

DISTRIBUTED SYSTEMS

[R20A0520]

DIGITAL NOTES

B.TECH III YEAR–I SEM(R20)

DEPARTMENT OF INFORMATION TECHNOLOGY

2022-2023

MALLA REDDY COLLEGE OF ENGINEERING

& TECHNOLOGY

(Autonomous Institution–UGC, Govt.of India)

Recognized under2(f)and12(B)ofUGCACT1956
(AffiliatedtoJNTUH,Hyderabad,ApprovedbyAICTE-AccreditedbyNBA&NAAC–‘A’Grade-ISO9001:2015Certified)

Maisammaguda,Dhulapally(PostVia.Hakimpet),Secunderabad–500100,TelanganaState,India

B.Tech(IT) R-20

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

B.TECH-III-YEARI-SEM-IT L/T/P/C

3/-/-/3

Objectives:

1. To learn the principles, architectures, algorithms and programming models used in distributed systems.
2. To analyze the algorithms of mutual exclusion, election & multicast communication.
3. To evaluate the different mechanisms for Interposes communication and remote invocations.
4. To design and implement sample distributed systems.
5. To apply transactions and concurrency control mechanisms in different distributed environments

UNIT–I:
Characterization of Distributed Systems: Introduction, Examples of Distributed systems, Resource Sharing
and Web, Challenges.
System Models: Introduction, Architectural models, Fundamental models
UNIT-II
Time and Global States: Introduction, Clocks, Events and Process states, Synchronizing Physical clocks,
Logical time and Logical clocks, Globalstates.
Coordination and Agreement: Introduction, Distributed mutual exclusion, Elections, Multicast
Communication, Consensus and Related problems.
UNIT-III:
Interprocess Communication: Introduction, Characteristics of Interprocess communication, External Data
Representation and Marshalling, Client-Server Communication, Group Communication, Case Study: IPC in
UNIX.
Distributed Objects and Remote Invocation: Introduction, Communication between Distributed Objects,
Remote Procedure Call, Events and Notifications, Case study: Java RMI.
UNIT–IV:
Distributed File Systems: Introduction, File service Architecture, CaseStudy:1: Sun Network File System,
CaseStudy2: The Andrew File System.
Distributed Shared Memory: Introduction, Design and Implementation issues, Consistency Models.
UNIT-V:
Transactions and Concurrency Control: Introduction, Transactions, Nested Transactions, Locks, Optimistic
concurrency control, Time stamp ordering, Comparison of methods for concurrency control.
Distributed Transactions: Introduction, Flat and Nested Distributed Transactions, Atomic Commit protocols,
Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery.

TEXTBOOKS:
1. Distributed Systems Concepts and Design, G Coulouris, J Dollimore and T Kindberg,Fourth Edition,

Pearson Education.2009.

REFERENCEBOOKS
1. Distributed Systems, Principles and paradigms, AndrewS. Tanenbaum, Maarten Vanteen, 2nd Edition, PHI.
2. Distributed Systems, An Algorithm Approach, Sikumar Ghosh, Chapman & Hall/CRC, Taylor & Fransis
Group, 2007.

COURSE OUTCOMES:

 Able to compare different types of distributed systems and different models.

 Able to analyze the algorithms of mutual exclusion, election & multi cast communication.

 Able to evaluate the different mechanisms for Interprocess communication and remote invocations.

 Able to design and develop new distributed applications.
 Able to apply transactions and concurrency control mechanisms in different distributed environments.

INDEX

UNIT NO. TOPIC PAGENO

I
Characterization of Distributed Systems 1-8

System Models 8-18

II
Time and Global States 19-26

Co ordination and Agreement 26-33

III
Inter Process Communication 34-50

Distributed Objects and Remote Invocation 50-66

IV
Distributed File Systems 67-78

Distributed Shared Memory 78-92

V
Transactions and Concurrency Control 93-105

Distributed Transactions 105-114

Question Bank 115-118

[Distributed Systems] Page 1

DISTRIBUTED SYSTEMS

UNIT– I

CHARACTERIZATION OF DISTRIBUTED SYSTEMS:INTRODUCTION

Distributed System–is a system of hardware or software components located at networked

computers which communicate and coordinate their actions by passing messages.

 It is a collection of autonomous computers, connected through network and

middleware.

 Users perceive the system as a single integrated computed facility.

Features of Centralised System:

 One component with non-autonomous parts

 Component shared by users all the time

 All resources accessible

 Software runs in a single process

 Single Point of control

 Single Point of failure

Features of Distributed System:

 Multiple autonomous components

 Components are not shared by all users

 Resources may not be accessible

 Software runs in concurrent processes on different processors

 Multiple Points of control

 Multiple Points of failure

Characteristics of Distributed System:

1. Concurrency of components (concurrent program execution)

2. Lack of a global clock(no single notion of time for all the systems)

3. Independent failures of components(failure of one component doesnot affect

 others)

[Distributed Systems] Page 2

Application of DS :

 Tele communication network(telephonen/w,cellularn/w,computern/w)

 Network Applications (WWW, onlineapps, n/wfilesystems, bankingsystems)

 Real-time process control systems(aircraftcontrolsystems)

 Parallel computation(grid computing, clustercomputing)

Examples of DS:

1. INTERNET: It is a vast interconnected collection of heterogeneous computer

networks. It is a very large distributed system which enables users to use services like

WWW, email, file transfer etc.

Services are open-ended.

ISP:Internetserviceprovider:companiesthatprovidemodemandotherfacilitiestousersandorganiz

ationswhichenable them to access services anywhere in the internet.

Intranet–sub networks operated by companies and other organizations.

Backbone–

linksintranets.Itisan/wlinkwithhightransmissioncapacityandemployssatellitecommunication,

fiber optics and other circuits.

2. INTRANET:

 An Intranet is a portion of the Internet that is separately administered and has a

boundary that can beconfigured to enforce local security policies.It is composed of

severalLAN’s linked by backboneconnections. An Intranet is connected to the Internet via a

router, which allows the users inside theintranet to make use of services. It also allows the

users in other intranets to access its services. Firewallprotectsan

Intranetbypreventingunauthorized messagesleavingorenteringusingfilteringmethod.

3. Mobile&UbiquitousComputing:

 Technological advances in device miniaturization and wireless networking have led to

the integration ofsmall and portable computing devices into distributed systems (laptops,

phones, PDS’s, wearable devicesetc)

Mobilecomputingistheperformanceofcomputingtaskswhile theuser isonthe move.

 Ubiquitous computing is the harnessing of many small, cheap computational devices

present in usersenvironment.Devices become pervasivein everydayobjects.

[Distributed Systems] Page 3

ResourceSharing:

• Resource sharing is the primary motivation of distributed computing

• Resources types

– Hardware ,e.g.printer, scanner,camera

– Datasources, e.g.file, database,webpage

– Specificresources, e.g. search engine

• Service

– Managesacollectionofrelatedresourcesandpresentstheirfunctionalitiestouser

 sand applications

• Server

– aprocessonnetworkedcomputerthatacceptsrequestsfromprocessesonotherco

mputers to performa serviceandrespondsappropriately

• Client

– therequestingprocess

• Communicationisthrough messagepassingor Remoteinvocation

Manydistributedsystemscanbeconstructedinthe formofinteracting

clientsandservers.Ex:WWW,Email,Networkedprintersetc.

WebBrowser–clientwhichcommunicateswithwebservertorequestwebpages.

World Wide Web:

WWWisanevolvingsystemforpublishingandaccessingresourcesandservicesacrosstheInternetus

ingwebbrowsers.

Weboriginated at

Europeancentrefornuclearresearch,Switzerlandin1989.Documentsexchanged contain

hyperlinks.

Web is an open system. Its operation is based on communication standards and document

standards.

Initiallywebprovideddataresourcesbutnowincludesservicesalso.Webisbasedonthreemainstand

ardtechnological components:

[Distributed Systems] Page 4

1. HTML: hyper text markup language for specifying contents and layouts of

pages.

2. URL:uniform resource locator which identifies documents and other resources

stored as part of web.

3. A client-server architecture with standard rules for

interaction(HTTP)bywhichbrowsersandclients fetch documents and other

resources from web servers.

HTML: used to specify the text and images that make up the contents of a web page and to

specify how they are laid out and formatted for presentation to the user. Web page contains

headings, paragraphs, tables and images. HTML is also used to specify links and resources

associated with them. HTML text is stored as a file in the web server which is retrieved and

interpreted by the webbrowser.HTML directives–tags - <P>

Ex:

< P >WELCOME

<AHREF=“http--------“>

< /P>

URL:Itspurposeistoidentifyaresource.Ithastwotop-level components:

Scheme:Scheme-specific-identifier

(typeof URLieftp,http) (specific info to be retrieved ie www.abc.net/--

.html)HTTPURL’sare mostwidelyused.

Form ->http://servername[:port] [/path name]Ex:http://www.google.com/search?q=MRCET

The simplest method of publishing a resource on the web is to place the corresponding file in

a directory thattheweb server canaccess.

HTTP: defines the ways in which browsers and other types of client interact with web

servers.Features:Request-replyinteractions,contenttypes,oneresourceperrequest, simpleaccess

control.

DynamicPages:AprogramthatwebserversruntogeneratecontentfortheirclientsisreferredtoasaC

ommon GatewayInterface(CGI)program.

uniform
http://www.abc.net/--.html
http://www.abc.net/--.html
http://servername/
http://www.google.com/search?q=MRCET

[Distributed Systems] Page 5

XML –designedasawayofrepresentingdatainstandard,structured,application-

specificforms.Itisusedto describe the capabilities of devices and to describe personal info held

about users. The web of linkedmetadataresources is asemantic web.

CHALLENGES:

The challenges arising from the construction of distributed systems are:

1. Heterogeneity of components: The Internet enables users to access services and run

applications over a heterogeneous collection of computers and networks. Heterogeneity(that is,

variety and difference)applies to all of the following:

 networks;

 computer hardware;

 operating systems;

 programming languages;

 implementations by different developers

 Different programming languages use different representations for characters and data

structures such as arrays and records. Heterogeneity can be handled in three ways:

Middleware •The term middleware applies to a software layer that provides a programming

abstraction as well as masking the heterogeneity of the underlying networks, hardware,

operating systems and programming languages.The Common Object Request Broker

(CORBA),is an example.

Heterogeneity and mobile code •The term mobile code is used to refer to program code that

can betransferredfromonecomputertoanother and run atthedestination–

Javaappletsareanexample.

Thevirtualmachineapproachprovidesawayofmakingcodeexecutableonavarietyofhostcomputer

s: the compiler for a particular language generates code for a virtual machine instead

ofparticularhardwareordercode.Forexample,theJavacompilerproduces

codeforaJavavirtualmachine,whichexecutes itbyinterpretation.

2. Openness

 The openness of a computer system is the characteristic that determines whether the

system can be extended and re implemented in various ways. The openness of distributed

[Distributed Systems] Page 6

systems is determined primarily by the degree to which new resource-sharing services can be

added and be made available for use by a variety of client programs.

• Open systems are characterized by the fact that their key interfaces are

published.

• Open distributed systems are based on the provision of a uniform

communication mechanism and published interfaces for access to shared

resources.

• Open distributed systems can be constructed from heterogeneous hardware and

software, possibly from different vendors. But the conformance of each

component to the published standard must be carefully tested and verified if the

system is to work correctly.

3. Security

 Many of the information resources that are made available and maintained in

distributed systems have a high intrinsic value to their

users.Securityforinformationresourceshasthreecomponents: confidentiality (protection against

disclosure to unauthorized individuals), integrity(protection againstalteration or corruption),

and availability (protection against interference with the means to access theresources).

Challenge is not only to conceal the contents of a message but also to establish the identity of

senderand receiver. Encryption techniques are used for this purpose. Two challenges not yet

fully met are –denialofserviceattacksand securityofmobilecode.

4. Scalability

 Distributed systems operate effectively and efficiently at many different scales,

ranging from a smallintranet to the Internet. A system is described as scalable if it will

remain effective when there is asignificant increase in the number of resources and the

number of users. The design of scalabledistributedsystems presents the followingchallenges:

Controlling the cost of physical resources.Controlling the performance

lossPreventingsoftwareresourcesrunningoutAvoidingperformancebottlenecks

[Distributed Systems] Page 7

5. Failure handling

 Computer systems sometimes fail. When faults occur in hardware or software,

programs may produceincorrect results or may stop before they have completed the intended

computation. Failures in adistributedsystemarepartial–

thatis,somecomponentsfailwhileotherscontinuetofunction.Thereforethe

handlingoffailuresisparticularlydifficult.

Detecting failures: Some failures can be detected. For example, checksums can be used to

detectcorrupteddata inamessageorafile.

Masking failures: Some failures that have been detected can be hidden or made less severe.

Twoexamplesofhidingfailures:

Messages can be retransmitted when they fail to arrive.

File data can be written to a pair of disks so

that ifoneiscorrupted, the otherwill bethere.

Tolerating failures: For example, when a web browser cannot contact a web server, it does

not makethe user wait for ever while it keeps on trying– it informs the user about the

problem, leaving themfreeto tryagain later.

Recovery from failures: Recovery involves the design of software so that the state of

permanent datacanberecovered or‘rolledback’afteraserver hascrashed.

Redundancy: Services can bemadetotoleratefailures bythe useofredundantcomponents.

6. Concurrency

 Both services and applications provide resources that can be shared by clients in a

distributed system.There is therefore a possibility that several clients will attempt to access a

shared resource at the sametime. Therefore services and applications generally allow multiple

client requests tobe processedconcurrently. In this case processes should ensure correctness

and consistency. Operations of objects should be synchronized using semaphores etc.

7. Transparency

 Transparency is defined as the concealment from the user and the application

programmer of theseparation of components in a distributed system, so that the system is

perceived as a wholerather thanasacollection ofindependentcomponents.Thevarious formsof

transparencyare:

[Distributed Systems] Page 8

Access transparency enables local and remote resources to be accessed using identical

operations.Locationtransparencyenablesresourcestobeaccessedwithoutknowledgeoftheirphysi

calornetworklocation (forexample, which buildingorIP address).

Concurrency transparency

enablesseveralprocessestooperateconcurrentlyusingsharedresourceswithout

interferencebetween them.

Replication transparency enables multiple instances of resources to be used to increase

reliability and performance without knowledge of the replicas byusers

orapplicationprogrammers.

Failuretransparencyenablestheconcealmentoffaults, allowing users and application programs

to complete their tasks despite the failure of hardware or softwarecomponents.

Mobilitytransparency allows the movement of resources and clientswithin a system without

affecting the operation of users or programs.

Performance transparency allows the system to be reconfigured to improve performance as

loadsvary.Scaling transparency allows the system and applications to expand in scale without

change to thesystemstructureortheapplication algorithms.

INTRODUCTION TO SYSTEM MODELS

System Models specify the common properties and design issues for a distributed system.

They describe the relevant aspects of DS design.

Each type of model is intended to provide an abstract, simplified but consistent description of

a relevantaspect of distributed system design:

Physicalmodelsarethemostexplicitwayinwhichtodescribeasystem; they capture the

hardware composition of a system in terms of the computers (and other devices, such as

mobile phones)and their inter connectingnetworks.

Architectural models describe a system in terms of the computational and communication

tasksperformedbyitscomputationalelements; the

computationalelementsbeingindividualcomputersoraggregatesofthemsupportedbyappropriate

network inter connections.

[Distributed Systems] Page 9

Fundamental models take an abstract perspective in order to examine individual aspects of

adistributed system. The fundamental models that examine three important aspects of

distributedsystems: interaction models, which consider the structure and sequencing of the

communicationbetween the elements of the system; failure models, which consider the ways

in which a systemmay fail to operate correctly and; security models, which consider how the

system is protected against attempts to interfere with itscorrect operationor to stealits data.

1. Architectural models

Architecture models define the way in which the components of systems interact with one

anotherand how they are mapped onto the network. The architecture of a systemis its

structure in termsof separately specified components and their interrelationships. The overall

goal is to ensure thatthestructurewill meet presentand likelyfuturedemands on it.

Software layers

In alayeredapproach,a complex system is partitioned into a number of layers,

withagivenlayermaking use of the services offered by the layer below. In terms of distributed

systems, thisequates to a vertical organization of services into service layers. Given the

complexity ofdistributed systems, it is often helpful to organize such services into layers. the

important termsplatformand middleware, which define asfollows:

A platform for distributed systems and applications consists of the lowest-level hardware

andsoftware layers. These low-level layers provide services to the layers above them, which

areimplementedindependentlyineachcomputer, bringing the

system’sprogramminginterfaceuptoalevelthat facilitates

communicationandcoordinationbetween processes.

[Distributed Systems] Page 10

There are two main architectural models:

1. Client-ServerModel

2. Peer-to-peer architecture

Client-server:This is the architecture that is most often cited when distributed systems

arediscussed.Itishistoricallythemostimportantandremainsthemostwidelyemployed.Serverisa

process which accepts requests from other processes and Client is a process requesting

servicesfromaserver.

Servers may in turn be clients of other servers, as the figure indicates. For example, a web

serveris often a client of a localfile server that manages the files in which the web pagesare

stored.ses.

Clients invoke individual servers

Another web-related example concerns search engines, which enable users to look up

summariesof information available on web pages at sites throughout the Internet. Thus a

search engine isboth a server and a client: it responds to queries from browser clients and it

runs web crawlersthatactas clients of other web servers.

Peer-to-peer:In this architecture all of the processes involved in a task or activity play

similarroles,interacting cooperatively as peers without anydistinction between client and

server processes or the computers on which they run. In practical terms, all participating

processes runthe same program and offer the sameset of interfaces to eachother.While the

client-servermodel offers a direct and relatively simple approach to the sharing of data and

other resources, itscales poorly. Enables hundreds of computers to provide access to

resources they share andmanage. Each object is replicated in several computers. Ex: Napster

app for sharing digital musicfiles.

[Distributed Systems] Page 11

Several variations on the above models can be derived:

1. Multiple-Servers Model: In this services are provided by multiple servers. Services

can beimplementedas several server processesinseparate host computers.

2. Web Proxy Server: It provides a shared cache of recently visited pages and web

resourcesfor the client machines at a site or across several sites. Purpose of proxy

servers is to increaseavailabilityand performance oftheservice.

3. MobileCode:

a) Client requests resultsinthedownloadingofappletcode

b) Appletsareawell-

knownandwidelyusedexampleofmobilecode.Itisdownloadedfromaweb server

andexecutedlocallyresultingin good interactive response.

4. MobileAgent:

 Amobileagentisarunningprogramthattravelsfromonecomputertoanotherinnetworkcarry

ingout a task on someones behalf

5. Network Computers:

 Networkcomputer

 Remotefileserver

 Client

[Distributed Systems] Page 12

 network

 OS and Files

Networkcomputer:

Download sits OS and application software needed from a Remotefileserver

Applications are run locally but the files are managed by the remote file server; low software

management and maintenance cost.

6. Thin Client:

Asoftwarelayerthatsupportsawindowbasedinterfaceonacomputerthatislocaltotheuserwhile

executingapplication programs onacomputer server

Design requirements for distributed architectures:

1. Performance Issues

2. Quality of Service

3. Use of cache and replication

PerformanceIssues

Responsiveness

Delay,responsetime, slowdown,stretchfactor

Determinedbyloadandperformanceoftheserverandthenetwork,andbydelaysinallsoftwarecompo

nentsinvolved

Throughput

Therate atwhichcomputationalworkof theserverordata transferofthenetworkisdone

Load balancing/loadsharing

Enableapplicationsandservice processestoproceedconcurrentlyandexploittheavailableresource

3. Fundamental Models

Modelsofsystemssharesomefundamentalproperties.Inparticular,allof themare

composedofprocessesthatcommunicatewithoneanotherbysendingmessages over acomputer

network.

