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DISTRIBUTED SYSTEMS
UNIT-1

CHARACTERIZATION OF DISTRIBUTED SYSTEMS:INTRODUCTION

Distributed System-is a system of hardware or software components located at networked

computers which communicate and coordinate their actions by passing messages.

o It is a collection of autonomous computers, connected through network and

middleware.
o Users perceive the system as a single integrated computed facility.
Features of Centralised System:
. One component with non-autonomous parts
Component shared by users all the time
All resources accessible
Software runs in a single process
Single Point of control

o Single Point of failure

Features of Distributed System:

o Multiple autonomous components
Components are not shared by all users
Resources may not be accessible
Software runs in concurrent processes on different processors
Multiple Points of control

J Multiple Points of failure

Characteristics of Distributed System:
1. Concurrency of components (concurrent program execution)
2. Lack of a global clock(no single notion of time for all the systems)

3. Independent failures of components(failure of one component doesnot affect

others)
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Application of DS :

. Tele communication network(telephonen/w,cellularn/w,computern/w)
Network Applications (WWW, onlineapps, n/wfilesystems, bankingsystems )
Real-time process control systems(aircraftcontrolsystems)
o Parallel computation( grid computing, clustercomputing)
Examples of DS:

1. INTERNET: It is a vast interconnected collection of heterogeneous computer
networks. It is a very large distributed system which enables users to use services like
WWW, email, file transfer etc.

Services are open-ended.

ISP:Internetserviceprovider:companiesthatprovidemodemandotherfacilitiestousersandorganiz

ationswhichenable them to access services anywhere in the internet.
Intranet-sub networks operated by companies and other organizations.

Backbone—

linksintranets. Itisan/wlinkwithhightransmissioncapacityandemployssatellitecommunication,

fiber optics and other circuits.

2. INTRANET:

An Intranet is a portion of the Internet that is separately administered and has a
boundary that can beconfigured to enforce local security policies.It is composed of
several LAN’s linked by backboneconnections. An Intranet is connected to the Internet via a
router, which allows the users inside theintranet to make use of services. It also allows the
users in  other intranets to  access its  services.  Firewallprotectsan

Intranetbypreventingunauthorized messagesleavingorenteringusingfilteringmethod.
3. Mobile&UbiquitousComputing:

Technological advances in device miniaturization and wireless networking have led to
the integration ofsmall and portable computing devices into distributed systems (laptops,
phones, PDS’s, wearable devicesetc)

Mobilecomputingistheperformanceofcomputingtaskswhile theuser isonthe move.

Ubiquitous computing is the harnessing of many small, cheap computational devices

present in usersenvironment.Devices become pervasivein everydayobjects.
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ResourceSharing:

. Resource sharing is the primary motivation of distributed computing
Resources types
Hardware ,e.g.printer, scanner,camera
Datasources, e.g.file, database,webpage
Specificresources, e.g. search engine
Service

Managesacollectionofrelatedresourcesandpresentstheirfunctionalitiestouser

sand applications
Server

aprocessonnetworkedcomputerthatacceptsrequestsfromprocessesonotherco
mputers to performa serviceandrespondsappropriately

Client
therequestingprocess
Communicationisthrough messagepassingor Remoteinvocation

Manydistributedsystemscanbeconstructedinthe formofinteracting

clientsandservers.Ex:WWW,Email,Networkedprintersetc.
WebBrowser—clientwhichcommunicateswithwebservertorequestwebpages.

World Wide Web:

WWWisanevolvingsystemforpublishingandaccessingresourcesandservicesacrossthelnternetus

ingwebbrowsers.

Weboriginated at
Europeancentrefornuclearresearch,Switzerlandin1989.Documentsexchanged contain

hyperlinks.

Web is an open system. Its operation is based on communication standards and document
standards.
Initiallywebprovideddataresourcesbutnowincludesservicesalso.Webisbasedonthreemainstand
ardtechnological components:
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HTML: hyper text markup language for specifying contents and layouts of

pages.

URL:uniform resource locator which identifies documents and other resources

stored as part of web.

A client-server architecture with standard rules for
interaction(HTTP)bywhichbrowsersandclients fetch documents and other

resources from web servers.

HTML.: used to specify the text and images that make up the contents of a web page and to
specify how they are laid out and formatted for presentation to the user. Web page contains
headings, paragraphs, tables and images. HTML is also used to specify links and resources
associated with them. HTML text is stored as a file in the web server which is retrieved and

interpreted by the webbrowser. HTML directives—tags - <P>

Ex:

<IMG SRC= “http“>

<P >WELCOME

<AHREF="http > </A>

< /P>

URL :Itspurposeistoidentifyaresource.lthastwotop-level components:
Scheme:Scheme-specific-identifier

(typeof URLieftp,http) (specific info to be retrieved ie www.abc.net/--
.tml)HTTPURL’sare mostwidelyused.

Form ->http://servername[:port] [/path name]EX:http://www.google.com/search?g=MRCET

The simplest method of publishing a resource on the web is to place the corresponding file in

a directory thattheweb server canaccess.

HTTP: defines the ways in which browsers and other types of client interact with web
servers.Features:Request-replyinteractions,contenttypes,oneresourceperrequest, simpleaccess

control.

DynamicPages: AprogramthatwebserversruntogeneratecontentfortheirclientsisreferredtoasaC

ommon GatewaylInterface(CGIl)program.
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uniform
http://www.abc.net/--.html
http://www.abc.net/--.html
http://servername/
http://www.google.com/search?q=MRCET

XML —designedasawayofrepresentingdatainstandard,structured,application-
specificforms.ltisusedto describe the capabilities of devices and to describe personal info held

about users. The web of linkedmetadataresources is asemantic web.
CHALLENGES:
The challenges arising from the construction of distributed systems are:

1. Heterogeneity of components: The Internet enables users to access services and run
applications over a heterogeneous collection of computers and networks. Heterogeneity(that is,

variety and difference)applies to all of the following:
. networks;
computer hardware;
operating systems;
programming languages;
e implementations by different developers

Different programming languages use different representations for characters and data

structures such as arrays and records. Heterogeneity can be handled in three ways:

Middleware *The term middleware applies to a software layer that provides a programming
abstraction as well as masking the heterogeneity of the underlying networks, hardware,
operating systems and programming languages.The Common Object Request Broker
(CORBA),is an example.

Heterogeneity and mobile code <The term mobile code is used to refer to program code that
can betransferredfromonecomputertoanother and run atthedestination—

Javaappletsareanexample.

Thevirtualmachineapproachprovidesawayofmakingcodeexecutableonavarietyofhostcomputer
s: the compiler for a particular language generates code for a virtual machine instead
ofparticularhardwareordercode.Forexample,theJavacompilerproduces

codeforaJavavirtualmachine,whichexecutes itbyinterpretation.

2. Openness

The openness of a computer system is the characteristic that determines whether the

system can be extended and re implemented in various ways. The openness of distributed
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systems is determined primarily by the degree to which new resource-sharing services can be

added and be made available for use by a variety of client programs.

. Open systems are characterized by the fact that their key interfaces are
published.

Open distributed systems are based on the provision of a uniform
communication mechanism and published interfaces for access to shared

resources.

Open distributed systems can be constructed from heterogeneous hardware and
software, possibly from different vendors. But the conformance of each
component to the published standard must be carefully tested and verified if the

system is to work correctly.

Security

Many of the information resources that are made available and maintained in
distributed systems have a high intrinsic value to their
users.Securityforinformationresourceshasthreecomponents: confidentiality (protection against
disclosure to unauthorized individuals), integrity(protection againstalteration or corruption),

and availability (protection against interference with the means to access theresources).

Challenge is not only to conceal the contents of a message but also to establish the identity of

senderand receiver. Encryption techniques are used for this purpose. Two challenges not yet

fully met are —denialofserviceattacksand securityofmobilecode.

4. Scalability

Distributed systems operate effectively and efficiently at many different scales,
ranging from a smallintranet to the Internet. A system is described as scalable if it will
remain effective when there is asignificant increase in the number of resources and the

number of users. The design of scalabledistributedsystems presents the followingchallenges:

Controlling the cost of physical resources.Controlling the performance

lossPreventingsoftwareresourcesrunningoutAvoidingperformancebottlenecks
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Failure handling

Computer systems sometimes fail. When faults occur in hardware or software,
programs may produceincorrect results or may stop before they have completed the intended
computation. Failures in adistributedsystemarepartial—
thatis,somecomponentsfailwhileotherscontinuetofunction. Thereforethe

handlingoffailuresisparticularlydifficult.

Detecting failures: Some failures can be detected. For example, checksums can be used to
detectcorrupteddata inamessageorafile.

Masking failures: Some failures that have been detected can be hidden or made less severe.

Twoexamplesofhidingfailures:

Messages can be retransmitted when they fail to arrive.
File data can be written to a pair of disks so

that ifoneiscorrupted, the otherwill bethere.

Tolerating failures: For example, when a web browser cannot contact a web server, it does
not makethe user wait for ever while it keeps on trying— it informs the user about the
problem, leaving themfreeto tryagain later.

Recovery from failures: Recovery involves the design of software so that the state of

permanent datacanberecovered or‘rolledback’afteraserver hascrashed.
Redundancy: Services can bemadetotoleratefailures bythe useofredundantcomponents.

6. Concurrency

Both services and applications provide resources that can be shared by clients in a

distributed system.There is therefore a possibility that several clients will attempt to access a

shared resource at the sametime. Therefore services and applications generally allow multiple

client requests tobe processedconcurrently. In this case processes should ensure correctness

and consistency. Operations of objects should be synchronized using semaphores etc.

7. Transparency

Transparency is defined as the concealment from the user and the application
programmer of theseparation of components in a distributed system, so that the system is
perceived as a wholerather thanasacollection ofindependentcomponents.Thevarious formsof

transparencyare:
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Access transparency enables local and remote resources to be accessed using identical
operations.Locationtransparencyenablesresourcestobeaccessedwithoutknowledgeoftheirphysi

calornetworklocation (forexample, which buildingorIP address).

Concurrency transparency
enablesseveralprocessestooperateconcurrentlyusingsharedresourceswithout

interferencebetween them.

Replication transparency enables multiple instances of resources to be used to increase
reliability and performance without knowledge of the replicas byusers

orapplicationprogrammers.

Failuretransparencyenablestheconcealmentoffaults, allowing users and application programs

to complete their tasks despite the failure of hardware or softwarecomponents.

Mobilitytransparency allows the movement of resources and clientswithin a system without

affecting the operation of users or programs.

Performance transparency allows the system to be reconfigured to improve performance as
loadsvary.Scaling transparency allows the system and applications to expand in scale without
change to thesystemstructureortheapplication algorithms.

INTRODUCTION TO SYSTEM MODELS

System Models specify the common properties and design issues for a distributed system.

They describe the relevant aspects of DS design.

Each type of model is intended to provide an abstract, simplified but consistent description of

a relevantaspect of distributed system design:
Physicalmodelsarethemostexplicitwayinwhichtodescribeasystem; they capture the

hardware composition of a system in terms of the computers (and other devices, such as

mobile phones)and their inter connectingnetworks.

Architectural models describe a system in terms of the computational and communication
tasksperformedbyitscomputationalelements; the
computationalelementsbeingindividualcomputersoraggregatesofthemsupportedbyappropriate

network inter connections.
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Fundamental models take an abstract perspective in order to examine individual aspects of
adistributed system. The fundamental models that examine three important aspects of
distributedsystems: interaction models, which consider the structure and sequencing of the
communicationbetween the elements of the system; failure models, which consider the ways
in which a systemmay fail to operate correctly and; security models, which consider how the

system is protected against attempts to interfere with itscorrect operationor to stealits data.
1. Architectural models

Architecture models define the way in which the components of systems interact with one
anotherand how they are mapped onto the network. The architecture of a systemis its
structure in termsof separately specified components and their interrelationships. The overall

goal is to ensure thatthestructurewill meet presentand likelyfuturedemands on it.
Software layers

In alayeredapproach,a complex system is partitioned into a number of layers,
withagivenlayermaking use of the services offered by the layer below. In terms of distributed
systems, thisequates to a vertical organization of services into service layers. Given the
complexity ofdistributed systems, it is often helpful to organize such services into layers. the

important termsplatformand middleware, which define asfollows:

A platform for distributed systems and applications consists of the lowest-level hardware

andsoftware layers. These low-level layers provide services to the layers above them, which
areimplementedindependentlyineachcomputer, bringing the
system’sprogramminginterfaceuptoalevelthat facilitates

communicationandcoordinationbetween processes.

Applications, services

Middleware

Operating system

Computer and nebvorkhardware
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There are two main architectural models:
1. Client-ServerModel
2.  Peer-to-peer architecture

Client-server:This is the architecture that is most often cited when distributed systems
arediscussed. Itishistoricallythemostimportantandremainsthemostwidelyemployed.Serverisa
process which accepts requests from other processes and Client is a process requesting

servicesfromaserver.

Servers may in turn be clients of other servers, as the figure indicates. For example, a web
serveris often a client of a localfile server that manages the files in which the web pagesare

stored.ses.

Clients invoke individual servers

Clients invoke individual servers

result @ result
o

> Samme

Key:
Process: O Computer:

Another web-related example concerns search engines, which enable users to look up
summariesof information available on web pages at sites throughout the Internet. Thus a
search engine isboth a server and a client: it responds to queries from browser clients and it

runs web crawlersthatactas clients of other web servers.

Peer-to-peer:In this architecture all of the processes involved in a task or activity play
similarroles,interacting cooperatively as peers without anydistinction between client and
server processes or the computers on which they run. In practical terms, all participating
processes runthe same program and offer the sameset of interfaces to eachother.While the
client-servermodel offers a direct and relatively simple approach to the sharing of data and
other resources, itscales poorly. Enables hundreds of computers to provide access to
resources they share andmanage. Each object is replicated in several computers. Ex: Napster

app for sharing digital musicfiles.
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A distributed application based on peer processes

Several variations on the above models can be derived:

1. Multiple-Servers Model: In this services are provided by multiple servers. Services

can beimplementedas several server processesinseparate host computers.

Web Proxy Server: It provides a shared cache of recently visited pages and web

resourcesfor the client machines at a site or across several sites. Purpose of proxy

servers is to increaseavailabilityand performance oftheservice.
MobileCode:
a)  Client requests resultsinthedownloadingofappletcode

b)  Appletsareawell-
knownandwidelyusedexampleofmobilecode.ltisdownloadedfromaweb server
andexecutedlocallyresultingin good interactive response.

MobileAgent:

Amobileagentisarunningprogramthattravelsfromonecomputertoanotherinnetworkcarry

ingout a task on someones behalf

5. Network Computers:
Networkcomputer
Remotefileserver

Client
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network
OS and Files
Networkcomputer:
Download sits OS and application software needed from a Remotefileserver

Applications are run locally but the files are managed by the remote file server; low software

management and maintenance cost.
6. Thin Client:

Asoftwarelayerthatsupportsawindowbasedinterfaceonacomputerthatislocaltotheuserwhile

executingapplication programs onacomputer server
Design requirements for distributed architectures:
1. Performance Issues

2. Quiality of Service

3. Use of cache and replication
Performancelssues

Responsiveness

Delay,responsetime, slowdown,stretchfactor

Determinedbyloadandperformanceoftheserverandthenetwork,andbydelaysinallsoftwarecompo

nentsinvolved

Throughput

Therate atwhichcomputationalworkof theserverordata transferofthenetworkisdone

Load balancing/loadsharing
Enableapplicationsandservice processestoproceedconcurrentlyandexploittheavailableresource
3. Eundamental Models

Modelsofsystemssharesomefundamentalproperties.Inparticular,allof themare
composedofprocessesthatcommunicatewithoneanotherbysendingmessages over acomputer

network.

The purpose of such a model is:
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To make explicit all the relevant assumptions about the systems we are modelling.

. To make generalizations concerning what is possible or impossible, given those
assumptions.The aspects of distributed systems that we wish to capture in our fundamental

models are intended to helpustodiscussandreason about:

Interaction: Computation occurs within processes; the processes interact by passing
messages,resulting in communication (informationflow) and coordination (synchronization

and orderingofactivities)between processes

Failure: The correct operation of a distributed system is threatened whenever a fault occurs
inany of the computers on which it runs (including software faults) or in the network that

connectsthem.Ourmodel definesand classifies the faults.

Security: The modular nature of distributed systems and their opennessexposes them to
attackby both externaland internal agents.Our security model defines andclassifies the
formsthatsuch attacks may take, providing a basis for the analysis of threats to a system and

for the designofsystems thatareableto resist them.
There are three Fundamental Models:
a) Interactionmodel

Fundamentallydistributedsystemsarecomposedofmanyprocesses, interacting in complex

ways.For example:
. Multipleserver processesmaycooperatewithoneanotherto provide aservice;

A set of peerprocesses may cooperate with one another to achieve a common
goal; Two significant factors affecting interacting processes in adistributed

system:
Communication performance is often a limiting characteristic.

It is impossible to maintain a single global notion of time.

PerformanceofcommunicationchannelssCommunicationoveracomputernetworkhasthefollowi

ngperformancecharacteristics relatingtolatency, bandwidth and jitter:

The delay between the start of a message’s transmission from one process and the
beginningofitsreceipt byanother is referred to aslatency. The latency includes:

The time taken for the firstof a stringof bits ransmitted throughanetworktor each
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its
Destination. For example, the latency for the transmission of a message through

a satellite linkisthe timeforaradio signals to travel tothesatellite and back.

Thebandwidthofacomputernetworkisthetotalamountofinformationthatcanbetrans
mitted over it in a given time. When a large number of communication channels

are usingthesamenetwork, theyhaveto sharetheavailablebandwidth.

Jitter is the variation in the time taken to deliver a series of messages. Jitter is
relevant tomultimedia data. For example,if consecutive samplesof audio data

areplayed with differingtimeintervals, thesoundwillbebadlydistorted.

Computer clocks and timing events ¢ Each computer in a distributed systemhas its
owninternal clock, which can be used by local processes to obtain the value of the current
time.Therefore two processes running on different computers can each associate timestamps
with theirevents. However, even if the two processes read their clocks at the same time, their
local clocksmay supply different time values. This is because computer clocks drift from
perfect time and,more importantly, their drift rates differ from one another. The term clock
drift rate refers to therateatwhichacomputer clockdeviatesfromaperfect

referenceclock.Eveniftheclocksonall

The computers in a distributed system are set to the same time initially, their clocks will

eventually vary quite significantly unless corrections are applied.

Clock Drift Rate

Two variants of the interaction model ¢

Synchronous distributed systems: has a strong assumption of time.Asynchronous distributed

system is one in which the following bound are defined:
. Thetimeto executeeachstepofaprocess hasknown lowerand upperbounds.
Eachmessagetransmittedoverachannelisreceivedwithin aknownboundedtime.

Each process has a local clock whose drift rate from real time has a known
bound.Asynchronousdistributedsystems:makesnoassumptionoftime.Anasynchro

nousdistributedsystemisoneinwhich therearenobounds on:

Process execution speeds—for example, one process step may take only a Pico

second and another a century; all that can be said is that each step may take an
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arbitrarily long time.

Message transmission delays — for example, one message from process A to
process B may be delivered in negligible time and another may take several
years. In other words, a message may be received after an arbitrarily long time.

Clock drift rates—again; the drif trat of a clock is arbitrary.
b) Failure model

In a distributed system both processes and communication channels may fail — that is, they
may depart from what is considered to be correct or desirable behavior. The failure model
defines the ways in which failure may occur in order to provide an understanding of the
effects of failures. We can have failures of processes and communication channels. These are

presented under the headings omission failures, arbitrary failures and timing failures.

Omission failures ¢ The faults classified as omission failures refer to cases when a process or

communication channel fails to perform actions that it’s supposed to do.

Process omission failures: The chief omission failure of a process is to crash. When, say that
process has crashed we mean that it has halted and will not execute any further steps of its

program ever.

invocation
Process, Process
Sem—X - crashed

timeout

In an asynchronous distributed system

e Atimeout means that a process is NOT responding; may have crashed or may be

slow; or the message may not have arrived
In a synchronous distributed system
e A time out means that a process is crashed, so called fail-stop

However, this method of crash detection relies on the use of timeouts — that is, a
method in which one process allows a fixed period of time for something to occur. In an
asynchronous system timeout can indicate only that a process is not responding — it may have

crashed or may be slow, or the messages may not have arrived.

