The first three updates follow simply from the protocol for transferring page 

ownership andproviding read-only copies. The rationale for the update when forwarding 

requests is that, forwriterequests,the requesterwillsoonbetheowner, eventhoughitis 

notcurrently. 

 Figure 18.10 ((a) and (b)) illustrates probOwner pointers before and after process A 

takes awrite page fault. A’s probOwner pointer for the page initially points to B. Processes B, 

C andD forward the request to E by following their own probOwner pointers; thereafter, all 

are setto point to A as a result of the update rules just described. The arrangement after 

faulthandlingisclearlybetterthan that whichprecededit:thechain ofpointershascollapsed. 

 If,however,Atakesareadfault,thenprocess 

Bisbetteroff(twostepsinsteadofthreetoE),C’ssituationisthesameasitwasbefore(twosteps),butDis

worseoff,withtwo stepsinstead ofone(Figure18.10(c)). 
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Updating probOwner pointers 

 

 

 

 

Releaseconsistencymodel: 

TheideaofreleaseconsistencyistoreduceDSMoverheadsbyexploitingthefactthatprogrammers 

use synchronization objects such as semaphores, locks and barriers 

Memoryaccesses 

In order to understand release consistency – or any other memory model that 

takessynchronization into account – we begin by categorizing memory accesses according 
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totheirrole,ifany,insynchronization.Furthermore,weshalldiscusshowmemoryaccesses may be 

performed asynchronously to gain performance and give a simpleoperationalmodel ofhow 

memoryaccesses takeeffect. 

As we said above, DSM implementations on general-purpose distributed systems may 

usemessage passing rather than shared variables to implement synchronization, for reasons 

ofefficiency. But it may help to bear shared-variable-based synchronization in mind in 

thefollowingdiscussion.ThefollowingpseudocodeimplementslocksusingthetestAndSetoperatio

non variables. The function testAndSet sets the lock to 1 and returns 0 if it finds it zero; 

otherwiseitreturns 1.It does this atomically 

acquireLock(varintlock)://lockispassedby- 

referencewhile(testAndSet(lock)=1) 

skip; 

releaseLock(varintlock)://lockispassed by-referencelock:=0 

Typesofmemoryaccess 

 Themaindistinctionisbetweencompetingaccesses and non- competing (ordinary) 

accesses. Two accesses arecompetingif: 

 theymayoccurconcurrently(thereis no enforcedorderingbetween them)andatleast one 

is awrite. 

 So two read operations can never be competing; a read and a write to the 

samelocation made by two processes that synchronize between the operations (and 

soorderthem)arenon-competing. 

 Wefurtherdividecompetingaccessesintosynchronizationandnon-

synchronizationaccesses: 

 synchronization accessesare read or write operations that 

contributetosynchronization; 

 non-synchronization accesses are read or write operations that 

areconcurrentbutthatdonotcontribute to synchronization. 

 Thewriteoperationimpliedby‘lock:=0’inreleaseLock(above)isasynchronization 

access.So isthereadoperation implicitin testAndSet 
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Releaseconsistency 

Therequirements thatwewishtomeetare: 

 topreservethesynchronizationsemantics ofobjectssuchaslocksand barriers; 

 togainperformance,weallowadegreeofasynchronicityformemoryoperations; 

  toconstraintheoverlapbetweenmemoryaccesses 

inordertoguaranteeexecutionsthatprovide theequivalent ofsequential consistency. 

 Release-consistent memoryisdesignedto satisfytheserequirements 

RC1: before an ordinary read or write operation is allowed to perform withrespectto anyother 

process, all previousacquireaccessesmust beperformed. 

RC2: before a release operation is allowed to perform with respect to any 

otherprocess,allpreviousordinaryreadand writeoperationsmust beperformed. 

RC3: acquireand releaseoperationsaresequentiallyconsistentwith respecttooneanother. 

  RC1andRC2guaranteethat,whenareleasehastakenplace,nootherprocessacquiringa

lockcanreadstale versions ofdata modifiedbythe processthatperforms the release 

 Consider the processes in Figure 18.12, which acquire and release a lock in order to 

access a 

pairofvariablesaandb(aandbareinitializedtozero).Process1updatesaandbunderconditionsofmut

ualexclusion,sothatprocess2cannotreadaandbatthe sametimeandso willfinda 

= b = 0 or a = b = 1. The critical sections enforce consistency – equality of a and b – atthe 

application level. It is redundant to propagate updates to the variables affected duringthe 

critical section. If process 2 tried to access a, say, outside a critical section, then itmightfind 

astale value. 