The purpose of such a model is:

[Distributed Systems] Page 13

• To make explicit all the relevant assumptions about the systems we are modelling.

• To make generalizations concerning what is possible or impossible, given those

assumptions.The aspects of distributed systems that we wish to capture in our fundamental

models are intended to helpustodiscussandreason about:

Interaction: Computation occurs within processes; the processes interact by passing

messages,resulting in communication (informationflow) and coordination (synchronization

and orderingofactivities)between processes

Failure: The correct operation of a distributed system is threatened whenever a fault occurs

inany of the computers on which it runs (including software faults) or in the network that

connectsthem.Ourmodel definesand classifies the faults.

Security: The modular nature of distributed systems and their opennessexposes them to

attackby both externaland internal agents.Our security model defines andclassifies the

formsthatsuch attacks may take, providing a basis for the analysis of threats to a system and

for the designofsystems thatareableto resist them.

There are three Fundamental Models:

a) Interactionmodel

Fundamentallydistributedsystemsarecomposedofmanyprocesses, interacting in complex

ways.For example:

 Multipleserver processesmaycooperatewithoneanotherto provide aservice;

 A set of peerprocesses may cooperate with one another to achieve a common

goal;Two significant factors affecting interacting processes in adistributed

system:

• Communication performance is often a limiting characteristic.

• It is impossible to maintain a single global notion of time.

Performanceofcommunicationchannels•Communicationoveracomputernetworkhasthefollowi

ngperformancecharacteristics relatingtolatency, bandwidth and jitter:

The delay between the start of a message’s transmission from one process and the

beginningofitsreceipt byanother is referred to aslatency. The latency includes:

– The time taken for the firstof a stringof bits ransmitted throughanetworktor each

[Distributed Systems] Page 14

its

– Destination. For example, the latency for the transmission of a message through

a satellite linkisthe timeforaradio signals to travel tothesatellite and back.

• Thebandwidthofacomputernetworkisthetotalamountofinformationthatcanbetrans

mitted over it in a given time. When a large number of communication channels

are usingthesamenetwork, theyhaveto sharetheavailablebandwidth.

• Jitter is the variation in the time taken to deliver a series of messages. Jitter is

relevant tomultimedia data. For example,if consecutive samplesof audio data

areplayed with differingtimeintervals, thesoundwillbebadlydistorted.

Computer clocks and timing events • Each computer in a distributed systemhas its

owninternal clock, which can be used by local processes to obtain the value of the current

time.Therefore two processes running on different computers can each associate timestamps

with theirevents. However, even if the two processes read their clocks at the same time, their

local clocksmay supply different time values. This is because computer clocks drift from

perfect time and,more importantly, their drift rates differ from one another. The term clock

drift rate refers to therateatwhichacomputer clockdeviatesfromaperfect

referenceclock.Eveniftheclocksonall

The computers in a distributed system are set to the same time initially, their clocks will

eventually vary quite significantly unless corrections are applied.

Clock Drift Rate

Two variants of the interaction model •

Synchronous distributed systems: has a strong assumption of time.Asynchronous distributed

system is one in which the following bound are defined:

• Thetimeto executeeachstepofaprocess hasknown lowerand upperbounds.

• Eachmessagetransmittedoverachannelisreceivedwithin aknownboundedtime.

• Each process has a local clock whose drift rate from real time has a known

bound.Asynchronousdistributedsystems:makesnoassumptionoftime.Anasynchro

nousdistributedsystemisoneinwhich therearenobounds on:

• Process execution speeds–for example, one process step may take only a Pico

second and another a century; all that can be said is that each step may take an

[Distributed Systems] Page 15

arbitrarily long time.

• Message transmission delays – for example, one message from process A to

process B may be delivered in negligible time and another may take several

years. In other words, a message may be received after an arbitrarily long time.

• Clock drift rates–again; the drif trat of a clock is arbitrary.

b) Failure model

In a distributed system both processes and communication channels may fail – that is, they

may depart from what is considered to be correct or desirable behavior. The failure model

defines the ways in which failure may occur in order to provide an understanding of the

effects of failures. We can have failures of processes and communication channels. These are

presented under the headings omission failures, arbitrary failures and timing failures.

Omission failures • The faults classified as omission failures refer to cases when a process or

communication channel fails to perform actions that it’s supposed to do.

Process omission failures: The chief omission failure of a process is to crash. When, say that

process has crashed we mean that it has halted and will not execute any further steps of its

program ever.

In an asynchronous distributed system

 A timeout means that a process is NOT responding; may have crashed or may be

slow; or the message may not have arrived

In a synchronous distributed system

 A time out means that a process is crashed, so called fail-stop

 However, this method of crash detection relies on the use of timeouts – that is, a

method in which one process allows a fixed period of time for something to occur. In an

asynchronous system timeout can indicate only that a process is not responding – it may have

crashed or may be slow, or the messages may not have arrived.

Communication omission failures: Consider the communication primitives send and receive.

[Distributed Systems] Page 16

Process p performs a send by inserting the message m in its outgoing message buffer. The

communication channel transports m to q’s incoming message buffer. Process q performs a

receive by taking m from its incoming message buffer and deliver in get. The out going and

Incoming message buffer are typically provided by the operating system.

Arbitrary failures • The term arbitrary or Byzantine failure is used to describe the worst

possible failure semantics, in which any type of error may occur. For example, a process may

set wrong values in its dataitems, oritmay return a wrong value in responseto an invocation.

An arbitrary failure of a process is one in which it arbitrarily omits intended processing steps

or takesunintended processing steps.

Communication channels can suffer from arbitrary failures; for example, message contents

maybe corrupted, nonexistent messages may be delivered or real messages may be delivered

more than once.

Timing failures • Timing failures are applicable in synchronous distributed systems where

time limits are set on process execution time, message deliverytime and clock drift rate.

Timing

Failures are listed in the following figure. Any one of these failures may result in responses

being unavailable to clients within a specified time interval.

Real-time operating systems are designed with a view to providing timing guarantees, but

they are more complex to design and may requirer edundant hardware.

c) Security model

The security of a distributed system can be achieved by securing the processes and the

channelsusedfortheirinteractionsandbyprotectingtheobjectsthattheyencapsulateagainstunautho

rizedaccess.

Protection is described in terms of objects; although the concepts apply equally well to

resources fall types

Protecting objects:

Objects are intended to be used in different ways by different users. For example, some

objects may hold a user’s private data, such as their mailbox, and other objects may hold

shared datasuchaswebpages.Tosupportthis, access rights specify who is allowed to perform

the operations of an object–for example, who is allowed to read or to write its state.

[Distributed Systems] Page 17

The enemy • To model security threats, we postulate an enemy (sometimes also known as the

adversary) that is capable of sending any message to any process and reading or copying any

messagesent between apairofprocesses,asshowninthe followingfigure.Theattackmay

Come from a computer that is legitimatelyconnectedtothenetworkorfromonethatisconnected

in an unauthorized manner. The threats from a potential enemy include threats

toprocessesand threats tocommunicationchannels.

Defeating security threats

Cryptographyisthescienceofkeepingmessagessecure, and encryption is the process of

scrambling a message in such away as to hide its contents. Modern cryptographyisbased on

Encryption algorithms that use secret keys–large numbers that are difficulttoguess–

totransform data in a manner that can only be reversed with knowledge of the corresponding

decryption key.

Authentication: The use of shared secrets and encryption provides the basis for the

authentication of messages–proving the identities supplied by their senders. The basic

authentication technique is to include in a message an encrypted portion that contains enough

of the contents of the message to guarantee its authenticity.

Secure channels: Encryption and authentication are used to build secure channels as a service

[Distributed Systems] Page 18

layer on top of existing communication services. A secure channel is a communication

channel connecting a pair of processes, each of which acts on behalf of a principal, as shown

in the following figure. A secure channel has the following properties:

• Eachoftheprocessesknowsreliablytheidentityoftheprincipalonwhosebehalftheoth

erprocessisexecuting.

• A secure channel ensures the privacy and integrity (protection against

tampering) of the data transmitted across it.

• Each message includes a physical or logical time stamp to prevent messages

from being replayed or reordered.

[Distributed Systems] Page 19

UNIT II

Time and Global States- Introduction-Clocks, events and process states-Synchronizing

physical clocks-Logical time and logical clocks-Global states-Distributed debugging.

Coordination and Agreement-Introduction- Distributed mutual exclusion-Elections-

Multicast communication-Consensus and related problems.

Time and Global States

There are two formal models of distributed systems: synchronous and asynchronous.

Synchronous distributed systems have the following characteristics:

 the time to execute each step of a process has known lower and upper bounds;

 each message transmitted over a channel is received within a known bounded

time;

 Each process has a local clock whose drift rate from real time has a known

bound.

Asynchronous distributed systems, in contrast, guarantee no bounds on process execution

speeds, message transmission delays, or clock drift rates. Most distributed systems we

discuss, including the Internet, are asynchronous systems.

Generally, timing is a challenging an important issue in building distributed systems.

Consider a couple of examples:

 Suppose we want to build a distributed system to track the battery usage of a

bunch of laptop computers and we'd like to record the percentage of the battery

each has remaining at exactly 2pm.

 Suppose we want to build a distributed, real time auction and we want to know

which of two bidders submitted their bid first.

 Suppose we want to debug a distributed system and we want to know whether

variable x1 in process p1 ever differs by more than 50 from variable x2 in process

p2.

In the first example, we would really like to synchronize the clocks of all participating

computers and take a measurement of absolute time. In the second and third examples,

knowing the absolute time is not as crucial as knowing the order in which events occurred.

[Distributed Systems] Page 20

Clock Synchronization

Every computer has a physical clock that counts oscillations of a crystal. This hardware clock

is used by the computer's software clock to track the current time. However, the hardware

clock is subject to drift -- the clock's frequency varies and the time becomes inaccurate. As a

result, any two clocks are likely to be slightly different at any given time. The difference

between two clocks is called their skew.

There are several methods for synchronizing physical clocks. External

synchronization means that all computers in the system are synchronized with an external

source of time (e.g., a UTC signal). Internal synchronization means that all computers in the

system are synchronized with one another, but the time is not necessarily accurate with

respect to UTC.

In a synchronous system, synchronization is straightforward since upper and lower bounds on

the transmission time for a message are known. One process sends a message to another

process indicating its current time, t. The second process sets its clock to t +

(max+min)/2 where max and min are the upper and lower bounds for the message

transmission time respectively. This guarantees that the skew is at most (max-min)/2.

Cristian's method for synchronization in asynchronous systems is similar, but does not rely on

a predetermined max and min transmission time. Instead, a process p1 requests the current

time from another process p2 and measures the RTT (Tround) of the request/reply.

Whenp1 receives the time t from p2 it sets its time to t + Tround/2.

The Berkeley algorithm, developed for collections of computers running Berkeley UNIX, is

an internal synchronization mechanism that works by electing a master to coordinate the

synchronization. The master polls the other computers (called slaves) for their times,

computes an average, and tells each computer by how much it should adjust its clock.

The Network Time Protocol (NTP) is yet another method for synchronizing clocks that uses a

hierarchical architecture where he top level of the hierarchy (stratum 1) are servers connected

to a UTC time source.

[Distributed Systems] Page 21

Logical Time

Physical time cannot be perfectly synchronized. Logical time provides a mechanism to define

the causal order in which events occur at different processes. The ordering is based on the

following:

 Two events occurring at the same process happen in the order in which they are

observed by the process.

 If a message is sent from one process to another, the sending of the message happened

before the receiving of the message.

 If e occurred before e' and e' occurred before e" then e occurred before e".

"Lamport called the partial ordering obtained by generalizing these two relationships

the happened-before relation." (→)

In the figure, a → b and c → d . Also, b → c and d → f , which means that a → f . However,

we cannot say that a → e or vice versa; we say that they are concurrent

(a || e).

A Lamport logical clock is a monotonically increasing software counter, whose value need

bear no particular relationship to any physical clock. Each process pi keeps its own logical

clock, Li, which it uses to apply so-called Lamport timestamps to events.

[Distributed Systems] Page 22

Lamport clocks work as follows:

LC1: Li is incremented before each event is issued at pi.

LC2:

When a process pi sends a message m, it piggybacks on m the value t = Li.

On receiving (m, t), a process pj computes Lj: = max (Lj, t) and then applies LC1 before time

stamping the event receive (m).

An example is shown below:

If e → e ' then L (e) < L (e'), but the converse is not true. Vector clocks address this problem.

"A vector clock for a system of N processes is an array of N integers." Vector clocks are

updated as follows:

VC1: Initially, VI[j] = 0 for I, j = 1, 2, N

VC2: Just before pi timestamps an event, it sets Vi[i]:=Vi[i]+1.

VC3: pi includes the value t = Vi in every message it sends.

VC4: When pi receives a timestamp t in a message, it sets Vi[j]:=max(Vi[j], t[j]), for 1, 2,

...N. Taking the component wise maximum of two vector timestamps in this way is known as

a merge operation.

[Distributed Systems] Page 23

An example is shown below:

Vector timestamps are compared as follows:

V=V' iff V[j] = V'[j] for j = 1, 2, ..., N

V <= V' iff V[j] <=V'[j] for j = 1, 2, ..., N

V < V' iff V <= V' and V != V'

If e → e ' then V(e) < V(e') and if V(e) < V(e') then e → e ' .

Global States

It is often desirable to determine whether a particular property is true of a distributed system

as it executes. We'd like to use logical time to construct a global view of the system state and

determine whether a particular property is true. A few examples are as follows:

 Distributed garbage collection: Are there references to an object anywhere in the

system? References may exist at the local process, at another process, or in the

communication channel.

 Distributed deadlock detection: Is there a cycle in the graph of the "waits for"

relationship between processes?

 Distributed termination detection: Has a distributed algorithm terminated?

[Distributed Systems] Page 24

 Distributed debugging: Example: given two processes p1 and p2 with variables

x1 and x2 respectively, can we determine whether the condition |x1-x2| > δ is ever

true.

In general, this problem is referred to as Global Predicate Evaluation. "A global state

predicate is a function that maps from the set of global state of processes in the system ρ to

{True, False}."

 Safety - a predicate always evaluates to false. A given undesirable property

(e.g., deadlock) never occurs.

 Liveness - a predicate eventually evaluates to true. A given desirable property

(e.g., termination) eventually occurs.

Cuts

Because physical time cannot be perfectly synchronized in a distributed system it is not

possible to gather the global state of the system at a particular time. Cuts provide the ability

to "assemble a meaningful global state from local states recorded at different times".

Definitions:

 ρ is a system of N processes pi (i = 1, 2, ..., N)

 history(pi) = hi = < e i 0 , e i 1 ,...>

 h i k =< e i 0 , e i 1 ,..., e i k > - a finite prefix of the process's history

 s i k is the state of the process pi immediately before the kth event occurs

 All processes record sending and receiving of messages. If a process pi records

the sending of message m to process pj and pj has not recorded receipt of the

message, then m is part of the state of the channel between pi and pj.

 A global history of ρ is the union of the individual process histories: H =

h0 ∪ h1 ∪ h2 ∪...∪hN-1

 A global state can be formed by taking the set of states of the individual

processes: S = (s1, s2, ..., sN)

 A cut of the system's execution is a subset of its global history that is a union of

prefixes of process histories (see figure below).

 The frontier of the cut is the last state in each process.

[Distributed Systems] Page 25

 A cut is consistent if, for all events e and e':

o (e ∈ C and e ' → e) ⇒ e ' ∈ C

 A consistent global state is one that corresponds to a consistent cut.

Distributed Debugging

To further examine how you might produce consistent cuts, we'll use the distributed

debugging example. Recall that we have several processes, each with a variable xi. "The

safety condition required in this example is |xi-xj| <= δ (i, j = 1, 2, ..., N)."

The algorithm we'll discuss is a centralized algorithm that determines post hoc whether the

safety condition was ever violated. The processes in the system, p1, p2, ..., pN, send their states

to a passive monitoring process, p0. p0 is not part of the system. Based on the states collected,

p0 can evaluate the safety condition.

Collecting the state: The processes send their initial state to a monitoring process and send

updates whenever relevant state changes, in this case the variable xi. In addition, the

processes need only send the value of xi and a vector timestamp. The monitoring process

maintains an ordered queue (by the vector timestamps) for each process where it stores the

state messages. It can then create consistent global states which it uses to evaluate the safety

condition.

[Distributed Systems] Page 26

Let S = (s1, s2, ..., SN) be a global state drawn from the state messages that the monitor

process has received. Let V(si) be the vector timestamp of the state si received from pi. Then

it can be shown that S is a consistent global state if and only if:

V(si)[i] >= V(sj)[i] for i, j = 1, 2, ..., N

Coordination and Agreement

Overview

We start by addressing the question of why process need to coordinate their actions and agree

on values in various scenarios.

1. Consider a mission critical application that requires several computers to

communicate and decide whether to proceed with or abort a mission. Clearly, all

must come to agreement about the fate of the mission.

2. Consider the Berkeley algorithm for time synchronization. One of the participate

computers serves as the coordinator. Suppose that coordinator fails. The

remaining computers must elect a new coordinator.

3. Broadcast networks like Ethernet and wireless must agree on which nodes can

send at any given time. If they do not agree, the result is a collision and no

message is transmitted successfully.

[Distributed Systems] Page 27

4. Like other broadcast networks, sensor networks face the challenging of agreeing

which nodes will send at any given time. In addition, many sensor network

algorithms require that nodes elect coordinators that take on a server-like

responsibility. Choosing these nodes is particularly challenging in sensor

networks because of the battery constraints of the nodes.

5. Many applications, such as banking, require that nodes coordinate their access

of a shared resource. For example, a bank balance should only be accessed and

updated by one computer at a time.

Failure Assumptions and Detection

Coordination in a synchronous system with no failures is comparatively easy. We'll look at

some algorithms targeted toward this environment. However, if a system is asynchronous,

meaning that messages may be delayed an indefinite amount of time, or failures may occur,

then coordination and agreement become much more challenging.

A correct process "is one that exhibits no failures at any point in the execution under

consideration." If a process fails, it can fail in one of two ways: a crash failure or a byzantine

failure. A crash failure implies that a node stops working and does not respond to any

messages. A byzantine failure implies that a node exhibits arbitrary behavior. For example, it

may continue to function but send incorrect values.

Failure Detection

One possible algorithm for detecting failures is as follows:

 Every t seconds, each process sends an "I am alive" message to all other

processes.

 Process p knows that process q is either unsuspected, suspected, or failed.

 If p sees q's message, it sets q's status to unsuspected.

This seems ok if there are no failures. What happens if a failure occurs? In this case, q will

not send a message. In a synchronous system, p waits for d seconds (where d is the maximum

delay in message delivery) and if it does not hear from q then it knows that q has failed. In an

asynchronous system, q can be suspected of failure after a timeout, but there is no guarantee

that a failure has occurred.

[Distributed Systems] Page 28

Mutual Exclusion

The first set of coordination algorithms we'll consider deal with mutual exclusion. How can

we ensure that two (or more) processes do not access a shared resource simultaneously? This

problem comes up in the OS domain and is addressed by negotiating with shared objects

(locks). In a distributed system, nodes must negotiate via message passing.

Each of the following algorithms attempts to ensure the following:

 Safety: At most one process may execute in the critical section (CS) at a time.

 Liveness: Requests to enter and exit the critical section eventually succeed.

 Causal ordering: If one request to enter the CS happened-before another, then

entry to the CS is granted in that order.

Central Server

The first algorithm uses a central server to manage access to the shared resource. To enter a

critical section, a process sends a request to the server. The server behaves as follows:

 If no one is in a critical section, the server returns a token. When the process

exits the critical section, the token is returned to the server.

 If someone already has the token, the request is queued.

Requests are serviced in FIFO order.

If no failures occur, this algorithm ensures safety and liveness. However, ordering is not

preserved (why?). The central server is also a bottleneck and a single point of failure.