Communication omission failures: Consider the communication primitives send and receive.
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Process p performs a send by inserting the message m in its outgoing message buffer. The
communication channel transports m to q’s incoming message buffer. Process q performs a

receive by taking m from its incoming message buffer and deliver in get. The out going and
Incoming message buffer are typically provided by the operating system.

Arbitrary failures ¢ The term arbitrary or Byzantine failure is used to describe the worst
possible failure semantics, in which any type of error may occur. For example, a process may

set wrong values in its dataitems, oritmay return a wrong value in responseto an invocation.

An arbitrary failure of a process is one in which it arbitrarily omits intended processing steps

or takesunintended processing steps.

Communication channels can suffer from arbitrary failures; for example, message contents
maybe corrupted, nonexistent messages may be delivered or real messages may be delivered

more than once.

Timing failures ¢ Timing failures are applicable in synchronous distributed systems where
time limits are set on process execution time, message deliverytime and clock drift rate.
Timing

Failures are listed in the following figure. Any one of these failures may result in responses

being unavailable to clients within a specified time interval.

Real-time operating systems are designed with a view to providing timing guarantees, but

they are more complex to design and may requirer edundant hardware.

C) Security model

The security of a distributed system can be achieved by securing the processes and the
channelsusedfortheirinteractionsandbyprotectingtheobjectsthattheyencapsulateagainstunautho

rizedaccess.

Protection is described in terms of objects; although the concepts apply equally well to

resources fall types
Protecting objects:

Objects are intended to be used in different ways by different users. For example, some
objects may hold a user’s private data, such as their mailbox, and other objects may hold
shared datasuchaswebpages.Tosupportthis, access rights specify who is allowed to perform

the operations of an object—for example, who is allowed to read or to write its state.
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Access rights Object
invocation

{ Client 'j
result

Principal (user) Principal (server)

The enemy * To model security threats, we postulate an enemy (sometimes also known as the
adversary) that is capable of sending any message to any process and reading or copying any

messagesent between apairofprocesses,asshowninthe followingfigure. Theattackmay

Come from a computer that is legitimatelyconnectedtothenetworkorfromonethatisconnected
in an unauthorized manner. The threats from a potential enemy include threats

toprocessesand threats tocommunicationchannels.

Copy offm

eEEE

The enemy *

- 3
A guun® M
Processp ) m—p ‘ = | Processqg
Communication channel

Defeating security threats

Cryptographyisthescienceofkeepingmessagessecure, and encryption is the process of

scrambling a message in such away as to hide its contents. Modern cryptographyisbased on

Encryption algorithms that use secret keys—large numbers that are difficulttoguess—
totransform data in a manner that can only be reversed with knowledge of the corresponding
decryption key.

Authentication: The use of shared secrets and encryption provides the basis for the
authentication of messages—proving the identities supplied by their senders. The basic
authentication technique is to include in a message an encrypted portion that contains enough
of the contents of the message to guarantee its authenticity.

Secure channels: Encryption and authentication are used to build secure channels as a service
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layer on top of existing communication services. A secure channel is a communication
channel connecting a pair of processes, each of which acts on behalf of a principal, as shown

in the following figure. A secure channel has the following properties:

. Eachoftheprocessesknowsreliablytheidentityoftheprincipalonwhosebehalftheoth

erprocessisexecuting.

A secure channel ensures the privacy and integrity (protection against

tampering) of the data transmitted across it.

Each message includes a physical or logical time stamp to prevent messages

from being replayed or reordered.

PrincipaIA I’PrincipalB

Processp Secure channel || Processg )|

[Distributed Systems]




UNIT 11

Time and Global States- Introduction-Clocks, events and process states-Synchronizing

physical clocks-Logical time and logical clocks-Global states-Distributed debugging.

Coordination and Agreement-Introduction- Distributed mutual exclusion-Elections-

Multicast communication-Consensus and related problems.

Time and Global States

There are two formal models of distributed systems: synchronous and asynchronous.
Synchronous distributed systems have the following characteristics:
e the time to execute each step of a process has known lower and upper bounds;

each message transmitted over a channel is received within a known bounded

time;

Each process has a local clock whose drift rate from real time has a known
bound.

Asynchronous distributed systems, in contrast, guarantee no bounds on process execution

speeds, message transmission delays, or clock drift rates. Most distributed systems we

discuss, including the Internet, are asynchronous systems.

Generally, timing is a challenging an important issue in building distributed systems.

Consider a couple of examples:

. Suppose we want to build a distributed system to track the battery usage of a
bunch of laptop computers and we'd like to record the percentage of the battery
each has remaining at exactly 2pm.

Suppose we want to build a distributed, real time auction and we want to know
which of two bidders submitted their bid first.

Suppose we want to debug a distributed system and we want to know whether
variable x; in process p; ever differs by more than 50 from variable x, in process
P2.

In the first example, we would really like to synchronize the clocks of all participating
computers and take a measurement of absolute time. In the second and third examples,

knowing the absolute time is not as crucial as knowing the order in which events occurred.
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Clock Synchronization

Every computer has a physical clock that counts oscillations of a crystal. This hardware clock
is used by the computer's software clock to track the current time. However, the hardware
clock is subject to drift -- the clock'’s frequency varies and the time becomes inaccurate. As a
result, any two clocks are likely to be slightly different at any given time. The difference

between two clocks is called their skew.

There are several methods for synchronizing physical clocks. External

synchronization means that all computers in the system are synchronized with an external
source of time (e.g., a UTC signal). Internal synchronization means that all computers in the
system are synchronized with one another, but the time is not necessarily accurate with
respect to UTC.

In a synchronous system, synchronization is straightforward since upper and lower bounds on
the transmission time for a message are known. One process sends a message to another
process indicating its current time, t. The second process sets its clock to t +

(max+min)/2 where max and min are the upper and lower bounds for the message

transmission time respectively. This guarantees that the skew is at most (max-min)/2.

Cristian's method for synchronization in asynchronous systems is similar, but does not rely on
a predetermined max and min transmission time. Instead, a process p; requests the current
time from another process p, and measures the RTT (Troung) OF the request/reply.

Whenp; receives the time t from p; it sets its time to t + Troung/2.

The Berkeley algorithm, developed for collections of computers running Berkeley UNIX, is

an internal synchronization mechanism that works by electing a master to coordinate the

synchronization. The master polls the other computers (called slaves) for their times,

computes an average, and tells each computer by how much it should adjust its clock.

The Network Time Protocol (NTP) is yet another method for synchronizing clocks that uses a
hierarchical architecture where he top level of the hierarchy (stratum 1) are servers connected

to a UTC time source.
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Logical Time

Physical time cannot be perfectly synchronized. Logical time provides a mechanism to define

the causal order in which events occur at different processes. The ordering is based on the

following:

. Two events occurring at the same process happen in the order in which they are

observed by the process.

. If a message is sent from one process to another, the sending of the message happened

before the receiving of the message.
. If e occurred before e' and e' occurred before e" then e occurred before e".

"Lamport called the partial ordering obtained by generalizing these two relationships

the happened-before relation.” ( — )

Figure 11.5
Events occurring at three processes

» Physical
time

In the figure,a— bandc—d. Also, b — cand d — f, which means that a — f . However,
we cannot say that a — e or vice versa; we say that they are concurrent

@lle).

A Lamport logical clock is a monotonically increasing software counter, whose value need

bear no particular relationship to any physical clock. Each process pi keeps its own logical
clock, Li, which it uses to apply so-called Lamport timestamps to events.
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Lamport clocks work as follows:

LC1: Li is incremented before each event is issued at pi.

LC2:

When a process pi sends a message m, it piggybacks on m the value t = Li.

On receiving (m, t), a process pj computes Lj: = max (Lj, t) and then applies LC1 before time

stamping the event receive (m).

An example is shown below:

Figure 11.6
Lamport timestamps for the events shown in Figure 11.5

= Physical
time

If e — e "then L (e) < L (e"), but the converse is not true. Vector clocks address this problem.
"A vector clock for a system of N processes is an array of N integers." Vector clocks are

updated as follows:

VC1: Initially, VI[j]=0for I,j=1,2, N

VC2: Just before pi timestamps an event, it sets Vi[i]:=Vi[i]+1.
VC3: pi includes the value t = Vi in every message it sends.

VC4: When pi receives a timestamp t in a message, it sets Vi[j]:=max(Vi[j], t[j]), for 1, 2,
...N. Taking the component wise maximum of two vector timestamps in this way is known as

a merge operation.
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An example is shown below:

Figure 11.7
Vector timestamps for the events shown in Figure 11.5

(210)  (220) Physical

o d time

Vector timestamps are compared as follows:

v=V'iff V[j1=V'[j]forj=1,2,..,N

V<=V'iff V[j] <=V'[j] forj=1,2,...,N

V<ViffVv<=V'and V 1= V'

Ife —>e'thenV(e) < V(e) and if V(e) < V(e')thene —>e".
Global States

It is often desirable to determine whether a particular property is true of a distributed system
as it executes. We'd like to use logical time to construct a global view of the system state and

determine whether a particular property is true. A few examples are as follows:

. Distributed garbage collection: Are there references to an object anywhere in the
system? References may exist at the local process, at another process, or in the

communication channel.

Distributed deadlock detection: Is there a cycle in the graph of the "waits for"

relationship between processes?

Distributed termination detection: Has a distributed algorithm terminated?
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Distributed debugging: Example: given two processes p; and p, with variables
X1 and X respectively, can we determine whether the condition [X;-X,| > 6 is ever

true.

In general, this problem is referred to as Global Predicate Evaluation. "A global state

predicate is a function that maps from the set of global state of processes in the system p to

{True, False}."

. Safety - a predicate always evaluates to false. A given undesirable property
(e.g., deadlock) never occurs.

Liveness - a predicate eventually evaluates to true. A given desirable property

(e.g., termination) eventually occurs.
Cuts

Because physical time cannot be perfectly synchronized in a distributed system it is not
possible to gather the global state of the system at a particular time. Cuts provide the ability

to "assemble a meaningful global state from local states recorded at different times".
Definitions:
p is a system of N processes p; (i=1, 2, ..., N)
history(pi) =hi=<ei0,eil,.>
hik=<eiO,eil,..,eik>-afinite prefix of the process's history
s 1 k is the state of the process p; immediately before the kth event occurs

All processes record sending and receiving of messages. If a process p; records

the sending of message m to process p; and p; has not recorded receipt of the

message, then m is part of the state of the channel between p; and p;.

A global history of p is the union of the individual process histories: H =
hy U hy U hy U...Uhna

A global state can be formed by taking the set of states of the individual

processes: S = (Sy, S2, ..., SN)

A cut of the system's execution is a subset of its global history that is a union of

prefixes of process histories (see figure below).

The frontier of the cut is the last state in each process.
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A cut is consistent if, for all events e and e":
(eeCande'—e)=>e'€C

A consistent global state is one that corresponds to a consistent cut.

Figure 11.9
Cuts

~ Physical
time

Inconsistent cut
Consistent cut

Distributed Debugging

To further examine how you might produce consistent cuts, we'll use the distributed

debugging example. Recall that we have several processes, each with a variable x;. "The

safety condition required in this example is [xi-Xj| <=8 (i,j =1, 2, ..., N)."

The algorithm we'll discuss is a centralized algorithm that determines post hoc whether the
safety condition was ever violated. The processes in the system, py, p2, ..., Pn, Send their states
to a passive monitoring process, po. Po is not part of the system. Based on the states collected,

Po can evaluate the safety condition.

Collecting the state: The processes send their initial state to a monitoring process and send
updates whenever relevant state changes, in this case the variable x;. In addition, the
processes need only send the value of xjand a vector timestamp. The monitoring process
maintains an ordered queue (by the vector timestamps) for each process where it stores the
state messages. It can then create consistent global states which it uses to evaluate the safety

condition.
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Let S = (s1, s2, ..., SN) be a global state drawn from the state messages that the monitor
process has received. Let V/(si) be the vector timestamp of the state si received from pi. Then

it can be shown that S is a consistent global state if and only if:
V(S[i] >= V(s))[i] fori,j=1,2,..,N

Figure 11.14
Vector timestamps and variable values for the execution of Figure 11.9
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Coordination and Agreement

Overview

We start by addressing the question of why process need to coordinate their actions and agree

on values in various scenarios.

1. Consider a mission critical application that requires several computers to
communicate and decide whether to proceed with or abort a mission. Clearly, all

must come to agreement about the fate of the mission.

Consider the Berkeley algorithm for time synchronization. One of the participate
computers serves as the coordinator. Suppose that coordinator fails. The

remaining computers must elect a new coordinator.

Broadcast networks like Ethernet and wireless must agree on which nodes can
send at any given time. If they do not agree, the result is a collision and no

message is transmitted successfully.

[Distributed Systems]




Like other broadcast networks, sensor networks face the challenging of agreeing
which nodes will send at any given time. In addition, many sensor network
algorithms require that nodes elect coordinators that take on a server-like
responsibility. Choosing these nodes is particularly challenging in sensor

networks because of the battery constraints of the nodes.

Many applications, such as banking, require that nodes coordinate their access
of a shared resource. For example, a bank balance should only be accessed and
updated by one computer at a time.

Failure Assumptions and Detection

Coordination in a synchronous system with no failures is comparatively easy. We'll look at
some algorithms targeted toward this environment. However, if a system is asynchronous,
meaning that messages may be delayed an indefinite amount of time, or failures may occur,

then coordination and agreement become much more challenging.

A correct process "is one that exhibits no failures at any point in the execution under
consideration." If a process fails, it can fail in one of two ways: a crash failure or a byzantine
failure. A crash failure implies that a node stops working and does not respond to any
messages. A byzantine failure implies that a node exhibits arbitrary behavior. For example, it

may continue to function but send incorrect values.

Failure Detection

One possible algorithm for detecting failures is as follows:

. Every t seconds, each process sends an "l am alive™" message to all other

processes.
Process p knows that process q is either unsuspected, suspected, or failed.
. If p sees q's message, it sets q's status to unsuspected.

This seems ok if there are no failures. What happens if a failure occurs? In this case, q will
not send a message. In a synchronous system, p waits for d seconds (where d is the maximum
delay in message delivery) and if it does not hear from g then it knows that q has failed. In an
asynchronous system, g can be suspected of failure after a timeout, but there is no guarantee

that a failure has occurred.

[Distributed Systems]




Mutual Exclusion

The first set of coordination algorithms we'll consider deal with mutual exclusion. How can

we ensure that two (or more) processes do not access a shared resource simultaneously? This

problem comes up in the OS domain and is addressed by negotiating with shared objects

(locks). In a distributed system, nodes must negotiate via message passing.
Each of the following algorithms attempts to ensure the following:
. Safety: At most one process may execute in the critical section (CS) at a time.
Liveness: Requests to enter and exit the critical section eventually succeed.

Causal ordering: If one request to enter the CS happened-before another, then

entry to the CS is granted in that order.

Central Server

The first algorithm uses a central server to manage access to the shared resource. To enter a

critical section, a process sends a request to the server. The server behaves as follows:

. If no one is in a critical section, the server returns a token. When the process

exits the critical section, the token is returned to the server.
. If someone already has the token, the request is queued.
Requests are serviced in FIFO order.

If no failures occur, this algorithm ensures safety and liveness. However, ordering is not

preserved (why?). The central server is also a bottleneck and a single point of failure.
Token Ring

The token ring algorithm arranges processes in a logical ring. A token is passed clockwise
around the ring. When a process receives the token it can enter its critical section. If it does

not need to enter a critical section, it immediately passes the token to the next process.

This algorithm also achieves safety and liveness, but not ordering, in the case when no
failures occur. However, a significant amount of bandwidth is used because the token is

passed continuously even when no process needs to enter a CS.
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Multicast and Logical Clocks

Each process has a unique identifier and maintains a logical clock. A process can be in one of

three states: released, waiting, or held. When a process wants to enter a CS it does the

following:
. sets its state to waiting
sends a message to all other processes containing its ID and timestamp
. once all other processes respond, it can enter the CS
When a message is received from another process, it does the following:
. if the receiver process state is held, the message is queued

if the receiver process state is waiting and the timestamp of the message is after
the local timestamp, the message is queued (if the timestamps are the same, the

process ID is used to order messages)
. else - reply immediately
When a process exits a CS, it does the following:
. sets its state to released

replies to queued requests

Figure 12.5
Multicast synchronization
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This algorithm provides safety, liveness, and ordering. However, it cannot deal with failure

and has problems of scale.

None of the algorithms discussed are appropriate for a system in which failures may occur. In
order to handle this situation, we would need to first detect that a failure has occurred and
then reorganize the processes (e.g., form a new token ring) and reinitialize appropriate state

(e.g., create a new token).
Election

An election algorithm determines which process will play the role of coordinator or server.

All processes need to agree on the selected process. Any process can start an election, for

example if it notices that the previous coordinator has failed. The requirements of an election

algorithm are as follows:

. Safety: Only one process is chosen -- the one with the largest identifying value.

The value could be load, uptime, a random number, etc.
. Liveness: All process eventually chooses a winner or crash.
Ring-based

Processes are arranged in a logical ring. A process starts an election by placing its ID and
value in a message and sending the message to its neighbor. When a message is received, a

process does the following:

. If the value is greater that its own, it saves the ID and forwards the value to its
neighbor.

Else if its own value is greater and then it has not yet participated in the election,
it replaces the ID with its own, the value with its own, and forwards the

message.
Else if it has already participated it discards the message.

If a process receives its own ID and value, it knows it has been elected. It then

sends an elected message to its neighbor.

When an elected message is received, it is forwarded to the next neighbor.
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Figure 12.7
A ring-based election in progress
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Note: The election was started by process 17.
The highest process identifier encountered so far is 24.
Participant processes are shown darkened
Safety is guaranteed - only one value can be largest and make it all the way through the ring.
Liveness is guaranteed if there are no failures. However, the algorithm does not work if there

are failures.

Bully

The bully algorithm can deal with crash failures, but not communication failures. When a

process notices that the coordinator has failed, it sends an election message to all higher-
numbered processes. If no one replies, it declares itself the coordinator and sends a new
coordinator message to all processes. If someone replies, it does nothing else. When a process
receives an election message from a lower-numbered process it returns a reply and starts an

election. This algorithm guarantees safety and liveness and can deal with crash failures.
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Figure 12.8
The bully algorithm
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Consensus

All of the previous algorithms are examples of the consensus problem: how can we get all

processes to agree on a state? Here, we look at when the consensus problem is solvable.

The system model considers a collection of processes p; (i = 1, 2, ..., N). Communication is

reliable, but processes may fail. Failures may be crash failures or byzantine failures.
The goals of consensus are as follows:
Termination: Every correct process eventually decides on a value.
Agreement: All processes agree on a value.

Integrity: If all correct processes propose the same value, that value is the one

selected.

We consider the Byzantine Generals problem. A set of generals must agree on whether to

attack or retreat. Commanders can be treacherous (faulty). This is similar to consensus, but
differs in that a single process proposes a value that the others must agree on. The

requirements are:
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Termination: All correct processes eventually decide on a value.
Agreement: All correct processes agree on a value.

Integrity: If the commander is correct, all correct processes agree on what the

commander proposed.

If communication is unreliable, consensus is impossible. Remember the blue army
discussion from the second lecture period. With reliable communication, we can solve

consensus in a synchronous system with crash failures.

We can solve Byzantine Generals in a synchronous system as long as less than 1/3 of
the processes fail. The commander sends the command to all of the generals and each general
sends the command to all other generals. If each correct process chooses the majority of all
commands, the requirements are met. Note that the requirements do not specify that the

processes must detect that the commander is fault.

It is impossible to guarantee consensus in an asynchronous system, even in the
presence of 1 crash failure. That means that we can design systems that reach consensus most
of the time, but cannot guarantee that they will reach consensus every time. Techniques for

reaching consensus in an asynchronous system include the following:

. Masking faults - Hide failures by using persistent storage to store state and

restarting processes when they crash.