Figure18.12Processesexecutingonarelease-consistentDSM 

Process1: 

acquireLock();a := a+1; 

b := b+1; 

releaseLock(); 

Process2: 

acquireLock(); 

//entercriticalsection 
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//leavecriticalsection 

//entercriticalsection 

print("The valuesofaandb are:", a,b); 

releaseLock(); //leavecriticalsection 

Under release consistency, process 1 will not block when it accesses a and b. The DSM 

runtimesystemnoteswhichdata 

havebeenupdatedbutneedtakenofurtheractionatthattime.Itisonlywhen process 1 has released 

the lock that communication is required. Under a write-updateprotocol, the updates to a and b 

will be propagated; under a write-invalidation protocol, theinvalidationsshould besent. 
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UNIT-V 

 

TransactionsandConcurrencyControl 

 A Transaction defines a sequence of server operations that is guaranteed by the server 

to beatomic in the presence of multiple clients and server crashes. Nested transactions are 

structuredfrom sets of other transactions. They are particularly useful in distributed systems 

because theyallowadditional concurrency. 

 All of the concurrency control protocols are based on the criterion of serial 

equivalence and arederivedfromrulesfor conflictsbetweenoperations.Three methods 

aredescribed: 

• Locksareusedtoordertransactions that 

accessthesameobjectsaccordingtotheorderofarrival oftheiroperations at the 

objects. 

• Optimisticconcurrencycontrolallowstransactions to proceed untiltheyarereadyto 

commit, whereupon a check is made to see whether they have 

performedconflictingoperations onobjects. 

• Timestamporderingusestimestampstoordertransactionsthataccessthesameobjects

accordingto theirstartingtimes. 

 The goal of transactions is to ensure that all of the objects managed by a server remain 

in aconsistent state when they are accessed by multiple transactions and in the presence of 

servercrashes.Transactionsdealwithcrashfailuresofprocessesandomissionfailuresincommunica

tion,but not anytypeofarbitrary(or Byzantine) behaviour. 

Toexplain withabankingexample,eachaccountisrepresentedbyaremoteobjectwhoseinterface, 

Account, provides operations for making deposits and withdrawals and for 

enquiringaboutandsettingthebalance.Eachbranchofthebankisrepresentedbyaremoteobjectwhos

einterface,Branch,providesoperationsforcreatinganewaccount,forlookingupanaccountbyname

and forenquiringabout the total funds atthat branch. 

OperationsoftheAccountinterfacedeposit(amount) 

deposit amount in the accountwithdraw(amount) 

 



[Distributed Systems] Page 94  

returnthebalanceoftheaccountsetBalance(amount) 

setthebalanceoftheaccounttoamountOperationsoftheBranchinterfacecreate(name)฀  

createanewaccount with agivenname 

 

 

returnthetotalofallthebalancesatthebranch 

Failure model for transactions 

Lampson proposed a fault model for distributed transactions that accounts forfailures of 

disks,servers and communication. In this model, the claim is that thealgorithms work 

correctly in thepresence of predictable faults, but no claims are madeabout their behaviour 

when a disasteroccurs.Althougherrorsmayoccur, theycan be 

detectedanddealtwithbefore anyincorrectbehaviourresults.Themodelstatesthefollowing: 

• Writes to permanent storage may fail, either by writing nothing or by writing 

awrong value –for example, writing to the wrong block is a disaster. File 

storagemay also decay. Reads frompermanentstoragecan detect 

(byachecksum)whena blockofdata is bad. 

• Servers may crash occasionally. When a crashed server is replaced by a 

newprocess, its volatilememory is first set to a state in which it knows none of 

thevalues (for example, of objects) frombefore the crash. After that it carries out 

arecovery procedure using information in 

permanentstorageandobtainedfromotherprocessestosetthevaluesofobjectsincludi

ngthoserelatedtothe two-phasecommit protocol (see Section 17.6). When a 

processor is faulty, it is made tocrashsothat itis prevented from 

sendingerroneousmessagesand from writingwrong values to permanent storage – 

that is, so it cannot produce arbitrary failures.Crashes can occur atanytime; in particular, 

theymayoccurduringrecovery. 

• There may be an arbitrary delay before a message arrives. A message may be 

lost,duplicated orcorrupted. The recipient can detect corrupted messages using 

achecksum. Both forged messagesandundetectedcorrupt messages areregarded 

asdisasters. 
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TRANSACATIONS: 

Insomesituations,clientsrequireasequenceofseparaterequests toaservertobeatomicin 

thesensethat: 

1. Theyarefreefrom interferencebyoperationsbeingperformedon behalf of 

otherconcurrentclients. 

2. Eitherall of theoperations mustbe completed successfullyortheymusthaveno 

effect atallinthepresenceofservercrashes. 

Aclient’sbankingtransaction 

TransactionT: 

a.withdraw(100);b.deposit(100);c.withdraw(200);b.deposit(200); 

 Banking example to illustrate transactions. A client that performs a sequence of 

operations on aparticular bank account on behalf of a user will first lookup the account by 

name and then 

applythedeposit,withdrawandgetBalanceoperationsdirectlytotherelevantaccount.Inourexample

s,weuseaccountswithnamesA,BandC.Theclientlooksthemupandstoresreferencesto them in 

variablesa, bandcoftypeAccount. 