Token Ring

The token ring algorithm arranges processes in a logical ring. A token is passed clockwise

around the ring. When a process receives the token it can enter its critical section. If it does

not need to enter a critical section, it immediately passes the token to the next process.

This algorithm also achieves safety and liveness, but not ordering, in the case when no

failures occur. However, a significant amount of bandwidth is used because the token is

passed continuously even when no process needs to enter a CS.

[Distributed Systems] Page 29

Multicast and Logical Clocks

Each process has a unique identifier and maintains a logical clock. A process can be in one of

three states: released, waiting, or held. When a process wants to enter a CS it does the

following:

 sets its state to waiting

 sends a message to all other processes containing its ID and timestamp

 once all other processes respond, it can enter the CS

When a message is received from another process, it does the following:

 if the receiver process state is held, the message is queued

 if the receiver process state is waiting and the timestamp of the message is after

the local timestamp, the message is queued (if the timestamps are the same, the

process ID is used to order messages)

 else - reply immediately

When a process exits a CS, it does the following:

 sets its state to released

 replies to queued requests

[Distributed Systems] Page 30

This algorithm provides safety, liveness, and ordering. However, it cannot deal with failure

and has problems of scale.

None of the algorithms discussed are appropriate for a system in which failures may occur. In

order to handle this situation, we would need to first detect that a failure has occurred and

then reorganize the processes (e.g., form a new token ring) and reinitialize appropriate state

(e.g., create a new token).

Election

An election algorithm determines which process will play the role of coordinator or server.

All processes need to agree on the selected process. Any process can start an election, for

example if it notices that the previous coordinator has failed. The requirements of an election

algorithm are as follows:

 Safety: Only one process is chosen -- the one with the largest identifying value.

The value could be load, uptime, a random number, etc.

 Liveness: All process eventually chooses a winner or crash.

Ring-based

Processes are arranged in a logical ring. A process starts an election by placing its ID and

value in a message and sending the message to its neighbor. When a message is received, a

process does the following:

 If the value is greater that its own, it saves the ID and forwards the value to its

neighbor.

 Else if its own value is greater and then it has not yet participated in the election,

it replaces the ID with its own, the value with its own, and forwards the

message.

 Else if it has already participated it discards the message.

 If a process receives its own ID and value, it knows it has been elected. It then

sends an elected message to its neighbor.

 When an elected message is received, it is forwarded to the next neighbor.

[Distributed Systems] Page 31

Safety is guaranteed - only one value can be largest and make it all the way through the ring.

Liveness is guaranteed if there are no failures. However, the algorithm does not work if there

are failures.

Bully

The bully algorithm can deal with crash failures, but not communication failures. When a

process notices that the coordinator has failed, it sends an election message to all higher-

numbered processes. If no one replies, it declares itself the coordinator and sends a new

coordinator message to all processes. If someone replies, it does nothing else. When a process

receives an election message from a lower-numbered process it returns a reply and starts an

election. This algorithm guarantees safety and liveness and can deal with crash failures.

[Distributed Systems] Page 32

Consensus

All of the previous algorithms are examples of the consensus problem: how can we get all

processes to agree on a state? Here, we look at when the consensus problem is solvable.

The system model considers a collection of processes pi (i = 1, 2, ..., N). Communication is

reliable, but processes may fail. Failures may be crash failures or byzantine failures.

The goals of consensus are as follows:

 Termination: Every correct process eventually decides on a value.

 Agreement: All processes agree on a value.

 Integrity: If all correct processes propose the same value, that value is the one

selected.

We consider the Byzantine Generals problem. A set of generals must agree on whether to

attack or retreat. Commanders can be treacherous (faulty). This is similar to consensus, but

differs in that a single process proposes a value that the others must agree on. The

requirements are:

[Distributed Systems] Page 33

 Termination: All correct processes eventually decide on a value.

 Agreement: All correct processes agree on a value.

 Integrity: If the commander is correct, all correct processes agree on what the

commander proposed.

 If communication is unreliable, consensus is impossible. Remember the blue army

discussion from the second lecture period. With reliable communication, we can solve

consensus in a synchronous system with crash failures.

 We can solve Byzantine Generals in a synchronous system as long as less than 1/3 of

the processes fail. The commander sends the command to all of the generals and each general

sends the command to all other generals. If each correct process chooses the majority of all

commands, the requirements are met. Note that the requirements do not specify that the

processes must detect that the commander is fault.

 It is impossible to guarantee consensus in an asynchronous system, even in the

presence of 1 crash failure. That means that we can design systems that reach consensus most

of the time, but cannot guarantee that they will reach consensus every time. Techniques for

reaching consensus in an asynchronous system include the following:

 Masking faults - Hide failures by using persistent storage to store state and

restarting processes when they crash.

 Failure detectors - Treat an unresponsive process (that may still be alive) as

failed.

 Randomization - Use randomized behavior to confuse byzantine processes.

[Distributed Systems] Page 34

UNIT-III

INTERPROCESSCOMMUNICATION:

Inter process communication (IPC) is a mechanism which allows processes to communicate

with each other and synchronize the inactions.

The characteristics of inter process communication:

Message passing between a pair of processes can be supported by two message

communication operations, send and receive, defined in terms of destinations and messages.

To communicate, one process sends a message (a sequence of bytes) to a destination and

another process at the destination receives the message. This activity involves the

communication of data from the sending process to the receiving process and may involve the

synchronization of the two processes.

Synchronous and asynchronous communication:

A queue is associated with each message destination. Sending processes cause messages to

beaddedtoremotequeuesandreceivingprocessesremovemessagesfromlocalqueues.Communicat

ion between the sending and receiving processes may be either synchronous or asynchronous.

Synchronous: In the synchronous form of communication, the sending and receiving

processes synchronize at every message. In this case, both send and receive are blocking

operations. Whenever a send is issued the sending process (or thread) is blocked until the

corresponding receive is issued. Whenever a receive is issued by a process(or thread), it

blocks until a message arrives.

Asynchronous:

In the asynchronous form of communication, the use of the send operation is non-blocking in

that the sending process is allowed to proceed as soon as the message has been copied to a

local buffer, and the transmission of the message proceeds in parallel with the sending

process the receiving process proceeds with its program after issuing a receive operation,

which provides a buffer to be filled in the background, but it must separately receive

notification that its buffer has been filled, by polling or interrupt.

Message destinations in the Internet protocols, messages are sent to (Internet address, local

port) pairs. A local port is a message destination within a computer, specified as an integer.

[Distributed Systems] Page 35

Aporthasexactlyonereceiverbutcanhavemanysenders.Processesmayusemultipleportsto

Receive messages. Any process that knows the number of a port can send a message to it.

Servers generally publicize their port numbers for use by clients.

Reliability in a point-to-point message service can be described as reliable if messages are

guaranteed to be delivered despitea‘reasonable’numberofpackets being dropped or lost.

Ordering • Some applications require that messages be delivered in sender order – that is,

the order in which they were transmitted by the sender. The delivery of messages out of

sender order is regarded as a failure by such applications.

Sockets

Both forms of communication (UDP and TCP) use the socket abstraction, which provides

anendpointforommunicationbetweenprocessesInterprocesscommunicationconsistsoftransmitti

ng a message between a socket in one process and a socket in another process, is shown in

the following figure.

 For a process to receive messages, its socket must be bound to a local port and one of

the Internet addresses of the computer on which it runs. Messages sent to a particular Internet

address and port number can be received only by a process whose socket is associated with

that Internet address and port number. Processes may use the same socket for sending and

receiving messages. Port. Each socket is associated with a particular protocol – either UDP or

TCP.

UDP datagram communication

A datagram sent by UDP is transmitted from a sending process to a receiving process without

acknowledgement or retries. If a failure occurs, the message may not arrive. A datagram is

transmitted between processes when one process sends it and another receives it. To send or

receive messages a process must first create a socket bound to an Internet address of the local

host and a local port. A server will bind its socket to a server port – one that it makes known

to clients so that they can send messages to it. A client binds its socket to any free local port.

[Distributed Systems] Page 36

The receive method returns the Internet address and port of the sender, in addition to the

message, allowing the recipient to send a reply.

The following are some issues relating to datagram communication:

Message size: The receiving process needs to specify an array of bytes of a particular size in

which to receive a message. If the message is too big for the array, it is truncated on arrival.

The underlying IP protocol allows packet lengths of up to 216 bytes, which includes the

headers as well as the message. However, most environments impose a size restriction of

8kilobytes. Any application requiring messages larger than the maximum must fragment

themintochunks of that size.

Blocking: Sockets normally provide non-blocking sends and blocking receives for datagram

communication (a non-blocking receive is an option in some implementations). The send

operation returns when it has handed the message to the underlying UDP and IP protocols,

which are responsible for transmitting it to its destination. On arrival, the message is placed

in queue for the socket that is bound to the destination port. The message can be collected

from the queue by an outstanding or future invocation of receive on that socket. Messages are

discarded at the destination if no process already has a socket bound to the Destination port.

Timeouts: The receive that blocks forever is suitable for use by a server that is waiting to

receiver quests from its clients. But in some programs, it is not appropriate that a process that

has invoked a receive operation should wait indefinitely in situations where the sending

process may have crashed or the expected message may have been lost. To allow for such

requirements, time outs can be set on sockets.

Receive from any: The receive method does not specify an origin for messages. Instead, an

invocation of receive gets a message addressed to its socket from any origin. The receive

method returns the Internet address and local port of the sender, allowing the recipient

tocheckwherethemessagecame from

Failure model for UDP datagram’s• A failure model for communication channels and

defines reliable communication in terms of two properties: integrity and validity. The

integrity property requires that messages should not be corrupted or duplicated. The use of a

checksum ensures that there is a negligible probability that any message received is

corrupted. UDP datagram’s suffer from the following failures:

Omission failures: Messages may be dropped occasionally, either because of checksum error

or because no buffer space is available at the source or destination. Ordering: Messages can

[Distributed Systems] Page 37

sometimes be delivered out of sender order.

A reliable delivery service may be constructed from one that suffers from omission failures

bytheuseofacknowledgements.

Use of UDP:

1. The Domain Name System, which looks up DNS names in the Internet, is

implemented over UDP.

2. Voice over IP(VOIP) also runs over UDP.

TCP stream communication:

Message sizes: The application can choose how much data it writes to a stream or reads from

it. It may deal in very small or very large sets of data. The underlying implementation of a

TCP stream decides how much data to collect before transmitting it as one or more IP

packets. On arrival, the data is handed to the application as requested. Applications can, if

necessary, force data to be sent immediately

Lost messages: The TCP protocol uses an acknowledgement scheme. As an example of as

impel scheme (which is not used in TCP), the sending end keeps a record of each IP packet

sent and the receiving end acknowledges all the arrivals. If the sender does not receive an

acknowledgement within a timeout, it retransmits the message

Flow control: The TCP protocol attempts to match the speeds of the processes that read from

and write to a stream. If the writer is too fast for the reader, then it is blocked until the reader

has consumed sufficient data.

Message duplication and ordering: Message identifiers are associated with each IP packet,

which enables the recipient to detect and reject duplicates, or to reorder messages that do not

arrive in sender order.

Message destinations: A pair of communicating processes establishes a connection before

they can communicate over a stream. Once a connection is established, the processes simply

read from and write to the stream without needing to use Internet addresses and ports.

Establishing a connection involves a connect request from client to server followed by an

accept request from server to client before any communication can take place. This could be

a consider able over head for a single client-server request and reply.

[Distributed Systems] Page 38

JavaAPIforUDPdatagrams:

• The Java API provides datagram communication by means of two

classes:DatagramPacket and Datagram Socket

Datagram Packet: This class provides a constructor that makes an instance out of an array

of bytes comprising a message, the length of the message and the Internet address and local

port number of the destination socket, as follows:

Datagram packet

array of bytes containing

message

length of

message

Internet

address

port

number

An instance of Datagram Packet may be transmitted between processes when one process

send sit and another receives it. This class provides another constructor for use when

receiving message. Its arguments specify an array of bytes in which to receive the message

and the length of the array. A received message is put in the Datagram Packet together with

its length and the

Internetaddressandportofthesendingsocket.ThemessagecanberetrievedfromtheDatagramPacke

t by means of the method get Data. The methods get Port and get Address access the port and

Internet address.

Datagram Socket: This class supports sockets for sending and receiving UDP datagram’s.

Itprovidesaconstructorthattakesaportnumberasitsargument, forusebyprocessesthatneedto use a

particular port. It also provides a no-argument constructor that allows the system to choose a

free local port. These constructors can throw a Socket Exception if the chosen port is already

in use or if a reserved port (a number below 1024) is specified when running over UNIX.

The class Datagram Socket provides methods that include the following:

Send and receive: These methods are for transmitting datagram’s between a pair of sockets.

The argument of send is an instance of Datagram Packet containing a message and its

destination. The argument of receive is an empty Datagram Packet in which to put the

message, its length and its origin. The methods send and receive can throw I Exceptions.

Set So Timeout: This method allows a timeout to be set. With a timeout set, the receive

method will block for the time specified and then throwanInterrupted I Exception.

Connect: This method is used for connecting to a particular remote port and Internet address,

in which case the socket is only able to send messages to and receive messages from that

[Distributed Systems] Page 39

address

UDP client sends a message to the server and gets reply

UDP server repeatedly receives a request and sends sit back to the client

JavaAPIforTCPstreams•TheJavainterfacetoTCPstreams is provided in the classes

ServerSocketandSocket:

ServerSocket:Thisclassisintendedforusebyaservertocreateasocketataserverportforlisteningforc

onnectrequestsfromclients.Itsacceptmethodgetsaconnectrequestfromthe

Queue or, if the queue is empty, blocks until one arrives. The result of executing accepts is an

[Distributed Systems] Page 40

instanceofSocket – a socket to use for communicating with the client.

Socket: This class is for use by a pair of processes with a connection. The client uses

aconstructortocreateasocket,specifyingtheDNShostnameandportofaserver.Thisconstructor not

only creates a socket associated with a local port but also connects it to the specified remote

computer and port number. It can throw an Unknown Host Exception if the host name is

wrong IOException if an IO error occurs.

The Socket class provides the methods getInputStream and getOutputStream for accessing the

two streams associated with a socket. The return types of these methods are Input Stream and

Output Stream, respectively – abstract classes that define methods for reading and writing

bytes. The return values can be used as the arguments of constructors for suitable input and

outputstreams.OurexampleusesDataInputStreamandDataOutputStream,whichallowbinaryrepr

esentationsofprimitivedatatypestobereadandwritteninamachine-independentmanner.

TCP client makes connection to server,sends request and receives reply

TCP server makes a connection for each client and then echoes the client’s request

[Distributed Systems] Page 41

External data representation and marshalling:

To support RMI or RPC, any data type that can be passed as an argument or returned as a

result must be able to be flattened in an agreed format. An agreed standard for the

representation of data structures and primitive values is called an external data

representation.

Marshalling is the process of taking a collection of data items and assembling them into a

form suitable for transmission in a message. Unmarshalling is the process of disassembling

them on arrival to produce an equivalent collection of data items at the destination

Three alternative approaches to external data representation and marshalling are discussed

here:

1.CORBA’sCommonData Representation(CDR):

CDR can represent all of the data types that can be used as arguments and return values in

remote invocations in CORBA.

These consist of 15 primitive types, which include short (16-bit), long (32-bit), unsigned

short,unsignedlong, float (32-bit),double(64-bit),char, Boolean(TRUE, FALSE)-

Primitive types: CDR defines a representation for both big-endian and little-endian orderings.

Values are transmitted in the sender’s ordering, which is specified in each message. The

recipient translates if it requires a different ordering

Constructedtypes:Theprimitivevaluesthatcompriseeachconstructedtypeareaddedtoasequenceo

fbytes in a particular order, asshown in Figure4.7.

Figure4.7.

CORBACDR for constructed types

[Distributed Systems] Page 42

Type Representation

sequence length (unsigned long) followed by elements in order

string
length (unsigned long) followed by characters in order (can also have wide

characters)

array array elements in order (no length specified because it is fixed)

struct in the order of declaration of the components

enumerated unsigned long (the values are specified by the order declared)

union type tag followed by the selected member

Figure 4.8 shows a message in CORBA CDR that contains the three fields of a struct whose

respective types are string, string and unsigned long. The figure shows the sequence of bytes

with four bytes in each row

Figure4.8 CORBACDRmessage

indexin notes

Sequence of bytes 4bytes on representation

0–3 5 lengthofstring

4–7

8–11

"Smit"

"h "

‘Smith’

12–15 6 lengthofstring

16–19

20–23

"Lond"

"on"

‘London’

24–27 1984 unsignedlong

The flattened form represents a Person struct with value:{‘Smith’,‘London’,1984}

Marshalling in CORBA • Marshalling operations can be generated automatically from the

specification of the types of dataitems to be transmitted in a message

TheCORBAinterfacecompilergeneratesappropriatemarshallingandunmarshallingoperations

for the arguments and results of remote methods from the definitions of the types of their

parameters and results.

2. Java objects serialization:

In Java RMI, both objects and primitive data values may be passed as arguments and results

of method invocations

[Distributed Systems] Page 43

For example,

:publicclassPersonimplements Serializable

{

private String name;private String place;privateint year;

public Person(String aName, String aPlace, int aYear) {name=aName;

place = aPlace;year=aYear;

}

//followed by methods for accessing theinstance variables

}

In Java, the term serialization refers to the activity of flattening an object or a connected set

of objects into a serial form that is suitable for storing on disk or transmitting in a message

Deserialization consists of restoring the state of an object or a set of objects from their

serialized form

The information about a class consists of the name of the class and a version number. The

version number is intended to change when major changes are made to the class. It can be set

by the programmer or calculated automatically as a hash of the name of the class and

itsinstancevariables,methodsandinterfaces.Theprocessthatdeserializesanobjectcancheckthatit

has the correct version of the class.

Java objects can contain references to other objects. When an object is serialized, all the

objects that it references are serialized together with it to ensure that when the object is

reconstructed, all of its references can be fulfilled at the destination. References are serialized

as handles.

To serialize an object,itsclassinformationiswrittenout,followedby

thetypesandnamesofitsinstancevariables.Iftheinstancevariablesbelongtonewclasses,thentheircl

assinformationmustalsobewrittenout,followedby the types and names of their

instancevariables. This recursive procedure continues until the class information and types

and names of the instance variables of all of the necessaryclasses have been written out

As an example,consider the serialization of the following object:

Personp=newPerson("Smith","London",1984);

[Distributed Systems] Page 44

The serialized for mis illustrated in the following Figure

To make use of Java serialization, for example to serialize the Person object, create an

instance of the class Object Output Stream and invoke its write Object method, passing the

Person objects its argument. To desterilize an object from a stream of data, open an

ObjectInputStream on the stream and use its readObject method to reconstruct the original

object. The use of this pair of classes is similar to the use of DataOutputStreamand

DataInputStream

3. Extensible Markup Language(XML)

XML is used to enable clients to communicate with web services and for defining the

interfaces and other properties of web services. XML is extensible in the sense that users can

define their own tags, in contrast to HTML,which uses a fixed set of tags

Figure4.10XMLdefinition of the Person structure

<personid="123456789">

<name>Smith</name>

<place>London</place>

<year>1984</year>

<!--acomment-->

</person>

XML elements and attributes•

Elements: An element in XML consists of a portion of character data surrounded by matching

start and end tags. For example, one of the elements in Figure 4.10 consists of the data Smith

contained within the <name> ... </name> tag pair. Note that the

elementwiththe<name>tagisenclosedintheelementwiththe<personid="123456789">...