Failure detectors - Treat an unresponsive process (that may still be alive) as
failed.

Randomization - Use randomized behavior to confuse byzantine processes.
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UNIT-11I

INTERPROCESSCOMMUNICATION:

Inter process communication (IPC) is a mechanism which allows processes to communicate

with each other and synchronize the inactions.
The characteristics of inter process communication:

Message passing between a pair of processes can be supported by two message
communication operations, send and receive, defined in terms of destinations and messages.
To communicate, one process sends a message (a sequence of bytes) to a destination and
another process at the destination receives the message. This activity involves the
communication of data from the sending process to the receiving process and may involve the

synchronization of the two processes.
Synchronous and asynchronous communication:

A queue is associated with each message destination. Sending processes cause messages to
beaddedtoremotequeuesandreceivingprocessesremovemessagesfromlocalqueues.Communicat

ion between the sending and receiving processes may be either synchronous or asynchronous.

Synchronous: In the synchronous form of communication, the sending and receiving
processes synchronize at every message. In this case, both send and receive are blocking
operations. Whenever a send is issued the sending process (or thread) is blocked until the
corresponding receive is issued. Whenever a receive is issued by a process(or thread), it

blocks until a message arrives.
Asynchronous:

In the asynchronous form of communication, the use of the send operation is non-blocking in
that the sending process is allowed to proceed as soon as the message has been copied to a
local buffer, and the transmission of the message proceeds in parallel with the sending

process the receiving process proceeds with its program after issuing a receive operation,

which provides a buffer to be filled in the background, but it must separately receive

notification that its buffer has been filled, by polling or interrupt.

Message destinations in the Internet protocols, messages are sent to (Internet address, local

port) pairs. A local port is a message destination within a computer, specified as an integer.
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Aporthasexactlyonereceiverbutcanhavemanysenders.Processesmayusemultipleportsto

Receive messages. Any process that knows the number of a port can send a message to it.

Servers generally publicize their port numbers for use by clients.

Reliability in a point-to-point message service can be described as reliable if messages are

guaranteed to be delivered despitea‘reasonable’numberofpackets being dropped or lost.

Ordering * Some applications require that messages be delivered in sender order — that is,
the order in which they were transmitted by the sender. The delivery of messages out of
sender order is regarded as a failure by such applications.

Sockets

Both forms of communication (UDP and TCP) use the socket abstraction, which provides
anendpointforommunicationbetweenprocessesInterprocesscommunicationconsistsoftransmitti
ng a message between a socket in one process and a socket in another process, is shown in

the following figure.

socket any port agreed port

message

~~

other ports

Internet address = 138.37.94.248 Internet address = 138.37.88.249

For a process to receive messages, its socket must be bound to a local port and one of
the Internet addresses of the computer on which it runs. Messages sent to a particular Internet
address and port number can be received only by a process whose socket is associated with
that Internet address and port number. Processes may use the same socket for sending and
receiving messages. Port. Each socket is associated with a particular protocol — either UDP or
TCP.

UDP datagram communication

A datagram sent by UDP is transmitted from a sending process to a receiving process without
acknowledgement or retries. If a failure occurs, the message may not arrive. A datagram is
transmitted between processes when one process sends it and another receives it. To send or
receive messages a process must first create a socket bound to an Internet address of the local
host and a local port. A server will bind its socket to a server port — one that it makes known

to clients so that they can send messages to it. A client binds its socket to any free local port.
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The receive method returns the Internet address and port of the sender, in addition to the

message, allowing the recipient to send a reply.
The following are some issues relating to datagram communication:

Message size: The receiving process needs to specify an array of bytes of a particular size in
which to receive a message. If the message is too big for the array, it is truncated on arrival.
The underlying IP protocol allows packet lengths of up to 216 bytes, which includes the
headers as well as the message. However, most environments impose a size restriction of
8kilobytes. Any application requiring messages larger than the maximum must fragment

themintochunks of that size.

Blocking: Sockets normally provide non-blocking sends and blocking receives for datagram
communication (a non-blocking receive is an option in some implementations). The send
operation returns when it has handed the message to the underlying UDP and IP protocols,
which are responsible for transmitting it to its destination. On arrival, the message is placed
in queue for the socket that is bound to the destination port. The message can be collected
from the queue by an outstanding or future invocation of receive on that socket. Messages are
discarded at the destination if no process already has a socket bound to the Destination port.

Timeouts: The receive that blocks forever is suitable for use by a server that is waiting to
receiver quests from its clients. But in some programs, it is not appropriate that a process that
has invoked a receive operation should wait indefinitely in situations where the sending
process may have crashed or the expected message may have been lost. To allow for such

requirements, time outs can be set on sockets.

Receive from any: The receive method does not specify an origin for messages. Instead, an
invocation of receive gets a message addressed to its socket from any origin. The receive
method returns the Internet address and local port of the sender, allowing the recipient

tocheckwherethemessagecame from

Failure model for UDP datagram’se A failure model for communication channels and
defines reliable communication in terms of two properties: integrity and validity. The
integrity property requires that messages should not be corrupted or duplicated. The use of a
checksum ensures that there is a negligible probability that any message received is

corrupted. UDP datagram’s suffer from the following failures:

Omission failures: Messages may be dropped occasionally, either because of checksum error
or because no buffer space is available at the source or destination. Ordering: Messages can
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sometimes be delivered out of sender order.

A reliable delivery service may be constructed from one that suffers from omission failures

bytheuseofacknowledgements.
Use of UDP:

1. The Domain Name System, which looks up DNS names in the Internet, is

implemented over UDP.
2. Voice over IP(VOIP) also runs over UDP.
TCP stream communication:

Message sizes: The application can choose how much data it writes to a stream or reads from
it. It may deal in very small or very large sets of data. The underlying implementation of a
TCP stream decides how much data to collect before transmitting it as one or more IP
packets. On arrival, the data is handed to the application as requested. Applications can, if

necessary, force data to be sent immediately

Lost messages: The TCP protocol uses an acknowledgement scheme. As an example of as
impel scheme (which is not used in TCP), the sending end keeps a record of each IP packet
sent and the receiving end acknowledges all the arrivals. If the sender does not receive an

acknowledgement within a timeout, it retransmits the message

Flow control: The TCP protocol attempts to match the speeds of the processes that read from
and write to a stream. If the writer is too fast for the reader, then it is blocked until the reader
has consumed sufficient data.

Message duplication and ordering: Message identifiers are associated with each IP packet,

which enables the recipient to detect and reject duplicates, or to reorder messages that do not

arrive in sender order.

Message destinations: A pair of communicating processes establishes a connection before
they can communicate over a stream. Once a connection is established, the processes simply
read from and write to the stream without needing to use Internet addresses and ports.
Establishing a connection involves a connect request from client to server followed by an
accept request from server to client before any communication can take place. This could be

a consider able over head for a single client-server request and reply.
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JavaAPIforUDPdatagrams:

. The Java APl provides datagram communication by means of two

classes:DatagramPacket and Datagram Socket

Datagram Packet: This class provides a constructor that makes an instance out of an array
of bytes comprising a message, the length of the message and the Internet address and local

port number of the destination socket, as follows:
Datagram packet

array of bytes containing length of Internet port
message message address number

An instance of Datagram Packet may be transmitted between processes when one process
send sit and another receives it. This class provides another constructor for use when
receiving message. Its arguments specify an array of bytes in which to receive the message
and the length of the array. A received message is put in the Datagram Packet together with
its length and the
Internetaddressandportofthesendingsocket. ThemessagecanberetrievedfromtheDatagramPacke
t by means of the method get Data. The methods get Port and get Address access the port and
Internet address.

Datagram Socket: This class supports sockets for sending and receiving UDP datagram’s.
Itprovidesaconstructorthattakesaportnumberasitsargument, forusebyprocessesthatneedto use a
particular port. It also provides a no-argument constructor that allows the system to choose a
free local port. These constructors can throw a Socket Exception if the chosen port is already
in use or if a reserved port (a number below 1024) is specified when running over UNIX.

The class Datagram Socket provides methods that include the following:

Send and receive: These methods are for transmitting datagram’s between a pair of sockets.
The argument of send is an instance of Datagram Packet containing a message and its
destination. The argument of receive is an empty Datagram Packet in which to put the

message, its length and its origin. The methods send and receive can throw | Exceptions.

Set So Timeout: This method allows a timeout to be set. With a timeout set, the receive

method will block for the time specified and then throwanInterrupted | Exception.

Connect: This method is used for connecting to a particular remote port and Internet address,

in which case the socket is only able to send messages to and receive messages from that
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address

import java.net.*
import java.io.*
public class UDPClient{
public static void main(String args[]){
// args give message contents and server hostname
DatagramSocket aSocket = null;
try {
aSocket = new DatagramSocket();
byte [ m = args[0].getBytes().
InetAddress aHost = InetAddress.getByName(args[1]);
int serverPort = 6789;
DatagramPacket request = new DatagramPacket(m. m.length(), aHost, serverPort);
aSocket.send(request);
byte[] buffer = new byte[1000]:
DatagramPacket reply = new DatagramPacket(buffer, buffer.length);
aSocket.receive(reply):
System.out.printin("Reply: " + new String(reply.getData()));
Jcatch (SocketException e){System.out.printin("Socket: " + e.getMessage()):
Jcatch (IOException e){System.out.printin("lO: " + e.getMessage()).}
Minally {if(taSocket I= null) aSocket.close():}

}

}
UDP client sends a message to the server and gets reply

import java.net.*:
import java.io.™;
public class UDPClient{
public static void main(String args[]){
// args give message contents and server hosthame
DatagramSocket aSocket = null:
try {
aSocket = new DatagramSocket();
byte [l m = args[0].getBytes().
InetAddress aHost = InetAddress.getByName(args[1]):
int serverPort = 6789,
DatagramPacket request = new DatagramPacket(m, m.length(), aHost, serverPort);
aSocket.send(request);
byte[] buffer = new byte[1000]:
DatagramPacket reply = new DatagramPacket(buffer, buffer.length);
aSocket.receive(reply).
System.out.printin("Reply: " + new String(reply.getData())):
Jecatch (SocketException e){System.out.printin("Socket: " + e.getMessage()):
Jeateh (IOException e){System.out.printin("lO: " + e.getMessage()).}
Jfinally {if(aSocket != null) aSocket.close();}
}
}
UDP server repeatedly receives a request and sends sit back to the client

JavaAPIforTCPstreamseTheJavainterfacetoTCPstreams is provided in the classes
ServerSocketandSocket:

ServerSocket: Thisclassisintendedforusebyaservertocreateasocketataserverportforlisteningforc

onnectrequestsfromclients.Itsacceptmethodgetsaconnectrequestfromthe

Queue or, if the queue is empty, blocks until one arrives. The result of executing accepts is an
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instanceofSocket — a socket to use for communicating with the client.

Socket: This class is for use by a pair of processes with a connection. The client uses
aconstructortocreateasocket,specifyingtheDNShostnameandportofaserver. Thisconstructor not
only creates a socket associated with a local port but also connects it to the specified remote
computer and port number. It can throw an Unknown Host Exception if the host name is

wrong IOException if an 10 error occurs.

The Socket class provides the methods getinputStream and getOutputStream for accessing the

two streams associated with a socket. The return types of these methods are Input Stream and
Output Stream, respectively — abstract classes that define methods for reading and writing
bytes. The return values can be used as the arguments of constructors for suitable input and
outputstreams.OurexampleusesDatalnputStreamandDataOutputStream,whichallowbinaryrepr

esentationsofprimitivedatatypestobereadandwritteninamachine-independentmanner.

TCP client makes connection to server,sends request and receives reply

import java.net.”;
import java.io.”;
public class UDPClient{
public static void main(String argsJ){
// args give message contents and server hostname
DatagramSocket aSocket = null:
try {
aSocket = new DatagramSocket();
byte [] m = args[0].getBytes():
InetAddress aHost = InetAddress.getByName(args[1]):
int serverPort = 6789;
DatagramPacket request = new DatagramPacket(m, m.length(), aHost, serverPort),
aSocket.send(request);
byte[] buffer = new byte[1000]:
DatagramPacket reply = new DatagramPacket(buffer, buffer.length);
aSocket.receive(reply):
System.out.printin("Reply: " + new String(reply.getData()));
Jcatch (SocketException e){System.out.printin("Socket: " + e.getMessage()):
Jcatch (IOException e){System.out.printin("lO: " + e.getMessage()):}
JHMinally {if(aSocket I= null) aSocket.close():}
}
}

TCP server makes a connection for each client and then echoes the client’s request
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import java.net.™;
import java.io.™;
public class TCPServer {
public static void main (String args(j) {
try{
int serverPort = 7896:
ServerSocket listenSocket = nhew ServerSocket(serverPort);
while(true) {
Socket clientSocket = listenSocket.accept().
Connection ¢ = new Connection{clientSocket);
2
J}catch(IOException e) {System.out.printin("Listen "+e.getMessage()).}
}
¥,

// this figure continues on the next slide

External data representation and marshalling:

To support RMI or RPC, any data type that can be passed as an argument or returned as a

result must be able to be flattened in an agreed format. An agreed standard for the
representation of data structures and primitive values is called an external data

representation.

Marshalling is the process of taking a collection of data items and assembling them into a
form suitable for transmission in a message. Unmarshalling is the process of disassembling

them on arrival to produce an equivalent collection of data items at the destination

Three alternative approaches to external data representation and marshalling are discussed

here:
1.CORBA’sCommonData Representation(CDR):

CDR can represent all of the data types that can be used as arguments and return values in

remote invocations in CORBA.

These consist of 15 primitive types, which include short (16-bit), long (32-bit), unsigned
short,unsignedlong, float (32-bit),double(64-bit),char, Boolean(TRUE, FALSE)-

Primitive types: CDR defines a representation for both big-endian and little-endian orderings.
Values are transmitted in the sender’s ordering, which is specified in each message. The

recipient translates if it requires a different ordering

Constructedtypes: Theprimitivevaluesthatcompriseeachconstructedtypeareaddedtoasequenceo

fbytes in a particular order, asshown in Figure4.7.
Figure4.7.

CORBACDR for constructed types
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Type Representation

sequence length (unsigned long) followed by elements in order

length (unsigned long) followed by characters in order (can also have wide

string characters)

array array elements in order (no length specified because it is fixed)

struct in the order of declaration of the components

enumerated | unsigned long (the values are specified by the order declared)

union type tag followed by the selected member

Figure 4.8 shows a message in CORBA CDR that contains the three fields of a struct whose
respective types are string, string and unsigned long. The figure shows the sequence of bytes

with four bytes in each row
Figure4.8 CORBACDRmMessage
indexinnotes

Sequence of bytes  4bytes on representation

0-3 5 lengthofstring
4-7 "Smit" ‘Smith’

8-11 "h_ "

12-15 6 lengthofstring
16-19 "Lond" ‘London’
20-23 "on"

24-27 1984 unsignedlong

The flattened form represents a Person struct with value: {*Smith’,‘London’,1984}

Marshalling in CORBA « Marshalling operations can be generated automatically from the

specification of the types of dataitems to be transmitted in a message

TheCORBAInterfacecompilergeneratesappropriatemarshallingandunmarshallingoperations
for the arguments and results of remote methods from the definitions of the types of their

parameters and results.
2. Java objects serialization:

In Java RMI, both objects and primitive data values may be passed as arguments and results

of method invocations
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For example,

:publicclassPersonimplements Serializable

{

private String name;private String place;privateint year;
public Person(String aName, String aPlace, int aYear) {name=aName;

place = aPlace;year=aYear;

}

/[followed by methods for accessing theinstance variables

}

In Java, the term serialization refers to the activity of flattening an object or a connected set
of objects into a serial form that is suitable for storing on disk or transmitting in a message
Deserialization consists of restoring the state of an object or a set of objects from their

serialized form

The information about a class consists of the name of the class and a version number. The
version number is intended to change when major changes are made to the class. It can be set
by the programmer or calculated automatically as a hash of the name of the class and
itsinstancevariables,methodsandinterfaces. Theprocessthatdeserializesanobjectcancheckthatit

has the correct version of the class.

Java objects can contain references to other objects. When an object is serialized, all the
objects that it references are serialized together with it to ensure that when the object is
reconstructed, all of its references can be fulfilled at the destination. References are serialized

as handles.

To serialize an object,itsclassinformationiswrittenout,followedby
thetypesandnamesofitsinstancevariables.Iftheinstancevariablesbelongtonewclasses,thentheircl
assinformationmustalsobewrittenout,followedby  the types and names of their
instancevariables. This recursive procedure continues until the class information and types

and names of the instance variables of all of the necessaryclasses have been written out
As an example,consider the serialization of the following object:

Personp=newPerson("Smith","London",1984);
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The serialized for mis illustrated in the following Figure

Person 8-byte version number hO class name, version number

3 int year javalang String javalang String  number, type and name of  instance
name Place variables

1984 5 Smith 6 London hl values of instance variables

To make use of Java serialization, for example to serialize the Person object, create an
instance of the class Object Output Stream and invoke its write Object method, passing the
Person objects its argument. To desterilize an object from a stream of data, open an
ObjectInputStream on the stream and use its readObject method to reconstruct the original
object. The use of this pair of classes is similar to the use of DataOutputStreamand

DatalnputStream
3. Extensible Markup Language(XML)

XML is used to enable clients to communicate with web services and for defining the
interfaces and other properties of web services. XML is extensible in the sense that users can

define their own tags, in contrast to HTML,which uses a fixed set of tags
Figure4.10XMLdefinition of the Person structure
<personid="123456789">

<name>Smith</name>

<place>London</place>

<year>1984</year>

<!--acomment-->

</person>

XML elements and attributese

Elements: An element in XML consists of a portion of character data surrounded by matching
start and end tags. For example, one of the elements in Figure 4.10 consists of the data Smith
contained within the <name> .. </name> tag pair. Note that the

elementwiththe<name>tagisenclosedintheelementwiththe<personid="123456789">...

</person>tagpair. Theabilityofanelementtoencloseanotherelementallowshierarchic data to be
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represented— a  very  important aspect of XML. An empty tag

hasnocontentandisterminatedwith/>insteadof>.Forexample,theemptytag
<european/> could be included within the<person>...</person>tag

XML elements can have attributes. By the use of attributes we can add the information about

the element.
<book publisher="Tata McGraw Hill"></book>Herepublisheris aattribute
In our above example id is an attribute

It is a matter of choice as to which items are represented as elements and which ones as

attributes

Names: The names of tags and attributes in XML generally start with a letter, but can also
start with an underline or a colon The names continue with letters, digits, hyphens,

underscores, colons or full stops. Letters are case-sensitive.

Parsing and well-formed documents « An XML document must be well formed — that is, it
must conform to rules about its structure. A basic rule is that every start tag has a matching
end tag. Another basic rule is that all tags are correctly nested— for example,
<x>..<y>..<ly>..</x>is correct, whereas <x>..<y>..</x>..</y> is not. Finally, every XML
document must have single root element that encloses all the other elements. These rules
make it very simple to implement parsers for XML documents. When a parser reads an XML

document that is not well formed, it will report an error.

XML prolog:Every XML document must have a prologas its first line. The prolog must at

least specify the version of XML in use(which iscurrently1.0).For example:

<?XML version="1.0" encoding="UTF-8"standalone="yes"?>

The prolog may specify the encoding(UTF-8)which is default

XML Namespaces
XMLName space isused to avoid element name conflict in XMLdocument.
XML Namespace Declaration

An XML namespace is declared using the reserved XML attribute. This attribute name must

be started with"'xmlins".

Let's see the XML namespace syntax:
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<elementxmlins:name="URL">

Here,namespacestartswithkeyword**xmlns™.Thewordnameisanamespaceprefix. TheURL is a

namespace identifier.

Let's take an example with two tables:
Tablel:

<table>

<tr>

<td>Aries</td>

<td>Bingo</td>

</tr>

</table>

Table2:Thistablecarries information about a computer table.
<table>
<name>Computertable</name>
<width>80</width>
<length>120</length>

</table>

If you add these both XML fragments together, there would be a name conflict because both

have<table>element. Although they have different name and meaning.