 AsimpleclienttransactionspecifyingaseriesofrelatedactionsinvolvingthebankaccountsA

,B and C. The first two actions transfer $100 from A to B and the second two transfer $200 

fromCto B. Aclient achievesatransferoperation bydoingawithdrawal followed byadeposit. 

 Transactions can be provided as a part of middleware.For example, CORBA provides 

thespecification for an Object Transaction Service with IDL interfaces allowing clients’ 

transactionstoinclude multipleobjects at multipleservers. 

 The client is provided with operations to specify the beginning and end of a 

transaction. Theclient maintains a context for each transaction, which it propagates with each 

operation in thattransaction. In CORBA, transactional objects are invoked within the scope of 

a transaction andgenerallyhavesomepersistent storeassociated with them. 
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ACID properties: 

a transaction applies to recoverable objects and is intended to be atomic. It is often called an 

atomic transaction.There are twoaspectstoatomicity: 

All or nothing: A transaction either completes successfully, in which case the effects of all of 

its operations arerecorded in the objects, or (if it fails or is deliberately aborted) has no effect 

at all. This all-or-nothing effect has twofurther aspects ofits own: 

Failure atomicity:Theeffectsareatomicevenwhentheservercrashes. 

Consistency:atransactiontakesthesystemfromoneconsistentstatetoanotherconsistent state; 

Isolation:Each transaction must be performed without interference from other transactions; 

in other words, theintermediate effectsofa transactionmustnot bevisibletoothertransactions. 

Durability: After a transaction has completed successfully, all its effects are saved in 

permanent storage. We use theterm ‘permanent storage’ torefer to files held on disk or 

another permanentmedium.Data saved in a filewillsurviveiftheserverprocess crashes. 

 

TransactionPrimitives: 

Primitive Description 

BEGIN_TRANSACTION Makethestartofatransaction 

END_TRANSACTION Terminatethetransactionandtrytocommit 

ABORT_TRANSACTION Endthetransactionandrestore theoldvalues 

READ Readdatafromafile,atable,orotherwise 

WRITE Writedatatoafile,atable,orotherwise 
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Nestedtransactionsextendtheabovetransactionmodelbyallowingtransactionstobecomposedof

othertransactions.Thusseveraltransactionsmaybestartedfromwithinatransaction, allowing 

transactions to be regarded as modules that can be composed asrequired.The outermost 

transaction in a set of nested transactions is called thetop-level 

transaction.Transactionsotherthan thetop-leveltransaction arecalled subtransactions. 

Asubtransactionappearsatomictoitsparentwithrespecttotransactionfailuresandtoconcurrent 

access. Subtransactions at the same level, such asT1 and T2, can run concurrently,but their 

access to common objects is serialized. Each subtransaction can fail independently ofitsparent 

and of the other subtransactions. When a subtransaction aborts, the parenttransaction 

cansometimeschoosean alternative subtransactiontocompleteits task. 

Forexample, a transaction to deliver a mail message to a list of recipients could be 

structuredas aset of subtransactions, each of which delivers the message to one of the 

recipients.If one or moreof the subtransactions fails, the parent transaction could record the 

factand then commit, with theresult that all the successful child transactions commit. 

LOCKS: 

Transactions must be scheduled so that their effect on shared data is serially equivalent. A 

servercan achieve serial equivalence of transactions by serializing access to the objects. 

Transactions TandUbothaccess accountB,but Tcompletes itsaccess beforeUstartsaccessingit. 

A simple example of a serializing mechanism is the use of exclusive locks. In this 

lockingscheme, the server attempts to lock any object that is about to be used by any 

operation of aclient’s transaction. If a client requests access to an object that is already locked 

due to 

anotherclient’stransaction,therequestissuspendedandtheclientmustwaituntiltheobjectisunlocke

d. 

As pairs of read operations from different transactions do not conflict, an attempt to set a 

readlock on an object with a read lock is always successful. All the transactions reading the 

sameobjectshareits readlock–forthisreason,read locksaresometimescalled sharedlocks. 

Theoperationconflictrules tell usthat: 

1. IfatransactionThasalreadyperformedareadoperationonaparticularobject,thenacon

currenttransactionU must notwritethat objectuntil Tcommitsoraborts. 

2. IfatransactionThasalreadyperformedawriteoperationonaparticularobject,thenaco
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ncurrenttransactionU must notreadorwritethatobject untilT commitsoraborts. 

Useoflocksin stricttwo-phaselocking: 

1. Whenanoperationaccessesanobjectwithinatransaction: 

(a) Iftheobjectisnot alreadylocked,it islockedandtheoperationproceeds. 

(b) If the object has a conflicting lock set by another transaction, the 

transactionmust wait until itisunlocked. 

(c) If the object has a non-conflicting lock set by another transaction, the lock 

isshared and theoperationproceeds. 