</person>tagpair.Theabilityofanelementtoencloseanotherelementallowshierarchic data to be

[Distributed Systems] Page 45

represented– a very important aspect of XML. An empty tag

hasnocontentandisterminatedwith/>insteadof>.Forexample,theemptytag

<european/> could be included within the<person>...</person>tag

XML elements can have attributes. By the use of attributes we can add the information about

the element.

<book publisher="Tata McGraw Hill"></book>Herepublisheris aattribute

In our above example id is an attribute

It is a matter of choice as to which items are represented as elements and which ones as

attributes

Names: The names of tags and attributes in XML generally start with a letter, but can also

start with an underline or a colon The names continue with letters, digits, hyphens,

underscores, colons or full stops. Letters are case-sensitive.

Parsing and well-formed documents • An XML document must be well formed – that is, it

must conform to rules about its structure. A basic rule is that every start tag has a matching

end tag. Another basic rule is that all tags are correctly nested– for example,

<x>..<y>..</y>..</x>is correct, whereas <x>..<y>..</x>..</y> is not. Finally, every XML

document must have single root element that encloses all the other elements. These rules

make it very simple to implement parsers for XML documents. When a parser reads an XML

document that is not well formed, it will report an error.

XML prolog:Every XML document must have a prologas its first line. The prolog must at

least specify the version of XML in use(which iscurrently1.0).For example:

<?XML version="1.0" encoding="UTF-8"standalone="yes"?>

The prolog may specify the encoding(UTF-8)which is default

XML Namespaces

XMLName space isused to avoid element name conflict in XMLdocument.

XML Namespace Declaration

An XML namespace is declared using the reserved XML attribute. This attribute name must

be started with"xmlns".

Let's see the XML namespace syntax:

[Distributed Systems] Page 46

<elementxmlns:name="URL">

Here,namespacestartswithkeyword"xmlns".Thewordnameisanamespaceprefix.TheURL is a

namespace identifier.

Let's take an example with two tables:

Table1:

<table>

<tr>

<td>Aries</td>

<td>Bingo</td>

</tr>

</table>

Table2:Thistablecarries information about a computer table.

<table>

<name>Computertable</name>

<width>80</width>

<length>120</length>

</table>

If you add these both XML fragments together, there would be a name conflict because both

have<table>element. Although they have different name and meaning.

We can getrid of thisnameconflictby usingnamespacesByUsingxmlnsAttribute

You can use xmlns attribute to define namespace with the following syntax:

<elementxmlns:name="URL">

Foreg:

<root>

[Distributed Systems] Page 47

<h:tablexmlns:h="http://www.abc.com/TR/html4/">

<h:tr>

<h:td>Aries</h:td>

<h:td>Bingo</h:td>

</h:tr>

</h:table>

<f:tablexmlns:f="http://www.xyz.com/furniture">

<f:name>Computertable</f:name>

<f:width>80</f:width>

<f:length>120</f:length>

</f:table>

</root>

XMLschemas:An XML schema is used to define the structure of anXMLdocument.It is like

DTD but provides more control on XML structure.

An XML schema forthe Person structure

<xsd:schemaxmlns:xsd=URL of XMLschema definitions>

<xsd:elementname="person"type="personType"/>

<xsd:complexTypename="personType">

<xsd:sequence>

<xsd:elementname="name" type="xs:string"/>

<xsd:elementname="place" type="xs:string"/>

<xsd:elementname="year"type="xs:positiveInteger"/>

</xsd:sequence>

<xsd:attributename="id"type="xs:positiveInteger"/>

</xsd:complexType>

</xsd:schema>

http://www.abc.com/TR/html4/
http://www.xyz.com/furniture

[Distributed Systems] Page 48

GroupCommunication

A multicast operation is more appropriate – this is an operation that sends a single message

from one process to each of the members of a group of processes, usually in such a way that

themembershipofthegroupis transparent to the sender.

IPmulticast–An implementation of multicast communication

A multicast group is specified by a Class D Internet address (see Figure 3.15) – that is, an

address whose first 4 bits are 1110 inIPv4

Being a member of a multicast group allows a computer to receive IP packets sent to the

group. The membership of multicast groups is dynamic, allowing computers to join or leave

at anytime and to join an arbitrary number of groups. It is possible to send datagram’s to a

multicast group without being a member

AnapplicationprogramperformsmulticastsbysendingUDPdatagramswithmulticastaddresses

and ordinary port numbers. It can join a multicast group by making its socket join the group,

enabling it to receive messages to the group.

The following details are specific toIPv4

MulticastroutersInternetmulticastsmakeuseofmulticastrouters,whichforwardsingledatagrams

to routers on other networks, where they are again multicast to local members. To limit the

distance of propagation of a multicast datagram, the sender can specify the number of routers

it is allowed to pass – called the time to live, or TTL for short.

Multicast address allocation Class D addresses (that is, addresses in the range 224.0.0.0

to239.255.255.255)arereservedformulticasttrafficandmanagedgloballybytheInternetAssigned

Numbers Authority(IANA).

Multicast addresses may be permanent or temporary. Permanent groups exist even when the

reareno members and therange224.0.6.000 to 224.0.6.127

The remainder of the multicast addresses is available for use by temporary groups,which

must be created before use and cease to exist when all the members have left

Java API to IP multicast • The Java API provides a datagram interface to IP multicast

through the class MulticastSocket,which is a subclass of DatagramSocket with the additional

capability

of being able to join multicast groups. The class Multicast Socket provides two alternative

[Distributed Systems] Page 49

constructors, allowing sockets to be created to use either a specified local port (6789, in

Figure4.14) or any free local port. A process can join a multicast group with a given multicast

address by invoking the join Group method of its multicast socket. Effectively, the socket

joins a multicast group at a given port and it will receive datagram’s sent by processes on

other computers to that group at that port. A process can leave a specified group by invoking

the leaveGroup method of its multicast socket.

In the example in Figure 4.14, the arguments to the main method specify a message to be

multicast and the multicast address of a group (for example, "228.5.6.7"). After joining that

multicast group, the process makes an instance of DatagramPacket containing the message

and sends it through its multicast socket to the multicast group address at port 6789. After

that, it attempts to receive three multicast messages from its peers via its socket, which also

belongs to the group on the same port. When several instances of this program are run

simultaneously on different computers, all of them join the same group, and each of them

should receive its own message and the messages from those that joined after it.

TheJavaAPIallowstheTTLtobesetforamulticastsocketbymeansofthesetTimeToLive

method.Thedefaultis1,allowingthemulticasttopropagateonlyon the local network.

Figure4.14Multicastpeerjoinsagroupandsendsandreceivesdatagrams

import java.net.*;importjava.io.*;

publicclassMulticastPeer{

publicstatic voidmain(Stringargs[]){

args give message contents & destination multicast group (e.g.

"228.5.6.7")MulticastSockets=null;

try{

InetAddressgroup=InetAddress.getByName(args[1]);s=newMulticastSocket(6789);s.joinGro

up(group);

byte [] m = args[0].getBytes();DatagramPacketmessageOut=

new DatagramPacket(m, m.length, group, 6789);s.send(messageOut);

byte[]buffer=newbyte[1000];

for(inti=0;i<3;i++){//getmessagesfromothersin groupDatagramPacketmessageIn=

[Distributed Systems] Page 50

new DatagramPacket(buffer, buffer.length);s.receive(messageIn);

System.out.println("Received:"+newString(messageIn.getData()));

}

s.leaveGroup(group);

}catch(SocketExceptione){System.out.println("Socket:"+e.getMessage());

}catch(IOExceptione){System.out.println("IO:"+e.getMessage());}finally{if(s!=

null)s.close();}

}

}

Distributed Objects and Remote Invocation

Programming Models for Distributed Application:

• Remote procedure call – client calls the procedures in a server program that is

running in a different process.

• Remote method invocation (RMI) – an object in one process can invoke

methods of objects in another process

• Event notification – objects receive notification of events at other objects for

which they have registered.

Middleware:

The important aspects of middleware are:

 Location transparency: In RPC ,the client that calls a procedure cannot tell

whether the procedure runs in the same process or in different process, possibly

on a different computer.

Similarly in RMI the object making the invocation cannot tell whether the object it invokes is

local or not and does not need to know the location.

[Distributed Systems] Page 51

 Itisalsofreefromthespecificsofcommunicationprotocols,operatingsystem and

communication hardware

Interfaces:

In most of the programming languages program is divided into set of modules and these

modules communicate with each other. In distributed systems these modules are present

indifferent processes. The interface of a module specifies the procedures and the variables

that can be accessed from other modules.

There are two types of interfaces:

 Service interface: In client server model ,The server specifies set of procedures

and input-output parameters available to the client.

 Remote interface: In Distributed object model ,a remote interface specifies the

methods of an object that are available for invocation by other objects and also

the input output arguments.

Interface Definition Language: It provides a notation for defining interfaces. It can also

specify type of arguments.

Examples:CORBAIDL for RMI,SunXDR for RPCCORBA IDLExample:

[Distributed Systems] Page 52

In the above example, add person and get person are methods that are available for RPC

Communication between Distributed Objects:

1. The Object Model:

 An object encapsulates both data and methods. Objects can be accessed via

object references.

 An interface provides a definition of the signatures of a set of methods

 Actions are performed by method invocations:

The invocation of a method has three effects:

i. The state of the receiver may be changed

ii. A new object maybe instantiated

iii. Further invocations on methods in other objects may take place.

 Exceptions may be thrown to caller when an error occurs.

 Garbage collection frees the space occupied by objects when they are no

 longer needed.

The Distributed Objects Model:

Here we discuss the object model that is applicable to distributed objects.

 Remote method invocation – Method invocations between objects in different

processes,whether in the same computer of not.

 Localmethodinvocation–Methodinvocationsbetweenobjectsinthesameprocess.

[Distributed Systems] Page 53

 Remote object – Objects that can receive remote invocations Remote and local

method invocations areshowninFigure5.3.

• Each process contains objects, some of which can receive remote invocations,

others only local invocations

• Those that can receive remote in vocations are called remoteobjects

• Objects need to know the remote object reference of an object in another

process in order to invoke its methods

• the remote interface specifies which methods can be invoked remotely. The two

fundamental concepts that are heart of distributed object model are:

1. Remote object reference: An object must have the remote object reference

of an object in order to do remote invocation of an object. Remote object

references may be passed as input arguments or returned as output

arguments

2. Remote interface: Objects in other processes can invoke only the methods

that belong to its remote interface (Figure5.4).

CORBA– uses IDL to specify remote interface

JAVA – extends interface by the Remote keywordFigure5.4

A remote object and its remote interface

[Distributed Systems] Page 54

Here the methods m1,m2,m3 are provided in the remote interface .so, client can access only

these methods.

2.DesignIssuesforRMI:

Two important design issues in making RMI a natural extension of local method

are:1.Invocationsemantics and ii. Transparency

1. Remote Invocation Semantics:

To provide a more reliable request-reply protocol, these fault-tolerant measures can be

employed:

Retry request message: whether to transmit the request message until either a reply is

received or server is assumed to be failed.

Duplicate Filtering: when transmissions are used , whether to filter out duplicate requests at

theserver.

Retransmission of results: whether to keep a history of result messages to enable lost results

to be retransmitted without re-executing the operations at theserver.

Combinations of these measures lead to a variety of possible semantics for the reliability of

remote invocations.

The choices of RMI invocation semantics are defines as follows:

i. Maybe invocation semantics:Remote method may be executed once or not at all. If

then result message is not received after a timeout there will be no retries,it is

uncertain whether the method has been executed. . On the other hand, the procedure may have

been executed and the result message has been lost. Maybe semantics

isusefulonlyforapplicationsin whichoccasional failedcalls areacceptable

 It suffers the following Failures:

1. Omission failures if the invocation or result message is lost.

2. Crash failures when the server containing the remote object fails

ii . At-least-once semantics: With at-least-once semantics, the invoker receives either a

result, in which case the invoker knows that the procedure was executed at least once,

or an exception in forming it that no result was received.

[Distributed Systems] Page 55

 At-least-once semantics can suffer from the following types of failure:

 Crash failures when the server containing the remote procedure fails;

 arbitrary failures – in cases when the request message is retransmitted, the

remote server may receive it and execute the procedure more than once, possibly

causing wrong values to be stored or returned

iii. At-most-once semantics: With at-most-once semantics, the caller receives either a

result, in which case the caller knows that the procedure was executed exactly once,

or an exception informing it that no result was received, in which case the procedure

will have been executed either once or not at all.

Invocation Semantics:

2. Transparency Issues:

 Goal is to make a remote invocation as similar as possible a local invocation The

Issues (Differences from the local invocation)faced here are:

1. Syntax maybemadeidenticalbutbehavioraldifferencesexists.Thecausecouldbe

 Failure and latency.

2. Exceptions and exception handling are needed

3. Implementation of RMI:

Figure5.6 shows an object A invokes a method in a remote object B

[Distributed Systems] Page 56

Remote Reference Module: Responsibilities:

i. Translation between local and remote object references

ii. theremotereferencemoduleineachprocesshasaremoteobjecttablethatincludes:

 An entry for all the remote objects held by the process. For example in the

above fig the remote object B will be recorded in the table at theserver

 An entry for each local proxy. for example in the above fig the proxy for B

will be recorded in the table at the client.

RMI Software:

Proxy—provides remote invocation transparency

 marshal arguments, unmarshal results, send and receive messages Dispatcher–

 handles transfer of requests to correct method

 receive requests, select correct method, and pass on request message Skeleton –

 implements methods of remote interface

 unmarshal arguments from request, invoke the method of the remote object, and

marshal the results

RMI Server and Client Programs:

Server: contains

 classesfordispatchers,skeletons and remote objects

 initializationsectionforcreatingsomeremoteobjects

 registration of remote objects with the binderClientcontains:

[Distributed Systems] Page 57

 classes for proxies of all remote objects

 binder to look up remote object references

RMI Binder and Server Threads:

A binder in a distributed system is a separate service that maintains a table containing

mappings from textual names to remote object references

Server threads:

 sometimes implemented so that remote invocation causes a new thread to be

created to handle the call

 server with several remote objects might also allocate separate threads to handle

each object Activation of remote objects:

 A remote object is described as active when it is a running process.

 A remote object is described as passive when it can be made active if requested.

 An object that can live between activations of processes is called a persistent

object

Allocation servicehelpsclients to locate remote objects from their remote references

RMI Distributed Garbage Collection:

Aim-recover memory if no reference t o an object exists. If there is a reference object should

still exists.

The distributed garbage collector works in cooperation with the local garbage collector.

 Each server has table(Beholders)that maintains list of references to an object.

 When the client C first receives a reference to an object B, it invokes add

Ref(B)and then creates a proxy. The server adds C to the remote object holder

Beholders.

 When remote object B is no longer reachable, it deletes the proxy and invokes

recovered(B).

 When Beholders is empty, the server reclaims the space occupied by B.

[Distributed Systems] Page 58

Remote Procedure Call:

A RPC call is very similar to RMI ,in which a client program calls a procedure in another

program running in server process

Figure5.7Roleofclientandserverstub procedures in RPC

The software components required to implement RPC are shown in the above Figure.

The stub procedure behaves like a local procedure to the client, but instead of executing the

call, it marshals the procedure identifier and the arguments into a request message, which it

sends via its communication module to the server. When the reply message arrives, it

unmarshals the results.

The server process contains a dispatcher together with one server stub procedure and one

service procedure for each procedure in the service interface

The dispatcher selects one of the server stub procedures according to the procedure identifier

in the request message

The server stub procedure then unmarshals the arguments in the request message, calls the

corresponding service procedure and marshals there turn values for the reply message

The service procedures implement the procedures in the service interface

Client and servers tub procedures and the dispatcher can be generated automatically by an

interface compiler from the interface definition no f the service.

[Distributed Systems] Page 59

Case study :Sun RPC:

• It is designed for client-server communication over Sun NFS network file

system.

• UDP or TCP can be used. If UDP is used, the message length is restrictedto64

KB

Interface Definition Language:

 The notation is rather primitive compared to CORBA IDL or JAVA as shown in

Figure5.8.

 Instead of no interface definition, a program number and a version number are

supplied.

 The procedure number is used as a procedure definition.

 Single input parameter and output result are being passed.

Figure5.8

Files interface in SunXDR

 For example, see the XDR definition in Figure 5.8 of an interface with a pair of

procedures for writing and reading files. The program number is 9999 and the version

number is 2. The READ procedure (line 2) takes as its input parameter a structure with three

components specifying a file identifier, a position in the file and the number of bytes

required. Its result is a structure containing the number of bytes returned and the file data.

The WRITE procedure (line 1) has no result. The WRITE and READ procedures are given

[Distributed Systems] Page 60

numbers 1 and 2. The number 0 is reserved for a null procedure, which is generated

automatically and is intended to be used to test whether a server is available.

 The interface compiler rpcgen can be used to generate the following from an interface

definition:

Client stub procedures;

Server main procedure, dispatcher and server stub procedures;

XDR marshalling and unmarshalling procedures for use by the dispatcher and client and

server stub procedures

Binding • Sun RPC runs a local binding service called the port mapper at a well-known port

number on each computer. Each instance of a port mapper records the

programnumber,version number and port number in use by each service running locally.

When a server starts up it registers its program number, version number and port number with

the local port mapper.When a client starts up, it finds out the server’s port by making a

remote request to the port mapper at the server’s host, specifying the program number and

version number.

Events and Notifications

• The idea behind the use of events is that one object can react to a change

occurring in another object.

• The actions done by the user are seen as events that cause state changes in

objects.

• The objects are notified whenever the state changes.

• Local event model can be extended to distributed event-based systems by using

the publish-subscribe paradigm.

In publish-subscribe paradigm:

• An object that has event publishes.

• Those that have interest subscribe.

• Objects that represent events are called notifications.

• Distributed event-based systems have two main characteristics:

• Heterogeneous – Event-based systems can be used to connect heterogeneous

[Distributed Systems] Page 61

 components in the Internet.

• Asynchronous – Notification are sent asynchronously by event-generating

objects to those subscribers

 The architecture of distributed event notification specifies the roles of participants as

in Fig.5.10:

 It is designed in a way that publishers work independently from subscribers.

 Event service maintains a database of published events and of subscribers’

interests.

Fig.5.10: Architecturefordistributedeventnotification

• The roles of the participants are:

 Object of Interest – This is an object experiences change of state, as a result of

its operations being invoked.

 Event – An event occurs at an object of interest as the result of the completion

of a method invocation.

 Notification – A notification is an object that contains information about an

event.

 Subscriber – A subscriber is an object that has subscribed to some type of

events in another object.

[Distributed Systems] Page 62

 Observer objects – The main purpose of an observer is to separate an object of

interest from its subscribers.

 Publisher – This is an object that declares that it will generate notifications of

particular types of event.

Figure5.10showsthreecases:

 An object of interest inside the event service sends notification directly to the

subscribers.

 An object of interest inside the event service sends notification via the observer

to the subscribers.

 The observer queries the object of interest outside the event service and sends

notifications to the subscribers.

Roles for observers–the task of processing notifications can be divided among observers:

 Forwarding – Observers simply forward notifications to subscribers.

 Filtering of notifications – Observers address notifications to those subscribers who

find these notifications are useful.

 Patterns of events–Subscribers can specify patterns of events of interest.

 Notification mailboxes – A subscriber can set up a notification mailbox which

receives the notification on behalf of the subscriber.

JAVARMI (RemoteMethodInvocation)

The RMI (Remote Method Invocation) is an API that provides a mechanism to create

distributed application in java.TheRMIallowsanobject toinvokemethodsonanobjectrunningin

another JVM.

The RMI provides remote communication between the applications using two objects

proxy(stub)and skeleton.