We can getrid of thisnameconflictby usingnamespacesByUsingxminsAttribute

You can use xmlns attribute to define namespace with the following syntax:
<elementxmins:name="URL"">
Foreg:

<root>
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<h:tablexmlns:h="http://www.abc.com/TR/html4/">
<h:tr>

<h:td>Aries</h:td>

<h:td>Bingo</h:td>

</h:tr>

</h:table>
<f:tablexmlins:f="http://www.xyz.com/furniture">
<f:name>Computertable</f:name>
<f:width>80</f:width>
<f:length>120</f:length>

</f:table>

</root>

XMLschemas:An XML schema is used to define the structure of anXMLdocument.lt is like

DTD but provides more control on XML structure.
An XML schema forthe Person structure
<xsd:schemaxmins:xsd=URL of XMLschema definitions>
<xsd:elementname="person"type="personType"/>
<xsd:complexTypename="personType">

<xsd:sequence>

<xsd:elementname="name" type="xs:string"/>

<xsd:elementname="place" type="xs:string"/>

<xsd:elementname="year"type="xs:positivelnteger"/>

</xsd:sequence>

<xsd:attributename="id"type="xs:positivelnteger"/>

</xsd:complexType>

</xsd:schema>
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GroupCommunication

A multicast operation is more appropriate — this is an operation that sends a single message
from one process to each of the members of a group of processes, usually in such a way that
themembershipofthegroupis transparent to the sender.

IPmulticast-An implementation of multicast communication

A multicast group is specified by a Class D Internet address (see Figure 3.15) — that is, an
address whose first 4 bits are 1110 inlPv4

Being a member of a multicast group allows a computer to receive IP packets sent to the
group. The membership of multicast groups is dynamic, allowing computers to join or leave
at anytime and to join an arbitrary number of groups. It is possible to send datagram’s to a

multicast group without being a member

AnapplicationprogramperformsmulticastsbysendingUDPdatagramswithmulticastaddresses
and ordinary port numbers. It can join a multicast group by making its socket join the group,

enabling it to receive messages to the group.
The following details are specific tolPv4

Multicastroutersinternetmulticastsmakeuseofmulticastrouters,whichforwardsingledatagrams
to routers on other networks, where they are again multicast to local members. To limit the
distance of propagation of a multicast datagram, the sender can specify the number of routers

it is allowed to pass — called the time to live, or TTL for short.

Multicast address allocation Class D addresses (that is, addresses in the range 224.0.0.0
t0239.255.255.255)arereservedformulticasttrafficandmanagedgloballybythelnternetAssigned
Numbers Authority(IANA).

Multicast addresses may be permanent or temporary. Permanent groups exist even when the
reareno members and therange224.0.6.000 to 224.0.6.127

The remainder of the multicast addresses is available for use by temporary groups,which

must be created before use and cease to exist when all the members have left

Java API to IP multicast « The Java API provides a datagram interface to IP multicast
through the class MulticastSocket,which is a subclass of DatagramSocket with the additional

capability

of being able to join multicast groups. The class Multicast Socket provides two alternative
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constructors, allowing sockets to be created to use either a specified local port (6789, in
Figure4.14) or any free local port. A process can join a multicast group with a given multicast
address by invoking the join Group method of its multicast socket. Effectively, the socket
joins a multicast group at a given port and it will receive datagram’s sent by processes on
other computers to that group at that port. A process can leave a specified group by invoking

the leaveGroup method of its multicast socket.

In the example in Figure 4.14, the arguments to the main method specify a message to be
multicast and the multicast address of a group (for example, "228.5.6.7"). After joining that
multicast group, the process makes an instance of DatagramPacket containing the message
and sends it through its multicast socket to the multicast group address at port 6789. After
that, it attempts to receive three multicast messages from its peers via its socket, which also
belongs to the group on the same port. When several instances of this program are run
simultaneously on different computers, all of them join the same group, and each of them

should receive its own message and the messages from those that joined after it.
TheJavaAPlallowstheTTLtobesetforamulticastsocketbymeansofthesetTimeToLive
method. Thedefaultis1,allowingthemulticasttopropagateonlyon the local network.
Figure4.14Multicastpeerjoinsagroupandsendsandreceivesdatagrams

import java.net.*;importjava.io.*;

publicclassMulticastPeer{

publicstatic voidmain(Stringargs[]){

args give message contents & destination multicast group (e.g.
"228.5.6.7")MulticastSockets=null;

try{

InetAddressgroup=InetAddress.getByName(args[1]);s=newMulticastSocket(6789);s.joinGro
up(group);

byte [] m = args[0].getBytes(); DatagramPacketmessageOut=
new DatagramPacket(m, m.length, group, 6789);s.send(messageOut);
byte[]buffer=newbyte[1000];

for(inti=0;i<3;i++){//getmessagesfromothersin groupDatagramPacketmessageln=
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new DatagramPacket(buffer, buffer.length);s.receive(messageln);
System.out.printIn("Received:"+newString(messageln.getData()));

}

s.leaveGroup(group);
}catch(SocketExceptione){System.out.printIn(*Socket:"+e.getMessage());

}catch(IOExceptione){System.out.printin("10:"+e.getMessage()); Hinally{if(s!=

null)s.close();}

}
}

Distributed Objects and Remote Invocation

Programming Models for Distributed Application:

Remote procedure call — client calls the procedures in a server program that is

running in a different process.

Remote method invocation (RMI) — an object in one process can invoke

methods of objects in another process

Event notification — objects receive notification of events at other objects for

which they have registered.
Middleware:
The important aspects of middleware are:

(1  Location transparency: In RPC ,the client that calls a procedure cannot tell
whether the procedure runs in the same process or in different process, possibly

on a different computer.

Similarly in RMI the object making the invocation cannot tell whether the object it invokes is

local or not and does not need to know the location.
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Applications

RMI, RPC and events

Middleware
Request reply protocol layers

External data representation

Operating System

Itisalsofreefromthespecificsofcommunicationprotocols,operatingsystem and

communication hardware

Interfaces:

In most of the programming languages program is divided into set of modules and these
modules communicate with each other. In distributed systems these modules are present
indifferent processes. The interface of a module specifies the procedures and the variables

that can be accessed from other modules.
There are two types of interfaces:

. Service interface: In client server model ,The server specifies set of procedures

and input-output parameters available to the client.

Remote interface: In Distributed object model ,a remote interface specifies the
methods of an object that are available for invocation by other objects and also

the input output arguments.

Interface Definition Language: It provides a notation for defining interfaces. It can also

specify type of arguments.

Examples:CORBAIDL for RMI,SunXDR for RPCCORBA IDLExample:
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struct Person {
string hame;
string place;
long year;
}
interface PersonList {
readonly attribute string listhame;
void addPerson(in Person p) ;
void getPerson(in string name, out
Person p);
long number();
It

In the above example, add person and get person are methods that are available for RPC

Communication between Distributed Objects:

The Object Model:

v" An object encapsulates both data and methods. Objects can be accessed via

object references.
v" Aninterface provides a definition of the signatures of a set of methods
v' Actions are performed by method invocations:
The invocation of a method has three effects:
i.  The state of the receiver may be changed
ii. A new object maybe instantiated
iii.  Further invocations on methods in other objects may take place.
v' Exceptions may be thrown to caller when an error occurs.

v' Garbage collection frees the space occupied by objects when they are no

longer needed.
The Distributed Objects Model:
Here we discuss the object model that is applicable to distributed objects.

o Remote method invocation — Method invocations between objects in different

processes,whether in the same computer of not.

Localmethodinvocation—Methodinvocationsbetweenobjectsinthesameprocess.
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remote
invocation

invocation invocation
local
invoca

Remote object — Objects that can receive remote invocations Remote and local

method invocations areshowninFigure5.3.

Each process contains objects, some of which can receive remote invocations,

others only local invocations
Those that can receive remote in vocations are called remoteobjects

Objects need to know the remote object reference of an object in another

process in order to invoke its methods

the remote interface specifies which methods can be invoked remotely. The two

fundamental concepts that are heart of distributed object model are:

1.  Remote object reference: An object must have the remote object reference
of an object in order to do remote invocation of an object. Remote object
references may be passed as input arguments or returned as output

arguments

Remote interface: Objects in other processes can invoke only the methods

that belong to its remote interface (Figure5.4).
CORBA- uses IDL to specify remote interface
JAVA — extends interface by the Remote keywordFigure5.4

A remote object and its remote interface

" remoteobject
 —

Data
remote
a interface
1 implementation

of methods
|

[Distributed Systems]




Here the methods m1,m2,m3 are provided in the remote interface .so, client can access only

these methods.

2.DesignlssuesforRMI:

Two important design issues in making RMI a natural extension of local method

are:1.Invocationsemantics and ii. Transparency
1. Remote Invocation Semantics:

To provide a more reliable request-reply protocol, these fault-tolerant measures can be

employed:

Retry request message: whether to transmit the request message until either a reply is

received or server is assumed to be failed.

Duplicate Filtering: when transmissions are used , whether to filter out duplicate requests at

theserver.

Retransmission of results: whether to keep a history of result messages to enable lost results

to be retransmitted without re-executing the operations at theserver.

Combinations of these measures lead to a variety of possible semantics for the reliability of

remote invocations.
The choices of RMI invocation semantics are defines as follows:

Maybe invocation semantics:Remote method may be executed once or not at all. If

then result message is not received after a timeout there will be no retries,it is

uncertain whether the method has been executed. . On the other hand, the procedure may have
been executed and the result message has been lost. Maybe semantics

isusefulonlyforapplicationsin whichoccasional failedcalls areacceptable

It suffers the following Failures:

1. Omission failures if the invocation or result message is lost.

2. Crash failures when the server containing the remote object fails

At-least-once semantics: With at-least-once semantics, the invoker receives either a
result, in which case the invoker knows that the procedure was executed at least once,

or an exception in forming it that no result was received.
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At-least-once semantics can suffer from the following types of failure:
Crash failures when the server containing the remote procedure fails;

arbitrary failures — in cases when the request message is retransmitted, the
remote server may receive it and execute the procedure more than once, possibly

causing wrong values to be stored or returned

At-most-once semantics: With at-most-once semantics, the caller receives either a
result, in which case the caller knows that the procedure was executed exactly once,
or an exception informing it that no result was received, in which case the procedure

will have been executed either once or not at all.

Invocation Semantics:

Fault tolerance measures Invocation
semantics

Retransmit request Duplicate Re-execute procedure
message filtering or retransmit reply

No Not applicable Not applicable Maybe
Yes No Re-execute procedure At-least-once

Yes Yes Retransmitreply At-most-once

Transparency Issues:

Goal is to make a remote invocation as similar as possible a local invocation The

Issues (Differences from the local invocation)faced here are:
1.  Syntax maybemadeidenticalbutbehavioraldifferencesexists. Thecausecouldbe
Failure and latency.
2. Exceptions and exception handling are needed
3.  Implementation of RMI:

Figure5.6 shows an object A invokes a method in a remote object B
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objectA proxy for B Request & dispatcher
8 for B's class E

Remote
reference module module module

client
remote

object B

Reply

Communication Communication Remote reference
module

Remote Reference Module: Responsibilities:

Translation between local and remote object references
theremotereferencemoduleineachprocesshasaremoteobjecttablethatincludes:

e Anentry for all the remote objects held by the process. For example in the

above fig the remote object B will be recorded in the table at theserver

An entry for each local proxy. for example in the above fig the proxy for B

will be recorded in the table at the client.

RMI Software:

Proxy—yprovides remote invocation transparency

marshal arguments, unmarshal results, send and receive messages Dispatcher—
handles transfer of requests to correct method

receive requests, select correct method, and pass on request message Skeleton —
implements methods of remote interface

unmarshal arguments from request, invoke the method of the remote object, and

marshal the results

RMI Server and Client Programs:

Server: contains

classesfordispatchers,skeletons and remote objects
initializationsectionforcreatingsomeremoteobjects

registration of remote objects with the binderClientcontains:
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classes for proxies of all remote objects
binder to look up remote object references
RMI Binder and Server Threads:

A binder in a distributed system is a separate service that maintains a table containing

mappings from textual names to remote object references
Server threads:

sometimes implemented so that remote invocation causes a new thread to be

created to handle the call

server with several remote objects might also allocate separate threads to handle

each object Activation of remote objects:
A remote object is described as active when it is a running process.
A remote object is described as passive when it can be made active if requested.

An object that can live between activations of processes is called a persistent

object

Allocation servicehelpsclients to locate remote objects from their remote references

RMI Distributed Garbage Collection:

Aim-recover memory if no reference t 0 an object exists. If there is a reference object should

still exists.
The distributed garbage collector works in cooperation with the local garbage collector.
" Each server has table(Beholders)that maintains list of references to an object.

When the client C first receives a reference to an object B, it invokes add
Ref(B)and then creates a proxy. The server adds C to the remote object holder
Beholders.

When remote object B is no longer reachable, it deletes the proxy and invokes

recovered(B).

When Beholders is empty, the server reclaims the space occupied by B.
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Remote Procedure Call:

A RPC call is very similar to RMI ,in which a client program calls a procedure in another

program running in server process

Figure5.7Roleofclientandserverstub procedures in RPC

client process server process

Request

. Reply
client stub server stub
rocedure procedure
client service
program Communication Communication procedure

module module dispatcher

The software components required to implement RPC are shown in the above Figure.

The stub procedure behaves like a local procedure to the client, but instead of executing the
call, it marshals the procedure identifier and the arguments into a request message, which it
sends via its communication module to the server. When the reply message arrives, it

unmarshals the results.

The server process contains a dispatcher together with one server stub procedure and one

service procedure for each procedure in the service interface

The dispatcher selects one of the server stub procedures according to the procedure identifier

in the request message

The server stub procedure then unmarshals the arguments in the request message, calls the

corresponding service procedure and marshals there turn values for the reply message
The service procedures implement the procedures in the service interface

Client and servers tub procedures and the dispatcher can be generated automatically by an

interface compiler from the interface definition no f the service.
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Case study :Sun RPC:

. It is designed for client-server communication over Sun NFS network file

system.

UDP or TCP can be used. If UDP is used, the message length is restrictedto64
KB

Interface Definition Language:

The notation is rather primitive compared to CORBA IDL or JAVA as shown in
Figure5.8.

. Instead of no interface definition, a program number and a version number are

supplied.
The procedure number is used as a procedure definition.
= Single input parameter and output result are being passed.
Figure5.8
Files interface in SunXDR

const MAX = 1000: struct readargs {

B L Fileldentifier f;
typedef int Fileldentifier, : : s
typedef int FilePointer; FilePointer position,
typedef int Length; Length length;
struct Data { s

int length;

char buffer[MAX]: program FILEREADWRITE {
3 . version VERSION {
struct writeargs { void WRITE (writeargs)=1:

Fileldentifier f; _n.
FilePointer position; Data READ(readargs)=2,

_ =2,
) Data data; } i 9999
For example, see the XDR definition in Figure 5.8 of an interface with a pair of
procedures for writing and reading files. The program number is 9999 and the version
number is 2. The READ procedure (line 2) takes as its input parameter a structure with three
components specifying a file identifier, a position in the file and the number of bytes
required. Its result is a structure containing the number of bytes returned and the file data.
The WRITE procedure (line 1) has no result. The WRITE and READ procedures are given
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numbers 1 and 2. The number 0 is reserved for a null procedure, which is generated

automatically and is intended to be used to test whether a server is available.

The interface compiler rpcgen can be used to generate the following from an interface
definition:

Client stub procedures;
Server main procedure, dispatcher and server stub procedures;

XDR marshalling and unmarshalling procedures for use by the dispatcher and client and

server stub procedures

Binding ¢ Sun RPC runs a local binding service called the port mapper at a well-known port
number on each computer. Each instance of a port mapper records the
programnumber,version number and port number in use by each service running locally.
When a server starts up it registers its program number, version number and port number with
the local port mapper.When a client starts up, it finds out the server’s port by making a
remote request to the port mapper at the server’s host, specifying the program number and

version number.
Events and Notifications

The idea behind the use of events is that one object can react to a change

occurring in another object.

The actions done by the user are seen as events that cause state changes in
objects.

The objects are notified whenever the state changes.

Local event model can be extended to distributed event-based systems by using

the publish-subscribe paradigm.
In publish-subscribe paradigm:
. An object that has event publishes.
Those that have interest subscribe.
Obijects that represent events are called notifications.
Distributed event-based systems have two main characteristics:

Heterogeneous — Event-based systems can be used to connect heterogeneous
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components in the Internet.

Asynchronous — Notification are sent asynchronously by event-generating

objects to those subscribers

The architecture of distributed event notification specifies the roles of participants as
in Fig.5.10:

It is designed in a way that publishers work independently from subscribers.

" Event service maintains a database of published events and of subscribers’

interests.

Fig.5.10: Architecturefordistributedeventnotification

/ Event service \

objectof interest supscr_jber

oy { Y
1 e
: = notification

objectof interest observer subscriber

il o ) » )

) notification b notification l_‘

objectof interest observer subscriber

3. 8‘ l notification l '

/

-

The roles of the participants are:

Object of Interest — This is an object experiences change of state, as a result of

its operations being invoked.

Event — An event occurs at an object of interest as the result of the completion

of a method invocation.

Notification — A notification is an object that contains information about an

event.

Subscriber — A subscriber is an object that has subscribed to some type of

events in another object.
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Observer objects — The main purpose of an observer is to separate an object of

interest from its subscribers.

Publisher — This is an object that declares that it will generate notifications of

particular types of event.
Figure5.10showsthreecases:

=  Anobject of interest inside the event service sends notification directly to the

subscribers.

An object of interest inside the event service sends notification via the observer

to the subscribers.

The observer queries the object of interest outside the event service and sends

notifications to the subscribers.
Roles for observers—the task of processing notifications can be divided among observers:
. Forwarding — Observers simply forward notifications to subscribers.

. Filtering of notifications — Observers address notifications to those subscribers who

find these notifications are useful.
Patterns of events—Subscribers can specify patterns of events of interest.

. Notification mailboxes — A subscriber can set up a notification mailbox which

receives the notification on behalf of the subscriber.

JAVARMI (RemoteMethodlnvocation)

The RMI (Remote Method Invocation) is an API that provides a mechanism to create
distributed application in java. TheRMlallowsanobject toinvokemethodsonanobjectrunningin
another JVM.