(d) If the object has already been locked in the same transaction, the lock will 

bepromoted ifnecessary and the operation proceeds. (Where promotion 

isprevented by a conflicting lock, rule bis used.) 

2. When a transaction is committed or aborted, the server unlocks all objects itlocked for 

 thetransaction. 

 

Optimistic concurrency control  

 Optimistic concurrency control is a concurrency control method applied to 

transactional systemssuch as relational database management systems and software 

transactional memory. It assumesthat multiple transactions can frequently complete without 

interfering with each other. Whilerunning, transactions use data resources without acquiring 

locks on those 

resources.Beforecommitting,eachtransactionverifiesthatnoothertransactionhasmodifiedthedata

ithasread.If the check reveals conflicting modifications, the committing transaction rolls back 

and can berestarted and it is generally used in environments with low data contention. When 

https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Relational_database_management_systems
https://en.wikipedia.org/wiki/Software_transactional_memory
https://en.wikipedia.org/wiki/Software_transactional_memory
https://en.wikipedia.org/wiki/Block_contention
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conflicts arerare,transactions cancomplete without the expense of managing locks and 

without havingtransactions wait for other transactions' locks to clear, leading to higher 

throughput than otherconcurrencycontrol methods. 

Optimisticconcurrencycontroltransactionsinvolvethesephases: 

 Begin:Recordatimestampmarkingthetransaction's beginning. 

 Modify:Readdatabasevalues, andtentativelywritechanges. 

 Validate: Check whether other transactions have modified data that this 

transaction hasused (read or written). This includes transactions that completed 

after this transaction's starttime,and optionally, transactionsthatarestill activeat 

validation time. 

 Commit/Rollback: If there is no conflict, make all changes take effect. If there 

is aconflict, resolve it, typically by aborting the transaction, although other 

resolution schemesarepossible. 

 The stateless nature of HTTP makes locking infeasible for web user interfaces. It's 

common for auser to start editing a record, then leave without following a "cancel" or 

"logout" link. If lockingis used, other users who attempt to edit the same record must wait 

until the first user's lock timesout. 

 Some database management systems offer Optimistic concurrency control natively - 

withoutrequiring special application code. For others, the application can implement an OCC 

layeroutside of thedatabase,andavoidwaitingorsilentlyoverwritingrecords.Insuchcases,the 

form includes a hidden field with the record's original content, a timestamp, a 

sequencenumber, or an opaque token. On submit, this is compared against the database. If it 

differs, theconflictresolution algorithm is invoked. 

Timestamp based Concurrency Control 

 Concurrency Controlcan be implemented in differentways. One way to 

implementitisbyusingLocks. Now, lets discuss aboutTimeStamp OrderingProtocol. 

As earlier introduced, Timestamp is a unique identifier created by the DBMS to identify 

atransaction. They are usually assigned in the order in which they are submitted to the 

system.RefertothetimestampofatransactionTas 

TS(T).ForbasicsofTimestampyoumayreferhere. 

https://en.wikipedia.org/wiki/Stateless_server
https://en.wikipedia.org/wiki/HTTP
https://en.wikipedia.org/wiki/Form_(web)
https://www.geeksforgeeks.org/dbms-concurrency-control-protocols-lock-based-protocol/
https://www.geeksforgeeks.org/dbms-concurrency-control-protocols-lock-based-protocol/
https://www.geeksforgeeks.org/dbms-introduction-timestamp-deadlock-prevention-schemes/


[Distributed Systems] Page 100  

Timestamp Ordering Protocol– 

 The main idea for this protocol is to order the transactions based on their 

Timestamps.Aschedule in which the transactions participate is then serializable and the only 

equivalent serialschedule permitted has the transactions in the order of their Timestamp 

Values. Stating 

simply,thescheduleisequivalenttotheparticularSerialOrdercorrespondingtotheorderoftheTrans

action timestamps. Algorithm must ensure that, for each items accessed by 

ConflictingOperations in the schedule, the order in which the item is accessed does not 

violate the ordering.Toensurethis, use twoTimestampValues relating to eachdatabaseitemX. 

 W_TS(X) is     the     largest     timestamp     of      any      transaction      

 thatexecutedwrite(X)successfully. 

 R_TS(X)isthelargesttimestampofanytransactionthatexecutedread(X)successful

 y. 

 

BasicTimestampOrdering– 

 Every transaction is issued a timestamp based on when it enters the system. Suppose, 

if an oldtransaction Ti hastimestampTS(Ti), a new transaction Tj isassignedtimestampTS(Tj) 

suchthatTS(Ti)<TS(Tj).Theprotocolmanagesconcurrentexecutionsuchthatthetimestampsdeter

mine the serializability order. The timestamp ordering protocol ensures that any 

conflictingreadand write operationsare executed in timestamporder. Whenever some 

Transaction T triestoissue aR_item(X)oraW_item(X),theBasicTOalgorithm   compares   

thetimestampof T with R_TS(X) & W_TS(X) to ensure that the Timestamp order is not 

violated.ThisdescribetheBasic TO protocol in followingtwo cases. 
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1. WheneveraTransactionTissuesaW_item(X)operation,checkthefollowingconditions: 

  If 

R_TS(X)>TS(T)orifW_TS(X)>TS(T),thenabortandrollbackTandrejecttheopera

tion. else, 

 ExecuteW_item(X)operationofTandsetW_TS(X)toTS(T). 