RMI uses proxy and skeleton object for communication with the remote object.

proxy

The stub is an object, acts as a gateway for the client side. All the outgoing requests are

routed through it. It resides at the client side and represents the remote object. When the

caller invokes method on the stub object, it does the following tasks:

[Distributed Systems] Page 63

1. Itinitiates a connection with remoteVirtual Machine(JVM),

2. It writes and transmits(marshals)the parameters to the remote Virtual

Machine(JVM),

3. It waits forthe result

4. It reads(unmarshals)the return value or exception, and

5. It finally,returns the value to the caller.skeleton

 The skeleton is an object,acts as a gateway forthe server side object. All the in coming

requests are routed through it. When the skeleton receives the incoming request, it does the

following tasks:

1. It reads the parameter forthe remote method

2. It invokes the method on the actual remote object,and

3. It writes and transmits (marshals)the result to the caller.

JavaRMI Example

Thereare6 steps to write the Microgram.

1. Create the remote interface

2. Provide the implementation of the remote interface

3. Compile the implementation class and create the stub and skeleton objects using

thermictool

4. Start the registry service by rmiregistrytool

5. Create and start the remote application

6. Create and start the client application

RMI Example

 In this example, we have followed all the 6 steps to create and run the rmi application.

The client application needs only two files, remote interface and client application. In the rmi

application, both client and server interact with the remote interface. The client application

invokes methods on the proxy object, RMI sends the request to the remote JVM. The return

value is sent back to the proxy object and then to the client application.

[Distributed Systems] Page 64

1) create the remote interface

 For creating the remote interface, extend the Remote interface and declare

theRemoteException with all the methods of the remote interface. Here, we are creating a

remote interface that extends the Remote interface. There is only one method named add()

and itdeclaresRemoteException.

importjava.rmi.*;

publicinterfaceAdderextends Remote

{

publicintadd(intx,inty)throwsRemoteException;

}

2) Provide the implementation of the remote interface

 Now provide the implementation of the remote interface. For providing the

implementation of the Remote interface, we need to

o EitherextendtheUnicastRemoteObject class,

o or use the export Object() method of the Unicast Remote Object class

In case, you

extendtheUnicastRemoteObjectclass,youmustdefineaconstructorthatdeclaresRemoteExceptio

n.

[Distributed Systems] Page 65

importjava.rmi.*;

importjava.rmi.server.*;

publicclassAdderRemoteextendsUnicastRemoteObjectimplementsAdder

{

AdderRemote()throwsRemoteException

{

super();

}

publicintadd(intx,inty)

{returnx+y;}

}

3) create the stub and skeleton objects using the rmic compilerrmicAdderRemote

4) RMIREGISTRY:

 Rmi registry is the binder for java RMI.this is maintained in every server hosting

remoteobjects.ItmaintainsatablemappingtextualURLstylenamestoreferencesto remoteobjects

.hosted on that computer.It is accessed by the mehods of naming class.which takes the url

formatted string of the following form:

//computername:port/object name

 Where computername:port refers to the location of the RMI registry;TheNamingclass

provides 5 methods.

1. Remotelookup(stringname):methodisusedbyclientstolookuparemoteobjectbynam

e.A remote object reference is returned.

2. void rebind(string name, Remote obi) : this method is used by a server to

register are mote object by name

3. void bind(string name, Remote obi) : this method is used by a server to register

are mote object by name but if the name is already bound to a remote

objectreferenceanexception is thrown

4. void unbind(stringname,Remoteobj):this method removes a binding

5. string[] list():It returns an array of the names of the remote objects bound in the

registry

[Distributed Systems] Page 66

5) Create and run the server application

Now rmi services need to be hosted in a server process.

In this example,we are binding the remoteobject by the names.

importjava.rmi.*;

importjava.rmi.registry.*;

publicclassMyServer{

publicstaticvoidmain(Stringargs[]){

try{

Adder s=newAdderRemote();Naming.rebind("rmi://localhost:5000/sonoo",s);

}catch(Exceptione){System.out.println(e);}

}

}

6) Createandruntheclientapplication

 At the client we are getting the stub object by the lookup() method of the Naming

class and invoking the method on this object. In this example, we are running the server

andclientapplications,inthesamemachinesoweareusinglocalhost.Ifyouwanttoaccessthe remote

object from another machine, change the local host to the host name (or IPaddress)where the

remote object is located.

importjava.rmi.*;

publicclassMyClient{

publicstaticvoidmain(Stringargs[]){

try{

Adder

stub=(Adder)Naming.lookup("rmi://localhost:5000/sonoo");System.out.println(stub.add(34,4

));

}catch(Exceptione){}

}

}

[Distributed Systems] Page 67

DISTRIBUTED SYSTEMS

UNIT-IV

 A file system is responsible for the organization, storage, retrieval, naming, sharing,

and protection of files. File systems provide directory services, which convert a file name

(possibly a hierarchical one)into an internal identifier (e.g. inode, FAT index). They contain a

representation of the file data itself and methods for accessing it (read/write). The file system

is responsible for controlling access to the data and for performing low-level operations such

as buffering frequently used data and issuing disk/O requests.DFS makes it convenient to

share information and files among users on a network in a controlled and authorized way.

The server allows the client users to share files and store data just like they are storing the

information locally. However, the servers have full control over the data and give access

control to the clients.

 A distributed file system is to present certain degrees of transparency to the user and

the system: Access transparency: Clients are unaware that files are distributed and can

access them in the same way as local files are accessed.

Location transparency: A consistent name space exists encompassing local as well as

remote files.The name of a file does not give it location.

Concurrency transparency: All clients have the same view of the state of the file system.

This means that if one process is modifying a file, any other processes on the same system or

remote systems that are accessing the files will see the modifications in a coherent manner.

Failure transparency: The client and client programs should operate correctly after a server

failure. Heterogeneity: File service should be provided across different hardware and

operating system platforms.

Scalability: The file system should work well in small environments (1 machine, a dozen

machines)and also scalegracefully to huge ones(hundredsthroughtensofthousandsof systems).

Replication transparency: To support scalability, we may wish to replicate files across

multiple servers.Clients should be unaware of this.

Migrationtransparency:Filesshouldbeabletomovearoundwithouttheclient'sknowledge.

[Distributed Systems] Page 68

Supportfine-

graineddistributionofdata:Tooptimizeperformance,wemaywishtolocateindividualobjectsnear

the processes that use them.

Tolerancefornetworkpartitioning:Theentirenetworkorcertainsegmentsofitmaybeunavailable

to a client during certain periods (e.g. disconnected operation of laptop). The file system

should be tolerant of this.

File service types

 To provide a remote system with file service, we will have to select one of two

models of operation.One of these is the upload/download model. In this model, there are two

fundamental operations: read file transfers an entire file from the server to the requesting

client, and write file copies the file back to the server. It is a simple model and efficient in

that it provides local access to the file when it is being used. Three problems are evident. It

can be wasteful if the client needs access to only a small amount of the file data. It can be

problematic if the client doesn't have enough space to cache the entire file.

 Another important distinction in providing file service is that of understanding the

difference between directory service and file service. A directory service, in the context of

file systems, maps human-friendly textual names for files to their internal locations, which

can be used by the file service. The file service itself provides the file interface (this is

mentioned above). Another component of file distributed file systems is the client module.

This is the client-side interface for file and directory service. It provides a local file system

interface to client software (for example, the vnodefilesystem layer of a UNIX kernel).

File system were originally developed for centralized computer systems and desktop

computers .to disk storage.

resources.

become more complex.

jectsystems(CORBA,Java)andtheweb,thepicturehas

[Distributed Systems] Page 69

Storage systems and their properties

 Sharing Persistent Distributed

cache/replicas

Consistency

maintenance

Example

Main memory No No No 1 RAM

File systemn No Yes No 1 UNIX file

system

Distributed file

system

Yes Yes Yes Yes Sun NFS

web Yes Yes Yes No Web server

Distributed shared

memory

Yes No Yes Yes Ivy(DSM)

Remote

objects(RMI/ORB)

Yes No No 1 CORBA

Persistent object

store

Yes Yes No 1 CORBA

persistent state

service

Peer to peer storage

system

Yes Yes Yes 2 Ocean Store

file system modules:

Directorymodule: RelatesfilenamestofileIDs

Filemodule: Relatesfile IDstoparticularfiles

Access controlmodule: Checks permission for operation requested

File access module: Read or writes file data or attributes

Block module: Accesses and allocates disk blocks

Device module: Disk I/O and buffering

 The below table Summarizes the main operations on files that are available to

applications in UNIX systems.

[Distributed Systems] Page 70

List out the UNIXfilesystem Operations:

fieldes=open(name,mode)fieldes=create(name,mode)status=close(fieldes)count=read(fieldes,

buffer,n)count=write(fieldes,buufer,n)pos=Iseek(filedes,offset,whence)status=unlink(nmae)st

atus=link(name1,nmae2)status=stat(name,buffer)

List out the transparencies in file system.

 Access transparency

 Location transparency

 Mobility transparency

 Performance transparency

 Scaling transparency

What is meant by concurrency control:

 Changestoafilebyoneclientshouldnotinterferewiththeoperationofotherclientssimultane

ously accessing or changing the same file. This is well-known issue of concurrencycontrol

.The need for concurrency control for access to shared data in many applicationsIswidely

accepted and techniques are known for its implementation ,but they are costly .Mostcurrent

file services follow morden UNIX standards in providing advisery or mandatory file

orrecord-levellocking.

[Distributed Systems] Page 71

What is file replication:

In a file service that supports replication, a file may be represented by several copies

of its contents at different locations. This has two benefits-its enables multiple servers to

share the load of providing a service to clients accessing the same set of files, enhancing the

scalability of the service, and it enhances fault tolerance by enabling clients to locate another

server that holds a copy of the file when one has failed. Few file services support replication

fully, but most support the catching of files or portions of files locally,alimited form of

replication.

What is meant by directory services:

 The directory services provide a mapping between text names for files and their

UFIDs. Client may obtain the UFIDs of a file by quoting its text name to the directory

services. The directory services provide the function needed to generate directories, to add

new file name to directories and to obtain UFIDs from directories. It is client of the flat file

services; its directory is stored infilesoftheflatservices.Whenahierarchicfile-

namingschemeisadoptedasinUNIX,directorieshold references tootherdirectories.

Case studies :

File service architecture • This is an abstract architectural model that underpins both NFS

and AFS.Itisbaseduponadivisionofresponsibilitiesbetweenthreemodules–

aclientmodulethatemulatesa conventional file system interface for application programs, and

server modules, that perform operations for clients on directories and on files. The

architecture is designed to enable a stateless implementation of the server module.

Sketch the file service architecture:

[Distributed Systems] Page 72

List the flat file service operation.

Read(file/d,I,N)>data-throws bad position -if1≤ 1≤length(file):reads a sequence of up to

NitemsFrom a file starting at item/andreturnsit in data

Write(File/D,I,Ddata)-throws bad position -if1≤1≤length(file)+1: writes a sequence of

datatoaFile,starting at item1,extendingthefileif necessary

Create()->Field -createsanewfileoflength0 and delivers aUFID for it

Delete(Field) -removes the file from the file store

Get Attributes(Field)->> -returns the file attributes forth file

Set Attributes(FileID) -setsthefileattributes(only those attributes that not Shaded in)

List the directory service operation.

SUN NFS • Sun Microsystems’s Network File System(NFS) has been widely adopted in

industry and in academic environments since its introduction in 1985. The design and

development of NFS were undertaken by staff at Sun Microsystems in 1984. Although

several distributed file services had already been developed and used in universities and

research laboratories, NFS was the first file service that was designed as a product. The

design and implementation of NFS have achieved success both technicallyand commercially.

Sun’sNetwork File System:

The earliest successful distributed system could be attributed to Sun Microsystems, which

developed the Network File System (NFS). NFSv2 was the standard protocol followed for

many years, designed with the goal of simple and fast server crash recovery. This goal is of

[Distributed Systems] Page 73

utmost importance in multi-client and single-server based network architectures because a

single instant of server crash means that all clients are unserviced. The entire system goes

down.

Stateful protocols make things complicated when itcomes to crashes. Consider a client A

trying to access some data from the server. However, just after the first read, the server

crashed. Now, when the server is up and running, client A issues the second read request.

However, the server does not know which file the client is referring to, since all that

information was temporary and lost during the crash.

Stateless protocols come to our rescue. Such protocols are designed so as to not store any

stateinformationintheserver.Theserverisunawareofwhattheclientsaredoing—whatblocksthey

are caching, which files are opened by them and where their current file pointers are.

Theserver simply delivers all the information that is required to service a client request. If a

server crash happens, the client would simply have to retry the request. Because of their

simplicity,NFS implements a stateless protocol.

File Handles:

NFS uses file handles to uniquely identify a file or a directory that the current operation is

being performed upon. This consists of the following components:

 Volume Identifier – An NFS server may have multiple file systems or

partitions. The volume identifier tells the server which file system is being

referred to.

 InodeNumber– This number identifies the file within the partition.

 GenerationNumber–This number isused while reusing an inode number.

File Attributes:

 “File attributes” is a term commonly used in NFS terminology. This is a collective

term for the

trackedmetadataofafile,includingfilecreationtime,lastmodified,size,ownershippermissionsetc.

This can be accessed by calling stat()on the file.

NFS architecture.

https://www.geeksforgeeks.org/difference-between-stateless-and-stateful-protocol/

[Distributed Systems] Page 74

Distributed Systems Page139

NFS access control and authentication:

server on each request.

smust be checked by the’s access permission attribute.

are inserted by the RPC system.

solution.

Mount service:

mount(remotehost,remotedirectory,localdirectory)

Servermaintainsatableofclientswhohavemountedfilesystemsatthatserver.

<IPaddress,port number,file handle>

-mountedorsoft-mountedinaclientcomputer. trates a Client with two remotely

mounted filestores.

[Distributed Systems] Page 75

Server caching:

Similar to UNIX file caching for local files:

newer pages.Read-ahead and delayed-write optimizations.

remotecaseitdoesn'toffernecessarysynchronizationguaranteestoclients.

Achievement of transparencies is other goals of NFS:

-performance distributed service.

Access transparency:The API is the UNIX system call interface for both local and remote

files.

Locationtransparency:Namingoffilesystemsiscontrolledbyclientmountoperations,but

transparencycan be ensured by an appropriate system configuration.

Mobility transparency: Hardly achieved; relocation of files is not possible, relocation of file

systems is possible, but requires updates to client configurations.

Scalabilitytransparency:Filesystems(filegroups)maybesubdividedand allocated to

separate servers.

Replication transparency:

–Limitedtoread-

onlyfilesystems;forwritablefiles,theSUNNetworkInformationService(NIS)runsover NFSand

is used to replicate essential system files.

CaseStudy:The Andrew File System(AFS):

AFS differs markedly from NFS in its design and implementation. The differences are

primarily attribute able to the identification of scalability as the most important design goal.

AFS is designed to perform well with larger numbers of active users than other distributed

file systems. The key strategy for achieving capability is the caching of whole files in client

nodes.

AFS has two unusual design characteristics:

Whole-file serving: The entire contents of directories and files are transmitted to client

[Distributed Systems] Page 76

computers by AFS servers(inAFS-3,fileslargerthan64kbytesare transferredin64-kbytechunks).

Whole file caching: Once a copy of a file or a chunk has been transferred to a client

computer it is stored in a cache on the local disk. The cache contains several hundred of the

files most recently used on that computer. The cache is permanent, surviving reboots of the

client computer. Local copies of files are usedtosatisfyclients’

openrequestsinpreferencetoremotecopieswheneverpossible.

Like NFS, AFS provides transparent access to remote shared files for UNIX programs

running on work stations.

OPERATIONOFAFS:

i) When a user process in a client computer issues an open system call for a file in

the shared -file space and there is not a current copy of the file in the local

cache, the server holding the file is located and is sent a request for a copy of the

file.

ii) ThecopyisstoredinthelocalUNIXfilesystemintheclientcomputer.Thecopyisthenop

enedand the resulting UNIX file descriptor is returned to the client.

iii) Subsequentread,writeandotheroperationsonthefilebyprocessesintheclientcompute

rareappliedtothelocalcopy.

iv) When the process in the client issues a close system call, if the local copy has

been updated its contents are sent back to the server. The server updates the file

contents and the timestamps on thefile.

Thecopyontheclient’slocaldiskisretainedincaseitisneededagainbyauser-

levelprocessonthe same workstation.

 AFS is a distributed file system, with scalability as a major goal. Its efficiency can be

at tribute to the following practical assumptions(as also seen in UNIX file system):

 Files are small(i.e.entire file can be cached)

 Frequency of reads much more than those of writes

 Sequential access common

 Files are not shared(i.e. read and written by only one user)

[Distributed Systems] Page 77

 Shared files are usually not written

 Diskspace is plentiful

 AFSdistinguishesbetweenclientmachines(workstations)anddedicatedservermachines.

Caching files in the client side cache reduces computation at the server side, thus enhancing

performance. However, the problem of sharing files arises.

Tosolvethis,allclientswithcopiesofafilebeingmodifiedbyanotherclientarenot informed the

moment the client makes changes. That client thus updates its copy, and the changes are

reflected in the distributed file system only after the client closes the file.

The key software components in AFS are:

 Vice: The server side process that resides on top of the Unix kernel, providing

shared file services to each client

 Venus: The client side cache manager which acts as an interface between the

application program and the Vice

 All the files in AFS are distributed among the servers. The set of files in one server is

referred to as a volume. In case a request cannot be satisfied from this set of files, the vice

server informs the client where it can find the required file.

The basic file operations can be described more completely as:

 Open a file: Venus traps application generated file open system calls, and checks

whether it can be serviced locally (i.e. a copy of the file already exists in the

cache) before requesting Vice for it. It then returns a file descriptor to the calling

application. Vice, along with a copy of the file, transfers a callback

promise,whenVenus requests for a file.

 Read and Write: Reads/Writes are done from/to the cached copy.

 Close a file: Venus traps file close system calls and closes the cached copy of

the file. If the file had been updated, it informs the Vice server which then

replaces its copy with the updated one, as well as issues callbacks to all clients

holding call back promises on this file. On receiving a call back, the client

discards its copy,and works on this fresh copy.

 The server wishes to maintain its states at all times, so that no information is lost due

[Distributed Systems] Page 78

to crashes. This is ensured by the Vice which writes the states to the disk. When

theservercomesupagain,italsoinformsalltheserversaboutitscrash,sothatinformation about

updates may bypassed toot.

Distributed shared memory(DSM)

Shared memory is the memory block that can be accessed by more than one program. A

shared memory concept is used to provide a way of communication and provide less

redundant memory management.

Distributed Shared Memory abbreviated as DSM is the implementation of shared memory

concept in distributed systems. The DSM system implements the shared memory models in

loosely coupled systems that are deprived of a local physical shared memory in the system. In

this type of system distributed shared memory provides a virtual memory space that is

accessible by all the system (also known as nodes)of the distributed hierarchy.

Message passing versus DSM

The message passing and DSM can be compared based on services they offer and in terms of

their efficiency

[Distributed Systems] Page 79

Message Passing Distributed Shared Memory

Services Offered:

The processes share variables directly,

sonomarshallingandunmarshalling.Sharedv

ariablescanbenamed,storedandaccessedin

DSM.

Variables have to be

marshalledfromoneprocess,transmittedandunmar

shalledintoothervariablesatthereceivingprocess.

Processes can communicate with

 other

Here,aprocess does not have private

processes. They can be protected fromone Address space So on eprocesscanalterthe

anotherbyhavingprivateaddress spaces. executionofother.

This technique can be used in Thiscannotbeusedtoheterogeneous

heterogeneouscomputers. computers.

Synchronization between processes is Synchronization is through locks and

throughmessagepassingprimitives. semaphores.

Processes communicating via message Processes communicating through

 DSM

passingmustexecuteatthesametime. may execute with non-

overlapping

 lifetimes.

Efficiency:

Any particular read or update may or

maynotinvolvecommunicationbytheunderly

ing runtime support.