The RMI provides remote communication between the applications using two objects

proxy(stub)and skeleton.
RMI uses proxy and skeleton object for communication with the remote object.

proxy

The stub is an object, acts as a gateway for the client side. All the outgoing requests are
routed through it. It resides at the client side and represents the remote object. When the

caller invokes method on the stub object, it does the following tasks:
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Itinitiates a connection with remoteVirtual Machine(JVM),

It writes and transmits(marshals)the parameters to the remote Virtual
Machine(JVM),

It waits forthe result
4. It reads(unmarshals)the return value or exception, and
5. It finally,returns the value to the caller.skeleton

The skeleton is an object,acts as a gateway forthe server side object. All the in coming
requests are routed through it. When the skeleton receives the incoming request, it does the

following tasks:
1. It reads the parameter forthe remote method
2. ltinvokes the method on the actual remote object,and
3. It writes and transmits (marshals)the result to the caller.
JavaRMI Example
Thereare6 steps to write the Microgram.
1.  Create the remote interface
2. Provide the implementation of the remote interface

Compile the implementation class and create the stub and skeleton objects using

thermictool
Start the registry service by rmiregistrytool
5. Create and start the remote application
6. Create and start the client application
RMI Example

In this example, we have followed all the 6 steps to create and run the rmi application.
The client application needs only two files, remote interface and client application. In the rmi
application, both client and server interact with the remote interface. The client application

invokes methods on the proxy object, RMI sends the request to the remote JVM. The return

value is sent back to the proxy object and then to the client application.
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<<Interface>>

Adder

publicint add(int x, int y)

Client

proxy object Adder
Implementation

1) create the remote interface

For creating the remote interface, extend the Remote interface and declare
theRemoteException with all the methods of the remote interface. Here, we are creating a
remote interface that extends the Remote interface. There is only one method named add()
and itdeclaresRemoteException.
importjava.rmi.*;
publicinterfaceAdderextends Remote

{

publicintadd(intx,inty)throwsRemoteException;
}

2) Provide the implementation of the remote interface

Now provide the implementation of the remote interface. For providing the
implementation of the Remote interface, we need to

EitherextendtheUnicastRemoteQObject class,
o or use the export Object() method of the Unicast Remote Object class

In case, you

extendtheUnicastRemoteObjectclass,youmustdefineaconstructorthatdeclaresRemoteExceptio

n.
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importjava.rmi.*;
importjava.rmi.server.*;
publicclassAdderRemoteextendsUnicastRemoteObjectimplementsAdder

{

AdderRemote()throwsRemoteException

{

super();

}
publicintadd(intx,inty)

{returnx+y;}

ks

3) create the stub and skeleton objects using the rmic compilerrmicAdderRemote
4) RMIREGISTRY:

Rmi registry is the binder for java RMl.this is maintained in every server hosting

remoteobjects. ltmaintainsatablemappingtextual URLstylenamestoreferencesto  remoteobjects

.hosted on that computer.It is accessed by the mehods of naming class.which takes the url

formatted string of the following form:
/lcomputername:port/object name

Where computername:port refers to the location of the RMI registry; TheNamingclass

provides 5 methods.
1.  Remotelookup(stringname):methodisusedbyclientstolookuparemoteobjectbynam
e.A remote object reference is returned.

void rebind(string name, Remote obi) : this method is used by a server to

register are mote object by name

void bind(string name, Remote obi) : this method is used by a server to register
are mote object by name but if the name is already bound to a remote

objectreferenceanexception is thrown
void unbind(stringname,Remoteobj):this method removes a binding

string[] list():It returns an array of the names of the remote objects bound in the

registry
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5) Create and run the server application
Now rmi services need to be hosted in a server process.
In this example,we are binding the remoteobject by the names.

importjava.rmi.*;

importjava.rmi.registry.*;

publicclassMyServer{

publicstaticvoidmain(Stringargs[]){

try{

Adder s=newAdderRemote();Naming.rebind("rmi://localhost:5000/sonoo",s);
}catch(Exceptione){System.out.printin(e);}

Createandruntheclientapplication

At the client we are getting the stub object by the lookup() method of the Naming
class and invoking the method on this object. In this example, we are running the server
andclientapplications,inthesamemachinesoweareusinglocalhost.Ifyouwanttoaccessthe remote

object from another machine, change the local host to the host name (or IPaddress)where the

remote object is located.

importjava.rmi.*;
publicclassMyClient{
publicstaticvoidmain(Stringargs[]){

try{

Adder
stub=(Adder)Naming.lookup("rmi://localhost:5000/sono0");System.out.printin(stub.add(34,4

);
}catch(Exceptione){}
}

}
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DISTRIBUTED SYSTEMS

UNIT-IV

A file system is responsible for the organization, storage, retrieval, naming, sharing,
and protection of files. File systems provide directory services, which convert a file name
(possibly a hierarchical one)into an internal identifier (e.g. inode, FAT index). They contain a
representation of the file data itself and methods for accessing it (read/write). The file system
is responsible for controlling access to the data and for performing low-level operations such
as buffering frequently used data and issuing disk/O requests.DFS makes it convenient to
share information and files among users on a network in a controlled and authorized way.
The server allows the client users to share files and store data just like they are storing the
information locally. However, the servers have full control over the data and give access

control to the clients.

A distributed file system is to present certain degrees of transparency to the user and
the system: Access transparency: Clients are unaware that files are distributed and can

access them in the same way as local files are accessed.

Location transparency: A consistent name space exists encompassing local as well as

remote files.The name of a file does not give it location.

Concurrency transparency: All clients have the same view of the state of the file system.
This means that if one process is modifying a file, any other processes on the same system or

remote systems that are accessing the files will see the modifications in a coherent manner.

Failure transparency: The client and client programs should operate correctly after a server

failure. Heterogeneity: File service should be provided across different hardware and

operating system platforms.

Scalability: The file system should work well in small environments (1 machine, a dozen

machines)and also scalegracefully to huge ones(hundredsthroughtensofthousandsof systems).

Replication transparency: To support scalability, we may wish to replicate files across

multiple servers.Clients should be unaware of this.

Migrationtransparency:Filesshouldbeabletomovearoundwithouttheclient'sknowledge.
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Supportfine-
graineddistributionofdata: Tooptimizeperformance,wemaywishtolocateindividualobjectsnear

the processes that use them.

Tolerancefornetworkpartitioning: Theentirenetworkorcertainsegmentsofitmaybeunavailable
to a client during certain periods (e.g. disconnected operation of laptop). The file system

should be tolerant of this.
File service types

To provide a remote system with file service, we will have to select one of two
models of operation.One of these is the upload/download model. In this model, there are two
fundamental operations: read file transfers an entire file from the server to the requesting
client, and write file copies the file back to the server. It is a simple model and efficient in
that it provides local access to the file when it is being used. Three problems are evident. It
can be wasteful if the client needs access to only a small amount of the file data. It can be

problematic if the client doesn't have enough space to cache the entire file.

Another important distinction in providing file service is that of understanding the
difference between directory service and file service. A directory service, in the context of
file systems, maps human-friendly textual names for files to their internal locations, which
can be used by the file service. The file service itself provides the file interface (this is

mentioned above). Another component of file distributed file systems is the client module.

This is the client-side interface for file and directory service. It provides a local file system

interface to client software (for example, the vnodefilesystem layer of a UNIX kernel).

File system were originally developed for centralized computer systems and desktop

computers .to disk storage.

] File system was as an operating system facility providing a convenient programming interface

"1 Distributed file systems support the sharing of information in the form of files and hardware
resources.

(] With the advent of distributed ob

become more complex.

jectsystems(CORBA ,Java)andtheweb,thepicturehas

"1 Figure 1 provides an overview of types of storage system.
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Storage systems and their properties

Sharing

Persistent

Distributed
cache/replicas

Consistency
maintenance

Example

Main memory

No

No

No

1

RAM

File systemn

No

Yes

No

1

UNIX file
system

Distributed file
system

Yes

Yes

Yes

Sun NFS

web

Yes

Yes

Yes

Web server

Distributed shared
memory

Yes

No

Yes

Ivy(DSM)

Remote
objects(RMI/ORB)

Yes

No

No

CORBA

Persistent object
store

Yes

No

CORBA
persistent state
service

Peer to peer storage
system

Ocean Store

file system modules:

Directorymodule:

RelatesfilenamestofileIDs

Filemodule:

Relatesfile IDstoparticularfiles

Access controlmodule:

Checks permission for operation requested

File access module:

Read or writes file data or attributes

Block module:

Accesses and allocates disk blocks

Device module:

Disk 1/O and buffering

The below table Summarizes the main operations on files that are available to

applications in UNIX systems.
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Figure 4. UNIX file system operations

filedes = open(name, mode) Opens an existing file with the given name.

filedes = creat(name, mode) Creates a new file with the given name.
Both operations deliver a file descriptor referencing the ope
file. The mode is read, write or both.

status = close(filedes) Closes the open file filedes.

count = read(filedes, buffer, n) Transfers n bytes from the file referenced by filedes to buff

t = write(filedes. buff Transfers n bytes to the file referenced by filedes from buff
coulL=iie (liages, BTEE ) Both operations deliver the number of bytes actually transf
and advance the read-write pointer.

pos = Iseek(filedes, offset, Moves the read-write pointer to offset (relative or absolute,
whence)  depending on whence).

status = unlink(name) Removes the file name from the directory structure. If the fi
has no other names, it is deleted.

status = link(name1, name2) Adds a new name (name2) for a file (name1).
status = stat(name, buffer) Gets the file attributes for file name into buffer.

List out the UNIXfilesystem Operations:

fieldes=open(name,mode)fieldes=create(name,mode)status=close(fieldes)count=read(fieldes,
buffer,n)count=write(fieldes,buufer,n)pos=Iseek(filedes,offset,whence)status=unlink(nmae)st

atus=link(namel,nmae2)status=stat(name,buffer)
List out the transparencies in file system.
. Access transparency
e  Location transparency
Mobility transparency
Performance transparency
e  Scaling transparency
What is meant by concurrency control:

Changestoafilebyoneclientshouldnotinterferewiththeoperationofotherclientssimultane

ously accessing or changing the same file. This is well-known issue of concurrencycontrol

.The need for concurrency control for access to shared data in many applicationslswidely
accepted and techniques are known for its implementation ,but they are costly .Mostcurrent
file services follow morden UNIX standards in providing advisery or mandatory file

orrecord-levellocking.
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What is file replication:

In a file service that supports replication, a file may be represented by several copies
of its contents at different locations. This has two benefits-its enables multiple servers to
share the load of providing a service to clients accessing the same set of files, enhancing the
scalability of the service, and it enhances fault tolerance by enabling clients to locate another
server that holds a copy of the file when one has failed. Few file services support replication
fully, but most support the catching of files or portions of files locally,alimited form of
replication.

What is meant by directory services:

The directory services provide a mapping between text names for files and their
UFIDs. Client may obtain the UFIDs of a file by quoting its text name to the directory
services. The directory services provide the function needed to generate directories, to add
new file name to directories and to obtain UFIDs from directories. It is client of the flat file
services; its  directory is stored infilesoftheflatservices.Whenahierarchicfile-

namingschemeisadoptedasinUNIX,directorieshold references tootherdirectories.

Case studies :

File service architecture ¢ This is an abstract architectural model that underpins both NFS

and AFS. Itisbaseduponadivisionofresponsibilitiesbetweenthreemodules—
aclientmodulethatemulatesa conventional file system interface for application programs, and
server modules, that perform operations for clients on directories and on files. The

architecture is designed to enable a stateless implementation of the server module.

Sketch the file service architecture:
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Client computer Server computer

Application Application Directory service
program  program

Flat file service

Client module

=J=—f=—

List the flat file service operation.

Read(file/d,l,N)>data-throws bad position  -if1< 1<length(file):reads a sequence of up to
NitemsFrom a file starting at item/andreturnsit in data

Write(File/D,l,Ddata)-throws bad position -if1<I<length(file)+1: writes a sequence of
datatoaFile,starting at item1,extendingthefileif necessary

Create()->Field -createsanewfileoflengthO and delivers aUFID for it

Delete(Field) -removes the file from the file store

Get Attributes(Field)->> -returns the file attributes forth file

Set Attributes(FilelD) -setsthefileattributes(only those attributes that not Shaded in)

List the directory service operation.

SUN NFS ¢ Sun Microsystems’s Network File System(NFS) has been widely adopted in
industry and in academic environments since its introduction in 1985. The design and
development of NFS were undertaken by staff at Sun Microsystems in 1984. Although
several distributed file services had already been developed and used in universities and
research laboratories, NFS was the first file service that was designed as a product. The

design and implementation of NFS have achieved success both technicallyand commercially.
Sun’sNetwork File System:

The earliest successful distributed system could be attributed to Sun Microsystems, which
developed the Network File System (NFS). NFSv2 was the standard protocol followed for

many years, designed with the goal of simple and fast server crash recovery. This goal is of
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utmost importance in multi-client and single-server based network architectures because a
single instant of server crash means that all clients are unserviced. The entire system goes

down.

Stateful protocols make things complicated when itcomes to crashes. Consider a client A
trying to access some data from the server. However, just after the first read, the server
crashed. Now, when the server is up and running, client A issues the second read request.
However, the server does not know which file the client is referring to, since all that
information was temporary and lost during the crash.

Stateless protocols come to our rescue. Such protocols are designed so as to not store any
stateinformationintheserver. Theserverisunawareofwhattheclientsaredoing—whatblocksthey

are caching, which files are opened by them and where their current file pointers are.
Theserver simply delivers all the information that is required to service a client request. If a
server crash happens, the client would simply have to retry the request. Because of their

simplicity,NFS implements a stateless protocol.
File Handles:

NFS uses file handles to uniquely identify a file or a directory that the current operation is

being performed upon. This consists of the following components:

. Volume Identifier — An NFS server may have multiple file systems or

partitions. The volume identifier tells the server which file system is being

referred to.
InodeNumber— This number identifies the file within the partition.
. GenerationNumber—This number isused while reusing an inode number.
File Attributes:

“File attributes” is a term commonly used in NFS terminology. This is a collective
term for the
trackedmetadataofafile,includingfilecreationtime,lastmodified,size,ownershippermissionsetc.

This can be accessed by calling stat()on the file.

NFS architecture.
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NFS access control and authentication:

{1 The NFS server is stateless server, so the user's identity and access right
server on each request.

[ It is not shown in the Figure 8.9 because they
[l In the local file system they are checked only on the file

st be checked by the’ issi {bute.
%mlgvery c(ilhent reque)(st is a%:g(():r(]:’]epsgnlljg ;S%gr{]gg[r]illglg[gd grouplD
are inserted by the RPC system.

[J Kerberos has been integrated with NFS to provide a stronger and more comprehensive security

solution.

Mount service:

[J Mount operation:

mount(remotehost,remotedirectory,localdirectory)
Servermaintainsatableofclientswhohavemountedfilesystemsatthatserver.
[0 Each client maintains a table of mounted file systems holding:

<IPaddress,port number,file handle>

-Fﬁnﬁuntedo oft-mountedin%clihen'%:omputerﬂ Figure 10 illustrates a Client with two remotely
emote file systems may be har

mounted filestores.
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Server caching:
Similar to UNIX file caching for local files:
[1 pages (blocks) from disk are held in a main memory buffer cache until the space is required for

newer pages.Read-ahead and delayed-write optimizations.

1 For local files, writes are deferred to next sync event (30 second intervals).
[0 Works well in local context, where files are always accessed through the local cache, but in the

remotecaseitdoesn'toffernecessarysynchronizationguaranteestoclients.
Achievement of transparencies is other goals of NFS:

[1 NFS is an excellent example of a simple, robust, high-performance distributed service.

ﬁccess transparency:The API is the UNIX system call interface for both local and remote

files.
hocationtransparency:NamingoffiIesystemsiscontrolIedbyclientmountoperations,but
transparencycan be ensured by an appropriate system configuration.

Mobility transparency: Hardly achieved; relocation of files is not possible, relocation of file

systems is possible, but requires updates to client configurations.
Scalabilitytransparency:Filesystems(filegroups)maybesubdividedand allocated to
separate servers.

Replication transparency:

—Limitedtoread-
onlyfilesystems;forwritablefiles,theSUNNetworkInformationService(NIS)runsover NFSand

is used to replicate essential system files.
CaseStudy:The Andrew File System(AFS):

AFS differs markedly from NFS in its design and implementation. The differences are
primarily attribute able to the identification of scalability as the most important design goal.
AFS is designed to perform well with larger numbers of active users than other distributed
file systems. The key strategy for achieving capability is the caching of whole files in client

nodes.
AFS has two unusual design characteristics:

Whole-file serving: The entire contents of directories and files are transmitted to client
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computers by AFS servers(inAFS-3,fileslargerthan64kbytesare transferredin64-kbytechunks).

Whole file caching: Once a copy of a file or a chunk has been transferred to a client
computer it is stored in a cache on the local disk. The cache contains several hundred of the
files most recently used on that computer. The cache is permanent, surviving reboots of the
client computer. Local copies of files are usedtosatisfyclients’

openrequestsinpreferencetoremotecopieswheneverpossible.

[0 AFS is implemented as two software components that exist at UNIX processes called Vice and
Like NFS, AFS provides transparent access to remote shared files for UNIX programs

running on work stations.

OPERATIONOFAFS:

i) When a user process in a client computer issues an open system call for a file in
the shared -file space and there is not a current copy of the file in the local
cache, the server holding the file is located and is sent a request for a copy of the
file.

Thecopyisstoredinthelocal UN I Xfilesystemintheclientcomputer. Thecopyisthenop
enedand the resulting UNIX file descriptor is returned to the client.

Subsequentread,writeandotheroperationsonthefilebyprocessesintheclientcompute

rareappliedtothelocalcopy.

When the process in the client issues a close system call, if the local copy has
been updated its contents are sent back to the server. The server updates the file
contents and the timestamps on thefile.
Thecopyontheclient’slocaldiskisretainedincaseitisneededagainbyauser-

levelprocessonthe same workstation.

AFS is a distributed file system, with scalability as a major goal. Its efficiency can be

at tribute to the following practical assumptions(as also seen in UNIX file system):
1 Files are small(i.e.entire file can be cached)
I Frequency of reads much more than those of writes
Sequential access common

Files are not shared(i.e. read and written by only one user)

[Distributed Systems]




1 Shared files are usually not written
1 Diskspace is plentiful

AFSdistinguishesbetweenclientmachines(workstations)anddedicatedservermachines.
Caching files in the client side cache reduces computation at the server side, thus enhancing
performance. However, the problem of sharing files arises.
Tosolvethis,allclientswithcopiesofafilebeingmodifiedbyanotherclientarenot  informed  the
moment the client makes changes. That client thus updates its copy, and the changes are
reflected in the distributed file system only after the client closes the file.

The key software components in AFS are:

I Vice: The server side process that resides on top of the Unix kernel, providing
shared file services to each client

Venus: The client side cache manager which acts as an interface between the

application program and the Vice

All the files in AFS are distributed among the servers. The set of files in one server is
referred to as a volume. In case a request cannot be satisfied from this set of files, the vice

server informs the client where it can find the required file.
The basic file operations can be described more completely as:

I Open a file: Venus traps application generated file open system calls, and checks
whether it can be serviced locally (i.e. a copy of the file already exists in the
cache) before requesting Vice for it. It then returns a file descriptor to the calling
application. Vice, along with a copy of the file, transfers a callback

promise,whenVenus requests for a file.
Read and Write: Reads/Writes are done from/to the cached copy.

Close a file: Venus traps file close system calls and closes the cached copy of
the file. If the file had been updated, it informs the Vice server which then
replaces its copy with the updated one, as well as issues callbacks to all clients
holding call back promises on this file. On receiving a call back, the client

discards its copy,and works on this fresh copy.

The server wishes to maintain its states at all times, so that no information is lost due
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to crashes. This is ensured by the Vice which writes the states to the disk. When
theservercomesupagain,italsoinformsalltheserversaboutitscrash,sothatinformation about

updates may bypassed toot.

Workstations

BU ser Venus —_

program

[__UNIXiemel |
==

BUSaVenus\

=

Vice

Venus =

User | |
[ UNIXiernel |
= = =

=

Distributed shared memory(DSM)

Shared memory is the memory block that can be accessed by more than one program. A
shared memory concept is used to provide a way of communication and provide less

redundant memory management.

Distributed Shared Memory abbreviated as DSM is the implementation of shared memory
concept in distributed systems. The DSM system implements the shared memory models in
loosely coupled systems that are deprived of a local physical shared memory in the system. In
this type of system distributed shared memory provides a virtual memory space that is
accessible by all the system (also known as nodes)of the distributed hierarchy.

Message passing versus DSM

The message passing and DSM can be compared based on services they offer and in terms of

their efficiency

[Distributed Systems]




Message Passing

Distributed Shared Memory

Services Offered:

Variables have to be
marshalledfromoneprocess,transmittedandunmar
shalledintoothervariablesatthereceivingprocess.

The processes share variables directly,
sonomarshallingandunmarshalling.Sharedv
ariablescanbenamed,storedandaccessedin
DSM.

Processes communicate  with

other
processes. They can be protected fromone
anotherbyhavingprivateaddress spaces.

can

Here,aprocess does not have private

Address space So on eprocesscanalterthe
executionofother.

This technique can be  used in

heterogeneouscomputers.

Thiscannotbeusedtoheterogeneous
computers.

Synchronization ~ between processes
throughmessagepassingprimitives.

Synchronization is
semaphores.

through locks and

Processes communicating via ~ message

passingmustexecuteatthesametime.

Processes
DSM

may  execute
overlapping

lifetimes.

communicating through

with non-

Efficiency:

Allremotedataaccessesareexplicitandtherefore
the programmer is always
awareofwhetheraparticularoperationisin-
processorinvolvestheexpenseofcommunication.

Any particular read or update may or
maynotinvolvecommunicationbytheunderly
ing  runtime support.

Synchronizationmodel:

v

Manyapplicationsapplyconstraintsconcerningthevaluesstoredinsharedmemory. ).