2. Whenevera TransactionTissuesaR_item(X)operation,checkthefollowing conditions: 

 IfW_TS(X)>TS(T),thenabortandreject Tandrejecttheoperation,else 

 IfW_TS(X)<=TS(T),thenexecutetheR_item(X)operationofTandsetR_TS(X)to 

thelarger ofTS(T)andcurrent R_TS(X). 

 Whenever the Basic TO algorithm detects twp conflicting operation that occur in 

incorrect order,it rejects the later of the two operation by aborting the Transaction that issued 

it. Schedulesproduced by Basic TO are guaranteed to be conflict serializable. Already 

discussed that usingTimestamp,can ensurethat our schedulewill bedeadlockfree. 

 One drawback of Basic TO protocol is that it Cascading Rollback is still possible. 

Suppose wehave a Transaction T1and T2has used a value written by T1. If T1is aborted and 

resubmitted tothe system then, T must also be aborted and rolled back. So the problem of 

Cascading aborts stillprevails. 

Let’sgisttheAdvantagesandDisadvantagesofBasicTOprotocol: 

 TimestampOrderingprotocolensuresserializablitysincetheprecedencegrap

hwillbeoftheform: 

 

Image–PrecedenceGraph forTSordering 

 Timestampprotocolensuresfreedomfromdeadlockasnotransactioneverwaits. 

 Buttheschedulemaynotbecascadefree,andmaynoteven berecoverable. 

StrictTimestampOrdering– 

 A variation of Basic TO is calledStrict TO ensures that the schedules are both Strict 

andConflict Serializable. In this variation, a Transaction T that issues a R_item(X) or 

https://www.geeksforgeeks.org/dbms-introduction-timestamp-deadlock-prevention-schemes/
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W_item(X)such that TS(T) > W_TS(X) has its read or write operation delayed until the 

Transaction T‘ thatwrotethevalues ofXhascommitted oraborted. 

 Multiversion timestamp ordering write rule: As any potentially conflicting read 

operation willhave been directed to the most recent versionof an object, the server inspects 

the versionDmaxEarlier with the maximum write timestamp less than or equal to Tc. We 

have the followingruleforperformingawrite operation requestedbytransaction Tcon object 

D: 

if(readtimestampofDmaxEarlier฀Tc)performwriteoperationonatentativeversionofDwithwriteti

mestamp Tc 

elseaborttransactionTc 

Theobjectalreadyhascommittedversions withwritetimestamps T1andT2. 

Theobjectreceivesthefollowing 

sequenceofrequests foroperations ontheobject: 

T3read;T3write;T5read;T4 write. 

1. T3requests areadoperation,whichputsareadtimestampT3onT2’sversion. 

2. T3 requests a write operation, which makes a new tentative version with 

writetimestamp T3. 

3. T5requestsareadoperation,whichusestheversionwithwritetimestampT3(thehighesttime

stampthat is less than T5). 

4. T4 requests a write operation, which is rejected because the read timestamp T5 of the 

versionwith write timestamp T3 is bigger than T4. (If it were permitted, the write timestamp 

of the 

newversionwouldbeT4.Ifsuchaversionwereallowed,thenitwouldinvalidateT5’sreadoperation,

which shouldhaveusedtheversion with timestampT4.) 

DistributedTwo-phaseLockingAlgorithm 

The basic principle of distributed two-phase locking is same as the basic two-phase 

lockingprotocol. However, in a distributed system there are sites designated as lock 

managers. A lockmanager controls lock acquisition requests from transaction monitors. In 

order to enforce co-ordination between the lock managers in various sites, at least one site is 
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given the authority toseeall transactions and detect lock conflicts. 

Depending uponthe numberof siteswhocandetectlockconflicts,distributedtwo-

phaselockingapproaches can beofthreetypes − 

 Centralized two-phase locking − In this approach, one site is designated as the 

centrallock manager. All the sites in the environment know the location of the 

central lockmanager and obtain lockfrom it duringtransactions. 

 Primary copy two-phase locking − In this approach, a number of sites are 

designated aslock control centers. Each of these sites has the responsibility of 

managing a defined 

setoflocks.Allthesitesknowwhichlockcontrolcenterisresponsibleformanaginglock

ofwhich data table/fragment item. 

 Distributed two-phase locking − In this approach, there are a number of lock 

managers,whereeachlockmanagercontrolslocksofdata 

itemsstoredatitslocalsite.Thelocationofthelock manageris based upondata 

distribution and replication. 