Allremotedataaccessesareexplicitandtherefore

the programmer is always

awareofwhetheraparticularoperationisin-

processorinvolvestheexpenseofcommunication.

Synchronizationmodel:

 Manyapplicationsapplyconstraintsconcerningthevaluesstoredinsharedmemory.).

For example, if a and b are two variables stored in DSM, then aconstraint might

be that a = b always. If two or more processes execute thefollowingcode:

 a :=a+1;

 b :=b+1;

thenaninconsistencymayarise.Supposeaandbareinitiallyzeroandthatprocess1

gets as far as setting a to 1. Before it can increment b, process 2 sets a to 2 and b to

[Distributed Systems] Page 80

1.Theconstraint hasbeenbroken.Thesolutionistomakethiscodefragmentintoacriticalsection:

tosynchronize processes to ensurethat onlyonemayexecute it atatime.

 Inorder touseDSM,then,adistributedsynchronization

serviceneedstobeprovided,whichincludesfamiliarconstructssuch as locks

andsemaphores

Consistencymodel

 TheissueofconsistencyarisesforasystemsuchasDSM, which replicates thecontents

ofsharedmemorybycachingit atseparate computers.

 eachprocesshas alocalreplicamanager,whichholds

cachedreplicasofobjects.Inmostimplementations, data is read from local replicas

for efficiency, but updates have to bepropagatedto theother replica managers

 Consideranapplicationinwhichtwoprocessesaccesstwovariables,aandb(Figure18.

3),which areinitialized to zero.

 Process 2 increments a and b, in that order. Process 1 reads the values of b and a

intolocalvariablesbrandar,inthatorder.Notethatthereisnoapplication-

levelsynchronization.

 Intuitively, process 1 should expect to see one of the following combinations

ofvalues, depending upon the points at which the read operations applied to a

and b(implied in the statements br := b and ar := a) occur with respect to

process 2’sexecution: ar = 0, br = 0; ar = 1, br = 0; ar = 1, br = 1. In other

words, the conditionar br should always be satisfied and process 1 should print

‘OK’. However, a DSMimplementation might deliver the updates toa and b out

of order to the replicamanagerforprocess1,inwhichcasethecombinationar =0,br =

1could occur.

[Distributed Systems] Page 81

Figure18.3 Two processes accessing shared variables

 The main consistency models that can be practically realized in DSM

implementationsaresequential consistencyand modelsthat arebased on weakconsistency.

Thecentralquestiontobeaskedinordertocharacterizeaparticularmemoryconsistencymodel is

this:when areadaccessismadeto amemorylocation,whichwriteaccesses to the location are

candidates whose values could be supplied to the read?

Attheweakestextreme,theansweris:anywritethatwasissuedbeforetheread.

Atthestrongestextreme,allwrittenvaluesareinstantaneouslyavailabletoallprocesses: a read

returns the most recent write at the time that the read takes place. Thisdefinition is

problematic in two respects. First, neither writes nor reads take place at asingle point in time,

so the meaning of ‘most recent’ is not always clear. Each type ofaccesshas awell-definedpoint

of issue,but theycomplete atsome later time

 Linearizability is more usually called atomic consistency in the DSM literature. We

now restatethedefinition oflinearizability

 A replicated shared object service is said to be linearizable if for any execution there

issome interleaving of the series of operations issued by all the clients that satisfies

thefollowingtwo criteria:

L1: The interleaved sequence of operations meets the specification of a (single)

 correctcopyof theobjects.

L2: The order of operations in the interleaving is consistent with the real times at

 whichtheoperations occurred in theactual execution.

 Consider the simple case where the shared memory is structured as a setof

variablesthatmaybereadorwritten.Theoperationsareallreadsandwrites,whichweintroduced a

[Distributed Systems] Page 82

notation for in Section 18.2.1: a read of value a from variable x is denotedR(x)a; a write of

value b to variable x is denoted W (x)b. We can now express the firstcriterionL1 in terms

ofvariables(theshared objects) as follows:

L1': The interleaved sequence of operations is such that if R(x)a occurs in the sequence,

 theneitherthelastwriteoperation thatoccurs beforeitintheinterleavedsequenceisW(x)a,

 orno writeoperationoccursbefore it and a isthe initialvalue ofx.

 Thiscriterionstatesourintuitionthatavariablecanonlybechangedbyawriteoperation.Thes

econdcriterionforlinearizability,L2,remainsthesame

Sequential consistency Linearizability is too strict for most practical purposes. The

strongestmemorymodelforDSMthat is usedin practiceissequential consistency

 A DSM system is said to be sequentially consistent iffor any execution there is

someinterleaving of the series of operations issued by all the processes that satisfies the

followingtwocriteria:

SC1:Theinterleavedsequenceofoperationsis suchthatif R(x)aoccursinthe

sequence,theneitherthelastwriteoperationthatoccursbeforeitinthe interleavedsequenceisW(x)a ,

ornowriteoperation occurs beforeit anda is theinitial valueofx.

SC2:Theorderofoperationsintheinterleavingisconsistentwiththeprogramorder in

whicheachindividual client executed them.

CriterionSC1isthesameasL1'.CriterionSC2referstoprogramorderratherthantemporalorder,whic

h is whatmakesit possibleto implement sequentialconsistency

The combination ar = 0, br = 1 in the above example could not occur under sequential

consistency,because process 1 would be reading values that conflict with process 2’s program

order. An

exampleinterleavingoftheprocesses’memoryaccessesinasequentiallyconsistentexecutionissho

wninFigure18.4

Coherence:

Coherenceis anexample ofa weaker formof consistency.

Undercoherence,everyprocessagreesontheorder of write operations to the same location, but

they do not necessarily agree on the ordering of writeoperationstodifferentlocations

Updateoptions

[Distributed Systems] Page 83

Two main implementation choices have been devised for propagating updates made byone

process to the others: write-update and write-invalidate. These are applicable to avariety of

DSM consistency models, including sequential consistency. In outline, theoptionsareas

follows:

Write-update: The updates made by a process are made locally and multicast to all

otherreplica managers possessing a copy of the data item, which immediately modify the

dataread by local processes (Figure 18.5). Processes read the local copies of data

items,without the need for communication. In addition to allowing multiple

readers,severalprocesses may write the same data item at the same time; this is known as

multiple-reader/multiple-writersharing

Figure18.5 DSMusingwrite-update

Write-invalidate:Thisiscommonlyimplementedintheformofmultiple-reader/single-

writersharing.Atany time,adataitemmayeitherbeaccessedinread-

onlymodebyoneormoreprocesses,oritmaybereadandwrittenbyasingleprocess.Anitemthatiscurr

entlyaccessedinread-

onlymodecanbecopiedindefinitelytootherprocesses.Whenaprocessattemptstowritetoit,amultica

stmessageisfirstsent

toallothercopiestoinvalidatethemandthisisacknowledgedbeforethewritecantakeplace;theotherp

rocessesaretherebypreventedfromreadingstaledata(thatis,datathatarenotuptodate).Anyprocesse

sattempting toaccessthedataitemareblockedif a writer exists. Eventually, control

[Distributed Systems] Page 84

istransferredfromthewritingprocess,andotheraccessesmay takeplaceoncetheupdatehasbeen

sent. The effect is to process all accesses to the item on a first-come, first-served basis

Thrashing

 A potential problem with write-invalidate protocols is thrashing. Thrashing is said to

occurwhere the DSM runtime spends an inordinate amount of time invalidating and

transferringshared data compared with the time spent by application processes doing useful

work. Itoccurs when several processes compete for the same data item, or for falsely shared

dataitems. If, for example, one process repeatedly reads a data item that another is

regularlyupdating, then this item will be constantly transferred from the writer and

invalidated at thereader. This is an example of a sharing pattern for which write-invalidate is

inappropriate andwrite-update would bebetter

SequentialconsistencyandIvycasestudy:

 Paging is transparent to the application components within processes; they can

logically

bothreadandwriteanydatainDSM.However,theDSMruntimerestrictspageaccesspermissions in

order to maintain sequential consistency when processing reads and writes.Paged memory

management units allow the access permissions to a data page to be set tonone, read-only or

read-write. If a process attempts to exceed the current access permissions,then it takes a read

or write page fault, according to the type of access. The kernel

redirectsthepagefaulttoahandlerspecifiedbytheDSMruntime layer in each process.

Theproblemofwrite-update

 Suppose that every update has to be multicast to the remaining replicas. Suppose that

apagehasbeenwrite-protected.Whenaprocessattemptstowrite uponthe

page,ittakesapagefaultandahandlerroutineiscalled.Thishandlercould,inprinciple,examine

faulting instruction to determine the value and address being written and multicast

theupdatebeforerestoringwriteaccessandreturningtocompletethefaultinginstruction.

 But now that write access has been restored, subsequent updates to the page will not

cause apage fault. To make every write access produce a page fault, it would be necessary for

thepage fault handler to set the process into TRACE mode, whereby the processor generates

aTRACE exception after each instruction. The TRACE exception handler would turn off

[Distributed Systems] Page 85

writepermissionsto thepageand turn off TRACE modeoncemore

Writeinvalidation

 A process with the most up-to-date version of a page p is designated as its owner –

referredto as owner(p). This is either the single writer, or one of the readers. The set of

processes thathaveacopyofapagep is called its copyset – referred toascopyset(p).

 Thepossiblestatetransitions areshowninFigure

18.8.WhenaprocessPwattemptstowriteapage p to which it has no access or read-only access, a

page fault takes place. The page-faulthandlingprocedureis asfollows:

 The page is transferred to Pw , if it does not already have an up-to-date read-

onlycopy.

 Allothercopies areinvalidated: thepagepermissions aresetto

noaccessatallmembersofcopyset(p).

 copyset(p) := {Pw}.

 owner(p):=Pw.

 The DSM runtime layer in Pw places the page with read-write permissions at

theappropriatelocation initsaddress spaceandrestarts thefaultinginstruction.

Statetransitionsunderwrite-invalidation

Notethattwoormoreprocesseswithread-onlycopiesmay takewritefaultsatmoreor

 less the same time. A read-only copy of a page may be out-of-date when ownership

iseventually granted. To detect whether a current read-only copy of a page is out-of-date,each

page can be associated with a sequence number, which is incremented wheneverownership is

transferred. A process requiring write access encloses the sequence numberof its read-only

copy, if it possesses one. The current owner can then tell whether thepage has been modified

and therefore needs to be sent. This scheme is described byKesslerandLivny[1989] as

the‘shrewdalgorithm’.

When a process PR attempts to read a page p for which it has no access permissions, a read

pagefault takes place. Thepage-fault handlingprocedureis as follows:

 Thepageis copiedfromowner(p)toPR.

[Distributed Systems] Page 86

 If the current owner is a single writer, then it remains as p’s owner and its

accesspermission for p is set to read-only access. Retaining read access is

desirable in case theprocess attempts to read the page subsequently – it will have

retained an up-to-dateversion of the page. However, as the owner it will have to

process subsequent requestsfor the page even if it does not access the page

again. So it might turn out to have beenmoreappropriateto

reducepermissiontonoaccessandtransferownershipto PR.

 copyset(p):=copyset(p) {PR}.

 TheDSMruntimelayerinPRplacesthepagewithread-

onlypermissionsattheappropriatelocation initsaddress spaceandrestartsthe

faultinginstruction.

It is possible for a second page fault to occur during the transition algorithms just described.

Inorder that transitions take place consistently, any new request for the page is not processed

untilafterthe current transition has completed .

Thedescriptionjustgivenhasonlyexplainedwhatmustbedone.Theproblemofhowtoimplementpag

efault handlingefficientlyis nowaddressed

Invalidationprotocols

 Twoimportantproblemsremaintobeaddressedinaprotocoltoimplementtheinvalidationsc

heme:

 Howtolocateowner(p)for agiven pagep.

 Wheretostorecopyset(p).

 For Ivy, Li and Hudak [1989] describe several architectures and protocols that take

varyingapproaches to these problems. The simplest we shall describe is their improved

centralizedmanageralgorithm.

In it, a single server called a manager is used to store the location (transport address) of

owner(p)foreverypagep.Themanagercouldbeoneoftheprocessesrunningtheapplication,oritcoul

dbeany other process. In this algorithm, the set copyset(p) is stored at owner(p). That is, the

identifiersandtransport addresses of themembers ofcopyset(p) arestored.

As shown in Figure 18.9, when a page fault occurs the local process (which we shall refer to

as theclient) sends a message to the manager containing the page number and the type of

[Distributed Systems] Page 87

access required(read or read-write). The client awaits a reply. The manager handles the

request by looking up theaddress of owner(p) and forwarding the request to the owner. In the

case of a write fault, themanager sets the new owner to be the client. Subsequent requests are

thus queued at the client untilithas completed the transfer ofownership to itself.

The previous owner sends the page to the client. In the case of a write fault, it also sends the

page’scopy set. The client performs the invalidation when it receives the copy set. It sends a

multicastrequesttothemembersofthecopyset,awaitingacknowledgementfromalltheprocessesco

ncerned that invalidation has taken place. The multicast need not be ordered. The former

ownerneed not be included in the list of destinations, since it invalidates itself. The details of

copy setmanagement are left to the reader, who should consult the general invalidation

algorithms givenabove.

Figure18.9 Central managerandassociatedmessages

A dynamic distributed manager algorithm

A dynamic distributed manager algorithm, allows page ownership to be transferred

betweenprocesses but which uses an alternative to multicast as its method of locating a page’s

owner. Theidea is to divide the overheads of locating pages between those computers that

access them. Everyprocesskeeps,foreverypagep,ahint as tothepage’s currentowner–the

probableownerofp, orprobOwner(p). Initially, every process is supplied with accurate page

locations. In general,however, these values are hints, because pages can be transferred

elsewhere at any time. As inpreviousalgorithms, ownership istransferredonlywhen

[Distributed Systems] Page 88

awritefaultoccurs.

 Theownerofapageis located byfollowingchains ofhints that areset up as

ownershipofthepage is transferred from computer to computer. The length of the chainthat is,

the number offorwarding messages necessary to locate the owner – threatens to increase

indefinitely. Thealgorithm overcomes this by updating the hints as more up- to-date values

become available.Hintsareupdated andrequestsareforwarded asfollows:

 Whenaprocesstransfersownershipofpageptoanotherprocess,itupdates

 probOwner(p)tobetherecipient.

 Whenaprocesshandlesaninvalidationrequestforapagep,itupdates

 probOwner(p)tobetherequester.

 Whenaprocessthathasrequestedreadaccesstoapagepreceivesit,itupdates

 probOwner(p)tobetheprovider.

 When a process receives a request for a page p that it does not own, it forwards

therequestto probOwner(p)andresets probOwner(p)tobe therequester.

 The first three updates follow simply from the protocol for transferring page

ownership andproviding read-only copies. The rationale for the update when forwarding

requests is that, forwriterequests,the requesterwillsoonbetheowner, eventhoughitis

notcurrently.

 Figure 18.10 ((a) and (b)) illustrates probOwner pointers before and after process A

takes awrite page fault. A’s probOwner pointer for the page initially points to B. Processes B,

C andD forward the request to E by following their own probOwner pointers; thereafter, all

are setto point to A as a result of the update rules just described. The arrangement after

faulthandlingisclearlybetterthan that whichprecededit:thechain ofpointershascollapsed.

 If,however,Atakesareadfault,thenprocess

Bisbetteroff(twostepsinsteadofthreetoE),C’ssituationisthesameasitwasbefore(twosteps),butDis

worseoff,withtwo stepsinstead ofone(Figure18.10(c)).

[Distributed Systems] Page 89

Updating probOwner pointers

Releaseconsistencymodel:

TheideaofreleaseconsistencyistoreduceDSMoverheadsbyexploitingthefactthatprogrammers

use synchronization objects such as semaphores, locks and barriers

Memoryaccesses

In order to understand release consistency – or any other memory model that

takessynchronization into account – we begin by categorizing memory accesses according

[Distributed Systems] Page 90

totheirrole,ifany,insynchronization.Furthermore,weshalldiscusshowmemoryaccesses may be

performed asynchronously to gain performance and give a simpleoperationalmodel ofhow

memoryaccesses takeeffect.

As we said above, DSM implementations on general-purpose distributed systems may

usemessage passing rather than shared variables to implement synchronization, for reasons

ofefficiency. But it may help to bear shared-variable-based synchronization in mind in

thefollowingdiscussion.ThefollowingpseudocodeimplementslocksusingthetestAndSetoperatio

non variables. The function testAndSet sets the lock to 1 and returns 0 if it finds it zero;

otherwiseitreturns 1.It does this atomically

acquireLock(varintlock)://lockispassedby-

referencewhile(testAndSet(lock)=1)

skip;

releaseLock(varintlock)://lockispassed by-referencelock:=0

Typesofmemoryaccess

 Themaindistinctionisbetweencompetingaccesses and non- competing (ordinary)

accesses. Two accesses arecompetingif:

 theymayoccurconcurrently(thereis no enforcedorderingbetween them)andatleast one

is awrite.

 So two read operations can never be competing; a read and a write to the

samelocation made by two processes that synchronize between the operations (and

soorderthem)arenon-competing.

 Wefurtherdividecompetingaccessesintosynchronizationandnon-

synchronizationaccesses:

 synchronization accessesare read or write operations that

contributetosynchronization;

 non-synchronization accesses are read or write operations that

areconcurrentbutthatdonotcontribute to synchronization.

 Thewriteoperationimpliedby‘lock:=0’inreleaseLock(above)isasynchronization

access.So isthereadoperation implicitin testAndSet

[Distributed Systems] Page 91

Releaseconsistency

Therequirements thatwewishtomeetare:

 topreservethesynchronizationsemantics ofobjectssuchaslocksand barriers;

 togainperformance,weallowadegreeofasynchronicityformemoryoperations;

 toconstraintheoverlapbetweenmemoryaccesses

inordertoguaranteeexecutionsthatprovide theequivalent ofsequential consistency.

 Release-consistent memoryisdesignedto satisfytheserequirements

RC1: before an ordinary read or write operation is allowed to perform withrespectto anyother

process, all previousacquireaccessesmust beperformed.

RC2: before a release operation is allowed to perform with respect to any

otherprocess,allpreviousordinaryreadand writeoperationsmust beperformed.

RC3: acquireand releaseoperationsaresequentiallyconsistentwith respecttooneanother.

 RC1andRC2guaranteethat,whenareleasehastakenplace,nootherprocessacquiringa

lockcanreadstale versions ofdata modifiedbythe processthatperforms the release

 Consider the processes in Figure 18.12, which acquire and release a lock in order to

access a

pairofvariablesaandb(aandbareinitializedtozero).Process1updatesaandbunderconditionsofmut

ualexclusion,sothatprocess2cannotreadaandbatthe sametimeandso willfinda

= b = 0 or a = b = 1. The critical sections enforce consistency – equality of a and b – atthe

application level. It is redundant to propagate updates to the variables affected duringthe

critical section. If process 2 tried to access a, say, outside a critical section, then itmightfind

astale value.

Figure18.12Processesexecutingonarelease-consistentDSM

Process1:

acquireLock();a := a+1;

b := b+1;

releaseLock();

Process2:

acquireLock();

//entercriticalsection

[Distributed Systems] Page 92

//leavecriticalsection

//entercriticalsection

print("The valuesofaandb are:", a,b);

releaseLock(); //leavecriticalsection

Under release consistency, process 1 will not block when it accesses a and b. The DSM

runtimesystemnoteswhichdata

havebeenupdatedbutneedtakenofurtheractionatthattime.Itisonlywhen process 1 has released

the lock that communication is required. Under a write-updateprotocol, the updates to a and b

will be propagated; under a write-invalidation protocol, theinvalidationsshould besent.

[Distributed Systems] Page 93

UNIT-V

TransactionsandConcurrencyControl

 A Transaction defines a sequence of server operations that is guaranteed by the server

to beatomic in the presence of multiple clients and server crashes. Nested transactions are

structuredfrom sets of other transactions. They are particularly useful in distributed systems

because theyallowadditional concurrency.