For example, if a and b are two variables stored in DSM, then aconstraint might

be that a = b always. If two or more processes execute thefollowingcode:

a:=a+l;

b :=b+1;

thenaninconsistencymayarise.Supposeaandbareinitiallyzeroandthatprocess1

gets as far as setting a to 1. Before it can increment b, process 2 sets a to 2 and b to
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1.Theconstraint hasbeenbroken. Thesolutionistomakethiscodefragmentintoacriticalsection:

tosynchronize processes to ensurethat onlyonemayexecute it atatime.

v" Inorder touseDSM,then,adistributedsynchronization
serviceneedstobeprovided,whichincludesfamiliarconstructssuch as locks

andsemaphores
Consistencymodel

TheissueofconsistencyarisesforasystemsuchasDSM, which replicates thecontents
ofsharedmemorybycachingit atseparate computers.

1 eachprocesshas alocalreplicamanager,whichholds
cachedreplicasofobjects.Inmostimplementations, data is read from local replicas

for efficiency, but updates have to bepropagatedto theother replica managers

Consideranapplicationinwhichtwoprocessesaccesstwovariables,aandb(Figurel8.

3),which areinitialized to zero.

Process 2 increments a and b, in that order. Process 1 reads the values of b and a
intolocalvariablesbrandar,inthatorder.Notethatthereisnoapplication-

levelsynchronization.

Intuitively, process 1 should expect to see one of the following combinations
ofvalues, depending upon the points at which the read operations applied to a

and b(implied in the statements br := b and ar := a) occur with respect to

process 2’sexecution: ar = 0, br = 0; ar = 1, br = 0; ar = 1, br = 1. In other

words, the conditionar br should always be satisfied and process 1 should print
‘OK’. However, a DSMimplementation might deliver the updates toa and b out
of order to the replicamanagerforprocessl,inwhichcasethecombinationar =0,br =

1could occur.
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Figurel8.3 Two processes accessing shared variables

Process 1 Process 2

br:=b; a=a+1;
ar=a; b=b+1;
if(ar = br) then

print ("OK");

The main consistency models that can be practically realized in DSM

implementationsaresequential consistencyand modelsthat arebased on weakconsistency.

Thecentralquestiontobeaskedinordertocharacterizeaparticularmemoryconsistencymodel IS
this:when areadaccessismadeto amemorylocation,whichwriteaccesses to the location are
candidates whose values could be supplied to the read?

Attheweakestextreme,theansweris:anywritethatwasissuedbeforetheread.

Atthestrongestextreme,allwrittenvaluesareinstantaneouslyavailabletoallprocesses: a read
returns the most recent write at the time that the read takes place. Thisdefinition is
problematic in two respects. First, neither writes nor reads take place at asingle point in time,
so the meaning of ‘most recent’ is not always clear. Each type ofaccesshas awell-definedpoint

of issue,but theycomplete atsome later time

Linearizability is more usually called atomic consistency in the DSM literature. We

now restatethedefinition oflinearizability

A replicated shared object service is said to be linearizable if for any execution there
issome interleaving of the series of operations issued by all the clients that satisfies

thefollowingtwo criteria:

L1: The interleaved sequence of operations meets the specification of a (single)

correctcopyof theobjects.

The order of operations in the interleaving is consistent with the real times at

whichtheoperations occurred in theactual execution.

Consider the simple case where the shared memory is structured as a setof

variablesthatmaybereadorwritten. Theoperationsareallreadsandwrites,whichweintroduced  a
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notation for in Section 18.2.1: a read of value a from variable x is denotedR(x)a; a write of
value b to variable x is denoted W (x)b. We can now express the firstcriterionL1 in terms

ofvariables(theshared objects) as follows:

L1: The interleaved sequence of operations is such that if R(x)a occurs in the sequence,
theneitherthelastwriteoperation thatoccurs beforeitintheinterleavedsequenceisW(x)a,

orno writeoperationoccursbefore it and a isthe initialvalue ofx.

Thiscriterionstatesourintuitionthatavariablecanonlybechangedbyawriteoperation. Thes

econdcriterionforlinearizability,L2,remainsthesame

Sequential consistency Linearizability is too strict for most practical purposes. The

strongestmemorymodelforDSMthat is usedin practiceissequential consistency

A DSM system is said to be sequentially consistent iffor any execution there is
someinterleaving of the series of operations issued by all the processes that satisfies the

followingtwocriteria:
SC1:Theinterleavedsequenceofoperationsis suchthatif R(x)aoccursinthe

sequence,theneitherthelastwriteoperationthatoccursbeforeitinthe interleavedsequenceisW(x)a ,

ornowriteoperation occurs beforeit anda is theinitial valueofx.

SC2:Theorderofoperationsintheinterleavingisconsistentwiththeprogramorder in

whicheachindividual client executed them.

CriterionSClisthesameasL1'.CriterionSC2referstoprogramorderratherthantemporalorder,whic
h is whatmakesit possibleto implement sequentialconsistency

The combination ar = 0, br = 1 in the above example could not occur under sequential

consistency,because process 1 would be reading values that conflict with process 2’s program
order. An
exampleinterleavingoftheprocesses’memoryaccessesinasequentiallyconsistentexecutionissho

wninFigurel8.4
Coherence:

Coherenceis anexample ofa weaker formof consistency.
Undercoherence,everyprocessagreesontheorder of write operations to the same location, but

they do not necessarily agree on the ordering of writeoperationstodifferentlocations

Updateoptions
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Two main implementation choices have been devised for propagating updates made byone
process to the others: write-update and write-invalidate. These are applicable to avariety of
DSM consistency models, including sequential consistency. In outline, theoptionsareas

follows:

Write-update: The updates made by a process are made locally and multicast to all
otherreplica managers possessing a copy of the data item, which immediately modify the
dataread by local processes (Figure 18.5). Processes read the local copies of data
items,without the need for communication. In addition to allowing multiple
readers,severalprocesses may write the same data item at the same time; this is known as

multiple-reader/multiple-writersharing

Figurel8.5 DSMusingwrite-update

if(a=7) then
a="T7,

b:=7;
if(b=8) then
print("after”);

if(b=a) then
print("before");

Write-invalidate: Thisiscommonlyimplementedintheformofmultiple-reader/single-

writersharing.Atany time,adataitemmayeitherbeaccessedinread-
onlymodebyoneormoreprocesses,oritmaybereadandwrittenbyasingleprocess. Anitemthatiscurr
entlyaccessedinread-
onlymodecanbecopiedindefinitelytootherprocesses.Whenaprocessattemptstowritetoit,amultica

stmessageisfirstsent

toallothercopiestoinvalidatethemandthisisacknowledgedbeforethewritecantakeplace;theotherp

rocessesaretherebypreventedfromreadingstaledata(thatis,datathatarenotuptodate). Anyprocesse

sattempting toaccessthedataitemareblockedif a writer exists. Eventually, control
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istransferredfromthewritingprocess,andotheraccessesmay takeplaceoncetheupdatehasbeen

sent. The effect is to process all accesses to the item on a first-come, first-served basis
Thrashing

A potential problem with write-invalidate protocols is thrashing. Thrashing is said to
occurwhere the DSM runtime spends an inordinate amount of time invalidating and
transferringshared data compared with the time spent by application processes doing useful
work. Itoccurs when several processes compete for the same data item, or for falsely shared
dataitems. If, for example, one process repeatedly reads a data item that another is
regularlyupdating, then this item will be constantly transferred from the writer and
invalidated at thereader. This is an example of a sharing pattern for which write-invalidate is

inappropriate andwrite-update would bebetter
Sequentialconsistencyandlvycasestudy:

Paging is transparent to the application components within processes; they can
logically
bothreadandwriteanydatainDSM.However,theDSMruntimerestrictspageaccesspermissions in
order to maintain sequential consistency when processing reads and writes.Paged memory
management units allow the access permissions to a data page to be set tonone, read-only or
read-write. If a process attempts to exceed the current access permissions,then it takes a read
or write page fault, according to the type of access. The kernel
redirectsthepagefaulttoahandlerspecifiedbytheDSMruntime layer in each process.

Theproblemofwrite-update ]

Suppose that every update has to be multicast to the remaining replicas. Suppose that
apagehasbeenwrite-protected.Whenaprocessattemptstowrite uponthe

page,ittakesapagefaultandahandlerroutineiscalled. Thishandlercould,inprinciple,examine

faulting instruction to determine the value and address being written and multicast

theupdatebeforerestoringwriteaccessandreturningtocompletethefaultinginstruction.

But now that write access has been restored, subsequent updates to the page will not
cause apage fault. To make every write access produce a page fault, it would be necessary for
thepage fault handler to set the process into TRACE mode, whereby the processor generates

aTRACE exception after each instruction. The TRACE exception handler would turn off
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writepermissionsto thepageand turn off TRACE modeoncemore
Writeinvalidation

A process with the most up-to-date version of a page p is designated as its owner —
referredto as owner(p). This is either the single writer, or one of the readers. The set of

processes thathaveacopyofapagep is called its copyset — referred toascopyset(p).

Thepossiblestatetransitions areshowninFigure

18.8.WhenaprocessPyattemptstowriteapage p to which it has no access or read-only access, a

page fault takes place. The page-faulthandlingprocedureis asfollows:

v' The page is transferred to Pyy , if it does not already have an up-to-date read-
onlycopy.

Allothercopies areinvalidated: thepagepermissions aresetto

noaccessatallmembersofcopyset(p).
copyset(p) := {Pw}-
owner(p):=Pw.

The DSM runtime layer in Py places the page with read-write permissions at

theappropriatelocation initsaddress spaceandrestarts thefaultinginstruction.

Statetransitionsunderwrite-invalidation
Notethattwoormoreprocesseswithread-onlycopiesmay takewritefaultsatmoreor

less the same time. A read-only copy of a page may be out-of-date when ownership
iseventually granted. To detect whether a current read-only copy of a page is out-of-date,each

page can be associated with a sequence number, which is incremented wheneverownership is

transferred. A process requiring write access encloses the sequence numberof its read-only
copy, if it possesses one. The current owner can then tell whether thepage has been modified
and therefore needs to be sent. This scheme is described byKesslerandLivny[1989] as

the‘shrewdalgorithm’.

When a process PR attempts to read a page p for which it has no access permissions, a read

pagefault takes place. Thepage-fault handlingprocedureis as follows:

v' Thepageis copiedfromowner(p)toPR.
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If the current owner is a single writer, then it remains as p’s owner and its
accesspermission for p is set to read-only access. Retaining read access is
desirable in case theprocess attempts to read the page subsequently — it will have
retained an up-to-dateversion of the page. However, as the owner it will have to
process subsequent requestsfor the page even if it does not access the page
again. So it might turn out to have beenmoreappropriateto

reducepermissiontonoaccessandtransferownershipto PR.

copyset(p):=copyset(p) {PR}.

TheDSMruntimelayerinPRrplacesthepagewithread-
onlypermissionsattheappropriatelocation initsaddress ~ spaceandrestartsthe

faultinginstruction.

It is possible for a second page fault to occur during the transition algorithms just described.
Inorder that transitions take place consistently, any new request for the page is not processed
untilafterthe current transition has completed

Thedescriptionjustgivenhasonlyexplainedwhatmustbedone. Theproblemofhowtoimplementpag

efault handlingefficientlyis nowaddressed
Invalidationprotocols

Twoimportantproblemsremaintobeaddressedinaprotocoltoimplementtheinvalidationsc

heme:
v" Howtolocateowner(p)for agiven pagep.
v' Wheretostorecopyset(p).

For lvy, Li and Hudak [1989] describe several architectures and protocols that take

varyingapproaches to these problems. The simplest we shall describe is their improved

centralizedmanageralgorithm.

In it, a single server called a manager is used to store the location (transport address) of
owner(p)foreverypagep. Themanagercouldbeoneoftheprocessesrunningtheapplication,oritcoul
dbeany other process. In this algorithm, the set copyset(p) is stored at owner(p). That is, the

identifiersandtransport addresses of themembers ofcopyset(p) arestored.

As shown in Figure 18.9, when a page fault occurs the local process (which we shall refer to

as theclient) sends a message to the manager containing the page number and the type of
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access required(read or read-write). The client awaits a reply. The manager handles the
request by looking up theaddress of owner(p) and forwarding the request to the owner. In the
case of a write fault, themanager sets the new owner to be the client. Subsequent requests are
thus queued at the client untilithas completed the transfer ofownership to itself.

The previous owner sends the page to the client. In the case of a write fault, it also sends the
page’scopy set. The client performs the invalidation when it receives the copy set. It sends a
multicastrequesttothemembersofthecopyset,awaitingacknowledgementfromalltheprocessesco

ncerned that invalidation has taken place. The multicast need not be ordered. The former
ownerneed not be included in the list of destinations, since it invalidates itself. The details of
copy setmanagement are left to the reader, who should consult the general invalidation

algorithms givenabove.

Figurel8.9  Central managerandassociatedmessages

Faulting proces Current owner

1.page no., access (RNV) [ 2. requestor, page no., access

ge |Owner

Manager

A dynamic distributed manager algorithm

A dynamic distributed manager algorithm, allows page ownership to be transferred
betweenprocesses but which uses an alternative to multicast as its method of locating a page’s
owner. Theidea is to divide the overheads of locating pages between those computers that
access them. Everyprocesskeeps,foreverypagep,ahint as tothepage’s currentowner—the
probableownerofp, orprobOwner(p). Initially, every process is supplied with accurate page
locations. In general,however, these values are hints, because pages can be transferred

elsewhere at any time. As inpreviousalgorithms, ownership istransferredonlywhen
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awritefaultoccurs.

Theownerofapageis located byfollowingchains ofhints that areset up as
ownershipofthepage is transferred from computer to computer. The length of the chainthat is,
the number offorwarding messages necessary to locate the owner — threatens to increase
indefinitely. Thealgorithm overcomes this by updating the hints as more up- to-date values

become available.Hintsareupdated andrequestsareforwarded asfollows:

(1 Whenaprocesstransfersownershipofpageptoanotherprocess,itupdates
probOwner(p)tobetherecipient.
Whenaprocesshandlesaninvalidationrequestforapagep,itupdates
probOwner(p)tobetherequester.
Whenaprocessthathasrequestedreadaccesstoapagepreceivesit,itupdates
probOwner(p)tobetheprovider.

When a process receives a request for a page p that it does not own, it forwards

therequestto probOwner(p)andresets probOwner(p)tobe therequester.

The first three updates follow simply from the protocol for transferring page
ownership andproviding read-only copies. The rationale for the update when forwarding
requests is that, forwriterequests,the requesterwillsoonbetheowner, eventhoughitis

notcurrently.

Figure 18.10 ((a) and (b)) illustrates probOwner pointers before and after process A
takes awrite page fault. A’s probOwner pointer for the page initially points to B. Processes B,
C andD forward the request to E by following their own probOwner pointers; thereafter, all

are setto point to A as a result of the update rules just described. The arrangement after

faulthandlingisclearlybetterthan that whichprecededit:thechain ofpointershascollapsed.

If,however,Atakesareadfault,thenprocess
Bisbetteroff(twostepsinsteadofthreetoE),C’ssituationisthesameasitwasbefore(twosteps),butDis

worseoff,withtwo stepsinstead ofone(Figure18.10(c)).
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Updating probOwner pointers

9

(a) probOwner pointers just before process Atakes a page fault forapage owned by E

3
(1) =

(b) Write fault: probOwner pointers after A's write request is forwarded

QO Owner

(c) Read fault: probOwner pointers after A's read request is forwarded

Releaseconsistencymodel:

TheideaofreleaseconsistencyistoreduceDSMoverheadsbyexploitingthefactthatprogrammers

use synchronization objects such as semaphores, locks and barriers

Memoryaccesses

In order to understand release consistency — or any other memory model that

takessynchronization into account — we begin by categorizing memory accesses according
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totheirrole,ifany,insynchronization.Furthermore,weshalldiscusshowmemoryaccesses may be
performed asynchronously to gain performance and give a simpleoperationalmodel ofhow

memoryaccesses takeeffect.

As we said above, DSM implementations on general-purpose distributed systems may
usemessage passing rather than shared variables to implement synchronization, for reasons
ofefficiency. But it may help to bear shared-variable-based synchronization in mind in
thefollowingdiscussion. ThefollowingpseudocodeimplementslocksusingthetestAndSetoperatio
non variables. The function testAndSet sets the lock to 1 and returns O if it finds it zero;

otherwiseitreturns 1.1t does this atomically

acquireLock(varintlock)://lockispassedby-
referencewhile(testAndSet(lock)=1)

skip;

releaseLock(varintlock)://lockispassed by-referencelock:=0

Typesofmemoryaccess

Themaindistinctionisbetweencompetingaccesses and non- competing (ordinary)

accesses. Two accesses arecompetingif:

0 theymayoccurconcurrently(thereis no enforcedorderingbetween them)andatleast one

is awrite.

0 So two read operations can never be competing; a read and a write to the
samelocation made by two processes that synchronize between the operations (and

soorderthem)arenon-competing.

0 Wefurtherdividecompetingaccessesintosynchronizationandnon-

synchronizationaccesses:

o synchronization accessesare read or write operations that

contributetosynchronization;

o non-synchronization  accesses are read or write  operations that

areconcurrentbutthatdonotcontribute to synchronization.

0 Thewriteoperationimpliedby‘lock:=0’inreleaseLock(above)isasynchronization

access.So isthereadoperation implicitin testAndSet
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Releaseconsistency

Therequirements thatwewishtomeetare:

0 topreservethesynchronizationsemantics ofobjectssuchaslocksand barriers;
0 togainperformance,weallowadegreeofasynchronicityformemoryoperations;

0 toconstraintheoverlapbetweenmemoryaccesses

inordertoguaranteeexecutionsthatprovide theequivalent ofsequential consistency.
0 Release-consistent memoryisdesignedto satisfytheserequirements

RCL1: before an ordinary read or write operation is allowed to perform withrespectto anyother

process, all previousacquireaccessesmust beperformed.

RC2: before a release operation is allowed to perform with respect to any

otherprocess,allpreviousordinaryreadand writeoperationsmust beperformed.
RC3: acquireand releaseoperationsaresequentiallyconsistentwith respecttooneanother.

0 RC1landRC2guaranteethat,whenareleasehastakenplace,nootherprocessacquiringa

lockcanreadstale versions ofdata modifiedbythe processthatperforms the release

0 Consider the processes in Figure 18.12, which acquire and release a lock in order to
access a
pairofvariablesaandb(aandbareinitializedtozero).Process1lupdatesaandbunderconditionsofmut

ualexclusion,sothatprocess2cannotreadaandbatthe sametimeandso willfinda

=b=0o0ra=Db=1. The critical sections enforce consistency — equality of a and b — atthe

application level. It is redundant to propagate updates to the variables affected duringthe

critical section. If process 2 tried to access a, say, outside a critical section, then itmightfind

astale value.

Figure18.12Processesexecutingonarelease-consistentDSM
Processl:

acquireLock();a := a+1,;

b :=b+1,;

releaseLock();

Process2:

acquireLock();

/lentercriticalsection
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/lleavecriticalsection

/lentercriticalsection

print("The valuesofaandb are:", a,b);

releaseLock(); //leavecriticalsection

Under release consistency, process 1 will not block when it accesses a and b. The DSM
runtimesystemnoteswhichdata

havebeenupdatedbutneedtakenofurtheractionatthattime.ltisonlywhen process 1 has released

the lock that communication is required. Under a write-updateprotocol, the updates to a and b

will be propagated; under a write-invalidation protocol, theinvalidationsshould besent.
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TransactionsandConcurrencyControl

A Transaction defines a sequence of server operations that is guaranteed by the server
to beatomic in the presence of multiple clients and server crashes. Nested transactions are
structuredfrom sets of other transactions. They are particularly useful in distributed systems

because theyallowadditional concurrency.

All of the concurrency control protocols are based on the criterion of serial

equivalence and arederivedfromrulesfor  conflictsbetweenoperations.Three  methods

aredescribed:

Locksareusedtoordertransactions that
accessthesameobjectsaccordingtotheorderofarrival oftheiroperations at the

objects.