DistributedTimestampConcurrencyControl 

 In a centralized system,timestamp of any transaction is determined by the physical 

clockreading. But, in a distributed system, any site’s local physical/logical clock readings 

cannot beused as global timestamps, since they are not globally unique. So, a timestamp 

comprises of acombinationofsiteIDand thatsite’sclock reading. 

For implementing timestamp ordering algorithms, each site has a scheduler that maintains 

aseparate queue for each transaction manager. During transaction, a transaction manager 

sends alockrequesttothesite’sscheduler.Thescheduler 

putstherequesttothecorrespondingqueueinincreasing timestamp order. Requests are processed 

from the front of the queues in the order oftheirtimestamps, i.e. theoldest first. 
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Validation of transactions • Validation uses the read-write conflict rules to ensure that 

thescheduling of a particular transaction is serially equivalent with respect to all other 

overlappingtransactions–

thatis,anytransactionsthathadnotyetcommittedatthetimethistransaction 

started. To assist in performing validation, each transaction is assigned a transaction 

numberwhen it enters the validation phase (that is, when the client issuesa closeTransaction). 

If thetransaction is validated and completes successfully, it retains this number; if it fails the 

validationchecksandisaborted,or ifthetransactionis 

readonly,thenumberisreleasedforreassignment. 

Transaction numbers are integers assigned in ascending sequence; the number of a 

transactiontherefore defines itsposition in time – a transaction always finishes its working 

phase after alltransactions with lower numbers. That is, a transaction with the number Ti 

always precedes atransaction with the number Tj if i <j. (If the transaction number were to be 

assigned at thebeginning of the working phase, then a transaction that reached the end of the 

working phasebefore one with a lower number would have to wait until the earlier one had 
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completed before 

itcouldbevalidated.)ThevalidationtestontransactionTvisbasedonconflictsbetweenoperationsin 

pairs oftransactionsTi and Tv. 

Comparisonofmethods forconcurrencycontrol: 

We have described three separate methods for controlling concurrent access to shared data: 

stricttwo-phase locking, optimistic methods and timestamp ordering. All of the methods carry 

someoverheads in the time and space they require, and they all limit to some extent the 

potential forconcurrentoperation. 

The timestamp ordering method is similar to two-phase locking in that both use 

pessimisticapproaches in which conflicts between transactions are detected as each object is 

accessed. Onthe one hand, timestamp ordering decides the serialization order statically – 

when a transactionstarts.On theotherhand,two-phaselockingdecides the 

serializationorderdynamically–accordingtotheorderinwhichobjectsareaccessed.Timestamp 

ordering, and in particular multiversion timestamp ordering, is better than strict two-phase 

locking for read-only transactions. Two-phase locking is better when the operations 

intransactions are predominantly updates. Some work uses the observation that timestamp 

orderingisbeneficialfortransactionswithpredominantlyreadoperationsandthatlockingisbenefici

alfor transactions with more writes than reads as an argument for allowing hybrid schemes 

inwhichsometransactions use timestamp orderingand others 

uselockingforconcurrencycontrol. 

The pessimistic methods differ in the strategy used when a conflicting access to an object 

isdetected. Timestamp ordering aborts the transaction immediately, whereas locking makes 

thetransaction wait–but with a possible laterpenaltyofabortingto avoid deadlock. 

Distributedtransactionsmaybeeitherflatornested: 

An atomic commit protocol is a cooperative procedure used by a set of serversinvolved in 

adistributed transaction. It enables the servers to reach a joint decision as towhether a 

transactioncanbecommitted oraborted. 

Servers that provide transactions include a recovery manager whose concern is toensure that 

theeffects of transactions on the objects managed by a server can berecovered when it is 

replacedafterafailure.Therecoverymanagersavestheobjectsinpermanentstoragetogetherwithint

entionslists and information about thestatus ofeachtransaction. 
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In the general case, a transaction, whether flat or nested, will access objectslocated in 

severaldifferentcomputers.Weusethetermdistributedtransactiontorefertoaflatornestedtransacti

on that accesses objects managed by multiple servers.When a distributed transactioncomes to 

an end, the atomicity property oftransactions requires that either all of the serversinvolved 

commit the transaction or allof them abort the transaction. To achieve this, one of theservers 

takes on a coordinatorrole, which involves ensuring the same outcome at all of 

theservers.Themanner in 

which the coordinator achieves this depends on the protocol chosen. A protocol knownas 

the‘two-phase commit protocol’ is the most commonly used. This protocol allowsthe servers 

tocommunicatewith oneanotherto reachajointdecision as towhethertocommitor abort. 

Flatandnesteddistributedtransactions 

Client transaction becomes distributed if it invokes operations in several differentservers. 

Thereare two different ways that distributed transactions can be structured: asflat transactions 

and asnestedtransactions. 