 All of the concurrency control protocols are based on the criterion of serial

equivalence and arederivedfromrulesfor conflictsbetweenoperations.Three methods

aredescribed:

• Locksareusedtoordertransactions that

accessthesameobjectsaccordingtotheorderofarrival oftheiroperations at the

objects.

• Optimisticconcurrencycontrolallowstransactions to proceed untiltheyarereadyto

commit, whereupon a check is made to see whether they have

performedconflictingoperations onobjects.

• Timestamporderingusestimestampstoordertransactionsthataccessthesameobjects

accordingto theirstartingtimes.

 The goal of transactions is to ensure that all of the objects managed by a server remain

in aconsistent state when they are accessed by multiple transactions and in the presence of

servercrashes.Transactionsdealwithcrashfailuresofprocessesandomissionfailuresincommunica

tion,but not anytypeofarbitrary(or Byzantine) behaviour.

Toexplain withabankingexample,eachaccountisrepresentedbyaremoteobjectwhoseinterface,

Account, provides operations for making deposits and withdrawals and for

enquiringaboutandsettingthebalance.Eachbranchofthebankisrepresentedbyaremoteobjectwhos

einterface,Branch,providesoperationsforcreatinganewaccount,forlookingupanaccountbyname

and forenquiringabout the total funds atthat branch.

OperationsoftheAccountinterfacedeposit(amount)

deposit amount in the accountwithdraw(amount)

[Distributed Systems] Page 94

returnthebalanceoftheaccountsetBalance(amount)

setthebalanceoftheaccounttoamountOperationsoftheBranchinterfacecreate(name)฀

createanewaccount with agivenname

returnthetotalofallthebalancesatthebranch

Failure model for transactions

Lampson proposed a fault model for distributed transactions that accounts forfailures of

disks,servers and communication. In this model, the claim is that thealgorithms work

correctly in thepresence of predictable faults, but no claims are madeabout their behaviour

when a disasteroccurs.Althougherrorsmayoccur, theycan be

detectedanddealtwithbefore anyincorrectbehaviourresults.Themodelstatesthefollowing:

• Writes to permanent storage may fail, either by writing nothing or by writing

awrong value –for example, writing to the wrong block is a disaster. File

storagemay also decay. Reads frompermanentstoragecan detect

(byachecksum)whena blockofdata is bad.

• Servers may crash occasionally. When a crashed server is replaced by a

newprocess, its volatilememory is first set to a state in which it knows none of

thevalues (for example, of objects) frombefore the crash. After that it carries out

arecovery procedure using information in

permanentstorageandobtainedfromotherprocessestosetthevaluesofobjectsincludi

ngthoserelatedtothe two-phasecommit protocol (see Section 17.6). When a

processor is faulty, it is made tocrashsothat itis prevented from

sendingerroneousmessagesand from writingwrong values to permanent storage –

that is, so it cannot produce arbitrary failures.Crashes can occur atanytime; in particular,

theymayoccurduringrecovery.

• There may be an arbitrary delay before a message arrives. A message may be

lost,duplicated orcorrupted. The recipient can detect corrupted messages using

achecksum. Both forged messagesandundetectedcorrupt messages areregarded

asdisasters.

[Distributed Systems] Page 95

TRANSACATIONS:

Insomesituations,clientsrequireasequenceofseparaterequests toaservertobeatomicin

thesensethat:

1. Theyarefreefrom interferencebyoperationsbeingperformedon behalf of

otherconcurrentclients.

2. Eitherall of theoperations mustbe completed successfullyortheymusthaveno

effect atallinthepresenceofservercrashes.

Aclient’sbankingtransaction

TransactionT:

a.withdraw(100);b.deposit(100);c.withdraw(200);b.deposit(200);

 Banking example to illustrate transactions. A client that performs a sequence of

operations on aparticular bank account on behalf of a user will first lookup the account by

name and then

applythedeposit,withdrawandgetBalanceoperationsdirectlytotherelevantaccount.Inourexample

s,weuseaccountswithnamesA,BandC.Theclientlooksthemupandstoresreferencesto them in

variablesa, bandcoftypeAccount.

 AsimpleclienttransactionspecifyingaseriesofrelatedactionsinvolvingthebankaccountsA

,B and C. The first two actions transfer $100 from A to B and the second two transfer $200

fromCto B. Aclient achievesatransferoperation bydoingawithdrawal followed byadeposit.

 Transactions can be provided as a part of middleware.For example, CORBA provides

thespecification for an Object Transaction Service with IDL interfaces allowing clients’

transactionstoinclude multipleobjects at multipleservers.

 The client is provided with operations to specify the beginning and end of a

transaction. Theclient maintains a context for each transaction, which it propagates with each

operation in thattransaction. In CORBA, transactional objects are invoked within the scope of

a transaction andgenerallyhavesomepersistent storeassociated with them.

[Distributed Systems] Page 96

ACID properties:

a transaction applies to recoverable objects and is intended to be atomic. It is often called an

atomic transaction.There are twoaspectstoatomicity:

All or nothing: A transaction either completes successfully, in which case the effects of all of

its operations arerecorded in the objects, or (if it fails or is deliberately aborted) has no effect

at all. This all-or-nothing effect has twofurther aspects ofits own:

Failure atomicity:Theeffectsareatomicevenwhentheservercrashes.

Consistency:atransactiontakesthesystemfromoneconsistentstatetoanotherconsistent state;

Isolation:Each transaction must be performed without interference from other transactions;

in other words, theintermediate effectsofa transactionmustnot bevisibletoothertransactions.

Durability: After a transaction has completed successfully, all its effects are saved in

permanent storage. We use theterm ‘permanent storage’ torefer to files held on disk or

another permanentmedium.Data saved in a filewillsurviveiftheserverprocess crashes.

TransactionPrimitives:

Primitive Description

BEGIN_TRANSACTION Makethestartofatransaction

END_TRANSACTION Terminatethetransactionandtrytocommit

ABORT_TRANSACTION Endthetransactionandrestore theoldvalues

READ Readdatafromafile,atable,orotherwise

WRITE Writedatatoafile,atable,orotherwise

[Distributed Systems] Page 97

Nestedtransactionsextendtheabovetransactionmodelbyallowingtransactionstobecomposedof

othertransactions.Thusseveraltransactionsmaybestartedfromwithinatransaction, allowing

transactions to be regarded as modules that can be composed asrequired.The outermost

transaction in a set of nested transactions is called thetop-level

transaction.Transactionsotherthan thetop-leveltransaction arecalled subtransactions.

Asubtransactionappearsatomictoitsparentwithrespecttotransactionfailuresandtoconcurrent

access. Subtransactions at the same level, such asT1 and T2, can run concurrently,but their

access to common objects is serialized. Each subtransaction can fail independently ofitsparent

and of the other subtransactions. When a subtransaction aborts, the parenttransaction

cansometimeschoosean alternative subtransactiontocompleteits task.

Forexample, a transaction to deliver a mail message to a list of recipients could be

structuredas aset of subtransactions, each of which delivers the message to one of the

recipients.If one or moreof the subtransactions fails, the parent transaction could record the

factand then commit, with theresult that all the successful child transactions commit.

LOCKS:

Transactions must be scheduled so that their effect on shared data is serially equivalent. A

servercan achieve serial equivalence of transactions by serializing access to the objects.

Transactions TandUbothaccess accountB,but Tcompletes itsaccess beforeUstartsaccessingit.

A simple example of a serializing mechanism is the use of exclusive locks. In this

lockingscheme, the server attempts to lock any object that is about to be used by any

operation of aclient’s transaction. If a client requests access to an object that is already locked

due to

anotherclient’stransaction,therequestissuspendedandtheclientmustwaituntiltheobjectisunlocke

d.

As pairs of read operations from different transactions do not conflict, an attempt to set a

readlock on an object with a read lock is always successful. All the transactions reading the

sameobjectshareits readlock–forthisreason,read locksaresometimescalled sharedlocks.

Theoperationconflictrules tell usthat:

1. IfatransactionThasalreadyperformedareadoperationonaparticularobject,thenacon

currenttransactionU must notwritethat objectuntil Tcommitsoraborts.

2. IfatransactionThasalreadyperformedawriteoperationonaparticularobject,thenaco

[Distributed Systems] Page 98

ncurrenttransactionU must notreadorwritethatobject untilT commitsoraborts.

Useoflocksin stricttwo-phaselocking:

1. Whenanoperationaccessesanobjectwithinatransaction:

(a) Iftheobjectisnot alreadylocked,it islockedandtheoperationproceeds.

(b) If the object has a conflicting lock set by another transaction, the

transactionmust wait until itisunlocked.

(c) If the object has a non-conflicting lock set by another transaction, the lock

isshared and theoperationproceeds.

(d) If the object has already been locked in the same transaction, the lock will

bepromoted ifnecessary and the operation proceeds. (Where promotion

isprevented by a conflicting lock, rule bis used.)

2. When a transaction is committed or aborted, the server unlocks all objects itlocked for

 thetransaction.

Optimistic concurrency control

 Optimistic concurrency control is a concurrency control method applied to

transactional systemssuch as relational database management systems and software

transactional memory. It assumesthat multiple transactions can frequently complete without

interfering with each other. Whilerunning, transactions use data resources without acquiring

locks on those

resources.Beforecommitting,eachtransactionverifiesthatnoothertransactionhasmodifiedthedata

ithasread.If the check reveals conflicting modifications, the committing transaction rolls back

and can berestarted and it is generally used in environments with low data contention. When

https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Relational_database_management_systems
https://en.wikipedia.org/wiki/Software_transactional_memory
https://en.wikipedia.org/wiki/Software_transactional_memory
https://en.wikipedia.org/wiki/Block_contention

[Distributed Systems] Page 99

conflicts arerare,transactions cancomplete without the expense of managing locks and

without havingtransactions wait for other transactions' locks to clear, leading to higher

throughput than otherconcurrencycontrol methods.

Optimisticconcurrencycontroltransactionsinvolvethesephases:

 Begin:Recordatimestampmarkingthetransaction's beginning.

 Modify:Readdatabasevalues, andtentativelywritechanges.

 Validate: Check whether other transactions have modified data that this

transaction hasused (read or written). This includes transactions that completed

after this transaction's starttime,and optionally, transactionsthatarestill activeat

validation time.

 Commit/Rollback: If there is no conflict, make all changes take effect. If there

is aconflict, resolve it, typically by aborting the transaction, although other

resolution schemesarepossible.

 The stateless nature of HTTP makes locking infeasible for web user interfaces. It's

common for auser to start editing a record, then leave without following a "cancel" or

"logout" link. If lockingis used, other users who attempt to edit the same record must wait

until the first user's lock timesout.

 Some database management systems offer Optimistic concurrency control natively -

withoutrequiring special application code. For others, the application can implement an OCC

layeroutside of thedatabase,andavoidwaitingorsilentlyoverwritingrecords.Insuchcases,the

form includes a hidden field with the record's original content, a timestamp, a

sequencenumber, or an opaque token. On submit, this is compared against the database. If it

differs, theconflictresolution algorithm is invoked.

Timestamp based Concurrency Control

 Concurrency Controlcan be implemented in differentways. One way to

implementitisbyusingLocks. Now, lets discuss aboutTimeStamp OrderingProtocol.

As earlier introduced, Timestamp is a unique identifier created by the DBMS to identify

atransaction. They are usually assigned in the order in which they are submitted to the

system.RefertothetimestampofatransactionTas

TS(T).ForbasicsofTimestampyoumayreferhere.

https://en.wikipedia.org/wiki/Stateless_server
https://en.wikipedia.org/wiki/HTTP
https://en.wikipedia.org/wiki/Form_(web)
https://www.geeksforgeeks.org/dbms-concurrency-control-protocols-lock-based-protocol/
https://www.geeksforgeeks.org/dbms-concurrency-control-protocols-lock-based-protocol/
https://www.geeksforgeeks.org/dbms-introduction-timestamp-deadlock-prevention-schemes/

[Distributed Systems] Page 100

Timestamp Ordering Protocol–

 The main idea for this protocol is to order the transactions based on their

Timestamps.Aschedule in which the transactions participate is then serializable and the only

equivalent serialschedule permitted has the transactions in the order of their Timestamp

Values. Stating

simply,thescheduleisequivalenttotheparticularSerialOrdercorrespondingtotheorderoftheTrans

action timestamps. Algorithm must ensure that, for each items accessed by

ConflictingOperations in the schedule, the order in which the item is accessed does not

violate the ordering.Toensurethis, use twoTimestampValues relating to eachdatabaseitemX.

 W_TS(X) is the largest timestamp of any transaction

 thatexecutedwrite(X)successfully.

 R_TS(X)isthelargesttimestampofanytransactionthatexecutedread(X)successful

 y.

BasicTimestampOrdering–

 Every transaction is issued a timestamp based on when it enters the system. Suppose,

if an oldtransaction Ti hastimestampTS(Ti), a new transaction Tj isassignedtimestampTS(Tj)

suchthatTS(Ti)<TS(Tj).Theprotocolmanagesconcurrentexecutionsuchthatthetimestampsdeter

mine the serializability order. The timestamp ordering protocol ensures that any

conflictingreadand write operationsare executed in timestamporder. Whenever some

Transaction T triestoissue aR_item(X)oraW_item(X),theBasicTOalgorithm compares

thetimestampof T with R_TS(X) & W_TS(X) to ensure that the Timestamp order is not

violated.ThisdescribetheBasic TO protocol in followingtwo cases.

[Distributed Systems] Page 101

1. WheneveraTransactionTissuesaW_item(X)operation,checkthefollowingconditions:

 If

R_TS(X)>TS(T)orifW_TS(X)>TS(T),thenabortandrollbackTandrejecttheopera

tion. else,

 ExecuteW_item(X)operationofTandsetW_TS(X)toTS(T).

2. Whenevera TransactionTissuesaR_item(X)operation,checkthefollowing conditions:

 IfW_TS(X)>TS(T),thenabortandreject Tandrejecttheoperation,else

 IfW_TS(X)<=TS(T),thenexecutetheR_item(X)operationofTandsetR_TS(X)to

thelarger ofTS(T)andcurrent R_TS(X).

 Whenever the Basic TO algorithm detects twp conflicting operation that occur in

incorrect order,it rejects the later of the two operation by aborting the Transaction that issued

it. Schedulesproduced by Basic TO are guaranteed to be conflict serializable. Already

discussed that usingTimestamp,can ensurethat our schedulewill bedeadlockfree.

 One drawback of Basic TO protocol is that it Cascading Rollback is still possible.

Suppose wehave a Transaction T1and T2has used a value written by T1. If T1is aborted and

resubmitted tothe system then, T must also be aborted and rolled back. So the problem of

Cascading aborts stillprevails.

Let’sgisttheAdvantagesandDisadvantagesofBasicTOprotocol:

 TimestampOrderingprotocolensuresserializablitysincetheprecedencegrap

hwillbeoftheform:

Image–PrecedenceGraph forTSordering

 Timestampprotocolensuresfreedomfromdeadlockasnotransactioneverwaits.

 Buttheschedulemaynotbecascadefree,andmaynoteven berecoverable.

StrictTimestampOrdering–

 A variation of Basic TO is calledStrict TO ensures that the schedules are both Strict

andConflict Serializable. In this variation, a Transaction T that issues a R_item(X) or

https://www.geeksforgeeks.org/dbms-introduction-timestamp-deadlock-prevention-schemes/

[Distributed Systems] Page 102

W_item(X)such that TS(T) > W_TS(X) has its read or write operation delayed until the

Transaction T‘ thatwrotethevalues ofXhascommitted oraborted.

 Multiversion timestamp ordering write rule: As any potentially conflicting read

operation willhave been directed to the most recent versionof an object, the server inspects

the versionDmaxEarlier with the maximum write timestamp less than or equal to Tc. We

have the followingruleforperformingawrite operation requestedbytransaction Tcon object

D:

if(readtimestampofDmaxEarlier฀Tc)performwriteoperationonatentativeversionofDwithwriteti

mestamp Tc

elseaborttransactionTc

Theobjectalreadyhascommittedversions withwritetimestamps T1andT2.

Theobjectreceivesthefollowing

sequenceofrequests foroperations ontheobject:

T3read;T3write;T5read;T4 write.

1. T3requests areadoperation,whichputsareadtimestampT3onT2’sversion.

2. T3 requests a write operation, which makes a new tentative version with

writetimestamp T3.

3. T5requestsareadoperation,whichusestheversionwithwritetimestampT3(thehighesttime

stampthat is less than T5).

4. T4 requests a write operation, which is rejected because the read timestamp T5 of the

versionwith write timestamp T3 is bigger than T4. (If it were permitted, the write timestamp

of the

newversionwouldbeT4.Ifsuchaversionwereallowed,thenitwouldinvalidateT5’sreadoperation,

which shouldhaveusedtheversion with timestampT4.)

DistributedTwo-phaseLockingAlgorithm

The basic principle of distributed two-phase locking is same as the basic two-phase

lockingprotocol. However, in a distributed system there are sites designated as lock

managers. A lockmanager controls lock acquisition requests from transaction monitors. In

order to enforce co-ordination between the lock managers in various sites, at least one site is

[Distributed Systems] Page 103

given the authority toseeall transactions and detect lock conflicts.

Depending uponthe numberof siteswhocandetectlockconflicts,distributedtwo-

phaselockingapproaches can beofthreetypes −

 Centralized two-phase locking − In this approach, one site is designated as the

centrallock manager. All the sites in the environment know the location of the

central lockmanager and obtain lockfrom it duringtransactions.

 Primary copy two-phase locking − In this approach, a number of sites are

designated aslock control centers. Each of these sites has the responsibility of

managing a defined

setoflocks.Allthesitesknowwhichlockcontrolcenterisresponsibleformanaginglock

ofwhich data table/fragment item.

 Distributed two-phase locking − In this approach, there are a number of lock

managers,whereeachlockmanagercontrolslocksofdata

itemsstoredatitslocalsite.Thelocationofthelock manageris based upondata

distribution and replication.

DistributedTimestampConcurrencyControl

 In a centralized system,timestamp of any transaction is determined by the physical

clockreading. But, in a distributed system, any site’s local physical/logical clock readings

cannot beused as global timestamps, since they are not globally unique. So, a timestamp

comprises of acombinationofsiteIDand thatsite’sclock reading.

For implementing timestamp ordering algorithms, each site has a scheduler that maintains

aseparate queue for each transaction manager. During transaction, a transaction manager

sends alockrequesttothesite’sscheduler.Thescheduler

putstherequesttothecorrespondingqueueinincreasing timestamp order. Requests are processed

from the front of the queues in the order oftheirtimestamps, i.e. theoldest first.

[Distributed Systems] Page 104

Validation of transactions • Validation uses the read-write conflict rules to ensure that

thescheduling of a particular transaction is serially equivalent with respect to all other

overlappingtransactions–

thatis,anytransactionsthathadnotyetcommittedatthetimethistransaction

started. To assist in performing validation, each transaction is assigned a transaction

numberwhen it enters the validation phase (that is, when the client issuesa closeTransaction).

If thetransaction is validated and completes successfully, it retains this number; if it fails the

validationchecksandisaborted,or ifthetransactionis

readonly,thenumberisreleasedforreassignment.

Transaction numbers are integers assigned in ascending sequence; the number of a

transactiontherefore defines itsposition in time – a transaction always finishes its working

phase after alltransactions with lower numbers. That is, a transaction with the number Ti

always precedes atransaction with the number Tj if i <j. (If the transaction number were to be

assigned at thebeginning of the working phase, then a transaction that reached the end of the

working phasebefore one with a lower number would have to wait until the earlier one had

[Distributed Systems] Page 105

completed before

itcouldbevalidated.)ThevalidationtestontransactionTvisbasedonconflictsbetweenoperationsin

pairs oftransactionsTi and Tv.