Optimisticconcurrencycontrolallowstransactions to proceed untiltheyarereadyto
commit, whereupon a check is made to see whether they have

performedconflictingoperations onobjects.

Timestamporderingusestimestampstoordertransactionsthataccessthesameobjects

accordingto theirstartingtimes.

The goal of transactions is to ensure that all of the objects managed by a server remain
in aconsistent state when they are accessed by multiple transactions and in the presence of
servercrashes. Transactionsdealwithcrashfailuresofprocessesandomissionfailuresincommunica

tion,but not anytypeofarbitrary(or Byzantine) behaviour.

Toexplain  withabankingexample,eachaccountisrepresentedbyaremoteobjectwhoseinterface,
Account, provides operations for making deposits and withdrawals and for

enquiringaboutandsettingthebalance.Eachbranchofthebankisrepresentedbyaremoteobjectwhos
einterface,Branch,providesoperationsforcreatinganewaccount,forlookingupanaccountbyname

and forenquiringabout the total funds atthat branch.
Operationsofthe Accountinterfacedeposit(amount)
deposit amount in the accountwithdraw(amount)

withdrawamountfromtheaccountgetBalance()[Jamount
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returnthebalanceoftheaccountsetBalance(amount)

setthebalanceoftheaccounttoamountOperationsoftheBranchinterfacecreate(name) CJaccount

createanewaccount with agivenname

lookUp(name)[Jaccount

returnareferencetotheaccountwiththegivennamebranchTotal() [Jamount

returnthetotalofallthebalancesatthebranch

Failure model for transactions

Lampson proposed a fault model for distributed transactions that accounts forfailures of

disks,servers and communication. In this model, the claim is that thealgorithms work

correctly in thepresence of predictable faults, but no claims are madeabout their behaviour

when a disasteroccurs.Althougherrorsmayoccur, theycan be

detectedanddealtwithbefore anyincorrectbehaviourresults. Themodelstatesthefollowing:

Writes to permanent storage may fail, either by writing nothing or by writing
awrong value —for example, writing to the wrong block is a disaster. File
storagemay also decay. Reads frompermanentstoragecan  detect
(byachecksum)whena blockofdata is bad.

Servers may crash occasionally. When a crashed server is replaced by a

newprocess, its volatilememory is first set to a state in which it knows none of

thevalues (for example, of objects) frombefore the crash. After that it carries out

arecovery procedure using information in
permanentstorageandobtainedfromotherprocessestosetthevaluesofobjectsincludi
ngthoserelatedtothe two-phasecommit protocol (see Section 17.6). When a
processor is faulty, it is made tocrashsothat itis prevented from
sendingerroneousmessagesand from writingwrong values to permanent storage —

that is, so it cannot produce arbitrary failures.Crashes can occur atanytime; in particular,

theymayoccurduringrecovery.

There may be an arbitrary delay before a message arrives. A message may be
lost,duplicated orcorrupted. The recipient can detect corrupted messages using
achecksum. Both forged messagesandundetectedcorrupt messages areregarded

asdisasters.
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TRANSACATIONS:

Insomesituations,clientsrequireasequenceofseparaterequests toaservertobeatomicin

thesensethat:

1.  Theyarefreefrom interferencebyoperationsbeingperformedon behalf of

otherconcurrentclients.

Eitherall of theoperations mustbe completed successfullyortheymusthaveno

effect atallinthepresenceofservercrashes.
Aclient’sbankingtransaction
TransactionT:
a.withdraw(100);b.deposit(100);c.withdraw(200);b.deposit(200);

Banking example to illustrate transactions. A client that performs a sequence of
operations on aparticular bank account on behalf of a user will first lookup the account by
name and then
applythedeposit,withdrawandgetBalanceoperationsdirectlytotherelevantaccount.Inourexample
s,weuseaccountswithnamesA,BandC. Theclientlooksthemupandstoresreferencesto  them in

variablesa, bandcoftypeAccount.

AsimpleclienttransactionspecifyingaseriesofrelatedactionsinvolvingthebankaccountsA
,B and C. The first two actions transfer $100 from A to B and the second two transfer $200

fromCto B. Aclient achievesatransferoperation bydoingawithdrawal followed byadeposit.

Transactions can be provided as a part of middleware.For example, CORBA provides
thespecification for an Object Transaction Service with IDL interfaces allowing clients’

transactionstoinclude multipleobjects at multipleservers.

The client is provided with operations to specify the beginning and end of a
transaction. Theclient maintains a context for each transaction, which it propagates with each
operation in thattransaction. In CORBA, transactional objects are invoked within the scope of

a transaction andgenerallyhavesomepersistent storeassociated with them.
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ACID properties:

a transaction applies to recoverable objects and is intended to be atomic. It is often called an

atomic transaction.There are twoaspectstoatomicity:

All or nothing: A transaction either completes successfully, in which case the effects of all of

its operations arerecorded in the objects, or (if it fails or is deliberately aborted) has no effect

at all. This all-or-nothing effect has twofurther aspects ofits own:
Failure atomicity:Theeffectsareatomicevenwhentheservercrashes.
Consistency:atransactiontakesthesystemfromoneconsistentstatetoanotherconsistent state;

Isolation:Each transaction must be performed without interference from other transactions;

in other words, theintermediate effectsofa transactionmustnot bevisibletoothertransactions.

Durability: After a transaction has completed successfully, all its effects are saved in
permanent storage. We use theterm ‘permanent storage’ torefer to files held on disk or

another permanentmedium.Data saved in a filewillsurviveiftheserverprocess crashes.

Transaction lite histories

Successful Aborted by client Aborted by server
openTransaction openTransaction openTransaction
operation operation operation
operation operation operation
. . server aborts .

. B transaction — .

operation operation operation ERROR
reported to client

closeTransaction abortTransaction

TransactionPrimitives:

Primitive Description

BEGIN_TRANSACTION Makethestartofatransaction

END_TRANSACTION Terminatethetransactionandtrytocommit

ABORT_TRANSACTION Endthetransactionandrestore theoldvalues

READ Readdatafromafile,atable,orotherwise

WRITE Writedatatoafile,atable,orotherwise
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Nestedtransactionsextendtheabovetransactionmodelbyallowingtransactionstobecomposedof
othertransactions. Thusseveraltransactionsmaybestartedfromwithinatransaction, allowing
transactions to be regarded as modules that can be composed asrequired.The outermost
transaction in a set of nested transactions is called thetop-level

transaction. Transactionsotherthan thetop-leveltransaction arecalled subtransactions.

Asubtransactionappearsatomictoitsparentwithrespecttotransactionfailuresandtoconcurrent

access. Subtransactions at the same level, such asT1 and T2, can run concurrently,but their
access to common objects is serialized. Each subtransaction can fail independently ofitsparent
and of the other subtransactions. When a subtransaction aborts, the parenttransaction

cansometimeschoosean alternative subtransactiontocompleteits task.

Forexample, a transaction to deliver a mail message to a list of recipients could be
structuredas aset of subtransactions, each of which delivers the message to one of the
recipients.If one or moreof the subtransactions fails, the parent transaction could record the

factand then commit, with theresult that all the successful child transactions commit.
LOCKS:

Transactions must be scheduled so that their effect on shared data is serially equivalent. A
servercan achieve serial equivalence of transactions by serializing access to the objects.

Transactions TandUbothaccess accountB,but Tcompletes itsaccess beforeUstartsaccessingit.

A simple example of a serializing mechanism is the use of exclusive locks. In this
lockingscheme, the server attempts to lock any object that is about to be used by any
operation of aclient’s transaction. If a client requests access to an object that is already locked
due to

anotherclient’stransaction,therequestissuspendedandtheclientmustwaituntiltheobjectisunlocke
d.

As pairs of read operations from different transactions do not conflict, an attempt to set a
readlock on an object with a read lock is always successful. All the transactions reading the

sameobjectshareits readlock—forthisreason,read locksaresometimescalled sharedlocks.
Theoperationconflictrules tell usthat:

1.  IfatransactionThasalreadyperformedareadoperationonaparticularobject,thenacon

currenttransactionU must notwritethat objectuntil Tcommitsoraborts.

IfatransactionThasalreadyperformedawriteoperationonaparticularobject,thenaco
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ncurrenttransactionU must notreadorwritethatobject until T commitsoraborts.
Useoflocksin stricttwo-phaselocking:
1. Whenanoperationaccessesanobjectwithinatransaction:
(@) Iftheobjectisnot alreadylocked,it islockedandtheoperationproceeds.

(b) If the object has a conflicting lock set by another transaction, the

transactionmust wait until itisunlocked.

(c) If the object has a non-conflicting lock set by another transaction, the lock
isshared and theoperationproceeds.

If the object has already been locked in the same transaction, the lock will
bepromoted ifnecessary and the operation proceeds. (Where promotion

isprevented by a conflicting lock, rule bis used.)

When a transaction is committed or aborted, the server unlocks all objects itlocked for

thetransaction.

Lock compatibility table for hierarchic locks

For one object Lock to be set
write I-read I-write
Lock already set none OK OK OK OK
read OK wait OK wait
write wait wait wait wait
[-read OK wait OK OK

I-wrifte wait wait OK OK

Onptimistic concurrency control

Optimistic concurrency control is a concurrency control method applied to
transactional systemssuch as relational database management systems and software
transactional memory. It assumesthat multiple transactions can frequently complete without
interfering with each other. Whilerunning, transactions use data resources without acquiring
locks on those
resources.Beforecommitting,eachtransactionverifiesthatnoothertransactionhasmodifiedthedata
ithasread.If the check reveals conflicting modifications, the committing transaction rolls back

and can berestarted and it is generally used in environments with low data contention. When
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conflicts arerare,transactions cancomplete without the expense of managing locks and
without havingtransactions wait for other transactions' locks to clear, leading to higher

throughput than otherconcurrencycontrol methods.
Optimisticconcurrencycontroltransactionsinvolvethesephases:
. Begin:Recordatimestampmarkingthetransaction's beginning.
Modify:Readdatabasevalues, andtentativelywritechanges.

Validate: Check whether other transactions have modified data that this
transaction hasused (read or written). This includes transactions that completed
after this transaction's starttime,and optionally, transactionsthatarestill activeat

validation time.

Commit/Rollback: If there is no conflict, make all changes take effect. If there
is aconflict, resolve it, typically by aborting the transaction, although other

resolution schemesarepossible.

The stateless nature of HTTP makes locking infeasible for web user interfaces. It's
common for auser to start editing a record, then leave without following a "cancel™ or
"logout™ link. If lockingis used, other users who attempt to edit the same record must wait

until the first user's lock timesout.

Some database management systems offer Optimistic concurrency control natively -
withoutrequiring special application code. For others, the application can implement an OCC
layeroutside of thedatabase,andavoidwaitingorsilentlyoverwritingrecords.Insuchcases,the

form includes a hidden field with the record's original content, a timestamp, a

sequencenumber, or an opaque token. On submit, this is compared against the database. If it

differs, theconflictresolution algorithm is invoked.
Timestamp based Concurrency Control

Concurrency Controlcan be implemented in differentways. One way to

implementitisbyusingLocks. Now, lets discuss aboutTimeStamp OrderingProtocol.

As earlier introduced, Timestamp is a unique identifier created by the DBMS to identify
atransaction. They are usually assigned in the order in which they are submitted to the
system.RefertothetimestampofatransactionTas

TS(T).Forbasicsof Timestampyoumayreferhere.
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Timestamp Ordering Protocol—-

The main idea for this protocol is to order the transactions based on their
Timestamps.Aschedule in which the transactions participate is then serializable and the only
equivalent serialschedule permitted has the transactions in the order of their Timestamp
Values. Stating
simply,thescheduleisequivalenttotheparticularSerialOrdercorrespondingtotheorderoftheTrans
action timestamps. Algorithm must ensure that, for each items accessed by
ConflictingOperations in the schedule, the order in which the item is accessed does not

violate the ordering.Toensurethis, use twoTimestampValues relating to eachdatabaseitemX.

. W_TS(X) is the largest timestamp of any transaction

thatexecutedwrite(X)successfully.

R_TS(X)isthelargesttimestampofanytransactionthatexecutedread(X)successful

y.

T, T;

write  read  T.mustnot write an object that has been read by any T; where T;> T..

This requires that 7. > the maximum read timestamp of the object.

write  write T, mustnot write an object that has been written by any T; where T; >T.

This requires that 7. > the write timestamp of the committed object.

read  write T.mustnot read an object that has been written by any T; where T; > T.

This requires that 7. > the write timestamp of the committed object.

BasicTimestampOrdering—

Every transaction is issued a timestamp based on when it enters the system. Suppose,
if an oldtransaction Ti hastimestampTS(Ti), a new transaction Tj isassignedtimestampTS(Tj)
suchthatTS(Ti)<TS(Tj). Theprotocolmanagesconcurrentexecutionsuchthatthetimestampsdeter
mine the serializability order. The timestamp ordering protocol ensures that any
conflictingreadand write operationsare executed in timestamporder. Whenever some
Transaction T triestoissue aR_item(X)oraW_item(X),theBasicTOalgorithm compares
thetimestampof T with R_TS(X) & W_TS(X) to ensure that the Timestamp order is not
violated. ThisdescribetheBasic TO protocol in followingtwo cases.
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WheneveraTransactionTissuesaW_item(X)operation,checkthefollowingconditions:

. If
R_TS(X)>TS(T)orifW_TS(X)>TS(T),thenabortandrollbackTandrejecttheopera

tion. else,

. ExecuteW _item(X)operationofTandsetW_TS(X)toTS(T).
Whenevera TransactionTissuesaR_item(X)operation,checkthefollowing conditions:
. IfW_TS(X)>TS(T),thenabortandreject Tandrejecttheoperation,else

IfW_TS(X)<=TS(T),thenexecutetheR_item(X)operationofTandsetR_TS(X)to
thelarger of TS(T)andcurrent R_TS(X).

Whenever the Basic TO algorithm detects twp conflicting operation that occur in
incorrect order,it rejects the later of the two operation by aborting the Transaction that issued
it. Schedulesproduced by Basic TO are guaranteed to be conflict serializable. Already

discussed that usingTimestamp,can ensurethat our schedulewill bedeadlockfree.

One drawback of Basic TO protocol is that it Cascading Rollback is still possible.

Suppose wehave a Transaction T1and T2has used a value written by T1. If T1is aborted and
resubmitted tothe system then, T must also be aborted and rolled back. So the problem of

Cascading aborts stillprevails.
Let’sgisttheAdvantagesandDisadvantagesofBasicTOprotocol:

. TimestampOrderingprotocolensuresserializablitysincetheprecedencegrap

hwillbeoftheform:

Transaction W Transaction
with smaller J with larger

TS TS

Image—PrecedenceGraph forTSordering
. Timestampprotocolensuresfreedomfromdeadlockasnotransactioneverwaits.
. Buttheschedulemaynotbecascadefree,andmaynoteven berecoverable.
StrictTimestampOrdering—

A variation of Basic TO is calledStrict TO ensures that the schedules are both Strict

andConflict Serializable. In this variation, a Transaction T that issues a R_item(X) or
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W_item(X)such that TS(T) > W_TS(X) has its read or write operation delayed until the

Transaction T* thatwrotethevalues ofXhascommitted oraborted.
Multiversion timestamp ordering write rule: As any potentially conflicting read
operation willhave been directed to the most recent versionof an object, the server inspects

the versionDmaxEarlier with the maximum write timestamp less than or equal to Tc. We

have the followingruleforperformingawrite operation requestedbytransaction Tcon object

D:
if(readtimestampofDmaxEarlierTc)performwriteoperationonatentativeversionofDwithwriteti
mestamp Tc

elseaborttransactionTc

Theobjectalreadyhascommittedversions withwritetimestamps T1landT2.

Theobjectreceivesthefollowing

sequenceofrequests foroperations ontheobject:

T3read; T3write; T5read; T4 write.

1. T3requests areadoperation,whichputsareadtimestampT3onT2’sversion.

2. T3 requests a write operation, which makes a new tentative version with

writetimestamp T3.

3. T5requestsareadoperation,whichusestheversionwithwritetimestampT3(thehighesttime

stampthat is less than T5).

4. T4 requests a write operation, which is rejected because the read timestamp T5 of the
versionwith write timestamp T3 is bigger than T4. (If it were permitted, the write timestamp
of the
newversionwouldbeT4.Ifsuchaversionwereallowed,thenitwouldinvalidateT5’sreadoperation,

which shouldhaveusedtheversion with timestampT4.)
DistributedTwo-phaseLockingAlgorithm

The basic principle of distributed two-phase locking is same as the basic two-phase
lockingprotocol. However, in a distributed system there are sites designated as lock
managers. A lockmanager controls lock acquisition requests from transaction monitors. In

order to enforce co-ordination between the lock managers in various sites, at least one site is
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given the authority toseeall transactions and detect lock conflicts.

Depending uponthe numberof siteswhocandetectlockconflicts,distributedtwo-

phaselockingapproaches can beofthreetypes —

. Centralized two-phase locking — In this approach, one site is designated as the
centrallock manager. All the sites in the environment know the location of the

central lockmanager and obtain lockfrom it duringtransactions.

Primary copy two-phase locking — In this approach, a number of sites are
designated aslock control centers. Each of these sites has the responsibility of
managing a defined
setoflocks.Allthesitesknowwhichlockcontrolcenterisresponsibleformanaginglock

ofwhich data table/fragment item.

Distributed two-phase locking — In this approach, there are a number of lock
managers,whereeachlockmanagercontrolslocksofdata
itemsstoredatitslocalsite. Thelocationofthelock  manageris based upondata

distribution and replication.
Distributed TimestampConcurrencyControl

In a centralized system,timestamp of any transaction is determined by the physical
clockreading. But, in a distributed system, any site’s local physical/logical clock readings
cannot beused as global timestamps, since they are not globally unique. So, a timestamp

comprises of acombinationofsiteIDand thatsite’sclock reading.

For implementing timestamp ordering algorithms, each site has a scheduler that maintains
aseparate queue for each transaction manager. During transaction, a transaction manager
sends alockrequesttothesite’sscheduler. Thescheduler
putstherequesttothecorrespondingqueueinincreasing timestamp order. Requests are processed

from the front of the queues in the order oftheirtimestamps, i.e. theoldest first.
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Write operations and timestamps

(a) Ty write (b) T3 write

(c) T3 write (d) T3 write

Transaction

Before 4 aborts

After 74

object produced by transaction 7

(with write timestamp 71)
Committed  Tentative Ti<h<h<T

5 K

Validation of transactions ¢ Validation uses the read-write conflict rules to ensure that
thescheduling of a particular transaction is serially equivalent with respect to all other
overlappingtransactions—

thatis,anytransactionsthathadnotyetcommittedatthetimethistransaction

started. To assist in performing validation, each transaction is assigned a transaction
numberwhen it enters the validation phase (that is, when the client issuesa closeTransaction).
If thetransaction is validated and completes successfully, it retains this number; if it fails the
validationchecksandisaborted,or ifthetransactionis

readonly,thenumberisreleasedforreassignment.

Transaction numbers are integers assigned in ascending sequence; the number of a
transactiontherefore defines itsposition in time — a transaction always finishes its working
phase after alltransactions with lower numbers. That is, a transaction with the number Ti
always precedes atransaction with the number Tj if i <j. (If the transaction number were to be
assigned at thebeginning of the working phase, then a transaction that reached the end of the

working phasebefore one with a lower number would have to wait until the earlier one had
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completed before
itcouldbevalidated.) ThevalidationtestontransactionTvisbasedonconflictsbetweenoperationsin

pairs oftransactionsTi and Tv.
Comparisonofmethods forconcurrencycontrol:

We have described three separate methods for controlling concurrent access to shared data:
stricttwo-phase locking, optimistic methods and timestamp ordering. All of the methods carry
someoverheads in the time and space they require, and they all limit to some extent the

potential forconcurrentoperation.