In a flat transaction, a client makes requests to more than one server. For example, transaction 

TisaflattransactionthatinvokesoperationsonobjectsinserversX,YandZ.Aflatclienttransactionco

mpleteseachof itsrequestsbeforegoingontothe nextone.Therefore,eachtransaction accesses 

servers’ objects sequentially.When servers use locking, a transaction 

canonlybewaitingforoneobject at a time. 

Inanestedtransaction,thetop-

leveltransactioncanopensubtransactions,andeachsubtransactioncanopenfurthersubtransactions

downtoanydepthofnesting,aclienttransaction T that opens two subtransactions, T1 and 

T2,which access objects at servers X and Y.The subtransactionsT1 andT2 open 

furthersubtransactionsT11, T12,T21, andT22, whichaccessobjects at serversM, N and P. 

In thenested case, subtransactions at the same level can run concurrently, so T1 and T2 

areconcurrent,andastheyinvokeobjectsindifferentservers,theycanruninparallel.Thefoursubtran

sactionsT11, T12, T21 andT22 also run concurrently. 
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Atomic commit protocols: 

 Transactioncommitprotocolsweredevisedintheearly1970s,andthetwo-

phasecommitprotocol appeared in Gray [1978]. The atomicity property of 

transactionsrequires that when adistributed transaction comes to an end, either all of its 

operationsare carried out or none of them.In the case of a distributed transaction, the client 

hasrequested operations atmore than oneserver. 

 A transaction comes to an end when theclient requests that it be committed or aborted. 

A simpleway to complete the transactionin an atomic manner is for the coordinator to 

communicate thecommit or abort requestto all of the participants in the transaction and to 

keep on repeating therequest until allof them have acknowledged that they have carried it out. 

This is an example of aonephaseatomic commit protocol. 

 This simple one-phase atomic commit protocol is inadequate, though, because itdoes 

not allow aserver to make a unilateral decision to abort a transaction when theclient requests 

acommit.Reasonsthatpreventaserverfrombeingabletocommititspartofatransactiongenerallyrela

tetoissuesofconcurrencycontrol.Forexample,iflockingisinuse,theresolutionofadeadlockcan 

lead to the aborting of a transactionwithout the client being aware unless it makes 

anotherrequest to the server. Also ifoptimistic concurrency control is in use, the failure of 

validation at aserver would causeit to decide to abort the transaction. Finally, the coordinator 

may not know if aserver hascrashed and been replaced during the progress of a distributed 

transaction – such aserverwill need to abort thetransaction. 

 Thetwo-phasecommitprotocolisdesignedtoallowany 

participanttoabortitspartofatransaction. Due to the requirement for atomicity, if one part of a 

transaction is aborted, then thewhole transaction must be aborted.In the first phase of the 

protocol, each participant votes forthe transaction to be committed or aborted. Once a 

participanthas voted to commit a transaction,it is not allowed to abort it. Therefore, before a 

participant votes to commit a transaction, it mustensure that it will eventually be able to carry 

out its part of the commit protocol, even if it failsand is replaced in the interim. A participant 

in a transaction is said to be in a prepared state for atransaction if it willeventually be able to 

commit it. To make sure of this, each participant savesin permanent storage allof the objects 

that it has altered in the transaction, together with itsstatus– prepared. 

 In the second phase of the protocol, every participant in the transaction carries out the 

jointdecision.Ifanyoneparticipantvotestoabort,thenthedecisionmustbetoabortthetransaction. If 
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alltheparticipants votetocommit,then thedecisionisto committhetransaction. 
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Concurrency control in distributed transactions 

Each server manages a set of objects and is responsible for ensuring that they remain 

consistentwhen accessed by concurrent transactions. Therefore, each server is responsible for 

applyingconcurrency control to its own objects. The members of a collection of servers of 

distributedtransactions are jointly responsible for ensuring that they are performed in a 

serially equivalentmanner. 

This implies that if transaction T is before transaction U in their conflicting access to objects 

atone of the servers, then they must be in that order at all of the servers whose objects are 

accessedinaconflictingmanner byboth TandU. 

Locking: 

Inadistributedtransaction,thelocksonanobjectare 

heldlocally(inthesameserver).Thelocallockmanagercandecidewhethertograntalockormakether

equestingtransactionwait.However,itcannotreleaseanylocksuntilitknowsthatthetransactionhasb

eencommittedorabortedatalltheserversinvolvedinthetransaction.Whenlockingisusedforconcurr

encycontrol,theobjectsremainlockedandareunavailableforothertransactionsduringtheatomicco

mmit protocol, although an aborted transaction releases its locks after phase 1 of the 

protocol.Aslockmanagersindifferentserverssettheirlocksindependentlyofoneanother,itispossibl

ethatdifferent servers mayimposedifferent orderings on transactions. 

ConsiderthefollowinginterleavingoftransactionsTand Uatservers X and Y: 

ThetransactionTlocksobjectAatserverX,andthentransactionUlocksobjectBatserverY.After 

that,TtriestoaccessBatserverYandwaitsforU’slock.Similarly,transactionUtriesto 

accessAatserverXandhastowaitforT’slock. 