Comparisonofmethods forconcurrencycontrol:

We have described three separate methods for controlling concurrent access to shared data:

stricttwo-phase locking, optimistic methods and timestamp ordering. All of the methods carry

someoverheads in the time and space they require, and they all limit to some extent the

potential forconcurrentoperation.

The timestamp ordering method is similar to two-phase locking in that both use

pessimisticapproaches in which conflicts between transactions are detected as each object is

accessed. Onthe one hand, timestamp ordering decides the serialization order statically –

when a transactionstarts.On theotherhand,two-phaselockingdecides the

serializationorderdynamically–accordingtotheorderinwhichobjectsareaccessed.Timestamp

ordering, and in particular multiversion timestamp ordering, is better than strict two-phase

locking for read-only transactions. Two-phase locking is better when the operations

intransactions are predominantly updates. Some work uses the observation that timestamp

orderingisbeneficialfortransactionswithpredominantlyreadoperationsandthatlockingisbenefici

alfor transactions with more writes than reads as an argument for allowing hybrid schemes

inwhichsometransactions use timestamp orderingand others

uselockingforconcurrencycontrol.

The pessimistic methods differ in the strategy used when a conflicting access to an object

isdetected. Timestamp ordering aborts the transaction immediately, whereas locking makes

thetransaction wait–but with a possible laterpenaltyofabortingto avoid deadlock.

Distributedtransactionsmaybeeitherflatornested:

An atomic commit protocol is a cooperative procedure used by a set of serversinvolved in

adistributed transaction. It enables the servers to reach a joint decision as towhether a

transactioncanbecommitted oraborted.

Servers that provide transactions include a recovery manager whose concern is toensure that

theeffects of transactions on the objects managed by a server can berecovered when it is

replacedafterafailure.Therecoverymanagersavestheobjectsinpermanentstoragetogetherwithint

entionslists and information about thestatus ofeachtransaction.

[Distributed Systems] Page 106

In the general case, a transaction, whether flat or nested, will access objectslocated in

severaldifferentcomputers.Weusethetermdistributedtransactiontorefertoaflatornestedtransacti

on that accesses objects managed by multiple servers.When a distributed transactioncomes to

an end, the atomicity property oftransactions requires that either all of the serversinvolved

commit the transaction or allof them abort the transaction. To achieve this, one of theservers

takes on a coordinatorrole, which involves ensuring the same outcome at all of

theservers.Themanner in

which the coordinator achieves this depends on the protocol chosen. A protocol knownas

the‘two-phase commit protocol’ is the most commonly used. This protocol allowsthe servers

tocommunicatewith oneanotherto reachajointdecision as towhethertocommitor abort.

Flatandnesteddistributedtransactions

Client transaction becomes distributed if it invokes operations in several differentservers.

Thereare two different ways that distributed transactions can be structured: asflat transactions

and asnestedtransactions.

In a flat transaction, a client makes requests to more than one server. For example, transaction

TisaflattransactionthatinvokesoperationsonobjectsinserversX,YandZ.Aflatclienttransactionco

mpleteseachof itsrequestsbeforegoingontothe nextone.Therefore,eachtransaction accesses

servers’ objects sequentially.When servers use locking, a transaction

canonlybewaitingforoneobject at a time.

Inanestedtransaction,thetop-

leveltransactioncanopensubtransactions,andeachsubtransactioncanopenfurthersubtransactions

downtoanydepthofnesting,aclienttransaction T that opens two subtransactions, T1 and

T2,which access objects at servers X and Y.The subtransactionsT1 andT2 open

furthersubtransactionsT11, T12,T21, andT22, whichaccessobjects at serversM, N and P.

In thenested case, subtransactions at the same level can run concurrently, so T1 and T2

areconcurrent,andastheyinvokeobjectsindifferentservers,theycanruninparallel.Thefoursubtran

sactionsT11, T12, T21 andT22 also run concurrently.

[Distributed Systems] Page 107

[Distributed Systems] Page 108

[Distributed Systems] Page 109

Atomic commit protocols:

 Transactioncommitprotocolsweredevisedintheearly1970s,andthetwo-

phasecommitprotocol appeared in Gray [1978]. The atomicity property of

transactionsrequires that when adistributed transaction comes to an end, either all of its

operationsare carried out or none of them.In the case of a distributed transaction, the client

hasrequested operations atmore than oneserver.

 A transaction comes to an end when theclient requests that it be committed or aborted.

A simpleway to complete the transactionin an atomic manner is for the coordinator to

communicate thecommit or abort requestto all of the participants in the transaction and to

keep on repeating therequest until allof them have acknowledged that they have carried it out.

This is an example of aonephaseatomic commit protocol.

 This simple one-phase atomic commit protocol is inadequate, though, because itdoes

not allow aserver to make a unilateral decision to abort a transaction when theclient requests

acommit.Reasonsthatpreventaserverfrombeingabletocommititspartofatransactiongenerallyrela

tetoissuesofconcurrencycontrol.Forexample,iflockingisinuse,theresolutionofadeadlockcan

lead to the aborting of a transactionwithout the client being aware unless it makes

anotherrequest to the server. Also ifoptimistic concurrency control is in use, the failure of

validation at aserver would causeit to decide to abort the transaction. Finally, the coordinator

may not know if aserver hascrashed and been replaced during the progress of a distributed

transaction – such aserverwill need to abort thetransaction.

 Thetwo-phasecommitprotocolisdesignedtoallowany

participanttoabortitspartofatransaction. Due to the requirement for atomicity, if one part of a

transaction is aborted, then thewhole transaction must be aborted.In the first phase of the

protocol, each participant votes forthe transaction to be committed or aborted. Once a

participanthas voted to commit a transaction,it is not allowed to abort it. Therefore, before a

participant votes to commit a transaction, it mustensure that it will eventually be able to carry

out its part of the commit protocol, even if it failsand is replaced in the interim. A participant

in a transaction is said to be in a prepared state for atransaction if it willeventually be able to

commit it. To make sure of this, each participant savesin permanent storage allof the objects

that it has altered in the transaction, together with itsstatus– prepared.

 In the second phase of the protocol, every participant in the transaction carries out the

jointdecision.Ifanyoneparticipantvotestoabort,thenthedecisionmustbetoabortthetransaction. If

[Distributed Systems] Page 110

alltheparticipants votetocommit,then thedecisionisto committhetransaction.

[Distributed Systems] Page 111

Concurrency control in distributed transactions

Each server manages a set of objects and is responsible for ensuring that they remain

consistentwhen accessed by concurrent transactions. Therefore, each server is responsible for

applyingconcurrency control to its own objects. The members of a collection of servers of

distributedtransactions are jointly responsible for ensuring that they are performed in a

serially equivalentmanner.

This implies that if transaction T is before transaction U in their conflicting access to objects

atone of the servers, then they must be in that order at all of the servers whose objects are

accessedinaconflictingmanner byboth TandU.

Locking:

Inadistributedtransaction,thelocksonanobjectare

heldlocally(inthesameserver).Thelocallockmanagercandecidewhethertograntalockormakether

equestingtransactionwait.However,itcannotreleaseanylocksuntilitknowsthatthetransactionhasb

eencommittedorabortedatalltheserversinvolvedinthetransaction.Whenlockingisusedforconcurr

encycontrol,theobjectsremainlockedandareunavailableforothertransactionsduringtheatomicco

mmit protocol, although an aborted transaction releases its locks after phase 1 of the

protocol.Aslockmanagersindifferentserverssettheirlocksindependentlyofoneanother,itispossibl

ethatdifferent servers mayimposedifferent orderings on transactions.

ConsiderthefollowinginterleavingoftransactionsTand Uatservers X and Y:

ThetransactionTlocksobjectAatserverX,andthentransactionUlocksobjectBatserverY.After

that,TtriestoaccessBatserverYandwaitsforU’slock.Similarly,transactionUtriesto

accessAatserverXandhastowaitforT’slock.

Therefore,wehaveTbeforeUinoneserverandUbeforeTin theother.Thesedifferent orderings can

[Distributed Systems] Page 112

leadtocyclicdependencies betweentransactions,givingrisetoadistributeddeadlocksituation.

Distributed dead locks:

Deadlocks can arise within a single server when locking is used for concurrency control.

Serversmusteitherpreventordetectandresolvedeadlocks.Usingtimeoutstoresolvepossibledeadlo

ck.It is difficult to choose an appropriate timeout interval, and transactions may be

abortedunnecessarily.Withdeadlockdetectionschemes,atransactionisabortedonlywhenitisinvol

vedinadeadlock.Mostdeadlockdetectionschemesoperateby finding cyclesinthetransaction

wait-for graph. In a distributed system involving multiple servers being accessed bymultiple

transactions, a global wait-for graph can in theory be constructed from the local ones.There

can be a cycle in the global wait-for graph that is not in any single local one – that is,

therecan be a distributed deadlock. Recall that the wait-for graph is a directed graph in which

nodesrepresent transactions and objects, and edges represent either an object held by a

transaction or atransaction waiting for an object. There is a deadlock if and only if there is a

cycle in the wait-forgraph.

DISTRIBUTEDTRANSACTIONS:

[Distributed Systems] Page 113

DISTRIBUTEDDEADLOCK:

Whenitfindsacycle,it makesadecisiononhowtoresolvethe deadlockandtellstheservers

whichtransactiontoabort.

Centralizeddeadlockdetectionisnotagoodidea,becauseitdependsonasingleservertocarryitout.Its

uffersfromthe usual problems associated with centralizedsolutions in distributed systems –

poor availability, lack of faulttolerance and no abilityto scale. In addition, the cost of the

frequent transmission of local wait-for graphs ishigh. Iftheglobal

graphiscollectedlessfrequently,deadlocksmaytake longertobedetected.

Phantom deadlocks • A deadlock that is ‘detected’ but is not really a deadlock

iscalledaphantom deadlock. In distributed deadlock detection, information about wait-

forrelationshipsbetweentransactionsistransmittedfromoneservertoanother.Ifthereisadeadlock,t

henecessary information will eventually be collected in one place and acycle will be detected.

Asthis procedure will take some time, there is a chance that oneof the transactions that holds

a lockwill meanwhile havereleasedit, in whichcase thedeadlock will nolonger exist.

Edgechasing•Adistributedapproachtodeadlockdetectionusesatechniquecallededgechasing or

path pushing. In this approach, the global wait-for graph is notconstructed, but each ofthe

servers involved has knowledge about some of its edges.The servers attempt to find cycles

byforwardingmessagescalledprobes,whichfollowtheedgesofthegraphthroughoutthedistributed

system. A probe message consists oftransaction wait-for relationships representing apathin

theglobal wait-for graph.

Transactionrecovery:

[Distributed Systems] Page 114

The atomic property of transactions requires that all the effects of committedtransactions

andnoneoftheeffectsofincompleteorabortedtransactionsarereflectedintheobjectstheyaccessed.

Thispropertycanbedescribedintermsoftwoaspects:durabilityandfailureatomicity.Durability

requires that objects are saved in permanentstorage and will be available

indefinitelythereafter. Therefore an acknowledgement ofa client’s commit request implies

that all the effectsof the transaction have beenrecorded in permanent storage as well as in the

server’s (volatile)objects.

Failureatomicityrequiresthateffectsoftransactionsareatomicevenwhen theservercrashes.

Recovery is concerned with ensuring that a server’s objects are durable and that

theserviceprovides failureatomicity.

Therequirements fordurabilityandfailureatomicityarenot reallyindependent

of one another and can be dealt with by a single mechanism – the recovery manager.Thetasks

ofarecoverymanagerare:

• tosaveobjectsin permanent storage(inarecoveryfile)forcommittedtransactions;

• torestoretheserver’sobjects afteracrash;

• toreorganizetherecoveryfiletoimprovetheperformanceofrecovery;

• toreclaimstoragespace(intherecoveryfile).

Logging:

• In the logging technique, the recovery file represents a log containing the history of

allthetransactions performed by a server. The history consists of values of objects,transaction

status entriesandtransactionintentions lists.Theorder

oftheentriesinthelogreflectstheorderinwhichtransactionshaveprepared, committed and

abortedat thatserver.

• In practice, the recovery file will contain a recent snapshot of the values of all theobjects in

the serverfollowed by a history of transactions postdating the snapshot.During the normal

operation of a server,its recovery manager is called whenevera transaction prepares to

commit, commits or aborts atransaction. When the server isprepared to commit a transaction,

the recovery manager appends all theobjects in itsintentions list to the recovery file, followed

by the current status of thattransaction(prepared) together with its intentions list.

[Distributed Systems] Page 115

MALLAREDDYCOLLEGEOFENGINEERING&TECHNOLOGY
(AutonomousInstitution–UGC,Govt.ofIndia)

IIIB.TechIISemester,Model Paper-I
DistributedSystems

(CSE&IT)
RollNo

Time:3 hours Max.Marks:70

Note:ThisquestionpaperConsistsof5Sections.AnswerFIVEQuestions,ChoosingONEQuestionfrom

eachSECTIONandeachQuestioncarries14marks.
***SECTI

ON-I

1 a)Discusshowdistributedsystemsaremorescalablethanthecentralizedsystems [7M]

b)Demonstratethedesignrequirementsfordistributedarchitectures [7M]
OR

2 Explaindifferenttypes offailureswithexamples. [14M]

SECTION-II

3 a)Explainexternalsynchronizationandinternalsynchronization. [7M]
b)DefineConsistent-globalstates,consistentcutandconsistentrun [7M]

OR

4 a)describeindetailaboutfailuredetectors
b)ExplainaboutMaekawa’salgorithm.

[14M]

SECTION-III

5 a)Writeaboutgroupcommunication.

b)What isamiddleware?Explainthevariouslayerspresentinit.
OR

6 a)WriteshortnotesExternaldatarepresentation
b)DiscussindetailaboutCORBA’scommondatarepresentation

SECTION-IV

[8M]

[6M]

[8M]
[6M]

7 a)Discussvariousfilesystemoperations. [7M]

b)DiscussindetailaboutCORBA’scommondatarepresentation [7M]
OR

8 writeabout groupcommunication. [7M]
Whatisamiddleware?Explainthevariouslayers presentinit. [7M]

SECTION-V

9 a)ExplainaboutOptimisticconcurrencycontrol. [14M]
b)ExplainTimestampordering

OR
10 Explaindistributeddeadlockdetectionmechanismwithexample. [14M]

[Distributed Systems] Page 116

CodeNo:xxxxxx

MALLAREDDYCOLLEGEOFENGINEERING&TECHNOLOGY
(AutonomousInstitution–UGC,Govt.ofIndia)

IIIB.TechIISemester,ModelPaper-II
DistributedSystems

(CSE&IT)
RollNo

Time:3 hours Max.Marks:70

Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question
fromeachSECTIONandeachQuestioncarries14marks.

***SECTI
ON-I

1 a)Discussinbriefthemain featuresofHTTP [7M]

b)Listandexplainthetechniquesusedfordealingwithfailures [7M]
OR

2 Explainbrieflyaboutarchitecturalmodels [14M]

SECTION-II
3 1.)Discussinbriefabout, [14M]

i. Mobileagents
ii. ThinClients
iii. NetworkComputers

OR
4 Whatissignificanceoffailuremodels?Explainin detailthetaxonomythat [7M]

distinguishesbetweenhe failuresofprocessesandcommunicationchannels.

Whataretheproblemsofdistributedsystems? [7M]

SECTION-III

5 ExplaintheElectionalgorithmswith examples. [14M]

OR
6 Explainthealgorithm formutualexclusionusingmulticast andlogicalclocks

[6M]What is meant by interprocess communication? How interprocess communication

[8M]isusedin distributed systems

SECTION-IV

7 WhataretheSixbuildingblocksofanXMLdocument?GiveExamples. [14M]

OR
8 a)DrawandexplainthearchitectureofSUNNetworksFileSystem [7M]

b)Whatarethe variousoperations providedbyNFS Server [7M]
SECTION-V

9 a)Discussinbriefaboutthe “ACID” PropertiesofTransactions [7M]

b)Explainwithanexamplehowtwotransactionsareinterleavedwhichareserially [7M]

equivalentateachserverbutisnotseriallyequivalentglobally?
OR

10 ExplainconcurrencycontrolinDistributedtransactions. [14M]

R17

[Distributed Systems] Page 117

DistributedSystems Page1

CodeNo:xxxxxx

MALLAREDDYCOLLEGEOFENGINEERING&TECHNOLOGY
(AutonomousInstitution–UGC,Govt.ofIndia)

IIIB.TechIISemester,ModelPaper-III
DistributedSystems(

CSE&IT)
RollNo

Time:3 hours Max.Marks:70
Note:ThisquestionpaperConsistsof5Sections.AnswerFIVEQuestions,ChoosingONEQuestionfrom
eachSECTIONandeachQuestioncarries14marks.

SECTION-I
1 Explaindifferentchallengesfacedbydistributedsystemswithexamples

OR

[14M]

2 Writeshortnotesonfundamentalmodels [14M]

SECTION-II

3 a)Defineinteractingprocesses.Alsodiscusstwosignificantfactors [7M]
effectinginteractionprocessesinDistributedsystem.
b)ExplainindetailHTML. [7M]

OR
4 (a)Whatisaneedofelectionalgorithm.Explainringbasedelectionalgorithm. [7M]

(b)Whataretheessentialfeaturesofmulticastcommunication? [7M]

SECTION-III

5 a)Writeabouttheorderingofmessages. [6M]

b)Explainthealgorithmtosolveconsensusprobleminasynchronoussystem. [8M]

OR
6 (a)Discussindetailaboutrequest replyprotocolandRPC. [7M]

(b)WriteaboutinterprocesscommunicationinUNIX. [7M]

SECTION-IV

7 (a)WhatarethedesigncharacteristicsofAndrewfilesystem.Howisthedistrib
utionof processesdoneinAFS?

[7M]

R17

[Distributed Systems] Page 118

CodeNo:xxxxxx

MALLAREDDYCOLLEGEOFENGINEERING&TECHNOLOGY
(AutonomousInstitution–UGC,Govt.ofIndia)

IIIB.TechIISemester,ModelPaper-IV
DistributedSystems

(CSE&IT)
RollNo

Time:3 hours Max.Marks:70

Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question
fromeachSECTIONandeachQuestioncarries14marks.

SECTION-I

1 a)Whatarethedifferentmethodsofsharingresourcesindistributedsystems. [7M]

b) Explainaboutmobileandubiquitouscomputing. [7M]

OR
2 a)Explaininteractionmodels. [7M]

b)ExplaindifferentvariationsinClientServermodel. [7M]

SECTION-II
3 (a)Whatisthe importanceoftimeindistributedsystems [7M]

(b)Describethealgorithmforexternalsynchronization [7M]
OR

4 (a)WhatisConsensusProblem [14M]
(b)Discussthetwo implementationofreliablemulticast

SECTION-III

5 ExplainRPCwithaneatexample. [14M]

OR
6 a)Listanddiscussthecharacteristicsofnetworkthatarehiddenbythestream [8M]

obstruction
b)DiscussindetailaboutHTTPProtocol [6M]

SECTION-IV

7 a)Give anOverViewofTypesofStorageSystemsandtheir properties [7M]
b) Explainthefileservicearchitecturewithaneatdiagram [7M]

OR

8 a)Whataretherequirementsforthedesignofdistributedfile system [8M]
b)Writeabout [6M]

(i) HierarchicFileSystems
(ii) FileGroups

SECTION-V
9 a)Discussinbriefaboutthe “ACID” PropertiesofTransactions [6M]

b)Writeshortnotesonlocksforconcurrencycontrol. [8M]

OR
10 Explaindifferenttransactionrecoverymechanismsindistributedtransactions. [14M]

R17