The timestamp ordering method is similar to two-phase locking in that both use
pessimisticapproaches in which conflicts between transactions are detected as each object is
accessed. Onthe one hand, timestamp ordering decides the serialization order statically —
when a transactionstarts.On theotherhand,two-phaselockingdecides the

serializationorderdynamically—accordingtotheorderinwhichobjectsareaccessed. Timestamp

ordering, and in particular multiversion timestamp ordering, is better than strict two-phase
locking for read-only transactions. Two-phase locking is better when the operations
intransactions are predominantly updates. Some work uses the observation that timestamp
orderingisbeneficialfortransactionswithpredominantlyreadoperationsandthatlockingisbenefici
alfor transactions with more writes than reads as an argument for allowing hybrid schemes
inwhichsometransactions use timestamp orderingand others

uselockingforconcurrencycontrol.

The pessimistic methods differ in the strategy used when a conflicting access to an object
isdetected. Timestamp ordering aborts the transaction immediately, whereas locking makes

thetransaction wait—but with a possible laterpenaltyofabortingto avoid deadlock.
Distributedtransactionsmaybeeitherflatornested:

An atomic commit protocol is a cooperative procedure used by a set of serversinvolved in
adistributed transaction. It enables the servers to reach a joint decision as towhether a

transactioncanbecommitted oraborted.

Servers that provide transactions include a recovery manager whose concern is toensure that
theeffects of transactions on the objects managed by a server can berecovered when it is
replacedafterafailure. Therecoverymanagersavestheobjectsinpermanentstoragetogetherwithint

entionslists and information about thestatus ofeachtransaction.
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In the general case, a transaction, whether flat or nested, will access objectslocated in
severaldifferentcomputers.Weusethetermdistributedtransactiontorefertoaflatornestedtransacti
on that accesses objects managed by multiple servers.When a distributed transactioncomes to
an end, the atomicity property oftransactions requires that either all of the serversinvolved
commit the transaction or allof them abort the transaction. To achieve this, one of theservers
takes on a coordinatorrole, which involves ensuring the same outcome at all of

theservers. Themanner in

which the coordinator achieves this depends on the protocol chosen. A protocol knownas
the‘two-phase commit protocol’ is the most commonly used. This protocol allowsthe servers

tocommunicatewith oneanotherto reachajointdecision as towhethertocommitor abort.
Flatandnesteddistributedtransactions

Client transaction becomes distributed if it invokes operations in several differentservers.
Thereare two different ways that distributed transactions can be structured: asflat transactions

and asnestedtransactions.

In a flat transaction, a client makes requests to more than one server. For example, transaction
TisaflattransactionthatinvokesoperationsonobjectsinserversX,YandZ.Aflatclienttransactionco
mpleteseachof itsrequestsbeforegoingontothe nextone.Therefore,eachtransaction accesses
servers’  objects  sequentiallyWhen  servers use locking, a transaction

canonlybewaitingforoneobject at a time.

Inanestedtransaction,thetop-
leveltransactioncanopensubtransactions,andeachsubtransactioncanopenfurthersubtransactions
downtoanydepthofnesting,aclienttransaction T that opens two subtransactions, T1 and
T2,which access objects at servers X and Y.The subtransactionsT1 andT2 open
furthersubtransactionsT11, T12,T21, andT22, whichaccessobjects at serversM, N and P.

In thenested case, subtransactions at the same level can run concurrently, so T1 and T2
areconcurrent,andastheyinvokeobjectsindifferentservers,theycanruninparallel. Thefoursubtran

sactionsT11, T12, T21 andT22 also run concurrently.
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Distributed transactions

(a) Flat transaction (b) Nested transactions
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[Distributed Systems] Page 107




Figure 17.3 A distributed banking transaction
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Note: the coordinator is in one of the servers, e.g., BranchX BranchZ

Servers that execute requests as part of a distributed transaction need to be able to
communicate with one another to coordinate their actions when the transaction commits.
A client starts a transaction by sending an openTransaction request to a coordinator in
any server, as described in Section 16.2. The coordinator that is contacted carries out the
openTransaction and returns the resulting transaction identifier (TID) to the client.
Transaction identifiers for distributed transactions must be unique within a distributed
system. A simple way to achieve this is fora TID to contain two parts: the identifier (for
example, an [P address) of the server that created it and a number unique to the server.

The coordinator that opened the transaction becomes the coordinator for the
distributed transaction and at the end is responsible for committing or aborting it. Each
of the servers that manages an object accessed by a transaction is a participant in the
transaction and provides an object we call the participant. Each participant is
responsible for keeping track of all of the recoverable objects at that server that are
involved, in the transaction. The participants are responsible for cooperating with the
coordinator in carrying out the commit protocol.

During the progress of the transaction, the coordinator records a list of references
to the participants, and each participant records a reference to the coordinator.

The interface for Coordinator shown in Figure 13.3 provides an additional
method, join, which is used whenever a new participant joins the transaction:
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Atomic commit protocols:

Transactioncommitprotocolsweredevisedintheearly1970s,andthetwo-
phasecommitprotocol appeared in Gray [1978]. The atomicity property of
transactionsrequires that when adistributed transaction comes to an end, either all of its
operationsare carried out or none of them.In the case of a distributed transaction, the client

hasrequested operations atmore than oneserver.

A transaction comes to an end when theclient requests that it be committed or aborted.
A simpleway to complete the transactionin an atomic manner is for the coordinator to
communicate thecommit or abort requestto all of the participants in the transaction and to
keep on repeating therequest until allof them have acknowledged that they have carried it out.

This is an example of aonephaseatomic commit protocol.

This simple one-phase atomic commit protocol is inadequate, though, because itdoes
not allow aserver to make a unilateral decision to abort a transaction when theclient requests
acommit.Reasonsthatpreventaserverfrombeingabletocommititspartofatransactiongenerallyrela
tetoissuesofconcurrencycontrol.Forexample,iflockingisinuse,theresolutionofadeadlockcan
lead to the aborting of a transactionwithout the client being aware unless it makes
anotherrequest to the server. Also ifoptimistic concurrency control is in use, the failure of
validation at aserver would causeit to decide to abort the transaction. Finally, the coordinator
may not know if aserver hascrashed and been replaced during the progress of a distributed

transaction — such aserverwill need to abort thetransaction.

Thetwo-phasecommitprotocolisdesignedtoallowany
participanttoabortitspartofatransaction. Due to the requirement for atomicity, if one part of a
transaction is aborted, then thewhole transaction must be aborted.In the first phase of the
protocol, each participant votes forthe transaction to be committed or aborted. Once a
participanthas voted to commit a transaction,it is not allowed to abort it. Therefore, before a
participant votes to commit a transaction, it mustensure that it will eventually be able to carry
out its part of the commit protocol, even if it failsand is replaced in the interim. A participant
in a transaction is said to be in a prepared state for atransaction if it willeventually be able to
commit it. To make sure of this, each participant savesin permanent storage allof the objects

that it has altered in the transaction, together with itsstatus— prepared.

In the second phase of the protocol, every participant in the transaction carries out the
jointdecision.Ifanyoneparticipantvotestoabort,thenthedecisionmustbetoabortthetransaction. If
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alltheparticipants votetocommit,then thedecisionisto committhetransaction.

Operations for two-phase commit protocol

canCommit?(trans)— Yes / No
Call from coordinator to participant to ask whether it can commit a transaction.
Participant replies with its vote.

doCommit(trans)
Call from coordinator to participant to tell participant to commit its part of a
transaction.

doAbort(trans)
Call from coordinator to participant to tell participant to abort its part of a transaction.

haveCommitted(trans, participant)
Call from participant to coordinator to confirm that it has committed the transaction.

getDecision(trans) — Yes / No
Call from participant to coordinator to ask for the decision on a transaction when it
has voted Yes but has still had no reply after some delay. Used to recover from server
crash or delayed messages.

The two-phase commit protocol

Phase 1 (voting phase):

1. The coordinator sends a canCommit? request to each of the participants in the
transaction.

2. When a participant receives a canCommit? request it replies with its vote ( Yes or
No) to the coordinator. Before voting Yes, it prepares to commit by saving objects
in permanent storage. If the vote is No, the participant aborts immediately.

Phase 2 (completion according to outcome of vote):
3. The coordinator collects the votes (including its own).

(a)If there are no failures and all the votes are Yes, the coordinator decides to
commit the transaction and sends a doCommit request to each of the
participants.

(b)Otherwise, the coordinator decides to abort the transaction and sends doAbort
requests to all participants that voted Yes.

. Participants that voted Yes are waiting for a doCommit or doAbort request from
the coordinator. When a participant receives one of these messages it acts
accordingly and, in the case of commit, makes a haveCommitted call as
confirmation to the coordinator.
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Coordinator Participant

step status step  status
1 prepared to commit canCommit?
(waiting for votes) yes == 2 prepared to commit
committed aoCommit (uncertain)
haveCommitted =4 committed

done 4-————————'—/—_——_

Concurrency control in distributed transactions

Each server manages a set of objects and is responsible for ensuring that they remain
consistentwhen accessed by concurrent transactions. Therefore, each server is responsible for
applyingconcurrency control to its own objects. The members of a collection of servers of
distributedtransactions are jointly responsible for ensuring that they are performed in a

serially equivalentmanner.

This implies that if transaction T is before transaction U in their conflicting access to objects
atone of the servers, then they must be in that order at all of the servers whose objects are
accessedinaconflictingmanner byboth TandU.

Locking:

Inadistributedtransaction,thelocksonanobjectare
heldlocally(inthesameserver).Thelocallockmanagercandecidewhethertograntalockormakether
equestingtransactionwait.However,itcannotreleaseanylocksuntilitknowsthatthetransactionhasb
eencommittedorabortedatalltheserversinvolvedinthetransaction.Whenlockingisusedforconcurr
encycontrol,theobjectsremainlockedandareunavailableforothertransactionsduringtheatomicco
mmit protocol, although an aborted transaction releases its locks after phase 1 of the
protocol.Aslockmanagersindifferentserverssettheirlocksindependentlyofoneanother,itispossibl

ethatdifferent servers mayimposedifferent orderings on transactions.
ConsiderthefollowinginterleavingoftransactionsTand Uatservers X and Y

ThetransactionTlocksobjectAatserverX,andthentransactionUlocksobjectBatserverY . After

that, TtriestoaccessBatserverYandwaitsforU’slock.Similarly,transactionUtriesto

accessAatserverXandhastowaitforT slock.

Therefore,wehaveTbeforeUinoneserverandUbeforeTin theother. Thesedifferent orderings can
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leadtocyclicdependencies betweentransactions,givingrisetoadistributeddeadlocksituation.

T U

write(A) at X locks A
write(B) at Y locks B
readi(B) at ¥ waits for U

read(A) at X waits for T

Distributed dead locks:

Deadlocks can arise within a single server when locking is used for concurrency control.
Serversmusteitherpreventordetectandresolvedeadlocks.Usingtimeoutstoresolvepossibledeadlo
ck.It is difficult to choose an appropriate timeout interval, and transactions may be
abortedunnecessarily.Withdeadlockdetectionschemes,atransactionisabortedonlywhenitisinvol
vedinadeadlock.Mostdeadlockdetectionschemesoperateby  finding  cyclesinthetransaction
wait-for graph. In a distributed system involving multiple servers being accessed bymultiple
transactions, a global wait-for graph can in theory be constructed from the local ones.There
can be a cycle in the global wait-for graph that is not in any single local one — that is,
therecan be a distributed deadlock. Recall that the wait-for graph is a directed graph in which
nodesrepresent transactions and objects, and edges represent either an object held by a
transaction or atransaction waiting for an object. There is a deadlock if and only if there is a

cycle in the wait-forgraph.

DISTRIBUTEDTRANSACTIONS:

U

d.deposit(10) lock D

b.deposit(10) lock B
a.deposit(20) lock A atyY

at X
c.deposit(30) lock C

b.withdraw(30) waitatY at Z

c.withdraw(20) waitatZ

a.withdraw(20) waitat X
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DISTRIBUTEDDEADLOCK:

Whenitfindsacycle,it makesadecisiononhowtoresolvethe deadlockandtellstheservers
whichtransactiontoabort.
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Centralizeddeadlockdetectionisnotagoodidea,becauseitdependsonasingleservertocarryitout. Its

uffersfromthe usual problems associated with centralizedsolutions in distributed systems —
poor availability, lack of faulttolerance and no abilityto scale. In addition, the cost of the
frequent transmission of local wait-for graphs ishigh. Iftheglobal
graphiscollectedlessfrequently,deadlocksmaytake longertobedetected.

Phantom deadlocks * A deadlock that is ‘detected’ but is not really a deadlock
iscalledaphantom deadlock. In distributed deadlock detection, information about wait-
forrelationshipsbetweentransactionsistransmittedfromoneservertoanother.Ifthereisadeadlock,t
henecessary information will eventually be collected in one place and acycle will be detected.
Asthis procedure will take some time, there is a chance that oneof the transactions that holds

a lockwill meanwhile havereleasedit, in whichcase thedeadlock will nolonger exist.

EdgechasingeAdistributedapproachtodeadlockdetectionusesatechniquecallededgechasing  or
path pushing. In this approach, the global wait-for graph is notconstructed, but each ofthe
servers involved has knowledge about some of its edges.The servers attempt to find cycles
byforwardingmessagescalledprobes,whichfollowtheedgesofthegraphthroughoutthedistributed
system. A probe message consists oftransaction wait-for relationships representing apathin

theglobal wait-for graph.

Transactionrecovery:
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The atomic property of transactions requires that all the effects of committedtransactions

andnoneoftheeffectsofincompleteorabortedtransactionsarereflectedintheobjectstheyaccessed.

Thispropertycanbedescribedintermsoftwoaspects:durabilityandfailureatomicity.Durability

requires that objects are saved in permanentstorage and will be available
indefinitelythereafter. Therefore an acknowledgement ofa client’s commit request implies
that all the effectsof the transaction have beenrecorded in permanent storage as well as in the

server’s (volatile)objects.
Failureatomicityrequiresthateffectsoftransactionsareatomicevenwhen theservercrashes.

Recovery is concerned with ensuring that a server’s objects are durable and that

theserviceprovides failureatomicity.
Therequirements fordurabilityandfailureatomicityarenot reallyindependent

of one another and can be dealt with by a single mechanism — the recovery manager.Thetasks

ofarecoverymanagerare:
. tosaveobjectsin permanent storage(inarecoveryfile)forcommittedtransactions;
torestoretheserver’sobjects afteracrash;
toreorganizetherecoveryfiletoimprovetheperformanceofrecovery;

toreclaimstoragespace(intherecoveryfile).

Logging:

« In the logging technique, the recovery file represents a log containing the history of
allthetransactions performed by a server. The history consists of values of objects,transaction
status entriesandtransactionintentions lists. Theorder
oftheentriesinthelogreflectstheorderinwhichtransactionshaveprepared, committed and

abortedat thatserver.

In practice, the recovery file will contain a recent snapshot of the values of all theobjects in
the serverfollowed by a history of transactions postdating the snapshot.During the normal
operation of a server,its recovery manager is called whenevera transaction prepares to
commit, commits or aborts atransaction. When the server isprepared to commit a transaction,
the recovery manager appends all theobjects in itsintentions list to the recovery file, followed

by the current status of thattransaction(prepared) together with its intentions list.
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Time:3 hours Max.Marks:70
Note:ThisquestionpaperConsistsof5Sections.AnswerFIVEQuestions,ChoosingONEQuestionfrom
eachSECTIONandeachQuestioncarries14marks.
***SECTI
ON-1
a)Discusshowdistributedsystemsaremorescalablethanthecentralizedsystems

b)Demonstratethedesignrequirementsfordistributedarchitectures
OR
Explaindifferenttypes offailureswithexamples.

SECTION-II

a)Explainexternalsynchronizationandinternalsynchronization.
b)DefineConsistent-globalstates,consistentcutandconsistentrun
OR
a)describeindetailaboutfailuredetectors
b)ExplainaboutMaekawa’salgorithm.
SECTION-III
a)Writeaboutgroupcommunication.

b)What isamiddleware?Explainthevariouslayerspresentinit.
OR
a)WriteshortnotesExternaldatarepresentation
b)DiscussindetailaboutCORBA’scommondatarepresentation
SECTION-IV
a)Discussvariousfilesystemoperations.
b)DiscussindetailaboutCORBA’scommondatarepresentation
OR
writeabout groupcommunication.
Whatisamiddleware?Explainthevariouslayers presentinit.
SECTION-V
a)ExplainaboutOptimisticconcurrencycontrol.
b)ExplainTimestampordering
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Explaindistributeddeadlockdetectionmechanismwithexample.
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***SECTI
ON-I
a)Discussinbriefthemain featuresofHTTP

b)Listandexplainthetechniquesusedfordealingwithfailures
OR

Explainbrieflyaboutarchitecturalmodels

SECTION-II
1.)Discussinbriefabout,

i. Mobileagents

ii. ThinClients

iii. NetworkComputers

OR

Whatissignificanceoffailuremodels?Explainin detailthetaxonomythat
distinguishesbetweenhe failuresofprocessesandcommunicationchannels.
Whataretheproblemsofdistributedsystems?

SECTION-III
ExplaintheElectionalgorithmswith examples.
OR
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Explainthealgorithm formutualexclusionusingmulticast andlogicalclocks
[6M]What is meant by interprocess communication? How interprocess communication

[8M]isusedin distributed systems
SECTION-IV
WhataretheSixbuildingblocksofanXMLdocument?GiveExamples.
OR
a)Drawandexplainthearchitectureof SUNNetworksFileSystem
b)Whatarethe variousoperations providedbyNFS Server
SECTION-V
a)Discussinbriefaboutthe “ACID” PropertiesofTransactions
b)Explainwithanexamplehowtwotransactionsareinterleavedwhichareserially
equivalentateachserverbutisnotseriallyequivalentglobally?
OR

10 ExplainconcurrencycontrolinDistributedtransactions.
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SECTION-I
Explaindifferentchallengesfacedbydistributedsystemswithexamples
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Writeshortnotesonfundamentalmodels

SECTION-II

a)Defineinteractingprocesses.Alsodiscusstwosignificantfactors
effectinginteractionprocessesinDistributedsystem.
b)ExplainindetailHTML.

OR
(a)Whatisaneedofelectionalgorithm.Explainringbasedelectionalgorithm.
(b)Whataretheessentialfeaturesofmulticastcommunication?

SECTION-III
a)Writeabouttheorderingofmessages.
b)Explainthealgorithmtosolveconsensusprobleminasynchronoussystem.

OR
(a)Discussindetailaboutrequest replyprotocolandRPC.
(b)WriteaboutinterprocesscommunicationinUNIX.

SECTION-IV
(a)WhatarethedesigncharacteristicsofAndrewfilesystem.Howisthedistrib
utionof processesdoneinAFS?

3 3k 3k ok ok ok ok %k ok ok

[Distributed Systems] Page 117




R17
CodeNo:XXXXXX
MALLAREDDYCOLLEGEOFENGINEERING&TECHNOLOGY
(Autonomousinstitution—-UGC,Govt.ofIndia)
llIB.TechllISemester,ModelPaper-1V
DistributedSystems
(CSE&IT)

Time:3 hours Max.Marks:70

Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question

fromeachSECTIONandeachQuestioncarriesl4marks.
% %k %k

SECTION-I
a)Whatarethedifferentmethodsofsharingresourcesindistributedsystems.

b) Explainaboutmobileandubiquitouscomputing.

OR
a)Explaininteractionmodels.
b)ExplaindifferentvariationsinClientServermodel.

SECTION-II
(a)Whatisthe importanceoftimeindistributedsystems
(b)Describethealgorithmforexternalsynchronization

OR
(a)WhatisConsensusProblem
(b)Discussthetwo implementationofreliablemulticast

SECTION-III
ExplainRPCwithaneatexample.

OR
a)Listanddiscussthecharacteristicsofnetworkthatarehiddenbythestream
obstruction
b)DiscussindetailaboutHTTPProtocol

SECTION-IV

a)Give anOverViewofTypesofStorageSystemsandtheir properties
b) Explainthefileservicearchitecturewithaneatdiagram
OR
a)Whataretherequirementsforthedesignofdistributedfile system
b)Writeabout
(i) HierarchicFileSystems
(ii) FileGroups
SECTION-V
a)Discussinbriefaboutthe “ACID” PropertiesofTransactions
b)Writeshortnotesonlocksforconcurrencycontrol.
OR
Explaindifferenttransactionrecoverymechanismsindistributedtransactions.
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