Therefore,wehaveTbeforeUinoneserverandUbeforeTin theother.Thesedifferent orderings can 
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leadtocyclicdependencies betweentransactions,givingrisetoadistributeddeadlocksituation. 

 

Distributed dead locks: 

 

Deadlocks can arise within a single server when locking is used for concurrency control. 

Serversmusteitherpreventordetectandresolvedeadlocks.Usingtimeoutstoresolvepossibledeadlo

ck.It is difficult to choose an appropriate timeout interval, and transactions may be 

abortedunnecessarily.Withdeadlockdetectionschemes,atransactionisabortedonlywhenitisinvol

vedinadeadlock.Mostdeadlockdetectionschemesoperateby finding cyclesinthetransaction 

wait-for graph. In a distributed system involving multiple servers being accessed bymultiple 

transactions, a global wait-for graph can in theory be constructed from the local ones.There 

can be a cycle in the global wait-for graph that is not in any single local one – that is, 

therecan be a distributed deadlock. Recall that the wait-for graph is a directed graph in which 

nodesrepresent transactions and objects, and edges represent either an object held by a 

transaction or atransaction waiting for an object. There is a deadlock if and only if there is a 

cycle in the wait-forgraph. 

DISTRIBUTEDTRANSACTIONS: 
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DISTRIBUTEDDEADLOCK: 

 

Whenitfindsacycle,it makesadecisiononhowtoresolvethe deadlockandtellstheservers 

whichtransactiontoabort. 

 

Centralizeddeadlockdetectionisnotagoodidea,becauseitdependsonasingleservertocarryitout.Its

uffersfromthe usual problems associated with centralizedsolutions in distributed systems – 

poor availability, lack of faulttolerance and no abilityto scale. In addition, the cost of the 

frequent transmission of local wait-for graphs ishigh. Iftheglobal 

graphiscollectedlessfrequently,deadlocksmaytake longertobedetected. 

Phantom deadlocks • A deadlock that is ‘detected’ but is not really a deadlock 

iscalledaphantom deadlock. In distributed deadlock detection, information about wait-

forrelationshipsbetweentransactionsistransmittedfromoneservertoanother.Ifthereisadeadlock,t

henecessary information will eventually be collected in one place and acycle will be detected. 

Asthis procedure will take some time, there is a chance that oneof the transactions that holds 

a lockwill meanwhile havereleasedit, in whichcase thedeadlock will nolonger exist. 

Edgechasing•Adistributedapproachtodeadlockdetectionusesatechniquecallededgechasing or 

path pushing. In this approach, the global wait-for graph is notconstructed, but each ofthe 

servers involved has knowledge about some of its edges.The servers attempt to find cycles 

byforwardingmessagescalledprobes,whichfollowtheedgesofthegraphthroughoutthedistributed 

system. A probe message consists oftransaction wait-for relationships representing apathin 

theglobal wait-for graph. 

Transactionrecovery: 
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The atomic property of transactions requires that all the effects of committedtransactions 

andnoneoftheeffectsofincompleteorabortedtransactionsarereflectedintheobjectstheyaccessed. 

Thispropertycanbedescribedintermsoftwoaspects:durabilityandfailureatomicity.Durability 

requires that objects are saved in permanentstorage and will be available 

indefinitelythereafter. Therefore an acknowledgement ofa client’s commit request implies 

that all the effectsof the transaction have beenrecorded in permanent storage as well as in the 

server’s (volatile)objects. 

Failureatomicityrequiresthateffectsoftransactionsareatomicevenwhen theservercrashes. 

Recovery is concerned with ensuring that a server’s objects are durable and that 

theserviceprovides failureatomicity. 

Therequirements fordurabilityandfailureatomicityarenot reallyindependent 

of one another and can be dealt with by a single mechanism – the recovery manager.Thetasks 

ofarecoverymanagerare: 

• tosaveobjectsin permanent storage(inarecoveryfile)forcommittedtransactions; 

• torestoretheserver’sobjects afteracrash; 

• toreorganizetherecoveryfiletoimprovetheperformanceofrecovery; 

• toreclaimstoragespace(intherecoveryfile). 

Logging: 

• In the logging technique, the recovery file represents a log containing the history of 

allthetransactions performed by a server. The history consists of values of objects,transaction 

status entriesandtransactionintentions lists.Theorder 

oftheentriesinthelogreflectstheorderinwhichtransactionshaveprepared, committed and 

abortedat thatserver. 

• In practice, the recovery file will contain a recent snapshot of the values of all theobjects in 

the serverfollowed by a history of transactions postdating the snapshot.During the normal 

operation of a server,its recovery manager is called whenevera transaction prepares to 

commit, commits or aborts atransaction. When the server isprepared to commit a transaction, 

the recovery manager appends all theobjects in itsintentions list to the recovery file, followed 

by the current status of thattransaction(prepared) together with its intentions list.   
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